-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
AStar.java
137 lines (119 loc) · 5.28 KB
/
AStar.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
package com.jwetherell.algorithms.graph;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import com.jwetherell.algorithms.data_structures.Graph;
import com.jwetherell.algorithms.data_structures.Graph.Edge;
import com.jwetherell.algorithms.data_structures.Graph.Vertex;
/**
* In computer science, A* is a computer algorithm that is widely used in path finding and graph traversal, the process
* of plotting an efficiently traversable path between multiple points, called nodes.
* <p>
* @see <a href="https://en.wikipedia.org/wiki/A*_search_algorithm">A* Algorithm (Wikipedia)</a>
* <br>
* @author Justin Wetherell <[email protected]>
*/
public class AStar<T extends Comparable<T>> {
public AStar() { }
/**
* Find the path using the A* algorithm from start vertex to end vertex or NULL if no path exists.
*
* @param graph
* Graph to search.
* @param start
* Start vertex.
* @param goal
* Goal vertex.
*
* @return
* List of Edges to get from start to end or NULL if no path exists.
*/
public List<Graph.Edge<T>> aStar(Graph<T> graph, Graph.Vertex<T> start, Graph.Vertex<T> goal) {
final int size = graph.getVertices().size(); // used to size data structures appropriately
final Set<Graph.Vertex<T>> closedSet = new HashSet<Graph.Vertex<T>>(size); // The set of nodes already evaluated.
final List<Graph.Vertex<T>> openSet = new ArrayList<Graph.Vertex<T>>(size); // The set of tentative nodes to be evaluated, initially containing the start node
openSet.add(start);
final Map<Graph.Vertex<T>,Graph.Vertex<T>> cameFrom = new HashMap<Graph.Vertex<T>,Graph.Vertex<T>>(size); // The map of navigated nodes.
final Map<Graph.Vertex<T>,Integer> gScore = new HashMap<Graph.Vertex<T>,Integer>(); // Cost from start along best known path.
gScore.put(start, 0);
// Estimated total cost from start to goal through y.
final Map<Graph.Vertex<T>,Integer> fScore = new HashMap<Graph.Vertex<T>,Integer>();
for (Graph.Vertex<T> v : graph.getVertices())
fScore.put(v, Integer.MAX_VALUE);
fScore.put(start, heuristicCostEstimate(start,goal));
final Comparator<Graph.Vertex<T>> comparator = new Comparator<Graph.Vertex<T>>() {
/**
* {@inheritDoc}
*/
@Override
public int compare(Vertex<T> o1, Vertex<T> o2) {
if (fScore.get(o1) < fScore.get(o2))
return -1;
if (fScore.get(o2) < fScore.get(o1))
return 1;
return 0;
}
};
while (!openSet.isEmpty()) {
final Graph.Vertex<T> current = openSet.get(0);
if (current.equals(goal))
return reconstructPath(cameFrom, goal);
openSet.remove(0);
closedSet.add(current);
for (Graph.Edge<T> edge : current.getEdges()) {
final Graph.Vertex<T> neighbor = edge.getToVertex();
if (closedSet.contains(neighbor))
continue; // Ignore the neighbor which is already evaluated.
final int tenativeGScore = gScore.get(current) + distanceBetween(current,neighbor); // length of this path.
if (!openSet.contains(neighbor))
openSet.add(neighbor); // Discover a new node
else if (tenativeGScore >= gScore.get(neighbor))
continue;
// This path is the best until now. Record it!
cameFrom.put(neighbor, current);
gScore.put(neighbor, tenativeGScore);
final int estimatedFScore = gScore.get(neighbor) + heuristicCostEstimate(neighbor, goal);
fScore.put(neighbor, estimatedFScore);
// fScore has changed, re-sort the list
Collections.sort(openSet,comparator);
}
}
return null;
}
/**
* Default distance is the edge cost. If there is no edge between the start and next then
* it returns Integer.MAX_VALUE;
*/
protected int distanceBetween(Graph.Vertex<T> start, Graph.Vertex<T> next) {
for (Edge<T> e : start.getEdges()) {
if (e.getToVertex().equals(next))
return e.getCost();
}
return Integer.MAX_VALUE;
}
/**
* Default heuristic: cost to each vertex is 1.
*/
@SuppressWarnings("unused")
protected int heuristicCostEstimate(Graph.Vertex<T> start, Graph.Vertex<T> goal) {
return 1;
}
private List<Graph.Edge<T>> reconstructPath(Map<Graph.Vertex<T>,Graph.Vertex<T>> cameFrom, Graph.Vertex<T> current) {
final List<Graph.Edge<T>> totalPath = new ArrayList<Graph.Edge<T>>();
while (current != null) {
final Graph.Vertex<T> previous = current;
current = cameFrom.get(current);
if (current != null) {
final Graph.Edge<T> edge = current.getEdge(previous);
totalPath.add(edge);
}
}
Collections.reverse(totalPath);
return totalPath;
}
}