-
Notifications
You must be signed in to change notification settings - Fork 11
/
pg.test.mjs
64 lines (51 loc) · 2.68 KB
/
pg.test.mjs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import assert from 'node:assert';
import test from 'node:test';
import pg from 'pg';
import pgvector from 'pgvector/pg';
import { SparseVector } from 'pgvector';
test('pg example', async () => {
const client = new pg.Client({database: 'pgvector_node_test'});
await client.connect();
await client.query('CREATE EXTENSION IF NOT EXISTS vector');
await pgvector.registerTypes(client);
await client.query('DROP TABLE IF EXISTS pg_items');
await client.query('CREATE TABLE pg_items (id serial PRIMARY KEY, embedding vector(3), half_embedding halfvec(3), binary_embedding bit(3), sparse_embedding sparsevec(3))');
const params = [
pgvector.toSql([1, 1, 1]), pgvector.toSql([1, 1, 1]), '000', new SparseVector([1, 1, 1]),
pgvector.toSql([2, 2, 2]), pgvector.toSql([2, 2, 2]), '101', new SparseVector([2, 2, 2]),
pgvector.toSql([1, 1, 2]), pgvector.toSql([1, 1, 2]), '111', new SparseVector([1, 1, 2]),
null, null, null, null
];
await client.query('INSERT INTO pg_items (embedding, half_embedding, binary_embedding, sparse_embedding) VALUES ($1, $2, $3, $4), ($5, $6, $7, $8), ($9, $10, $11, $12), ($13, $14, $15, $16)', params);
const { rows } = await client.query('SELECT * FROM pg_items ORDER BY embedding <-> $1 LIMIT 5', [pgvector.toSql([1, 1, 1])]);
assert.deepEqual(rows.map(v => v.id), [1, 3, 2, 4]);
assert.deepEqual(rows[0].embedding, [1, 1, 1]);
assert.deepEqual(rows[0].half_embedding, [1, 1, 1]);
assert.deepEqual(rows[0].binary_embedding, '000');
assert.deepEqual(rows[0].sparse_embedding.toArray(), [1, 1, 1]);
await client.query('CREATE INDEX ON pg_items USING hnsw (embedding vector_l2_ops)');
await client.end();
});
test('pool', async () => {
const pool = new pg.Pool({database: 'pgvector_node_test'});
pool.on('connect', async function (client) {
await client.query('CREATE EXTENSION IF NOT EXISTS vector');
await pgvector.registerType(client);
});
await pool.query('DROP TABLE IF EXISTS pg_items');
await pool.query('CREATE TABLE pg_items (id serial PRIMARY KEY, embedding vector(3))');
const params = [
pgvector.toSql([1, 1, 1]),
pgvector.toSql([2, 2, 2]),
pgvector.toSql([1, 1, 2]),
null
];
await pool.query('INSERT INTO pg_items (embedding) VALUES ($1), ($2), ($3), ($4)', params);
const { rows } = await pool.query('SELECT * FROM pg_items ORDER BY embedding <-> $1 LIMIT 5', [pgvector.toSql([1, 1, 1])]);
assert.deepEqual(rows.map(v => v.id), [1, 3, 2, 4]);
assert.deepEqual(rows[0].embedding, [1, 1, 1]);
assert.deepEqual(rows[1].embedding, [1, 1, 2]);
assert.deepEqual(rows[2].embedding, [2, 2, 2]);
await pool.query('CREATE INDEX ON pg_items USING hnsw (embedding vector_l2_ops)');
await pool.end();
});