-
Notifications
You must be signed in to change notification settings - Fork 11
/
example.js
44 lines (37 loc) · 1.39 KB
/
example.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import { CohereClient } from 'cohere-ai';
import pg from 'pg';
import pgvector from 'pgvector/pg';
const client = new pg.Client({database: 'pgvector_example'});
await client.connect();
await client.query('CREATE EXTENSION IF NOT EXISTS vector');
await pgvector.registerTypes(client);
await client.query('DROP TABLE IF EXISTS documents');
await client.query('CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding bit(1024))');
async function fetchEmbeddings(texts, inputType) {
const cohere = new CohereClient();
const response = await cohere.embed({
texts: texts,
model: 'embed-english-v3.0',
inputType: inputType,
embeddingTypes: ['ubinary']
});
return response.embeddings.ubinary.map((e) => {
return e.map((v) => v.toString(2).padStart(8, '0')).join('')
});
}
const input = [
'The dog is barking',
'The cat is purring',
'The bear is growling'
];
const embeddings = await fetchEmbeddings(input, 'search_document');
for (let [i, content] of input.entries()) {
await client.query('INSERT INTO documents (content, embedding) VALUES ($1, $2)', [content, embeddings[i]]);
}
const query = 'forest';
const queryEmbedding = (await fetchEmbeddings([query], 'search_query'))[0];
const { rows } = await client.query('SELECT * FROM documents ORDER BY embedding <~> $1 LIMIT 5', [queryEmbedding]);
for (let row of rows) {
console.log(row.content);
}
await client.end();