-
Notifications
You must be signed in to change notification settings - Fork 0
/
local_explanation_lr.py
336 lines (281 loc) · 14.7 KB
/
local_explanation_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from prepare_datasets import *
from create_model import CreateModel
from result_format import resultFormat
from sklearn.metrics import *
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import GradientBoostingClassifier
from explanation_based_neighborhood import ExplanationBasedNeighborhood
from knowledge_graph_neighborhood import KnowledgeGraphNeighborhood
from random_oversampling_neigbhorhood import RandomOversamplingNeighborhood
from random_instance_selection_neighborhood import RandomInstanceSelectionNeighborhood
from genetic_neighborhood import GeneticNeighborhood
from meaningful_data_sampling_neighborhood import MeaningfulDataSamplingNeighborhood
from sklearn.preprocessing import OneHotEncoder
from console_progressbar.progressbar import ProgressBar
from datetime import datetime
from encoding_utils import *
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 16})
import warnings
warnings.filterwarnings('ignore')
def plot_feature_importance(model, feature_names, class_name, input, label, experiment_path,
dataset_name, blackbox_name, sampling_name, index_instance):
coef = model.coef_
ind_category = np.where(input==1.0)[0]
feature_names_ = feature_names[ind_category]
coef_ = coef[ind_category]
sorted_coef_ind = np.argsort(-abs(coef_))
feature_names_ = feature_names_[sorted_coef_ind]
coef_ = coef_[sorted_coef_ind]
for i in range(len(feature_names_)):
last_char_index = feature_names_[i].rfind("_")
feature_names_[i] = feature_names_[i][:last_char_index] + " = " + feature_names_[i][last_char_index+1:]
feature_importance = {}
for f,c in zip(feature_names_, coef_):
feature_importance[f] = c
plt.close('all')
vals = list(feature_importance.values())
names = list(feature_importance.keys())
vals.reverse()
names.reverse()
colors = ['#FF0051' if x > 0 else '#008BFB' for x in vals]
pos = np.arange(len(vals)) + .5
plt.barh(pos, vals, align='center', color=colors)
plt.yticks(pos, names,fontsize=18)
plt.title('Predicted class: %s' % class_name[label], fontsize=18)
plt.xlabel('Regression\'s coefficients (impact on model output)')
plt.savefig(experiment_path + str(index_instance) + '_' + sampling_name + '_' + dataset_name + '_' + blackbox_name
+'.pdf', bbox_inches = 'tight')
def forward_selection(data, labels, N_features, ohe_encoder=None):
clf = Ridge()
used_features = []
for _ in range(min(N_features, data.shape[1])):
max_ = -100000000
best = 0
for feature in range(data.shape[1]):
if feature in used_features:
continue
data_ohe = []
for f in used_features + [feature]:
data_ohe.append(ohe_encoder[f].transform(data[:,f].reshape(-1, 1)))
data_ohe = np.hstack(data_ohe)
clf.fit(data_ohe,
labels)
score = clf.score(data_ohe,
labels)
if score > max_:
best = feature
max_ = score
used_features.append(best)
return np.array(used_features)
def interpretable_model(neighborhood_data, neighborhood_labels, neighborhood_proba, N_features=5, dataset=None,
ohe_encoder=None, experiment_path=None, dataset_name=None, blackbox_name=None,
sampling_name=None, index_instance=None, plot_explanations=False):
neighborhood_data_org = ord2org(neighborhood_data, dataset)
used_features = forward_selection(neighborhood_data_org, neighborhood_proba, N_features, ohe_encoder)
data_ohe = []
data_features = []
for f in used_features:
data_ohe.append(ohe_encoder[f].transform(neighborhood_data_org[:, f].reshape(-1, 1)))
data_features.append(ohe_encoder[f].get_feature_names(input_features=[dataset['discrete_features'][f]]))
data_ohe = np.hstack(data_ohe)
data_features = np.hstack(data_features)
lr = Ridge(random_state=42)
lr.fit(data_ohe, neighborhood_proba)
lr_preds = lr.predict(data_ohe)
local_model_pred = float(lr.predict(data_ohe[0, :].reshape(1, -1)))
local_model_score = r2_score(neighborhood_proba, lr_preds)
if plot_explanations:
plot_feature_importance(lr, data_features, list(dataset['labels'].values()), data_ohe[0,:],
neighborhood_labels[0], experiment_path, dataset_name, blackbox_name,
sampling_name, index_instance)
return local_model_pred, local_model_score
def data_sampling(sampling_method, instance2explain, N_samples=1000):
neighborhood_data, \
neighborhood_labels, \
neighborhood_proba = sampling_method(instance2explain, N_samples)
return neighborhood_data, neighborhood_labels, neighborhood_proba
def explain_instance(instance2explain, N_samples=1000, N_features=5, dataset=None, ohe_encoder=None,
sampling_method=None, experiment_path=None, dataset_name=None, blackbox_name=None,
sampling_name=None, index_instance=None, plot_explanations=False):
neighborhood_data, \
neighborhood_labels, \
neighborhood_proba = data_sampling(sampling_method, instance2explain, N_samples)
local_model_pred, \
local_model_score = interpretable_model(neighborhood_data, neighborhood_labels, neighborhood_proba,
N_features=N_features, dataset=dataset, ohe_encoder=ohe_encoder,
experiment_path=experiment_path, dataset_name=dataset_name,
blackbox_name=blackbox_name, sampling_name=sampling_name,
index_instance=index_instance, plot_explanations=plot_explanations)
return local_model_pred, local_model_score
def main():
# defining path of data sets and experiment results
path = './'
dataset_path = path + 'datasets/'
experiment_path = path + 'experiments/'
# defining the list of data sets
datsets_list = {
'adult': ('adult.csv', PrepareAdult),
'compas-scores-two-years': ('compas-scores-two-years.csv', PrepareCOMPAS),
'credit-card-default': ('credit-card-default.csv', PrepareCreditCardDefault),
'german-credit': ('german-credit.csv', PrepareGermanCredit),
'breast-cancer': ('breast-cancer.data', PrepareBreastCancer),
'heart-disease': ('heart-disease.csv', PrepareHeartDisease),
'car': ('car.data', PrepareCar),
}
# defining the list of black-boxes
blackbox_list = {
'nn': MLPClassifier,
# 'gb': GradientBoostingClassifier
}
# defining the number of neighborhood samples
N_samples = {
'adult': 1000,
'compas-scores-two-years': 1000,
'credit-card-default': 1000,
'german-credit': 1000,
'breast-cancer': 1000,
'heart-disease': 1000,
'car': 1000,
}
# defining the number of selected features for explanation
N_features = {
'adult': 5,
'compas-scores-two-years': 5,
'credit-card-default': 5,
'german-credit': 5,
'breast-cancer': 5,
'heart-disease': 5,
'car':5,
}
# creating a comprehensive dictionary for storing the results
results = resultFormat(type_format='lr')
# creating a csv file to store the results
results_csv = open(experiment_path + 'local_explanation_lr_%s.csv' % (datetime.now()), 'a')
for dataset_kw in datsets_list:
print('dataset=', dataset_kw)
results_csv.write('%s\n' % ('dataset= ' + dataset_kw))
results_csv.write('%s, %s\n' % ('N_samples=' + str(N_samples[dataset_kw]),
'N_features=' + str(N_features[dataset_kw])))
results_csv.flush()
# reading a data set
dataset_name, prepare_dataset_fn = datsets_list[dataset_kw]
dataset = prepare_dataset_fn(dataset_path,dataset_name)
# splitting the data set into train and test sets
X, y = dataset['X_ord'], dataset['y']
X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# creating one-hot encoder for discrete features
ohe_encoder = {}
X_org = ord2org(X, dataset)
for f_id, f_name in enumerate(dataset['discrete_features']):
enc = OneHotEncoder(sparse=False, categories='auto')
enc.fit(X_org[:,f_id].reshape(-1, 1))
ohe_encoder[f_id] = enc
for blackbox_name, blackbox_constructor in blackbox_list.items():
print('blackbox=', blackbox_name)
results_csv.write('%s\n' % ('blackbox= ' + blackbox_name))
results_csv.flush()
# creating black-box model
blackbox = CreateModel(X_train, X_test, Y_train, Y_test, blackbox_name, blackbox_constructor)
# creating sampling methods
sampling_methods = {}
# explanation based neighborhood
xbl = ExplanationBasedNeighborhood(X, y, blackbox, dataset)
xbl.fit()
sampling_methods['xbl'] = xbl.neighborhoodSampling
# knowledge graph neighborhood
kbl = KnowledgeGraphNeighborhood(X, y, blackbox, dataset)
kbl.fit()
sampling_methods['kbl'] = kbl.neighborhoodSampling
# random oversampling neighborhood
ros = RandomOversamplingNeighborhood(X, y, blackbox, dataset)
ros.fit()
sampling_methods['ros'] = ros.neighborhoodSampling
# random instance selection neighborhood
ris = RandomInstanceSelectionNeighborhood(X, y, blackbox, dataset)
ris.fit()
sampling_methods['ris'] = ris.neighborhoodSampling
# random genetic neighborhood
gen = GeneticNeighborhood(X, y, blackbox, dataset)
gen.fit()
sampling_methods['gen'] = gen.neighborhoodSampling
# meaningful data sampling neighborhood
mds = MeaningfulDataSamplingNeighborhood(X, y, blackbox, dataset)
mds.fit()
sampling_methods['mds'] = mds.neighborhoodSampling
# Generating explanations for the samples in the explain set
methods_output = {'xbl': {'local_model_pred':[], 'local_model_score':[]},
# 'kbl': {'local_model_pred': [], 'local_model_score': []},
'ros': {'local_model_pred':[], 'local_model_score':[]},
'ris': {'local_model_pred':[], 'local_model_score':[]},
'gen': {'local_model_pred': [], 'local_model_score': []},
'mds': {'local_model_pred': [], 'local_model_score': []}
}
# setting the number of explained instances
N_explain = min(X_test.shape[0], 500)
# explaining instances
pb = ProgressBar(total=N_explain, prefix='Progress:', suffix='Complete', decimals=1, length=50,
fill='█', zfill='-')
X_explain = []
tried = 0
explained = 0
while explained < N_explain:
try:
local_model_pred = {}
local_model_score = {}
for method, output in methods_output.items():
local_model_pred[method], \
local_model_score[method] = explain_instance(X_test[tried, :],
N_samples=N_samples[dataset_kw],
N_features=N_features[dataset_kw],
dataset=dataset,
ohe_encoder=ohe_encoder,
sampling_method=sampling_methods[method],
experiment_path=experiment_path,
dataset_name=dataset_kw,
blackbox_name=blackbox_name,
sampling_name=method,
index_instance=tried,
plot_explanations=False
)
for method, pred in local_model_pred.items():
methods_output[method]['local_model_pred'].append(pred)
for method, score in local_model_score.items():
methods_output[method]['local_model_score'].append(score)
X_explain.append(X_test[tried, :])
tried += 1
explained += 1
pb.print_progress_bar(explained)
except Exception:
tried += 1
pass
if tried == X_test.shape[0]:
break
# calculating the performance of different sampling strategy
X_explain = np.vstack(X_explain)
prediction = blackbox.predict_proba(X_explain)
bb_pred = np.max(prediction, axis=1)
for method, output in methods_output.items():
# R2 score
local_r2 = r2_score(bb_pred, np.asarray(output['local_model_pred']))
results[dataset_kw][blackbox_name][method]['r2_score'] = np.round(local_r2, 3)
# MAE
mae = mean_absolute_error(bb_pred, np.asarray(output['local_model_pred']))
results[dataset_kw][blackbox_name][method]['mae'] = np.round(mae, 3)
# MSE
mse = mean_squared_error(bb_pred, np.asarray(output['local_model_pred']))
results[dataset_kw][blackbox_name][method]['mse'] = np.round(mse, 3)
# Average score of local model
avg_local_model_score = np.mean(np.asarray(output['local_model_score']))
results[dataset_kw][blackbox_name][method]['model_score'] = np.round(avg_local_model_score, 3)
for key, val in results[dataset_kw][blackbox_name].items():
print(key, ':', val)
results_csv.write('%s\n' % (str(key) + ' : ' + str(val)))
results_csv.flush()
results_csv.write('\n')
results_csv.flush()
results_csv.close()
if __name__ == '__main__':
main()