-
Notifications
You must be signed in to change notification settings - Fork 342
/
run_mae_vis.py
137 lines (111 loc) · 5.17 KB
/
run_mae_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# -*- coding: utf-8 -*-
# @Time : 2021/11/18 22:40
# @Author : zhao pengfei
# @Email : [email protected]
# @File : run_mae_vis.py
# --------------------------------------------------------
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import os
from PIL import Image
from pathlib import Path
from timm.models import create_model
import utils
import modeling_pretrain
from datasets import DataAugmentationForMAE
from torchvision.transforms import ToPILImage
from einops import rearrange
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
def get_args():
parser = argparse.ArgumentParser('MAE visualization reconstruction script', add_help=False)
parser.add_argument('img_path', type=str, help='input image path')
parser.add_argument('save_path', type=str, help='save image path')
parser.add_argument('model_path', type=str, help='checkpoint path of model')
parser.add_argument('--input_size', default=224, type=int,
help='images input size for backbone')
parser.add_argument('--device', default='cuda:0',
help='device to use for training / testing')
parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true')
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='ratio of the visual tokens/patches need be masked')
# Model parameters
parser.add_argument('--model', default='pretrain_mae_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to vis')
parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT',
help='Drop path rate (default: 0.1)')
return parser.parse_args()
def get_model(args):
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
drop_path_rate=args.drop_path,
drop_block_rate=None,
)
return model
def main(args):
print(args)
device = torch.device(args.device)
cudnn.benchmark = True
model = get_model(args)
patch_size = model.encoder.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1])
args.patch_size = patch_size
model.to(device)
checkpoint = torch.load(args.model_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
model.eval()
with open(args.img_path, 'rb') as f:
img = Image.open(f)
img.convert('RGB')
print("img path:", args.img_path)
transforms = DataAugmentationForMAE(args)
img, bool_masked_pos = transforms(img)
bool_masked_pos = torch.from_numpy(bool_masked_pos)
with torch.no_grad():
img = img[None, :]
bool_masked_pos = bool_masked_pos[None, :]
img = img.to(device, non_blocking=True)
bool_masked_pos = bool_masked_pos.to(device, non_blocking=True).flatten(1).to(torch.bool)
outputs = model(img, bool_masked_pos)
#save original img
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None]
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None]
ori_img = img * std + mean # in [0, 1]
img = ToPILImage()(ori_img[0, :])
img.save(f"{args.save_path}/ori_img.jpg")
img_squeeze = rearrange(ori_img, 'b c (h p1) (w p2) -> b (h w) (p1 p2) c', p1=patch_size[0], p2=patch_size[0])
img_norm = (img_squeeze - img_squeeze.mean(dim=-2, keepdim=True)) / (img_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6)
img_patch = rearrange(img_norm, 'b n p c -> b n (p c)')
img_patch[bool_masked_pos] = outputs
#make mask
mask = torch.ones_like(img_patch)
mask[bool_masked_pos] = 0
mask = rearrange(mask, 'b n (p c) -> b n p c', c=3)
mask = rearrange(mask, 'b (h w) (p1 p2) c -> b c (h p1) (w p2)', p1=patch_size[0], p2=patch_size[1], h=14, w=14)
#save reconstruction img
rec_img = rearrange(img_patch, 'b n (p c) -> b n p c', c=3)
# Notice: To visualize the reconstruction image, we add the predict and the original mean and var of each patch. Issue #40
rec_img = rec_img * (img_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6) + img_squeeze.mean(dim=-2, keepdim=True)
rec_img = rearrange(rec_img, 'b (h w) (p1 p2) c -> b c (h p1) (w p2)', p1=patch_size[0], p2=patch_size[1], h=14, w=14)
img = ToPILImage()(rec_img[0, :].clip(0,0.996))
img.save(f"{args.save_path}/rec_img.jpg")
#save random mask img
img_mask = rec_img * mask
img = ToPILImage()(img_mask[0, :])
img.save(f"{args.save_path}/mask_img.jpg")
if __name__ == '__main__':
opts = get_args()
main(opts)