-
Notifications
You must be signed in to change notification settings - Fork 5
/
create_student_results_ade.py
213 lines (176 loc) · 8.08 KB
/
create_student_results_ade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import numpy as np
import datasets
import models as models
import matplotlib.pyplot as plt
import torchvision.models as torch_models
from extra_setting import *
import scipy.io as sio
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ade')
parser.add_argument('-d', '--dataset', default='ade', help='dataset name')
parser.add_argument('--arch', '-a', metavar='ARCH', default='keras',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-c', '--channel', type=int, default=16,
help='first conv channel (default: 16)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 1)')
parser.add_argument('--gpu', default='3', help='index of gpus to use')
parser.add_argument('--epochs', default=40, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 200)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--lr_step', default='20', help='decreasing strategy')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='./ade/checkpoint_alexnet.pth.tar', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--first_epochs', default=80, type=int, metavar='N',
help='number of first stage epochs to run')
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
# training multiple times
# select gpus
args.gpu = args.gpu.split(',')
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(args.gpu)
# data loader
assert callable(datasets.__dict__[args.dataset])
get_dataset = getattr(datasets, args.dataset)
num_classes = datasets._NUM_CLASSES[args.dataset]
train_loader, val_loader = get_dataset(
batch_size=args.batch_size, num_workers=args.workers)
# create model
model_main = models.__dict__['alexnet'](pretrained=True)
model_main.classifier[-1] = nn.Linear(model_main.classifier[-1].in_features, num_classes)
model_main = torch.nn.DataParallel(model_main, device_ids=range(len(args.gpu))).cuda()
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model_main.module.load_state_dict(checkpoint['state_dict_m'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# generate predicted hardness score
criterion = nn.CrossEntropyLoss().cuda()
criterion_f = nn.CrossEntropyLoss(reduce=False).cuda()
prec1, prec5, all_correct_te, all_predicted_te, all_class_dis_te, all_gt_target_te = validate(val_loader,
model_main, criterion,
criterion_f)
all_predicted_te = all_predicted_te.astype(int)
np.save('./ade/all_correct_alexnet_te.npy', all_correct_te)
np.save('./ade/all_predicted_alexnet_te.npy', all_predicted_te)
np.save('./ade/all_class_dis_alexnet_te.npy', all_class_dis_te)
np.save('./ade/all_gt_target_alexnet_te.npy', all_gt_target_te)
def validate(val_loader, model_main, criterion, criterion_f):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model_main.eval()
end = time.time()
all_correct_te = []
all_predicted_te = []
all_class_dis = np.zeros((1, 1040))
all_gt_target = []
for i, (input, target, index) in enumerate(val_loader):
all_gt_target = np.concatenate((all_gt_target, target), axis=0)
input = input.cuda()
target = target.cuda(async=True)
# compute output
output = model_main(input)
class_dis = F.softmax(output, dim=1)
class_dis = class_dis.data.cpu().numpy()
all_class_dis = np.concatenate((all_class_dis, class_dis), axis=0)
loss = criterion(output, target)
p_i_m = torch.max(output, dim=1)[1]
all_predicted_te = np.concatenate((all_predicted_te, p_i_m), axis=0)
p_i_m = p_i_m.long()
p_i_m[p_i_m - target == 0] = -1
p_i_m[p_i_m > -1] = 0
p_i_m[p_i_m == -1] = 1
correct = p_i_m.float()
all_correct_te = np.concatenate((all_correct_te, correct), axis=0)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
all_class_dis = all_class_dis[1:, :]
return top1.avg, top5.avg, all_correct_te, all_predicted_te, all_class_dis, all_gt_target
def save_checkpoint(state, filename='checkpoint_res.pth.tar'):
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()