-
Notifications
You must be signed in to change notification settings - Fork 2
/
insecurity_hp_ade_vgg_IG.py
632 lines (489 loc) · 23.7 KB
/
insecurity_hp_ade_vgg_IG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import numpy as np
import datasets
import models as models
import matplotlib.pyplot as plt
import torchvision.models as torch_models
from extra_setting import *
from torch.autograd import Variable
from torch.autograd import Function
from torchvision import utils
import scipy.io as sio
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import learning_curve
from sklearn.kernel_ridge import KernelRidge
import cv2
import seaborn as sns
import operator
from scipy import misc
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch end2end ade Training')
parser.add_argument('-d', '--dataset', default='ade', help='dataset name')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet20',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet20)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 1)')
parser.add_argument('--gpu', default='0', help='index of gpus to use')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size (default: 200)')
parser.add_argument('--resume', default='./ade/checkpoint_vgg16bn_hp.pth.tar', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
def main():
global args, best_prec1
args = parser.parse_args()
# select gpus
args.gpu = args.gpu.split(',')
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(args.gpu)
# data loader
assert callable(datasets.__dict__[args.dataset])
get_dataset = getattr(datasets, args.dataset)
num_classes = datasets._NUM_CLASSES[args.dataset]
train_loader, val_loader = get_dataset(
batch_size=args.batch_size, num_workers=args.workers)
# create model
model_main = models.__dict__['vgg16_bn'](pretrained=True)
model_main.classifier[-1] = nn.Linear(model_main.classifier[-1].in_features, num_classes)
model_main = torch.nn.DataParallel(model_main, device_ids=range(len(args.gpu))).cuda()
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model_main.module.load_state_dict(checkpoint['state_dict_m'])
else:
print("=> no checkpoint found at '{}'".format(args.resume))
model_ahp_trunk = models.__dict__['vgg16_bn'](pretrained=True)
model_ahp_trunk.classifier[-1] = nn.Linear(model_ahp_trunk.classifier[-1].in_features, 1000)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model_ahp_trunk.load_state_dict(checkpoint['state_dict_ahp_trunk'])
else:
print("=> no checkpoint found at '{}'".format(args.resume))
model_ahp_trunk = torch.nn.DataParallel(model_ahp_trunk, device_ids=range(len(args.gpu))).cuda()
model_ahp_hp = models.__dict__['ahp_net_hp_res50_presigmoid']()
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model_ahp_hp.load_state_dict(checkpoint['state_dict_ahp_hp'])
else:
print("=> no checkpoint found at '{}'".format(args.resume))
model_ahp_hp = torch.nn.DataParallel(model_ahp_hp, device_ids=range(len(args.gpu))).cuda()
# generate predicted difficulty score
criterion = nn.CrossEntropyLoss().cuda()
criterion_f = nn.CrossEntropyLoss(reduce=False).cuda()
prec1, prec5, all_correct_te, all_predicted_te, all_class_dis_te = validate(val_loader, model_main, model_ahp_trunk,
model_ahp_hp, criterion, criterion_f)
all_predicted_te = all_predicted_te.astype(int)
np.save('./ade/all_correct_vgg16_te.npy', all_correct_te)
np.save('./ade/all_predicted_vgg16_te.npy', all_predicted_te)
np.save('./ade/all_class_dis_vgg16_te.npy', all_class_dis_te)
all_correct_te = np.load('./ade/all_correct_vgg16_te.npy')
all_predicted_te = np.load('./ade/all_predicted_vgg16_te.npy')
all_class_dis_te = np.load('./ade/all_class_dis_vgg16_te.npy')
difficulty_scores_te, difficulty_te_idx_each = save_predicted_difficulty(train_loader, val_loader, model_ahp_trunk, model_ahp_hp)
np.save('./ade/difficulty_scores_te_vgg16.npy', difficulty_scores_te)
np.save('./ade/difficulty_te_idx_each_vgg16.npy', difficulty_te_idx_each)
difficulty_scores_te = np.load('./ade/difficulty_scores_te_vgg16.npy')
difficulty_te_idx_each = np.load('./ade/difficulty_te_idx_each_vgg16.npy')
# pickup K hardnest examples
test_info = zip(all_correct_te, difficulty_scores_te, difficulty_te_idx_each)
test_info = sorted(test_info, key=lambda test: test[1]) # from small to large
all_correct_te, difficulty_scores_te, difficulty_te_idx_each = [list(l) for l in zip(*test_info)]
all_correct_te = np.array(all_correct_te)
difficulty_scores_te = np.array(difficulty_scores_te)
difficulty_te_idx_each = np.array(difficulty_te_idx_each)
K = 100
K_idx_incor_classified = difficulty_te_idx_each[-K:]
K_idx_incor_classified = K_idx_incor_classified.astype(int)
imlist = []
imclass = []
with open('./ade/ADE_gt_val.txt', 'r') as rf:
for line in rf.readlines():
impath, imlabel, imindex = line.strip().split()
imlist.append(impath)
imclass.append(imlabel)
picked_list = []
picked_class_list = []
for i in range(K):
picked_list.append(imlist[K_idx_incor_classified[i]])
picked_class_list.append(imclass[K_idx_incor_classified[i]])
attr_map_hp = AttrMap_hp(model_ahp_trunk, model_ahp_hp, target_layer_names=["42"], use_cuda=True)
attr_map_cls = AttrMap_cls(model_main, target_layer_names=["42"], use_cuda=True)
com_extracted_attributes = np.load('./ade/com_extracted_attributes_001.npy')
picked_seg_list = []
for i in range(K):
img_name = picked_list[i]
img_name = img_name[:27] + "annotations" + img_name[33:-3] + "png"
picked_seg_list.append(img_name)
topK_prob_predicted_classes, _ = largest_indices_each_example(all_class_dis_te, 5)
picked_topK_prob_predicted_classes = topK_prob_predicted_classes[K_idx_incor_classified, :]
# save ade hard info
adehard = './ade/ADEhard_gt_val.txt'
fl = open(adehard, 'w')
for ii in range(K):
example_info = picked_list[ii] + " " + picked_class_list[ii] + " " + str(K_idx_incor_classified[ii])
fl.write(example_info)
fl.write("\n")
fl.close()
# data loader
assert callable(datasets.__dict__['adehard'])
get_dataset = getattr(datasets, 'adehard')
num_classes = datasets._NUM_CLASSES['adehard']
_, val_hard_loader = get_dataset(
batch_size=1, num_workers=args.workers)
remaining_mask_size_pool = np.arange(0.01, 1.0, 0.01)
IOU = insecurity_extraction(val_hard_loader, attr_map_hp, attr_map_cls,
picked_list, 3, com_extracted_attributes,
picked_seg_list,
picked_topK_prob_predicted_classes,
remaining_mask_size_pool)
print(IOU)
np.save('./ade/hardness_predictor_vgg16_layer42_IG_IOU.npy', IOU)
def validate(val_loader, model_main, model_ahp_trunk, model_ahp_hp, criterion, criterion_f):
batch_time = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model_main.eval()
model_ahp_trunk.eval()
model_ahp_hp.eval()
end = time.time()
all_correct_te = []
all_predicted_te = []
all_class_dis = np.zeros((1, 1040))
for i, (input, target, index) in enumerate(val_loader):
input = input.cuda()
target = target.cuda(async=True)
# compute output
output = model_main(input)
class_dis = F.softmax(output, dim=1)
class_dis = class_dis.data.cpu().numpy()
all_class_dis = np.concatenate((all_class_dis, class_dis), axis=0)
p_i_m = torch.max(output, dim=1)[1]
all_predicted_te = np.concatenate((all_predicted_te, p_i_m), axis=0)
p_i_m = p_i_m.long()
p_i_m[p_i_m - target == 0] = -1
p_i_m[p_i_m > -1] = 0
p_i_m[p_i_m == -1] = 1
correct = p_i_m.float()
all_correct_te = np.concatenate((all_correct_te, correct), axis=0)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time,
top1=top1, top5=top5))
all_class_dis = all_class_dis[1:, :]
return top1.avg, top5.avg, all_correct_te, all_predicted_te, all_class_dis
def largest_indices(ary, n):
"""Returns the n largest indices from a numpy array."""
flat = ary.flatten()
indices = np.argpartition(flat, -n)[-n:]
indices = indices[np.argsort(-flat[indices])]
return np.unravel_index(indices, ary.shape)
def largest_indices_each_example(all_response, topK):
topK_maxIndex = np.zeros((np.size(all_response, 0), topK), dtype=np.int16)
topK_maxValue = np.zeros((np.size(all_response, 0), topK))
for i in range(np.size(topK_maxIndex, 0)):
arr = all_response[i, :]
topK_maxIndex[i, :] = np.argsort(arr)[-topK:][::-1]
topK_maxValue[i, :] = np.sort(arr)[-topK:][::-1]
return topK_maxIndex, topK_maxValue
def save_predicted_difficulty(train_loader, val_loader, model_ahp_trunk, model_ahp_hp):
model_ahp_trunk.eval()
model_ahp_hp.eval()
hardness_scores_val = []
hardness_scores_idx_val = []
for i, (input, target, index) in enumerate(val_loader):
input = input.cuda()
trunk_output = model_ahp_trunk(input)
predicted_hardness_scores, _ = model_ahp_hp(trunk_output)
scores = predicted_hardness_scores.data.cpu().numpy().squeeze()
hardness_scores_val = np.concatenate((hardness_scores_val, scores), axis=0)
index = index.numpy()
hardness_scores_idx_val = np.concatenate((hardness_scores_idx_val, index), axis=0)
return hardness_scores_val, hardness_scores_idx_val
def save_checkpoint(state, filename='checkpoint_res.pth.tar'):
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class FeatureExtractor_hp():
""" Class for extracting activations and
registering gradients from targetted intermediate layers """
def __init__(self, model, target_layers):
self.model = model
self.target_layers = target_layers
self.gradients = []
def save_gradient(self, grad):
self.gradients.append(grad)
def __call__(self, x):
outputs = []
self.gradients = []
for name, module in self.model._modules['module']._modules['features']._modules.items():
x = module(x)
if name in self.target_layers:
x.register_hook(self.save_gradient)
outputs += [x]
x = x.view(x.size(0), -1)
x = self.model._modules['module'].classifier(x)
return outputs, x
class FeatureExtractor_cls():
""" Class for extracting activations and
registering gradients from targetted intermediate layers """
def __init__(self, model, target_layers):
self.model = model
self.target_layers = target_layers
self.gradients = []
def save_gradient(self, grad):
self.gradients.append(grad)
def __call__(self, x):
outputs = []
self.gradients = []
for name, module in self.model._modules['module']._modules['features']._modules.items():
x = module(x)
if name in self.target_layers:
x.register_hook(self.save_gradient)
outputs += [x]
return outputs, x
class ModelOutputs_hp():
""" Class for making a forward pass, and getting:
1. The network output.
2. Activations from intermeddiate targetted layers.
3. Gradients from intermeddiate targetted layers. """
def __init__(self, model_hp_trunk, model_hp_head, target_layers):
self.model_hp_trunk = model_hp_trunk
self.model_hp_head = model_hp_head
self.feature_extractor = FeatureExtractor_hp(self.model_hp_trunk, target_layers)
def get_gradients(self):
return self.feature_extractor.gradients
def __call__(self, x):
target_activations, output = self.feature_extractor(x)
_, output = self.model_hp_head(output)
return target_activations, output
class ModelOutputs_cls():
""" Class for making a forward pass, and getting:
1. The network output.
2. Activations from intermeddiate targetted layers.
3. Gradients from intermeddiate targetted layers. """
def __init__(self, model, target_layers):
self.model = model
self.feature_extractor = FeatureExtractor_cls(self.model, target_layers)
def get_gradients(self):
return self.feature_extractor.gradients
def __call__(self, x):
target_activations, output = self.feature_extractor(x)
output = output.view(output.size(0), -1)
output = self.model._modules['module'].classifier(output) # travel many fc layers
return target_activations, output
def preprocess_image(img):
means = [0.4706145, 0.46000465, 0.45479808]
stds = [0.26668432, 0.26578658, 0.2706199]
preprocessed_img = img.copy()[: , :, ::-1]
for i in range(3):
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
preprocessed_img = \
np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
preprocessed_img = torch.from_numpy(preprocessed_img)
preprocessed_img.unsqueeze_(0)
input = Variable(preprocessed_img, requires_grad = True)
return input
def show_cam_on_image(img, mask):
heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
cam = np.uint8(255 * cam)
return cam
def show_segment_on_image(img, mask, mark_locs=None, is_cls=True):
img = np.float32(img)
mask = np.concatenate((mask[:, :, np.newaxis], mask[:, :, np.newaxis], mask[:, :, np.newaxis]), axis=2)
img = np.uint8(255 * mask * img)
if is_cls == False:
if np.sum(mark_locs) > 0:
x, y = np.where(mark_locs == 1)
for i in range(np.size(x)):
cv2.circle(img, (y[i], x[i]), 2, (0,0,255))
return img
class AttrMap_hp:
def __init__(self, model_hp_trunk, model_hp_head, target_layer_names, use_cuda):
self.model_hp_trunk = model_hp_trunk
self.model_hp_head = model_hp_head
self.model_hp_trunk.eval()
self.model_hp_head.eval()
self.cuda = use_cuda
if self.cuda:
self.model_hp_trunk = model_hp_trunk.cuda()
self.model_hp_head = model_hp_head.cuda()
self.extractor = ModelOutputs_hp(self.model_hp_trunk, self.model_hp_head, target_layer_names)
def forward(self, input):
return self.model_hp_head(self.model_hp_trunk(input))
def __call__(self, input, refer_input, step):
gradients = np.zeros((step+1, 512, 14, 14))
for i_step in range(step+1):
cur_input = refer_input + (i_step / step) * (input - refer_input)
if self.cuda:
features, output = self.extractor(cur_input.cuda())
else:
features, output = self.extractor(cur_input)
if i_step == 0:
refer_features = features.copy()
self.model_hp_trunk.zero_grad()
self.model_hp_head.zero_grad()
output.backward(retain_graph=True)
grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()
gradients[i_step, :, :, :] = grads_val.squeeze()
grads_val = np.mean(gradients, axis=0)
gradients = np.copy(grads_val)
gradients[gradients < 0.0] = 0.0
gradients = gradients.squeeze()
target = features[-1]
target = target.cpu().data.numpy()[0, :]
heatmaps = (target - refer_features[-1].cpu().data.numpy()[0, :]) * gradients
heatmaps[heatmaps < 0.0] = 0.0
heatmaps = np.sum(heatmaps, axis=0)
return heatmaps
class AttrMap_cls:
def __init__(self, model, target_layer_names, use_cuda):
self.model = model
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
self.extractor = ModelOutputs_cls(self.model, target_layer_names)
def forward(self, input):
return self.model(input)
def __call__(self, input, TopKclass = 5, topK_prob_predicted_classes=None, refer_input=None, step=50):
gradients = np.zeros((step + 1, 512, 14, 14, np.size(topK_prob_predicted_classes)))
for i_step in range(step + 1):
cur_input = refer_input + (i_step / step) * (input - refer_input)
if self.cuda:
features, output = self.extractor(cur_input.cuda())
else:
features, output = self.extractor(cur_input)
if i_step == 0:
refer_features = features.copy()
for i_cls in range(np.size(topK_prob_predicted_classes)):
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][topK_prob_predicted_classes[i_cls]] = 1
one_hot = Variable(torch.from_numpy(one_hot), requires_grad=True)
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
self.model.zero_grad()
one_hot.backward(retain_graph=True)
grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()
grads_val = grads_val.squeeze()
gradients[i_step, :, :, :, i_cls] = grads_val
all_grads_val = np.mean(gradients, axis=0)
target = features[-1]
target = target.cpu().data.numpy()[0, :]
classifier_heatmaps = np.zeros((np.size(target,2), np.size(target,2), np.size(topK_prob_predicted_classes)))
for i_cls in range(np.size(topK_prob_predicted_classes)):
heatmaps = (target - refer_features[-1].cpu().data.numpy()[0, :]) * all_grads_val[:, :, :, i_cls]
heatmaps = np.sum(heatmaps, axis=0)
classifier_heatmaps[:, :, i_cls] = heatmaps
return classifier_heatmaps
def insecurity_extraction(val_loader, attr_map_hp, attr_map_cls, imglist, topKcls, com_extracted_attributes, seg_list, topK_prob_predicted_classes, remaining_mask_size_pool):
IOU = np.zeros((len(imglist), np.size(remaining_mask_size_pool)))
for i, (input, target, index) in enumerate(val_loader):
print('processing sample', i)
img = cv2.imread(imglist[i])
# make reference image tensor
refer_img = np.float32(np.zeros((224, 224, 3)))
refer_img = preprocess_image(refer_img)
difficulty_heatmaps = attr_map_hp(input, refer_img, 50)
classifier_heatmaps = attr_map_cls(input, 1040, topK_prob_predicted_classes[i, :], refer_img, 50)
classifier_heatmaps[classifier_heatmaps < 0] = 1e-7
seg_img = misc.imread(seg_list[i])
seg_img = np.resize(seg_img, (224, 224))
confusion_classes = np.argsort(classifier_heatmaps, axis=2)[:, :, -topKcls:]
confusion_classes = np.sort(confusion_classes, axis=2)
misclass_pairs = np.zeros((1, 2))
for i_cls in range(topKcls):
for j_cls in range(i_cls+1, topKcls):
cur_misclass_pairs = np.concatenate((np.reshape(confusion_classes[:,:,i_cls].squeeze(), (-1, 1)), np.reshape(confusion_classes[:,:,j_cls].squeeze(), (-1, 1))), axis=1)
misclass_pairs = np.concatenate((misclass_pairs, cur_misclass_pairs), axis=0)
misclass_pairs = np.unique(misclass_pairs, axis=0)
misclass_pairs = misclass_pairs[~np.all(misclass_pairs == 0, axis=1)]
misclass_pairs = misclass_pairs.astype(int)
atom_num = np.size(misclass_pairs, axis=0)
for i_remain in range(np.size(remaining_mask_size_pool)):
remaining_mask_size = remaining_mask_size_pool[i_remain]
noeffect_atom = 0
total_IOU_i = 0
for i_atom in range(atom_num):
insecurity = classifier_heatmaps[:, :, misclass_pairs[i_atom, 0]].squeeze() * classifier_heatmaps[:, :, misclass_pairs[i_atom, 1]].squeeze() * difficulty_heatmaps
insecurity = cv2.resize(insecurity, (224, 224))
insecurity_mask = np.copy(insecurity)
threshold = np.sort(insecurity_mask.flatten())[int(-remaining_mask_size * 224 * 224)]
insecurity_mask[insecurity_mask > threshold] = 1
insecurity_mask[insecurity_mask < 1] = 0
com_attributes = com_extracted_attributes[topK_prob_predicted_classes[i, misclass_pairs[i_atom, 0]], topK_prob_predicted_classes[i, misclass_pairs[i_atom, 1]]]
if len(com_attributes) == 0:
continue
com_attributes = np.array(com_attributes)
commom_seg_img = np.zeros((224, 224))
for i_com in range(np.size(com_attributes)):
commom_seg_img[seg_img == com_attributes[i_com]] = 1
IOU_i = np.sum(insecurity_mask * commom_seg_img) / np.sum(insecurity_mask + commom_seg_img - insecurity_mask * commom_seg_img)
total_IOU_i = total_IOU_i + IOU_i
IOU[i, i_remain] = total_IOU_i / (atom_num - noeffect_atom)
return np.nanmean(IOU, axis=0)
if __name__ == '__main__':
main()