Skip to content

Latest commit

 

History

History
105 lines (101 loc) · 3.14 KB

README.md

File metadata and controls

105 lines (101 loc) · 3.14 KB

import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) /kaggle/input/car-price-predictionused-cars/car data.csv add Codeadd Markdown df = pd.read_csv("/kaggle/input/car-price-predictionused-cars/car data.csv") df.head() Car_Name Year Selling_Price Present_Price Driven_kms Fuel_Type Selling_type Transmission Owner 0 ritz 2014 3.35 5.59 27000 Petrol Dealer Manual 0 1 sx4 2013 4.75 9.54 43000 Diesel Dealer Manual 0 2 ciaz 2017 7.25 9.85 6900 Petrol Dealer Manual 0 3 wagon r 2011 2.85 4.15 5200 Petrol Dealer Manual 0 4 swift 2014 4.60 6.87 42450 Diesel Dealer Manual 0 add Codeadd Markdown df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 301 entries, 0 to 300 Data columns (total 9 columns):

Column Non-Null Count Dtype


0 Car_Name 301 non-null object 1 Year 301 non-null int64
2 Selling_Price 301 non-null float64 3 Present_Price 301 non-null float64 4 Driven_kms 301 non-null int64
5 Fuel_Type 301 non-null object 6 Selling_type 301 non-null object 7 Transmission 301 non-null object 8 Owner 301 non-null int64
dtypes: float64(2), int64(3), object(4) memory usage: 21.3+ KB add Codeadd Markdown df.describe() Year Selling_Price Present_Price Driven_kms Owner count 301.000000 301.000000 301.000000 301.000000 301.000000 mean 2013.627907 4.661296 7.628472 36947.205980 0.043189 std 2.891554 5.082812 8.642584 38886.883882 0.247915 min 2003.000000 0.100000 0.320000 500.000000 0.000000 25% 2012.000000 0.900000 1.200000 15000.000000 0.000000 50% 2014.000000 3.600000 6.400000 32000.000000 0.000000 75% 2016.000000 6.000000 9.900000 48767.000000 0.000000 max 2018.000000 35.000000 92.600000 500000.000000 3.000000 add Codeadd Markdown df['Owner'].value_counts() Owner 0 290 1 10 3 1 Name: count, dtype: int64 add Codeadd Markdown df['Car_Name'].value_counts() Car_Name city 26 corolla altis 16 verna 14 fortuner 11 brio 10 .. Honda CB Trigger 1 Yamaha FZ S 1 Bajaj Pulsar 135 LS 1 Activa 4g 1 Bajaj Avenger Street 220 1 Name: count, Length: 98, dtype: int64 add Codeadd Markdown import matplotlib.pyplot as plt import seaborn as sns df['Fuel_Type'].value_counts() Fuel_Type Petrol 239 Diesel 60 CNG 2 Name: count, dtype: int64 add Codeadd Markdown sns.countplot(x='Fuel_Type', data=df) plt.show()

add Codeadd Markdown df['Selling_type'].value_counts() Selling_type Dealer 195 Individual 106 Name: count, dtype: int64 add Codeadd Markdown sns.countplot(x='Selling_type', data=df) plt.show()

add Codeadd Markdown df['Transmission'].value_counts() Transmission Manual 261 Automatic 40 Name: count, dtype: int64 add Codeadd Markdown sns.countplot(x='Transmission', data=df) plt.show()

add Codeadd Markdown df.hist(bins=20, figsize=(15, 10)) plt.show()

add Codeadd Markdown