-
Notifications
You must be signed in to change notification settings - Fork 33
/
evaluation.py
869 lines (674 loc) · 32.9 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# -*- coding: UTF-8 -*-
from __future__ import division
import os
from nltk.translate.bleu_score import sentence_bleu, corpus_bleu, SmoothingFunction
import logging
import traceback
from nn.utils.generic_utils import init_logging
from model import *
DJANGO_ANNOT_FILE = '/Users/yinpengcheng/Research/SemanticParsing/CodeGeneration/en-django/all.anno'
def tokenize_for_bleu_eval(code):
code = re.sub(r'([^A-Za-z0-9_])', r' \1 ', code)
code = re.sub(r'([a-z])([A-Z])', r'\1 \2', code)
code = re.sub(r'\s+', ' ', code)
code = code.replace('"', '`')
code = code.replace('\'', '`')
tokens = [t for t in code.split(' ') if t]
return tokens
def evaluate(model, dataset, verbose=True):
if verbose:
logging.info('evaluating [%s] dataset, [%d] examples' % (dataset.name, dataset.count))
exact_match_ratio = 0.0
for example in dataset.examples:
logging.info('evaluating example [%d]' % example.eid)
hyps, hyp_scores = model.decode(example, max_time_step=config.decode_max_time_step)
gold_rules = example.rules
if len(hyps) == 0:
logging.warning('no decoding result for example [%d]!' % example.eid)
continue
best_hyp = hyps[0]
predict_rules = [dataset.grammar.id_to_rule[rid] for rid in best_hyp]
assert len(predict_rules) > 0 and len(gold_rules) > 0
exact_match = sorted(gold_rules, key=lambda x: x.__repr__()) == sorted(predict_rules, key=lambda x: x.__repr__())
if exact_match:
exact_match_ratio += 1
# p = len(predict_rules.intersection(gold_rules)) / len(predict_rules)
# r = len(predict_rules.intersection(gold_rules)) / len(gold_rules)
exact_match_ratio /= dataset.count
logging.info('exact_match_ratio = %f' % exact_match_ratio)
return exact_match_ratio
def evaluate_decode_results(dataset, decode_results, verbose=True):
from lang.py.parse import tokenize_code, de_canonicalize_code
# tokenize_code = tokenize_for_bleu_eval
import ast
assert dataset.count == len(decode_results)
f = f_decode = None
if verbose:
f = open(dataset.name + '.exact_match', 'w')
exact_match_ids = []
f_decode = open(dataset.name + '.decode_results.txt', 'w')
eid_to_annot = dict()
if config.data_type == 'django':
for raw_id, line in enumerate(open(DJANGO_ANNOT_FILE)):
eid_to_annot[raw_id] = line.strip()
f_bleu_eval_ref = open(dataset.name + '.ref', 'w')
f_bleu_eval_hyp = open(dataset.name + '.hyp', 'w')
f_generated_code = open(dataset.name + '.geneated_code', 'w')
logging.info('evaluating [%s] set, [%d] examples', dataset.name, dataset.count)
cum_oracle_bleu = 0.0
cum_oracle_acc = 0.0
cum_bleu = 0.0
cum_acc = 0.0
sm = SmoothingFunction()
all_references = []
all_predictions = []
if all(len(cand) == 0 for cand in decode_results):
logging.ERROR('Empty decoding results for the current dataset!')
return -1, -1
for eid in range(dataset.count):
example = dataset.examples[eid]
ref_code = example.code
ref_ast_tree = ast.parse(ref_code).body[0]
refer_source = astor.to_source(ref_ast_tree).strip()
# refer_source = ref_code
refer_tokens = tokenize_code(refer_source)
cur_example_correct = False
decode_cands = decode_results[eid]
if len(decode_cands) == 0:
continue
decode_cand = decode_cands[0]
cid, cand, ast_tree, code = decode_cand
code = astor.to_source(ast_tree).strip()
# simple_url_2_re = re.compile('_STR:0_', re.))
try:
predict_tokens = tokenize_code(code)
except:
logging.error('error in tokenizing [%s]', code)
continue
if refer_tokens == predict_tokens:
cum_acc += 1
cur_example_correct = True
if verbose:
exact_match_ids.append(example.raw_id)
f.write('-' * 60 + '\n')
f.write('example_id: %d\n' % example.raw_id)
f.write(code + '\n')
f.write('-' * 60 + '\n')
if config.data_type == 'django':
ref_code_for_bleu = example.meta_data['raw_code']
pred_code_for_bleu = de_canonicalize_code(code, example.meta_data['raw_code'])
# ref_code_for_bleu = de_canonicalize_code(ref_code_for_bleu, example.meta_data['raw_code'])
# convert canonicalized code to raw code
for literal, place_holder in example.meta_data['str_map'].iteritems():
pred_code_for_bleu = pred_code_for_bleu.replace('\'' + place_holder + '\'', literal)
# ref_code_for_bleu = ref_code_for_bleu.replace('\'' + place_holder + '\'', literal)
elif config.data_type == 'hs':
ref_code_for_bleu = ref_code
pred_code_for_bleu = code
# we apply Ling Wang's trick when evaluating BLEU scores
refer_tokens_for_bleu = tokenize_for_bleu_eval(ref_code_for_bleu)
pred_tokens_for_bleu = tokenize_for_bleu_eval(pred_code_for_bleu)
# The if-chunk below is for debugging purpose, sometimes the reference cannot match with the prediction
# because of inconsistent quotes (e.g., single quotes in reference, double quotes in prediction).
# However most of these cases are solved by cannonicalizing the reference code using astor (parse the reference
# into AST, and regenerate the code. Use this regenerated one as the reference)
weired = False
if refer_tokens_for_bleu == pred_tokens_for_bleu and refer_tokens != predict_tokens:
# cum_acc += 1
weired = True
elif refer_tokens == predict_tokens:
# weired!
# weired = True
pass
shorter = len(pred_tokens_for_bleu) < len(refer_tokens_for_bleu)
all_references.append([refer_tokens_for_bleu])
all_predictions.append(pred_tokens_for_bleu)
# try:
ngram_weights = [0.25] * min(4, len(refer_tokens_for_bleu))
bleu_score = sentence_bleu([refer_tokens_for_bleu], pred_tokens_for_bleu, weights=ngram_weights, smoothing_function=sm.method3)
cum_bleu += bleu_score
# except:
# pass
if verbose:
print 'raw_id: %d, bleu_score: %f' % (example.raw_id, bleu_score)
f_decode.write('-' * 60 + '\n')
f_decode.write('example_id: %d\n' % example.raw_id)
f_decode.write('intent: \n')
if config.data_type == 'django':
f_decode.write(eid_to_annot[example.raw_id] + '\n')
elif config.data_type == 'hs':
f_decode.write(' '.join(example.query) + '\n')
f_bleu_eval_ref.write(' '.join(refer_tokens_for_bleu) + '\n')
f_bleu_eval_hyp.write(' '.join(pred_tokens_for_bleu) + '\n')
f_decode.write('canonicalized reference: \n')
f_decode.write(refer_source + '\n')
f_decode.write('canonicalized prediction: \n')
f_decode.write(code + '\n')
f_decode.write('reference code for bleu calculation: \n')
f_decode.write(ref_code_for_bleu + '\n')
f_decode.write('predicted code for bleu calculation: \n')
f_decode.write(pred_code_for_bleu + '\n')
f_decode.write('pred_shorter_than_ref: %s\n' % shorter)
f_decode.write('weired: %s\n' % weired)
f_decode.write('-' * 60 + '\n')
# for Hiro's evaluation
f_generated_code.write(pred_code_for_bleu.replace('\n', '#NEWLINE#') + '\n')
# compute oracle
best_score = 0.
cur_oracle_acc = 0.
for decode_cand in decode_cands[:config.beam_size]:
cid, cand, ast_tree, code = decode_cand
try:
code = astor.to_source(ast_tree).strip()
predict_tokens = tokenize_code(code)
if predict_tokens == refer_tokens:
cur_oracle_acc = 1
if config.data_type == 'django':
pred_code_for_bleu = de_canonicalize_code(code, example.meta_data['raw_code'])
# convert canonicalized code to raw code
for literal, place_holder in example.meta_data['str_map'].iteritems():
pred_code_for_bleu = pred_code_for_bleu.replace('\'' + place_holder + '\'', literal)
elif config.data_type == 'hs':
pred_code_for_bleu = code
# we apply Ling Wang's trick when evaluating BLEU scores
pred_tokens_for_bleu = tokenize_for_bleu_eval(pred_code_for_bleu)
ngram_weights = [0.25] * min(4, len(refer_tokens_for_bleu))
bleu_score = sentence_bleu([refer_tokens_for_bleu], pred_tokens_for_bleu,
weights=ngram_weights,
smoothing_function=sm.method3)
if bleu_score > best_score:
best_score = bleu_score
except:
continue
cum_oracle_bleu += best_score
cum_oracle_acc += cur_oracle_acc
cum_bleu /= dataset.count
cum_acc /= dataset.count
cum_oracle_bleu /= dataset.count
cum_oracle_acc /= dataset.count
logging.info('corpus level bleu: %f', corpus_bleu(all_references, all_predictions, smoothing_function=sm.method3))
logging.info('sentence level bleu: %f', cum_bleu)
logging.info('accuracy: %f', cum_acc)
logging.info('oracle bleu: %f', cum_oracle_bleu)
logging.info('oracle accuracy: %f', cum_oracle_acc)
if verbose:
f.write(', '.join(str(i) for i in exact_match_ids))
f.close()
f_decode.close()
f_bleu_eval_ref.close()
f_bleu_eval_hyp.close()
f_generated_code.close()
return cum_bleu, cum_acc
def analyze_decode_results(dataset, decode_results, verbose=True):
from lang.py.parse import tokenize_code, de_canonicalize_code
# tokenize_code = tokenize_for_bleu_eval
import ast
assert dataset.count == len(decode_results)
f = f_decode = None
if verbose:
f = open(dataset.name + '.exact_match', 'w')
exact_match_ids = []
f_decode = open(dataset.name + '.decode_results.txt', 'w')
eid_to_annot = dict()
if config.data_type == 'django':
for raw_id, line in enumerate(open(DJANGO_ANNOT_FILE)):
eid_to_annot[raw_id] = line.strip()
f_bleu_eval_ref = open(dataset.name + '.ref', 'w')
f_bleu_eval_hyp = open(dataset.name + '.hyp', 'w')
logging.info('evaluating [%s] set, [%d] examples', dataset.name, dataset.count)
cum_oracle_bleu = 0.0
cum_oracle_acc = 0.0
cum_bleu = 0.0
cum_acc = 0.0
sm = SmoothingFunction()
all_references = []
all_predictions = []
if all(len(cand) == 0 for cand in decode_results):
logging.ERROR('Empty decoding results for the current dataset!')
return -1, -1
binned_results_dict = defaultdict(list)
def get_binned_key(ast_size):
cutoff = 50 if config.data_type == 'django' else 250
k = 10 if config.data_type == 'django' else 25 # for hs
if ast_size >= cutoff:
return '%d - inf' % cutoff
lower = int(ast_size / k) * k
upper = lower + k
key = '%d - %d' % (lower, upper)
return key
for eid in range(dataset.count):
example = dataset.examples[eid]
ref_code = example.code
ref_ast_tree = ast.parse(ref_code).body[0]
refer_source = astor.to_source(ref_ast_tree).strip()
# refer_source = ref_code
refer_tokens = tokenize_code(refer_source)
cur_example_acc = 0.0
decode_cands = decode_results[eid]
if len(decode_cands) == 0:
continue
decode_cand = decode_cands[0]
cid, cand, ast_tree, code = decode_cand
code = astor.to_source(ast_tree).strip()
# simple_url_2_re = re.compile('_STR:0_', re.))
try:
predict_tokens = tokenize_code(code)
except:
logging.error('error in tokenizing [%s]', code)
continue
if refer_tokens == predict_tokens:
cum_acc += 1
cur_example_acc = 1.0
if verbose:
exact_match_ids.append(example.raw_id)
f.write('-' * 60 + '\n')
f.write('example_id: %d\n' % example.raw_id)
f.write(code + '\n')
f.write('-' * 60 + '\n')
if config.data_type == 'django':
ref_code_for_bleu = example.meta_data['raw_code']
pred_code_for_bleu = de_canonicalize_code(code, example.meta_data['raw_code'])
# ref_code_for_bleu = de_canonicalize_code(ref_code_for_bleu, example.meta_data['raw_code'])
# convert canonicalized code to raw code
for literal, place_holder in example.meta_data['str_map'].iteritems():
pred_code_for_bleu = pred_code_for_bleu.replace('\'' + place_holder + '\'', literal)
# ref_code_for_bleu = ref_code_for_bleu.replace('\'' + place_holder + '\'', literal)
elif config.data_type == 'hs':
ref_code_for_bleu = ref_code
pred_code_for_bleu = code
# we apply Ling Wang's trick when evaluating BLEU scores
refer_tokens_for_bleu = tokenize_for_bleu_eval(ref_code_for_bleu)
pred_tokens_for_bleu = tokenize_for_bleu_eval(pred_code_for_bleu)
shorter = len(pred_tokens_for_bleu) < len(refer_tokens_for_bleu)
all_references.append([refer_tokens_for_bleu])
all_predictions.append(pred_tokens_for_bleu)
# try:
ngram_weights = [0.25] * min(4, len(refer_tokens_for_bleu))
bleu_score = sentence_bleu([refer_tokens_for_bleu], pred_tokens_for_bleu, weights=ngram_weights, smoothing_function=sm.method3)
cum_bleu += bleu_score
# except:
# pass
if verbose:
print 'raw_id: %d, bleu_score: %f' % (example.raw_id, bleu_score)
f_decode.write('-' * 60 + '\n')
f_decode.write('example_id: %d\n' % example.raw_id)
f_decode.write('intent: \n')
if config.data_type == 'django':
f_decode.write(eid_to_annot[example.raw_id] + '\n')
elif config.data_type == 'hs':
f_decode.write(' '.join(example.query) + '\n')
f_bleu_eval_ref.write(' '.join(refer_tokens_for_bleu) + '\n')
f_bleu_eval_hyp.write(' '.join(pred_tokens_for_bleu) + '\n')
f_decode.write('canonicalized reference: \n')
f_decode.write(refer_source + '\n')
f_decode.write('canonicalized prediction: \n')
f_decode.write(code + '\n')
f_decode.write('reference code for bleu calculation: \n')
f_decode.write(ref_code_for_bleu + '\n')
f_decode.write('predicted code for bleu calculation: \n')
f_decode.write(pred_code_for_bleu + '\n')
f_decode.write('pred_shorter_than_ref: %s\n' % shorter)
# f_decode.write('weired: %s\n' % weired)
f_decode.write('-' * 60 + '\n')
# compute oracle
best_bleu_score = 0.
cur_oracle_acc = 0.
for decode_cand in decode_cands[:config.beam_size]:
cid, cand, ast_tree, code = decode_cand
try:
code = astor.to_source(ast_tree).strip()
predict_tokens = tokenize_code(code)
if predict_tokens == refer_tokens:
cur_oracle_acc = 1.
if config.data_type == 'django':
pred_code_for_bleu = de_canonicalize_code(code, example.meta_data['raw_code'])
# convert canonicalized code to raw code
for literal, place_holder in example.meta_data['str_map'].iteritems():
pred_code_for_bleu = pred_code_for_bleu.replace('\'' + place_holder + '\'', literal)
elif config.data_type == 'hs':
pred_code_for_bleu = code
# we apply Ling Wang's trick when evaluating BLEU scores
pred_tokens_for_bleu = tokenize_for_bleu_eval(pred_code_for_bleu)
ngram_weights = [0.25] * min(4, len(refer_tokens_for_bleu))
cand_bleu_score = sentence_bleu([refer_tokens_for_bleu], pred_tokens_for_bleu,
weights=ngram_weights,
smoothing_function=sm.method3)
if cand_bleu_score > best_bleu_score:
best_bleu_score = cand_bleu_score
except:
continue
cum_oracle_bleu += best_bleu_score
cum_oracle_acc += cur_oracle_acc
ref_ast_size = example.parse_tree.size
binned_key = get_binned_key(ref_ast_size)
binned_results_dict[binned_key].append((bleu_score, cur_example_acc, best_bleu_score, cur_oracle_acc))
cum_bleu /= dataset.count
cum_acc /= dataset.count
cum_oracle_bleu /= dataset.count
cum_oracle_acc /= dataset.count
logging.info('corpus level bleu: %f', corpus_bleu(all_references, all_predictions, smoothing_function=sm.method3))
logging.info('sentence level bleu: %f', cum_bleu)
logging.info('accuracy: %f', cum_acc)
logging.info('oracle bleu: %f', cum_oracle_bleu)
logging.info('oracle accuracy: %f', cum_oracle_acc)
keys = sorted(binned_results_dict, key=lambda x: int(x.split(' - ')[0]))
Y = [[], [], [], []]
X = []
for binned_key in keys:
entry = binned_results_dict[binned_key]
avg_bleu = np.average([t[0] for t in entry])
avg_acc = np.average([t[1] for t in entry])
avg_oracle_bleu = np.average([t[2] for t in entry])
avg_oracle_acc = np.average([t[3] for t in entry])
print binned_key, avg_bleu, avg_acc, avg_oracle_bleu, avg_oracle_acc, len(entry)
Y[0].append(avg_bleu)
Y[1].append(avg_acc)
Y[2].append(avg_oracle_bleu)
Y[3].append(avg_oracle_acc)
X.append(int(binned_key.split(' - ')[0]))
import matplotlib.pyplot as plt
from pylab import rcParams
rcParams['figure.figsize'] = 6, 2.5
if config.data_type == 'django':
fig, ax = plt.subplots()
ax.plot(X, Y[0], 'bs--', label='BLEU', lw=1.2)
# ax.plot(X, Y[2], 'r^--', label='oracle BLEU', lw=1.2)
ax.plot(X, Y[1], 'r^--', label='acc', lw=1.2)
# ax.plot(X, Y[3], 'r^--', label='oracle acc', lw=1.2)
ax.set_ylabel('Performance')
ax.set_xlabel('Reference AST Size (# nodes)')
plt.legend(loc='upper right', ncol=6)
plt.tight_layout()
# plt.savefig('django_acc_ast_size.pdf', dpi=300)
# os.system('pcrop.sh django_acc_ast_size.pdf')
plt.savefig('django_perf_ast_size.pdf', dpi=300)
os.system('pcrop.sh django_perf_ast_size.pdf')
else:
fig, ax = plt.subplots()
ax.plot(X, Y[0], 'bs--', label='BLEU', lw=1.2)
# ax.plot(X, Y[2], 'r^--', label='oracle BLEU', lw=1.2)
ax.plot(X, Y[1], 'r^--', label='acc', lw=1.2)
# ax.plot(X, Y[3], 'r^--', label='oracle acc', lw=1.2)
ax.set_ylabel('Performance')
ax.set_xlabel('Reference AST Size (# nodes)')
plt.legend(loc='upper right', ncol=6)
plt.tight_layout()
# plt.savefig('hs_bleu_ast_size.pdf', dpi=300)
# os.system('pcrop.sh hs_bleu_ast_size.pdf')
plt.savefig('hs_perf_ast_size.pdf', dpi=300)
os.system('pcrop.sh hs_perf_ast_size.pdf')
if verbose:
f.write(', '.join(str(i) for i in exact_match_ids))
f.close()
f_decode.close()
f_bleu_eval_ref.close()
f_bleu_eval_hyp.close()
return cum_bleu, cum_acc
def evaluate_seq2seq_decode_results(dataset, seq2seq_decode_file, seq2seq_ref_file, verbose=True, is_nbest=False):
from lang.py.parse import parse
f_seq2seq_decode = open(seq2seq_decode_file)
f_seq2seq_ref = open(seq2seq_ref_file)
if verbose:
logging.info('evaluating [%s] set, [%d] examples', dataset.name, dataset.count)
cum_bleu = 0.0
cum_acc = 0.0
sm = SmoothingFunction()
decode_file_data = [l.strip() for l in f_seq2seq_decode.readlines()]
ref_code_data = [l.strip() for l in f_seq2seq_ref.readlines()]
if is_nbest:
for i in xrange(len(decode_file_data)):
d = decode_file_data[i].split(' ||| ')
decode_file_data[i] = (int(d[0]), d[1])
def is_well_formed_python_code(_hyp):
try:
_hyp = _hyp.replace('#NEWLINE#', '\n').replace('#INDENT#', ' ').replace(' #MERGE# ', '')
hyp_ast_tree = parse(_hyp)
return True
except:
return False
for eid in range(dataset.count):
example = dataset.examples[eid]
cur_example_correct = False
if is_nbest:
# find the best-scored well-formed code from the n-best list
n_best_list = filter(lambda x: x[0] == eid, decode_file_data)
code = top_scored_code = n_best_list[0][1]
for _, hyp in n_best_list:
if is_well_formed_python_code(hyp):
code = hyp
break
if top_scored_code != code:
print '*' * 60
print top_scored_code
print code
print '*' * 60
code = n_best_list[0][1]
else:
code = decode_file_data[eid]
code = code.replace('#NEWLINE#', '\n').replace('#INDENT#', ' ').replace(' #MERGE# ', '')
ref_code = ref_code_data[eid].replace('#NEWLINE#', '\n').replace('#INDENT#', ' ').replace(' #MERGE# ', '')
if code == ref_code:
cum_acc += 1
cur_example_correct = True
if config.data_type == 'django':
ref_code_for_bleu = example.meta_data['raw_code']
pred_code_for_bleu = code # de_canonicalize_code(code, example.meta_data['raw_code'])
# ref_code_for_bleu = de_canonicalize_code(ref_code_for_bleu, example.meta_data['raw_code'])
# convert canonicalized code to raw code
for literal, place_holder in example.meta_data['str_map'].iteritems():
pred_code_for_bleu = pred_code_for_bleu.replace('\'' + place_holder + '\'', literal)
# ref_code_for_bleu = ref_code_for_bleu.replace('\'' + place_holder + '\'', literal)
elif config.data_type == 'hs':
ref_code_for_bleu = example.code
pred_code_for_bleu = code
# we apply Ling Wang's trick when evaluating BLEU scores
refer_tokens_for_bleu = tokenize_for_bleu_eval(ref_code_for_bleu)
pred_tokens_for_bleu = tokenize_for_bleu_eval(pred_code_for_bleu)
ngram_weights = [0.25] * min(4, len(refer_tokens_for_bleu))
bleu_score = sentence_bleu([refer_tokens_for_bleu], pred_tokens_for_bleu, weights=ngram_weights, smoothing_function=sm.method3)
cum_bleu += bleu_score
cum_bleu /= dataset.count
cum_acc /= dataset.count
logging.info('sentence level bleu: %f', cum_bleu)
logging.info('accuracy: %f', cum_acc)
def evaluate_seq2tree_sample_file(sample_file, id_file, dataset):
from lang.py.parse import tokenize_code, de_canonicalize_code
import ast, astor
import traceback
from lang.py.seq2tree_exp import seq2tree_repr_to_ast_tree, merge_broken_value_nodes
from lang.py.parse import decode_tree_to_python_ast
f_sample = open(sample_file)
line_id_to_raw_id = OrderedDict()
raw_id_to_eid = OrderedDict()
for i, line in enumerate(open(id_file)):
raw_id = int(line.strip())
line_id_to_raw_id[i] = raw_id
for eid in range(len(dataset.examples)):
raw_id_to_eid[dataset.examples[eid].raw_id] = eid
rare_word_map = defaultdict(dict)
if config.seq2tree_rareword_map:
logging.info('use rare word map')
for i, line in enumerate(open(config.seq2tree_rareword_map)):
line = line.strip()
if line:
for e in line.split(' '):
d = e.split(':', 1)
rare_word_map[i][int(d[0])] = d[1]
cum_bleu = 0.0
cum_acc = 0.0
sm = SmoothingFunction()
convert_error_num = 0
for i in range(len(line_id_to_raw_id)):
# print 'working on %d' % i
ref_repr = f_sample.readline().strip()
predict_repr = f_sample.readline().strip()
predict_repr = predict_repr.replace('<U>', 'str{}{unk}') # .replace('( )', '( str{}{unk} )')
f_sample.readline()
# if ' ( ) ' in ref_repr:
# print i, ref_repr
if i in rare_word_map:
for unk_id, w in rare_word_map[i].iteritems():
ref_repr = ref_repr.replace(' str{}{unk_%s} ' % unk_id, ' str{}{%s} ' % w)
predict_repr = predict_repr.replace(' str{}{unk_%s} ' % unk_id, ' str{}{%s} ' % w)
try:
parse_tree = seq2tree_repr_to_ast_tree(predict_repr)
merge_broken_value_nodes(parse_tree)
except:
print 'error when converting:'
print predict_repr
convert_error_num += 1
continue
raw_id = line_id_to_raw_id[i]
eid = raw_id_to_eid[raw_id]
example = dataset.examples[eid]
ref_code = example.code
ref_ast_tree = ast.parse(ref_code).body[0]
refer_source = astor.to_source(ref_ast_tree).strip()
refer_tokens = tokenize_code(refer_source)
try:
ast_tree = decode_tree_to_python_ast(parse_tree)
code = astor.to_source(ast_tree).strip()
except:
print "Exception in converting tree to code:"
print '-' * 60
print 'line id: %d' % i
traceback.print_exc(file=sys.stdout)
print '-' * 60
convert_error_num += 1
continue
if config.data_type == 'django':
ref_code_for_bleu = example.meta_data['raw_code']
pred_code_for_bleu = de_canonicalize_code(code, example.meta_data['raw_code'])
# convert canonicalized code to raw code
for literal, place_holder in example.meta_data['str_map'].iteritems():
pred_code_for_bleu = pred_code_for_bleu.replace('\'' + place_holder + '\'', literal)
elif config.data_type == 'hs':
ref_code_for_bleu = ref_code
pred_code_for_bleu = code
# we apply Ling Wang's trick when evaluating BLEU scores
refer_tokens_for_bleu = tokenize_for_bleu_eval(ref_code_for_bleu)
pred_tokens_for_bleu = tokenize_for_bleu_eval(pred_code_for_bleu)
predict_tokens = tokenize_code(code)
# if ref_repr == predict_repr:
if predict_tokens == refer_tokens:
cum_acc += 1
ngram_weights = [0.25] * min(4, len(refer_tokens_for_bleu))
bleu_score = sentence_bleu([refer_tokens_for_bleu], pred_tokens_for_bleu, weights=ngram_weights,
smoothing_function=sm.method3)
cum_bleu += bleu_score
cum_bleu /= len(line_id_to_raw_id)
cum_acc /= len(line_id_to_raw_id)
logging.info('nun. examples: %d', len(line_id_to_raw_id))
logging.info('num. errors when converting repr to tree: %d', convert_error_num)
logging.info('ratio of grammatically incorrect trees: %f', convert_error_num / float(len(line_id_to_raw_id)))
logging.info('sentence level bleu: %f', cum_bleu)
logging.info('accuracy: %f', cum_acc)
def evaluate_ifttt_results(dataset, decode_results, verbose=True):
assert dataset.count == len(decode_results)
f = f_decode = None
if verbose:
f = open(dataset.name + '.exact_match', 'w')
exact_match_ids = []
f_decode = open(os.path.join(config.output_dir, dataset.name + '.decode_results.txt'), 'w')
logging.info('evaluating [%s] set, [%d] examples', dataset.name, dataset.count)
cum_channel_acc = 0.0
cum_channel_func_acc = 0.0
cum_prod_f1 = 0.0
cum_oracle_prod_f1 = 0.0
if all(len(cand) == 0 for cand in decode_results):
logging.ERROR('Empty decoding results for the current dataset!')
return -1, -1, -1
for eid in range(dataset.count):
example = dataset.examples[eid]
ref_parse_tree = example.parse_tree
decode_candidates = decode_results[eid]
if len(decode_candidates) == 0:
continue
decode_cand = decode_candidates[0]
cid, cand_hyp = decode_cand
predict_parse_tree = cand_hyp.tree
exact_match = predict_parse_tree == ref_parse_tree
channel_acc, channel_func_acc, prod_f1 = ifttt_metric(predict_parse_tree, ref_parse_tree)
cum_channel_acc += channel_acc
cum_channel_func_acc += channel_func_acc
cum_prod_f1 += prod_f1
if verbose:
if exact_match:
exact_match_ids.append(example.raw_id)
print 'raw_id: %d, prod_f1: %f' % (example.raw_id, prod_f1)
f_decode.write('-' * 60 + '\n')
f_decode.write('example_id: %d\n' % example.raw_id)
f_decode.write('intent: \n')
f_decode.write(' '.join(example.query) + '\n')
f_decode.write('reference: \n')
f_decode.write(str(ref_parse_tree) + '\n')
f_decode.write('prediction: \n')
f_decode.write(str(predict_parse_tree) + '\n')
f_decode.write('-' * 60 + '\n')
# compute oracle
best_prod_f1 = -1.
for decode_cand in decode_candidates[:10]:
cid, cand_hyp = decode_cand
predict_parse_tree = cand_hyp.tree
channel_acc, channel_func_acc, prod_f1 = ifttt_metric(predict_parse_tree, ref_parse_tree)
if prod_f1 > best_prod_f1:
best_prod_f1 = prod_f1
cum_oracle_prod_f1 += best_prod_f1
cum_channel_acc /= dataset.count
cum_channel_func_acc /= dataset.count
cum_prod_f1 /= dataset.count
cum_oracle_prod_f1 /= dataset.count
logging.info('channel_acc: %f', cum_channel_acc)
logging.info('channel_func_acc: %f', cum_channel_func_acc)
logging.info('prod_f1: %f', cum_prod_f1)
logging.info('oracle prod_f1: %f', cum_oracle_prod_f1)
if verbose:
f.write(', '.join(str(i) for i in exact_match_ids))
f.close()
f_decode.close()
return cum_channel_acc, cum_channel_func_acc, cum_prod_f1
def ifttt_metric(predict_parse_tree, ref_parse_tree):
channel_acc = channel_func_acc = prod_f1 = 0.
# channel acc.
channel_match = False
if predict_parse_tree['TRIGGER'].children[0].type == ref_parse_tree['TRIGGER'].children[0].type and \
predict_parse_tree['ACTION'].children[0].type == ref_parse_tree['ACTION'].children[0].type:
channel_acc += 1.
channel_match = True
# channel+func acc.
if channel_match and predict_parse_tree['TRIGGER'].children[0].children[0].type == ref_parse_tree['TRIGGER'].children[0].children[0].type and \
predict_parse_tree['ACTION'].children[0].children[0].type == ref_parse_tree['ACTION'].children[0].children[0].type:
channel_func_acc += 1.
# predict_parse_tree is of type DecodingTree, different from reference tree!
# if predict_parse_tree == ref_parse_tree:
# channel_func_acc += 1.
# prod. F1
ref_rules, _ = ref_parse_tree.get_productions()
predict_rules, _ = predict_parse_tree.get_productions()
prod_f1 = len(set(ref_rules).intersection(set(predict_rules))) / len(ref_rules)
return channel_acc, channel_func_acc, prod_f1
def decode_and_evaluate_ifttt(model, test_data):
raw_ids = [int(i.strip()) for i in open(config.ifttt_test_split)] # 'data/ifff.test_data.gold.id'
eids = [i for i, e in enumerate(test_data.examples) if e.raw_id in raw_ids]
test_data_subset = test_data.get_dataset_by_ids(eids, test_data.name + '.subset')
from decoder import decode_ifttt_dataset
decode_results = decode_ifttt_dataset(model, test_data_subset, verbose=True)
evaluate_ifttt_results(test_data_subset, decode_results)
return decode_results
def decode_and_evaluate_ifttt_by_split(model, test_data):
for split in ['ifff.test_data.omit_non_english.id', 'ifff.test_data.omit_unintelligible.id', 'ifff.test_data.gold.id']:
raw_ids = [int(i.strip()) for i in open(os.path.join(config.ifttt_test_split), split)] # 'data/ifff.test_data.gold.id'
eids = [i for i, e in enumerate(test_data.examples) if e.raw_id in raw_ids]
test_data_subset = test_data.get_dataset_by_ids(eids, test_data.name + '.' + split)
from decoder import decode_ifttt_dataset
decode_results = decode_ifttt_dataset(model, test_data_subset, verbose=True)
evaluate_ifttt_results(test_data_subset, decode_results)
if __name__ == '__main__':
from dataset import DataEntry, DataSet, Vocab, Action
init_logging('parser.log', logging.INFO)
train_data, dev_data, test_data = deserialize_from_file('data/ifttt.freq3.bin')
decoding_results = []
for eid in range(test_data.count):
example = test_data.examples[eid]
decoding_results.append([(eid, example.parse_tree)])
evaluate_ifttt_results(test_data, decoding_results, verbose=True)