diff --git a/pandas/tests/copy_view/test_interp_fillna.py b/pandas/tests/copy_view/test_interp_fillna.py index 338b76cbf1e7a..d0c4fa53faab9 100644 --- a/pandas/tests/copy_view/test_interp_fillna.py +++ b/pandas/tests/copy_view/test_interp_fillna.py @@ -1,8 +1,6 @@ import numpy as np import pytest -from pandas._config import using_string_dtype - from pandas import ( NA, ArrowDtype, @@ -137,10 +135,9 @@ def test_interp_fill_functions_inplace( assert np.shares_memory(arr, get_array(df, "a")) is (dtype == "float64") -@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)") -def test_interpolate_cleaned_fill_method(using_copy_on_write): - # Check that "method is set to None" case works correctly +def test_interpolate_cannot_with_object_dtype(using_copy_on_write): df = DataFrame({"a": ["a", np.nan, "c"], "b": 1}) + df["a"] = df["a"].astype(object) df_orig = df.copy() msg = "DataFrame.interpolate with object dtype" @@ -159,16 +156,16 @@ def test_interpolate_cleaned_fill_method(using_copy_on_write): tm.assert_frame_equal(df, df_orig) -@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)") -def test_interpolate_object_convert_no_op(using_copy_on_write): +def test_interpolate_object_convert_no_op(using_copy_on_write, using_infer_string): df = DataFrame({"a": ["a", "b", "c"], "b": 1}) + df["a"] = df["a"].astype(object) arr_a = get_array(df, "a") msg = "DataFrame.interpolate with method=pad is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): df.interpolate(method="pad", inplace=True) # Now CoW makes a copy, it should not! - if using_copy_on_write: + if using_copy_on_write and not using_infer_string: assert df._mgr._has_no_reference(0) assert np.shares_memory(arr_a, get_array(df, "a")) diff --git a/pandas/tests/copy_view/test_replace.py b/pandas/tests/copy_view/test_replace.py index bc3edb1f72214..9e24ce319e3bf 100644 --- a/pandas/tests/copy_view/test_replace.py +++ b/pandas/tests/copy_view/test_replace.py @@ -356,10 +356,9 @@ def test_replace_empty_list(using_copy_on_write): assert not df2._mgr._has_no_reference(0) -@pytest.mark.xfail(using_string_dtype() and HAS_PYARROW, reason="TODO(infer_string)") @pytest.mark.parametrize("value", ["d", None]) def test_replace_object_list_inplace(using_copy_on_write, value): - df = DataFrame({"a": ["a", "b", "c"]}) + df = DataFrame({"a": ["a", "b", "c"]}, dtype=object) arr = get_array(df, "a") df.replace(["c"], value, inplace=True) if using_copy_on_write or value is None: diff --git a/pandas/tests/test_algos.py b/pandas/tests/test_algos.py index d1e69cfa2b4ee..80ee0f6e067f9 100644 --- a/pandas/tests/test_algos.py +++ b/pandas/tests/test_algos.py @@ -1704,12 +1704,17 @@ def test_unique_complex_numbers(self, array, expected): class TestHashTable: - @pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False) @pytest.mark.parametrize( "htable, data", [ - (ht.PyObjectHashTable, [f"foo_{i}" for i in range(1000)]), - (ht.StringHashTable, [f"foo_{i}" for i in range(1000)]), + ( + ht.PyObjectHashTable, + np.array([f"foo_{i}" for i in range(1000)], dtype=object), + ), + ( + ht.StringHashTable, + np.array([f"foo_{i}" for i in range(1000)], dtype=object), + ), (ht.Float64HashTable, np.arange(1000, dtype=np.float64)), (ht.Int64HashTable, np.arange(1000, dtype=np.int64)), (ht.UInt64HashTable, np.arange(1000, dtype=np.uint64)), @@ -1717,7 +1722,7 @@ class TestHashTable: ) def test_hashtable_unique(self, htable, data, writable): # output of maker has guaranteed unique elements - s = Series(data) + s = Series(data, dtype=data.dtype) if htable == ht.Float64HashTable: # add NaN for float column s.loc[500] = np.nan @@ -1744,12 +1749,17 @@ def test_hashtable_unique(self, htable, data, writable): reconstr = result_unique[result_inverse] tm.assert_numpy_array_equal(reconstr, s_duplicated.values) - @pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False) @pytest.mark.parametrize( "htable, data", [ - (ht.PyObjectHashTable, [f"foo_{i}" for i in range(1000)]), - (ht.StringHashTable, [f"foo_{i}" for i in range(1000)]), + ( + ht.PyObjectHashTable, + np.array([f"foo_{i}" for i in range(1000)], dtype=object), + ), + ( + ht.StringHashTable, + np.array([f"foo_{i}" for i in range(1000)], dtype=object), + ), (ht.Float64HashTable, np.arange(1000, dtype=np.float64)), (ht.Int64HashTable, np.arange(1000, dtype=np.int64)), (ht.UInt64HashTable, np.arange(1000, dtype=np.uint64)), @@ -1757,7 +1767,7 @@ def test_hashtable_unique(self, htable, data, writable): ) def test_hashtable_factorize(self, htable, writable, data): # output of maker has guaranteed unique elements - s = Series(data) + s = Series(data, dtype=data.dtype) if htable == ht.Float64HashTable: # add NaN for float column s.loc[500] = np.nan