Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: QST: pd.read_html gives tables with duplicated columns #56337

Open
3 tasks done
INF800 opened this issue Dec 5, 2023 · 1 comment
Open
3 tasks done

BUG: QST: pd.read_html gives tables with duplicated columns #56337

INF800 opened this issue Dec 5, 2023 · 1 comment
Labels
Bug IO HTML read_html, to_html, Styler.apply, Styler.applymap Needs Info Clarification about behavior needed to assess issue Needs Triage Issue that has not been reviewed by a pandas team member

Comments

@INF800
Copy link

INF800 commented Dec 5, 2023

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

# Wrote a simple notebook with issue causing dataset:
https://colab.research.google.com/drive/1CM4kmgcQ3mEGlX0lXYiONYk25B8YlWo8?usp=sharing

Issue Description

When I perform pd.read_html() I am getting a table with multiple duplicated columns and also the table does not make any sense.

The following table:
image

is generated as: (JPM_0000019617-23-000432_TABLE154.html)

|    | 0                             | 1                             | 2                             | 3                           | 4                           | 5                           | 6                           | 7                           | 8                           |   9 |   10 |   11 | 12                        | 13                        | 14                        | 15                        | 16                        | 17                        | 18                        | 19                        | 20                        |
|---:|:------------------------------|:------------------------------|:------------------------------|:----------------------------|:----------------------------|:----------------------------|:----------------------------|:----------------------------|:----------------------------|----:|-----:|-----:|:--------------------------|:--------------------------|:--------------------------|:--------------------------|:--------------------------|:--------------------------|:--------------------------|:--------------------------|:--------------------------|
|  0 | nan                           | nan                           | nan                           | nan                         | nan                         | nan                         | nan                         | nan                         | nan                         | nan |  nan |  nan | nan                       | nan                       | nan                       | nan                       | nan                       | nan                       | nan                       | nan                       | nan                       |
|  1 | nan                           | nan                           | nan                           | Three months ended June 30, | Three months ended June 30, | Three months ended June 30, | Three months ended June 30, | Three months ended June 30, | Three months ended June 30, | nan |  nan |  nan | Six months ended June 30, | Six months ended June 30, | Six months ended June 30, | Six months ended June 30, | Six months ended June 30, | Six months ended June 30, | Six months ended June 30, | Six months ended June 30, | Six months ended June 30, |
|  2 | (in millions)                 | (in millions)                 | (in millions)                 | 2023                        | 2023                        | 2023                        | 2022                        | 2022                        | 2022                        | nan |  nan |  nan | 2023                      | 2023                      | 2023                      | nan                       | nan                       | nan                       | 2022                      | 2022                      | 2022                      |
|  3 | Underwriting                  | Underwriting                  | Underwriting                  | nan                         | nan                         | nan                         | nan                         | nan                         | nan                         | nan |  nan |  nan | nan                       | nan                       | nan                       | nan                       | nan                       | nan                       | nan                       | nan                       | nan                       |
|  4 | Equity                        | Equity                        | Equity                        | $                           | 317                         | nan                         | $                           | 230                         | nan                         | nan |  nan |  nan | $                         | 550                       | nan                       | nan                       | nan                       | nan                       | $                         | 472                       | nan                       |
|  5 | Debt                          | Debt                          | Debt                          | 704                         | 704                         | nan                         | 711                         | 711                         | nan                         | nan |  nan |  nan | 1376                      | 1376                      | nan                       | nan                       | nan                       | nan                       | 1685                      | 1685                      | nan                       |
|  6 | Total underwriting            | Total underwriting            | Total underwriting            | 1021                        | 1021                        | nan                         | 941                         | 941                         | nan                         | nan |  nan |  nan | 1926                      | 1926                      | nan                       | nan                       | nan                       | nan                       | 2157                      | 2157                      | nan                       |
|  7 | Advisory                      | Advisory                      | Advisory                      | 492                         | 492                         | nan                         | 645                         | 645                         | nan                         | nan |  nan |  nan | 1236                      | 1236                      | nan                       | nan                       | nan                       | nan                       | 1437                      | 1437                      | nan                       |
|  8 | Total investment banking fees | Total investment banking fees | Total investment banking fees | $                           | 1513                        | nan                         | $                           | 1586                        | nan                         | nan |  nan |  nan | $                         | 3162                      | nan                       | nan                       | nan                       | nan                       | $                         | 3594                      | nan                       |

Expected Behavior

  • There would be Multi-indexed columns based on table headers
  • Only one of the columns 0, 1, and 2 would exist (and so on for wherever it matters)

Just a thought: Is there something out-of-the-box solution to standardize these kind of tables? (something like pd.melt)

Installed Versions

INSTALLED VERSIONS
------------------
commit           : 2e218d10984e9919f0296931d92ea851c6a6faf5
python           : 3.10.12.final.0
python-bits      : 64
OS               : Linux
OS-release       : 5.15.120+
Version          : #1 SMP Wed Aug 30 11:19:59 UTC 2023
machine          : x86_64
processor        : x86_64
byteorder        : little
LC_ALL           : en_US.UTF-8
LANG             : en_US.UTF-8
LOCALE           : en_US.UTF-8

pandas           : 1.5.3
numpy            : 1.23.5
pytz             : 2023.3.post1
dateutil         : 2.8.2
setuptools       : 67.7.2
pip              : 23.1.2
Cython           : 3.0.6
pytest           : 7.4.3
hypothesis       : None
sphinx           : 5.0.2
blosc            : None
feather          : None
xlsxwriter       : None
lxml.etree       : 4.9.3
html5lib         : 1.1
pymysql          : None
psycopg2         : 2.9.9
jinja2           : 3.1.2
IPython          : 7.34.0
pandas_datareader: 0.10.0
bs4              : 4.11.2
bottleneck       : None
brotli           : None
fastparquet      : None
fsspec           : 2023.6.0
gcsfs            : 2023.6.0
matplotlib       : 3.7.1
numba            : 0.58.1
numexpr          : 2.8.7
odfpy            : None
openpyxl         : 3.1.2
pandas_gbq       : 0.17.9
pyarrow          : 9.0.0
pyreadstat       : None
pyxlsb           : None
s3fs             : None
scipy            : 1.11.4
snappy           : None
sqlalchemy       : 2.0.23
tables           : 3.8.0
tabulate         : 0.9.0
xarray           : 2023.7.0
xlrd             : 2.0.1
xlwt             : None
zstandard        : None
tzdata           : None
@INF800 INF800 added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Dec 5, 2023
@rhshadrach
Copy link
Member

Thanks for the report! Can you include the code to reproduce in the OP here directly (rather than a link), and try to make it as minimal as possible?

Have you seen the documentation on the table-parsing gotchas?

@rhshadrach rhshadrach added IO HTML read_html, to_html, Styler.apply, Styler.applymap Needs Info Clarification about behavior needed to assess issue labels Dec 5, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug IO HTML read_html, to_html, Styler.apply, Styler.applymap Needs Info Clarification about behavior needed to assess issue Needs Triage Issue that has not been reviewed by a pandas team member
Projects
None yet
Development

No branches or pull requests

2 participants