-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
mean with skipna either True or False on groupby gives error #32696
Comments
Quick workaroundOne possible alternative to >>> df.replace(np.nan, np.inf).groupby('elements').mean().replace(np.inf, np.nan)
points
elements
144 1.0
145 1.0
166 NaN
214 1.5 Warning: Preexisted More solutions here: https://stackoverflow.com/q/54106112/ More examples related to this problem
|
The |
Duplicate of #15675 |
I get a error with groupby.mean(skipna=True) .... said that group mean not have argument 'skipna' |
Problem description
Using
.mean(skipna = True)
or.mean(skipna = False)
on agroupby
object gives error:skipna is a crucial parameter while doing analysis. By default
skipna = True
, so if not given explicitly results in expected output but if given explicitly either as True or False, returns error.Code Sample:
Expected Output
with
mean(skipna = True)
:with
mean(skipna = False)
:Workaround I tried which gives expected output:
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.6.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 69 Stepping 1, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 1.0.1
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.0.0.post20200309
Cython : 0.29.15
pytest : 5.3.5
hypothesis : 5.5.4
sphinx : 2.4.0
blosc : None
feather : None
xlsxwriter : 1.2.7
lxml.etree : 4.5.0
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.13.0
pandas_datareader: None
bs4 : 4.8.2
bottleneck : 1.3.2
fastparquet : None
gcsfs : None
lxml.etree : 4.5.0
matplotlib : 3.1.3
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.3.5
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.13
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
xlsxwriter : 1.2.7
numba : 0.48.0
Quite similar to issue #19806
The text was updated successfully, but these errors were encountered: