From e74138cb1cd02211ecfa68e8ca187dcfc381f5f5 Mon Sep 17 00:00:00 2001 From: Marco Edward Gorelli Date: Mon, 9 Oct 2023 21:33:13 +0300 Subject: [PATCH] Revert "BUG: Timestamp origin takes no effect in resample for 'MS' frequency (#53938)" (#55077) * Revert "BUG: Timestamp origin takes no effect in resample for 'MS' frequency (#53938)" This reverts commit dfc4c3900a181e8a9dff724217d5a14e59ca2e4f. * note that origin only takes effect for tick frequencies * fixup doctest * move whatsnew to v2.1.2 --------- Co-authored-by: Thomas Li <47963215+lithomas1@users.noreply.github.com> --- doc/source/whatsnew/v2.1.2.rst | 1 + pandas/core/generic.py | 16 +++-- pandas/core/groupby/grouper.py | 12 ++-- pandas/core/resample.py | 13 +--- pandas/tests/resample/test_datetime_index.py | 67 +++++-------------- .../tests/resample/test_resampler_grouper.py | 32 ++++----- 6 files changed, 48 insertions(+), 93 deletions(-) diff --git a/doc/source/whatsnew/v2.1.2.rst b/doc/source/whatsnew/v2.1.2.rst index ddd1f95c56aea..569864ba71122 100644 --- a/doc/source/whatsnew/v2.1.2.rst +++ b/doc/source/whatsnew/v2.1.2.rst @@ -15,6 +15,7 @@ Fixed regressions ~~~~~~~~~~~~~~~~~ - Fixed bug where PDEP-6 warning about setting an item of an incompatible dtype was being shown when creating a new conditional column (:issue:`55025`) - Fixed regression in :meth:`DataFrame.join` where result has missing values and dtype is arrow backed string (:issue:`55348`) +- Fixed regression in :meth:`DataFrame.resample` which was extrapolating back to ``origin`` when ``origin`` was outside its bounds (:issue:`55064`) .. --------------------------------------------------------------------------- .. _whatsnew_212.bug_fixes: diff --git a/pandas/core/generic.py b/pandas/core/generic.py index 6527dcaa2de59..a7183a9d9498a 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -9221,6 +9221,10 @@ def resample( .. versionadded:: 1.3.0 + .. note:: + + Only takes effect for Tick-frequencies (i.e. fixed frequencies like + days, hours, and minutes, rather than months or quarters). offset : Timedelta or str, default is None An offset timedelta added to the origin. @@ -9491,12 +9495,12 @@ def resample( 2000-10-02 00:26:00 24 Freq: 17min, dtype: int64 - >>> ts.resample('17W', origin='2000-01-01').sum() - 2000-01-02 0 - 2000-04-30 0 - 2000-08-27 0 - 2000-12-24 108 - Freq: 17W-SUN, dtype: int64 + >>> ts.resample('17min', origin='2000-01-01').sum() + 2000-10-01 23:24:00 3 + 2000-10-01 23:41:00 15 + 2000-10-01 23:58:00 45 + 2000-10-02 00:15:00 45 + Freq: 17min, dtype: int64 If you want to adjust the start of the bins with an `offset` Timedelta, the two following lines are equivalent: diff --git a/pandas/core/groupby/grouper.py b/pandas/core/groupby/grouper.py index c51c17e04796a..06e6755079a22 100644 --- a/pandas/core/groupby/grouper.py +++ b/pandas/core/groupby/grouper.py @@ -207,12 +207,12 @@ class Grouper: 2000-10-02 00:26:00 24 Freq: 17min, dtype: int64 - >>> ts.groupby(pd.Grouper(freq='17W', origin='2000-01-01')).sum() - 2000-01-02 0 - 2000-04-30 0 - 2000-08-27 0 - 2000-12-24 108 - Freq: 17W-SUN, dtype: int64 + >>> ts.groupby(pd.Grouper(freq='17min', origin='2000-01-01')).sum() + 2000-10-01 23:24:00 3 + 2000-10-01 23:41:00 15 + 2000-10-01 23:58:00 45 + 2000-10-02 00:15:00 45 + Freq: 17min, dtype: int64 If you want to adjust the start of the bins with an `offset` Timedelta, the two following lines are equivalent: diff --git a/pandas/core/resample.py b/pandas/core/resample.py index bb5f3ce56b470..59e6a20915c18 100644 --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -2528,16 +2528,8 @@ def _get_timestamp_range_edges( """ if isinstance(freq, Tick): index_tz = first.tz - - if isinstance(origin, Timestamp) and origin.tz != index_tz: + if isinstance(origin, Timestamp) and (origin.tz is None) != (index_tz is None): raise ValueError("The origin must have the same timezone as the index.") - - elif isinstance(origin, Timestamp): - if origin <= first: - first = origin - elif origin >= last: - last = origin - if origin == "epoch": # set the epoch based on the timezone to have similar bins results when # resampling on the same kind of indexes on different timezones @@ -2559,9 +2551,6 @@ def _get_timestamp_range_edges( first = first.tz_localize(index_tz) last = last.tz_localize(index_tz) else: - if isinstance(origin, Timestamp): - first = origin - first = first.normalize() last = last.normalize() diff --git a/pandas/tests/resample/test_datetime_index.py b/pandas/tests/resample/test_datetime_index.py index 63f9de2da733d..28d02576156a0 100644 --- a/pandas/tests/resample/test_datetime_index.py +++ b/pandas/tests/resample/test_datetime_index.py @@ -796,34 +796,24 @@ def test_resample_offset(unit): @pytest.mark.parametrize( - "kwargs, expected", + "kwargs", [ - ( - {"origin": "1999-12-31 23:57:00"}, - ["1999-12-31 23:57:00", "2000-01-01 01:57:00"], - ), - ( - {"origin": Timestamp("1970-01-01 00:02:00")}, - ["1970-01-01 00:02:00", "2000-01-01 01:57:00"], - ), - ( - {"origin": "epoch", "offset": "2m"}, - ["1999-12-31 23:57:00", "2000-01-01 01:57:00"], - ), + {"origin": "1999-12-31 23:57:00"}, + {"origin": Timestamp("1970-01-01 00:02:00")}, + {"origin": "epoch", "offset": "2m"}, # origin of '1999-31-12 12:02:00' should be equivalent for this case - ( - {"origin": "1999-12-31 12:02:00"}, - ["1999-12-31 12:02:00", "2000-01-01 01:57:00"], - ), - ({"offset": "-3m"}, ["1999-12-31 23:57:00", "2000-01-01 01:57:00"]), + {"origin": "1999-12-31 12:02:00"}, + {"offset": "-3m"}, ], ) -def test_resample_origin(kwargs, unit, expected): +def test_resample_origin(kwargs, unit): # GH 31809 rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s").as_unit(unit) ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) - exp_rng = date_range(expected[0], expected[1], freq="5min").as_unit(unit) + exp_rng = date_range( + "1999-12-31 23:57:00", "2000-01-01 01:57", freq="5min" + ).as_unit(unit) resampled = ts.resample("5min", **kwargs).mean() tm.assert_index_equal(resampled.index, exp_rng) @@ -853,31 +843,6 @@ def test_resample_bad_offset(offset, unit): ts.resample("5min", offset=offset) -def test_resample_monthstart_origin(): - # GH 53662 - df = DataFrame({"ts": [datetime(1999, 12, 31, 0, 0, 0)], "values": [10.0]}) - result = df.resample("2MS", on="ts", origin="1999-11-01")["values"].sum() - excepted = Series( - [10.0], - index=DatetimeIndex( - ["1999-11-01"], dtype="datetime64[ns]", name="ts", freq="2MS" - ), - ) - tm.assert_index_equal(result.index, excepted.index) - - df = DataFrame({"ts": [datetime(1999, 12, 31, 20)], "values": [10.0]}) - result = df.resample( - "3YS", on="ts", closed="left", label="left", origin=datetime(1995, 1, 1) - )["values"].sum() - expected = Series( - [0, 10.0], - index=DatetimeIndex( - ["1995-01-01", "1998-01-01"], dtype="datetime64[ns]", name="ts", freq="3YS" - ), - ) - tm.assert_index_equal(result.index, expected.index) - - def test_resample_origin_prime_freq(unit): # GH 31809 start, end = "2000-10-01 23:30:00", "2000-10-02 00:30:00" @@ -909,7 +874,7 @@ def test_resample_origin_prime_freq(unit): tm.assert_index_equal(resampled.index, exp_rng) exp_rng = date_range( - "2000-01-01 00:00:00", "2000-10-02 00:15:00", freq="17min" + "2000-10-01 23:24:00", "2000-10-02 00:15:00", freq="17min" ).as_unit(unit) resampled = ts.resample("17min", origin="2000-01-01").mean() tm.assert_index_equal(resampled.index, exp_rng) @@ -928,12 +893,14 @@ def test_resample_origin_with_tz(unit): exp_rng = date_range( "1999-12-31 23:57:00", "2000-01-01 01:57", freq="5min", tz=tz ).as_unit(unit) - resampled = ts.resample("5min", origin="epoch", offset="2m").mean() + resampled = ts.resample("5min", origin="1999-12-31 23:57:00+00:00").mean() tm.assert_index_equal(resampled.index, exp_rng) - resampled = ts.resample( - "5min", origin=Timestamp("1999-12-31 23:57:00", tz=tz) - ).mean() + # origin of '1999-31-12 12:02:00+03:00' should be equivalent for this case + resampled = ts.resample("5min", origin="1999-12-31 12:02:00+03:00").mean() + tm.assert_index_equal(resampled.index, exp_rng) + + resampled = ts.resample("5min", origin="epoch", offset="2m").mean() tm.assert_index_equal(resampled.index, exp_rng) with pytest.raises(ValueError, match=msg): diff --git a/pandas/tests/resample/test_resampler_grouper.py b/pandas/tests/resample/test_resampler_grouper.py index 55365d14a68ca..b85ccdc70068f 100644 --- a/pandas/tests/resample/test_resampler_grouper.py +++ b/pandas/tests/resample/test_resampler_grouper.py @@ -151,19 +151,6 @@ def test_groupby_with_origin(): start, end = "1/1/2000 00:00:00", "1/31/2000 00:00" middle = "1/15/2000 00:00:00" - # test origin on 1970-01-01 00:00:00 - rng = date_range("1970-01-01 00:00:00", end, freq="1231min") # prime number - ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) - middle_ts = rng[len(rng) // 2] - ts2 = ts[middle_ts:end] - - origin = Timestamp(0) - adjusted_grouper = pd.Grouper(freq=freq, origin=origin) - adjusted_count_ts = ts.groupby(adjusted_grouper).agg("count") - adjusted_count_ts = adjusted_count_ts[middle_ts:end] - adjusted_count_ts2 = ts2.groupby(adjusted_grouper).agg("count") - tm.assert_series_equal(adjusted_count_ts, adjusted_count_ts2[middle_ts:end]) - rng = date_range(start, end, freq="1231min") # prime number ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) ts2 = ts[middle:end] @@ -177,19 +164,26 @@ def test_groupby_with_origin(): with pytest.raises(AssertionError, match="Index are different"): tm.assert_index_equal(count_ts.index, count_ts2.index) - # test origin on 2049-10-18 20:00:00 + # test origin on 1970-01-01 00:00:00 + origin = Timestamp(0) + adjusted_grouper = pd.Grouper(freq=freq, origin=origin) + adjusted_count_ts = ts.groupby(adjusted_grouper).agg("count") + adjusted_count_ts = adjusted_count_ts[middle:end] + adjusted_count_ts2 = ts2.groupby(adjusted_grouper).agg("count") + tm.assert_series_equal(adjusted_count_ts, adjusted_count_ts2) - rng = date_range(start, "2049-10-18 20:00:00", freq="1231min") # prime number - ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) - middle_ts = rng[len(rng) // 2] - ts2 = ts[middle_ts:end] + # test origin on 2049-10-18 20:00:00 origin_future = Timestamp(0) + pd.Timedelta("1399min") * 30_000 adjusted_grouper2 = pd.Grouper(freq=freq, origin=origin_future) adjusted2_count_ts = ts.groupby(adjusted_grouper2).agg("count") - adjusted2_count_ts = adjusted2_count_ts[middle_ts:end] + adjusted2_count_ts = adjusted2_count_ts[middle:end] adjusted2_count_ts2 = ts2.groupby(adjusted_grouper2).agg("count") tm.assert_series_equal(adjusted2_count_ts, adjusted2_count_ts2) + # both grouper use an adjusted timestamp that is a multiple of 1399 min + # they should be equals even if the adjusted_timestamp is in the future + tm.assert_series_equal(adjusted_count_ts, adjusted2_count_ts2) + def test_nearest(): # GH 17496