From dd7441bd4617eb16f21e2e381378a3365599eebe Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jo=C3=A3o=20Andrade?= <49215007+jpgianfaldoni@users.noreply.github.com> Date: Fri, 3 Nov 2023 14:32:17 -0300 Subject: [PATCH] DOC: Fixes DataFrame.replace documentation (#55762) * fix replace docs * fix replace docs * move description to examples * fix spacing * fix dicts * fix line size * fix whitespace * remove trailling whitespaces * fix df * fix df * Update pandas/core/shared_docs.py Co-authored-by: Matthew Roeschke <10647082+mroeschke@users.noreply.github.com> * Update pandas/core/shared_docs.py Co-authored-by: Matthew Roeschke <10647082+mroeschke@users.noreply.github.com> --------- Co-authored-by: Matthew Roeschke <10647082+mroeschke@users.noreply.github.com> --- pandas/core/shared_docs.py | 29 +++++++++++++++++++++++++++-- 1 file changed, 27 insertions(+), 2 deletions(-) diff --git a/pandas/core/shared_docs.py b/pandas/core/shared_docs.py index ec219941a3afc..4bbbd9266a94a 100644 --- a/pandas/core/shared_docs.py +++ b/pandas/core/shared_docs.py @@ -570,8 +570,7 @@ .. deprecated:: 2.1.0 regex : bool or same types as `to_replace`, default False Whether to interpret `to_replace` and/or `value` as regular - expressions. If this is ``True`` then `to_replace` *must* be a - string. Alternatively, this could be a regular expression or a + expressions. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case `to_replace` must be ``None``. method : {{'pad', 'ffill', 'bfill'}} @@ -790,6 +789,32 @@ .. versionchanged:: 1.4.0 Previously the explicit ``None`` was silently ignored. + + When ``regex=True``, ``value`` is not ``None`` and `to_replace` is a string, + the replacement will be applied in all columns of the DataFrame. + + >>> df = pd.DataFrame({{'A': [0, 1, 2, 3, 4], + ... 'B': ['a', 'b', 'c', 'd', 'e'], + ... 'C': ['f', 'g', 'h', 'i', 'j']}}) + + >>> df.replace(to_replace='^[a-g]', value = 'e', regex=True) + A B C + 0 0 e e + 1 1 e e + 2 2 e h + 3 3 e i + 4 4 e j + + If ``value`` is not ``None`` and `to_replace` is a dictionary, the dictionary + keys will be the DataFrame columns that the replacement will be applied. + + >>> df.replace(to_replace={{'B': '^[a-c]', 'C': '^[h-j]'}}, value = 'e', regex=True) + A B C + 0 0 e f + 1 1 e g + 2 2 e e + 3 3 d e + 4 4 e e """ _shared_docs[