diff --git a/.circleci/config.yml b/.circleci/config.yml index 9c986e5b1b054c..139ea9d2204536 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -34,7 +34,6 @@ jobs: fi python -m pip install --no-build-isolation -ve . -Csetup-args="--werror" PATH=$HOME/miniconda3/envs/pandas-dev/bin:$HOME/miniconda3/condabin:$PATH - sudo apt-get update && sudo apt-get install -y libegl1 libopengl0 ci/run_tests.sh test-linux-musl: docker: diff --git a/ci/code_checks.sh b/ci/code_checks.sh index adc5bc9a01bdd5..74f5de78856d5a 100755 --- a/ci/code_checks.sh +++ b/ci/code_checks.sh @@ -81,10 +81,8 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then -i "pandas.Timestamp.resolution PR02" \ -i "pandas.Timestamp.tzinfo GL08" \ -i "pandas.arrays.ArrowExtensionArray PR07,SA01" \ - -i "pandas.arrays.IntervalArray.length SA01" \ -i "pandas.arrays.NumpyExtensionArray SA01" \ -i "pandas.arrays.TimedeltaArray PR07,SA01" \ - -i "pandas.core.groupby.DataFrameGroupBy.boxplot PR07,RT03,SA01" \ -i "pandas.core.groupby.DataFrameGroupBy.plot PR02" \ -i "pandas.core.groupby.SeriesGroupBy.plot PR02" \ -i "pandas.core.resample.Resampler.max PR01,RT03,SA01" \ @@ -95,9 +93,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then -i "pandas.core.resample.Resampler.std SA01" \ -i "pandas.core.resample.Resampler.transform PR01,RT03,SA01" \ -i "pandas.core.resample.Resampler.var SA01" \ - -i "pandas.errors.NullFrequencyError SA01" \ - -i "pandas.errors.NumbaUtilError SA01" \ - -i "pandas.errors.PerformanceWarning SA01" \ -i "pandas.errors.UndefinedVariableError PR01,SA01" \ -i "pandas.errors.ValueLabelTypeMismatch SA01" \ -i "pandas.io.json.build_table_schema PR07,RT03,SA01" \ diff --git a/doc/source/reference/frame.rst b/doc/source/reference/frame.rst index 7680c8b4348666..e701d48a89db72 100644 --- a/doc/source/reference/frame.rst +++ b/doc/source/reference/frame.rst @@ -185,7 +185,6 @@ Reindexing / selection / label manipulation DataFrame.duplicated DataFrame.equals DataFrame.filter - DataFrame.head DataFrame.idxmax DataFrame.idxmin DataFrame.reindex @@ -196,7 +195,6 @@ Reindexing / selection / label manipulation DataFrame.sample DataFrame.set_axis DataFrame.set_index - DataFrame.tail DataFrame.take DataFrame.truncate diff --git a/doc/source/whatsnew/v3.0.0.rst b/doc/source/whatsnew/v3.0.0.rst index 50e5ac654a7b4f..66af2bb9529234 100644 --- a/doc/source/whatsnew/v3.0.0.rst +++ b/doc/source/whatsnew/v3.0.0.rst @@ -56,6 +56,7 @@ Other enhancements - :meth:`DataFrame.plot.scatter` argument ``c`` now accepts a column of strings, where rows with the same string are colored identically (:issue:`16827` and :issue:`16485`) - :func:`read_parquet` accepts ``to_pandas_kwargs`` which are forwarded to :meth:`pyarrow.Table.to_pandas` which enables passing additional keywords to customize the conversion to pandas, such as ``maps_as_pydicts`` to read the Parquet map data type as python dictionaries (:issue:`56842`) - :meth:`DataFrameGroupBy.transform`, :meth:`SeriesGroupBy.transform`, :meth:`DataFrameGroupBy.agg`, :meth:`SeriesGroupBy.agg`, :meth:`RollingGroupby.apply`, :meth:`ExpandingGroupby.apply`, :meth:`Rolling.apply`, :meth:`Expanding.apply`, :meth:`DataFrame.apply` with ``engine="numba"`` now supports positional arguments passed as kwargs (:issue:`58995`) +- :meth:`Rolling.agg`, :meth:`Expanding.agg` and :meth:`ExponentialMovingWindow.agg` now accept :class:`NamedAgg` aggregations through ``**kwargs`` (:issue:`28333`) - :meth:`Series.map` can now accept kwargs to pass on to func (:issue:`59814`) - :meth:`pandas.concat` will raise a ``ValueError`` when ``ignore_index=True`` and ``keys`` is not ``None`` (:issue:`59274`) - :meth:`str.get_dummies` now accepts a ``dtype`` parameter to specify the dtype of the resulting DataFrame (:issue:`47872`) @@ -627,6 +628,7 @@ Datetimelike - Bug in :meth:`DatetimeIndex.union` and :meth:`DatetimeIndex.intersection` when ``unit`` was non-nanosecond (:issue:`59036`) - Bug in :meth:`Series.dt.microsecond` producing incorrect results for pyarrow backed :class:`Series`. (:issue:`59154`) - Bug in :meth:`to_datetime` not respecting dayfirst if an uncommon date string was passed. (:issue:`58859`) +- Bug in :meth:`to_datetime` on float32 df with year, month, day etc. columns leads to precision issues and incorrect result. (:issue:`60506`) - Bug in :meth:`to_datetime` reports incorrect index in case of any failure scenario. (:issue:`58298`) - Bug in :meth:`to_datetime` wrongly converts when ``arg`` is a ``np.datetime64`` object with unit of ``ps``. (:issue:`60341`) - Bug in setting scalar values with mismatched resolution into arrays with non-nanosecond ``datetime64``, ``timedelta64`` or :class:`DatetimeTZDtype` incorrectly truncating those scalars (:issue:`56410`) @@ -799,6 +801,7 @@ Other - Bug in :meth:`read_csv` where chained fsspec TAR file and ``compression="infer"`` fails with ``tarfile.ReadError`` (:issue:`60028`) - Bug in Dataframe Interchange Protocol implementation was returning incorrect results for data buffers' associated dtype, for string and datetime columns (:issue:`54781`) - Bug in ``Series.list`` methods not preserving the original :class:`Index`. (:issue:`58425`) +- Bug in ``Series.list`` methods not preserving the original name. (:issue:`60522`) - Bug in printing a :class:`DataFrame` with a :class:`DataFrame` stored in :attr:`DataFrame.attrs` raised a ``ValueError`` (:issue:`60455`) .. ***DO NOT USE THIS SECTION*** diff --git a/pandas/core/arrays/arrow/accessors.py b/pandas/core/arrays/arrow/accessors.py index 230522846d3773..b220a94d032b50 100644 --- a/pandas/core/arrays/arrow/accessors.py +++ b/pandas/core/arrays/arrow/accessors.py @@ -117,7 +117,10 @@ def len(self) -> Series: value_lengths = pc.list_value_length(self._pa_array) return Series( - value_lengths, dtype=ArrowDtype(value_lengths.type), index=self._data.index + value_lengths, + dtype=ArrowDtype(value_lengths.type), + index=self._data.index, + name=self._data.name, ) def __getitem__(self, key: int | slice) -> Series: @@ -162,7 +165,10 @@ def __getitem__(self, key: int | slice) -> Series: # key = pc.add(key, pc.list_value_length(self._pa_array)) element = pc.list_element(self._pa_array, key) return Series( - element, dtype=ArrowDtype(element.type), index=self._data.index + element, + dtype=ArrowDtype(element.type), + index=self._data.index, + name=self._data.name, ) elif isinstance(key, slice): if pa_version_under11p0: @@ -181,7 +187,12 @@ def __getitem__(self, key: int | slice) -> Series: if step is None: step = 1 sliced = pc.list_slice(self._pa_array, start, stop, step) - return Series(sliced, dtype=ArrowDtype(sliced.type), index=self._data.index) + return Series( + sliced, + dtype=ArrowDtype(sliced.type), + index=self._data.index, + name=self._data.name, + ) else: raise ValueError(f"key must be an int or slice, got {type(key).__name__}") @@ -223,7 +234,12 @@ def flatten(self) -> Series: counts = pa.compute.list_value_length(self._pa_array) flattened = pa.compute.list_flatten(self._pa_array) index = self._data.index.repeat(counts.fill_null(pa.scalar(0, counts.type))) - return Series(flattened, dtype=ArrowDtype(flattened.type), index=index) + return Series( + flattened, + dtype=ArrowDtype(flattened.type), + index=index, + name=self._data.name, + ) class StructAccessor(ArrowAccessor): diff --git a/pandas/core/arrays/interval.py b/pandas/core/arrays/interval.py index bbbf1d9ca60bd0..0bf2089df5f85a 100644 --- a/pandas/core/arrays/interval.py +++ b/pandas/core/arrays/interval.py @@ -1306,6 +1306,20 @@ def length(self) -> Index: """ Return an Index with entries denoting the length of each Interval. + The length of an interval is calculated as the difference between + its `right` and `left` bounds. This property is particularly useful + when working with intervals where the size of the interval is an important + attribute, such as in time-series analysis or spatial data analysis. + + See Also + -------- + arrays.IntervalArray.left : Return the left endpoints of each Interval in + the IntervalArray as an Index. + arrays.IntervalArray.right : Return the right endpoints of each Interval in + the IntervalArray as an Index. + arrays.IntervalArray.mid : Return the midpoint of each Interval in the + IntervalArray as an Index. + Examples -------- diff --git a/pandas/core/computation/expressions.py b/pandas/core/computation/expressions.py index e2acd9a2c97c26..5a5fad0d83d7a5 100644 --- a/pandas/core/computation/expressions.py +++ b/pandas/core/computation/expressions.py @@ -65,23 +65,23 @@ def set_numexpr_threads(n=None) -> None: ne.set_num_threads(n) -def _evaluate_standard(op, op_str, a, b): +def _evaluate_standard(op, op_str, left_op, right_op): """ Standard evaluation. """ if _TEST_MODE: _store_test_result(False) - return op(a, b) + return op(left_op, right_op) -def _can_use_numexpr(op, op_str, a, b, dtype_check) -> bool: - """return a boolean if we WILL be using numexpr""" +def _can_use_numexpr(op, op_str, left_op, right_op, dtype_check) -> bool: + """return left_op boolean if we WILL be using numexpr""" if op_str is not None: # required min elements (otherwise we are adding overhead) - if a.size > _MIN_ELEMENTS: + if left_op.size > _MIN_ELEMENTS: # check for dtype compatibility dtypes: set[str] = set() - for o in [a, b]: + for o in [left_op, right_op]: # ndarray and Series Case if hasattr(o, "dtype"): dtypes |= {o.dtype.name} @@ -93,22 +93,22 @@ def _can_use_numexpr(op, op_str, a, b, dtype_check) -> bool: return False -def _evaluate_numexpr(op, op_str, a, b): +def _evaluate_numexpr(op, op_str, left_op, right_op): result = None - if _can_use_numexpr(op, op_str, a, b, "evaluate"): + if _can_use_numexpr(op, op_str, left_op, right_op, "evaluate"): is_reversed = op.__name__.strip("_").startswith("r") if is_reversed: # we were originally called by a reversed op method - a, b = b, a + left_op, right_op = right_op, left_op - a_value = a - b_value = b + left_value = left_op + right_value = right_op try: result = ne.evaluate( - f"a_value {op_str} b_value", - local_dict={"a_value": a_value, "b_value": b_value}, + f"left_value {op_str} right_value", + local_dict={"left_value": left_value, "right_value": right_value}, casting="safe", ) except TypeError: @@ -116,20 +116,20 @@ def _evaluate_numexpr(op, op_str, a, b): # (https://github.com/pydata/numexpr/issues/379) pass except NotImplementedError: - if _bool_arith_fallback(op_str, a, b): + if _bool_arith_fallback(op_str, left_op, right_op): pass else: raise if is_reversed: # reverse order to original for fallback - a, b = b, a + left_op, right_op = right_op, left_op if _TEST_MODE: _store_test_result(result is not None) if result is None: - result = _evaluate_standard(op, op_str, a, b) + result = _evaluate_standard(op, op_str, left_op, right_op) return result @@ -170,24 +170,24 @@ def _evaluate_numexpr(op, op_str, a, b): } -def _where_standard(cond, a, b): +def _where_standard(cond, left_op, right_op): # Caller is responsible for extracting ndarray if necessary - return np.where(cond, a, b) + return np.where(cond, left_op, right_op) -def _where_numexpr(cond, a, b): +def _where_numexpr(cond, left_op, right_op): # Caller is responsible for extracting ndarray if necessary result = None - if _can_use_numexpr(None, "where", a, b, "where"): + if _can_use_numexpr(None, "where", left_op, right_op, "where"): result = ne.evaluate( "where(cond_value, a_value, b_value)", - local_dict={"cond_value": cond, "a_value": a, "b_value": b}, + local_dict={"cond_value": cond, "a_value": left_op, "b_value": right_op}, casting="safe", ) if result is None: - result = _where_standard(cond, a, b) + result = _where_standard(cond, left_op, right_op) return result @@ -206,13 +206,13 @@ def _has_bool_dtype(x): _BOOL_OP_UNSUPPORTED = {"+": "|", "*": "&", "-": "^"} -def _bool_arith_fallback(op_str, a, b) -> bool: +def _bool_arith_fallback(op_str, left_op, right_op) -> bool: """ Check if we should fallback to the python `_evaluate_standard` in case of an unsupported operation by numexpr, which is the case for some boolean ops. """ - if _has_bool_dtype(a) and _has_bool_dtype(b): + if _has_bool_dtype(left_op) and _has_bool_dtype(right_op): if op_str in _BOOL_OP_UNSUPPORTED: warnings.warn( f"evaluating in Python space because the {op_str!r} " @@ -224,15 +224,15 @@ def _bool_arith_fallback(op_str, a, b) -> bool: return False -def evaluate(op, a, b, use_numexpr: bool = True): +def evaluate(op, left_op, right_op, use_numexpr: bool = True): """ - Evaluate and return the expression of the op on a and b. + Evaluate and return the expression of the op on left_op and right_op. Parameters ---------- op : the actual operand - a : left operand - b : right operand + left_op : left operand + right_op : right operand use_numexpr : bool, default True Whether to try to use numexpr. """ @@ -240,24 +240,27 @@ def evaluate(op, a, b, use_numexpr: bool = True): if op_str is not None: if use_numexpr: # error: "None" not callable - return _evaluate(op, op_str, a, b) # type: ignore[misc] - return _evaluate_standard(op, op_str, a, b) + return _evaluate(op, op_str, left_op, right_op) # type: ignore[misc] + return _evaluate_standard(op, op_str, left_op, right_op) -def where(cond, a, b, use_numexpr: bool = True): +def where(cond, left_op, right_op, use_numexpr: bool = True): """ - Evaluate the where condition cond on a and b. + Evaluate the where condition cond on left_op and right_op. Parameters ---------- cond : np.ndarray[bool] - a : return if cond is True - b : return if cond is False + left_op : return if cond is True + right_op : return if cond is False use_numexpr : bool, default True Whether to try to use numexpr. """ assert _where is not None - return _where(cond, a, b) if use_numexpr else _where_standard(cond, a, b) + if use_numexpr: + return _where(cond, left_op, right_op) + else: + return _where_standard(cond, left_op, right_op) def set_test_mode(v: bool = True) -> None: diff --git a/pandas/core/computation/pytables.py b/pandas/core/computation/pytables.py index fe7e27f537b017..166c9d47294cd7 100644 --- a/pandas/core/computation/pytables.py +++ b/pandas/core/computation/pytables.py @@ -205,7 +205,7 @@ def generate(self, v) -> str: val = v.tostring(self.encoding) return f"({self.lhs} {self.op} {val})" - def convert_value(self, v) -> TermValue: + def convert_value(self, conv_val) -> TermValue: """ convert the expression that is in the term to something that is accepted by pytables @@ -219,44 +219,44 @@ def stringify(value): kind = ensure_decoded(self.kind) meta = ensure_decoded(self.meta) if kind == "datetime" or (kind and kind.startswith("datetime64")): - if isinstance(v, (int, float)): - v = stringify(v) - v = ensure_decoded(v) - v = Timestamp(v).as_unit("ns") - if v.tz is not None: - v = v.tz_convert("UTC") - return TermValue(v, v._value, kind) + if isinstance(conv_val, (int, float)): + conv_val = stringify(conv_val) + conv_val = ensure_decoded(conv_val) + conv_val = Timestamp(conv_val).as_unit("ns") + if conv_val.tz is not None: + conv_val = conv_val.tz_convert("UTC") + return TermValue(conv_val, conv_val._value, kind) elif kind in ("timedelta64", "timedelta"): - if isinstance(v, str): - v = Timedelta(v) + if isinstance(conv_val, str): + conv_val = Timedelta(conv_val) else: - v = Timedelta(v, unit="s") - v = v.as_unit("ns")._value - return TermValue(int(v), v, kind) + conv_val = Timedelta(conv_val, unit="s") + conv_val = conv_val.as_unit("ns")._value + return TermValue(int(conv_val), conv_val, kind) elif meta == "category": metadata = extract_array(self.metadata, extract_numpy=True) result: npt.NDArray[np.intp] | np.intp | int - if v not in metadata: + if conv_val not in metadata: result = -1 else: - result = metadata.searchsorted(v, side="left") + result = metadata.searchsorted(conv_val, side="left") return TermValue(result, result, "integer") elif kind == "integer": try: - v_dec = Decimal(v) + v_dec = Decimal(conv_val) except InvalidOperation: # GH 54186 # convert v to float to raise float's ValueError - float(v) + float(conv_val) else: - v = int(v_dec.to_integral_exact(rounding="ROUND_HALF_EVEN")) - return TermValue(v, v, kind) + conv_val = int(v_dec.to_integral_exact(rounding="ROUND_HALF_EVEN")) + return TermValue(conv_val, conv_val, kind) elif kind == "float": - v = float(v) - return TermValue(v, v, kind) + conv_val = float(conv_val) + return TermValue(conv_val, conv_val, kind) elif kind == "bool": - if isinstance(v, str): - v = v.strip().lower() not in [ + if isinstance(conv_val, str): + conv_val = conv_val.strip().lower() not in [ "false", "f", "no", @@ -268,13 +268,15 @@ def stringify(value): "", ] else: - v = bool(v) - return TermValue(v, v, kind) - elif isinstance(v, str): + conv_val = bool(conv_val) + return TermValue(conv_val, conv_val, kind) + elif isinstance(conv_val, str): # string quoting - return TermValue(v, stringify(v), "string") + return TermValue(conv_val, stringify(conv_val), "string") else: - raise TypeError(f"Cannot compare {v} of type {type(v)} to {kind} column") + raise TypeError( + f"Cannot compare {conv_val} of type {type(conv_val)} to {kind} column" + ) def convert_values(self) -> None: pass diff --git a/pandas/core/resample.py b/pandas/core/resample.py index fdfb9f21bdb9f8..0d1541bbb3afaa 100644 --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -694,7 +694,7 @@ def bfill(self, limit: int | None = None): References ---------- - .. [1] https://en.wikipedia.org/wiki/Imputation_(statistics) + .. [1] https://en.wikipedia.org/wiki/Imputation_%28statistics%29 Examples -------- diff --git a/pandas/core/strings/accessor.py b/pandas/core/strings/accessor.py index 05e1a36877e067..c68b6303661b93 100644 --- a/pandas/core/strings/accessor.py +++ b/pandas/core/strings/accessor.py @@ -1374,6 +1374,11 @@ def match(self, pat: str, case: bool = True, flags: int = 0, na=lib.no_default): """ Determine if each string starts with a match of a regular expression. + Determines whether each string in the Series or Index starts with a + match to a specified regular expression. This function is especially + useful for validating prefixes, such as ensuring that codes, tags, or + identifiers begin with a specific pattern. + Parameters ---------- pat : str @@ -1419,6 +1424,11 @@ def fullmatch(self, pat, case: bool = True, flags: int = 0, na=lib.no_default): """ Determine if each string entirely matches a regular expression. + Checks if each string in the Series or Index fully matches the + specified regular expression pattern. This function is useful when the + requirement is for an entire string to conform to a pattern, such as + validating formats like phone numbers or email addresses. + Parameters ---------- pat : str @@ -1647,6 +1657,10 @@ def repeat(self, repeats): """ Duplicate each string in the Series or Index. + Duplicates each string in the Series or Index, either by applying the + same repeat count to all elements or by using different repeat values + for each element. + Parameters ---------- repeats : int or sequence of int @@ -1710,6 +1724,12 @@ def pad( """ Pad strings in the Series/Index up to width. + This function pads strings in a Series or Index to a specified width, + filling the extra space with a character of your choice. It provides + flexibility in positioning the padding, allowing it to be added to the + left, right, or both sides. This is useful for formatting strings to + align text or ensure consistent string lengths in data processing. + Parameters ---------- width : int @@ -1920,6 +1940,11 @@ def slice(self, start=None, stop=None, step=None): """ Slice substrings from each element in the Series or Index. + Slicing substrings from strings in a Series or Index helps extract + specific portions of data, making it easier to analyze or manipulate + text. This is useful for tasks like parsing structured text fields or + isolating parts of strings with a consistent format. + Parameters ---------- start : int, optional @@ -1996,6 +2021,11 @@ def slice_replace(self, start=None, stop=None, repl=None): """ Replace a positional slice of a string with another value. + This function allows replacing specific parts of a string in a Series + or Index by specifying start and stop positions. It is useful for + modifying substrings in a controlled way, such as updating sections of + text based on their positions or patterns. + Parameters ---------- start : int, optional diff --git a/pandas/core/tools/datetimes.py b/pandas/core/tools/datetimes.py index 4680a63bf57a15..30487de7bafd5d 100644 --- a/pandas/core/tools/datetimes.py +++ b/pandas/core/tools/datetimes.py @@ -44,6 +44,7 @@ from pandas.core.dtypes.common import ( ensure_object, is_float, + is_float_dtype, is_integer, is_integer_dtype, is_list_like, @@ -1153,6 +1154,10 @@ def coerce(values): # we allow coercion to if errors allows values = to_numeric(values, errors=errors) + # prevent prevision issues in case of float32 # GH#60506 + if is_float_dtype(values.dtype): + values = values.astype("float64") + # prevent overflow in case of int8 or int16 if is_integer_dtype(values.dtype): values = values.astype("int64") diff --git a/pandas/core/window/ewm.py b/pandas/core/window/ewm.py index 43a3c03b6cef98..73e4de6ea6208b 100644 --- a/pandas/core/window/ewm.py +++ b/pandas/core/window/ewm.py @@ -490,7 +490,7 @@ def online( klass="Series/Dataframe", axis="", ) - def aggregate(self, func, *args, **kwargs): + def aggregate(self, func=None, *args, **kwargs): return super().aggregate(func, *args, **kwargs) agg = aggregate @@ -981,7 +981,7 @@ def reset(self) -> None: """ self._mean.reset() - def aggregate(self, func, *args, **kwargs): + def aggregate(self, func=None, *args, **kwargs): raise NotImplementedError("aggregate is not implemented.") def std(self, bias: bool = False, *args, **kwargs): diff --git a/pandas/core/window/expanding.py b/pandas/core/window/expanding.py index 4bf77b3d38689c..bff3a1660eba9d 100644 --- a/pandas/core/window/expanding.py +++ b/pandas/core/window/expanding.py @@ -167,7 +167,7 @@ def _get_window_indexer(self) -> BaseIndexer: klass="Series/Dataframe", axis="", ) - def aggregate(self, func, *args, **kwargs): + def aggregate(self, func=None, *args, **kwargs): return super().aggregate(func, *args, **kwargs) agg = aggregate diff --git a/pandas/core/window/rolling.py b/pandas/core/window/rolling.py index 4446b219760699..385ffb901acf00 100644 --- a/pandas/core/window/rolling.py +++ b/pandas/core/window/rolling.py @@ -44,7 +44,10 @@ from pandas.core._numba import executor from pandas.core.algorithms import factorize -from pandas.core.apply import ResamplerWindowApply +from pandas.core.apply import ( + ResamplerWindowApply, + reconstruct_func, +) from pandas.core.arrays import ExtensionArray from pandas.core.base import SelectionMixin import pandas.core.common as com @@ -646,8 +649,12 @@ def _numba_apply( out = obj._constructor(result, index=index, columns=columns) return self._resolve_output(out, obj) - def aggregate(self, func, *args, **kwargs): + def aggregate(self, func=None, *args, **kwargs): + relabeling, func, columns, order = reconstruct_func(func, **kwargs) result = ResamplerWindowApply(self, func, args=args, kwargs=kwargs).agg() + if isinstance(result, ABCDataFrame) and relabeling: + result = result.iloc[:, order] + result.columns = columns # type: ignore[union-attr] if result is None: return self.apply(func, raw=False, args=args, kwargs=kwargs) return result @@ -1239,7 +1246,7 @@ def calc(x): klass="Series/DataFrame", axis="", ) - def aggregate(self, func, *args, **kwargs): + def aggregate(self, func=None, *args, **kwargs): result = ResamplerWindowApply(self, func, args=args, kwargs=kwargs).agg() if result is None: # these must apply directly @@ -1951,7 +1958,7 @@ def _raise_monotonic_error(self, msg: str): klass="Series/Dataframe", axis="", ) - def aggregate(self, func, *args, **kwargs): + def aggregate(self, func=None, *args, **kwargs): return super().aggregate(func, *args, **kwargs) agg = aggregate diff --git a/pandas/errors/__init__.py b/pandas/errors/__init__.py index 1de6f06ef316c5..cd31ec30522c36 100644 --- a/pandas/errors/__init__.py +++ b/pandas/errors/__init__.py @@ -45,6 +45,11 @@ class NullFrequencyError(ValueError): Particularly ``DatetimeIndex.shift``, ``TimedeltaIndex.shift``, ``PeriodIndex.shift``. + See Also + -------- + Index.shift : Shift values of Index. + Series.shift : Shift values of Series. + Examples -------- >>> df = pd.DatetimeIndex(["2011-01-01 10:00", "2011-01-01"], freq=None) @@ -58,6 +63,12 @@ class PerformanceWarning(Warning): """ Warning raised when there is a possible performance impact. + See Also + -------- + DataFrame.set_index : Set the DataFrame index using existing columns. + DataFrame.loc : Access a group of rows and columns by label(s) \ + or a boolean array. + Examples -------- >>> df = pd.DataFrame( @@ -385,6 +396,13 @@ class NumbaUtilError(Exception): """ Error raised for unsupported Numba engine routines. + See Also + -------- + DataFrame.groupby : Group DataFrame using a mapper or by a Series of columns. + Series.groupby : Group Series using a mapper or by a Series of columns. + DataFrame.agg : Aggregate using one or more operations over the specified axis. + Series.agg : Aggregate using one or more operations over the specified axis. + Examples -------- >>> df = pd.DataFrame( diff --git a/pandas/io/sql.py b/pandas/io/sql.py index c885f1c767d960..818d24965dbe26 100644 --- a/pandas/io/sql.py +++ b/pandas/io/sql.py @@ -241,7 +241,7 @@ def read_sql_table( # pyright: ignore[reportOverlappingOverload] schema=..., index_col: str | list[str] | None = ..., coerce_float=..., - parse_dates: list[str] | dict[str, str] | None = ..., + parse_dates: list[str] | dict[str, str] | dict[str, dict[str, Any]] | None = ..., columns: list[str] | None = ..., chunksize: None = ..., dtype_backend: DtypeBackend | lib.NoDefault = ..., @@ -255,7 +255,7 @@ def read_sql_table( schema=..., index_col: str | list[str] | None = ..., coerce_float=..., - parse_dates: list[str] | dict[str, str] | None = ..., + parse_dates: list[str] | dict[str, str] | dict[str, dict[str, Any]] | None = ..., columns: list[str] | None = ..., chunksize: int = ..., dtype_backend: DtypeBackend | lib.NoDefault = ..., @@ -268,7 +268,7 @@ def read_sql_table( schema: str | None = None, index_col: str | list[str] | None = None, coerce_float: bool = True, - parse_dates: list[str] | dict[str, str] | None = None, + parse_dates: list[str] | dict[str, str] | dict[str, dict[str, Any]] | None = None, columns: list[str] | None = None, chunksize: int | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, @@ -372,7 +372,7 @@ def read_sql_query( # pyright: ignore[reportOverlappingOverload] index_col: str | list[str] | None = ..., coerce_float=..., params: list[Any] | Mapping[str, Any] | None = ..., - parse_dates: list[str] | dict[str, str] | None = ..., + parse_dates: list[str] | dict[str, str] | dict[str, dict[str, Any]] | None = ..., chunksize: None = ..., dtype: DtypeArg | None = ..., dtype_backend: DtypeBackend | lib.NoDefault = ..., @@ -386,7 +386,7 @@ def read_sql_query( index_col: str | list[str] | None = ..., coerce_float=..., params: list[Any] | Mapping[str, Any] | None = ..., - parse_dates: list[str] | dict[str, str] | None = ..., + parse_dates: list[str] | dict[str, str] | dict[str, dict[str, Any]] | None = ..., chunksize: int = ..., dtype: DtypeArg | None = ..., dtype_backend: DtypeBackend | lib.NoDefault = ..., @@ -399,7 +399,7 @@ def read_sql_query( index_col: str | list[str] | None = None, coerce_float: bool = True, params: list[Any] | Mapping[str, Any] | None = None, - parse_dates: list[str] | dict[str, str] | None = None, + parse_dates: list[str] | dict[str, str] | dict[str, dict[str, Any]] | None = None, chunksize: int | None = None, dtype: DtypeArg | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, diff --git a/pandas/plotting/_core.py b/pandas/plotting/_core.py index fbf9009cedc400..aee872f9ae50a3 100644 --- a/pandas/plotting/_core.py +++ b/pandas/plotting/_core.py @@ -570,18 +570,23 @@ def boxplot_frame_groupby( Parameters ---------- - grouped : Grouped DataFrame + grouped : DataFrameGroupBy + The grouped DataFrame object over which to create the box plots. subplots : bool * ``False`` - no subplots will be used * ``True`` - create a subplot for each group. - column : column name or list of names, or vector Can be any valid input to groupby. fontsize : float or str - rot : label rotation angle - grid : Setting this to True will show the grid + Font size for the labels. + rot : float + Rotation angle of labels (in degrees) on the x-axis. + grid : bool + Whether to show grid lines on the plot. ax : Matplotlib axis object, default None - figsize : A tuple (width, height) in inches + The axes on which to draw the plots. If None, uses the current axes. + figsize : tuple of (float, float) + The figure size in inches (width, height). layout : tuple (optional) The layout of the plot: (rows, columns). sharex : bool, default False @@ -599,8 +604,15 @@ def boxplot_frame_groupby( Returns ------- - dict of key/value = group key/DataFrame.boxplot return value - or DataFrame.boxplot return value in case subplots=figures=False + dict or DataFrame.boxplot return value + If ``subplots=True``, returns a dictionary of group keys to the boxplot + return values. If ``subplots=False``, returns the boxplot return value + of a single DataFrame. + + See Also + -------- + DataFrame.boxplot : Create a box plot from a DataFrame. + Series.plot : Plot a Series. Examples -------- diff --git a/pandas/tests/extension/test_arrow.py b/pandas/tests/extension/test_arrow.py index c6ac6368f2770d..6dd1f3f15bc15e 100644 --- a/pandas/tests/extension/test_arrow.py +++ b/pandas/tests/extension/test_arrow.py @@ -1647,7 +1647,7 @@ def test_from_arrow_respecting_given_dtype(): def test_from_arrow_respecting_given_dtype_unsafe(): array = pa.array([1.5, 2.5], type=pa.float64()) - with pytest.raises(pa.ArrowInvalid, match="Float value 1.5 was truncated"): + with tm.external_error_raised(pa.ArrowInvalid): array.to_pandas(types_mapper={pa.float64(): ArrowDtype(pa.int64())}.get) diff --git a/pandas/tests/extension/test_interval.py b/pandas/tests/extension/test_interval.py index ec979ac6d22dc7..011bf0b2016b2e 100644 --- a/pandas/tests/extension/test_interval.py +++ b/pandas/tests/extension/test_interval.py @@ -101,6 +101,31 @@ def test_fillna_limit_series(self, data_missing): def test_fillna_length_mismatch(self, data_missing): super().test_fillna_length_mismatch(data_missing) + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) + def test_hash_pandas_object(self, data): + super().test_hash_pandas_object(data) + + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) + def test_hash_pandas_object_works(self, data, as_frame): + super().test_hash_pandas_object_works(data, as_frame) + + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) + @pytest.mark.parametrize("engine", ["c", "python"]) + def test_EA_types(self, engine, data, request): + super().test_EA_types(engine, data, request) + + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) + def test_astype_str(self, data): + super().test_astype_str(data) + # TODO: either belongs in tests.arrays.interval or move into base tests. def test_fillna_non_scalar_raises(data_missing): diff --git a/pandas/tests/frame/methods/test_to_numpy.py b/pandas/tests/frame/methods/test_to_numpy.py index d38bc06260a0ed..36088cceb13f18 100644 --- a/pandas/tests/frame/methods/test_to_numpy.py +++ b/pandas/tests/frame/methods/test_to_numpy.py @@ -1,4 +1,5 @@ import numpy as np +import pytest from pandas import ( DataFrame, @@ -31,6 +32,9 @@ def test_to_numpy_copy(self): # and that can be respected because we are already numpy-float assert df.to_numpy(copy=False).base is df.values.base + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) def test_to_numpy_mixed_dtype_to_str(self): # https://github.com/pandas-dev/pandas/issues/35455 df = DataFrame([[Timestamp("2020-01-01 00:00:00"), 100.0]]) diff --git a/pandas/tests/frame/test_constructors.py b/pandas/tests/frame/test_constructors.py index 3d8213cb3d11af..9b6080603f0c94 100644 --- a/pandas/tests/frame/test_constructors.py +++ b/pandas/tests/frame/test_constructors.py @@ -2404,6 +2404,9 @@ def test_construct_with_two_categoricalindex_series(self): ) tm.assert_frame_equal(result, expected) + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) def test_constructor_series_nonexact_categoricalindex(self): # GH 42424 ser = Series(range(100)) diff --git a/pandas/tests/groupby/__init__.py b/pandas/tests/groupby/__init__.py index 446d9da4377712..79046cd7ed4151 100644 --- a/pandas/tests/groupby/__init__.py +++ b/pandas/tests/groupby/__init__.py @@ -2,7 +2,7 @@ def get_groupby_method_args(name, obj): """ Get required arguments for a groupby method. - When parametrizing a test over groupby methods (e.g. "sum", "mean", "fillna"), + When parametrizing a test over groupby methods (e.g. "sum", "mean"), it is often the case that arguments are required for certain methods. Parameters @@ -16,7 +16,7 @@ def get_groupby_method_args(name, obj): ------- A tuple of required arguments for the method. """ - if name in ("nth", "fillna", "take"): + if name in ("nth", "take"): return (0,) if name == "quantile": return (0.5,) diff --git a/pandas/tests/groupby/test_categorical.py b/pandas/tests/groupby/test_categorical.py index 6d84dae1d25d84..fffaee40a7d5c3 100644 --- a/pandas/tests/groupby/test_categorical.py +++ b/pandas/tests/groupby/test_categorical.py @@ -1963,10 +1963,7 @@ def test_category_order_transformer( df = df.set_index(keys) args = get_groupby_method_args(transformation_func, df) gb = df.groupby(keys, as_index=as_index, sort=sort, observed=observed) - warn = FutureWarning if transformation_func == "fillna" else None - msg = "DataFrameGroupBy.fillna is deprecated" - with tm.assert_produces_warning(warn, match=msg): - op_result = getattr(gb, transformation_func)(*args) + op_result = getattr(gb, transformation_func)(*args) result = op_result.index.get_level_values("a").categories expected = Index([1, 4, 3, 2]) tm.assert_index_equal(result, expected) diff --git a/pandas/tests/groupby/test_groupby.py b/pandas/tests/groupby/test_groupby.py index 702bbfef2be3bf..e6c7eede1a4012 100644 --- a/pandas/tests/groupby/test_groupby.py +++ b/pandas/tests/groupby/test_groupby.py @@ -2098,36 +2098,14 @@ def test_group_on_empty_multiindex(transformation_func, request): df["col_3"] = df["col_3"].astype(int) df["col_4"] = df["col_4"].astype(int) df = df.set_index(["col_1", "col_2"]) - if transformation_func == "fillna": - args = ("ffill",) - else: - args = () - warn = FutureWarning if transformation_func == "fillna" else None - warn_msg = "DataFrameGroupBy.fillna is deprecated" - with tm.assert_produces_warning(warn, match=warn_msg): - result = df.iloc[:0].groupby(["col_1"]).transform(transformation_func, *args) - with tm.assert_produces_warning(warn, match=warn_msg): - expected = df.groupby(["col_1"]).transform(transformation_func, *args).iloc[:0] + result = df.iloc[:0].groupby(["col_1"]).transform(transformation_func) + expected = df.groupby(["col_1"]).transform(transformation_func).iloc[:0] if transformation_func in ("diff", "shift"): expected = expected.astype(int) tm.assert_equal(result, expected) - warn_msg = "SeriesGroupBy.fillna is deprecated" - with tm.assert_produces_warning(warn, match=warn_msg): - result = ( - df["col_3"] - .iloc[:0] - .groupby(["col_1"]) - .transform(transformation_func, *args) - ) - warn_msg = "SeriesGroupBy.fillna is deprecated" - with tm.assert_produces_warning(warn, match=warn_msg): - expected = ( - df["col_3"] - .groupby(["col_1"]) - .transform(transformation_func, *args) - .iloc[:0] - ) + result = df["col_3"].iloc[:0].groupby(["col_1"]).transform(transformation_func) + expected = df["col_3"].groupby(["col_1"]).transform(transformation_func).iloc[:0] if transformation_func in ("diff", "shift"): expected = expected.astype(int) tm.assert_equal(result, expected) diff --git a/pandas/tests/groupby/test_groupby_subclass.py b/pandas/tests/groupby/test_groupby_subclass.py index a1f4627475baba..c81e7ecb1446d4 100644 --- a/pandas/tests/groupby/test_groupby_subclass.py +++ b/pandas/tests/groupby/test_groupby_subclass.py @@ -36,11 +36,11 @@ def test_groupby_preserves_subclass(obj, groupby_func): args = get_groupby_method_args(groupby_func, obj) - warn = FutureWarning if groupby_func == "fillna" else None - msg = f"{type(grouped).__name__}.fillna is deprecated" - with tm.assert_produces_warning(warn, match=msg, raise_on_extra_warnings=False): + warn = FutureWarning if groupby_func == "corrwith" else None + msg = f"{type(grouped).__name__}.corrwith is deprecated" + with tm.assert_produces_warning(warn, match=msg): result1 = getattr(grouped, groupby_func)(*args) - with tm.assert_produces_warning(warn, match=msg, raise_on_extra_warnings=False): + with tm.assert_produces_warning(warn, match=msg): result2 = grouped.agg(groupby_func, *args) # Reduction or transformation kernels should preserve type diff --git a/pandas/tests/groupby/test_numeric_only.py b/pandas/tests/groupby/test_numeric_only.py index cb4569812f600f..0779faa8d89758 100644 --- a/pandas/tests/groupby/test_numeric_only.py +++ b/pandas/tests/groupby/test_numeric_only.py @@ -278,14 +278,11 @@ def test_numeric_only(kernel, has_arg, numeric_only, keys): kernel in ("first", "last") or ( # kernels that work on any dtype and don't have numeric_only arg - kernel in ("any", "all", "bfill", "ffill", "fillna", "nth", "nunique") + kernel in ("any", "all", "bfill", "ffill", "nth", "nunique") and numeric_only is lib.no_default ) ): - warn = FutureWarning if kernel == "fillna" else None - msg = "DataFrameGroupBy.fillna is deprecated" - with tm.assert_produces_warning(warn, match=msg): - result = method(*args, **kwargs) + result = method(*args, **kwargs) assert "b" in result.columns elif has_arg: assert numeric_only is not True diff --git a/pandas/tests/groupby/test_raises.py b/pandas/tests/groupby/test_raises.py index 1e0a15d0ba7966..789105c2756250 100644 --- a/pandas/tests/groupby/test_raises.py +++ b/pandas/tests/groupby/test_raises.py @@ -144,7 +144,6 @@ def test_groupby_raises_string( ), "diff": (TypeError, "unsupported operand type"), "ffill": (None, ""), - "fillna": (None, ""), "first": (None, ""), "idxmax": (None, ""), "idxmin": (None, ""), @@ -211,10 +210,7 @@ def test_groupby_raises_string( elif groupby_func == "corrwith": msg = "Cannot perform reduction 'mean' with string dtype" - if groupby_func == "fillna": - kind = "Series" if groupby_series else "DataFrame" - warn_msg = f"{kind}GroupBy.fillna is deprecated" - elif groupby_func == "corrwith": + if groupby_func == "corrwith": warn_msg = "DataFrameGroupBy.corrwith is deprecated" else: warn_msg = "" @@ -301,7 +297,6 @@ def test_groupby_raises_datetime( "cumsum": (TypeError, "datetime64 type does not support operation 'cumsum'"), "diff": (None, ""), "ffill": (None, ""), - "fillna": (None, ""), "first": (None, ""), "idxmax": (None, ""), "idxmin": (None, ""), @@ -333,10 +328,7 @@ def test_groupby_raises_datetime( "var": (TypeError, "datetime64 type does not support operation 'var'"), }[groupby_func] - if groupby_func == "fillna": - kind = "Series" if groupby_series else "DataFrame" - warn_msg = f"{kind}GroupBy.fillna is deprecated" - elif groupby_func == "corrwith": + if groupby_func == "corrwith": warn_msg = "DataFrameGroupBy.corrwith is deprecated" else: warn_msg = "" @@ -457,7 +449,6 @@ def test_groupby_raises_category( r"unsupported operand type\(s\) for -: 'Categorical' and 'Categorical'", ), "ffill": (None, ""), - "fillna": (None, ""), # no-op with CoW "first": (None, ""), "idxmax": (None, ""), "idxmin": (None, ""), @@ -532,10 +523,7 @@ def test_groupby_raises_category( ), }[groupby_func] - if groupby_func == "fillna": - kind = "Series" if groupby_series else "DataFrame" - warn_msg = f"{kind}GroupBy.fillna is deprecated" - elif groupby_func == "corrwith": + if groupby_func == "corrwith": warn_msg = "DataFrameGroupBy.corrwith is deprecated" else: warn_msg = "" @@ -650,7 +638,6 @@ def test_groupby_raises_category_on_category( ), "diff": (TypeError, "unsupported operand type"), "ffill": (None, ""), - "fillna": (None, ""), # no-op with CoW "first": (None, ""), "idxmax": (ValueError, "empty group due to unobserved categories") if empty_groups @@ -710,10 +697,7 @@ def test_groupby_raises_category_on_category( ), }[groupby_func] - if groupby_func == "fillna": - kind = "Series" if groupby_series else "DataFrame" - warn_msg = f"{kind}GroupBy.fillna is deprecated" - elif groupby_func == "corrwith": + if groupby_func == "corrwith": warn_msg = "DataFrameGroupBy.corrwith is deprecated" else: warn_msg = "" diff --git a/pandas/tests/groupby/transform/test_transform.py b/pandas/tests/groupby/transform/test_transform.py index 022d3d51ded4e2..f506126f9cf6f8 100644 --- a/pandas/tests/groupby/transform/test_transform.py +++ b/pandas/tests/groupby/transform/test_transform.py @@ -329,9 +329,6 @@ def test_transform_transformation_func(transformation_func): if transformation_func == "cumcount": test_op = lambda x: x.transform("cumcount") mock_op = lambda x: Series(range(len(x)), x.index) - elif transformation_func == "fillna": - test_op = lambda x: x.transform("fillna", value=0) - mock_op = lambda x: x.fillna(value=0) elif transformation_func == "ngroup": test_op = lambda x: x.transform("ngroup") counter = -1 @@ -1436,11 +1433,7 @@ def test_null_group_str_transformer_series(dropna, transformation_func): dtype = object if transformation_func in ("any", "all") else None buffer.append(Series([np.nan], index=[3], dtype=dtype)) expected = concat(buffer) - - warn = FutureWarning if transformation_func == "fillna" else None - msg = "SeriesGroupBy.fillna is deprecated" - with tm.assert_produces_warning(warn, match=msg): - result = gb.transform(transformation_func, *args) + result = gb.transform(transformation_func, *args) tm.assert_equal(result, expected) diff --git a/pandas/tests/indexes/interval/test_astype.py b/pandas/tests/indexes/interval/test_astype.py index 59c555b9644a12..dde5f38074efb0 100644 --- a/pandas/tests/indexes/interval/test_astype.py +++ b/pandas/tests/indexes/interval/test_astype.py @@ -186,6 +186,12 @@ def test_subtype_datetimelike(self, index, subtype): with pytest.raises(TypeError, match=msg): index.astype(dtype) + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) + def test_astype_category(self, index): + super().test_astype_category(index) + class TestDatetimelikeSubtype(AstypeTests): """Tests specific to IntervalIndex with datetime-like subtype""" diff --git a/pandas/tests/indexes/interval/test_formats.py b/pandas/tests/indexes/interval/test_formats.py index f858ae137ca4e6..73bbfc91028b3a 100644 --- a/pandas/tests/indexes/interval/test_formats.py +++ b/pandas/tests/indexes/interval/test_formats.py @@ -59,6 +59,9 @@ def test_repr_floats(self): expected = "(329.973, 345.137] 1\n(345.137, 360.191] 2\ndtype: int64" assert result == expected + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) @pytest.mark.parametrize( "tuples, closed, expected_data", [ diff --git a/pandas/tests/indexes/interval/test_indexing.py b/pandas/tests/indexes/interval/test_indexing.py index 787461b944bd03..5783a16e81d37f 100644 --- a/pandas/tests/indexes/interval/test_indexing.py +++ b/pandas/tests/indexes/interval/test_indexing.py @@ -340,6 +340,9 @@ def test_get_indexer_categorical(self, target, ordered): expected = index.get_indexer(target) tm.assert_numpy_array_equal(result, expected) + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) def test_get_indexer_categorical_with_nans(self): # GH#41934 nans in both index and in target ii = IntervalIndex.from_breaks(range(5)) diff --git a/pandas/tests/indexes/test_setops.py b/pandas/tests/indexes/test_setops.py index 5f934ca3e6e831..58b69d79c65ce7 100644 --- a/pandas/tests/indexes/test_setops.py +++ b/pandas/tests/indexes/test_setops.py @@ -525,6 +525,7 @@ def test_intersection_difference_match_empty(self, index, sort): tm.assert_index_equal(inter, diff, exact=True) +@pytest.mark.filterwarnings("ignore:invalid value encountered in cast:RuntimeWarning") @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning") @pytest.mark.parametrize( "method", ["intersection", "union", "difference", "symmetric_difference"] diff --git a/pandas/tests/io/excel/test_writers.py b/pandas/tests/io/excel/test_writers.py index 18948de72200a5..ced4feb9e7eb96 100644 --- a/pandas/tests/io/excel/test_writers.py +++ b/pandas/tests/io/excel/test_writers.py @@ -800,6 +800,9 @@ def test_excel_date_datetime_format(self, ext, tmp_excel, tmp_path): # we need to use df_expected to check the result. tm.assert_frame_equal(rs2, df_expected) + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in cast:RuntimeWarning" + ) def test_to_excel_interval_no_labels(self, tmp_excel, using_infer_string): # see gh-19242 # diff --git a/pandas/tests/reshape/test_cut.py b/pandas/tests/reshape/test_cut.py index d8bb4fba1e1fec..63332fe4658e57 100644 --- a/pandas/tests/reshape/test_cut.py +++ b/pandas/tests/reshape/test_cut.py @@ -733,6 +733,7 @@ def test_cut_with_duplicated_index_lowest_included(): tm.assert_series_equal(result, expected) +@pytest.mark.filterwarnings("ignore:invalid value encountered in cast:RuntimeWarning") def test_cut_with_nonexact_categorical_indices(): # GH 42424 diff --git a/pandas/tests/series/accessors/test_list_accessor.py b/pandas/tests/series/accessors/test_list_accessor.py index c153e800cb534f..bec8ca13a2f5f7 100644 --- a/pandas/tests/series/accessors/test_list_accessor.py +++ b/pandas/tests/series/accessors/test_list_accessor.py @@ -25,9 +25,10 @@ def test_list_getitem(list_dtype): ser = Series( [[1, 2, 3], [4, None, 5], None], dtype=ArrowDtype(list_dtype), + name="a", ) actual = ser.list[1] - expected = Series([2, None, None], dtype="int64[pyarrow]") + expected = Series([2, None, None], dtype="int64[pyarrow]", name="a") tm.assert_series_equal(actual, expected) @@ -37,9 +38,15 @@ def test_list_getitem_index(): [[1, 2, 3], [4, None, 5], None], dtype=ArrowDtype(pa.list_(pa.int64())), index=[1, 3, 7], + name="a", ) actual = ser.list[1] - expected = Series([2, None, None], dtype="int64[pyarrow]", index=[1, 3, 7]) + expected = Series( + [2, None, None], + dtype="int64[pyarrow]", + index=[1, 3, 7], + name="a", + ) tm.assert_series_equal(actual, expected) @@ -48,6 +55,7 @@ def test_list_getitem_slice(): [[1, 2, 3], [4, None, 5], None], dtype=ArrowDtype(pa.list_(pa.int64())), index=[1, 3, 7], + name="a", ) if pa_version_under11p0: with pytest.raises( @@ -60,6 +68,7 @@ def test_list_getitem_slice(): [[2, 3], [None, 5], None], dtype=ArrowDtype(pa.list_(pa.int64())), index=[1, 3, 7], + name="a", ) tm.assert_series_equal(actual, expected) @@ -68,9 +77,10 @@ def test_list_len(): ser = Series( [[1, 2, 3], [4, None], None], dtype=ArrowDtype(pa.list_(pa.int64())), + name="a", ) actual = ser.list.len() - expected = Series([3, 2, None], dtype=ArrowDtype(pa.int32())) + expected = Series([3, 2, None], dtype=ArrowDtype(pa.int32()), name="a") tm.assert_series_equal(actual, expected) @@ -78,12 +88,14 @@ def test_list_flatten(): ser = Series( [[1, 2, 3], None, [4, None], [], [7, 8]], dtype=ArrowDtype(pa.list_(pa.int64())), + name="a", ) actual = ser.list.flatten() expected = Series( [1, 2, 3, 4, None, 7, 8], dtype=ArrowDtype(pa.int64()), index=[0, 0, 0, 2, 2, 4, 4], + name="a", ) tm.assert_series_equal(actual, expected) diff --git a/pandas/tests/tools/test_to_datetime.py b/pandas/tests/tools/test_to_datetime.py index b73839f406a295..74b051aec71a4e 100644 --- a/pandas/tests/tools/test_to_datetime.py +++ b/pandas/tests/tools/test_to_datetime.py @@ -2084,6 +2084,18 @@ def test_dataframe_str_dtype(self, df, cache): ) tm.assert_series_equal(result, expected) + def test_dataframe_float32_dtype(self, df, cache): + # GH#60506 + # coerce to float64 + result = to_datetime(df.astype(np.float32), cache=cache) + expected = Series( + [ + Timestamp("20150204 06:58:10.001002003"), + Timestamp("20160305 07:59:11.001002003"), + ] + ) + tm.assert_series_equal(result, expected) + def test_dataframe_coerce(self, cache): # passing coerce df2 = DataFrame({"year": [2015, 2016], "month": [2, 20], "day": [4, 5]}) diff --git a/pandas/tests/window/test_groupby.py b/pandas/tests/window/test_groupby.py index 4d37c6d57f7881..f8e804bf434e9c 100644 --- a/pandas/tests/window/test_groupby.py +++ b/pandas/tests/window/test_groupby.py @@ -6,6 +6,7 @@ DatetimeIndex, Index, MultiIndex, + NamedAgg, Series, Timestamp, date_range, @@ -489,6 +490,36 @@ def test_groupby_rolling_subset_with_closed(self): ) tm.assert_series_equal(result, expected) + def test_groupby_rolling_agg_namedagg(self): + # GH#28333 + df = DataFrame( + { + "kind": ["cat", "dog", "cat", "dog", "cat", "dog"], + "height": [9.1, 6.0, 9.5, 34.0, 12.0, 8.0], + "weight": [7.9, 7.5, 9.9, 198.0, 10.0, 42.0], + } + ) + result = ( + df.groupby("kind") + .rolling(2) + .agg( + total_weight=NamedAgg(column="weight", aggfunc=sum), + min_height=NamedAgg(column="height", aggfunc=min), + ) + ) + expected = DataFrame( + { + "total_weight": [np.nan, 17.8, 19.9, np.nan, 205.5, 240.0], + "min_height": [np.nan, 9.1, 9.5, np.nan, 6.0, 8.0], + }, + index=MultiIndex( + [["cat", "dog"], [0, 1, 2, 3, 4, 5]], + [[0, 0, 0, 1, 1, 1], [0, 2, 4, 1, 3, 5]], + names=["kind", None], + ), + ) + tm.assert_frame_equal(result, expected) + def test_groupby_subset_rolling_subset_with_closed(self): # GH 35549 df = DataFrame( @@ -1134,6 +1165,36 @@ def test_expanding_apply(self, raw, frame): expected.index = expected_index tm.assert_frame_equal(result, expected) + def test_groupby_expanding_agg_namedagg(self): + # GH#28333 + df = DataFrame( + { + "kind": ["cat", "dog", "cat", "dog", "cat", "dog"], + "height": [9.1, 6.0, 9.5, 34.0, 12.0, 8.0], + "weight": [7.9, 7.5, 9.9, 198.0, 10.0, 42.0], + } + ) + result = ( + df.groupby("kind") + .expanding(1) + .agg( + total_weight=NamedAgg(column="weight", aggfunc=sum), + min_height=NamedAgg(column="height", aggfunc=min), + ) + ) + expected = DataFrame( + { + "total_weight": [7.9, 17.8, 27.8, 7.5, 205.5, 247.5], + "min_height": [9.1, 9.1, 9.1, 6.0, 6.0, 6.0], + }, + index=MultiIndex( + [["cat", "dog"], [0, 1, 2, 3, 4, 5]], + [[0, 0, 0, 1, 1, 1], [0, 2, 4, 1, 3, 5]], + names=["kind", None], + ), + ) + tm.assert_frame_equal(result, expected) + class TestEWM: @pytest.mark.parametrize( @@ -1162,6 +1223,41 @@ def test_methods(self, method, expected_data): ) tm.assert_frame_equal(result, expected) + def test_groupby_ewm_agg_namedagg(self): + # GH#28333 + df = DataFrame({"A": ["a"] * 4, "B": range(4)}) + result = ( + df.groupby("A") + .ewm(com=1.0) + .agg( + B_mean=NamedAgg(column="B", aggfunc="mean"), + B_std=NamedAgg(column="B", aggfunc="std"), + B_var=NamedAgg(column="B", aggfunc="var"), + ) + ) + expected = DataFrame( + { + "B_mean": [ + 0.0, + 0.6666666666666666, + 1.4285714285714286, + 2.2666666666666666, + ], + "B_std": [np.nan, 0.707107, 0.963624, 1.177164], + "B_var": [np.nan, 0.5, 0.9285714285714286, 1.3857142857142857], + }, + index=MultiIndex.from_tuples( + [ + ("a", 0), + ("a", 1), + ("a", 2), + ("a", 3), + ], + names=["A", None], + ), + ) + tm.assert_frame_equal(result, expected) + @pytest.mark.parametrize( "method, expected_data", [["corr", [np.nan, 1.0, 1.0, 1]], ["cov", [np.nan, 0.5, 0.928571, 1.385714]]],