diff --git a/R/graph_wrappers.R b/R/graph_wrappers.R index 787ad9f..46754cd 100644 --- a/R/graph_wrappers.R +++ b/R/graph_wrappers.R @@ -580,6 +580,13 @@ setMethod( match(bcs_use2, visium_row_col$barcode), c("col", "row") ] + if (is.na(coords_use) |> any()) { + # use "array_" cols from colData + coords_use <- + colData(x)[, grep("array_", names(colData(x)))] |> + as.data.frame() |> suppressWarnings() + colnames(coords_use) <- gsub("array_", "", colnames(coords_use)) + } # So adjacent spots are equidistant coords_use$row <- coords_use$row * sqrt(3) g <- dnearneigh(as.matrix(coords_use), diff --git a/R/read.R b/R/read.R index 05c0bdb..54055b1 100644 --- a/R/read.R +++ b/R/read.R @@ -10,6 +10,9 @@ #' @inheritParams SpatialExperiment::read10xVisium #' @inheritParams findVisiumGraph #' @inheritParams SpatialFeatureExperiment +#' @param bin_size \code{c(character)}, use this only when loading VisiumHD. +#' Specify which bin resolution to load, default is \code{NULL} which assumes that data is standard Visium. +#' Eg, single resolution is \code{c("8")}, if to load all three resolutions, use \code{c("2", "8", "16")}. #' @param type Either "HDF5", and the matrix will be represented as #' \code{TENxMatrix}, or "sparse", and the matrix will be read as a #' \code{dgCMatrix}. @@ -18,6 +21,8 @@ #' \code{outs} directory under the directory specified in the \code{samples} #' argument, as in Space Ranger output. Change the \code{dirs} argument if you #' have moved or renamed the output directory. +#' @param add_Graph \code{c(local)}, if to add spatial neighborhood graph for spots and only if \code{c(data = "filtered")}. +#' Default is \code{c(TRUE)} #' @param unit Whether to use pixels in full resolution image or microns as the #' unit. If using microns, then spacing between spots in pixels will be used #' to convert the coordinates into microns, as the spacing is known to be 100 @@ -51,6 +56,25 @@ #' type = "sparse", data = "filtered", #' load = FALSE #' )) +#' +#' # load VisiumHD +#' # path to "binned_outputs" directory containing: +#' └── binned_outputs +#' ├── square_002um +#' ├── square_008um +#' └── square_016um +#' dir_hd <- "~/Downloads/Visium_HD_Mouse_Brain/binned_outputs/" +#' # this is public dataset -> https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-libraries-of-mouse-brain-he +#' sfe_hd <- +#' read10xVisiumSFE(samples = list.files(dir_hd), # 1:3 resolutions +#' dirs = dir_hd, +#' bin_size = c("8", "16"), # this defines which of 1:3 resolutions to load +#' type = "HDF5", # Note, "sparse" -> takes longer to load +#' data = "filtered", # spots under tissue +#' images = c("lowres"), # for now low res. image only +#' add_Graph = FALSE # Note, if VisiumHD this can take time for 2 or 8µm res. +#' ) +#' read10xVisiumSFE <- function(samples = "", dirs = file.path(samples, "outs"), sample_id = paste0( @@ -60,30 +84,49 @@ read10xVisiumSFE <- function(samples = "", seq_along(samples) ) ), + bin_size = NULL, type = c("HDF5", "sparse"), data = c("filtered", "raw"), images = c("lowres", "hires"), unit = c("full_res_image_pixel", "micron"), + add_Graph = TRUE, style = "W", zero.policy = NULL, load = FALSE) { type <- match.arg(type) data <- match.arg(data) unit <- match.arg(unit) + images <- match.arg(images, several.ok = TRUE) img_fns <- c( - lowres="tissue_lowres_image.png", - hires="tissue_hires_image.png") + lowres = "tissue_lowres_image.png", + hires = "tissue_hires_image.png") img_fns <- img_fns[images] - + + # supports VisiumHD + if (!is.null(bin_size)) { + # sanity, to make sure it is VisiumHD using file pattern + sanity_passed <- + grep("binned_out|square|um$", c(dirs, list.files(dirs))) |> any() + if (sanity_passed) { + # match sample names with bin_size + samples <- grep(paste0(bin_size, collapse = "|"), samples, value = TRUE) + sample_id <- samples + is_VisiumHD <- TRUE + } + } else { is_VisiumHD <- FALSE } + # Read one sample at a time, in order to get spot diameter one sample at a time - # TODO: need support for VisiumHD ---- sfes <- lapply(seq_along(samples), function(i) { - o <- read10xVisium(dirs[i], sample_id[i], type, data, images, load = FALSE) + o <- .read10xVisium(if (is_VisiumHD) dirs else dirs[i], + sample_id[i], + if (is_VisiumHD) bin_size[i] else "", + type, data, images, load = FALSE) imgData(o) <- NULL - - scalefactors <- fromJSON(file = file.path( - dirs[i], "spatial", - "scalefactors_json.json" - )) + scalefactors <- + fromJSON(file = file.path( + if (is_VisiumHD) dirs else dirs[i], + if (is_VisiumHD) samples[i] else "", + "spatial", "scalefactors_json.json")) + o <- .spe_to_sfe(o, colGeometries = NULL, rowGeometries = NULL, annotGeometries = NULL, spatialCoordsNames = NULL, @@ -92,7 +135,7 @@ read10xVisiumSFE <- function(samples = "", unit = unit ) # Add spatial enrichment if present - fn <- file.path(dirs[i], "spatial", "spatial_enrichment.csv") + fn <- file.path(dirs[i], if (is_VisiumHD) samples[i] else "", "spatial", "spatial_enrichment.csv") if (file.exists(fn)) { enrichment <- read.csv(fn) row_inds <- match(rownames(o), enrichment$Feature.ID) @@ -111,7 +154,8 @@ read10xVisiumSFE <- function(samples = "", rowData(o) <- cbind(rowData(o), enrichment2) } # Add barcode fluorescence intensity if present - fn2 <- file.path(dirs[i], "spatial", "barcode_fluorescence_intensity.csv") + fn2 <- file.path(dirs[i], if (is_VisiumHD) samples[i] else "", + "spatial", "barcode_fluorescence_intensity.csv") if (file.exists(fn2)) { fluo <- read.csv(fn2) row_inds <- match(colnames(o), fluo$barcode) @@ -119,37 +163,56 @@ read10xVisiumSFE <- function(samples = "", fluo$in_tissue <- NULL colData(o) <- cbind(colData(o), fluo[row_inds,]) } - names_use <- paste("tissue", images, "scalef", sep = "_") scale_imgs <- unlist(scalefactors[names_use]) + # Convert to microns and set extent for image if (unit == "micron") { + message(">>> Converting pixels to microns") + # for VisiumHD + if (is_VisiumHD) + scale_fct <- + as.integer(bin_size[i]) / scalefactors$microns_per_pixel + else scale_fct <- .pixel2micron(o) cg <- spotPoly(o) cg$geometry <- cg$geometry * scale_fct spotPoly(o) <- cg # Scale factors for images scale_imgs <- scale_imgs / scale_fct - } else { - scale_imgs <- scalefactors[paste("tissue", images, "scalef", - sep = "_")] - } + } else { + scale_imgs <- scalefactors[names_use] + } + + # add sample id to SFE + spotPoly(o)$sample_id <- sampleIDs(o) + # Set up ImgData - img_fns2 <- file.path(dirs[i], "spatial", img_fns) + img_fns2 <- file.path(if (is_VisiumHD) dirs else dirs[i], + if (is_VisiumHD) samples[i] else "", + "spatial", img_fns) + scale_imgs_out <- scale_imgs + img_dfs <- lapply(seq_along(img_fns), function(j) { .get_imgData(img_fns2[j], sample_id = sample_id[i], image_id = names(img_fns)[j], extent = NULL, scale_fct = scale_imgs[[j]], flip = TRUE) }) + img_df <- do.call(rbind, img_dfs) imgData(o) <- img_df + # Create Visium graph for filtered data if (data == "filtered") { - colGraph(o, "visium") <- findVisiumGraph( - o, sample_id = "all", style = style, - zero.policy = zero.policy - ) + if (add_Graph) { + message(paste0(">>> Adding spatial neighborhood graph to ", + sample_id[i], "\n")) + colGraph(o, "visium") <- + findVisiumGraph(o, sample_id = "all", + style = style, + zero.policy = zero.policy) + } else { return(o) } } o }) @@ -157,6 +220,109 @@ read10xVisiumSFE <- function(samples = "", out } +# Modified version of SpatialExperiment::read10xVisium to support VisiumHD +.read10xVisium <- + function(samples = "", # eg, path to "./binned_outputs" + sample_id = paste0("sample", sprintf("%02d", seq_along(samples))), + bin_size = "8", + type = c("HDF5", "sparse"), + data = c("filtered", "raw"), + images = "lowres", + load = TRUE) + { + if (!requireNamespace("DropletUtils", quietly = TRUE)) { + warning("DropletUtils package must be installed to use read10xVisium()") + } + type <- match.arg(type) + data <- match.arg(data) + imgs <- c("lowres", "hires", "detected", "aligned") + imgs <- match.arg(images, imgs, several.ok = TRUE) + # check if input is VisiumHD + if (any(grep("square_", list.files(samples)))) + VisiumHD <- TRUE + else + VisiumHD <- FALSE + if (VisiumHD) { + samples <- file.path(samples, + grep(paste0(bin_size, collapse = "|"), + list.files(samples), value = TRUE)) + # sanity + if (any(length(samples) != length(bin_size))) { + # match samples and bin_size + samples <- + grep(paste0(bin_size, collapse = "|"), + samples, value = TRUE) + } + sids <- basename(samples) + names(samples) <- sids + } else { + if (is.null(sids <- names(samples))) { + if (is.null(sids <- sample_id)) { + stop("'sample_id' mustn't be NULL when 'samples' are unnamed") + } else if (!is.character(sample_id) && length(unique(sample_id)) != + length(samples)) + stop("'sample_id' should contain as many unique values as 'samples'") + } else if (length(unique(sids)) != length(samples)) + stop("names of 'samples' should be unique") + names(samples) <- sids + i <- basename(samples) != "outs" + samples[i] <- file.path(samples[i], "outs") + } + message(paste0(">>> 10X ", ifelse(VisiumHD, "VisiumHD", "Visium"), + " data will be loaded: ", basename(sids), "\n")) + fns <- paste0(data, "_feature_bc_matrix", switch(type, HDF5 = ".h5", "")) + counts <- file.path(samples, fns) + dir <- file.path(samples, "spatial") + suffix <- c("", "_list") + if (VisiumHD) { + xyz <- file.path(dir, "tissue_positions.parquet") + } else { + xyz <- file.path(rep(dir, each = length(suffix)), sprintf("tissue_positions%s.csv", + rep(suffix, length(sids)))) + } + xyz <- xyz[file.exists(xyz)] + sfs <- file.path(dir, "scalefactors_json.json") + names(xyz) <- names(sfs) <- sids + img_fns <- list(lowres = "tissue_lowres_image.png", hires = "tissue_hires_image.png", + detected = "detected_tissue_image.jpg", aligned = "aligned_fiducials.jpg") + img_fns <- img_fns[imgs] + img_fns <- lapply(dir, file.path, img_fns) + img_fns <- unlist(img_fns) + nan <- !file.exists(img_fns) + if (all(nan)) { + stop(sprintf("No matching files found for 'images=c(%s)", + paste(dQuote(imgs), collapse = ", "))) + } else if (any(nan)) { + message("Skipping missing images\n ", paste(img_fns[nan], + collapse = "\n ")) + img_fns <- img_fns[!nan] + } + img <- SpatialExperiment::readImgData(samples, sids, img_fns, sfs, load) + spel <- lapply(seq_along(counts), function(i) { + sce <- DropletUtils::read10xCounts(samples = counts[i], + sample.names = sids[i], + col.names = TRUE, + row.names = "symbol") + if (VisiumHD) { + spd <- + arrow::read_parquet(xyz[i]) |> + as.data.frame() + rownames(spd) <- spd$barcode + } else { + spd <- SpatialExperiment:::.read_xyz(xyz[i]) + } + obs <- intersect(colnames(sce), rownames(spd)) + sce <- sce[, obs] + spd <- spd[obs, ] + SpatialExperiment::SpatialExperiment(assays = assays(sce), rowData = DataFrame(symbol = rowData(sce)$Symbol), + sample_id = sids[i], colData = DataFrame(spd), + spatialCoordsNames = c("pxl_col_in_fullres", "pxl_row_in_fullres")) + }) + spe <- do.call(cbind, spel) + SpatialExperiment::imgData(spe) <- img + return(spe) + } + #' @importFrom sf st_nearest_feature st_distance #' @importFrom stats median .pixel2micron <- function(sfe) { @@ -627,7 +793,7 @@ readVizgen <- function(data_dir, # NOTE: might take some time to run if (use_bboxes && is.null(polys)) { message(">>> Creating bounding boxes from `cell_metadata`") - # TODO: rewrite to use the now much faster df2sf ---- + # TODO: rewrite bboxes_sfc using much faster df2sf ---- bboxes_sfc <- bplapply(seq_len(nrow(metadata)), function(i) {