-
Notifications
You must be signed in to change notification settings - Fork 1
/
finetune.py
47 lines (36 loc) · 1.36 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import sys
import os
sys.path.remove(os.path.abspath(os.path.dirname(sys.argv[0])))
from transformers import HfArgumentParser
from lmflow.args import (
ModelArguments,
DatasetArguments,
AutoArguments,
)
from lmflow.datasets.dataset import Dataset
from lmflow.models.auto_model import AutoModel
from lmflow.pipeline.auto_pipeline import AutoPipeline
def main():
# Parses arguments
pipeline_name = "finetuner"
PipelineArguments = AutoArguments.get_pipeline_args_class(pipeline_name)
parser = HfArgumentParser((ModelArguments, DatasetArguments, PipelineArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, pipeline_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, pipeline_args = parser.parse_args_into_dataclasses()
# Initialization
finetuner = AutoPipeline.get_pipeline(
pipeline_name=pipeline_name,
model_args=model_args,
data_args=data_args,
pipeline_args=pipeline_args,
)
dataset = Dataset(data_args)
model = AutoModel.get_model(model_args)
# Finetuning
tuned_model = finetuner.tune(model=model, dataset=dataset)
if __name__ == '__main__':
main()