-
Notifications
You must be signed in to change notification settings - Fork 11
/
7-lackoffit.Rmd
615 lines (521 loc) · 21 KB
/
7-lackoffit.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# Lack of fit {#lackoffit}
WORK IN PROGRESS
## Trap dep {#trapdep}
Multievent formulation à la @pradeltrapdep2012. Also add example w/ individual time-varying covariate.
## Transience {#transience}
Multievent treatment à la @genovart2019. Remind of the two age-classes on survival technique.
## Temporary emigration
Multistate treatment as in @schaub2004te. See example in @bancila2018te.
Transition matrix:
$$\begin{matrix}
& \\
\mathbf{\Gamma} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
z_t=\text{in} & z_t=\text{out} & z_t=\text{D} \\ \hdashline
\phi (1-\psi^{\text{in} \rightarrow \text{out}}) & \phi \psi^{\text{in} \rightarrow \text{out}} & 1 - \phi\\
\phi \psi^{\text{out} \rightarrow \text{in}} & \phi (1-\psi^{\text{out} \rightarrow \text{in}}) & 1 - \phi\\
0 & 0 & 1
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right )
\begin{matrix}
z_{t-1}=\text{in} \\ z_{t-1}=\text{out} \\ z_{t-1}=\text{D}
\end{matrix}
\end{matrix}$$
Observation matrix:
$$\begin{matrix}
& \\
\mathbf{\Omega} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
y_t=1 & y_t=2 \\ \hdashline
1 - p & p\\
1 & 0\\
1 & 0
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right )
\begin{matrix}
z_{t}=\text{in} \\ z_{t}=\text{out} \\ z_{t}=\text{D}
\end{matrix}
\end{matrix}$$
## Individual heterogeneity
On wolf, see @cubaynes_importance_2010, @gimenez_individual_2010, or go full non-parametric w/ @turek_bayesian_2021. See @pradel2009 for black-headed gull example.
Our example is about individual heterogeneity and how to account for it with HMMs. Gray wolf is a social species with hierarchy in packs which may reflect in species demography. As an example, we'll work with gray wolves.
```{r pixwolf, echo=FALSE, fig.cap="Dominance in wolves.", fig.align='center'}
knitr::include_graphics("images/wolfdominance.jpg")
```
Gray wolf is a social species with hierarchy in packs which may reflect in demography. Shirley Pledger in a series of papers developed heterogeneity models in which individuals are assigned in two or more classes with class-specific survival/detection probabilities. @cubaynes_importance_2010 used HMMs to account for heterogeneity in the detection process due to social status, see also @pradel2009. Dominant individuals tend to use path more often than others, and these paths are where we look for scats.
Individual heterogeneity
+ 3 states
+ alive in class 1 (A1)
+ alive in class 2 (A2)
+ dead (D)
+ 2 observations
+ not captured (1)
+ captured (2)
Vector of initial state probabilities
$$\begin{matrix}
& \\
\mathbf{\delta} =
\left ( \vphantom{ \begin{matrix} 12 \end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
z_t=A1 & z_t=A2 & z_t=D \\ \hdashline
\pi & 1 - \pi & 0\\
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \end{matrix} } \right )
\begin{matrix}
\end{matrix}
\end{matrix}$$
$\pi$ is the probability of being alive in class 1. $1 - \pi$ is the probability of being in class 2.
Transition matrix
$$\begin{matrix}
& \\
\mathbf{\Gamma} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
z_t=A1 & z_t=A2 & z_t=D \\ \hdashline
\phi & 0 & 1 - \phi\\
0 & \phi & 1 - \phi\\
0 & 0 & 1
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right )
\begin{matrix}
z_{t-1}=A1 \\ z_{t-1}=A2 \\ z_{t-1}=D
\end{matrix}
\end{matrix}$$
$\phi$ is the survival probability, which could be made heterogeneous.
Transition matrix, with change in heterogeneity class
$$\begin{matrix}
& \\
\mathbf{\Gamma} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
z_t=A1 & z_t=A2 & z_t=D \\ \hdashline
\phi (1-\psi^{12}) & \phi \psi^{12} & 1 - \phi\\
\phi \psi^{21} & \phi (1-\psi^{21}) & 1 - \phi\\
0 & 0 & 1
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right )
\begin{matrix}
z_{t-1}=A1 \\ z_{t-1}=A2 \\ z_{t-1}=D
\end{matrix}
\end{matrix}$$
$\psi^{12}$ is the probability for an individual to change class of heterogeneity, from 1 to 2. $\psi^{21}$ is the probability for an individual to change class of heterogeneity, from 2 to 1.
Observation matrix
$$\begin{matrix}
& \\
\mathbf{\Omega} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12\end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
y_t=1 & y_t=2\\ \hdashline
1 - p^1 & p^1\\
1 - p^2 & p^2\\
1 & 0
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12\end{matrix} } \right )
\begin{matrix}
z_{t}=A1 \\ z_{t}=A2 \\ z_{t}=D
\end{matrix}
\end{matrix}$$
$p^1$ is detection for individuals in class 1, and $p^2$ that of individuals in class 2.
Results
```{r echo = FALSE}
library(MCMCvis)
load(here::here("dat","wolf_het.RData"))
MCMCsummary(mcmc.phipmix, round = 2)
```
We have lowly detectable individuals (class A1 with $p^1$) in proportion 62%. And highly (or so) detectable individuals (class A2 with $p^2$) in proportion 38%. Note that interpretation of classes is made a posteriori. Survival is 81%.
```{r, echo = FALSE}
library(MCMCvis)
load(here::here("dat","wolf_het.RData"))
MCMCplot(mcmc.phipmix)
```
From the simulations I run, seems like the categorical sampler on latent states gets stuck in places that depend on initial values. Changing for the slice sampler improves thing a bit, but not that much. Only option is to get rid of the states and use the marginalized likelihood. Nice illustration of the use of simulations (to check model is doing ok, estimated are valid, etc.), changing samplers, nimbleEcology, NIMBLE functions, etc.
You may consider more classes, and select among models, see @cubaynes2012. You may also go for a non-parametric approach and let the data tell you how many classes you need. This is relatively easy to do in NIMBLE, see @turek_bayesian_2021. More about individual heterogeneity in @gimenez2018ih.
<!-- I'm not an expert on the BNP facilities offered in NIMBLE, but I think I can comment: the stick-breaking representation (as you're using), and the CRP distribution, are modelling the same Dirichlet process. They differ in the MCMC sampling algorithms which are applied to each, automatically, by NIMBLE's MCMC. Translating your code between these two (mathematically identical) representations is a relatively small and straight-forward exercise. The relative performance of the different sampling algorithms, as applied to each representation, could differ, would depend on the model and the data, and is generally difficult to predict. -->
<!-- Changing between the stick-breaking representation and the CRP representation, the categorical distribution would persist in your model. And Perry's comments are correct, that (in particular for a large number of categories, e.g. large values of H or HH in your code) the categorical sampler (which is applied to the categorical distribution) would become arbitrarily inefficient, in that it evaluates the posterior density for every category value (H or HH times), then samples directly from that posterior distribution. And that you could hopefully reduce this inefficiency by writing a customized sampling strategy (a custom-written MCMC sampler), to update your categorical distributions, in a more efficient (less wasteful) manner. -->
## Memory model {#memorymodel}
How to make your models remember?
So far, the dynamics of the states are first-order Makovian. The site where you will be depends only on the site where you are, and not on the sites you were previously. How to relax this assumption, and go second-order Markovian?
Memory models were initially proposed by @hestbeck1991estimates and @BrownieEtAl1993, then formulated as HMMs in @rouan2009memory. See also @cole2014.
Remember HMM model for dispersal between 2 sites
Transition matrix
$$\begin{matrix}
& \\
\mathbf{\Gamma} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
z_t=A & z_t=B & z_t=D \\ \hdashline
\phi^A (1-\psi^{AB}) & \phi^A \psi^{AB} & 1 - \phi^A\\
\phi^B \psi^{BA} & \phi^B (1-\psi^{BA}) & 1 - \phi^B\\
0 & 0 & 1
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right )
\begin{matrix}
z_{t-1}=A \\ z_{t-1}=B \\ z_{t-1}=D
\end{matrix}
\end{matrix}$$
Observation matrix
$$\begin{matrix}
& \\
\mathbf{\Omega} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
y_t=1 & y_t=2 & y_t=3 \\ \hdashline
1 - p^A & p^A & 0\\
1 - p^B & 0 & p^B\\
1 & 0 & 0
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right )
\begin{matrix}
z_{t}=A \\ z_{t}=B \\ z_{t}=D
\end{matrix}
\end{matrix}$$
HMM formulation of the memory model
To keep track of the sites previously visited, the trick is to consider states as being pairs of sites occupied
+ States
+ AA is for alive in site A at $t$ and alive in site A at $t-1$
+ AB is for alive in site A at $t$ and alive in site B at $t-1$
+ BA is for alive in site B at $t$ and alive in site A at $t-1$
+ BB is for alive in site B at $t$ and alive in site B at $t-1$
+ D is for dead
+ Observations
+ 1 not captured
+ 2 captured at site A
+ 3 captured at site B
Vector of initial state probabilities
$$\begin{matrix}
& \\
\mathbf{\delta} =
\left ( \vphantom{ \begin{matrix} 12 \end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
z_t=AA & z_t=AB & z_t=BA & z_t=BB &z_t=D \\ \hdashline
\pi^{AA} & \pi^{AB} & \pi^{BA} & \pi^{BB} & 0\\
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \end{matrix} } \right )
\begin{matrix}
\end{matrix}
\end{matrix}$$
where $\pi^{BB} = 1 - (\pi^{AA} + \pi^{AB} + \pi^{BA})$, and $\pi^{ij}$ at site $j$ when first captured at $t$ and site $i$ at $t - 1$.
Transition matrix
$$\begin{matrix}
& \\
\mathbf{\Gamma} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
z_t=AA & z_t=AB & z_t=BA & z_t=BB & z_t=D \\ \hdashline
\phi^{AAA} & \phi^{AAB} & 0 & 0 & 1 - \phi^{AAA} - \phi^{AAB}\\
0 & 0 & \phi^{ABA} & \phi^{ABB} & 1 - \phi^{ABA} - \phi^{ABB}\\
\phi^{BAA} & \phi^{BAB} & 0 & 0 & 1 - \phi^{BAA} - \phi^{BAB}\\
0 & 0 & \phi^{BBA} & \phi^{BBB} & 1 - \phi^{BBA} - \phi^{BBB}\\
0 & 0 & 0 & 0 & 1
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right )
\begin{matrix}
z_{t-1}=AA \\ z_{t-1}=AB \\ z_{t-1}=BA \\ z_{t-1}=BB \\ z_{t-1}=D
\end{matrix}
\end{matrix}$$
$\phi^{ijk}$ is probability to be in site $k$ at time $t + 1$ for an individual
present in site $j$ at $t$ and in site $i$ at $t - 1$
Transition matrix, alternate parameterization
$$\begin{matrix}
& \\
\mathbf{\Gamma} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
z_t=AA & z_t=AB & z_t=BA & z_t=BB & z_t=D \\ \hdashline
\phi \psi^{AAA} & \phi (1 - \psi^{AAA}) & 0 & 0 & 1 - \phi\\
0 & 0 & \phi (1 - \psi^{ABB}) & \phi \psi^{ABB} & 1 - \phi\\
\phi \psi^{BAA} & \phi (1 - \psi^{BAA}) & 0 & 0 & 1 - \phi\\
0 & 0 & \phi (1-\psi^{BBB}) & \phi \psi^{BBB} & 1 - \phi\\
0 & 0 & 0 & 0 & 1
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right )
\begin{matrix}
z_{t-1}=AA \\ z_{t-1}=AB \\ z_{t-1}=BA \\ z_{t-1}=BB \\ z_{t-1}=D
\end{matrix}
\end{matrix}$$
$\phi$ is the probability of surviving from one occasion to the next. $\psi_{ijj}$ is the probability an animal stays at the same site $j$ given that it was at site $i$ on the previous occasion.
Observation matrix
$$\begin{matrix}
& \\
\mathbf{\Omega} =
\left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right .
\end{matrix}
\hspace{-1.2em}
\begin{matrix}
y_t=1 & y_t=2 & y_t=3 \\ \hdashline
1 - p^A & p^A & 0\\
1 - p^B & 0 & p^B\\
1 - p^A & p^A & 0\\
1 - p^B & 0 & p^B\\
1 & 0 & 0
\end{matrix}
\hspace{-0.2em}
\begin{matrix}
& \\
\left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right )
\begin{matrix}
z_t=AA \\ z_t=AB \\ z_t=BA \\ z_t=BB \\ z_t=D
\end{matrix}
\end{matrix}$$
```{r eval = FALSE, echo = FALSE}
library(tidyverse)
library(nimble)
geese <- read_csv(here::here("dat", "geese.csv"), col_names = TRUE)
#geese <- read_csv2(here::here("slides", "dat", "allgeese.csv"), col_names = TRUE) %>%
# uncount(weights = `158`)
y <- geese %>%
as.matrix()
y2 <- y
y2[y2==3] <- 0
mask <- apply(y2, 1, sum)
y <- y2[mask!=0,]
dim(y)
first <- apply(y, 1, function(x) min(which(x != 0)))
# memory model
# To fit a model in which the survival-transition probabilities
# depend of the two sites previously occupied we have to consider
# a specific set of states composed of all the couples of sites
# (sites occupied at times t-1 and t) plus the state “dead”.
# Obs = non-detection, detected in site 1, detected in site 2 = 1, 2, 3
# States = couples of sites occupied: { 11, 12, 21, 22, dead } = {1 2 3 4 5}
memory <- nimbleCode({
# -------------------------------------------------
# Parameters:
# phi111: survival-mov probability from state 11 to state 11
# phi112: survival-mov probability from state 11 to state 12
# phi121: survival-mov probability from state 12 to state 21
# phi122: survival-mov probability from state 12 to state 22
# phi211: survival-mov probability from state 21 to state 11
# phi212: survival-mov probability from state 21 to state 12
# phi221: survival-mov probability from state 22 to state 21
# phi222: survival-mov probability from state 22 to state 22
# det1: detection probability site 1
# det2: detection probability site 2
# pi11: init stat prob 11
# pi12: init stat prob 12
# pi21: init stat prob 21
# pi22: init stat prob 22
# -------------------------------------------------
# States (S):
# 1 alive 11
# 2 alive 12
# 3 alive 21
# 4 alive 22
# 5 dead
# Observations (O):
# 1 not seen
# 2 seen at site 1
# 3 seen at site 2
# -------------------------------------------------
# priors
pi[1:4] ~ ddirch(beta[1:4]) # pi11, pi12, pi21, pi22
det1 ~ dunif(0, 1)
det2 ~ dunif(0, 1)
phi11[1:3] ~ ddirch(alpha[1:3]) # phi111, phi112, 1-sum
phi12[1:3] ~ ddirch(alpha[1:3]) # phi121, phi122, 1-sum
phi21[1:3] ~ ddirch(alpha[1:3]) # phi211, phi212, 1-sum
phi22[1:3] ~ ddirch(alpha[1:3]) # phi221, phi222, 1-sum
# probabilities of state z(t+1) given z(t)
gamma[1,1] <- phi11[1]
gamma[1,2] <- phi11[2]
gamma[1,3] <- 0
gamma[1,4] <- 0
gamma[1,5] <- phi11[3]
gamma[2,1] <- 0
gamma[2,2] <- 0
gamma[2,3] <- phi12[1]
gamma[2,4] <- phi12[2]
gamma[2,5] <- phi12[3]
gamma[3,1] <- phi21[1]
gamma[3,2] <- phi21[2]
gamma[3,3] <- 0
gamma[3,4] <- 0
gamma[3,5] <- phi21[3]
gamma[4,1] <- 0
gamma[4,2] <- 0
gamma[4,3] <- phi22[1]
gamma[4,4] <- phi22[2]
gamma[4,5] <- phi22[3]
gamma[5,1] <- 0
gamma[5,2] <- 0
gamma[5,3] <- 0
gamma[5,4] <- 0
gamma[5,5] <- 1
delta[1] <- pi[1]
delta[2] <- pi[2]
delta[3] <- pi[3]
delta[4] <- pi[4]
delta[5] <- 0
# probabilities of y(t) given z(t)
omega[1,1] <- 1 - det1
omega[1,2] <- det1
omega[1,3] <- 0
omega[2,1] <- 1 - det2
omega[2,2] <- 0
omega[2,3] <- det2
omega[3,1] <- 1 - det1
omega[3,2] <- det1
omega[3,3] <- 0
omega[4,1] <- 1 - det2
omega[4,2] <- 0
omega[4,3] <- det2
omega[5,1] <- 1
omega[5,2] <- 0
omega[5,3] <- 0
omega.init[1,1] <- 0
omega.init[1,2] <- 1
omega.init[1,3] <- 0
omega.init[2,1] <- 0
omega.init[2,2] <- 0
omega.init[2,3] <- 1
omega.init[3,1] <- 0
omega.init[3,2] <- 1
omega.init[3,3] <- 0
omega.init[4,1] <- 0
omega.init[4,2] <- 0
omega.init[4,3] <- 1
omega.init[5,1] <- 1
omega.init[5,2] <- 0
omega.init[5,3] <- 0
# Likelihood
for (i in 1:N){
# Define latent state at first capture
z[i,first[i]] ~ dcat(delta[1:5])
y[i,first[i]] ~ dcat(omega.init[z[i,first[i]],1:3])
for (t in (first[i]+1):K){
# State process: draw S(t) given S(t-1)
z[i,t] ~ dcat(gamma[z[i,t-1],1:5])
# Observation process: draw O(t) given S(t)
y[i,t] ~ dcat(omega[z[i,t],1:3])
}
}
})
# initial values for unknown z
# not optimal since it ignores impossible transitions in the surv-mov matrix
zinit <- y
for (i in 1:nrow(y)) {
for (j in 1:ncol(y)) {
if (j > first[i] & y[i,j]==0) {zinit[i,j] <- which(rmultinom(1, 1, c(1/4,1/4,1/4,1/4))==1)}
if (j > first[i] & y[i,j]==1) {zinit[i,j] <- which(rmultinom(1, 1, c(1/4,1/4,1/4,1/4))==1)}
if (j > first[i] & y[i,j]==2) {zinit[i,j] <- which(rmultinom(1, 1, c(1/4,1/4,1/4,1/4))==1)}
# if (j > first[i] & y[i,j]==1) {zinit[i,j] <- which(rmultinom(1, 1, c(1/2,0,1/2,0))==1)}
# if (j > first[i] & y[i,j]==2) {zinit[i,j] <- which(rmultinom(1, 1, c(0,1/2,0,1/2))==1)}
if (j < first[i]) {zinit[i,j] <- 0}
}
}
zinit <- as.matrix(zinit)
# constants
my.constants <- list(first = first,
K = ncol(y),
N = nrow(y))
# Initial values
initial.values <- function(){list(phi11 = rdirch(1, rep(1,3)),
phi12 = rdirch(1, rep(1,3)),
phi21 = rdirch(1, rep(1,3)),
phi22 = rdirch(1, rep(1,3)),
det1 = runif(1, 0, 1),
det2 = runif(1, 0, 1),
pi = rdirch(1, rep(1,4)),
z = zinit)}
# data
my.data <- list(y = y + 1,
alpha = rep(1,3),
beta = rep(1,4))
# MCMC settings
parameters.to.save <- c("phi11", "phi12","phi21", "phi22", "det1", "det2", "pi")
n.iter <- 5000
n.burnin <- 2500
n.chains <- 2
mcmc.memory <- nimbleMCMC(code = memory,
constants = my.constants,
data = my.data,
inits = initial.values,
monitors = parameters.to.save,
niter = n.iter,
nburnin = n.burnin,
nchains = n.chains)
save(mcmc.memory, file = "dat/memory.RData")
library(MCMCvis)
MCMCsummary(mcmc.memory, round = 2)
MCMCplot(mcmc.memory)
MCMCtrace(mcmc.memory, params = c("det1","det2"), pdf = FALSE)
## PROBLEM: p1 and p2 seem to be updated, but Rhat = Inf and neff = 0;
# inspecting their posterior distribution
## it feels like they are not updated, two modes corresp to the two chains.
# Usually, it means that these parameters are not used in the model.
# Need to amend the way I simulate initial values!!
# If z not needed, use weighted marginaled likelihood? And whole dataset!!
hmm.phip <- nimbleModel(code = memory,
constants = my.constants,
data = my.data,
inits = initial.values())
phip.mcmc <- buildMCMC(hmm.phip)
phip.model <- compileNimble(hmm.phip)
c.phip.mcmc <- compileNimble(phip.mcmc, project = phip.model)
c.phip.mcmc$run(10000)
samples <- as.matrix(c.phip.mcmc$mvSamples)
summary(samples[,"det1"])
```
## Posterior predictive check {#ppchecks}
Classical m-array (minimal sufficient statistics for CJS model) as in @paganin2023computational. Individual performance in @chambert2014 and @nater2020trout. Sojourn time is geometric assumption in @conn2018.
For the CJS model, we would use the so-called m-array which gathers the elements $m_{ij}$ for the number of marked individuals initially released at time $i$ that were first detected again at time $j$.
Refer to a case study. With m-array and Nimble functions. Refer to paper by Paganin & de Valpine and use code in https://github.com/salleuska/fastCPPP. Also papers by Chambert et al. (individual performance) and Conn et al. (geometric time, and hidden semi-Markov models).
<!-- This has an m-array structure. The number of individuals released at occasion $i$ ($R_i$) and the number of first recaptures at occasion $j$, given release at occasion $i$ ($m_{ij}$) are provided. For example, 38 birds were released in 1969 among which, 22 were first recaptured in 1970, and 16 (= 38 - 22) were never observed again. -->
Check out <https://r-nimble.org/nimbleExamples/posterior_predictive.html>.