-
Notifications
You must be signed in to change notification settings - Fork 594
/
ocropus-rpred
executable file
·315 lines (267 loc) · 11.1 KB
/
ocropus-rpred
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python
from __future__ import print_function
import traceback
import codecs
import os.path
import argparse
import sys
from multiprocessing import Pool
from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
from scipy.ndimage import measurements
import ocrolib
from ocrolib import lstm
from ocrolib import edist
from ocrolib.exceptions import FileNotFound, OcropusException
parser = argparse.ArgumentParser("apply an RNN recognizer")
# error checking
parser.add_argument('-n','--nocheck',action="store_true",
help="disable error checking on inputs")
# line dewarping (usually contained in model)
parser.add_argument("-e","--nolineest",action="store_true",
help="target line height (overrides recognizer)")
parser.add_argument("-l","--height",default=-1,type=int,
help="target line height (overrides recognizer)")
# recognition
parser.add_argument('-m','--model',default="en-default.pyrnn.gz",
help="line recognition model")
parser.add_argument("-p","--pad",default=16,type=int,
help="extra blank padding to the left and right of text line")
parser.add_argument('-N',"--nonormalize",action="store_true",
help="don't normalize the textual output from the recognizer")
parser.add_argument('--llocs',action="store_true",
help="output LSTM locations for characters")
parser.add_argument('--alocs',action="store_true",
help="output aligned LSTM locations for characters")
parser.add_argument('--probabilities',action="store_true",
help="output probabilities for each letter")
# error measures
parser.add_argument("-r","--estrate",action="store_true",
help="estimate error rate only")
parser.add_argument("-c","--estconf",type=int,default=20,
help="estimate confusion matrix")
parser.add_argument("-C","--compare",default="nospace",
help="string comparison used for error rate estimate")
parser.add_argument("--context",default=0,type=int,
help="context for error reporting")
# debugging
parser.add_argument('-s','--show',default=-1,type=float,
help="if >0, shows recognition output in a window and waits this many seconds")
parser.add_argument('-S','--save',default=None,
help="save debugging output image as PNG (for bug reporting)")
parser.add_argument("-q","--quiet",action="store_true",
help="turn off most output")
parser.add_argument("-Q","--parallel",type=int,default=1,
help="number of parallel processes to use, default: %(default)s")
# input files
parser.add_argument("files",nargs="+",
help="input files; glob and @ expansion performed")
args = parser.parse_args()
def print_info(*objs):
print("INFO: ", *objs, file=sys.stdout)
def print_error(*objs):
print("ERROR: ", *objs, file=sys.stderr)
def check_line(image):
if len(image.shape)==3: return "input image is color image %s"%(image.shape,)
if np.mean(image)<np.median(image): return "image may be inverted"
h,w = image.shape
if h<20: return "image not tall enough for a text line %s"%(image.shape,)
if h>200: return "image too tall for a text line %s"%(image.shape,)
if w<1.5*h: return "line too short %s"%(image.shape,)
if w>4000: return "line too long %s"%(image.shape,)
ratio = w*1.0/h
_,ncomps = measurements.label(image>np.mean(image))
lo = int(0.5*ratio+0.5)
hi = int(4*ratio)+1
if ncomps<lo: return "too few connected components (got %d, wanted >=%d)"%(ncomps,lo)
if ncomps>hi*ratio: return "too many connected components (got %d, wanted <=%d)"%(ncomps,hi)
return None
# compute the list of files to be classified
if len(args.files)<1:
parser.print_help()
sys.exit(0)
print_info("")
print_info("#"*10,(" ".join(sys.argv))[:60])
print_info("")
inputs = ocrolib.glob_all(args.files)
if not args.quiet: print_info("#inputs: %d" % (len(inputs)))
# disable parallelism when anything is being displayed
if args.show>=0 or args.save is not None:
args.parallel = 1
# load the network used for classification
try:
network = ocrolib.load_object(args.model,verbose=1)
for x in network.walk(): x.postLoad()
for x in network.walk():
if isinstance(x,lstm.LSTM):
x.allocate(5000)
except FileNotFound:
print_error("")
print_error("Cannot find OCR model file:" + args.model)
print_error("Download a model and put it into:" + ocrolib.default.modeldir)
print_error("(Or override the location with OCROPUS_DATA.)")
print_error("")
sys.exit(1)
# get the line normalizer from the loaded network, or optionally
# let the user override it (this is not very useful)
lnorm = getattr(network,"lnorm",None)
if args.height>0:
lnorm.setHeight(args.height)
# process one file
def process1(arg):
(trial,fname) = arg
base,_ = ocrolib.allsplitext(fname)
line = ocrolib.read_image_gray(fname)
raw_line = line.copy()
if np.prod(line.shape)==0: return None
if np.amax(line)==np.amin(line): return None
if not args.nocheck:
check = check_line(np.amax(line)-line)
if check is not None:
print_error("%s SKIPPED %s (use -n to disable this check)" % (fname, check))
return (0,[],0,trial,fname)
if not args.nolineest:
assert "dew.png" not in fname,"don't dewarp dewarped images"
temp = np.amax(line)-line
temp = temp*1.0/np.amax(temp)
lnorm.measure(temp)
line = lnorm.normalize(line,cval=np.amax(line))
else:
assert "dew.png" in fname,"only apply to dewarped images"
line = lstm.prepare_line(line,args.pad)
pred = network.predictString(line)
if args.llocs:
# output recognized LSTM locations of characters
result = lstm.translate_back(network.outputs,pos=1)
scale = len(raw_line.T)*1.0/(len(network.outputs)-2*args.pad)
#ion(); imshow(raw_line,cmap=cm.gray)
with codecs.open(base+".llocs","w","utf-8") as locs:
for r,c in result:
c = network.l2s([c])
r = (r-args.pad)*scale
locs.write("%s\t%.1f\n"%(c,r))
#plot([r,r],[0,20],'r' if c==" " else 'b')
#ginput(1,1000)
if args.alocs:
# output recognized and aligned LSTM locations
if os.path.exists(base+".gt.txt"):
transcript = ocrolib.read_text(base+".gt.txt")
transcript = ocrolib.normalize_text(transcript)
network.trainString(line,transcript,update=0)
result = lstm.translate_back(network.aligned,pos=1)
scale = len(raw_line.T)*1.0/(len(network.aligned)-2*args.pad)
with codecs.open(base+".alocs","w","utf-8") as locs:
for r,c in result:
c = network.l2s([c])
r = (r-args.pad)*scale
locs.write("%s\t%.1f\n"%(c,r))
if args.probabilities:
# output character probabilities
result = lstm.translate_back(network.outputs,pos=2)
with codecs.open(base+".prob","w","utf-8") as file:
for c,p in result:
c = network.l2s([c])
file.write("%s\t%s\n"%(c,p))
if not args.nonormalize:
pred = ocrolib.normalize_text(pred)
if args.estrate:
try:
gt = ocrolib.read_text(base+".gt.txt")
except:
return (0,[],0,trial,fname)
pred0 = ocrolib.project_text(pred,args.compare)
gt0 = ocrolib.project_text(gt,args.compare)
if args.estconf>0:
err,conf = edist.xlevenshtein(pred0,gt0,context=args.context)
else:
err = edist.xlevenshtein(pred0,gt0)
conf = []
if not args.quiet:
print_info("%3d %3d %s:%s" % (err, len(gt), fname, pred))
sys.stdout.flush()
return (err,conf,len(gt0),trial,fname)
if not args.quiet:
print_info(fname+":"+pred)
ocrolib.write_text(base+".txt",pred)
if args.show>0 or args.save is not None:
plt.ion()
plt.rc('xtick',labelsize=7)
plt.rc('ytick',labelsize=7)
plt.rcParams.update({"font.size":7})
if os.path.exists(base+".gt.txt"):
transcript = ocrolib.read_text(base+".gt.txt")
transcript = ocrolib.normalize_text(transcript)
else:
transcript = pred
pred2 = network.trainString(line,transcript,update=0)
plt.figure("result",figsize=(1400//75,800//75),dpi=75)
plt.clf()
plt.subplot(311)
plt.imshow(line.T,cmap=plt.cm.gray)
plt.title(transcript)
plt.subplot(312)
plt.gca().set_xticks([])
plt.imshow(network.outputs.T[1:],vmin=0,cmap=plt.cm.hot)
plt.title(pred[:80])
plt.subplot(313)
plt.plot(network.outputs[:,0],color='yellow',linewidth=3,alpha=0.5)
plt.plot(network.outputs[:,1],color='green',linewidth=3,alpha=0.5)
plt.plot(np.amax(network.outputs[:,2:],axis=1),color='blue',linewidth=3,alpha=0.5)
plt.plot(network.aligned[:,0],color='orange',linestyle='dashed',alpha=0.7)
plt.plot(network.aligned[:,1],color='green',linestyle='dashed',alpha=0.5)
plt.plot(np.amax(network.aligned[:,2:],axis=1),color='blue',linestyle='dashed',alpha=0.5)
if args.save is not None:
plt.draw()
savename = args.save
if "%" in savename: savename = savename%trial
print_info("saving "+savename)
plt.savefig(savename,bbox_inches=0)
if trial==len(inputs)-1:
plt.ginput(1,99999999)
else:
plt.ginput(1,args.show)
return None
def safe_process1(arg):
trial,fname = arg
try:
return process1(arg)
except IOError as e:
if ocrolib.trace: traceback.print_exc()
print_info(fname+":"+e)
except ocrolib.OcropusException as e:
if e.trace: traceback.print_exc()
print_info(fname+":"+e)
except:
traceback.print_exc()
return None
if args.parallel==0:
result = []
for trial,fname in enumerate(inputs):
result.append(process1((trial,fname)))
elif args.parallel==1:
result = []
for trial,fname in enumerate(inputs):
result.append(safe_process1((trial,fname)))
else:
pool = Pool(processes=args.parallel)
result = []
for r in pool.imap_unordered(safe_process1,enumerate(inputs)):
result.append(r)
if not args.quiet and len(result)%100==0:
sys.stderr.write("==== %d of %d\n"%(len(result),len(inputs)))
result = [x for x in result if x is not None]
confusions = []
if args.estrate:
terr = 0
total = 0
for err,conf,n,trial,fname, in result:
terr += err
total += n
confusions += conf
print_info("%.5f %d %d %s" % (terr*1.0/total, terr, total, args.model))
if args.estconf>0:
print_info("top %d confusions (count pred gt), comparison: %s" % (
args.estconf, args.compare))
for ((u,v),n) in Counter(confusions).most_common(args.estconf):
print_info("%6d %-4s %-4s" % (n, u ,v))