diff --git a/_build/dirhtml/.doctrees/dfo_mooring_plots.doctree b/_build/dirhtml/.doctrees/dfo_mooring_plots.doctree deleted file mode 100644 index 8ccadb2..0000000 Binary files a/_build/dirhtml/.doctrees/dfo_mooring_plots.doctree and /dev/null differ diff --git a/_build/dirhtml/.doctrees/environment.pickle b/_build/dirhtml/.doctrees/environment.pickle index 5515dd2..8b32830 100644 Binary files a/_build/dirhtml/.doctrees/environment.pickle and b/_build/dirhtml/.doctrees/environment.pickle differ diff --git a/_build/dirhtml/.doctrees/index.doctree b/_build/dirhtml/.doctrees/index.doctree index fc162a6..bb29c17 100644 Binary files a/_build/dirhtml/.doctrees/index.doctree and b/_build/dirhtml/.doctrees/index.doctree differ diff --git a/_build/dirhtml/.doctrees/interactive/holoviz_plotting_tests.doctree b/_build/dirhtml/.doctrees/interactive/holoviz_plotting_tests.doctree index 6f3526f..2c14a73 100644 Binary files a/_build/dirhtml/.doctrees/interactive/holoviz_plotting_tests.doctree and b/_build/dirhtml/.doctrees/interactive/holoviz_plotting_tests.doctree differ diff --git a/_build/dirhtml/.doctrees/interactive/interactive.doctree b/_build/dirhtml/.doctrees/interactive/interactive.doctree index acc3734..2a3b473 100644 Binary files a/_build/dirhtml/.doctrees/interactive/interactive.doctree and b/_build/dirhtml/.doctrees/interactive/interactive.doctree differ diff --git a/_build/dirhtml/.doctrees/moorings/Puget_Climatology.doctree b/_build/dirhtml/.doctrees/moorings/Puget_Climatology.doctree new file mode 100644 index 0000000..db0a0a1 Binary files /dev/null and b/_build/dirhtml/.doctrees/moorings/Puget_Climatology.doctree differ diff --git a/_build/dirhtml/.doctrees/moorings/Puget_Sound.doctree b/_build/dirhtml/.doctrees/moorings/Puget_Sound.doctree index 0fddd0d..b0c147d 100644 Binary files a/_build/dirhtml/.doctrees/moorings/Puget_Sound.doctree and b/_build/dirhtml/.doctrees/moorings/Puget_Sound.doctree differ diff --git a/_build/dirhtml/.doctrees/moorings/Puget_Sound1.doctree b/_build/dirhtml/.doctrees/moorings/Puget_Sound1.doctree new file mode 100644 index 0000000..5d2b2c7 Binary files /dev/null and b/_build/dirhtml/.doctrees/moorings/Puget_Sound1.doctree differ diff --git a/_build/dirhtml/.doctrees/moorings/Puget_Sound2.doctree b/_build/dirhtml/.doctrees/moorings/Puget_Sound2.doctree new file mode 100644 index 0000000..a3805a5 Binary files /dev/null and b/_build/dirhtml/.doctrees/moorings/Puget_Sound2.doctree differ diff --git a/_build/dirhtml/.doctrees/moorings/index.doctree b/_build/dirhtml/.doctrees/moorings/index.doctree index 634cd92..079bfdf 100644 Binary files a/_build/dirhtml/.doctrees/moorings/index.doctree and b/_build/dirhtml/.doctrees/moorings/index.doctree differ diff --git a/_build/dirhtml/_images/3af2551184d80e83370923dc4318d1d221b463b9cbe14c1b381f72e22daa79b9.png b/_build/dirhtml/_images/3af2551184d80e83370923dc4318d1d221b463b9cbe14c1b381f72e22daa79b9.png new file mode 100644 index 0000000..c5cf4c5 Binary files /dev/null and b/_build/dirhtml/_images/3af2551184d80e83370923dc4318d1d221b463b9cbe14c1b381f72e22daa79b9.png differ diff --git a/_build/dirhtml/_images/54554af65baceb3f51bfdfde6d07f8cd72aac8e3dab6871a5d2f48e37dd05ae7.png b/_build/dirhtml/_images/54554af65baceb3f51bfdfde6d07f8cd72aac8e3dab6871a5d2f48e37dd05ae7.png new file mode 100644 index 0000000..2bf3b89 Binary files /dev/null and b/_build/dirhtml/_images/54554af65baceb3f51bfdfde6d07f8cd72aac8e3dab6871a5d2f48e37dd05ae7.png differ diff --git a/_build/dirhtml/_images/73b7ad9b0f4ebae774c341c52f3b209efee985879fd37868633843d042038e55.png b/_build/dirhtml/_images/73b7ad9b0f4ebae774c341c52f3b209efee985879fd37868633843d042038e55.png deleted file mode 100644 index 9da8fb4..0000000 Binary files a/_build/dirhtml/_images/73b7ad9b0f4ebae774c341c52f3b209efee985879fd37868633843d042038e55.png and /dev/null differ diff --git a/_build/dirhtml/_images/8671adbe5b598f22646444a34b9061487c1a82ee63bbdb8c7f60de7a343abd3f.png b/_build/dirhtml/_images/8671adbe5b598f22646444a34b9061487c1a82ee63bbdb8c7f60de7a343abd3f.png new file mode 100644 index 0000000..23ae9aa Binary files /dev/null and b/_build/dirhtml/_images/8671adbe5b598f22646444a34b9061487c1a82ee63bbdb8c7f60de7a343abd3f.png differ diff --git a/_build/dirhtml/_images/c19a585219389411301a12c2ce93db23e89bd21401a1621a8e947723ccaab275.png b/_build/dirhtml/_images/c19a585219389411301a12c2ce93db23e89bd21401a1621a8e947723ccaab275.png new file mode 100644 index 0000000..98b4e4b Binary files /dev/null and b/_build/dirhtml/_images/c19a585219389411301a12c2ce93db23e89bd21401a1621a8e947723ccaab275.png differ diff --git a/_build/dirhtml/_images/f2959306183b478c67bdbcfe7948459677e513bd3491c5bfa9268e5d660ebd63.png b/_build/dirhtml/_images/f2959306183b478c67bdbcfe7948459677e513bd3491c5bfa9268e5d660ebd63.png deleted file mode 100644 index d1901ab..0000000 Binary files a/_build/dirhtml/_images/f2959306183b478c67bdbcfe7948459677e513bd3491c5bfa9268e5d660ebd63.png and /dev/null differ diff --git a/_build/dirhtml/_images/f6c08ae391f1d10f13a8378e6d52545e23a2e4da1a90b63e4b6985fe18600000.png b/_build/dirhtml/_images/f6c08ae391f1d10f13a8378e6d52545e23a2e4da1a90b63e4b6985fe18600000.png deleted file mode 100644 index dd6a09b..0000000 Binary files a/_build/dirhtml/_images/f6c08ae391f1d10f13a8378e6d52545e23a2e4da1a90b63e4b6985fe18600000.png and /dev/null differ diff --git a/_build/dirhtml/_images/fa37bf67d758decdf58fb20a3355e3f685036fda991325dd70753184c2db7510.png b/_build/dirhtml/_images/fa37bf67d758decdf58fb20a3355e3f685036fda991325dd70753184c2db7510.png new file mode 100644 index 0000000..c1ae0ef Binary files /dev/null and b/_build/dirhtml/_images/fa37bf67d758decdf58fb20a3355e3f685036fda991325dd70753184c2db7510.png differ diff --git a/_build/dirhtml/_sources/dfo_mooring_plots.ipynb.txt b/_build/dirhtml/_sources/dfo_mooring_plots.ipynb.txt deleted file mode 100644 index ccc2214..0000000 --- a/_build/dirhtml/_sources/dfo_mooring_plots.ipynb.txt +++ /dev/null @@ -1,361 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "74707d4e-b34c-4a1d-a378-2e963113dd67", - "metadata": { - "tags": [] - }, - "source": [ - "# Downloading DFO Historical Mooring Data\n", - "### https://data.cioospacific.ca/erddap/tabledap/IOS_CTD_Moorings.htm\n", - "## Constraints:\n", - "Limited the search area to the mooring of interest E01. (49.1 - 49.3 & 126 - 126.7)
\n", - "Limited the time frame to 2018-01-01 to 22-07-21 to minimize download time for this project. \n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "47c2d6d5-b0b4-4ee4-88af-b807b8ba07e5", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import xarray as xr\n", - "\n", - "# have a look at the dataset:\n", - "\n", - "ds = xr.open_dataset(\"IOS_CTD_Moorings_9614_794f_0026.nc\")\n", - "#print(ds)\n", - "#print(ds.PSALST01.data)\n", - "#print(ds.DOXYZZ01)\n", - "#print(ds.DOXMZZ01)\n", - "#print(ds.filename.data)\n", - "print(ds.variables)\n", - "ds\n" - ] - }, - { - "cell_type": "markdown", - "id": "7d875fc9-85bf-446d-9d71-3e722be465e3", - "metadata": {}, - "source": [ - "## Combine what was learned Below - use a merged Temperature variable for the time series - do not plot Oxygen" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "1631164f-997b-4645-8036-e901252ccdce", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAALjCAYAAAAWfmJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3wc5bX/f2a7pF2tqlUs2ZKL3G0MBmxIMNVUQ0IJPRCSG8j95ZuQSxLKhQTuDZeSAkkIJOQ68L1JwMANkFBMxwaCbWyMey9qVq+runV+f5zv0fPM7Oxqd7Wrtuf9euklaXZmdnZ2nuc5z3nO+RxFVVUVGIZhGIZhGIZhGIZhGCYNMY31BTAMwzAMwzAMwzAMwzDMWMHOMYZhGIZhGIZhGIZhGCZtYecYwzAMwzAMwzAMwzAMk7awc4xhGIZhGIZhGIZhGIZJW9g5xjAMwzAMwzAMwzAMw6Qt7BxjGIZhGIZhGIZhGIZh0hZ2jjEMwzAMwzAMwzAMwzBpCzvHGIZhGIZhGIZhGIZhmLSFnWMMwzAMwzAMwzAMwzBM2sLOMYZhGGZc8+yzz4KiKEM/DocDiouL4ayzzoKHHnoIWlpawo65//77NcfIP0888YRm3/b2drj77rth/vz5kJmZCdnZ2bB8+XL43e9+B36/P6ZrPPPMM0FRFJgxYwaoqhr2+kcffTT0/s8++2xC92GkrF+/HhRFgfXr14/J++/btw9uvPFGmDFjBjgcDigoKIATTzwRvvvd74LH4xna77nnnoPHH398RO/15JNPGt7n6urqMfsOoj2TiqJAdXW1Zv+1a9fCCSecAA6HA0pLS+H222+H3t5ezT49PT3w4x//GFatWgWFhYWgKArcf//9Sb/2vXv3wv333x92jfFC9yCV9Pf3w/3332/4nNP7t7W1JXTuioqKiN+fw+GIad/bbrstofdOFclobwzDMAwzGbCM9QUwDMMwTCw888wzMHfuXPD7/dDS0gKffPIJPPLII/CLX/wCXnjhBTj33HPDjnnrrbfA7XZrtlVWVg79vX//fli1ahX09vbCHXfcAaeddhoMDAzA66+/Dt///vfhpZdegjfffBMyMzOHvT6XywXHjh2DDz74AM455xzNa3/6058gOztb4wQabU488UTYuHEjzJ8/f9Tf+4svvoDTTz8d5s2bBz/5yU+goqIC2traYMeOHbB27Vr44Q9/CNnZ2QCAk/Xdu3fD7bffnvD7Pfnkk1BQUAA333yzZntJSQls3LgRZs6cOYJPMzKMnkkAvDbir3/9K9xwww3wrW99Cx577DE4ePAg3HnnnbB371545513hvZrb2+Hp59+GpYsWQJf+cpX4L//+79Tcs179+6FBx54AM4880yoqKhIyXski/7+fnjggQcAAJ3WyeSVV14Br9er2VZbWwtXX301fPWrXw3b//TTT4df/OIXmm1FRUVJvaaRkoz2xjAMwzCTAXaOMQzDMBOChQsXwrJly4b+v+KKK+AHP/gBfOlLX4LLL78cDh06FDbxPOmkk6CgoMDwfMFgEK644grweDzw2WefQVVV1dBrF110EaxcuRKuueYa+Ld/+zf4/e9/P+z1TZs2DVwuF/zpT3/SOMd6enrgpZdeguuvvx7++Mc/xvuxR4zf7wdFUYYi4saCxx9/HEwmE6xfvx5cLtfQ9iuvvBL+8z//0zDaLhXY7fYxuwdEtGcSAJ/LH/3oR7Bq1aqh5+Wss84Cl8sF119/Paxbtw4uvPBCAACYPn06dHZ2DkVDpco5xiBLly4N2/b2228DAMC3vvWtsNdycnLG/HlLJsFgEAKBANjt9rG+FIZhGIZJOpxWyTAMw0xYpk2bBr/85S+hp6cH/vCHP8R17CuvvAJ79+6Fu+66S+MYI66++mpYtWoVrFmzBpqammI65y233AIvv/wydHV1DW1bu3YtAABcc801hsd88skncM4554DL5YLMzEw47bTT4I033gjbb/fu3XDZZZdBbm4uOBwOOOGEE+D//t//q9mHUif//Oc/wx133AFTp04Fu90Ohw8fNkyrvPnmm8HpdMLhw4fhoosuAqfTCeXl5XDHHXeERcjU19fDlVdeCS6XC3JycuD666+HLVu2xJSm2N7eDtnZ2eB0Og1fp1S7M888E9544w2oqanRpKIRDzzwAJx66qmQl5cH2dnZcOKJJ8KaNWs0zrWKigrYs2cPbNiwYeh4inaKlFYZy3dA6b0ffvghfOc734GCggLIz8+Hyy+/HBoaGqJ+/njYtGkTNDY2wje+8Q3N9quuugqcTie88sorQ9v09ydetm7dCtdccw1UVFRARkYGVFRUwLXXXgs1NTVD+zz77LNw1VVXAQA66WJND37jjTfghBNOALvdDpWVlWERVISqqvDkk0/CCSecABkZGZCbmwtXXnklHD16VLPfmWeeCQsXLoSPP/4Yli9fDhkZGTB16lS47777IBgMAgB+v4WFhQCAzwpdqz6CsLm5Ga699lpwu91QVFQEt9xyC3R3d8dz64au/ZlnnoEZM2bA2WefHffxkaC2+txzz8Gdd94JJSUl4HQ6YfXq1dDc3Aw9PT3w7W9/GwoKCqCgoAC+8Y1vhKXcxnJfo7U3aiuPPvoo/OxnP4PKykqw2+3w4YcfAgA+O5deeink5eWBw+GApUuXwosvvqi5hv7+fvjhD38IlZWV4HA4IC8vD5YtWwbPP/980u4VwzAMwyQLdo4xDMMwE5qLLroIzGYzfPTRR2GvUaQD/dAkGgDg3XffBQCAr3zlKxHP/ZWvfAUCgUDMOl3XXHMNmM1mzeRvzZo1cOWVVw6lDcps2LABzj77bOju7oY1a9bA888/Dy6XC1avXg0vvPDC0H4HDhyA0047Dfbs2QO/+c1v4OWXX4b58+fDzTffDI8++mjYee+++26ora2F3//+9/Daa6/BlClTIl6z3++HSy+9FM455xz4+9//Drfccgs89thj8Mgjjwzt09fXB2eddRZ8+OGH8Mgjj8CLL74IRUVFcPXVV8d0X1asWAGNjY1w/fXXw4YNG2BgYMBwvyeffBJOP/10KC4uho0bNw79ENXV1XDrrbfCiy++CC+//DJcfvnl8H/+z/+B//zP/xza55VXXoEZM2bA0qVLh46XHUp6Yv0OiG9961tgtVrhueeeg0cffRTWr18PN9xwQ0z3ASD8mdQ/l7t37wYAgMWLF2uOs1qtMHfu3KHXk0F1dTXMmTMHHn/8cXj77bfhkUcegcbGRjj55JOHdLkuvvhi+K//+i8AAPjd7343dE8vvvjiiOd9//334bLLLgOXywVr166Fn//85/Diiy/CM888E7bvrbfeCrfffjuce+658Oqrr8KTTz4Je/bsgdNOOw2am5s1+zY1NcE111wD119/Pfz973+HK6+8En72s5/B97//fQDA1NS33noLAAC++c1vDl3rfffdpznPFVdcAVVVVfC3v/0N7rrrLnjuuefgBz/4Qdz377333oOamhq45ZZbDJ2UH330EbhcLrBarTB//nz45S9/qfmuh+Oee+6BlpYWePbZZ+GXv/wlrF+/Hq699lq44oorwO12w/PPPw8//vGP4c9//jPcc889mmNjua/DtTcAgN/85jfwwQcfwC9+8QtYt24dzJ07Fz788EM4/fTToaurC37/+9/D3//+dzjhhBPg6quv1jhN/+3f/g2eeuop+N73vgdvvfUW/PnPf4arrroK2tvb47jLDMMwDDNKqAzDMAwzjnnmmWdUAFC3bNkScZ+ioiJ13rx5Q///9Kc/VQEg7Gfq1KlD+1xwwQUqAKiDg4MRz7tu3ToVANRHHnkk6jWuXLlSXbBggaqqqnrTTTepy5YtU1VVVffs2aMCgLp+/Xp1y5YtKgCozzzzzNBxy5cvV6dMmaL29PQMbQsEAurChQvVsrIyNRQKqaqqqtdcc41qt9vV2tpazfteeOGFamZmptrV1aWqqqp++OGHKgCoZ5xxRtg10msffvjh0LabbrpJBQD1xRdf1Ox70UUXqXPmzBn6/3e/+50KAOq6des0+916661hn8mIwcFB9Stf+crQ92A2m9WlS5eq//7v/662tLRo9r344ovV6dOnRz2fqqpqMBhU/X6/+h//8R9qfn7+0L1SVVVdsGCBunLlyrBjjh07lvB3QM/hv/7rv2rO+eijj6oAoDY2Nka93kjPJACoM2fOHNrvwQcfjHi+VatWqVVVVYbnb21tVQFA/elPfxr1OqIRCATU3t5eNSsrS/31r389tP2ll14Ke3aiceqpp6qlpaXqwMDA0DaPx6Pm5eWpsum5ceNGFQDUX/7yl5rj6+rq1IyMDPXHP/7x0LaVK1eqAKD+/e9/1+z7L//yL6rJZFJrampUVY1+H+g7ePTRRzXb//Vf/1V1OByaZygWrr76atVsNqv19fVhr/3rv/6r+qc//UndsGGD+uqrr6rXX3+9CgDqDTfcMOx5qa2uXr1as/32229XAUD93ve+p9n+la98Rc3Lyxv6P577Gqm9UVuZOXOm6vP5NK/NnTtXXbp0qer3+zXbL7nkErWkpEQNBoOqqqrqwoUL1a985SvDfl6GYRiGGQ9w5BjDMAwz4VEjaFa99957sGXLlqGfN998M6HzxpO6dsstt8DWrVth165dsGbNGpg5cyacccYZYfv19fXB5s2b4corr9SkG5rNZrjxxhuhvr4eDhw4AAAwJPJfXl6uOcfNN98M/f39YdEeV1xxRczXqygKrF69WrNt8eLFmtS6DRs2gMvlggsuuECz37XXXhvTe9jt9qE01sceewyuueYaaG1thQcffBDmzZs39DmH44MPPoBzzz0X3G43mM1msFqt8JOf/ATa29sNq5YORzzfAXHppZdq/qcIL/l+RUP/TG7ZsgVeffXVsP0iPXPJrPbY29sLd955J8yaNQssFgtYLBZwOp3Q19cH+/btS+icfX19sGXLFrj88ss1FRwpGk/m9ddfB0VR4IYbbtBE0hUXF8OSJUvCIjZdLlfY/b/uuusgFAoZRo5Gwug7HBwcjOsZ6ujogFdffRUuuOACmDp1atjrv/vd7+Ab3/gGnHHGGXDZZZfBX/7yF/jud78Lf/nLX+CLL76I6T0uueQSzf/z5s0DAAiL2ps3bx50dHQMpVbGe1+jcemll4LVah36//Dhw7B//364/vrrAQA057/ooougsbFxqM2ccsopsG7dOrjrrrtg/fr1ESNGGYZhGGY8wIL8DMMwzISmr68P2tvbYdGiRWGvLVmyJKL4+bRp0wAA4NixYzB37lzDfaqrqwEAwpxS0TjjjDNg9uzZ8Ic//AFefPFFuP322w0dGp2dnaCqqqZKIVFaWgoAMJR+1N7eHtN+hNG+kcjMzNQ4MQDQmTU4ODj0f3t7u2GVvXgr782bN29ogq+qKjz++OPwb//2b3DfffeF6RXp+eyzz2DVqlVw5plnwh//+EcoKysDm80Gr776Kjz44IMJTbzj+Q6I/Px8zf8kTh7r+0d7JuXzG93zjo4OyMvLi+l9YuG6666D999/H+677z44+eSTITs7GxRFgYsuuihhR0ZnZyeEQiEoLi4Oe02/rbm5GVRVjfgczZgxQ/O/0X50znhS9Ub6HQIA/OUvfwGv12soxB+JG264AZ544gnYtGmTobi/Hv13bbPZom4fHBwEp9MZ932Nhr5tUErmD3/4Q/jhD39oeAyl5P7mN7+BsrIyeOGFF+CRRx4Bh8MB559/Pvz85z+H2bNnx3wNDMMwDDMasHOMYRiGmdC88cYbEAwG4cwzz4zruPPOOw+efvppePXVV+Guu+4y3OfVV18Fi8US97m/8Y1vwL333guKosBNN91kuE9ubi6YTCZobGwMe40E3smJkp+fH9N+RDKji+j9P/vss7DtsRYqMEJRFPjBD34A//Ef/xGTjtbatWvBarXC66+/rnHmGUVdxUo838FoQU7eXbt2wfz584e2BwIB2L9/f8zResPR3d0Nr7/+Ovz0pz/VPP9erxc6OjoSPm9ubi4oimL4bOi3FRQUgKIo8PHHHxtWQNRv02uQyefUO7xSzZo1a6CoqCgsuisaFIlqMqU2cSPe+xoNfV9C7eHuu++Gyy+/3PCYOXPmAABAVlYWPPDAA/DAAw9Ac3PzUBTZ6tWrYf/+/TFfA8MwDMOMBpxWyTAMw0xYamtr4Yc//CG43W649dZb4zr2q1/9KsyfPx8efvhhOHjwYNjrL7zwArzzzjvwrW99yzAKJho33XQTrF69Gn70ox8ZplwB4MTx1FNPhZdfflkTsRIKheAvf/kLlJWVDVXRPOecc+CDDz4Iq4r4P//zP5CZmQnLly+P6/riZeXKldDT0wPr1q3TbKdKnMNh5HwCQAeUx+MZitICwIm7UQSPoihgsVjAbDYPbRsYGIA///nPYftGOoeeeL6D0eLUU0+FkpKSsGqQ//u//wu9vb0RHRLxoigKqKoa5ij57//+7zDR+Hgiq7KysuCUU06Bl19+WRN92NPTA6+99ppm30suuQRUVYXjx4/DsmXLwn700aA9PT3wj3/8Q7PtueeeA5PJNJS6nEgUWLxs3boVdu7cCTfddBNYLLGvM//P//wPAEDK22s89zXWtkLMmTMHZs+eDTt27DA897Jly8DlcoUdV1RUBDfffDNce+21cODAAejv70/KZ2UYhmGYZMGRYwzDMMyEYPfu3UPaNi0tLfDxxx/DM888A2azGV555RUoLCyM63xmsxn+9re/wXnnnQcrVqyAO+64A1asWAFerxdee+01ePrpp2HlypXwy1/+Mu5rLS0tjSmi6aGHHoLzzjsPzjrrLPjhD38INpsNnnzySdi9ezc8//zzQ1EbP/3pT+H111+Hs846C37yk59AXl4e/PWvf4U33ngDHn30UXC73XFfYzzcdNNN8Nhjj8ENN9wAP/vZz2DWrFmwbt06ePvttwFg+EiYb3/729DV1QVXXHEFLFy4EMxmM+zfvx8ee+wxMJlMcOeddw7tu2jRInj55ZfhqaeegpNOOglMJhMsW7YMLr74YvjVr34F1113HXz729+G9vZ2+MUvfmEYBbNo0SJYu3YtvPDCCzBjxgxwOByGabcAsX8HyeLzzz83/L7mz58P2dnZYDab4dFHH4Ubb7wRbr31Vrj22mvh0KFD8OMf/xjOO++8MN23devWQV9fH/T09AAAwN69e+F///d/AQAruWZmZhpeR3Z2Npxxxhnw85//HAoKCqCiogI2bNgAa9asgZycHM2+CxcuBACAp59+GlwuFzgcDqisrIwYrfWf//mfcMEFF8B5550Hd9xxBwSDQXjkkUcgKytLE5V2+umnw7e//W34xje+AVu3boUzzjgDsrKyoLGxET755BNYtGgRfOc73xnaPz8/H77zne9AbW0tVFVVwZtvvgl//OMf4Tvf+c5QmrTL5YLp06fD3//+dzjnnHMgLy9v6PMlizVr1gAAVsQ04rnnnoOXX34ZLr74Ypg+fTp0dXXBSy+9BGvXroWbb74ZlixZkrRrMSKe+xqpvUXjD3/4A1x44YVw/vnnw8033wxTp06Fjo4O2LdvH2zbtg1eeuklAEBH7yWXXAKLFy+G3Nxc2LdvH/z5z3+GFStWRHwuGYZhGGbMGKNCAAzDMAwTE1QlkH5sNps6ZcoUdeXKlep//dd/hVU7VFVRla61tXXY87e1tal33XWXOnfuXNXhcKhOp1M95ZRT1CeeeCKsSlsk5GqVkTCqVqmqqvrxxx+rZ599tpqVlaVmZGSoy5cvV1977bWw43ft2qWuXr1adbvdqs1mU5csWRJ2Lqpy99JLL4UdH6laZVZWVti+dP9kamtr1csvv1x1Op2qy+VSr7jiCvXNN980rCCo5+2331ZvueUWdf78+arb7VYtFotaUlKiXn755erGjRs1+3Z0dKhXXnmlmpOToyqKormOP/3pT+qcOXNUu92uzpgxQ33ooYfUNWvWqACgHjt2bGi/6upqddWqVarL5VIBYKgan1G1SlWN7TuIVDXV6L4aEa1aJQCo7777rmb/5557Tl28eLFqs9nU4uJi9Xvf+56moiYxffr0iOeU74kR9fX16hVXXKHm5uaqLpdLveCCC9Tdu3er06dPV2+66SbNvo8//rhaWVmpms3mmCqU/uMf/xi6/mnTpqkPP/yw4XOlqvi9nnrqqUP3f+bMmerXv/51devWrUP7UBtbv369umzZMtVut6slJSXqPffcE1Y18b333lOXLl2q2u12FQCGPkukfoG+2+Hul6qqan9/v+p2uw0rwhIbN25UzznnHLW4uFi1Wq1qZmamevLJJ6tPPvnkUCXHaERqx5GewUifK5b7Gqm9UVv5+c9/bniNO3bsUL/2ta+pU6ZMUa1Wq1pcXKyeffbZ6u9///uhfe666y512bJlam5u7lCb/cEPfqC2tbUNew8YhmEYZrRRVDVCiS+GYRiGYZgo/Nd//Rfce++9UFtbC2VlZWN9Ocwk5swzz4S2traY9OkYhmEYhmHihdMqGYZhGIYZlieeeAIAAObOnQt+vx8++OAD+M1vfgM33HADO8YYhmEYhmGYCQ07xxiGYRiGGZbMzEx47LHHoLq6GrxeL0ybNg3uvPNOuPfee8f60hiGYRiGYRhmRHBaJcMwDMMwDMMwDMMwDJO2RC8vxTAMwzAMwzAMwzAMwzCTGHaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmGYFLJ582b46le/CtOmTQO73Q5FRUWwYsUKuOOOO+I+1/333w+Komi2nXnmmXDmmWcmdG1G53vyySfh2WefTeh8DMMwDMMwExFFVVV1rC+CYRiGYRhmMvLGG2/ApZdeCmeeeSb8y7/8C5SUlEBjYyNs3boV1q5dC/X19XGd7/7774cHHngAZPNt7969AAAwf/78uK+vvr4e6uvrYfny5UPbFi5cCAUFBbB+/fq4z8cwDMMwDDMRYecYwzAMwzBMili5ciUcP34c9u/fDxaLRfNaKBQCkym+IH4j51iyYecYwzAMwzDpBqdVMgzDMAzDpIj29nYoKCgIc4wBgMYx9sILL8CqVaugpKQEMjIyYN68eXDXXXdBX1/fsO+hT6usrq4GRVHgF7/4BfzqV7+CyspKcDqdsGLFCti0aZPmWH1aZUVFBezZswc2bNgAiqKAoihQUVEBvb29kJOTA7feemvY+1dXV4PZbIaf//znsdwShmEYhmGYcQc7xxiGYRiGYVLEihUrYPPmzfC9730PNm/eDH6/33C/Q4cOwUUXXQRr1qyBt956C26//XZ48cUXYfXq1Qm/9+9+9zt499134fHHH4e//vWv0NfXBxdddBF0d3dHPOaVV16BGTNmwNKlS2Hjxo2wceNGeOWVV8DpdMItt9wCf/3rX8OOf/LJJ8Fms8Ett9yS8LUyDMMwDMOMJeHLmAzDMAzDMExSePjhh2H//v3w29/+Fn7729+C1WqFk08+GVavXg3f/e53wel0AgDAvffeO3SMqqpw+umnw7x582DlypWwc+dOWLx4cdzv7XK54PXXXwez2QwAAKWlpXDKKafAunXr4JprrjE8ZunSpZCRkQHZ2dkaHTIAgO9+97vw61//Gp555hm4/fbbAQBgcHAQ/vSnP8G1114L+fn5cV8jwzAMwzDMeIAjxxiGYRiGYVJEfn4+fPzxx7BlyxZ4+OGH4bLLLoODBw/C3XffDYsWLYK2tjYAADh69Chcd911UFxcDGazGaxWK6xcuRIAAPbt25fQe1988cVDjjEAGHKw1dTUJHS+GTNmwCWXXAJPPvnkkObZc889B+3t7fDd7343oXMyDMMwDMOMB9g5xjAMwzAMk2KWLVsGd955J7z00kvQ0NAAP/jBD6C6uhoeffRR6O3thS9/+cuwefNm+NnPfgbr16+HLVu2wMsvvwwAAAMDAwm9pz6Sy263j+h8AADf//734dChQ/Duu+8CAKZurlixAk488cSEz8kwDMMwDDPWcFolwzAMwzDMKGK1WuGnP/0pPPbYY7B792744IMPoKGhAdavXz8ULQYA0NXVNXYXGYGzzz4bFi5cCE888QQ4nU7Ytm0b/OUvfxnry2IYhmEYhhkR7BxjGIZhGIZJEY2NjVBSUhK2nVIlS0tLh6pFUmQX8Yc//CH1F2iA3W6PGl32ve99D2677Tbo7u6GoqIiuOqqq0bx6hiGYRiGYZIPO8cYhmEYhmFSxPnnnw9lZWWwevVqmDt3LoRCIdi+fTv88pe/BKfTCd///vehtLQUcnNz4bbbboOf/vSnYLVa4a9//Svs2LFjTK550aJFsHbtWnjhhRdgxowZ4HA4YNGiRUOv33DDDXD33XfDRx99BPfeey/YbLYxuU6GYRiGYZhkwZpjDMMwDMMwKeLee++F3NxceOyxx+DSSy+FCy+8EH7zm9/AueeeC5999hksWrQI8vPz4Y033oDMzEy44YYb4JZbbgGn0wkvvPDCmFzzAw88ACtXroR/+Zd/gVNOOQVWr16teT0jIwNWr14NFosFbrvttjG5RoZhGIZhmGSiqFRuiGEYhmEYhmGGwefzQUVFBXzpS1+CF198cawvh2EYhmEYZsRwWiXDMAzDMAwzLK2trXDgwAF45plnoLm5Ge66666xviSGYRiGYZikwM4xhmEYhmEYZljeeOMN+MY3vgElJSXw5JNPwoknnjjWl8QwDMMwDJMUOK2SYRiGYRiGYRiGYRiGSVtYkJ9hGIZhGIZhGIZhGIZJW9g5xjAMwzAMwzAMwzAMw6Qtk0ZzLBQKQUNDA7hcLlAUZawvh2EYhmEYhmEYhmEYhhkjVFWFnp4eKC0tBZMpemzYpHGONTQ0QHl5+VhfBsMwDMMwDMMwDMMwDDNOqKurg7Kysqj7TBrnmMvlAgD80NnZ2WN8NQzDMAzDMAzDMAzDMMxY4fF4oLy8fMhfFI24nGNPPfUUPPXUU1BdXQ0AAAsWLICf/OQncOGFF4bte+utt8LTTz8Njz32GNx+++1Rz/u3v/0N7rvvPjhy5AjMnDkTHnzwQfjqV78az6UNpVJmZ2ezc4xhGIZhGIZhGIZhGIaJSXorLkH+srIyePjhh2Hr1q2wdetWOPvss+Gyyy6DPXv2aPZ79dVXYfPmzVBaWjrsOTdu3AhXX3013HjjjbBjxw648cYb4Wtf+xps3rw5nktjGIZhGIZhGIZhGIZhmLhRVFVVR3KCvLw8+PnPfw7f/OY3AQDg+PHjcOqpp8Lbb78NF198Mdx+++1RI8euvvpq8Hg8sG7duqFtF1xwAeTm5sLzzz8f8Tiv1wter3fofwqX6+7u5sgxhmEYhmEYhmEYhmGYNMbj8YDb7Y7JTxRX5JhMMBiEtWvXQl9fH6xYsQIAsGLkjTfeCD/60Y9gwYIFMZ1n48aNsGrVKs22888/Hz799NOoxz300EPgdruHfliMn2EYhmEYhmEYhmEYhomXuJ1ju3btAqfTCXa7HW677TZ45ZVXYP78+QAA8Mgjj4DFYoHvfe97MZ+vqakJioqKNNuKioqgqakp6nF33303dHd3D/3U1dXF+1EYhmEYhmEYhmEYhmGYNCfuapVz5syB7du3Q1dXF/ztb3+Dm266CTZs2AADAwPw61//GrZt2xaT2JmMfn9VVYc9h91uB7vdHu/lMwzDMAzDMAzDMAzDMMwQcTvHbDYbzJo1CwAAli1bBlu2bIFf//rXMG/ePGhpaYFp06YN7RsMBuGOO+6Axx9/fKjCpZ7i4uKwKLGWlpawaDKGYRiGYRiGYRiGYRiGSTYJa44RqqqC1+uFG2+8EXbu3Anbt28f+iktLYUf/ehH8Pbbb0c8fsWKFfDuu+9qtr3zzjtw2mmnjfTSGIZhGIZhGIZhGIZhGCYqcUWO3XPPPXDhhRdCeXk59PT0wNq1a2H9+vXw1ltvQX5+PuTn52v2t1qtUFxcDHPmzBna9vWvfx2mTp0KDz30EAAAfP/734czzjgDHnnkEbjsssvg73//O7z33nvwySefJOHjMQzDMAzDMAzDMAzDMExk4nKONTc3w4033giNjY3gdrth8eLF8NZbb8F5550X8zlqa2vBZBIBa6eddhqsXbsW7r33Xrjvvvtg5syZ8MILL8Cpp54az6UxDMMwDMMwDMMwzKSitxfA6QRoawNwOPBvhmGSj6KqqjrWF5EMPB4PuN1u6O7uhuzs7LG+HIZhGIZhGIZhGIYZEX/+M8D55wN88glAVxfALbeM9RUxzMQhHj/RiDXHGIZhGIZhGIZhGIZJLj4fwNe/DrB9OzrGItS4g74+gHfeATh2bBQvjmEmGewcYxiGYRiGYZgJSktLcs7T3Z2c8zAMkzyOHAGYNQugpwegsxMdZEasXQvwhz8AHDw4qpfHMJMKdo4xDMMwDDOm7N3LE3OGSZQjRwC8Xu22Q4fiP09ra3Kuh2GY5NHZidFjubkA/f0Ax4/jtr4+7X69vQBz5wJMDsEkhhkb2DnGMAzDMMyYcvvtAFu2jPVVMMzEZHAQo0pkUjlBDoVSd26GmaxUVwMEAvEd09aGbbm2FiAYBLDZcCGprQ3g8GHtvrm5ACeemLTLZZi0hJ1jDMMwDMOMKceOAWzYMNZXwTATE1UF2L9fu81sju3YxkaApqb43u/o0fj2ZxgG2+nmzfEdU18v0ihDIQCTCSOtVRVfkyksRAdaZ6fYpneaMwwTHXaOMQwTFV4hZhgm1SxbBlBRkbzzqWp4mhnDTEbq6jAixePRbo81cszjESnNg4NJvTSGYf4fL7yAjq133glvq9EYGAD44x9xfFRVAEVBh/ZnnwH885/afUMh3KemBqC9HbfF6/gGAOjoiP8YhpkssHOMYZioRKqKQ+zbh7/jGewZhmFkqqoA8vOTd75DhzgSjUkPvF50atEY3Nsb3/G9vWIRTK9hBADg97OGEcMYYdReInH8OLa1zk6M/IqV1lZMl/T7MSXT6cTtb70VnqJJkWVTp2LK5eHDGOVZU4OaZbEynN0fD+SkY5iJAjvHGIaJynAi2ST6u3Ej/u7vT+31MAwz+bDZALKzk3e+ujpe/WbSB6sVfwDir1z5/vvCORYMhr/e0ICC/wRHZTIM0tgY3/4eD8CePRg9FgvBIMCmTej8LioC2LoVwO0W722U2WEyYbXKPXswugwAnXE1NbFfpz5dcyRw9gkz0WDnGMMwUWloiP56IICT0I4ONJgTqZDFMEx6Y7cnlv4Rifx8dtQzk5tQCKNKurrQeSVHd+3dK3SKZIyiyrq7xQQ20kT2k0/E31u3hguBMwwTnfp6jN7q7TV2QhOy47mjA9teMIh6Yh0doqJsfT2Om3oo6qu3F9sqAMCHH8ZXCICizJIRMRpPlBzDjAfYOcYwTFSGW4X2+3FVq7oa4K9/Bdi9e1Qui2GYSURODq54J4vmZoxGY5jJzFtvoRB/SwvA+vViMrt1K6Yz6SO/jTTF+vqEU8zvN34fWeC7ri5c/J9hmOi0tGA7amgwdlwTsuM5GAQoKMC/S0tRf0xVAZYsweiwnJzw481mAJcLICsL4L338P06OuJzaJMDTo4YTZRkpmgyzGjAzjFm3NLXxyv/44FYnGPNzRiy3dEB8PTTo3NdDMNMHjIzAWbMSN75MjIALJbknY9hxhuqCtDWhn/b7ThWqyr+/p//wUmx3oZSVXSEUXRKIKB1jslOMBn5PAMD8aduMky6c8opItXf5Yq83/Hj4u9gENus348OtfZ2gG3bAMrK8HVyYsmRXiYT/qa+YN8+3BZPZHY8UWbDQX0Uw0wU2DnGjFuam5ObZsMkxnB6AbW1uJLs8wFs385loxmGGXtYE2n0iBQFES11iEkOJJZP47SqAuzciQLe77+PdpSMquL3QhFk+/drx+xI35lccCcY5MgxhiGiRYHJ2GyYYlhUBOBwRN5PUcTfDQ2YTnnsGEaOLV2K0Vwkyk9OamqfqgqQl4ev+3wYdZaVhc6uSFGhRgy3bzxFP1iQn5losHOMGbdwhaTxwXCpTn19OAhnZwPMnImh3gzDMPGSn5+8Pn9wkMeP0SKSo+Rvfxvd60g3VBUjJI8cwXE6MxO3eTw4KSZNMtnhFQrhD7WN48fxdXKQRYoYodd7enB/qlLNMOlMS0vsVSCDQYzwzMuLLORfXY229NGj+P+uXfi/1YrpkgDYvsm5Rva2fD6zGZ1Xx45hpFpjI563pCT2z0V9RiTHXzxZPTwOMxMNdo4xCeHzpX5lXl6pZMaGvj5jwU+CDO0jR3CVOjs7vtLWDMMwhN8f34p0NPbtG77SLpMcIkUXf/YZwEcfje61pBu5uag7ZrMJp5ffj06sjg6AykqcJBOUbqXXNaIofZoU6yf8ZO/5fOhAk6NbGCadibUao6piBcmCgsjtp6YGHdbk7KKUZ6dTLFQ7HKKd9vdj+5adY4qCDrKCAvz95pt4jnhkBsihFclZHk9UMDvHmIkGO8eYYTHq2GprsQOvqxvd9x3N4xkceLu7I08yjxxBY3njRozUSOXzwDBM8ok1JSTVkAZLsvptny+yYz+ZeipM5MlhR4exADxA8pyg6Qw5wihNUlFE2uSUKXiP9feZHGgU+UHHULujSW9trTimuRmguFi8544dkb9XhkknaIE4FvLzcd+zzxaaYXra2rTjVnMzBgr4/UKTMxAQY1hBAaZeHjigPY/PhwtEFgu21Z6exMbWSE6weMZQFuRnJhrsHGOGhQQkjUhllJBssCVCtOtmYiMUQvFd2VCW6ejAlamWFoCKCoB3343/PViXhmHGjvHiKCoqSm61SpMJU86MYGM9uRj14XV1GM0QaQwfGEjtNaULlEaZnY1jsariYpbNhhNtI93WUAigvh7/LivDPoAm+V5veNTYgQMi6mRgADXNsrPZwckw8TjHAABmzcJoT7fb+PX+fkyPJtracP9gELXHVBXboPyeb74pRPybmnDsc7txn5wc7B/iFcWnfjvSZ4vHbvf5OFiBmViwc4wZFqNOsKsLf+IpDcxMPEIhgKlTI6fQNjfjPgsXAlx5pdBEiIdI1bEYhhmfNDSk5rwUxZIMrNbknIcZHqMJ1MAAwO7dkReptm9P6SWlBRQlVl+POkZNTaKCJUWT9fRoHeC06BgIYDtWFIBDh3BC3dGBTs3du7Xv09kpxvbeXkzrmjOHq4kzTCCgXWyJFFG5bx/ay9/6Fra/SONTIIAOLUqFHhwUzrScHGyvwSD+ttnwXHV1Ikq3pwdfs1rRmWazof3e1xdfKnQ051hTU3zi/qz/yUw02DnGDEtnZ7gR1NqKnSOtPqYCVR2ZrgV3xiMnGBQry3o8HoCXX8b7nJODId+qKlavI6GvXBMpcoVXpRkm9STST6ai+lRJSXKdY05nasYAHlfCoQmUHEkeDGJEsVH/7vWitg4zco4dQ/ts6lSAs87C74AWL71enJjKk3eKdDl2DB2YNTXoTKO2R9FjMsePi8l8ZydGeRYUjJ+oU4YZK4JBbaRlJJmC7duxfbndmF4ZzTnW3CykTCiaeto0/K0oGH0GgE6z3Fx8/7o64QBTFEzNNJtFxOf06clzjvX3xxeJ1t/P4+ZEI55oyMkIO8eYYQkGwyMF3n0XnSOpjPrhznTsCYXQCWo0qNbVYSUdADSy8/JwQK6qEt+d0Xf4+efa/yMZ2NE0TQIB41VrnnAxTHwk0s+mIp0+Kyu5aZW5uULHTM9IdNY4XT8c6nf1Fdh8PuPo8i++QL1KLpgwMmTpialT8X4ePoy2WVcX6oSpKt5v/TFyW2tvxzE+FMJjjfoEihxraMB0Zbs9vugRhpmMHDumza6J5DTq6QFYtAidYqWl6LSSC2UQwSD2o9nZaOeS/hj9VlXh6MrIQGeb2YwONWq3JhNGd27eLJwciY55keyDWAMjfD5Oq5yIULXUdIWdY8ywGBm3R44IIdhUwZ3p2BMM4ve8Z0/4a11dQjdm2jQM3z7vPIAFC8SAfPBguOaJvgppJOdYtJWLujqMXtTT0hL5GIZhwkmkn03VqmIyI8fq64WIuOxo7+oa2aRer8eUzlCEkZF+GC2cvf12+GtffIGVLFMRgZhuKAo6lq1WnHB7PAAffIDfjd0eHvlN0WEmk1j0mjJFOMeOHAlvg/392JZqa0XbsVrZUcwwPp92PCTtLz379qFTLDsbbWVFEe1Sjuzs7wd48UW0cbu6AGbPxn2nTBH7BIPY1qdNw3ack4PtnZzeDgcuDM2YgU6zlStREziecdvtxmuIdIzRnEBPdTWOw7W1HInETCzYOcYMi9FEoqcHDeJUO8dGMlFi59rIIaHe3btx0JadT8EgOk6bm1Ggt7IS4MtfBrjiCjHp8fnCDehAQAj8qypOXI0GzmiDqZGYaX8/vi9FszEMMzzjyTlmMiVXc4zOJUe6tbaO7D2MVvvTFXKAZWWFv0aLF62t4Q7FTZuwwjFHHo0MVcVJcFkZTrhzcsS9DoWwDVit2vba1SVE+1UVIwTo9VAIo1b0C1qzZ6NIuN8v0jRtNhFdkEp5DYaZCJDNG6lPU1V0MDsc2HZyc4VzWnZe22w4v2poQBs7KwsjxPTFZaZNw5+MDG2lWkXBSDKnE9/LbMao0v7++MZtiwWlTYyOMZuHXyQiPUQAdBjyfIyZSLBzjBmWo0fDNSgsFoBt2zCVLlWMtDPlznjkdHfj4DttGor2yiLKwSC+1tODkQBOJxrnBQVoPNfW4kCvjypobMTnKRjEiVNLi7FBIQ/K+hRKRcHzyBEhtM+f/xz9M7FOCsMI4u0nU7kKPBKNST1Tpxp/tlCIF12SBUUBZ2eHv0ZpPC0t4f13VxdO+jgNfuQUFKADLDMT2w/ZamYzjsehkDYy5cABHAMppTUQwFQwkwn3VRScFMtjK43jbW04Vnd24rZt2/B1jqZk0pW+PlwgpjYQSRqgr0+kJtvtqDsGgH1hT49YaKAIMMrMoWgzco4dOya0fWfNApg5E99zcBDfgxYlzGZsz3Pn4g+9b6x4vdhHGI31dXVCEziSxEIwiNdFaaYcOcZMJOJyjj311FOwePFiyM7OhuzsbFixYgWsW7du6PX7778f5s6dC1lZWZCbmwvnnnsubN68Oeo5n332WVAUJexnMJrgEDOqdHdjZyjT1QWwfj2uTKSKzk4W5B9rGhtxEjM4iL9lZ2gggKvWHR0AJ52E2045BZ+JnTtxNdnvD4+0aGkB2L8fv1+TSUSn6ZG/P1nzjiZaZjNGH9C2Q4fw748/jv7dj0RviGEmE35//P2kPo0kGZCTJZlplSRMDKA950gjktnIF9BCA/XP8njd1oZ9dG8vOmRkfD506hAceZQYlCJpteIE2mIB2LFDvF5SgvvIziuK/KK0Srr3lFZJ2/U6s6EQ7hsK4RiamyvE/dvbhd4cm+5MOnH8uMisAIjsHOvtFa8VFIhx5PhxrUSJouB+bre2PZKA/4knioqUM2ZgH2u1op0dCIgUaasVf+flYd8QS7SXTE0Nvr+RrM7nn4u5X6SKtXpJlmSM6z09Iz8Hw8RCXM6xsrIyePjhh2Hr1q2wdetWOPvss+Gyyy6DPf/v6a+qqoInnngCdu3aBZ988glUVFTAqlWroNVIHEgiOzsbGhsbNT+OVHpdmLjYtSu8Y/N60SBKpWjfMI8NMwp0deHq80kn4SBbWIgDZkcHDn7Hj6NRXFmJ+1ssKMjv9eJAPDiI36M8+TGbAT79FI/v7sbfRhPOSCm73d0AH32Ef9PA6/HgdZBRr3fmyrDTlGGQmprI7UFVjR3J1PaTyaef4u9kplXKjhr5nCOJHGtp4f5DpqUF+3kjJ6SiANx0E/4dCKAOFmGxAKxYgX/39rJzbCSQc4wmwsGgiBijaDD5mae2azKJYjtWK47ZcgEe/cJkVxeOrTNn4n4OB56juRnHeIpYO3hwtD45w4w9PT04jh45En2/mhptm9q7F9ukPuUwKwvt2awsEX0lLxoVFuLcy2LBxWizGSM4S0vRwaYo2EYzM/HYrCy0yWfNim9huKwM2/n+/eFOqZ07RXuPZAsEg2j/k1ZaNJs8Voy0LZnUkc4Fc+Jyjq1evRouuugiqKqqgqqqKnjwwQfB6XTCpk2bAADguuuug3PPPRdmzJgBCxYsgF/96lfg8Xhg586dUc+rKAoUFxdrfpixh8Jm29uxYyYdCq8XO8tAILWaITwJGXsGB3EwzsnBQTw7G1MofT4cNAFwgD7rLHEMRZepKj47PT1arbKiIjSmQyE8T1tbZM0x/TPQ3Y3CphTK/cknwqDv68P9OzqiP5fyOfXFARhmsqNPkZe1QWQOHAivPgiA7WsipFXKE/yuLjGeGa2Exwo58xkkEAifOJFB7fUCzJmDjpdAQJvO3t2NkUdeL44nPNYnBrVd0vAEwDG3qwujSshJ5vGIxcbMTBwrTSac5JpMKJuwaROeq74+PILT48Fj3G7xmsWC70PV+mh/dnQy6URfH7azDz5AuzPS2Gi3Y9sj9JGZNFaRM8xkEgu+tGg0ZYp4feZMbINuN/atViuOcXY7vl5aiuebOROgvBz1zvLywsf/SNjt2K693vDUyZoaYdNHGg/Jfjeb8ZqTodXJY+/oks4BKglrjgWDQVi7di309fXBCloClPD5fPD000+D2+2GJUuWRD1Xb28vTJ8+HcrKyuCSSy6BL+S60xHwer3g8Xg0P0xyIWdYQwOuDtLkoroa/7fbY+9oE4EF+ceeoiLUOujsBPjHP9BIHhzEZ4I6zupqbbqlxSJ0UCh6TB4Yjx5FvYVQCMOzd+40Nig8HrEaR4PiBx/gs0d6DMeOCecYhXf39kbXFZMLBHAKCJNueDza9qaq2Kb0uFzhTmbSRaHfyYT0jiJh5KiLhscjztfaql11HsnYkO4lzonubuxnVVWk/ACI1J3MTEwBmjkTvwu65wMDuM/06aJf51TVxCERbnrWN27EaBFFwTZMGmOBAI6Xubm4wJSZieM4iXdTVInFEh7l0dmJ9uCJJ2KVUQD8zuvqUId0/XqxL1eMZtKFw4dR2/LIEXRQBwLatGYZcnIRdXX4/6FD2vHIZMJFBQBsm7m5orhMdrY4z5QpuC0jA/ez2YTUiaqiTW614narFW15uz282EYkQiHsn9vaxNyPWLJE2AaR+m5ymFOBgHjlTGSHP2FkpzBMKojbObZr1y5wOp1gt9vhtttug1deeQXmz58/9Prrr78OTqcTHA4HPPbYY/Duu+9CgSwuoWPu3Lnw7LPPwj/+8Q94/vnnweFwwOmnnw6HSEAoAg899BC43e6hn/Ly8ng/ChMjHo+2Qw0EcFXC40mtuPlI88vZOTZysrNxEO7pwUkhrRJTJR0AIdovQ+Wkg0Fcsdq7F7c3NQkxfRpUm5rCB18AHAhpHxIhPXQInWDV1ejk+uwz8T3LBn2051J+jcX5mXSB+tMDB7QOYlU1NkQVBUAvGUrH7duX3Gvz+/G6Ium1AMSfUqF3tsmrzryWJoiUOqFfpW9s1DpLW1uFc2z6dLGd+uyMDNS8OuEEkd4HIKqmmc14rPwaEx80bprN4lkfHBST6Lw8fNY7OlAeY98+jCzz+dCB1tWF9z8nRyx09vTgPnLbMZkw+iQYxBRoi0WrYSTbWhzdwaQL9fXC7szIwHF0y5bw/VQ1XJuroEC0od5ebeQYCffn5eGxublibCQ9sspKbIcmE/622UT/TPa4yYTnt9kwTbKxMbJGmJ66OswW6esLrzjvcqGzDSC8vdOCs5z5YTKJap6xYjQukbg/O+CZVBO3c2zOnDmwfft22LRpE3znO9+Bm266CfbSzBcAzjrrLNi+fTt8+umncMEFF8DXvvY1aInyJC9fvhxuuOEGWLJkCXz5y1+GF198EaqqquC3v/1t1Ou4++67obu7e+inLhkJzYwhJhN2koTfj86xUCi1zoWRdoDsHBs5LS0iLaa1VZR5p1UqABz0SHOM6OzE54QG7hdewO0kSkpG++AghmjrnWuEPGk6cABTOd94Q6ROkrCpzycqchUXR38u5eeCnWNMukCrri0t2GbJqA0GjfvaN94IX2X2eFIjitvTg9EryRTkp1Vr+pv6Ekq9TvScRo78iUyk1Al9dGB3d/iEpadHG+Etf3/0fBUUYJ9PfTV9F4GA0NThsToxmprwXhYW4r0fHMTviCR7rVacwLtcGKHd1IST3SNH0DkmtxE5dauzU/udUJU7ktJwu3H/YBDbg3we2o8Z/7DA+cigNtfcjM7l1laAV14J3++998IjpzIysK12dgL8859iu9ksZEIoSwMA7Wh6zy99SWybNQvfu6AA26OcUkl2uM2GfcCmTbFnS3i92La9XvE5icFBAIqJMUq5bGzUplqTky5WenuNq2BSv3LoUGolfRgmbueYzWaDWbNmwbJly+Chhx6CJUuWwK9//euh17OysmDWrFmwfPlyWLNmDVgsFlizZk3sF2Qywcknnzxs5Jjdbh+qmkk/6cRopoPNmIGOB+rovF7saKkTTxVHj7IA41hD4rr5+WJgam7WasjMmydWuojdu3GV2m7HSe+ePWiQ+3z4094O8OabuDoVqRS0262ddDU346pXczOuIPX0ACxYgPt4PGgokMMt2mRLXumKNcScYSYyZKwCYJ/d2Ih9eksLOp31hvvAAMDWrSKFkAzbxkY01pMd6RMK4ZgSzTkWrwNFjhzr69OuZOv7q3gYpgD3pEH/HeurCnd2hkePy05IqjZNjhWHQzjTSAeLnkl2jiWGzYb3kJxjgQCOt3TPp0/H10j35/BhERlWViacWuXluE8gAHDRRXi8/J0cO4bbKOpMVYVzra9PpNgC4OSYFqqY8Q2nqY0MSmmsrAR4910xX9H3Zz4fRn/JqCrOpaxWrU1KEWI+H7ZXWqSwWPB9TCaMxgXA9zabsT/t7w93SgeDeFxODr5/Xp7WIRoKRV7sMZmwbfv9+LN7t3jNZsP2394eHhFmNmMf0NcnooOzsuKbK5IWsR6KVquv5+hvJrUkrDlGqKoK3ijCU8O9brT/9u3boaSkZKSXNqmJ5FBIJrJjqrFR6D95vSI6J5Uh9F7vyCsfcUDhyLDZ8LfbjQZ0S4tYiaLv5pRTwo+bMgUH9vZ2MaANDAB8/DGuarW2ispv8+cbr2AWFmrTvShdxOfD7e3tOOGiyZbLhc/pcNoG8gQvXh0EhpmI9PUJg9Xvx767txcd2A0NKIous3UrtteWFmwjHg86hf75T2yHqXCO6TVZ9MTrQJGjWQYG8D1kDcNEnFzd3aJC7mRHP7ZT9THi00/RadLUJL6b2lrxbIRC2Pfn5ODrPh/e/+5uPI6cbelcEWukTJmCE89TT8X/KWpkyhQxcXc68ffgoGgPlIYZDOLY63DgJLq+XqRMypFgtbU4TtMClcmEC2YA2K/09KC91tiIfUYqtWgZZrygKPisZ2QALFuG/VlJSfhY1dMT7hwjfD6tDqjJhDpmZjOemyK3HA7cNmeO2JfSKk89FWDVqnDnGOlBZmTg37Nna7M0AgGAt94yvi6TCW0ESvnMyhKvnXQSRqq9/nq4g7WnB8fbzk4RkV5ZGW7jR3Og03ihhyJiu7o4FZ9JLXE5x+655x74+OOPobq6Gnbt2gX//u//DuvXr4frr78e+vr64J577oFNmzZBTU0NbNu2Db71rW9BfX09XHXVVUPn+PrXvw5333330P8PPPAAvP3223D06FHYvn07fPOb34Tt27fDbbfdlrxPySQEpVKqqrZjCwRQZDc/P7XOMadz5IL8kVZFYs27T3doMkRG9sAAbrPbxeC1YIHxcdu24YDqcADceCNWluzpQUeb3y++m8FBnHTX1moHxGBQW1nO68VjnU5cAevqAqioEOHb3d1i/1jTKhkmXVBVnLwGAujQaGlBx5jXq02bJ6hyXSCAE+DubnSK9/Qkv98n7alogvzxVrJ0OMRknhzoPh/+bmxMbOHE68WxLx0wihyrqRH/t7UJxyn193R/AfCeu924aDEwgP07TXqoqhs5RfWV25jY6erCSS85lysrcXI9fbpIlXz7bVyQcjqFdhwtblJbJgeaLKRNlJXhOUMhdJx7vbi/1YqLZIqCuqJ9fThpJhkFhpnMqKqQmRkYwPGSik3JdHaGzzko2enNN7FtVVeL/rW0VLRdsondbvxtt2N7BMD3MpkwWGHRonC7t74e2yiNrbNnawvKBIOR0x1NJhwje3vRXpCdYyUl+PrAAGoZynR0iAjTgQFcECku1h4PEF02Z2DA2IaniO/qanaOMaklLudYc3Mz3HjjjTBnzhw455xzYPPmzfDWW2/BeeedB2azGfbv3w9XXHEFVFVVwSWXXAKtra3w8ccfwwJp9lxbWwuNUtmprq4u+Pa3vw3z5s2DVatWwfHjx+Gjjz6CU4zCUZghRnOCr6ra8tw2G3ayqdYcKygYuXNMHxFBRjgb47ExYwb+tlpFKHdLCw5elJJYXBx+XCgkKpwWFABceik+Q52dwlCYMgX3pZWmujptpJjDge9LE/MtW/CY/Hw0/IuK8NjDh/H9BgfFQG802ZevjeAVbiZdoL60oQHbYm8vapAcPRru7FIUbEvTpuFxFEV89Cgem+x0ejkFMlKfH2+fTallAGigU5SMqqLxnsgCCTkN0kGrRx8REAxqtdpoAuT14v3duBEdZtS/UpSe3Y7PDGmTVVejE4XSc48dG51I+MmKqqLDlqrCzZqF2ym6q7AQ/8/JwUWl3l78Lvv6sF2rKo7zRUViwkqpmgR97zU1+J3Nm4dRK8XF+FpLi7ARaVLMjH84anNkUCojzZH6+zFCTD+e+nzhuryLF+MxixeLysp+v4jSIo0xkgOgDAybDX/IGZ6XJ0T86VoIKqQBIKpX7twpXqcFCn1qPAC24RdfxNf6+kQhLCIYxKiz117D/9va0EG+ezfa8aQ53NaG80W5aMvgoBgfjOjpCbcx6uqEc8xs5sIfyURe9JIxSm1NFyzx7BxNO8zhcMDLL7887DnWyzWfAeCxxx6Dxx57LJ7LYEYZCh2m3PL2duzQUy26Siv9iSLrnxDNzUKskhkeGozmzMFB1WJB4zo7O3KYOACmWgYCQv+rqgpg3Tp0qN1wAz4/bW04wNXUoHHw/vsA110nzpGZiQ6ytjYcKOvqMEqtrAxDwzMyxIT688+1FYEyMyNfGw2qvb2jq93HMOMBEtXesAENVKsVo0kIiuicMgWNXaou2NGBx1qt2ohOGX3ESazIkWOdnWIiIHPwIMCXvxz7Ocnh1tMj9EmOHxfaZvGOXzSRcDiE7uZkZu9edIJQGk4opNVozMwUjq3+fly8WLpUjLmBAN7njAy8X8EgPnfkaPF4cDxubxeLMEz85ObifVYUnDRTpUqaPFOEis0G8NJL6CTr6RGR1pWVQj6B0o+DQe3zTZP2/n60CVwutAWoymxLC8Dpp+O+2dn4XHi9Wgc1M/5ItDAJgwwMYPuhtMf+foAzzwyfd/h84ZIBLhf2pytXArzzTvi4SVpiZKNSe8zP1y5ckI1us2Gbkx0aU6bgAhcAnj8/X2sbB4MYeXr4MMDcubitvR3tAZJgcDpFRXnK1sjPx/fdtUukOno8AB9+iNdgMqFo/pQpeB5y9HV2Yn+1b1/08XdwUBvhBiDSSwGwvyGnYSL2BqMl0mJnOsvOjFhzjJn80GowefpJc+LUU7HDSlUUlqqOXDNMH4WQzp7wRKD7Z7GIlWmKwLjsMowKoxBvmcxMfL2oCAdTtxsHzwMHcCUrIwMHwJ4eNNbJ+bV9uzhHby9u374dB9ieHlxpM5lwgC0vF2KlR4+KktX0/gDYuesNQDJcmpq0kWoMM5np6cFnvq4O20VdHRqof/+7NtKjqQnggw9wm9crJsx+v6hsGSniIN5y7QRVsY3mtIq37yaHW0uLmGDQ+6hqbCvPsoHe2IjH5+aOfUrHaPRbPp924qHXB1MUtAm2bRMLE3IxFHJO5uSI8+3bJxxs5Gxpbh77+zmRsVjE+Gy3i3RKfSRmbS1Gg3V3A3z0Ed53+j5zc3Es9fnQUdnTo33GiovxfLRtyhS0BQYGcFJNk96uLmy/x49PzOjKdHsOR6rpm+54PEJeZvZstD8XLgy3OY2cDyRXY7eLcUYWyDebsV05ndqKwhZLeIVg0gEG0I6fFouwhbOz8RjSCqT3GxzUjtuhENrbFBShKFht89gxdIb19Yn06b4+MR8geYb338ftHR3iup1O/L1jh5jXResfurujL1wPDqL2Z6L2RrqTbv1cIrBzbIIymmmV1NmSI4LCdE8+GQ3dVEXfhEIj91zrOwGKkOAywIiqCgcSaQW0t4v/KcrOZELDuq8PB+GuLtQ4cLnEoKw/b1kZivhaLBhtUluLkylKp5kyBZ8fRcEJ7CuvaHUIaJD1+XAS5ffj++Xm4oCflyfSQ3bvFqtdAMLY2LtXOwmWV9Y++IDTa5n0weVCw1tV0bD86CM07p1OraFK0SBHjoiCF+RM6u/HY2gs0JOo0dXQIFbWg0FtJBuRSOodVb8kvRZVxf4qMxPfM1pqB4D2vnR2Cq3EsdYtfOml1J6/oQHvtxztEAxqK4RRxeKGBnR6VVeLyN3qaiHqXlkpNCEpKgkAz+3z4QRqrO9nKlBVtI3k8TXZP7W1uPiUl4fvabfjghRFjdntwl5rbMT7TZXHDx8WjuLCQtQRokj93l6t5ABFD1IFuo4OUYmOov4sFowuDwSwjdF3OpGis9Otyianpo2M/n7RT9bVod3pcgHs36/dz2TSCuETW7fi/nY7ttmjR8WYQ9Ugp05FW5kWGUwm7ThrMuE5srOxXcpzG4tFOKamTMG+OCdHfO8UDa23keX+mLQJd+1C+/zYMWzTFgtmlEybhuNCfT3ABRegg4xshfXr0dYoKMA+pacHz+FyCb1TI/x+MZaQA1/OIrLbMY2fn9/E0EflybDjDIkrrZJJT3Jy0AijVUMKlc/LQ2MoVYZtKBRdtHE4jKIDyFCrqcGUkckOOb/oO5JXm4jsbBH2rGfRIvF3YSFOlu12fCbmz48sTq0oeE4qOmuxoKMKAAfEggI0oB0OHLwbGtAQoE5bVVHL4MwzxffocOBxdjv+bzLhdZCuwbRpYtJO37M+Zae3V0y8t2+PnhrKMJMFub2T4DYZoFVV2gqMtCARDKJBTenpoRAawXZ7ZKdyotpRFOlCFfR27RJ9B0ERbNEqWhqdl66fChJMnYp9yeHD6NSJJrC/ZQvAkiX4t6pi/3LkyNgbkB9/DHDHHak7f309Ttwuvlj0nx6P1jnW3Y19+eAgOhu7usT3HwiICZ/s9KTnyGzG7fv3pyaamyIi9BO90YQiuVwukfqUbLKyUDeQ3q+gQEyUS0sxioy+M0qV9Hhw4YraEi1UdXbiBN9k0qZN9/dje6GUZ5pcm814HE1ei4qEULbNhmMtLahR6tV4J900SNM5bSoZhEIiMis/X2TV6J8jh8M4w6KjQxS7IPx+HJO8XlykIk3BggJ8nRYcjh0T/1ss+LrDoY1ac7u14yX1Q5s3A5x2Gv4tF+UAQJvZahWpogBCn9DtxvZeWornKi3FBe6BAdxeVYXvFwxiZGpNDT5jZDOUl+NiSGsr9g81NXiMHqpIT/cDAP+fPVvcd4pkZ+InWirqtm0scwDAzjEmCi0t2HlRp6yfEJlM6JBIlfiqHDqc6PH6CIT29sklQkrRdUZOL8rHJwdSIsgh2EuWoPGcmYl/79qFIeSRsFrFYJydDXDeeRgdVlmJUSsrVqBx73KJ8GsShgwGcV/ZOWaxCCFSALFyTRXSCgsx2gxATAgCgfCJLIViHzqEhgnrFjCTHepLTSaRgkX9oOwYAxCaZDab2IccY9QOIzmHEu1byTFGzrHPP8fS9PpzHz2KguMdHSJaZrjz0gJBKIQr14ODuLrt92MfEA1arQ4E8G+fDycMY+0cS5WzBQC/50OHsE+WV+uPHdOuOB87JqJ3TzgB4JlntJpkZDfk5OB3EAjgs+PzYYEWiwUnUM3NwoZobEyOTpXJhN+TfnI42aCFqtJSnGzOno12m9UqtMeIYBDTI1tatBHhcpGJYFAsWhENDej4Mpvxu7Pb0XFNkYEFBfh+ubn4/e3ahW2rpwfb6XCRY7IcwlgTqbr5ZGWs+7GJDkUkn3oqtp22NmwDVGwKAB1mhYXGouek4dfbi22JxiW7XUR8AWgjmPW2KjmjAMKj06zWcP3dggKAzz4TzrGjR7XOkGAQx1qzWeioFRairf7ZZ5ilcffd2L/885/ogPf78ScjQyyADA7isV4v9vVHjgAsW4Z9Qn092uGffYaRr/r2Twt4AOIZpYUXst+pejJrSCeXgYHImQHpxCQ2G5iR4vFghzc4iB2wvrqXxQKwfDl2WnI1y2ThcGhXquNFVcXqCkFpHBOFYFCb5qhPfezuRuM4Px9/8vLED/2frMkBCXpmZ+Pvf/5TpGzoyc/XDu4Oh1gJstnwNbcbB77ly/FcADiAVleL1SI5pctsxuPo85hM+D99x9nZYiAl46S9Xbu6pKoiIsXpxBU5Xn1i0gEyzru7cVFjzhzxGhnBXi8anfn5OCEm5wjpTdFEOpIzOdF0dTqn04m/BwdFOj8typCzBWB4IenBQTToafIvp+6FQsLxM1ykCH3O7m4ci44eRWN8rNPyKZotFbS1iaqe8vdss2kn06SzEwxi31tQYOwcdTjEs0eV0TIycH+fT6TpAOCkUB7DEv3JycH3ncyOMYI0PGURfgARjenxYFuW9YwKC4U9R9+zPMmWx9meHlFpr6QEzzd3Li5qmUw4jlutwslJWkl+f7hOnRHjSZtsMqb3RmKki88MPvekM5aZifakPu2+oQHHG73DYWAA+z2zGftRSnsmsX2LBdvj8ePG4xQ5lBRF2y9TAQ4AtIP1hWMWLNA67w4e1I6npCHmcmHfUlKCi0ulpTj+vfuucKJ3daEz3OfDdt7VhfuHQvj5AgHsZ6hiMS2utbXh/fjnP401RgMB0W/QvWxsxPkBjd1796afM3s0KCnRVixNV9LAdJicjMag5vWKKmWUIkEcOyaMr8FBXE1INiUlADEUQI2KfmXM6x1fXnG/Xzi6yOklO796esINf9kRlps7uhOA8nKRFjNzJlbaMYrgMJlwpUmGKtBRNFt9PZ6rvFxMwnt6AF5/XUw+339fG3VAzj6LRUx8AXCwlydntPJ94ID2GZANQkr9SXXVVYYZD1C0UVcXGrZyuw0G0Yjv6UHjkyplkWOqtlakqMkTcD2yVkg8UBukNK9//hP76Z4eYaCZzbFrBNbVYduWr7O1FT97MIj9TbQIOIKOlyPv6upSsxgUD1SBLBX4fDgJogqFRFaWNgqhpAQdI8EgRpr19WEUAAA6UOjeKgpObFwusdCRmakVi+ZJeuLI7Zja5uAgTtxNJkwdnjcPo/o+/RTgjDPwO6DiFAAibZKec3ly2tws2v2KFfidm82YCpaRgU72rCx8vbkZz9vUhM9PLIUvaNI8HphI+mgjhZ1jI2NwEMeUykoca+bNwwiszMzw++rxhDtyOjqEHZuRgeOmqqItKxe/Is0vPZSmSc4xes+TThL7nHhi+HEFBaLfHRzENivbwMEgjrlOJ+57zjl4TaEQ9vlTp+J1Z2VhG8/Lw+P37MGo1MpKPL62Fn+TxtjevZiuPTCAbb6wMNw+J/x+EcRAn2vjRnTkBQJ4vu5ubQEvJjZINzYWIsntpAPsHGMiQmHxHg92hKTNQml8ZEzJ+hTJhDrFkRhO+o63p0doX40GXm9ksfuODhwo9E4v2fmVkzO+Uv6mThX3dNEiNJSNnGNGOjJz5ojPUlKC94LOtWQJGgiHD+N2co4dPYo/pGOSk4ODeUUF7l9ZiYOoyQSweLHo9Om8g4PhkWMeD27PyMBrH+soEIYZDcjQ6e8XE1kA4bTo6BA6j8eOobODUibk1WuPJzz6llId/H5jMf3hqK8XfQOll1RXi4l5ezu21R07Yjvfrl14nN0uxioSK/b78bPY7SgYHA2zGa+FdMtIS2msV6zlqL9k4/Fg/02C+4TFgml5RFUV9tu9vVqNMQBtqlxuLvbBra1Cd4wKtRDjaYybqMiRY/X1Iq3y6FGcJB88iM/zySfj90BOLgAcy81m4RCl1CjSfKXxND8f7UASBydZhOJi4VSbPx+dpbE6x8aTdtBIMhUmGqrK1dsTIRDA+0bSAyUl6FyeMgXbh1GaX26uNuUcAI93OERapczMmbj98GFsx9Hah16gf7i2ZLViGigA9skej3GVeEXBv2khTVFw/D31VOF4P+88PIaqW8pzw4MHcR+6L4qCGpMtLQC33IL9BqVe6qmpERFw9Nl27MBzNjeLKNfxFHU6UaBssEjIRUnkaP10g51jTERUFY0cVcWVaqsVt5MArN2OHX6qKv6RcyxaZY3hjtdHifX1iRS+ZEBlkCOlPvp8xhFf9KPXBRnvyJEYixfHd2xenhg4KypEmlZFBRrzFFnW2Yn3NStLlH0OBtHAUFWAU07B/ZxOfCaPHsXtJNYJoDUQ5LSOUAi/ExLWnjZNTADlaBAasFmTg5ksdHQIIX6TSfSNlL6xY4fQGwuF0HDPyBBl1xsbcVKcmxsuYn/kCPatiVYY1k8OQiFsg729KAzf0YHn1+ujDQc5/uiclGJ58CD2vcMV5DCbsV84eBCPzc9HR8JwaZ2pprAwdecmp1gwiOK8hKqKiIOBAVHQprMT79PSpdpIO9K/oclbS4twThYV4UILOWhZN2bk5OWhTUZC+UR/P46VXi8uJuXn4/d70kkiQhRAVKEEwLYWDIo+QlHQAZaZCbB6tTg3FVYg/c+cHBHRQuP7cJN1OeplNGlqCn/fdIqkCoVEGj0zPORM7OkRhS/y87EvJkF9lwv/l21Or1eb6kgEAiLikl6X5wIZGfielK0RCaokT8eTDhqdwwirVcyPFi9GB5jXKyoPky5pTQ227T170A7IzQX4/vdFhLDdjnbC++/jvjNn4jhw+DDeiz178L2osI/JhJ+7rAzvYX298YLXhx8KvWNZKqWjA8cMpxPtEX52k4vc56c77ByboIzGIG6z4aRgYACNKrnTpQ6dxHYBkr/6N9LPSGLtMr298YlG9/cbO73oJxiMrPeVnx+e7z8ZkB1kerHPaFDUwdSpeFxbGw50Fgs6w2iylZOD/7tc+Jy1tIg0EFXVigUrCg7q+fn4fNpswqgAwN/yKglVmgsEcNC3WERUyOCgWCmnUtxjPQlmmGRAVWFVFfWCgkE0YufOxfbmdIr0ijffxGNKSkS0mN2OBm8ohIatXmtwzx40VnfsSGyxhKJoAXDyEQgArFuH77dvn+hvY10ppkg2fYESOncggH2FXHDECJr079yJY8nx4yKabiwJhYYvJpAoFPWjL2Zy5IhwYh4/Ll7zevGZoFTPnTtF5JFMUxPAffeJSsNyxEBdXWo+SzpB1eXMZtQVkreTA+qSS9AxSQUtaJIMgDZeMIj7T5mCTmS5+mxmJvYTl1+uPbfJhMfSOEri3nV1uG043Zpk2rLxLGZ5POGT6/ESwTYakG00mQpUpYquLhxT8vO1CyrTp+PzTnq8ZjNGacrOsLo6dBzpC41Q9VgAtI17enDspMUlpxPbjtUa/bk0m8V4rCjalHt9xWeisxPt78xMUTmyrg6fB1okLi/Hz5aRgZ/d6cR+nvQHAcSiBmUXUaRRVxdGlZG9QceQbrDDgYV15s41jmLavVu0ZbnYWEEB2gNFRWir8+J18ujpwYwBeVzmtEqGMcDrRSO5tBQdD1OmYKcnV8qiVUiAcPH7ZJGo8WS0akkaX0Rvb2Sx+44O7JCNnF70o9fVSgdk51ikFX8jpxJVtCIDvqtLGN+KAvDd7+LrWVkAW7bgfj4fTqoopYkiz2prxXe7Zw+m+DidWA2npER8L5TKI0NaG2azMFioCAClVRw/LvZlmIlOZqZYyDjjDDR6ioqwzaxahf9TlUJyVBQUYJ/f0oIGqd8vtAJdLu3Cw/r1uH1gAJ0o8SJri/X2YruktnjkCL53ba0Q05cn7UZQWqWiYOTZ4CAe29wsfufnA3z5y9HPQ7qGjY2ifygrw/s0lqmV8iQmmXi92BeGQsIBRp8zPx/grLPEvhSx29+P1zJ7Nu7f2Bg+abFY8NyDgzgpmztXq0vJE/TkYTJpCzbYbPjslpRgSlR+Pm5rbtY6m0mjj575trbwtDuKFCFCIdx2+un43Z55pojgJme6bG/JyJVwkzXOxhP10Nsbvn86Tbbpvg/Xl6Yzvb3YBsjxo8/ycLnEfCg/H51ccvQW2Z7t7SK6jKBIK9re3KyVOyA7mdLSo6HXhB4OVcUxcnAQjyUpBFqMUhR0ilVV4e/TT0dH4Eknae3/k04C+M53sH/5/HNxH1RVOBGXLsXfNhv+ZGbiZ164EItxUcaI7CQbHBTjDlWbJqfh/v24bcECbZVNJjYiPSf03MmO3XTqD/Wwc4yJCIlBLl2KnVhjI0aS0SoJaUzIToVkQkaVPvorkXMQlF7Q3IyvWa2Rxe7z8iKHJacz8gQpEkYFGmhCTqkYlAKSmYmD8Jw5+BMI4MBYWoqTLprY0ooYPX/Nzfjs1dfj9+pyAVx6KU7gaWDt7g7XHOvoEI46co719WknAvpKOQwz0QkGse8rLhaRk0uWoCGvKPj8t7ejSG4gIKJKamowbSIQEFVmzWYxse7rQ4cVFXDRa6vEgjxJ7+pCp1xDg4hMCQTwfSny96OPtMfrI0A6O0Xb/ewzoXVFKX4DA2jYd3REj3SjKFRVReccpYb09yf2OZPFoUOpSX/o6cHzhkL4PJDQPgBGRMhRQKQ5evQo9scUiUMRinLfSTp3ADieT5+OzxBFTqSTEHqqMZmE3hvhdAqBb4oiHRjA74K+J5MJHQADA6LdkwOWnJglJbgfjcVTp6J9aLfj3wsW4DhfWorttKMjsv2mF9yOtYp4tEi0eMZrOROCSKfJIKXYJ6IROdkhJ77ZjG2CJGX0TJ+u1dyldEOKoKIqvcEg7ivjdGI7ysgQhaEGB7HIFQAuwpjNsUmvVFRoC1QRcpSXTGMjjnvr1gF873tol/v9uI1SKimy0GRCW9nl0kakAqBzqqoK2/k55+B9on1MJrTtN2zA/7Ozse8h/TGrFX+oPdOiXFOTNgiD0j+9XvycNKdzuydnZs5oEAxGlivKzRVR8uk8/2Hn2AQl1Q8t6cc0NYnUkh07hPg5GcyUS04i94lEDUSCUnoiDUzDcfx4+Oo+hf6bzdhJ60OdmeHRr4AZYRTOnZODRrvZjAYFlXUuLQV46CEcoM89F58hrxcnYzNnihQdcsiaTCJKgaLJyAg4+WSAE04QE165PD3R2orPlMslVtyoSh9BBn06Dw7M5KOzU6QnFxZi/52bKyKsyOnU14dtq7oanR52O7ajM87AtianLjc24kRYv/JdWxv9WmRB3bw8sQr84YfYLzQ24nuQJlplpRAO3rBB2zb1jqpgEPsVRcFroygJcviRU7ClJXp1zWBQpIb19orqXrNnD//5UsmMGbE7E+KBih94PGLSQo7HwkIRYUiVSxsa0NmalYX3iqKPjh3TOjH6+sQkkvpWmijR+zLJQe8ca23VRmxnZeFYbLXiBJ0m8JmZ+B3t2YP9hM0mvkOSRKiqwvNQus0ZZ6AjoK1N2FIWC+7T2CicY9EWOEMh7AdkIeho0CTaKMU60nNkFOWZkxOempxOzrFQCG0tbnsCEtsPBPC5jmVxnCKpMjPD5yoU9RQKCa1coqJC2MlTp6JziqpEktOnrQ3bk5ytY0RlpZinyURyqh06BPDGG9g3XHABvifpel56KV7z4cPY18+eLYT19VqXM2fiWBQIYACFw4HXTDqEZWUi0jQvD/+miLKMDPxsL7+svdb+fu1iVyiEbT4QwHtMCykZGZGrZjPRef11bV8n3+/aWuwva2rE2JCO8KPFGDIwIFbYAdDr396ORpOiCOdYXp5IPwRI7kA7Uv2HgQGcINHKmN+PTjx9agCTfIwcmjNmoAPM4UDDYPp0YVBPmYIDdGUlPncNDSKCj54D0vlRFFEMwGLB6lg0yTKb8Ycm6BaL1mFLzlFa1XI6cXWcol4IMkbSyVhmJieUIgeAbWnqVGyfixfjBKCgANvdrl0AH3yAWiP9/dhOFQUny6TNZ7HgpJL0AQHQkN62TazokqFF7xntumjS7HSKCbeqYr9NY4/Viob6kiU4/mzZgpGp8vigj1Tt6hLV+3w+UVjG5cLzUjUwWXPJCHKOkW6MzydW0kmfcCzw+1MnnGu3A3z6Kf5N0eEAokLhp58KPalAAPtuRRHfh6ri8yB//4sWaQ1wRcH3kYWkmeSgKNqIiv5+HHuzs9HJVVqKbf+003DiS5PNrCyhIUp6RHppCrtde24aJ81mdKbRgtf55+O+oRBmGxhVRfR4hKO1qUkshg4H2aFGEZ/yeC0724wiExUFo0ojHT/ZoZRpdo6Fi+07nfGfQ67kK9/T9vbwIhkA6NyRNS+bmnAhx2oVqYa02BCL9hNFRcfiMCIt34oKsWjt9eLik9uNbYfar8WC55w6Ndw5RpGknZ34Wm4uOgHJQb5okUjxrqrS9h3l5fhZDx6Mfq0kgUI6oaWlOA53deE4GG1xiwlHVXHOIy+uUZG6AwfwGXQ68ftPR9kggp1jjCGUFkEGS0EBrgZTxS7Sr3G5sDFRJ5/M0tAjrUTi8eC1kSOvpgb/dziSW7GSCUcWBSWcThE5ZrWiMaFfmauowImX14v79vSgwd3WJpxnpHOmqpiGOXWqmEjTqjkZzqS3QlBaZWcnRplVVOD5+vq0RgX9nU7GMjP56OzE5500x44eRae0oqDhSsY3TYr7+rBNmc3YNnNzUR+KIjYpbYJSIwCwvfr96LQi53NXl0gTiYQs2i6vjB85gu9Jzrbt2/G9Z83Cvvutt9CgjrZ44vfj9ctpmV4vfvYDB7DdWyyif4g0blHEGaXJUGra5s2JV1FOFvrUuZFC9zMQ0FYj1UfoFBQI3TfqJykNh1JPt2/XThBnz0YHJ4AwymfNwmcNIL2Ff5ONomgrN5eX4/e0ejW228xM/F1Sgk4zsvEaGkRmAAAWVlBV8b0ZQd9xaSn2DdRHzJyJzwdJcRg5svx+nOTW1gJ88onWuSCjl+yggjpGz4w8UdZHnxixc6f2f1pUSwdCIVGsIZ3p7DQW2x8Jct83MCB0t/TIz3BWFo59s2aJbW43tik5dTMStIAVi3NscBB1Qs8/H/+fNg2dZTt3imuiBSuyD6htG9HVhZ+TNMWysrBPkNv03LlajWKKYo10z8m+oCANKsrl96PN0d2N/Qdr5sVPKKTV+dy0CX9XV+N40N8vvs90hZ1jE5RUr/bQpMDrDa/4BYBGFQ2ubW044QAQookjxe8Xou6JftZAQNtx9vbiBNHn49WGsYA0TYicnPDVtAULcDLm9+NAPDgoHFoUCUKOt8FBoeVA2igmExoiNNnNy9Maf0YVqvr7cVCgCR6A0CPhVVVmIkI6YE6nEBLOzsa2lZ2NK9Pz5uFqL6UbAmBbWb4c/87Lw6hMqkZHacyUCk1G+IYNaOhu3y4M3v37sW1GE41vasJJMwkDEzTumEzCUOvsRCP63HPRkCsoEONDU1N49cieHkzpABBplQcO4DmOH8f7YrWic9DrjZw+QItELpeIlOrqwmi6kWhhJoNkjWE0vpNOGy0wTJ+O94V03qgvzMnB/wcGtPqRU6bgNakqRurJk57Zs8UCRmsrvqfFAnDRRbjNbOYS8snC4dBOYjMz8X7LKZLTpokoDHJMDwxgu6GIUUq5M3rOadJLzw7pjlks+L1PnYqvvf8+OteMJrDyeEti3kboI8qMKqESkaqekn0q094O8PHH2m3p9AzqqwGmGz09aCe6XMZi+8mithbHUr2tC6CNzMnLw7FZtk8PHsT+lbTMomE2YzsbLgUTAD+rXIymoADbAo2LJSVoG3zpS7jvVVeJyPFI7y07wE84ARc+SkrEfZ06Nbw6tMWiLR5CFBVpn0ubDR3uJpNYNGtrw/uVrs9volBUvRw1S/Oy3Fzsy999F5/XWKuDT0bYOcYYQpMCvx87cFXFzpsmIdTRU4plrHoRsSKn3Iyk85ONMtKwMZuTf72MFqMqMoqCOmIy+oF8yhScKHu9OEiT3lAwGC44mpODg6jFIiqsUAg6DcgUEUOQQw1AGPgZGQD/+79oiNDzQivvPPAyEwm/X0TmFBaKSbLJhA4rqqQ1dy62DTJMaT9Ks3S7sd9ftAi3l5Sgw4PSPcxm0cY2bcL/S0rQiA2FMM1xOOdRUxNGmzU0aFcx29vRGef1irQrsxnb+xlnYDstLhZpjZs3ayfX/f0iqqu9XfQfpKOmqkI3KSsrvPKmDAmTt7WJFDNVRcdbNGHw0SDZeiukIUaanBkZ6ARUVRRuJnp7RVqO3Y6TlvJy/H5aWvC+dHaGTwZpMk7PjRxZYLHgs8tVK0eOPiWMiiTIxYlcLrznmZn43QHg5NXhwOq1oRC2u74+/E70jgP9e+Tm4g9FGlBEEj0D//3f4ddJUaa1tUJL0Ai9I4ycY/qxORAQ2/SvGekDyrYAkUyHt95hP94gR3i62TgDA9ifW6041o1G1GpeXnibkRd6AbDPLSzUVgsMBnF7LGmeVA0ylnHB5cK+miK5cnKwz77gAowes9nQNsjLw/OR3q/RvVIUrbYYAO5XXq6NYM3KCrf3rVZR4Evu+wsLtX0ORXmbTJj1o6oYYccF0+Jn3z78buT7TdGK/f2Ycv/OO2iDxaIvPVlh5xhjSCgkJhVf/jJ2RtOno7eZHA4UcRAI4E+08Pt4IcOJ/k4ERdF22D09QiyYjfDUUlUVvk1RsCQ04XCIcHFauSBB78xMHBCtVhy0GxvDB32rFQfbZcvENhLYpxW5/n6tcd3SghNuRRHVgxoaMPqltVWslNhsGJnCEYbMRIA0U3p70bDUa0WYzdiGyJgk7Q+qhLVwIf5PkVElJeggy8/H/6dNQyeIzSaEdYldu3Ai6HLhufbuBfjLX4QTJRIbNwI8/7yIEiXI0ULtMRDAtpqRITRPKL0RQGgXEQ0NYmLa2ooRMHa7iA6lfoQ+x5EjkVM0qWIXjYehkNBNNPpsI5UCiBWq9pUMZIdCbS1G1lEE4I4donIlAI6bx4+LiLKpU/GZoKjeYBCfB6OIo1AIF01ogkSak1Yrfq/BYHh1aWbk+P2iqhxx8snYxurrRXtwOND5THozVOEyloVEiwX7CxrHc3JwcnX8OLbbSBGkqorPjdMZua+I5BwD0LZ7qrIKEF4Yqr4+vGgHyTHI12Yk3J8oycqiSBVy9d50gNLng0F8TlOtO0zV/ihyWY++f6TK7bJDghaFYyEnB23WWPafMQPgm9/URgPv3Ytjr6ri+D9rFi6OKQq25b4+4zGnsBDv7QkniG2KIhbMqL/3eIR2GEHjMoD2frS0iOMURUg3yNtINoGJj2Aw3KlI9k9zMz6rtGCi15hLJ9g5NkFJ9WqPquLEpLtbqyvS0YFRB0RFBa7kk85MslazZedYouidY/39uMIxdy47PcYCfXi4HDlAYs8AuNpkteJKNHXaPT0impEgjRNKDQPAkGBZR0OvmULi3CaTeE+PBw0SciAQLS3JdfgyTCrweNDoz8uLrN9BkVcUVUYLHCYTGkrUT+7eLfbNykIHRn4+pkgsXChEhO124Tjq78f/fT4RXdXcjBPUSJPinh4R+bV3rzbdQlVxslxYiMefdFK4cHtRkegbyEkuC8LL96ahQUSiUb9PosElJRi9Fs05Rp+J+pVFi/BeG1WLHM2IZH2KSjLo6BATLFnzhf6myc327dhXFhVpHY4UWaeq2oIFtC0nR9xLYt48ESHMJA85cq+4WFtEIz8f23JWljYahFIdFQWPz8gQ7doI+bmQJ1Jz52KfUVyM51+/3ri9+Hz4PFF/YoQ+6kt2jm3eLLaT81p/bQDY9vXvPziI/aWc0p1MR9F4f55VVVQDn8yoqtBITFRsP14URaQDNzUZ32M5q6GsDMfMgQHtwlasAvtEW1tsaZXz5wPccINYjCgsFP3+aaeJyPApU0TavM1mfO9cLiHsT9jteA6SJwHA82RlaZ1jCxaIfkNeGPH7tUEYqor3h+5FRwfOH9JJIzBZUJEUoq1Nqy2mqpiG3tmZ3npu7BxjDJHD6mlVWFFwkDl2DPchI6qoCDut3l5ckaDXR8LgIHaOIxHIpFRQYts27IhPPjmyQCaTOhRFO6Ej3Rk9WVloVLvdotOmsF/Z4KWQb4tFnEdRcNCk0tiURksEgzhBltM4KLpM1kygEtxG6RgMMx4YHMT+2GbDfi2aEW0yYZQYGavUDklPjKIoAbCtZWWhYUypJzk56BzLzcUJLVWya2hAR1NuLjrDenvxXNnZOH5ESj3s70cD7Oyz8W85veTSS/H4hQvRcXXWWUK4HSDc6G5oQINbXnmurNS+n9mMbby5Gds1acxQOl+kiSylb5HTB0DIDRjpJCVj7IsVo9T1RJD7VBI7z88Xz5P8uXNy8PXOTu0qPt3LwkL80UdFkNNlyRJ0WMqOEBKMDwa1ixPMyKD0LIoKNYomlRc/5TS7QABfO3JEVKwzgtqZ/nW3Gyf8WVkiCkEfSUX25HBVKg8c0E6CqT22tGB/Q1GN+sqaMqRfKvPJJyKli0hmKuR4d45R+vRkdo5RQRoaw0YT6uNyc43vMbULAGyjNlv4eOl0xibGT0yfHpszLTcX+2mKpnS7sY309+PitNwO6HwVFdqUT5nFi7Vj8vTpQtOT6OvD95Wd9AUFYoGc3rO3F4/Vi8GfcooYq0g2we3mYi7x4vcL4X36m2yZujpsM198gXbVWBcdGkvYOcYYIk8Kysrw74oKNJrlyl6KgkYPVRQESE5UW3c3dtQLF47sfNRh+/1CuLmoSDsZZEYHfQg0hV7roXSuigqR/qXXEiNoVUueKBYW4vE1NTjAyg5WcvrKk9j2dtz+6afiGVYUNJ6HE+jVV9KayOjTTpjxSSiEk0qfD5/1WNJDzGacHJKhLTuTZefyvHnYpgYHhWHrcuF7XHghvjZvHp5n40Z8PScHXw8EsH8lR0hbm0hJ1NPSgoZYQQE64UjLDAD7fEr3GRzEzyi3y2AQJ+UUpdXQgM5wmmRTVWUA4aTJyBARUCRIS/fh6NHI7VweB61WnKyoqhBOrqvTrq6OxoSYUr/Ly42rAI4Eco4pipic0H1TVUwVCgbRYUEpuXl5QsuuvFykbOhTMrKyjKtfLVsmvtex1nGbjKxcib/1KVEZGdgvyBXlTCa09/LysH3RJDpStE0kbc+cHGyPFJnmdGojCQGwD+vvx74jWjrt4KB2vA4GsQ0MDuLzSBM4imQ1oqAg3GF75Aimmu7YIbbJItUjZbw7x1QV+/jJ6ByTxfblysqjBaUCAmB7MnoW9JG/qhreP55xRnzXTgsVsSBnT5A+WEEB9uuyIz2WCOWpU7X9/fTpYu5F19PUhOeWnXdmsxj7KaKsu1tInxC9vdiPkb1dUoK/3W7Wj46Xw4fx3vp8+Fx6PKIwyeAgjsHl5diG9Asq6QQ7xyYoo1Gt8sgRbECy+D5FC8j09KAjI5nXNDiInbXDMbLz0sC/Yweeq6oKU3WMNLGY1GLk2DJaifriCzTcSQgUQCsALpOZifvKkSVUqh4g/Nmh52HrVrGNxFkrK9GAp2p5+fnDG45jXbEumaRzCPVEgVbC9cK9w0HpDGSYkjaQyYRta+ZMTIWaMQO39fVpz68ouDosp2N2d2Pff+KJ2H56ezE61+3G8eCddyIbr1QBsaAAHWqyBgalcmRnY7s2m4WGkNOJBr3bLRxaVNmY2uonn4i/aYJCepOBgHCyKwp+Hrsd4O23I987qr5osYjJRFYW3qOmJm20UyrGZb0DfssW/J2bmxx5ALq3JGXg9+MYSRUoaUWf0tl8PryflH47Zw7ey6lTtZMavXPs1FNFtVTZmTJ/Pn4WVQ13sjAjZ+ZM/K23eZxOjBKVU5YtFtxWXY02WCCA341cZdoII+cZpTG3tOB3//LL2upn1dUi44AiUY3o6NC+Nm0aHlNXJ/SOiNdfx9/yAi4ApnXqJ3omE173r34lttH7JEMvbLw7x6j68GRiLMT2jZDTKvv6jJ9to6wYfcGqq66K731JViRWZMdXIIB9eVaWtp3Gcj69LULawvIii9Einrw4HgiIytFUFZvO0dSE94uuhZxsDgdqXDKxQwt+FCXc2SnkLxQFHconn4z22WhHW44n2DnGGEIVuRobtWkTsv4IpVVSCGxZGW7v6Bj5+7e2AqxeHd8EUI9cKry9HT3mM2agEU8rD8zooTfEqCKaEcGgqCZH++ojx1RVRCNQhBlBhkcwqI0KoUmzLLzr8+EzfMYZOCE4ckREvIxVJafREvZmJgZ9fdgnOp3DT1SNyMzE55kiNKhfzcsT7XDZMkxJVhQ0jghyqsntMT8fDdkXXkAD9ctfxteysvD47GxsQzRx1UdmUZpUbi5Gf8hpkDTGLFyIRnpBgYgICYUAvvY1gCuuEJEoAwPatCtKpwYQv0m7pbYW+376nC5X9PsZCuG99/tFGhKl63d2aiNVenpSE6Ggj4aRHfJ6J0AiyFE77e1ikkK6MU1NIqJLFtq32dCRMnOmKIJCjk0A1JORoWhAm00bxUQRaNHS4pjEkSeUeqhdExTlRX1Be7txxHYsUNujye7GjeGOckrtzMkJ16kj/vlP7XNhtYrqs9SvERRFpk/PJWeuTFERpvmGQtgH1dYKZ3MyFr3G+7NMbXEyVKscbbH94ZDnHm53bO1Hr5EMEDkSMhKnnhrf/vJ1VVSINnLmmWJ7LM+HvjIxUVgYOa0bAO0IshH8flxcqa3F33KEmariWC0vnsgp4MzwkMMzFMI5MN1fuZKxw4HVLHt7tRHF6UhczrGnnnoKFi9eDNnZ2ZCdnQ0rVqyAdVKN7/vvvx/mzp0LWVlZkJubC+eeey5slhUzI/C3v/0N5s+fD3a7HebPnw+vvPJK/J+ESSrkUQbAiYui4KpCXZ1W7NxkEqt+ZjMaFyPVDenpwcZqNuOkK1HkAcrvR8PJ4cCItHjy+JnkoDfOS0qMq98UF+P3lp8vtIjMZlF2WsYoNZOiQQjZWUvPg8sl/ibNoxUrRJQGpXIMZxikKnKMQ8UZAOy3SEi6sHBkFQrLykSqg+yopvSKWbNEipzcpmprjcuw19ZiOP68eXjuWbNwIt3ZiQ6VQABg/36xr9wO29vRoHY6cdVSNtKtVmzDM2eikbZ8uXB+BQL4PiaTNoK5sVGkBYdC2vtE0cekVUZVcmkiUlKCkaRGKdKUqhUM4nuTc2zhQmz7nZ3iuFSJA+ujV2kRCiA5aYjy99LcjPcjFMJngv42mURRFJrMzJ4tvjeKwlFVsfAwe7b2fUhYWZ+mU1yMCxJ+Py9apRKjhSgSySao3TidOCZmZuI+iRRamjMHj2tsxP6moACATPtAQLRJnw9fU9XwNujzhVecDgTw/7IygJ07xWukHwggHNpEQQHarvJ4np0tntk9e7R9bTIcW8nUL0sFodDIMzPGmlAIHaqjKbYfL1YrOoCHw+EIr5aa6jRzeUyXpQ1owUiunJkIOTnivEb6VYqC311zsyioQVGbFMlcXY0/hYVivJHtkQMHRnaN6QL1bRShTfNjVRX6d01NGGHM8gZxOsfKysrg4Ycfhq1bt8LWrVvh7LPPhssuuwz27NkDAABVVVXwxBNPwK5du+CTTz6BiooKWLVqFbQalan5f2zcuBGuvvpquPHGG2HHjh1w4403wte+9rWYnGrpTCoHtP5+HNipUp+ioLPB4cAVZXKa0TVkZQlDp6FheIHV4ThwABtpRweeOxFDhZwWcuRYc7NIpdFHGjGjT06O8Wo2iXk6HMJYJh0EfeQYQPikvbRUvBYMGhtMsgOgv1/o0JFmUmsr/j2c86umZtiPOWHgstjji7Y2NJYLC5Oj/VBcrHUaExRlabXihLOmRus8rqhAR4e+nTU2orOprg7PvXw5blcUPEd5uUjPqqvTThACAWz/ioKTcFmQ32LBa1m2DMcTeWKenY0l4ysrcR+KZFq2DNMpAUTUKYCIgMrJEREwvb2iwuK0aWK1NJKRTemER4+KqDSKoparbqZqMqwf/+QS9slwzsvt3ufD7zQUQgM5J0dE8jU24t+ky3TaaeJY+RybNuFvWaA5P198Dn2f73TisxKpsimTOux24Wyl5xoA2/o554jMgETGBosF2xi142BQpC93dYnMA3qPzs7wCFPSxKHUXwBctAoGsd3W1WkrZtIzNjCgHZvz8zE6TI4yMZvx81ss4vpoYp4M59hHH438HKmEHOAT1TlGlXULC8df+help4dC2N9FmQIPMXPm6Gs8yVGjRhk/kTI79MgLNjKUbg8Q2dGWk4PjKGmMdnbiuEwVNCmwQbYDSkqE1EoydQLTgZoabREWRcH7SYWJHA58LkaStTUZiMs5tnr1arjooougqqoKqqqq4MEHHwSn0wmb/p81dN1118G5554LM2bMgAULFsCvfvUr8Hg8sHPnzojnfPzxx+G8886Du+++G+bOnQt33303nHPOOfD444+P6IMxieH14mpcdbXW2C8tFaLLei0agoQvR+oc6+xEQ6awEKME/p/vNS5olZuulcJGTSat0c6MHdFKTufno6FA3x+lQemPt1qNv88ZM8REWF4Ro3O4XMIwCAYBbr0V/6bJpseD1XH0Zd5Jl8vnG9u0y1QwmT7LRMbjQWM6L29k1Xr1RBJfttuxnU2fDnDSSRjRJYfdm81a5xUxfz62j4wMNOwXL8Z9Tz9d6FZ5PNgX19WhE5omp83NIg1RFnEnHA5s/7Nn43VQmsfUqQCLFuH7UP9hseA5OjpwUkxFNwBwHKHoL+oH5Htgs+F7LVgA8MYb4Z+xokIcEwphxBiJjLtc2sUi0jWT9VpGSqRUQ4p4STZWq4iOo8iSI0fwc9I2cn5Zrfh59SLQJLEg98u5uULzzcjRYrdz/zMWTJ+uHR9pTJw/Hx3eFDWYCORgLyoSWQb19XhOihJRVRTa/tKX0EaTU3w9HlFFWhbNVxTRhimKjLbTte7bp3Ucd3aKaDU6LhjEZzQjA/sm2TGXjFStZOgBphJVRft6orU7jwcXjtxuUXV4vBEIaKMgY3F6WSzhGS2p/myyc4x0whIhWhorpUJGS9NracF23NGB966qSgjGU1QZFQ5yOvE1GntWrEj8utMRr1dEA1PbLy1Fp1ljI36XX/0q2lSTTZMwHhLWHAsGg7B27Vro6+uDFQZPp8/ng6effhrcbjcsWbIk4nk2btwIq1at0mw7//zz4dNPP436/l6vFzwej+aHGTm9vaLByEaRoqDDglb85e30m0I0R+ocC4VwdZC0zBKZbMhGEIBYFZk5k1MqxwuRxFIzM8X3RStSFPEiGwskvG/UgZtMeA59BUY6vqFB6xwjrRwyoINBnCR+/rk2V58M7uZm/Jues1jC5sczkURjmdFjcBCdYjYbLgwkOimNREZGeKobgLZiZEEBTmplx3UkozYnRyxiOBw40Sovx7+p8uCBA9g2DhzAFMsDB4QoOz1zso4lUVoq9EpMJlFdmAoIAOCiiariOLFkCbbdY8dwDJNT/z0egL17cT8jZ2NVFcD/9/+F6x3J1Zdra/FvSkcwm9GR2NsrxhNyoMlRLiNlYCA81UZV8ftKVnuVnQj03OXnY4Sew4ELZQMDYpWZHJmkpUPXQ0Sa0M2ejfeHBOL1TMaqeeMd/WIhjYn0HVEqt1HE6XBkZGB7DATQuR0IAFx5JTq6mpuxv6OUnrw8LHohSyfQM6eqABs2iO2yw7i9XRtxSIV5PB5tJGhJCfYB5LDq78f+R1FEZLnshE5G5Nh410JSVewPJ0q76+/H8dFux3Eq2uLqWFNUJBZSVRUXWoeD0otl5s5N/rXJyPfwiitS8x5kx1RURB4bDhzABTW/H8ecggK0OwIB0U4zM3GbwyE0iAE4wileyDkmy8YUFGA/UFqK86aCAlyIHI9pyqNF3Ob3rl27wOl0gt1uh9tuuw1eeeUVmD9//tDrr7/+OjidTnA4HPDYY4/Bu+++CwVRFG+bmpqgSF66AoCioiJo0s9qdTz00EPgdruHfsopaZYZEdRYvN7wFXbShzAalAYHhb5MMDiydA8KRSbDLRFDRVUxWoEGKKpoQqH0zNgTKSrm5JNF1OLpp+P3tXgx/h/PSlp7e/j+FA0RCmmr4bjd+Lx1deHkNicHnx2HQ5urL69SU1s5eBD3SWaePlXZGy2o8AYz+oRC+Pz4fMLRlAoyMjCiMhIVFSIaiIZkqzVyOoTViu2TojSnTcP3cDrR0dTRgef67DOssHjoEDrKNm9GpzW1v0gpJ263SH+nBRmTSTjDqcoe6RHOno3vqde8XLZMONVIAkBmxgy85/rUnK4u4fAaGMD+hFarSUNp40axv6piKpWRc+z4cePPOByyxpe8TVFw4pAMeQBaV6ypEYZzRwemTQJgP+h2i/el6ykuFilxpBWmKOjI1PeF1F8aaYpRumt39/jXaZpsUEoNQRGixcXY7ufPF+mR8VJZiQ7WmTMBLr8c2xNVNK2uRpuMosNqarB9yaldtFA1bVr4AhiNw/K4GwgIhxtVWu/uFlFqn30mbFQqquFyYT8ij+3vvpsch5G+qvt4RE5FHa/4fLhQoar4XU0E+91m00b3SlPkiMgFbAiKXE4VsmM8UgrlSO1COt5oEYwwmYTupM+HkdxFReLZlKNCLRZ8bp1OHLdTpfU5WfnoI23UmMeDdlF3N/7d12ecKZBuxD3kzZkzB7Zv3w6bNm2C73znO3DTTTfB3r17h14/66yzYPv27fDpp5/CBRdcAF/72tegxagEjYSiazGqqoZt03P33XdDd3f30E/daM8mx5hURXnQSt3Wrdr3KCsTkTW0ki2nLZKgKoXAvvZa4u9PxgylayQiTk5aNLLAOoAQn073ShzjmUWLRMTY/PmiahpAfAN1Z6fW6CUcDjwvRXwUFuLfVivu+8UXQhxanuTpnWM0cJNBf/x48lKqeJKYHnR2Ct2UVK+Aut3RjW0SZyZHFwA6OiI5YAIBnATk56MhS9FjZWW4PRjEtltaigbXvn3Y9x4+jE6lrCzsl12ucJF2Qh9dKke6dHcLAXinE1fnSQeMmDUL97fZ8L0HB8PTsF0ubG+R2i61eXL2KQpO/KmYAIAoIjM4aLwwNBLRYKPJq6Lg+8yalfh5jc7p8Yj0W7MZnRtUmRNA2Ae0PznDZIduZmZ49TLqt40mtlQlze+PHFXGpAZZkH/6dJECRRGC5eWxV9vTQ+m5FRXY/mtrsY2sX4/SHa2tIlPBYsF9SOcWAJ+HnTux7ZaUiGdQnsQrCra5piacXNMYHQyiM763F//u6MD3o3aoqjheU1ScvNjV1pachaLxvthEDsLxGjFOi0YDAzi/GG09rpGQm4vPXjyLjsXFox8NF0va3Ej75FgWcLKy8HseGEAn9rx5aA8Fg2KcMZvxepcuFdHks2YZa6Ux4ejH7Y4OsZCQn49/V1fjWG60IJFuxO0cs9lsMGvWLFi2bBk89NBDsGTJEvj1r3899HpWVhbMmjULli9fDmvWrAGLxQJr1qyJeL7i4uKwKLGWlpawaDI9drt9qGom/TAjh4zfI0dEx0RkZOCERO6MSBQ5Lw8jaEhYcSQVKylNIyMDDZd40jQp/UVV0TgiI13vXEnncNGJgNwxk1Gk17YZDhLqlJ9XSqOYP188E6RvZrUKjTJaOS8vF4OKnDJsMqEhTxpHAGjcjzSleCyJxUieCKvhE4G+PjT8nc7wVIpUkZsb/b3KytCRRVp+RCTjdsYMIeJPZdZJP8xuR8fK7NliwWNwUFQ03r0bjd/6eoAPPoic6q6fLMgRLIEATmRPOAEdX7KQvCzSTdqFFHWgn2RlZOBEOVIEBTkMe3uFCDAAnq+6Go87eBBg+3Z8f6MoMRqX4kVVw6t8UTu12ZIjyC87/Bsa8LyKgs9LVRUueO3fbyy3YBRRlJcXfo/pnpWWGkcMW62i2AEzesjfn9zmabvTiZPjRB09ZjP2DWefjf9bLGgj+nzYXxw7hufOzkbHGaUyA2Ck2dGj2O78fqFHJot/9/Vh+9u1C+DNN0WaYGMj/sgVqcvKxPhMBaQAxGejfeXjRgKlgo9nbLbx2eYoirCwcOJqBNtsAO+/H/v9TXUK5VhBtjxVPjbC4cA+wO/HqPOFC0V0dEsLjts2Gzpt5s0TkWTZ2amrGD9Z8fuxH/Z48NmkPtjrxT7R4cDFBloITFdGrGqiqip4o8wIh3t9xYoV8O6772q2vfPOO3AaxfQzo4qqCo+yxaJNqXE60cjQd0ZuN04S+vuFWGZTU+Lh2oODuMKXlYWdYTznkatUyoLpHo+29DwzPoilVHRWlrHw83BQpRxaXQYQofmytglNBLKzhVCv1YpGvWywqKpYvaaw5Lo6dCR3dOBroZB29XsiQhW7jBjvIsPjHb9fpBGSns94wm4Pd4ZFSqnKycGJK6XFAQjtPZMJJ660eAKA7YJStMrKhCB/tHQL/f2Rr4XS/OWUFZNJ65yyWNDRTdVvA4Fw3TVFQYeO2x2u7wUgnGPZ2bgfXavDgbpjR4+ik+/gQdxuFJWc6Oq2qoanKNL1FBaKSJ+RQBOWzk50eMopFZS+0t2N+xUWYoo7Cezrv7dp0/AZqqzUbjeZ0EaoqDDu8y2W8Z/eNRmJ1O4KC4VTjBzmiTB1KjrkTSac1FKbDQZxstvdjdvKy3GRqr1d9BctLTi2BgKRF1s9HrzGPXvw71mzsF85fBgnfRSt5nLhcyxPzukzFRSgvUr3or8/OQ6j8b5eT/3IeKK7G8fHnJzRWzRKFTYb6tzFykRIFx0J2dmR21UgINqn3y8q5La24jNRUSGcpFlZOL5Q+6VUQCZ2yGFJUhCBgHZen5urLUaWjsTlHLvnnnvg448/hurqati1axf8+7//O6xfvx6uv/566Ovrg3vuuQc2bdoENTU1sG3bNvjWt74F9fX1cNVVVw2d4+tf/zrcfffdQ/9///vfh3feeQceeeQR2L9/PzzyyCPw3nvvwe233560DzkZSWVaJaU1LlminSjRxISyZGlgpeiskhJsUKGQMEoSeX+PRytmKpfkjuc8cl41AMDNN8d/Hia1GOkcmEzhK0z07MWqfdLSgoOo3Y4TvoYGkapIhR7056Z0IL8fJ8EWC04S5JVlWQMhFMLoxKNH8ffgIL4eS9nu4RjL1dzxLiQ8UWlrQ+dLYeH4ThHRO3citTlqJwCijfT2YsTE8uUYgWm1irT46mrhfCouRmHuyspwZ4kc1WuUVklMnQrw1ltarTDqO+TIsenT8TyqihNwimKRsVjwO9m3T5t+QJHU+fkAJ54onFL0GZYuRcP8tdfQUR6p+puR42c4RzO9ru8LaVKbrBQcGl9JK5S0cug9KHWTZBQcDuwrTabwiL9583C7/rNRFIDTaZzaSynt4zGKZTITSWeotzc5jhN5Ujt9uojsovbQ2IjPS26ucJzLmn1tbfi8RXreS0qErmEohO/x+ef4WiiE7bmuTmhA0ft6PNrIsZ4e8X95ubafSXSSON7Tkoxs5GjI1TyTDUVSOxzYv45nsf14iHcxcbJ8biOM7HoiEEBbwOPB/ahfokhSuS+yWLBtkTPR4eDUyngh5yMAfifFxUJywu3Ge5vK9j4RiMs51tzcDDfeeCPMmTMHzjnnHNi8eTO89dZbcN5554HZbIb9+/fDFVdcAVVVVXDJJZdAa2srfPzxx7BgwYKhc9TW1kKjtAx02mmnwdq1a+GZZ56BxYsXw7PPPgsvvPACnHrqqcn7lEzMyJoNN92knSgpighvpX3pd04OdmqdnSI9IpZBV640RASDWidEIqsCpHUh62VEq5bCjB9MJu1kksoOxxM51t0tQq9DIYB//lNs0xtfcnTY7NnoWFMUHHT7+oRunaw5Rkbl55+LqlpyifqR4PeP7XM6UapXTRQ8HjT88/IiF6EYz0RyjnV1odg9gBgTTjgBDa+TT8ZJ5pQpAP/zPzhJ6OjA0H16tqdNw8ltRob2eZfHHL2zSb6WUAhg2zZtkQEqJkCRS2YzivvabBgBU1JiXCWXUvk3bhTPP4lABwLYZ5SViXRDADwPacu89RY64KnEvJ5IzrFoRTzkCpH6a01m/+D1YupkKISOhKwsUfWvqAi/J1oAoz6YqoTqr4P6V73MrKKIcxjdH6tVCLAzo0ekyEMS6e/sHNmzNm8e9gkA+L3TYtOhQ+iUDQbF2D5lSvh7mc3Yvi0WbVvp6MDnta0NIzYpFbKyUmgH1tSgc8zjwT7G5xMRaOSIkaGKePoCBIkW05gIzjHSGYyFVETEe73aSOrJFj1F2k6x7nvWWam9nrHEbo9cbMjvx7bu9eKYWlKCbfHQIXxd7hdyc0URLQDsN8ZTtfhY575jxeAgfg+yY7yjA+93aamIoE9mgbGJiIGZGJlo2mEOhwNefvnlYc+xfv36sG1XXnklXHnllfFcCpMC6uuFSGowiJ2V7ERQFHSC6TUayCB2OABefhngggvQ8I8lTcIoX1xfhSuRjoYmNZSW09MTeZWUGTuMtN/0q2c0GALEb6jLqyNkDC5YoK3QJWuD2GwoyH/DDSLNklavyAEmp4P19OBEUFUxhJ4iKkZCV9fYphQYOcdoQE0mPt/4n0CMhMFBfD5crvGfYiOj13iJ1OaysoSjifprqlRYXIxpWVYrOlyomPTu3dhW7HZ0wDid0YtYyBpfANq2pSgYoazXwDKZxCSLHFjZ2fi3PH7JLFuGkWz19UKMvq8PxzGKSKH3pOOzs9GotFrxnlFBAK9XfO+E3KZaWtCgDwbxPSKNS3SMXpUiFelQ9B3QpGPhQmzvTid+l+S4Ki0VKaaRtICM9ONMJlx4mDZNqytFkN4jM76QheoTQU6LVhQstvOPf6BDhhZB+/qEE0H/XFP1OpsNnw+aBHd0iIrSJOfR3Y19EtkPfj+2595eTL0+dEi8JldOle3Y3FzhsBsp4y1l3giTCe/vwMDw9nEyJ/zBIDperVYRiTvZCAZx3IjHcTOZI8ccDmMbUlUxyyg/X0R4AuBi1Icfasdc+ls+j8USXeuXxtvRgvq08aiVp6o41mdn4zhM2V0WC/YDVVVod5AkRjqThCGAGQtS4ZmWSwnTBEE/GSENJwB8zenE1X1ynLW2CqNEP8nWr6AYDRrk1Fq2TPs+8aKqQjvi2DF0iFgs2igDZuwx0ufRr9yuXCn+j2dSKE8iyTlGz6ysqyMPAtOn42o3IRsr5OylyK6uLhyUKVqsvR0jyZIReTWW2l5G15/siStVGZyMUJUtn08sGkwk9I7ZSG1OVcNTjuizut3oKCajlSZeL76I5ysrE31xtPB9fX8tG5zV1eHPqqKgI4620xhGzkmTyXgCUlqKn/uDD7TRoV4vjkdy/0PnmjtX9CsnnYTRV2VlOFHXl5eXF4ooUmO4KFNagdZrACbbOUbXQDYFpZiWlOD72GwYoVdXh9+pomBkYCRMpnBxaUURkx+j8bywUFv8hBkf5OQYR1omgtmM/cAnn2AaZHs7Pgv0+8iR8GgFrxfH54oKfHYoyogqUVMK1sGDol0dPSqeMdICzc3Fz0Lp7Koq+qpjx7AfUxSA667D9qC3exNhvEcJUz9CE+ZY9k8G7e1iAXA8OhCShdmM/WSsz0+69n1NTUJ6wWLROmkDAVFEiygs1GYTUcRZJGKNjEwW41n/jObgXi+2w1AI5xqUyp6fj/9nZY2uQ3E8ws4xRkMwqNUb0Ud2nHOOdsJSXIypFzNn4v6BADoPSkuNtVJk/H5joVUarKmTTMQ4UVWcnJJOlKLEVlKYGXvsdu2z8tWvigiSWMPu8/Lw+SspEZNM0iJavlxr8MtGrMmkfb4rK8W1HDumDZn2+9HAo6gKu31khSgIVcXzjBVGRhpt8/mS4/ybrIZgZ6eosjWRosWiEWlxIjvbWL9LVdHRMW+ecPKSzlRpqUijmjsXjTR9WmW095Yd2X5/uHOdnGNkbFP0Mz2zxcXGzjGTCRdrVq7UOsdCITQUCwuFk4qugX77/fien3+Onzc3N/z5NmozoVD0tkSON3kfMvST6RyjinU0TlosOFbK0gaDg8IRmp+Pi01G1zBlCt43SWYWAEREH4Dx/TebMX1tsvYLExGSH0hWBIHJhM5Vh0NEjpGDa9YsdL7K4x6JcwNgXyNXrabCObSgGwjggqzJJCpIV1Rgmx4cxMn1kiXaZ4/G/enThSD/okXhE/REGW5RRNZWGwvIHpLvczRG2jZJbD83F/uQyU5mJn7WdI/AGQ6bTURmBwJC45LGIgBtAa28PHyW6DUq8jFeaGgYn+MY9ZsAADt34j3z+bDfPOEEbJOyvTXRC2KMFHaOMRrksu5mszZFgjScioq0x2Rni0lIZyc2wEWLwg1/WVi/rw9f37HD+Bra2sTKdTyRYxSNoqpa3ZOiIm0JcGb8kpERHi1BzrFYhczz8oSANE38yOmrN3xlg9lkwkGBohqLisRAR04w/f+ksUcTyJEK2h84MLLjE4EcfwCRJ/IAIs2M0UKCwk7n5DMqIk0Us7KM06IBcGIwf76YGGRn475bt+I4kJ2Nr/X3aw3feCgvN07R++QTkcZpsYiKiwA4YTVyzrhcaNTK45aiCAeR3Y7Xq3d8HzmC24qK8HdDA94X2XHU1WXcZoaLHKOxTI6wphTuZDJ1Kjp0Ka2NRPjtduHUrKxEzSGKAAMwdo653aIPlaFxXJ8mS5hMuCA2HicV6YrbbbxAmijUnk4/Hf9vahLFLhQFJ2rys+H1AuzahddxxRXYdml8pfHcYsF2cu65Wo1Rux3/7+/HY/Ly0DFuFIFut2OfRJGR1dXaPiJRYerhFkfG+lknx2QoFJvNkuj19vVhP52RgQ7XZKSsTgRIMzLWyMvJnFIZDZMJ2yY9XzR2U5pzV5d4Zmgft1uMTfEUlRgNxtO1yKiq6MvIHtq6FX97vWi3FBcnpwL2ZCBNuqnJR6oaIFXbo1BWuRKYohhXmjKbsUGZzSjiT04D/URCXp3avdt4YiDrP9C5ZU2o4SCHmN45ZreLFQlmfFNSEr6ySAZ0PJDxR6kDlC4R7Tzk/KJnx2oVE/D9+42dY2Sof/EFlpRPVMCX2LPHuFBFqiEDOVrk2EhEOuXzjlcDIl78fq2g8GRcJY7kkN69O7JBb7drjdbycpwk9PcDbN+ObTw3F4//0pcSi4TKytJOXGn1uKdH6AlRFAhdZyQ9IbsdI91ycrTOsVAI23N+PjrQ5BXqkhJ8fdo01OqwWkWKh/webW2JRY5RJJU+RVOuxpkM6Dqo36Px3OkUEzvSbsvMFM6SSNdAi1oy5HSrrIycbkbRfszYQ3aefoF0JJAWYHk5PkfkDJs5E383NWFboWgGWmitqMA2Ro6uL74QtiQdm52Nzx21cxL+P3AAx1OzGZ3M1C7lccxqxTbb3Y22plGGQ6zIx453PU1KWevqSo1zjMT2FQWd5eP9fiSbw4dFFdZYoCIy6cj8+eJvek4qKrDN9/WF30M55S872zhbYyxsaIDxKchPEblyET23G22M2bPx/u3eLSL5GXaOMRItLWiYUCnsjAwsVU8oCk4g9IZvaSl2aGRUBwJoaETTLgoGsYJgpOuYOlX8H8+Kitz49+/XVtdiJgb66MRE02rlY2kCONy5KAqMogzl6JEjR8QkEgCfcYocodz9QGDkId4ffIAaP6OJ2QywaRP+ra80ByA+8549ibclWXMwFaLio01bG/ZnhYWxRzROJgYHjR1Ncgo79eNmMxq45eWYkkep02Zz4umn06drtXJqa7H92e3i+yC9MWrDej0hmYICjKDUR47t2CGinuS2kZWF5/b5cMV1xgy8pkAg3Jg3ajOxpFUCiNRUWd8t2c4xVUXx4/z88PQKAPw/Nzd65eDsbFF8Qv+avCgRaTynSAtm7KHvKJJGXyKYTNhmyKEsbwfAsTcnR6RC0uIWvV5Tg+lAvb2i7cyahX1AQYGowHb0KNquJhOe0+9He0Ieu+WJ85Qp+BqlQdbWJv4Z5VTJeJxqY0F1NbbJ5ubY2l2sbZMW2AcHcWxM10iUkhKhvclEhxbDp08Xf9tsYiyRndnUL9DzmJFhHN2p10MdLcZjZgVVmqVr8/uxnba3i2juUCh87jLR9HKTCTvHmCE8HuxkZC+87NGnVT79IOl0ikizwkL0QButlodCopPr6AhPnQPAc3u92kYZj/6S7AzRe8uZiYNRhGI8ZGaKKB6KGhsYMJ7UyVRX42oKvf/s2eI5bm7WOlozMnDi2tyMbaasDP8eqYDxzJkoMGyUMpYqTCZ0JgMYlx6ne6DXg4sHuYKt7MSeaO3T40HjPy9v/IsupxJyluihgiylpVj1kFLtrFaMEjOZsH8nI7erKzFnD6XzE6Wloo0TFRU44aaKaMFg5LRXipDRR46FQmioz5qF/YFMaanQOqJjgsFwgWsy3vUO4mj6hDSZp5Xc7m7sE5LtWC4owHPu24fnpQg4PdR3RookmjIFj9VXE6Njh4tAGs9CxulKMlO9yLG8ZImxdqjDge2BtHBo8aGxEcdUjwcncxSxHQrhs+t0YjskZ7vfj6mb1CYpNbOgwFicm9L9AIzbVqLjkywjMh6RnQyx9CfD3QdVxe+suxvv52QW24+FnBx8Vi+/fKyvZHyjqmIxTR95b7PhfFAeG6xWrd2lKOHteqwd0+PNpqWobLquoiK8hwMD2BeT/Ix+oTJRyYvJADvHJiipaHwDA2iUUEdEzi7CqIyu/FpGBoYGDwzgz6ZNqOMgXzNNPPbtQyfE7t3a83i9IiWHSCTMMxTC6ydx9XTN558sDOfU0uN2i8poNMmtr8e/o3X4JD5NOflms0iba2vTOsdoUO/qQsfPrFmRJ5bx4HDgeYycx6nCbEaHHED0tMqsrMh9z3CFCPr7xYRBPsd778V3rWPF4CA+CzZbemmnRGLOnMhOlGAQHdQUvUHi3qecgmNEcbFItUt0ZT0rS+uIDoXQCVVVJb4bOrfbLVKtIlVhcrlwvKDoD9LjUVWMdDHSv7TbcR+LBSdDjY34v94RRCuyRgtGkZCd8O+/L5wGyXaO6VNJ8/PDvxM5gic3F+8hXYM+XYoihGTy8oZPG+I2Nf5I5vdRWioK4tAkWNanmzYNx772dhyre3vxOczKQif31q2Ykk0R4IEAwIknYj9EBSIocmzqVDGeffEFviZnI8jMmqW1afWLQ3IbjSeqbCQRaKNBSwu25VgjXaLt19WF9lFeXvLScCc6FGiQrGqvkxXSEjab0UaksYcE+QMBbOOE1apd4CotDY8S6+kZufZvojQ2jn6FzOGQi5IBiGIRra3Y9xUVoV6qLKOU7rApwgzR2orRIz6fEEmUV/jIGNY7F6jzVxQ0UqhTamoKL7FL+inHjuFE+R//EKmWAGj8DAxoxfO/9KXYrr+9XfytqtiB0jVzHvXERV+RLhbIiSWL9NJKabTzkSNN/p8iEPv6tGmF5BxTFDTmGxoAzjpr5BNXqxUHr4YGsU12MieCUTSYjMkk2q1RNBTdk2hO+eGEi0MhEd4t38PxPokIhUTKeWFheoeay1itxpNnam8A+BzLCxUnnACwYgVGRxYUCGH+RMjJwYqX1N5IY2jmTBHhZbWKaoxuNzrnIqXAUiVLWlAxmbDdyCna+mutqEDD0mzGZ6O3F9+HUiGp3crPO3HwYHQjmu6hwwHwxhs4AaBqsclOSSaxXkXB+6q/R5R6Qdc/fbq4BjlFLpLjLpZKwy4XTyTHG8ms8L16tdAcIwd1To6YkLnd+P1/9hk+LzU1+GzRvqEQtgG5qmpVldB1osqAnZ1a5y49q3l5eC6KLpXb9Zw54tnVV5GU7QGjCXekMXE8VdAzoroa+6yRLLT39uK8ITOTndt6FizAZ2cy6pAmE1pcmTIFbd65c/F/RRF2q9yeFUVoigKIqFAZVRVBHsPZvsmmt3dk2rypQG9/yJINdjsWIsrLM5ZUSVe4K2OGaGwUZbFlbREZI8O3slIb2RMMovOrt1drTKiq6KgKCgAOHcKOTY6QodLcS5aIbbGm2MmDfGOj1kEWqaoaM/6htN14JoTk5KLnOBTCZ2K4SZo+rdhk0jp4rVbtAENivocO4XNcWxvuEI4XcjrITuM9e0Z2zuGiumhyAWBcZl0W5I9kTA9nZAeDuKpP+9JEpLEx+nFjSWcn9lmFhYlrY01W8vIiO0LI+CovR2eYomCKvskk+vMTT0SjdzinSSSsVq2TxmxGZ9PChWJCkpGBP7TYMtzkTY6CMpmEoLTPhxN1OZKaPiutei9YgMalyyXGPeoLjNrfjh3RjVFywhYX40RWHk+T6RyjVWVyOhid22rVTqTz8iLfy0SvLZn6VkxySLRtGnHKKeLvc8/F33K6FAlD2+3Ybo4eRacV6Y+63ThW1NaK6ES3G8etGTOwr8nNxbQ+2TFF9qnNhn3D/v04nsrjnMMhUrFmzNBKGhhFTMlFdyJNvkd7Uh4vdH2xpqDJtjxFUZtM2C+km9h+LOTl4fM8UomQyQ5VpywsxHZLznBFwf4hMzN6UbY5c8IjnlRVPNej3Q7l9x4PUMEwrzd84b++Hu95VhbeJ1roSuaiyESFnWMTlFSkVR44IMTFKeVFNoD1hrM+5ZLKZTc04KRSr/9CYZ2qig3y+HGctMid1+7d6M2W31eO/ImVmho8JjcXo9XGmyefiZ94nWMkxg2Az0539/DHyStSAHgOuQqeLAQaCuH5MzKw3dAPXWei1XIsFjTi5aiS4Zxb0RhO+JveM1pEFB1PFfSMiMU5RpNf2vfYsZF9tlTR14fGv9OpjUBlBNGcI/T9kpB7VhauTppM4Sl73d2JjWcWC6ZK0XdjteL3NW2aSOEjI0/v1IqErIFH/Ud5ObYNueolkZsrtI56e/G5URRtX+PxGEdezp4dXU+T0sCOH8fP5fWK60vm80jfF437RpEONpu2YrDLlXzn2MyZ7BybzGRkiGeDHFOy801+rnftwqhLkioAwDaQn4//U7QIbTOZhIPG79f2MTTho30GBgA2bBCLQWTrUttatiy8/eohezIUipy+NVZpXbFC91q2aaJBem+trSKKmsXmI0POXrYdYoMWtygtl9qlyyWeM9K0lHE6I1eDHivGU9RoTQ22bypkItPRgYsFubmiCAqAtiBausLOMWaI7m50AJCRrI8co7+rqvA3TTxkg4e8/A4HGjeHD4t0R9k5Rg4yElwkentxFUA2kp1OPJde5FiPnFMdCKCjgxo7G90TF0XRpu7EekxlJa5C0Xff2Tl8VUFKLZLPc+gQpkDRcyo7xyjaIRTC562hQbweb7UcMqZtNpz4f/KJeG3LlvjOJdPZObzxa7FEFsRuatIen6hzLBRCZ5h8vuPHsTrneMHvFxpzhYWcEpEIeufYJZdgVJXFYqxHlWjhCYtFO6HOzMTozaVLRSo+vRZrara8iEKfo7oa+x+zOXwcmTJFpIPR+KQoIkKSdMJoXJKN076+2DTHTjkFx9r+/sQdidHo68M+jvT09ELaJhM66+XFMUqzNCLRNuN0pneBi3SCnGOUwgyAWmSUVuv34/hptwunl8+HkzaXC5+T3l5sf6edhq+To43GZWrzZK+SnujAgDZ9l2xdGm/17Ut2YOtfO3oUx22jdjyeJshGUPuN1YkwOIjOC46ijo1I2TeMMTYb2uyyZp3Fgs8a2QhGEWT67A4A7VxwtFN9oznMxwK6F1TMR97e3y+0mfPyMECGQdg5xgxx9KjwMlPHLncsVFZXNmgAcFtmpnYlqqQEJwstLUJ0X67OFQyicRMMap0IVisaOfKAkpGBx8qh7EbIE6Vjx8RqA60+MBOXeNM7KAKCDN9gEDv/4bTn9JNfSm80m/H4XbuEs7eiAl8joX96PhOdvNJqdV4eRlHIxvVIKrnJhkIkyNFA+8vIzjWjlEuCBNGjvd7VpU3N3L177Epu66HqaIWFwztRmchQRCUAtotFi/DnK1/ROldGisuFzmg6Z1YWvrecYhHvxESOjqJ+w2QSY5L+ubBY8HmxWPCHFpbIUVZbi888Pe9ffIGOKAC8R7GkYF99NZ6bHG2JfK5oUETawIBIAdKnl1IBBcLtjvwdJlqljpynzOSHniV5IpyTIxZpOjuxzVksYsz57DMcvz0efD4posvtxvNRtIPVipNTeg9ZE/f4cXSoyVHSlHLZ3o56uvJz3d8//HgeCBiPe+PdKWK08B2N7m4W248H0sUb78/BeIGisAm6f4WF2ueOxmD5vurHZTkCXD9fTTXye48mkYJHyP6nrDCZ3l6h8VZUxJpjMmyKTFD0nulklEG324X+l9GqR6SO3mQSIfOqCrB4MTrHMjIwbFNfsZJCPLu6cIXQ7xf7WCyRhZ6HG2Rk51h9vTiHoqCzjJnYxGtkkJGrKLGn7uXlaQdacvQ2N4vnidpeKIQDksWCz7PVGn58PFA0ZVcXGu9y4YvKysS1E2J1jkVa7aqrE8cvXRpdgLi7W5uGImsvUIoBCR5TJMpYhr8D4PW2tuJ3x5ErI0d+dm02ETU2ZYpoQ3Llwry8xDRrMjPDU171TvR4+4wZM7RO4mAQ2zM52Y2cY11d2NfMnInPu5yKDYBtgvoiv1+MRZmZsY1LZjM6CPx+XDlPdlolaZIAGIvsm83ouJDHZP3/yYClD9IHOT1XxukE+PRTHIscDuwbSH/W58Nt1FfoIxTpXFVVYiEXAOD008V7HjiAY7a+0JTVijY0RU5Su2xqGn7CGAgYj4njUS4gErFM5jmqJH6iRdgy4eg1sSh9Wr6H+oJwcko1EYvNmyo6Oka30jwRbaGNqmjL4zzZESSRkJWVuBTMZISdYxMUvVGdDFHrvDwxsc3IQMM/lok+dVw00Z09G8WXKyvR4Ni7V+zb2ytSVQBwoqwXMPR6jQ3vaPosANoBfvp0bfRbMpyHzNgRr4FB6Y6kW0AhxcNNLAsKtClY5MDZswfg5JNFFCMAGr81Nfh6Swsa7suXR4+uiga1g4EBFCufNQu3+3zaYhaJnNfIUNBHbFIb1BvKra3YTun96XWqyEfU1OC1y++1cyf+7ugQZc31k3F9dbDRgkSFbTautJVMMjNF9BYtnBBG1QhPPjmxSLJZs7SRXgDhE9J4Ix3kttvRgRNfcupFEqoncfqMDOxn9M6xt94Sz5ZsoG7fHvsKM903EsVP1YRr//7wbaORHpSdPb5SUZjUQgWS9Bqf5HQNBNBmmztX7DttGr4+a1Z4hBcAjj8A+Jzm5oZXX1YUjDT1+cK1smw2EeG5bJnoR2ghVw9Vko4WJTLWiz7DQX0S3bfhGE8i4xOFRKNo0xGjRWynE7U39ZGeAFobUq8nPFbRWwDYTsYi7Tja5925U1Rdd7nEYl9OjrjW4TRQ0w2eDjBDBINo3LvdQnxY7pQirYLIzjFVBZg3D4X2MzOx4VHIuaoKTSYyiiwWNEyocyNRc6M0OiMjRUafT11RgauIkSpwMROLeAX5KbVCUTAdMpbBMidHWymVDOrycjSq8/O1zjGaNFLRCFkgPF5IF6CyEp3LJMjt9eJ7JaphEkmQXw7DNpuFYaK//kAAB3xZLxBATBDk9/H7tZMWmqB0dAC8/bZY3Ze/i2ipmKkgFNKKCkcrRMAkF31VKQBRSTJeaBIsP68UJWL0HrFO7uh8gQA6gOl9jJynpI9Jq9c2G+4vv1dPj5igh0Jisi8L4MqQ5p1MURG2T33J+mRAn7e01Pj7icc5luj1FRbyGJ1OlJXhWCA//1OniuesvV1EbBLnnCPam6xrCIALWmRTulxo91HEl6w95PHgeLpsmfZ6yN5UVa1Do7Mz3GmrqlhpFiB8oi4zXOQYLRCPFXTtRv2NESQnwcSO3vnLREZRwud4lEkUzUZwuYydY2Ol+RcIpGacHg6Px3iBiRajg0EMopHnLP39IiCG5CMYhJ1jzBBeLxoUgYBxmguVxCb0ud/0OyMDjRiXCz3WcoMlg8BqxUlpKIS/KcIkGMT31nveVXX4ChqqKtIzOzvxvNSp0oSEmXjoCz/ECkULKooQ2ieHUyTOPz98gKCVFq8XnymaQAYCOKBUVgp9M6rIBxB/WkUwiAMVrWrLjiRVTVy43GgVTS8iTM49I2Qhz2jfgZFzTC6Q4feLKrZ0vnfeie+zjJSuLnTUFRSwqPBEh7QuZadVJEcnFbmIBTmtsqZGnN/IOUZaYy4XjjEUZSaPeZT+CYBtnMYxua+Q6ewM1+HLz8f+x2JJfml6igClaHE9cgS2kSCyjJFzLVbKyxM/lplYVFQI+48oLASYM0fo3519tvaYrCx0XGVnYzuTx7SsLGGPOhx4rvJylPig91AUTPGmVGmCqtLSwq3ZLMbgnTu1izc0ltI55WJTMrFolVHRjlQx3GIAXV8suocA47/AwHhkJP1humEyhWdEGaVM6qGibvKYq6po68Xq+E0mRtpeo8HnnxvrjlFEbCiE8wu9PUPziuxs1hSUYedYGhJp0KRJrccTW8UpWhUxmYQgv6qiQ0pV0RFB1UYARDolDcpz5ggHwv792Hh9vnDnRGEh/h5uMquqYlLR2iqqFPl8sU+MmPGHUfnm4VAUTMOgFRKKIhsuSshIS6ekBI8dGNBGUwYCImokI0PoFZEjtr09Pu2BYFDongBoJ+mhUOKaPEaRY52d2m3R0toWLRKrT/KP/J20twvn2K5dYjtFx3R14epedTXqGtDK3miFcff1YZ+QlRWuYcFMXOIRPJZ1zoZDFvQ2maKLxdvt2EdNny4E+eWJ8bRp2kI0dN7MTONxaWAARfvlz0UT9i++SH56E7XH/PzwaFAA4RjLz8frSFWqEFeGTR8UBeDii8OjvyorMYLR50MNP33mQmYmPieyphgha8yaTJiSWVwsxjmnU0Sryc8wpUaTc8xkQgd2Xx+2RXmRi94zGMQxL5Jz7B//GF6SJNVFX4ZLl6TPQn3WcIz3NFFmYqNfVAIIz14CMH5WAwFR+A1ASJToI8pShT4AZLjical4385OYzu+vx/7gtZW3J8icqlqr7zwzXaxgJ1jExT9YBxPfvWbb4Zv6+vTlryO5EyKlFZZWqqdFFgsmJ5WXKwV+fP7cZ9AAI+hSXd5OU6km5pQg0Ym1ggPOUKGtKYARLVBJn0gA5meg6ys2CeV+meFdLT8fm27oIkuaQzR5E4W345V4JLSibu6wqMdqeRyos4xo77B79ca/SZT5D4kK0u0repqdJ6HQlpnQWcntl2/Xztg9/SIdMxAQFT2ohTrVK+s+v1i9bCwkCfgkwlZVJaItsoc6xigKNgOKZrSZMJIl0jOMTLe5eshRxwV7aC2TFGTnZ3YZxhFl3Z0hLfH/n68/vb21Gj/DA4KYXI9brdWOD1RTcXhkLUemcnPhReGb8vLw0gGvx/g0ku16VRms1b8Xt8e5cwFqxXgvPPQMU3PtMOB5wiFtI4pSt3KzMRzWyy439GjYn8ALMoDgG2Wxk+qPGsUmT3c85xIEZJ4GE7DT+43Y5k/JJr+zjCxYJS9kJMTW5GkYDA8EnNwMPVtjJAXwQcGtAvEqUROzSa9Yj0dHRhV1taG94mi7c89F+8PHeN2s30sw86xSUKsotY9Pegs0otpHzwoBn8qqW1ELJpjBQVoVBQWoiEtdxw0yc7O1jbEI0ewwdbVGU9iYhUhpolNZ6eYYCgKhzdPBuJZ1aCBlpxXJlP8mkNEby/A4cPoFCouFsUvyPgkjSFqM7Ra5fcPr5NHbN+OA1d9vRjQp0zB33K0ViLIIuCEPq2SihYYUVsrzlFTg6nXwaC2nba0YLsbGBDtnRxjJAQaDOK9odTK3t7URnS2t+N7FBamfpWeGX2oAIzcXleuHPl5KQqyvx+jwug5jxY5RtdD2mTkHKPFHzqWjNmODpzE6yecqor9jH4M7O3FMbOiIjXOsZ4erEZnlNpotWJ6WqqRtR6ZyY/ZbDymBQLoONZPii0WHIsIfXuk/y+6CCO/Fi/GaE65IIjZDPDBB9r2RYto/f3Y7il6vKYGIzWpfzlwAK/3yBFsg42N+Lps39K+wy2KqSrA1q3R9xkpw2mayXppsUg2sB4Rk0qMdC0tlvAxKVKwhOwcU1VcrB2tCsgk4TIwgP1XXd3oi9v7fMZppJQ2vX8/XtuCBXifCwrQLiZbpbOT7WQZdo6lGc3NOOjr0yeoahsArrbF43GXjRRyjlmtOLm3WIR+A0WPDA6iITxzpjju88/xN61gJwIZWlu3YodAES+KElmomZmc5OVhaDOFCpOgfCzojW6LBZ+nmhpMFaYBNxQSRnZpKb6n2y2ODwRi1x3r6hL7kxFKDu+mpsii+rEQSSxYHzlGEw99++voEAM9Rb5QSilx/Di2tyNHhG4ETTb8fjxHWxv+39CAk/3PPw/XmEgGHg/2Z7m5sa06MhMTk0mbpgiQnAjhQ4fwvFYrPtPUniOtqpJxqSg45nV3C6dvMIgRK7QYFQoJYzUnJ3zC2deHk3D958jMFPvGq2U4HK2ton1XVBjvIzsYRkqkNskpHekHSWYQM2fis97YGP7MTZmitQ8jOcfIdnW7URJBHv/KygA++kgb/UiLqE4ntk+7Hdt0dze2f2qLsjYXFa+iv2UJBIDwxWc9Pp9YjB4rqD8xmWKTf+D2yaQSI+eY2Rw+RhqNw2QLkC6eqmIfMlo6ebQIXlODY7/fP3wfkGx8PmP7h6SGOjvxHs2ahffLbEYbhHTGenq0EeLpDjvH0pBdu3BlSy7bvm6dMPJzcrCsqxFGwvb6yDG3W4SUT52KBkdnJ3YctCo4ZQp2emRM9PbifnpjKR6oMwoGcbJOTjmTCeCUUxI/LzM+iNc4y8sTKcKhEEZ/xYKR0R0M4qRO1ioJBkV7cLmE9hAd7/GIiWws0R7BIK440XNLzzNFoo0kcgxAGPNdXeHOMUURq196CgsB/vlPnESTk5Ecg/v2if3MZhxgSfuhuhrf4/Bh4SRrbRVFPw4cSK4A6OCgcPIXFkaO9GEmBxQ5luzvuaUFncAmE45fZHBGij6mtEqrFSfjclsPBtFxTtGmFBlG6Fdq+/qMJ6ozZ6YuyrKpCfuGaGMv9UmxEq3wSarSMpmJxZQp4ZMxRcHJW29veNvIycH+nRZVIznHyMFL0REyLhe2T9m+NZnEtchRnrQftf9jx0SEmccjCmPoo7pbW8WibKQFLa9X9AljBbXRWJ1jnH3BpBJaXJIZrgAMQW2WFnhVNXEJAn0xnGiQrUDth4p3yOnfo4XXa3zttC0QwHn/KaegjUzVKWmu3tOjDVhJd3j6MM6JNGFNdBWntRXg00+xCs+HH4rtH38McNppGGHV1oahl0YYhVbLzjFZbBhA6De0t2t1laxWNIIo/JxC5vWdI0HigdFoaMDz+f3CsFLV2KvxMOObeJ95sxmfmZwckU8fyzn0RrfVis+UXFgCAJ/lsjI85/z5OEnOyhIrW62twgE1nDgutY1QSLwPDWqycG4iHD2qFQ8mA4Ii0yg9NFI12GAQ76HPh5OC5mbcZjJpUzdaW7ENkqHQ1ITfQXU1/lBkXH8//t3YmJyVKkrb9Plwgj9c0QVm8iBHaiaL/fvxeaIJbqyRWoqCzjE56pqiQ+QKtuSkJn0j/TkirThbrcPrCCVCXx/2Nbm5yYsOSWakGTM5ieRsoeJOevRpmHpNL1lzjP43StPST5ipyMQJJ+D/cludOVPYkrSY29mJbfj4cVEsR76u7m7RZ0SqSOnzAZx6qvFro4VctS4WJwJXk2VSickEsHRp7PsbzQflCM6BAVGlPh5h/lh1ggHQHn7vPWFb0/hMC2DxFORKBNkZ1tdn3I7lBeiPP8bMMFrkz80V7ZrHbC3sHBvn7NyZ/HP29mKj3b4dG/HGjfg3VbLYtAkbUKzIk1G9t7y8HKtS0mtlZSLthBxoNTVo6AwMRNY1sFojp2OQA9HrRaODcr6psRtV4GImP7Iw9vz5sUc/6CfbNhs+Y0uX4mtlZegI6ujAQaa8HAcgErik1S6qlBWLHqCqhqeIyULARmKleoJB4zRFvx/be2OjqOh6+DC2EQCxAh5JrykUAtizB88dDGJ7Jc0xOWw9FMJzUR+wfz9e97p1uN/cuXivPvsMnQ87dow87J30BQsLYy/cwUweUlF6vKtLOJDJmQswvONIUbBirc0m9s3JwXaycCH+L1dUBgjXJaFxsaVFu93nwyjVggLj6O2RkJuLxv3cucafMVKqJcOMFKPoiiuuMHacycWWAML3oXGbJn5GBTtcrnA7gI6z27WpXeTszs7WpkqTM8znC69MG+tCVmvr2BegWLYMf1utkZ14MlzUikklJlN8gvDyuKSqGKEtt0WS8OnpSW2AhKIIOzYQwLnC/v1CzmWkRJMekYNn9DYDQTqoHg/a/eXl2oUD6kdVlReWZeJyjj311FOwePFiyM7OhuzsbFixYgWsW7cOAAD8fj/ceeedsGjRIsjKyoLS0lL4+te/Dg3DeCaeffZZUBQl7GcwntjGSUxPj/H2REM2LRaAM84Qhvzx4wCvvYaTgNNOwwpBZ54Znxc5mrGelSUabWMjThyOHcNOkIwNtxsj1To7IzswjETFiYEBoQmlqthhtLZqV8aY9IQGALcbde5iiYzQp/3YbGg8FhWJAby7G5+zsjIcUEj0X1XFxNrpjC+8Wp8iRscVF8fmHPvwQ0yZ1kee0Gfetk2kh1IFTACx2kX/0/vSdkqXrKvDFfO+PhEFRgKgtII+MCBSVmiiQdfe3o7/Oxx4nqNH0XhIpH1SG8/Kwu+L9VCYZFFRIVaa29txvASIPepUbvOKgmOpXHnW5xPVKumcsvGenY3tiCrhAaDTubQUnWPJnFSrKp6vrQ2dA0bGcSqLZjDpjdHYOG2a8fbeXhxv9U4ygsYROT1Y7zw3qlpNx2VkaMciOv/s2aJIx+CgsEX9fhHNptccy8uLXgF6+/b4U5WTDX2+wcHYImtSsRDBMISihGcSxLMQRNI8AKJNdnVFrgqdLHbuFM6x3l78HBQxHslhFQ/RXCHy54q00KyqaMPQvoqCEbGKgn2l3PbJYc7E6RwrKyuDhx9+GLZu3Qpbt26Fs88+Gy677DLYs2cP9Pf3w7Zt2+C+++6Dbdu2wcsvvwwHDx6ESy+9dNjzZmdnQ2Njo+bHwS7MlLFypQgDvf9+DAsFwIiXefMArrlm5A4lyl2WDZi+PuEAcLuF0Z2Tg/t99lm4gUJE69xUFSfuZIjU1uJ5LJaRVfljxheJpFUqikiLiDWtUk95OU54ZUcPABrHU6bg+Z1OcW5aD5DfOxba2rSrs/JzS58lGh4PRqh88QX+L0el0OoWVdmi1ahAQOynFwimlMkTT0QH1MGDeNysWSKFUp7Uv/EGno+67qwsfP2ss3AAzs0VbZ4cb/GugZBuGQAO7Fx6Or0pKUn+OQcGcAxRVXxuKeor1r5DP96UlQktEgBsh/39+B4UDS0vglGb3LJFbOvoEOmayXQEqyq27e5ubLexarwwzEiJ5DyyWo3171QV4KSTIlePpUUZGmNMpvDJnqJoK14CCFs0Pz88OooWeGjxp7dXu3hEkiH6hSu3OzyqTGb69NgqRI4Gbndskg2cVsmkGn30f6wLQZTuTPNEEqffsye+wlgA8aVVtraiDUsO9w0bcBw9flxcx0iJJskit1ty1hOyw37+fO1chPbLyNDeY9lOSXficoGsXr0aLrroIqiqqoKqqip48MEHwel0wqZNm8DtdsO7774LX/va12DOnDmwfPly+O1vfwuff/451OpHIx2KokBxcbHmh0Ei+QijGcjDdQR5eQDr12Nj6e/HdDCaZE6bFi5iGg9ySDoxdy7+bmjAVXmLBQ39nBxRyr68HCcIxcXGn02fciYjdwK0Up+Tg++lqtrCA0z6YLGI1Ah6diJp+EXD7RbPX1aWmMiSxpXVij82Gz6/5GxSFIw283iMn139aq0+OlIe6FwuUREnEhTB5nYDvPuuGKA9HjEAknPptddwv5YWdHqFQuEVXTs7hYC4zYar3T096Fwjpxj93rIFfxRFTLBVFf/Oz8f7np0t9Nuoj1q0KHYttfZ2vAeFhVxymkFS8RxUVoroUVlYPlanlJHMAC1GUaXX0lL8n9q4Ph2ktVUr3C87rZK52BMMouOttTWy1pOekdgHDENEetasVoBLLjHe/9RThfNLn92gd2xFOv/ZZ4e/n82Gtq98DrtdW4CHxmdZi1BRhCyB/J60CByprVZWxpbKOBoUFMQ2BscjtcIwiZBolDLp5n38Mf7f1YXnIo3PeJxjsc4RampwQXnKFOEcC4XEItZo6F3r7QZ5wUBepDebAb76VfE/Of37+0U/OnWq1uZIdxKODwoGg7B27Vro6+uDFStWGO7T3d0NiqJAzjBlTnp7e2H69OlQVlYGl1xyCXxBoQ9R8Hq94PF4ND+TkUhVn+RGodc0Gs77O3UqTogzMgB++lOcwJ97rnh9JGkURsaAzYaOBJMJz03OgowMMeHPzMQJSSTdoGhplTSwB4PYSVGaJZHKkFpm9JAN1VggpxilENLENF5kzaHMTHTo0mqR2Yw/HR3owFIUrRGpqviMG61G0SA8MCBWpuVuzOEQK2JZWZEF84nly9EpTO2EQtIpqrKuDq95/Xoc1J1OnLQ3N2NEGEV70vE9Pbj/jBkA3/42rsLl5KDzz+dDbUJaGduzB48j3ZYjR7QpZU1N+PPFF9q0MxJBjobHg5P33NzIuoMMkyxOOUVoX8pOqeEcR/RMk+NLbsvy5NNIo0jelpenLXQBkLoUrEAAx+dgUGiRDAdXrWOShZFNl5lpLOsRDIqMAIBwx7h+bIj0LFNUl0xGBsDJJ2uLadhsot3Rgs6xY6Kipbxgq/8cBw+GF9cIBsWC2PHjiRfYiRVyyA/HggWpvxaGiYVEde1o0ZXa24ED2H5DIbQ745kDbtgQvs3oeL9f6JmR8L6i4PhIUazDLWiPFLndylJCANo+ND9fRNmT3phcNI/2T4ZG2mQhbufYrl27wOl0gt1uh9tuuw1eeeUVmD9/fth+g4ODcNddd8F1110H2VGUkufOnQvPPvss/OMf/4Dnn38eHA4HnH766XBIFtww4KGHHgK32z30Uz5JY35jWSXW7zPcQDdtGjZgmw1TpC64QDTiGTOil3SPFxJK9HjQKacoIsLEZMLOkDSVbDYU748UORbtPQAA/vpXdFLY7Wjo22xC44WZ+MTrtJUnew4HplMkkpI0OCii0AhKrzCZwsX+qbsjx9yRI2LCLEMO3G3b8Lffr00TJEeX349tdriA2s5OPKa4WDihAfAcR49ie/D78bWZM/FvctDt3Inp1qGQ2GaxiOizefPwfP8/e3ceJ0dVLv7/6Z59zz6TZbLvQEKQLUEhIqCggCIXucjmdUO/XuXq93sV1At61aD3uqAI8lOveF1YlEVECIsQFiFACIEQtoRsk2Wyz7539++PM2fqVHVVd/Xe0/15v17zmu7q6uqapE/Vqaee85y2NrXO4KDII49YwzMDAfX3dHaqzkhbmzWD5Pbt1nP9f/jQQ+pkXVPjXcukv1+d8MvL1TGJ2oHIhtJSK9t53Dh7ge94zALgBw5YGWh6me6wO7fX3W2dx8rLVTDdfD3RGwN+DQ2pOoUi6twfq40x4QXSqbHRe1jlokXRy3U2lt9+gNsohkBAfeed2xg7Vn2u2c70bMyBgMgbb6g+aF+f6mPqrDAz66q9Xf3o7LJg0J6FcuSI/bkerp0psW6S68LhIurfgkk3kA+SzQR3jkgYHFTnbt1X1aU44gmH3WeL9pp1Uh8T9MR5waA6Jui/w2vm6XQxS6eEQt7Hxhkz7AX3AwF1nRwI2Ns+tXstCV9uLFiwQDZs2CBr166Vz33uc3LFFVfI66+/bltncHBQLr74YgmHw3LzzTfH3N7JJ58sl156qSxdulTe8573yF133SXz58+Xn/3sZzHfd80110h7e/vIT4ueeq2ImFFps+MaL5CkZ9EYP15lu4wda9Vm0MOykuHVsPQFgX69rc2aSXDOHGsWro0bVYfJbTvm+53ReN05WbtWHZTmz1fb1hk8ziKPKA7mMKGSEvt3KBHTpkXXK9PfOR3UNTv59fVWQDYSUd8/Z5F/ESuLTWeEvfOO+u5qtbVWNmRVVfwTrd7evn3WSVtEPR4YUHezDh5UwbOZM9Wd5SNH1P7dfLNq993dVntZvNjKEtH3Hioq1PFicFB1CNavVwGyujor062vT7XxiRPV7y1b1Ho1NSIXXmjt07x56t9v/Hh7Rl84rDoz/f1qG5SfRDY1NamhEtXV6vvpFtj2UlpqdVAPHbIy0Mx2pM/P3d0iL72kHjuLCb/6qn1GKTPzNJ2ZW3v3WjfD4tU1nDQpfZ8L1NV53/x1ud8ulZXq++m3MPz48fZMMC0Ucq9V6QwMBwKqTY4Zo4JeBw+qGzzt7daMtP39ans6K1234XBYtSfzvLZ3r3149Ykn+vs7khXr3ykctvatoiKxYxyQKckGx+rq7DXHhoas7/fgoP8bOzt2uF8vuh2n9MRUuraZiDXhlP470nFDye2crIdkmwFwPXxS09WszBsKM2daiSmTJkVvm2tlS8LBsfLycpk7d64cf/zxsmrVKlm6dKnceOONI68PDg7KRRddJNu2bZNHH300ZtaY6w4Fg3LCCSfEzRyrqKgYmTVT/xQir86qPjGLqAZq1gHxkyJ98KC6U6yHha1cmfKujuyXSc/mo+/6BQIir79uzZRhTidbUeFv5jlnEW/zwNXcbH2mfi2dmXAYnWbM8FfU3o0OgJnv1SdhPXul+R2cM8de9Netgy5iv+Ctr1cdZ7NzoDvnekZHr7tXmhmw27zZyjTr7lZtq7RUfaYeBV9bK/LaaypLprIyuuaQWTMlEFDrn3uuWqYvMPbvVyfoqVNFzjlHrTMwoIaVdHaqbE6dqj1+vMhZZ6ntVlWp9+vsUfNkf/iwOp4V6CEdea6+3morJSVWYDjesWPMGHVTRtc62blTtYG6OlUrSW9D37RpbbWGPgwO2s9Z3d324t+zZ1uf46z5pbM7k3HokHV+9LoxBWRCrO+a2w1aXZ/W79Crqiq1rlu9PrcMC+f+BAKq5IE2OKjOTWPHqv3bvVv1RV9+2X7jSp+3ncGxV16JLpuQycySWDe5w2GrvzBzZu5nzgRSoct36GHLegi0nj3aqw/u5HVMcrum3rtXfU4wqM6hfX3WJBv6BlaiE075ZQbhNR300gYG1A138zikS62UlVkT4WmzZln9FKRQc0yLRCLSPxyl0YGxzZs3y2OPPSbj3dIlfGxvw4YNMjkT01CNcmZKtnnhqiPYWqzMMTOTRncQGhrS1yicEXadsaMb8QsvqNpHmp7qNhCwDiRud8bN7XoNI21sVD/O6XOZrbJ46eyLpiZ1MktGaamVgqzp+iE6OOZ2garbqNf3z+wYT5qktmPWTQkGrfp59fXxT7S6HVRUqL937Fh1gf3WW2qYSmmpdUF+wglq/ZYWdfwYP969gPDQkFXYc+FCFdyaO1ddqMyYoV7buFHkuedEzj9fXcS/8YbKXvvVr9SFg96vsjK1byUl6sQ9ebK6u71smdrHAwesLFIu0pFLdXXqO+kckhWLDlqVl6s229OjOss6M1TXH9TbOflk+8y3kYhqNzNmqDpAbnWX3JgX8IkKh62s8bFjGbqM7PI6N6Yjg0FvwxlMmznTPcDmzJ7Swyrb2tS5SrfVQ4fU+7dsUb97eqKLeEciVpBc0ze6RFTgfMaMzBbA1iUP3Jj9knHjMl84HMgk3Xb1MEOdkFFWlljdr5deUtcJzmBYrD68Ppa88ILK+C4rUyNAOjqia4emi/l3aiUl0dmikYharvsS7e2q/6H7KsGgdb1dUsL535TQP8W1114rTz/9tGzfvl02btwoX//612XNmjXy8Y9/XIaGhuTCCy+UdevWyR/+8AcJhULS2toqra2tMmAUfbr88svlmmuuGXn+rW99Sx5++GHZunWrbNiwQT75yU/Khg0b5KqrrkrfXzmK6ZpDIu4X9+ZwDM1P8cETT7S2V1oav9i3H24HEJ3FpffpnXfsRf90UK+rywoWuGV6mY1WR+f1+uGwOrnPnasurs0pss0aMCg+uu5XTY0KLiXzXZgxw17zSl/46hPNpEneJ2CzE+q8iDVPZD090UM3g0G1z3196rV4d3f151RVqb83GBT5+9/VkMaJE1Vb1BfA9fWq83zSSeok3tDgHhzbvl1lcwUCIpddprYxd64Kbh0+rJ7rWgcLF6pA14QJIqtWqYv/6dNVwKy01Pr3+8hH1N+rs2HmzBH5/e+tmT+BXKusVN/vRIJjmq4VuGCBCnaJqAtyPVxYnwuPOkoFp/VFcySiMs1KS9VEFX7bgq534uSnHxAOW4V6S0tpf8gefW7OFD2k2enEE93bsnM2xkBA3fzRk0EdPKjOYeGwOo/qtqovxE2RiFUHSWtvt4qG6wmqclUAOxJRIzhEVNZ3S0v0xF7AaFFTYw27FlHfb93Xfe01/9s5csR9OLLX5BYtLaoPPDiohmTqTPP3vEed+81r0WS5HavMER3amDH262T9mh5COXGidcNAH+t0jTRES6jE9b59++Syyy6TvXv3SkNDgyxZskRWr14tZ555pmzfvl3uv/9+ERE51jEF2RNPPCErh8ft7dy5U4LG/2BbW5t85jOfkdbWVmloaJBly5bJU089JSdmekD+KNHdrU6qzi9wR4dqIHqmO7OT4WdYZU2NlRGSSXoomy4wrIuO62CCHjql6ySJuB8MzIPeli0qE6arSwUMdI2W8nJ1B2HnTnUBr5E5Vrz0cEA9fM+rwxyPHgIoor6rO3eqQNDYsaptun3HdOdft8fdu+3fS2dBbnMYlYg1I5a+q9vUpNbzqsugP2fiROvx73+vhjt2dam/f/Nma3hKaan6twkEVNvRHf9Dh9TzmhqRZ59VQazKSmvijKlTVaZYc7PIm2+qjn5Vlfq3qKiwCv9fcIH6XH1CHjdO/X2TJ6uOeF2dyDHHqMDB//6v7/8KICv0BazmNzimZ7nr7rayN6qqrNnt9BTv48ap9vLii2ods+2PGWMNNY7HLMpr2r7dmoFWRH1me7u9dlgopD7r1FOtOqBANmQ6OOb1mXqyDT/rTppkZWxv2aIyrg8dUueu3l4ru9ttNtqyMvuIjsceUwHzV15Rfe9gMHeTRelAvYg6zzc10U/G6DZ1qnUubG1V/fK6Ouv86kdbm3uwyCuzcu9e1T/W/fyxY1X/e+xYdbxIJjjW1WUNfxRx7+/rG1p+2qwO3k2caB8BY9Y0RbSEgmO//vWvPV+bOXOmRHz8T61Zs8b2/Mc//rH8+Mc/TmQ3isrevVZDMIdh6btZ+o6WmVXi9d+gx2OLqAOA2QAzRQfHNm1SF9hlZVaGl4i9Mx4rqKf/pnDY+jt0x0NP11tSYhUGTzYIgsJSV6e+c9u32wtlJiIQsIYdiqjhVrpQ74wZavnpp7u/T8ReaNvU0WF/7Y031IyRWjAYPQ313r32AJvJHL6oDQ6KXHut1ZHXw0BF1HbLy1UK+O23Wxcrb75p/VuVl1uTCZjDnd94Q100dHaqzkFjo3peUyNy5pkq6DV2rPq36umxhpmIqIyZbdvUfkydql777/92/5uAXCkvt19I+x3mKKImm/j97626fzrDMhhUweCODnVenz1b3a2uqVHtoL5ePdcdbr8zZLo5csQ+M9/+/dHb27JFtddzz1XPGVaBbEnlwmzvXnvgNxF+Z7sMBtWMks8+q5739Kj37tunzlv6xpKeadbZXsvKrD77wIDK1OrpUccRnY2dq+BYJGIF7mfPVgE7YDQzJ8Q4ckQFg3R5Eb/HGj2rvfOc6pXh2dNj1TULh60bwHqm2t5e1cb91jwTUX1+s4/vd1TXli3uy/VN9hkzrBvjIurfhLq+3ugK5blAwLo4Nu8w6x8964yfCPKBA9Z6DQ2ZaRjOg1BNjQrE9faqC+lJk9zTVnUauts22trshYt1Z0UHxyIRdbFx9NHqvR0dVseJu2HFTX+nSkrURWCy3wedeSZizU41c6Y1k6Lb7Fo62KTrDjhTs+vqrKEMHR3qx7w4LS1VgW8/maAi7n/bxImqvfX0qP2IRFSnfvx41V50cMoMrvf3W51lc0i0rl+g93doSBX31xNr1NaqAFpNjdX+GhrsNQcDAZF3vcvKTJs+XQUJ3vMef38jkE3mOTKR4NjYsSpTVNdC0bU3nY/1JDUiIhs2WFldkyfbZ8FNpuxBY6Nqo93daoioLvRv1keMRNR6kyapfUl2tjAgGcmej501vjIhEFBtY3BQtdeBAXVO7u1V/Qp93jNriZl989JSq4/a0aHe39WlbiI995xqb//4h/V5Zi3edO2/F/O87lZOQcTKLANGg+3brf50IKD6noGAulHr15Yt7kF3Z+aYLpHS2WmN4opErKDW+PHqBvLQkL/yBungPHfrskm6jIo+JunjQl2dlXiDaATH8px5EtMd50OHrJNZKKQadKKdjHHjsjN9c3W1VYPlxRdVQGH+fPtMOnpmP33x4TypHzxozQg4NGQFGcyU9cFBq5C3s1bM1Knp/qsw2uh6W6kMJdZB3fJydRJessSqBeaWcaGDY08+qZ47T5Jmm21rU/W/zAtw3RFfsMA6+caaVMAMoumL6cWL1XaqqtTf3tqqXjvhBBUc0xmWekY+Xffo73+3/gZzv3WdsB07VCfivPNU2+vtVVmgZkp6IKD+fcJhdddK11SbOVNts75e/VvW1jKjLPLPzJn2O62JCoet85y+exuJqG2awbE5c9Rvfec3EFDnLLNoeDJBK33R+8476oK8rk5lXet6iSLq2KCHm+tp6IFsyMWwykRUVFg31/bvVxfI+pw2Y4Z1s6imRp2/dZaYzhwxM9T0SA/df9VZpOYNs2wWxY9E7P1it/8HXSMtV3XRAL90hrbzexwMJjYjbH+/1VZNb75pf65vMOnaZrp2qL7ZpYdbx5qQy0uyGbXOvoreZ12Av7ZW1TLVmpoYVhkLwbE8NjSkLlSdw6V0plgkoi54zSCRiHqP1/Z0Y8hmJzgYVPVT1q2zggj6Yri0VKV3L1pkLXNrsOasXvpC3gwGtLaqixld18wMVpjDSVGc9IVmMlOn6+EP+ntZUaECTNOnq06yrsXlRb/mFhwzh15OnWoNYdT7HA5b64wdG/uOudkedJ2vmTPV7/p61dZmzLAutMvLrQ68efE9dqzVcXae3HXwS18gzJ+vjjdemXP6OLNwocjSpWrZuHGq9pl58eA2exiQK/qGTSrnyaEh+0xQuuaYiDWcSg+3eOcd+3BonXHpZzY7r863Do61ttqPT/v2WZ+vSx0wQyyyLRfft0QyznRJBh3U0hfN5u/KSnVzLBSyskkiEXUzaswY65ysf+/apdrevHmqTeoJO0SyWxA/HFY392Lp7FSZbjpLHMhX1dUq01Gf5/Q5saJC5O23/ZcL6OiwJ59obufYzk61fV1DVAfFdIBs925r1EQi1x36s/wcD8z90jeuNbNPX1am+hrOSb8453sjOJbHDhxQHVvnsCpzGGV7e3Twxzzhanr4pZbN2iL6wre3V3UizOySefNUpld9vTWlvLPB6tT1QEAF0tz+vsOHVebKnj0qODZ2rFoeiYh88IPp/5swuqTyfS8rs76bIiq446zX5wzuDA5a3+OjjlK/Y2WO6eKYZm2C0lJ7UM4MnLlxO4Gbd4cnT46ut6I/d9Eiaxt1dSrwp0/4bmnhZWUq2KVr/F16afQ6waDVDvWddB0AGDOGlG7kr/XrUx9iqDPH9Ey3Ohh+6JA1ZEm3d3NoUySi3rdggb9sEq/MDp2Z88Yb1qzRfX0iDz5o9QX0DalFi+goI/uSrRuWrETa9Jw56vylbxDpSWt27VJte84c1ReYNUudp80bWePHW0GzwUH1u7paXXz39lq1Sh991Pq8dGfRxapn5ufiX/ezBwdVZhyQzxobrX6+zsKuq1PXhDt2+N/OhAnRhfTdbpI995xVT1dEtZG+PmuEiX4tHE5uGHis44FzyPPQUOyZpmfMUL/NGt+BADelYyE4lsd6e1X02DmL49CQOnFt325FpeOdWF9+2d6gSkrca3+lyq2DbXb89++313F597tVodJp06wLd+c2Zs2yDlY9Pe5DsP72N/U3NTbah2lFIvbZuVCc9PCmZDqgJSX2FGS34prO4FtHh3Vx6vei03mhUFamLmTN2WX8nsz0Z5t3k0pLrfRzcx0Ra71wWH3G2Weri3hz5ktTaalqV6Wl6nWdoebch0BAbeOoo9Rv3cYbGuwF/oF8Mm+eyKc+ldo25s9X5y6zhEAgYA1z1BfcehiWedOnokJdlDo76W5D0WIN/Xz6aSs4J6Luoi9caAXHdB/AeUcZyIZ8/87pCaXMttrUpG4e6WGVkYhqV+bkOhUVVs2xHTtUO9ZDpXUh/EDAPeM6GW6z4unZbvXM8LHEqmva3p6dme2BVHR2WiMmzO/zmWdadX81XX/TqaxMjUxqb7efZ91K8+gJtXRQvK9PtXd9nNDnVrM0UqJ/jxdnQsz27e6zbDrt22e/nshEDKBQEBzLY+3taiyzszP89ttWgU+d8u1cx9kYt2+3B6nGj7eyOjJNp5uKqOi6WRB4xgwV0Kqo8M6MCQREnnnGOljoGUVMAwOqw1JRYdVwEfE+CKK4mMOXEqUDUvqk4lZHwBkc0yfM7m7r+2fWDdNFPFta1Pdab8+821tSop7rumA6ZduN27CHcNieKVZaag9I6YtqXQdJRHWyS0vVHfb+fpFly6xtmJ/d0KA6Iroj4BUU18VAFyxQ29Tbqq72P2sYkG1TpsS+E+vHe98b/R2fOVO1y/5+qwOtg2O6w2seC5wZG8Fg9IWsGfDWdOaqfr8OVPf3q+CYvmA2i/Pme6ACSFUys5jPm2cFx3SgqLRUZVvW1lp98FBI9S/0+dCceCMUsm4IDQyoC+lAIP7QRr/cssT0zfC+Pvf3mOfzQ4e82//evaokCpDPxoyxzoXNzer7vWOHyGWXWaOwtOees4ZBm8ybz+a1gvOcG4mobep+/pgx1gy0paWqf79nj3W+9juplojVDt1GSGlTp1qfJxI9mZdzW5rb3wx3BMfyWFubNe5fa2mxF+EPBqNPjE1NquGY5syxp5ZmogC2V/HBQMAKfK1fb2+gNTVWJplb9olWWqoObnqYmfNvnjNHZZXpQJyZLTZ9elJ/DgpQMrUznB3q8vLok44zoysUUt/Rnh7rxPjWW6pdvvaaypaMRNRJXNcjCATsBfl1EW9dY8/sbIuogpv679m40f75usOuL/APH1aPzfRw/XeYUzofOqTamr4brtcTsWehHTli1WRxu2stov7d9Hv1kBQdnJs6lbtWyF/pKDuga3k5l+mZ77q6VHvXxwF9TNGTaRw6JPLqq9H75exo6/6B2U84eFD1FebPt5bpIHh9vZUJov/Oykqmdcfoka6i1X7Mn6/a3KRJ9iFSVVVWcKyvL/qGtHkMCYVUNra+4ZXu4UxuwbGBAfW5XudnMwPe7f36fWvXqvO9GVwA8s3UqVab03W/wmGRs85SgS7z/GjW8ja9+932Wdk1c11dc7C/XyV3HD5s9WV1UHzMGHXNq/vSfjPH/F6fVFXZSy7097sfU5zX47q/r2WzvNJowz9NHmttVRkWra1W4Ek3CN1Yh4bswyq7utQJ29kYQyF748nmWGPzs8aPtzfI8nIr+KBTV91qjulZfdra3Bv0kiXqztyRI+rzzKEs2cqQQ34Lh60hDYnQ3x/9vZw+3f07aj4OhaJPwI2NahbI2lorWywQsE6IkYi9JoBzivVgUGTTJuv59u2qXfT0iKxebd+fQ4fUdnXmypEjqq3pC2+T+RmhkJWtqtutDmjp9fS/Y0mJutj3qnmkZ8ITEVm+XF2Y6ADbiSfGr6EG5Eo6zo9uHd1AQN0c6u9XbXLmTNWuzCw1PTSkrCx6aIUOmJv0TS9zJlt9Aa/vbOvj0+TJ9iGc5rmUTE6MFpme5dJZn7ekRPXFzRu9Zsb0kSP2YZUi9vbU0mJN3FNe7l7qIxxOfmZIt2NNY6PqL+za5f4e86ZfW1v08Eu9LwMD6njilYEG5IOFC1Wb6+xU5XuqqqwJZ/bsiW4HbgGro46yz1Krmcebw4fV81271Lrd3ep83tGhkj3GjVPL6+ut7cQLjulAdCK1/cy6xnoyArON6lIJZrvWM1OLWBlvcEdwLI81Nlp3d/Q0sbrx6C98ZaW94enG4YyKO4NjyaSX++F2R2/WLGsGnxNPtAcApk+PvmPt3EYwaB/zretAmOsff7y6S69n5NQBDZ1eCzgnpUiFmeElYg/06DtW+kcHtMeNE3noIXUCD4VUm9i3T+2TviA2OesLVVVFZ1eGw6rj7Xx/W5s6eeoOelOTOlm6DcEyJxd4+21Vo8Hs+Dv/Vr1d3dE3Z8F1Y9Y40MczsjmRz9JxznB2iA8eVNs9dEgdC8rKVLBKtzXnBX9tbfTFsp710qTP9WYbPHjQGvIsosoQmEGy9nZ1jIhVtBsoRDoTOxazRlFpqWqLenZqHVgOh1V/++BBdf7fvNm6ia1vDOn2t2+fumGrz3/6PG625Y4Of7PTOkUi9lIl2owZavvO4t1dXardm5MTbNyoMttN+tgTClnDQIF8d+iQaqvTplmZolOnRk9u45Y5NnWquj6NdU2qy6FUVak2vmuXuuFVUqKux0tK1Hm+ttbqf8cbVrl/v7/1TL299niAWZpBxDrOmTfYJk+2Ro+Y5Y4QjX+aPFZXp4JYGzaoRjN5stUI9u9XJ69wWJ289Mxv+mTs7EAPDtqL7pqZVekS7wI5HFYz3Dkv8J3P3bJyxo2zppQOBtVdcvNO3WmnqcehkP0ioLSUkzqUUMg6CSXD/B45gzvOVOW+Piv9WgfOamrUHWNz3c5OdVfLLaPL3G5FhXUi09/71lZ1wi8tjS4YOnmyVVxff/aYMdGBLhF7wGzfPvVZzvRrU3+/On6MH69OtMkEHFOdCRDIpHRkjulZarU331RtSt/xray0B8Xcjk3O4JjbsEpdt8y0e7d111oHwcwC4n/5ixrebWabAaNFKn26ZG8MB4PqvK9vuE6bpoZc6hvVoZAqgh+JqOVm5ncoZNXfNEd6mP3wnp7kagL19FglELS+PqttO68FXntNBfLMrJGjj44+/txzj/V+fewC8plOApk5U31f9XWhW9DJLftUZ5uJeGdKhsOqnU6bpq7Ra2rUMaCkxGpDgYCq16tvWseb0ELfpPIqTeTGzObcuVP1A9wyT82goPO6P5lgfLEgOJbnDh9WQ7F0EEzXLBoYUCdis6aPiL0AqGlw0F5jwG3GvUwKBNQBq7IyejiVs8E6Oy/6gqCnxwp+9fRYs/HoGfFErE4I4KSHRyTKbbiRnhrZTSCg2m04rO5imSe7U09Vv/UU8X191snLLatLXzzru0ChkKpXJqIugCsr1R0qZz0QZxDs8GH3gJTzRNzWpvZNZ2e6dYi7u61CwnPmeNc0icXMVgPyTSbLDkyZYs/20kF057CmSCR64hm3STkaG63hk/ou8csvW8Exc0IaXaO0rExkzRoueAEvr71mPQ4GrRkoq6ut4FhVleoL6BpHIup8qLMy/vEPKyC+a5cKjj34oHX+M4dXdncn1x77+9UNKvMiuL1dZYLp2aRNZWVq38z+wIwZ9ptckYjIk0+qY8XQkKpxTBkEjAZlZVZShL7Ora9XfWBTrCytPXuiZ4Q03xcIqPbc0KD6CrNmqc/VnxcI2Gv8vvmm92ft3Gmdt819incsGBy0gmqhkPqbzb64fr/Zrp0jrmIV/S92hBHyWDisLpjHjbOCXfpk1dBgpTqbDSpW5pguDiiSmeK7sSLeulDhuHFqaKXJmfXivHDWwbHBwejglz6A6cLH+sAFODU2ilx5ZeLv01li+nu1e3fs2mW6jpge0mC2zzPOUO1kwgSrbsGMGeqxW8DIeSEcCqmLWhF14t2+XW3f7SLapFPA46moUOvqi3C3Nt3TY2WqilgXA0ChyERwbPJkFUwWsc5bgYC68BSx2po5K66+8625BayrquwBtkhE1SHT602dam27pES9VldnZaEDo02qM8nG09trn7xGzyxZVaUyrnS9Hh0U07NP66FN+vzZ22tNjtPaqvrgLS32ybFE1Drm7HN+tbWpbJVIRF2A69q8O3eqYNvhw9E3yjZuVP9+U6ZYyy691L5OOKxmmN6507op75xcBMg35eXqHHfUUfbhxI2N0ZmRzmGWptZWexaW2Q/WZRAOHFBtaMkSlSmqA+ciVnBcn19jlS/o7LQm5Urk+nVwUF0LbN+uji8lJfbM07Iy9Xc4A2Im2rQ3ukZ5LBhUGSM1NapBbtmiGvj06dZQCt1INbNotqm/P/MdChHvhq3vtOm7bya3oV7O97a3q4OBzhbTBxv93Px8LtThRZ+8UtHeHrvApg7m6lodel09Hby+s6W51REyX3POetXYqC5s+/qsukLOmR9LSux3jA4d8j9jjn6/l54e+x3veIGESZOis+IyMawbSBe3GoDpoDvN+i52IGBlcJh1/vRz5znbrU5Ifb3VtltbVfC+qUnN0KW3qbdbVqaWNTRQcwSjl5+6YanQBa413X7q6tS51mxPpaWqf62DYzpQbZ4Xt29XATQ9KkJniZoX3e3tiffRX35Z7Wtvr8p0e/NNdQzYtUv1D3bvjm7j+ua0mQlWUWGfwT4ctl9jcNMZo0Flpfq+T5xo/37Pm2dvj5FI9LWj1tioAladnVaw2aRHL/X1iZx/vhVELymx1yrs7LTqa8dKHNHXCvqxX4ODqt3qUVXO+uMTJ6qZZs32b05OV13NZHWx0DXKY4sWWQX+IhHVCJ55RgWTjj/eOhmbjd6rcQ0NZSc45iUSETn22OSGUwWDqiHrA4wuRBgIREfkIxHr7jzglGwHz1nMOtasUnq2St02nd/RhgYri/PwYbWeV90unZ6thcOqg75lizqJ6wtj5+xXwaA9AFdW5t7+vU7a5jAR54w2xx5rH5KhL7i91NVFt3uzIw7km0yUHdi9W7XVXbvsM+DqeoNumZrO4dJuAa0xY6zzfkWF6pSPGROdiSYiMneuOiaVl6sONTPQAdHq66MzLkpL1bm7sdF+bmxoUBlWzz2n+gV796qL5LIydUN4YED1WXXAKRCw6hHq7QwMqPf6zVjVmad6SGVfnwoY3nSTqlG8Z4/6bF0DTdu0yZpEx2nvXvvwLj0z9ptvWv1tIJ8dd5w1S7vZ33VO6uY2AY5WV6cCzs89pzImTX191lDpQECdb6dMsYZxmp/ptxavWX7FmaEWK7stFLJmf9+xQ7X/UMg+OceePfb+gnmdUFkZfVMdFoJjeay2Vp0s9V0ynZ5dXq7uDPf0qJOwOTZaNy6zzsjDD6tGk8vie/rEunx5cu8dGFABgW3bVIMfHLTu0ulZg0RUmqiuhwSkixlo0sOWvASDVnBs7NjoO1QzZlh3mzo6rMwxt8C2nhFSMwtwfvCD6nE4HF0PxJlxVlrqnqFpzhxrqq62LhB06rUOOuvgnrZgAR1nIJ7BQVU4W08tL2LvpOuhFdqOHdFBZbfgmD7eBAKqYx8Ou5dN2LtXrVtWpjr1mzZFd/4BqJs/ZtsIBFQ/XF9cmoHspibV5+zoEHnlFdVXDYfVOX7WLLX8yBEVmK6utmee6d/PPad+xyvGrTNOzePH1KkiCxeqbLSeHlWjuLZWZMUKFdQy+wY6E6alJXrb27dbRfzDYSvL7dAh9ZwsU+S76dPVd7601D7JlVeJECcd0KqrU4+d7+nuVrX8AgHrBtfkyVaN3nnzrHXLy1Ub2r8/dkZYJKK2q9uZKdaEOeGwGs6pt6HriT70kPp98KD6bDPg7uynExzzxuEuz5WXWw1bZ481NKgvv65zYI4z1o152zars33vveqOUH9/7i5ig0HVWfCalS+WQECd/EXUgejwYesuWyikDmQ6GNjQkJl6aigMyQ7nKymJP/xXCwTU9zESUZ1h5/vMrKyyMut77Nb5rKiwXyDru0JvvWWdnL0yx/RdJb1Pbp0D551q3SEOBFRHw3yPeexYtMh63N5OcAyIZ9kydQ6+7DJrma5PKCJyzDH2djowEJ21KRKd1aankxexbhi5TRiih1gdPqzOmaWl0QE5AOpCta3Net7QYM/ENM/VxxyjZnusqlLnZV0+RNciE1EZoPqGWG2tNfxJnzcnT7badayMEx3cMjNUJkwQ+fCHRc4+W+3HM8+o4Nfixar/YWauDwyoG2ybN0dv2+yD6KGhItEz3QP5qKFBndcGBqJHK8QaNWEOnXQOi9Tr9Pdb2Z99fSqzbM4c9fqiRaoNBgL2vv7YsSqg3tlp1S02k1ZEVADryBG1/Z4ee3DMLYBtCgbtI1hKStRnbtok8uqrIm+8oW6wuQ0PR3wEx/Lc9u2qM2umWAaD6i7R+PFWVpWz1lhHh3Vi3rRJbUMH0zKloiL2jDYLFiS33ZISkXe/Wz2uqlIdDX2Sf+cd1amg0cOPZIfzlZZad2nifdcCAXUh2ten2oQO7LqtN26c+n573VkaP94+hPGMM9QJdv9+K7Vb3zUyuQ3P8FNHyWy/sf5OMwDNMGYgvjlz1Hmrutrq+AYCKrO0qys6gD17tnu2tzNgpvsDOpt63z5rwgy9zf5+ayarhgY1NHrRougZMgGoC+aZM9XjOXPUzSevG0VTp1o3sY86SmWI6UCXPg9HIqoPUVGhguTmdrZtUwExfWMq3mQ/bs915sr73qfa/uzZKiBQVWVlsomoANjbb6v1nHQdQhG1/tSp6vgzMEAtX+S/iRPV931w0D6Zhohqe7othsPqO63PkW6B4r4+NTpDt/ldu1S/OxxWWZvbt6vz+KFDart6qLVZ4F5nZenhlyLRwbH+ftUeu7rUTWbzfO8MtjkNDKjPO3JE/eis8MpKNfSzp0ftQ6zgWC5LLeU7gmN5ThfgFlHBJR0Z18MJRVTgyJzhSkSlVB84oBp5VZU6ae/aFTtNM1XOIWBOyRY51geXuXPVgUlPW33gQGaDfYBWUmKdcON95/Qwp85O1d7MmR1NegbXWCnfzpNjaam6IxYvHdoZLJs40V8dpWROlmbwDoA7fYFZV2d11AMBVbPkhRei19eZp362G4mofkEwqO4aO1/XnXMRdR6dOVMNB/ObDQsUk0jEnkWtf0ciaqikPr/qWmRlZao/3t+vXtMzWuraojo4Vlambpbpbe7Zo27w7t1r3UTbsEEFuN3o93m9ftJJIj/5ifU3NDSoG2k6O6a/X/Uf3DLozWU6OLZpk5VRRnAM+W7SJCubyuxTl5VZN5W2blV9c51Z5jZRVXe3yIMPWlmcra2qTezbp9rQnj1WbWERK1FFZ4iJWMeLqioVYA+Foj/rscfUdg8eVOfvnh5rv8eNi90fb2tT/Yh9+1T71sG57m51c76sTO1XrGGVbhnmUAiO5bmSEjWOWc9WWVmpGuqsWVYjOuUUa30dMBs3TqWB3nmnOmGOHasOHGZ9smwqKUl9hrqSEpGPfEQdsCZMUI3febDhBA4vtbXRww/9Mu8IdXXFHh4cCIisW6fa5+CgGuqgl5vr6B991zfe55rvnTHDeo+uLWBmnznf57ft6Vom5mfF47eIMFDs5sxRxw4zOFZZaZVGcM5WmchsUlVV6iJW1yXUGedOgYC60dbcHHuKeaBYOWeONWt8medr/by0VF109/TYh13qybSam9VjfZNN1+zs71d92Pp6lc0ZiaihmbowvrZzp/W4tdXqfzj7vzU1qp8zNKT2oalJra8DBq+9pvojbsO1nXVVx44Vef11azIf+tbId/X16juua3Bq5sgPEfuwYbPfrN+jk0heeklldumawJ2d6vnhwyp4rNtfVZW66WTS25owQe3X/v3R7bWjw5rVfnDQ/npNTew2N368OmYMDalZa8eNs27g//3val+7u+03yqkb6B//VHmuvt46aQUCqp5Be7tqOJGIaqBmQzcbfFmZahzTp6v39vaqdEtz1o5sSjXLa9cudaAZHFTRch0xB/xobExutlSR6JNUrLp2gYBKc9Yn1JKS6MLXuvPd0KBOaF53iNxOZsGgFeSORNQJtr8/PRe6yQw7zcTMfkAh0kGxsjLrAndgwJ5NogNlkYhVS8yPjg6r5piIOiaYtUr1BfeMGdakPn5n1AKKyaxZ9mBRf7/qc1dX2y9adXCstlbV+Dr5ZNUO9flZB8dmzbLW1XVG9fsjEWsI14YN1kyWJjN4fvfd1ud7zZrd1KQ+s6ZG9ZnfeUctr6+3B+dMZiA+HLYy3fSFP8ExjAbr1kWXIxg/3p49HQ5bbcIMjulr1K4udU5+5RV7X37rVrUdXQ9Uv3f27Oi+um7bOrhcUREdHNu1S52DBwdVgKy31z5UOtY18+LFKnFmcNAqrTJ3rmq369ertt7SomIG5j7BH4Jjee6EE6zpmLduVQ1Jj5duaVEnrokTrYauG9PGjaoTbKaHn3KKaoy5GErxzjupB8caG9X+Nzdbd/Leeouhlciu/ftjvx4IqBOXvjDVwxqcgVxdGLu83Ds45nYyKy21B9sikdh1yxIxZYr9uZ+2lWzAESg2+tx7wgnW8MqDB+31xvS57cCBxO70Pv+8fTv6wrmqSv3o4Ji+MF66lHMn4Gb6dHsAaWjIKpqv6wuJqHZVXm6NjCgvV+d7/d6KCnVe1jPOV1SoDA89LNLM1N66VfXt3bLSAwEVQKusVBftunSD1wz05nDsujorm7SyUm3L7ZztLHuib8JNnOgeTAPyiW6Tra3Rtb2c/WjdNxdxH1ZZWipy4YWqREE4bAXHBgZUoG36dNX29Xt1uzIFg1adcM35Wf39VomkLVvUjzkhj+Z241tPzmWOBgsEVFBswgR1TNq4kdIJySI4ludmz1YNta9PXRAPDakGUF0t8vjjah23L785g6Uusj17tlXYPtvSkc65bZtKH62pUQUR589XFwBm4I3OPjLNq0NqOvVU66SnZ4RzTlYxNGSN+fcKjrkNh9y2zRpmoYdm6s5yqjiRApmjhzOZmSe9vWpWKU0fJyZO9H+nd3Aw+gJWB8qam9VFux7erYXDzOwM+BEK2Yt86yyrsjKrHldlpQp+7dpl1eFsaLAukEtLVfsvKbEmsZk2TRUE18Eqs5awOVumnoSqslK12YoKtV2vzE9nNrcOuHV2qv1wq2U4a5b9eUmJ6mdUVLgPwwTyif5OT52qbvKa9b+c14VmX9mt33ziiSoYfuiQunm1a5faxtCQlQnmzLTUE95o06bZZ7902w+d1b1ypTqGmJni5s1u58gTEXsw0Nz29Onqp6Qkuk3Tv/cvoZDFLbfcIkuWLJH6+nqpr6+X5cuXy0MPPSQiIoODg/LVr35VjjnmGKmpqZEpU6bI5ZdfLnucRWxc3H333bJ48WKpqKiQxYsXy7333pvcX1Og5s9X0WE97fuCBaoh6LtBbsyGpU+U3d256wzHKjruVyikOhHV1VYh8+3b0xMUAPyaMiX+d7my0rrbVFfnPvxX1wUR8Q6OuQ1z7OmxTnJ6P9KVOXbggP25n4tzZ7YZAHe6PZvtShfS14EycxiEX6GQOs/rY8DBg9bQrWBQPXYG5yMRJtPA6JTt2jnmebi21iq6r+k6oLoAtm7D77wj8uKL6rGe/dIMTuk+fWenemzeUDt82Nq+c3h1ebkKjm3ZEvsc3dSkfut23tXl3ddwZtuUlKi+S1WVurEO5DP9Xa+oUJlTXuU+DhxQtYd1QX2z36yvqU8/XWTJEpGzz1bLhoaszLGZM9X7pk+3J2Vs3Wr/nKoqe4DOTSSi2l0goNqmmYFm7tf+/dHXHPqYtG2b+pv1LLfjxqkYwbHHihxzjP09nO/9S+gUM23aNLnhhhtk3bp1sm7dOjn99NPl/PPPl02bNklPT4+sX79evvnNb8r69evlnnvukbffflvOO++8mNt87rnn5GMf+5hcdtll8sorr8hll10mF110kTz//PMp/WGForTUmqFy3jy1bOZMdYJbudJaz9lZ0A0rELCix52duSueHW/8tB+BgMoc0yfskhLVQdCZdHodIJPGjo3/PTNPcIsXu2eb6bqAept+lZeLHHec/cRs1hpKRTITdviZUQ+A1VbMukJDQ9Z5edcuK4tk/HjvmW6ddA0zPeRb1xzSWaWBQHT2h65ZCow22Q7WmLW99EW4OemNzuDWBfHNLE1ncX2zD66L5uuC9zqTpLpaZZQ5P1O/59AhK5MlVr/aeTFcXm7PgDO1tNifV1SoY1BdXfzZsYF84TYEuKzMyr5qa7PawOHD1rVzT48KNouowNOyZaoNbNqksq91Ox47VgXCqqvtw5OdBfXd+uRmhrjW1mYFxXUu0cCAfVIQHZwz6VElL72kjof69WOOUft/wgm5GylWCBIKjp177rlyzjnnyPz582X+/Pny3e9+V2pra2Xt2rXS0NAgjz76qFx00UWyYMECOfnkk+VnP/uZvPTSS7LTnGrF4Sc/+YmceeaZcs0118jChQvlmmuukfe9733yEz0fcZELBtUJrqvLXvRv5kxrdgw9C46I1Tl2m8Wxry/2LHuZlI6g3Pz5ahaRcePUSb601Eorp5OPbFm5Mro+h9P69arNbdmihlC4dUjNzA2vu1xuQbiJE0Xe+171fj2rTjoyM0Xs2SXcZQLSS3emzfOVrhkYiaiLYL1OQ4PI8uX+thsMqm0+8YSVxVJdbQXORaKPJeFwchNwAMUm3o0nHYSeOdNe+Fufl82bY2bmlu6X6xtu+iI5FLKfz4eGrMwU80b4W28l9nfEGh65aJHKXNV9ihkzVPBg3jx1Mw4YDdwyI2fOtOpyb9liZYGZs1pGIvabwzU16rysJ4Jrb1cTZowfrwJaZoaoZtYYCwRUm9K6utz71FOmWMcXHfDaudOeLdbW5j1C6sgRqzyLiLremDRJXR/r4dtIXNLJyaFQSO644w7p7u6W5R49uPb2dgkEAjImxhH5ueeek7POOsu27P3vf788++yzMT+/v79fOjo6bD+FaPp0dULT45nNE68+CMyda50w9T+Dbki6cZWWWjULRNxrGWVSOjJbjjtOFTJtbFSdCXPGHyCbJk2K/Xpbm3UnOBBQJ2fnzFLmDFRe32HniX5gQGVNTpum2vK4cWq7wWB6ToTmyb6piamfgUzTM9qK2O9EJ5rZVVWlzus6q6a6Wm1bt2Fn8Nx8DYA3P33MhgbVjs3MlTFjVF9840Zr2dixVrvWw6nMC3R9PHDWK6qsVEOwgkFVHqWjwyr077Rnj/vw7FjHk9JSdXEfDKohWuPGqe3rG/TAaGBeI5uWLLGGMYZCIn/9q2prgYBadvBgdGbXwYMir7+usrD7+qwA26RJapkub6KHWpvtxLwxJaJqg4XDVkLH/v0ib7+tAtCTJ6v2V1NjZYQeOWLVFu7t9a4vOGGCulluWro0/r8TYku4a7Rx40apra2ViooKueqqq+Tee++VxYsXR63X19cnX/va1+SSSy6R+hiFrlpbW6XRkc7U2NgorbrKnIdVq1ZJQ0PDyE+z11lilCsvVyfYw4fVCWv2bKuTq1MmZ82yOtd6CKUOjumTbmmpdXdLJPt3jHVHPRU1NWos9cSJ6sDR1RV9wKAgPzLNz3ds6lSrcKeI6mQ6T7y1tapNlpZ6X6Q6g2ORiH2IQ0WFahN66FSqnPXDcjUMGygWDQ3qHO9WrNdvm9Y1x2prrWPGmDGqM28W/3dun+AYEF+8dhgMqvN4ZaU9ODZ+vOr3mvWBjzvOuqgeN84KUpsBMhGrb6uHc02YoIJXg4PqPYcOudcdjkRUu9f1i/SN8PZ2NfrCS2mpyhrbuVNlxkci6mbc1KmqjwGMBl41O8eMUUMndQmT2bOt6+THH1dZYc7A2pw5Kqg1ebJKzHjySfUeXcZAa2pS7dRcpgNvpnDYqut7+LC6ju3oUG3UrDemh1rq9h2JWEM+nUIhtZ7Zf3DkGyEJCXeNFixYIBs2bJC1a9fK5z73Obniiivk9ddft60zODgoF198sYTDYbn55pvjbjPg+AZFIpGoZU7XXHONtLe3j/y0OAfMF5CaGuuOkXmB3dVlPe7sVI1OX8zqQJTu/JaWqs5zroJHzc1W1D1ZNTXq5L58ueok9PSoVHMCYsg3J52kOpSxMsx0xlhJiXfn25nhWV3tfvc3U0EspnAHMmvMGHVuCwSis0v9GhpSx4b6emsol1mQX8Q9OEbWNRDNLVAdi3nTWQ9L1Mud7czsE6xbp25o6+BYOGz/rN271UV5SYnKYAmFVGAtHFbZJF71PnWtwkjEuhHe2xs9KYeprMweiAsERK64Qn2eVxF/IN/ockNOlZUqQNzWptqBrhF25Ij6rt98c3QmZn29Skppa1OlUhYtUm1P1/826ZJGJrdzrh4U19am2r2eAVPf9DaPA3q4ZEeH+7DKQEAFsJ3JJ7pMCze/kpfwP115ebnMnTtXjj/+eFm1apUsXbpUbrzxxpHXBwcH5aKLLpJt27bJo48+GjNrTESkqakpKkts//79UdlkThUVFSOzZuqfQlVSYhXtNWew0UU5RUT+/nfViPVQLbNYt4iKiCdS9Dvd0lETqapKNfq6OhUY3L9f/TbrLtDZRz6orlYnPPMulp5NRtOd5lgBKLNwt4g185yTn5NgMsMuCY4BmdXYqI4DFRX2Kdvd7jx70UW8w2HVZt2CY87jRiLbB+BN92+dwSddTsSrskwwaNU90sMZ9dCrSZNUfz4cVhf1tbVqXb3Njg73i3Q9662mg3G6/IKXsWPtF+CRiJVJQ0F+jBaxJpVat84+0UUopM6LCxeq7K+PfMS+vm63jY0ir75qTYTlp79dWxs9QmvXLnXDu6XFyvaePFl9zsyZqt1GIlbNQd3+Wlu9a47FmpBLz5CLxKUcV4xEItI/XIVOB8Y2b94sjz32mIyPdZti2PLly+XRRx+1LXvkkUdkxYoVqe5aQWlri06JnjnTahDHHqsank6gMy9qIxHV+LyKfmdDOoJjZubb/v3qQFJTY43LFqEAIfKDnprdvLPr7GDqzLFYwyqdSkrsJ0E9jNrP+/1cCDuPEQyrBDJLd8CnTVN3gbVEAlfhsDoXDgyooHwkom4m6Y6zWVJBY1gl4M7Z9uK1EzP725x8JxBQ2Sde59HGRtVnN+sCdnWpIPnYsWq41LPP2ouFmwE1rz61mb2mJw8aHIzdB9fbjUREXnxR7UMopPow9AMwWsSqq/fSS6ptbNignpvtaMWK6JvB48ergNmMGSqI1dio2oPb0E3dFzfpY4K+Mf7OO6qPrbPWZs601qmvt4Yv64k59Gt1de7BsZ4eqy4gN7LTK6Gu0bXXXitPP/20bN++XTZu3Chf//rXZc2aNfLxj39choaG5MILL5R169bJH/7wBwmFQtLa2iqtra0yYPT4Lr/8crnmmmtGnn/pS1+SRx55RL7//e/Lm2++Kd///vflsccek6uvvjptf2QhKCtTDaC83Lrg1unVIqqDvX27NSyjtNS6QNed4PLy3N0BSkcnXHc0RNSwNRGRD34w/syBQLb19qrvvHnnyLyLY3ZSx4/3fyGsO7CaMzskVc60cu4YA5kVCFg1TMxhlbFmlnPSx4SSEutGlD4v6mxTMscAf5zDCOONujCDY+YMdYGAasde7ezss1UAzAxgHzyo2u++feomcFOTVRBcf04kYr+wNpl9C3NSIGffwUnXMOvtFXnuOXVDfmgoug4pkM9iTTbX2KheP3TIutGsz4vz50efI2fMELn2WtWPb21V152zZon88z9HbztWPT/d7vr6rJtXznrZQ0PqcwIBtb45xHrCBDUTtVN7u6pFNnWqNZQa6ZFQrHHfvn1y2WWXyd69e6WhoUGWLFkiq1evljPPPFO2b98u999/v4iIHHvssbb3PfHEE7Jy5UoREdm5c6cEjSu5FStWyB133CHf+MY35Jvf/KbMmTNH7rzzTjlJRz8gIqpBB4Pq4lVHxktKrEbX0qIi4nqmKj1rjp4hIxhUJ/hcTepZUqIaeKr0XTn9d8+a5R6xB3ItGLQPezADTYcOWR3WQMB/Vqczc8z8rEzg4hlIP/NcGAyqIRhVVfayCRMn+s/YMI8JzmPBmDHqRplzW2SOAe7KyuyBajPg5aakxLqQNW+IBQJqGJfXeVQHs2tqVDZLMKiyP8Nh9VtXlxkYUEEr/TmRiHpNz2JvMmuc6XX1Z3nNeCeiLtzLy1U2yuTJatuxgmlAPop3zmxuFnnzTdWmDx1Sy955RwWBnYkW06ap44Cu2T1hggpWe9X6i2f3bnUdcOCAys4cGrLO3aWl6tihh1Wax4x9++zHo74+a+b6KVNU/8HtukBnkCNxCQXHfv3rX3u+NnPmTIn4GDe3Zs2aqGUXXnihXHjhhYnsStFZuFCdDE880VqmG5F+/U9/sk7i+iTa3GwFx8zZ87KttDR2RN8vPWWtPunrmUOAbPEzPDjehefgoD0gVl/vXtDTyau2QC7rCQJIjFkiVRfg1XXHtGQCV5GI2rY+RumOvb4Id64LIFpZmb12UW1t7PXN4JhJn6+92rK+iV1eLrJnj2q7paXWOb6yUrXhQMAqHG465ZT4kweMG6eCABUVsdt8V5c1E+a73y1y332pzzAPZFus4JgOiPX3qyQTPbvsvn0iJ5wQPVuliJV8sWhR7Els/JQO6u5W+9fXp9rztGmqrYnYM7md7e7QIXtgu7PTuqF27LGxs0JjDTOFN+4bjhJdXaqRmtkne/ZYqZR66uVt26yGs2ePanzmyVnPfpFt6RoPrQ9eekz2GWdw9xvZ5SebSs/25DWt9NBQcnd0vE6CtAFgdDIvoM1jQiJZm3rdOXPUXW3dSdezW5eURHf8p0zJbR1SIF9NmKCyufwaO9Zqg3rGRxG1bOLE6Ml4tGDQykLRxcE7OqzagaaysvjDKPVzvZ6eDVtXtol18d7To44/oZC6rohEGHqN0SdWX3jWLJVgsXChaqcHD6rvd2Nj7JlcRVRfPtUZnvWkGgMDItOnq+OGnl3z8GHV3pw3ydvaVF1tZ4mTSEQdo5qaVHtlWGV6cUk1SrgFl+bOtTq3ulj94KC68DZP7HqGm1xKd8PVFxR1de4z9gC5dMIJ6juqhwE77wQNDETPZOOH192peLNeAshPZuaYKZFzts5y0ZN8mLNV6+Hbzszt6mrVQQdgl+j51AxkmZkrJSWqL+6VzTJmjBX0mjxZBbe3blVB7eF5zkbash5iaRo3LnZwTBsYiH9RP2eO2h/dV9E1jxiZgdEkVubYzJkqmHT88apNDA3FntjCNGeOdX5NRFub9Vgnq+jPnTDB2t/du9Vrhw6pQLXeJ12D0Pxcff1bU6MmEtBZZEgfgmOjhG5AZgMpL7dOZNOmWQV89YwzIvaZbXJpxgyV/pkuixZZd9qYoRL5xjmMSdc20DZv9h4iGUuskzgzSgGjjz4OpBIcM9etqlIXACLWBXWub44Bo00ik9GUllrnZnO2ymBQBa69Am3mMOjZs636g+Gwlb2l65K61ex120e34NjBg+p6IdZN6spK6+Ld3H+ySzGaxOsHV1RYE9zpoYrLlsXf7tSpqh0nei29aZOVHaaHNg8OqnO0GTjv7lbXtL29anI906xZan/b2lRmmTnR3qRJtNFMoMs0Sugvv3lyM9Osg0Fr1htz2FUgoBp1rhtPSYnVYU+HKVOs2XuAfDNhgj1TwyymKaIC2W71DZJVW0tbAEYjc0Y553K/zAtn8+62rm3GrLNAYhJpM2bNT+d5uLXV+9xsljyZMkX1C5YsUe1XFwd3uzFuDpt03jDTmaKmjg41tDNWkLy01CrPogNk5n4Ao4FZz9ONnh1ez+Acifi7Nh0/PnZwzGu5OUxS3wjTiR2RiNW+x4xRx4BQSGTtWus9M2ao9aqrVZDbOaleebl3+RYkj+DYKKHHQ5vDJZ13o/bsUanYZqaY35TRTEtX5po5rfThw9wRR27Ea1OBgH04gjM4pme9SVeAbNIkgmPAaKTP6c5jRCLnNq/Osa6pwnkSyCzdHzeHKusgk9e52Zy4p6bGClB1dFh93ZISa1SI7nckGhwbGIg/86Q5LOudd6yAfSK114Bci5cIUl2tMrlOPFEF0vxem5aVqezKRINju3ZZbW/8eHVM2LlT9dl1gX4RdS1QV2dljeptlpWptjh+vFo/EemYBK9Y0WUaJdymjh0zRuStt6znU6eqAJk5HbyuG5Br6eqcV1dbHYLBQQICyL6SksSnOG9ttT/XdQfMdpFqAJm2AIw+usNtzo4nktjxwOscT8kBIDv0+de8aa1v4JaUxJ7lLhBQ9ZAiEZUpYmablJSoC+nZs6PfI+Jdg9TU3x89VMtJZ9yYmae5LscCZMLs2SroVFUVfd71Ul8fO9jk1VbMmmO6pp/OXBs3zkp8qahQ7frIEfvQbK2rK/o6Qm/TSzJ1jaEQHBvFystV4T4tFFINr69PPe/oUCfOfAiOpTM1W6d9DwwQEED2+Q2Ome3OWS9k+nQVyDZPqH7aaayim/Fm2wGQnyIR1fl1FvP2o7/fu2Oup6EHkFlu7TUUUiUPvC5gzUCUnmynulptq61NpKVF9fOdM9nqm2pemWO6L6ADaqGQe0H/WH9HPlw3AJmihzU66wF70e3Si9dkWV1d1vJx49S1a1OTaqfNzVZbbm5WbX3sWJF9++zbiLWfbrUIkTqCY6OEV+e3ttZ63NGhGqK+cO/vtwoA5lo66yuJqOEiQ0MEx5B9yWSOOYc9MmroBQAAsMdJREFURSLJzS45dar3a9zlBUan2lp1PDDPZ35qHoXDInv3er/OnWMgO9z6ouGwmjwq1lAv50V1MChy4IAaGdHbq/rOFRX2i+Bg0D5CxGRmoeo+gS707Zfum8yY4f89wGgSK5vTS6ybTV6jo5Yssdr33r3q2lXE3uanTFHXCLW1KrDtzByLRKzMUmQHwbFRwqtRmA2ypEQFjAYHrYyxfKk5lm4DA+rvdBtuCmRSMsGxSMReSLOryxoinKhYATIAo8+UKckFy4eG3IdgmAiaA5ln1hjVIhF1MezVB9f1wcwhkiUlKrM8FLJnnVRV2Yc7Dg569+9nzrQ/D4XiD6vUmppEXnhB/c71RF5AppSUqGBUonW8vHidZw8csNcK7O6ODmxXV1vn8YkT7bW1RVTb1YkwZrYpMofg2Chn1iE4+mjVCAcG1HNzbHOupTNzLBBQJ/tQKPYwMyAT/AbHzBNYX5+94HZJiQpyJXOS4zsPFJZgUHWQdUkEv4aG7DeInBfohXhjDMhHblmaZrDLjQ6M7d5tLauvVxfKPT3u5Uh27FDvGxpyD45VV4scdVT0fnhlmjlNmaKCYrGKjwOjXW2tGmocK/M6EV5tRSeriKjMs74+kS1bvK/LdV0zc9RXIGAFqrdtI2idDQTHRjnzrrGe+ebIEdWYwmGVoulnmtpMa25O37YiEXWQqa9nvDWyT0/HnMp7mpvVyc9tenYAxUVfQLtln8QyNKRqlOj3JZN9BiB1zmwtEXXeX7zYu+aYrntkzkZZWan6BnpYpUlPRGUGx5yqq6NHVGzdmtisk3pECrPcolDpm8zOLK106++3HpeWqhvrOlN80iTv95mvTZ+uJunQiSGJ9hOQOA59o5zZGS4tVTUCdLQ5GLQK/xWa0lL1U4h/G/JbMt85ncWp6UxKPUMUgOIVDKqL4kSnXg+F1DFE30l2yxzjHAnkRjCoboR5XYDr878OXOkb3CUlVi0yM+N8zx5ru+Xl3hNuOT+vqck+a148dXXRfRagEMUrS+CXV1uZOtXK2mxsVM/HjlXXr14T1R04YB9tFQiommShkGrvXDdkHsGxUcKr4TmDY2PGqJNmW1th3/UpLWV4GXLHnAjDi9lpDYfd2yOZHgD0xW6i52xdf0SfC50ZKgTHgNzRRb+92mB5ucicOVZwWwek9DDrgQE1EkQ7dEhdaAcCKhC+Z4+/odPl5SJvv+1vn8Ph2HXSgEKSrvOj17lbj+YKhVQwrLZWna9ralT2p5uaGtVme3rs+7h9u3pMre3MK+DwSWHxOlGNHWs9Li+30rQPHMiPWmOZEAiov9v824FsOuGExNbnAhWAl2BQnc8SHa6t6YwzZy0SgmNA7uibX5WV3n34sjKr7IjZXhsb1ZAsM3NswgSVUdLQoGolmQX745k/3/9+6+GcHDsAf/S1t1N1tWqzOsitZ6qPNQnPkiVqKKWzTmAgkL4aaYiN4NgoZwbAyspUxFk30HQWwc8nusgps/YhV/y0LbNjyV1YAF50Ye5Eb2jpO8sm87jD0Cggd1assDI73WqSidiXm8GxceNU5phZs2jiRJGlS1Vfv7RUZXj5UVIicswx/tbVQztFOHag8GW6b97UpDK6u7rUc10KoaxMtXEvgYDVvru61HYmTkzf7JqIjeDYKOHnJLVokboDpWfG8RrPXAgiEXWXnJM3Rot4wVwCaEBx0sMkEq1/smVL9DJzeAeZY0DuTJumCmnHyhIxme21qkq9x8wc27/fejw0ZNUli6eszN+QbV3HrKqKYweQDr296vyuA11DQ9Zs9/Hal277dXUqa9RMfkFmERwrIOPHqwakC9V7jWce7fRMnMBoQp0AAG50Qe7x4xN7n9v6Zofb78UzgMyYONF/fVwzIFVZqTJOzL7u5MnW44MH1VAtP+3bb23T6dPV502bRnAMSIRXbcHyctX311neoZCVRRZLMGjVEC0p8R/gRnrwT11A9Mw4egab7dtzvUeZo4uWAqPBxInx10m2I1rIGaJAMUl0ivZ4wbFp05j2HcilHTv8B6jNgFRpqQpUeb1XF/T2s+1g0H9/WRf8j0QSnz0XGE3SOXGdVwBaz06pg9xDQyKTJsXfXjAoMmuWte3SUqv8AjKP8MIo4ecEWFOj7jYVelaV/rfYsSO3+wH4lclOZmNj5rYNIH81NUUvc2aO0ZkGckffrPZD1wicMsW6ARyrP9/cbBXPj6WhwX8QoKfHmkCA2bRRyN54I32Z1fX17stPOkn91kMpQ6H4JVamTFHtVbe/uXPV8WDMGM7n2UJwrIDoYVu6sRf6XZ9jj831HgD++S2eCwB+uBX0JaMayB+JtMdwWK2vaw/GCo5FIqo4t5/Z68aM8Ze9LqImG5o2zd+6wGjW1pb4e6ZM8X4tVuBKt+NgMH5wbMIE67gRiVjZ31VVnN+zhX/mUcJvtFinQ1dU+EvdHM0WL871HgD+xTsRT5iQld0AUMC4swzkj0Syr5x1vpzBMeeFcX29v5EipaUi73qX/30wfwOFqqQk8e+5V+3ggwdj1xbU7XTJktj1h/v6VG1BMzg2dqx6PDDA+T1bCI4VGH0ybW4u3AhzOJz4lPdArun6AV4KPdMTQObReQbyx+TJydUcExFZutQe/HK27QkT/G07HFaFwf0Ih1VfheAYCtmhQ+n9jvf2xk5I0Z8VrwyKLtZvXr/rzLGWFusYMGdOcvsJfxIKn9xyyy2yZMkSqa+vl/r6elm+fLk89NBDI6/fc8898v73v18mTJgggUBANmzYEHebt912mwQCgaifvr6+hP8Y2E+eyUTFR4NQqHD/NhQuAroAMo3gGJA/Jk/2P4pDz3i3fLl63twcO3Ns4UKRAwfibzeRvjI3n1EM2trSO5lVuq5HdW0yM3NMn9PNGqKc5zMroeDYtGnT5IYbbpB169bJunXr5PTTT5fzzz9fNm3aJCIi3d3dcsopp8gNN9yQ0E7U19fL3r17bT+VetA9RMR/wzMbTGlp4QaQSkvjj9sGAKCY0GkG8kdZmf8ZY3V/XV+0BwL24JgzaFVbm1zdpFj05xXqtQMgor7fK1Zk7/PGjPG33tCQ+q0zPc3gmJk5hsxKaC6Sc8891/b8u9/9rtxyyy2ydu1aOeqoo+Syyy4TEZHt27cntBOBQECa3KZdQsKKITgWCKi/Ldb4bgAAik2hllMARqNUaok6L4TN5zNnqt96GFa6FPps94CIVeYkXcEmXRfMS1mZlRUWi15Hl1kxg2NDQ/6HRyM1SXejQqGQ3HHHHdLd3S3LdQ5wkrq6umTGjBkybdo0+dCHPiQvv/xy3Pf09/dLR0eH7aeQJVKQXyvkoYekfQMAYMedZWD0itV+zcC3LvS/bFl6P19fM5xxRnq3C+STdF9DHnVU7NdnzfIXeHYG0Mzg2JgxhXtNn28SDo5t3LhRamtrpaKiQq666iq59957ZXEK0wYuXLhQbrvtNrn//vvl9ttvl8rKSjnllFNk8+bNMd+3atUqaWhoGPlpbm5Oeh8KiXliragozIZUWckFAPJfIbY9APmNzDFgdIo3s6V5Qb9zp/rtpwJNIscEfQHPBEGAf/GCY37boFt2mb7e7exUM1Yi8xLuRi1YsEA2bNgga9eulc997nNyxRVXyOuvv570Dpx88sly6aWXytKlS+U973mP3HXXXTJ//nz52c9+FvN911xzjbS3t4/8tLS0JL0PhSQYtBphoUaZ6+tzvQcAAOQfbhwBo1O84JjZtnU+gJ/+cCJZMjo4Fm9WPaAQpOsaOV7b9ZvU4QyimZlj9fVqeCbn+MxLqOaYiEh5ebnMnTtXRESOP/54efHFF+XGG2+UW2+9NS07FAwG5YQTToibOVZRUSEVFRVp+cxCEghYJ8JAoDCDYwAAIFpNTa73AEAy4mWXmK/rC2Q/M+4lkjnGNQOQfmVl/tqhc/IOMzgWiaii/Mi8lBPwI5GI9Pf3p2NfRra3YcMGmTx5ctq2WSyamqypoEXsjwFkFxNGAMg27hkCo5Nb9omZ9WUGvuNlqpgYag3Y9fRk9/Pq60XGj4+/ng596CC1GRw7ckQNq+S6PvMSyhy79tpr5eyzz5bm5mbp7OyUO+64Q9asWSOrV68WEZHDhw/Lzp07Zc+ePSIi8tZbb4mISFNT08hslJdffrlMnTpVVq1aJSIi3/rWt+Tkk0+WefPmSUdHh/z0pz+VDRs2yM9//vO0/ZGFwM8sF7W1auaaYFDNaEFwDMidqVPtz2mLAADATW1t9DIzsGXWF8tUcIzJrlAM9uwRmTcve59XUeHvGkDPbuu1bijEtUQ2JBQc27dvn1x22WWyd+9eaWhokCVLlsjq1avlzDPPFBGR+++/Xz7xiU+MrH/xxReLiMh1110n119/vYiI7Ny5U4LGkbqtrU0+85nPSGtrqzQ0NMiyZcvkqaeekhNPPDHVv62g6Gln4wkE1Ilw+vTCDo5xAgcAAEAhcMs29+rrJtIHHjPG/7p+CvwDhSASUSOu8sn48SpDTBs71spymz1bpK2tcK/r80lCwbFf//rXMV+/8sor5corr4y5zpo1a2zPf/zjH8uPf/zjRHajKDnHIXsplmGVfoOFAAAAQD5z66+nIziWSJbZpEn+1wVGq9JSkaEh92zNXNK1wvWxoLramiSjpka1z0K9rs8njEQvMDpzTD+mEQEAAACji9eQSD1LZboL6FOfDMWgulplZOXrKCTz2n36dPW7rEyktTU3+1NsOAwWGOdslQTHAAAAgPzl1l/3mo0yU8MfmQsNxaC+XqSzM3+DY25qa0Vef53r+mwgOFZgKiuLY1glMNpMm5brPQAAAPnIrb++eHF298GcERMoVPX1Ih0doys4Nm2aSF8f1/XZQHCswNTWWtPFEhwD8kd5ea73AAAA5CO3/noi9cIA+FNdLdLbm5/BsbIy93Y/Zoz/+uNIDcGxAqRPsMEgM88AAAAAxUjXJwOgBIOqXl8+Bsfq692HU5eVqQAZSS+ZR3CsgAWD7lNDAwAAAMgPmbroZQZKIFp5uUhDQ673IjF65kpkFsExAAAAAMgRMkKA7KmoGH3DFEMhjhPZQHAMAAAAAAAUvFmzsvdZra3p2Q7BsewgOAYAAAAAOcJFL5A9jY3Z+6x0TcgViaRnO4iN4BgAAAAA5AjBMSC7JkzIzueMG5ee7TQ1cZzIBoJjBYjIMgAAADA6cNELZNeYMbneg8Qw82x2EBwrQJxgAQAAAAAoDFzjZx7BsQJUUpLrPQAAAADgBxe9AGLJ1jDQYkdwrAARHAMAAABGB4JjAGI5+miOE9lAcKwAlZbmeg8AAAAApEuQqzagaDhriB99dG72o9hwmC1AZI4BAAAAo4OfjJDZszO/HwByLxCIDo4FAmSOZQPBsQLEnSUAAABgdOCiF4B25Ij6MREcyw7CKAVotE1NCwAAABQrLnoBaJMmiQwO2pdxjMgOgmMFiJpjAAAAAACMLrW1IuXl9mVkjmUHwbEC5RynDAAAAAAA8pszEOYMliEzyDEqQG5F/AAAAADkHzJCAMRSU5PrPSgOZI4VIE6wAAAAwOiQTN+d/j4ApBfBsQJF5hgAAACQ/5IJdM2enf79AJAfuJbPjYSCY7fccossWbJE6uvrpb6+XpYvXy4PPfTQyOv33HOPvP/975cJEyZIIBCQDRs2+Nru3XffLYsXL5aKigpZvHix3HvvvQn9EbBjWCUAAAAwOpA5BgC5l1BwbNq0aXLDDTfIunXrZN26dXL66afL+eefL5s2bRIRke7ubjnllFPkhhtu8L3N5557Tj72sY/JZZddJq+88opcdtllctFFF8nzzz+f2F+CEQTHAAAAgNFh3Lhc7wEAIBCJpBZGGTdunPzXf/2XfPKTnxxZtn37dpk1a5a8/PLLcuyxx8Z8/8c+9jHp6OiwZaB94AMfkLFjx8rtt9/uez86OjqkoaFB2tvbpb6+PuG/o5B0damfpqZc7wkAAAAAAMVnyxaRuXOz9z5ESyROlHTNsVAoJHfccYd0d3fL8uXLk92MPPfcc3LWWWfZlr3//e+XZ599Nub7+vv7paOjw/YDhcwxAAAAAAByh+HPo0vCwbGNGzdKbW2tVFRUyFVXXSX33nuvLF68OOkdaG1tlcbGRtuyxsZGaW1tjfm+VatWSUNDw8hPc3Nz0vtQaAiOAQAAAACQO1yTjy4JB8cWLFggGzZskLVr18rnPvc5ueKKK+T1119PaScCjpBqJBKJWuZ0zTXXSHt7+8hPS0tLSvtQSAiOAQAAAAAA+FOa6BvKy8tl7vAA2OOPP15efPFFufHGG+XWW29NageampqissT2798flU3mVFFRIRUVFUl9ZqEjOAYAAAAAAOBP0jXHtEgkIv39/Um/f/ny5fLoo4/alj3yyCOyYsWKVHetaDG2GQAAAACA0WfnzlzvQXFKKHPs2muvlbPPPluam5uls7NT7rjjDlmzZo2sXr1aREQOHz4sO3fulD179oiIyFtvvSUiKjusaXjqxMsvv1ymTp0qq1atEhGRL33pS3LqqafK97//fTn//PPlL3/5izz22GPyzDPPpO2PLEZkjgEAAAAAMLoMDuZ6D4pTQplj+/btk8suu0wWLFgg73vf++T555+X1atXy5lnnikiIvfff78sW7ZMPvjBD4qIyMUXXyzLli2TX/ziFyPb2Llzp+zdu3fk+YoVK+SOO+6Q3/zmN7JkyRK57bbb5M4775STTjopHX9fUWJYJQAAAAAAuZPsiK5gyuP7kIxAJFIYYZSOjg5paGiQ9vZ2qa+vz/Xu5NTgoMiePSIzZuR6TwAAAAAAKD7vvCMyZ07i79uyRWS4zDtSlEiciJhkASJzDAAAAACA3OGafHQhOFaACI4BAAAAAAD4Q3CsABEcAwAAAABg9Jk2Ldd7UJwIjhUggmMAAAAAAOROsgX5KyvTux/wh+BYAUq2EQIAAAAAABQbgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKQRdcBHF4JjAAAAAAAAabRrV673AIkgOAYAAAAAAJBG/f253gMkguAYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4VqACgVzvAQAAAAAAQP4jOFagZszI9R4AAAAAAFCcSFgZXQiOFaiSklzvAQAAAAAAxSkSyfUeIBEExwAAAAAAAFC0CI4BAAAAAACkUWVlrvcAiSA4BgAAAAAAkEZTp+Z6D5CIhIJjt9xyiyxZskTq6+ulvr5eli9fLg899NDI65FIRK6//nqZMmWKVFVVycqVK2XTpk0xt3nbbbdJIBCI+unr60vuLwIAAAAAAMihceNyvQdIRELBsWnTpskNN9wg69atk3Xr1snpp58u559//kgA7Ac/+IH86Ec/kptuuklefPFFaWpqkjPPPFM6Oztjbre+vl727t1r+6kkBxEAAAAAAIxCBMdGl9JEVj733HNtz7/73e/KLbfcImvXrpXFixfLT37yE/n6178uF1xwgYiI/Pa3v5XGxkb54x//KJ/97Gc9txsIBKSpqSmJ3QcAAAAAAACSl3TNsVAoJHfccYd0d3fL8uXLZdu2bdLa2ipnnXXWyDoVFRVy2mmnybPPPhtzW11dXTJjxgyZNm2afOhDH5KXX3457uf39/dLR0eH7QcAAAAAAABIRMLBsY0bN0ptba1UVFTIVVddJffee68sXrxYWltbRUSksbHRtn5jY+PIa24WLlwot912m9x///1y++23S2VlpZxyyimyefPmmPuxatUqaWhoGPlpbm5O9E8BAAAAAABAkQtEIpFIIm8YGBiQnTt3Sltbm9x9993yq1/9Sp588klpa2uTU045Rfbs2SOTJ08eWf/Tn/60tLS0yOrVq31tPxwOy3HHHSennnqq/PSnP/Vcr7+/X/r7+0eed3R0SHNzs7S3t0t9fX0ifxIAAAAAAAAKSEdHhzQ0NPiKEyVUc0xEpLy8XObOnSsiIscff7y8+OKLcuONN8pXv/pVERFpbW21Bcf2798flU0WSzAYlBNOOCFu5lhFRYVUVFQkuvsAAAAAAADAiKRrjmmRSET6+/tl1qxZ0tTUJI8++ujIawMDA/Lkk0/KihUrEtrehg0bbAE2AAAAAAAAIBMSyhy79tpr5eyzz5bm5mbp7OyUO+64Q9asWSOrV6+WQCAgV199tXzve9+TefPmybx58+R73/ueVFdXyyWXXDKyjcsvv1ymTp0qq1atEhGRb33rW3LyySfLvHnzpKOjQ37605/Khg0b5Oc//3l6/1IAAAAAAADAIaHg2L59++Syyy6TvXv3SkNDgyxZskRWr14tZ555poiI/Pu//7v09vbK5z//eTly5IicdNJJ8sgjj0hdXd3INnbu3CnBoJWw1tbWJp/5zGektbVVGhoaZNmyZfLUU0/JiSeemKY/EQAAAAAAAHCXcEH+fJVIoTUAAAAAAAAUrowW5M9XOsbX0dGR4z0BAAAAAABALun4kJ+csIIJjnV2doqISHNzc473BAAAAAAAAPmgs7NTGhoaYq5TMMMqw+Gw7NmzR+rq6iQQCOR6d9Kio6NDmpubpaWlhaGiRYT/d/AdKE78v4PvQPHi/x58B4oT/+/gO5BZkUhEOjs7ZcqUKbba924KJnMsGAzKtGnTcr0bGVFfX09DKUL8v4PvQHHi/x18B4oX//fgO1Cc+H8H34HMiZcxpsUOnQEAAAAAAAAFjOAYAAAAAAAAihbBsTxWUVEh1113nVRUVOR6V5BF/L+D70Bx4v8dfAeKF//34DtQnPh/B9+B/FEwBfkBAAAAAACARJE5BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAilogEPD1s2bNmlzvas48+OCDcv311+d6NwAAADIiEIlEIrneCQAAgFxZu3at7fl//ud/yhNPPCGPP/64bfnixYulvr4+m7uWN77whS/Iz3/+c6HbCAAAClFprncAAAAgl04++WTb84kTJ0owGIxaXkh6enqkuro617uRN/sBAACKG8MqAQAA4hgYGJDvfOc7snDhQqmoqJCJEyfKJz7xCTlw4IBtvZkzZ8qHPvQheeCBB2TZsmVSVVUlixYtkgceeEBERG677TZZtGiR1NTUyIknnijr1q2zvf/KK6+U2tpa2bRpk7zvfe+TmpoamThxonzhC1+Qnp4e27qRSERuvvlmOfbYY6WqqkrGjh0rF154oWzdutW23sqVK+Xoo4+Wp556SlasWCHV1dXyL//yLyIicuedd8pZZ50lkydPHtnXr33ta9Ld3W3bp5///OciYh+Cun37dtm+fbsEAgG57bbbov7NAoGAbSjm9ddfL4FAQNavXy8XXnihjB07VubMmZPQ3wIAAJAJBMcAAABiCIfDcv7558sNN9wgl1xyifztb3+TG264QR599FFZuXKl9Pb22tZ/5ZVX5JprrpGvfvWrcs8990hDQ4NccMEFct1118mvfvUr+d73vid/+MMfpL29XT70oQ9FvX9wcFDOOecced/73if33XeffOELX5Bbb71VPvaxj9nW++xnPytXX321nHHGGXLffffJzTffLJs2bZIVK1bIvn37bOvu3btXLr30UrnkkkvkwQcflM9//vMiIrJ582Y555xz5Ne//rWsXr1arr76arnrrrvk3HPPHXnvN7/5TbnwwgtFROS5554b+Zk8eXJS/54XXHCBzJ07V/70pz/JL37xi4T/FgAAgHRjWCUAAEAMd911l6xevVruvvtuueCCC0aWL126VE444QS57bbb5HOf+9zI8kOHDsnatWtl6tSpIiIyZcoUOfbYY+WXv/ylbNmyZWQYYSAQkA9/+MPy2GOP2YJRAwMD8pWvfEW++MUviojImWeeKWVlZfL1r39d/vGPf8gpp5wia9eulV/+8pfywx/+UL785S+PvPc973mPzJ8/X370ox/J97///ZHlhw8flj/96U9y+umn2/62b3zjGyOPI5GInHLKKbJo0SI57bTT5NVXX5UlS5bInDlzpLGxUUSih6Am44orrpBvfetbI88T/VsAAADSjcwxAACAGB544AEZM2aMnHvuuTI0NDTyc+yxx0pTU1PULJbHHnvsSGBMRGTRokUiooY3mvW19PIdO3ZEfebHP/5x2/NLLrlERESeeOKJkX0KBAJy6aWX2vapqalJli5dGrVPY8eOjQqMiYhs3bpVLrnkEmlqapKSkhIpKyuT0047TURE3njjDT//PAn76Ec/anue6N8CAACQbmSOAQAAxLBv3z5pa2uT8vJy19cPHjxoez5u3Djbc/0+r+V9fX225aWlpTJ+/HjbsqamJhFRWWl6nyKRyEhGl9Ps2bNtz92GQHZ1dcl73vMeqayslO985zsyf/58qa6ulpaWFrnggguihnumi3NfEv1bAAAA0o3gGAAAQAwTJkyQ8ePHy+rVq11fr6urS+vnDQ0NyaFDh2wBstbWVhGRkWUTJkyQQCAgTz/9tFRUVERtw7ksEAhErfP444/Lnj17ZM2aNSPZYiIibW1tvve1srJSRET6+/tty3UQz41zXxL9WwAAANKN4BgAAEAMH/rQh+SOO+6QUCgkJ510UlY+8w9/+MNIzTERkT/+8Y8iooZm6n264YYbZPfu3XLRRRcl9Rk6SOUMPt16661R6+p1ent7paqqamR5Y2OjVFZWyquvvmpb/y9/+Yvv/UjH3wIAAJAKgmMAAAAxXHzxxfKHP/xBzjnnHPnSl74kJ554opSVlcmuXbvkiSeekPPPP18+8pGPpO3zysvL5Yc//KF0dXXJCSecIM8++6x85zvfkbPPPlve/e53i4jIKaecIp/5zGfkE5/4hKxbt05OPfVUqampkb1798ozzzwjxxxzjG2SADcrVqyQsWPHylVXXSXXXXedlJWVyR/+8Ad55ZVXotY95phjRETk+9//vpx99tlSUlIiS5YskfLycrn00kvlf/7nf2TOnDmydOlSeeGFF0aCeX6k428BAABIBcExAACAGEpKSuT++++XG2+8UX73u9/JqlWrpLS0VKZNmyannXbaSOAoXcrKyuSBBx6QL37xi/Kd73xHqqqq5NOf/rT813/9l229W2+9VU4++WS59dZb5eabb5ZwOCxTpkyRU045RU488cS4nzN+/Hj529/+Jl/5ylfk0ksvlZqaGjn//PPlzjvvlOOOO8627iWXXCL/+Mc/5Oabb5Zvf/vbEolEZNu2bTJz5kz54Q9/KCIiP/jBD6Srq0tOP/10eeCBB2TmzJm+/+ZU/xYAAIBUBCKRSCTXOwEAAACRK6+8Uv785z9LV1dXrncFAACgaARzvQMAAAAAAABArhAcAwAAAAAAQNFiWCUAAAAAAACKFpljAAAAAAAAKFoExwAAAAAAAFC0CI4BAAAAAACgaJXmegfSJRwOy549e6Surk4CgUCudwcAAAAAAAA5EolEpLOzU6ZMmSLBYOzcsIIJju3Zs0eam5tzvRsAAAAAAADIEy0tLTJt2rSY6xRMcKyurk5E1B9dX1+f470BAAAAAABArnR0dEhzc/NIvCiWggmO6aGU9fX1BMcAAAAAAADgq/QWBfkBAAAAAABQtAiOAQAAAAAAoGgRHAMAAAAAAEDRIjgGAAAAAACAokVwDAAAAAAAAEWL4BgAAAAAAACKFsExAAAAAAAAFK2sBMeeeuopOffcc2XKlCkSCATkvvvuG3ltcHBQvvrVr8oxxxwjNTU1MmXKFLn88stlz5492dg1AAAAAABQaMIhkd69ud4LjBJZCY51d3fL0qVL5aabbop6raenR9avXy/f/OY3Zf369XLPPffI22+/Leedd142dg0AAAAAABSavQ+J3Dsl13uBUaI0Gx9y9tlny9lnn+36WkNDgzz66KO2ZT/72c/kxBNPlJ07d8r06dOzsYsAAAAAAKBQRMK53gOMIlkJjiWqvb1dAoGAjBkzxnOd/v5+6e/vH3ne0dGRhT0DAAAAAAB5L9SX6z3AKJJ3Bfn7+vrka1/7mlxyySVSX1/vud6qVaukoaFh5Ke5uTmLewkAAAAAAPLW85/K9R5gFMmr4Njg4KBcfPHFEg6H5eabb4657jXXXCPt7e0jPy0tLVnaSwAAAAAAkNeGOnO9BxhF8mZY5eDgoFx00UWybds2efzxx2NmjYmIVFRUSEVFRZb2DgAAAAAAAIUoL4JjOjC2efNmeeKJJ2T8+PG53iUAAAAAAAAUgawEx7q6umTLli0jz7dt2yYbNmyQcePGyZQpU+TCCy+U9evXywMPPCChUEhaW1tFRGTcuHFSXl6ejV0EAAAAAABAEQpEIpFIpj9kzZo18t73vjdq+RVXXCHXX3+9zJo1y/V9TzzxhKxcudLXZ3R0dEhDQ4O0t7fHHZIJAAAAAAAK2B8D6vclGQ95IE8lEifKSubYypUrJVYMLgvxOQAAAAAAACBKXs1WCQAAAAAAAGQTwTEAAAAAAAAULYJjAAAAAAAAKFoExwAAAAAAAFC0CI4BAAAAAACgaBEcAwAAAAAAhe3gWpG+g7neC+QpgmMAAAAAAKBwHXxe5JHlIjvuyPWeIE8RHAMAAAAAAIWr4031u3e3+h0OiQz1eq/fu1dk558zv1/IGwTHAAAAAABAYQqHRALDoY/D69XvjdeL3FXt/Z53fi3yzD9lfNeQP0pzvQMAAAAAAAAZsel7IrWz1eOurcPLvqN+H1wrMuFka93tt4sMtom89ZNs7iHyAJljAAAAAACgMG38DytzLBCwv/bIcvvzZy8RefHzIv2HsrNvyBsExwAAAAAAQOHSwbHOzbndD+QtgmMAAAAAAKBwRcK53gPkOYJjAAAAAACgsEw913r87CXJbWPDNSLb/5ie/UFeoyA/AAAAAAAoDh0JDK18/QaRsgaRmUkG1zBqkDkGAAAAAACKQ++exNYfbM/MfiCvEBwDAAAAAADFoXuH+/JIJLv7gbxCcAwAAAAAABSHl7/s8UKM4FjP7ozsCvIHwTEAAAAAAFAc+g9FL+tuEdn5J+/33Dctc/uDvEBwDAAAAAAAFK/WR0T+cXHsddpey86+ICcIjgEAAAAAAMTSvTPXe4AMIjgGAAAAAACKS/lY6zHF+IsewTEAAAAAAFBcPrxLpHq6//UDgcztC3KO4BgAAAAAACguJVUiY49VjweO5HRXkHsExwAAAAAAQOE54Rbv18xMsA3/nvl9QV4jOAYAAAAAAAqQj1pifmeh3LcmpT1BfiM4BgAAAAAACo+fQvvhfn/beuMH9udb/zfx/UHeIjgGAAAAAAAKx131It07xVfmmCRZaH/tFcm9D3mJ4BgAAAAAACgcQ50igx3+MscSCY71tia9S8hvBMcAAAAAAEBhiYREJOz+2vSPWY8DCYRF7p2c0i4hfxEcAwAAAAAAhSUSis4cW/Bv6nfjadayRIJjKFhZ+RY89dRTcu6558qUKVMkEAjIfffdZ3v9nnvukfe///0yYcIECQQCsmHDhmzsFgAAAAAAKEQDR8Sz5ligxHySjb1BnstKcKy7u1uWLl0qN910k+frp5xyitxwww3Z2B0AAAAAAFDIQj3iKzjmzByb8+mM7RLyV2k2PuTss8+Ws88+2/P1yy67TEREtm/fno3dAYDM6TsoEiwTKW/I9Z4AAAAAxc05rDIwnCVmyxxzmPExkXd+mbl9Ql4atYNr+/v7paOjw/YDADn3zIUi6/8t13sBAAAAFJfHz3RZ6CNzLOIo2j9mSdp2CaPHqA2OrVq1ShoaGkZ+mpubc71LAKBOruHBXO8FAAAAUFxaH4te5gx8jQh6r0OB/qI0av/Xr7nmGmlvbx/5aWlpyfUuAYC6CxUJ5XovAAAAgMIXDol0vO39+uwrRKZ9JHq5LQBGcAyjODhWUVEh9fX1th8AyLlASYw7VAAAAADS5vCLIg8s8H69cpLI+OONBbrmmJk55qxLFqMe2ch76O8XmlEbHAOAvBQIkjkGAAAAZMVwsOvIK96rOINfIvbgWNcW63HZGJFAWfyP7dzsa+8wemRltsquri7ZssX6wm3btk02bNgg48aNk+nTp8vhw4dl586dsmfPHhEReeutt0REpKmpSZqamrKxiwCQHq2P5noPAAAAgOKgs7x2/SXGSkZwbMbFIm/+UEaCaiIiz1xkPf6nIyLhofif+4+LE9lLjAJZyRxbt26dLFu2TJYtWyYiIl/+8pdl2bJl8h//8R8iInL//ffLsmXL5IMf/KCIiFx88cWybNky+cUvfpGN3QMAAAAAAKNNYDjItfE673XMzDE9xLJunn0d2wyVAUHxyUrm2MqVKyXilso47Morr5Qrr7wyG7sCAAAAAACKWc10+/O2V63HgVjBsYDIA4tEOt5UT5+7UmT5bWneOeQCNccAAAAAAECB8k7UcRcjONb4XiswJiKy7bdJ7RHyD8ExAAAAAAAw+h1+2WWhIzgWLItddD9W5ti+x5PaLeQ/gmMAAAAAAGD0cZZvemR5/HUuHhApq03P5wcIqRQK/icBAAAAAMDoFwll+QMJqRQK/icBAAAAAMDoEeoX6dpmDYGc8c/DL4QT287hF1Pbj0BJ9LK1/5LaNpETBMcAAAAAAMDosf2PIvfPtp7vuF39jrgFx2IU5O/dm9p+hPujl239TWrbRE4QHAOAdKLuAAAAAJBZW/9H/XbWE3OV6GyVKEZcxQEoHn0HRAbaM/sZzRdmdvsAAABAsTvwTK73AAWG4BiA4vH0R0Re/r8Z/hDuTAEAAAAZVVLpf11f2WVpom/Ehwez95lIC4JjAIpHOORRhyCN9Mk31JfZzwEAAACKVUJ9+hSDYxUTEvio4dkyn2Y0yWhDcAxAEcnGXaPhE/WdVSJtG0UOr8/CZwIAAABFRAfH9jzoZ+X4q1Q2ivxTR0q7ZFM1OX3bQlYQHANQXPR0z5lipm0/fobI6ndZz5+9LLOfDQAAABSF4T73xuvirzr+5PjrTDlHpKwutV0KD4rcPV49bjgqtW0h6wiOASgOb94oGckc6zsg0v6mscD4jL791uNQn8j23zPcEgAAAEhZjH69rvtVNkb9nnZuch8x9tjE1g8PGU8yfEMeaUdwDEBxWH/18IM4J6qeXe7L+w+5L3/zxyJrzraeT3yPx/sPqt/rvhD78wEAAADEFqvm2J/HDD/IYl0yEavemIhI7x6Rwy+lvk1kDcExADDd1+y+/O5YhTiNgFugxH0VfbJ859ciQz1J7RoAAAAAn2yZXFnw+ir746c+nN3PR0oIjgEoHpGIpD/F2eddJnM6556WNO8DAAAAAJtIisGx7p0Jrr/D8fnZmAwM6UJwDEARydAJylbk3+MzQr3W4xc+m5n9AAAAAKCUVPtf1y2QVTdXJFjmfxvmzXCMOgTHABS+js3qd6zaBCnxkY02ZATH+g9kaD8AAAAAiIjIUV9L7f3jjhdZ9P/8r09wbFQjOAagsPUfFnlg/vCTsCPLKx2cQzU9MsfCxiyV7a+neR8AAAAA2DQcndr7xx0vsvS7Iu992N/6qQ7jRE4RHANQ2Do3W4/NGWTSxW8tATNzDAAAAEBmTf1gau/XN9XHHedv/d1/tT8f6kzt85FVBMcAFDZz9shIWNJfkN/BK1jmLMLfsTl6ndCAyFC3yzYzNRwUAAAAQEZqEw92iIT6vF9/4XMir3wj/Z+LpBAcA1DYooJjadRyn4hE/A3VfOHT9ucPzBcJOzLZXrlW5OGTome6ub1EAAAAAGRI1dTMbDfW9ceWX4hs+m5mPhcJIzgGoLCZwTFJMnPMGazSnv6I+m0O3UzkrtMdpep3x9vq95s/FGnfJPKXmdHrui0DAAAAkLqlcYJUcz4Z+/XOLdbjaR9JfX+QdQTHABQ2MzjW3eK9XiyJBKb6D7ovLxvjvvz5T4k8sCB6+bOX2Z97BegAACgGkQj1OwG4m/bh1LcRbyRIoDT262/daD3edW/8zwsNxF8HWUVwDEBhCxonslBP+merbHvV/vz1G9zXm/dZ9+Xv/Fr9joRFJqywlm//fer75qVnT+a2DQBAJhx4WuTPDbneCwD5qKQyCx8S5xrC7yRdIiL7nxK5syK13UHaERwDUNgCGajX9fynrfoBe/1O7RwWOfNZkQ++4f767SUiB5+NXt5i3HlK1x2m+zJUUwEAgEwZ7BIJD+Z6LwDko2xMXpX0DXaXoFnHW/bnfx6f5LaRTgTHABQ2MzhWWht7Xb93fN75laoNlohISKRivEjDQv/v2Xm3yLbfWc/bX0vsM90ceM59+aOnpr5tAAAyJgMzyQGAb0kGx/Y9YX9+R2V0Ef6Bw8ltG2lFcAxAYQsYh7mhLol5Ynvrp/63O9iV2H5EwlagbubH/b2n8y2RPQ9Yz4e6vdcd6hZ59brY22t9XOTR4aGbfwyIPHmeykZr26iGqwAAkLcIjgHIgHSMMtn6vyK9u9xfa3Pc3A73U0s4TxEcA1DgErjLs/5q/+tGQontRiRsBepqZ/t7T/cO+xCSsjrvdbu2irz2bev5xv+0v962UeTx99mX7f6ryNorrdRuCoMCAPJVIvV8ABSZFI4PU8+N8WLA47HDWz8W2fUX99d6kpwQDFlHcKxYeXUwqOWAgpemgvx9+xJ8gxEcO+Z6f2854ij2H2uWHP1aqF/N5rXxP9Tz/cMZYQ8ucX/fjttFnvkn9XjgiL/9AgAg6wiOAfCQSvB88TXuy4++TmTc8dbzWDXHYtU883t93bHZ33rIGIJjxSbUr4ZTrT4u+rU/BkTuKFePH1gsEurL7r4Bo0HnFvX7mQvtywfaY78vEpKRQ27A56H3yHrnRtzX69gs8rfF6vHeR0TuqrZee+xU1bYBABjVCI4B8JLC8SHoMaxyyfUiY44yFsQKjjlGlATLjNeGg2P3zYi9Hw/Mj/06Mi4rwbGnnnpKzj33XJkyZYoEAgG57777bK9HIhG5/vrrZcqUKVJVVSUrV66UTZsSLHYNf569RP0+ssFatvPu6IvnjjfIIgPc7FvjvvzPY2K/z6w55seEFSJhxzBHr7tSoR7r8VPnGcv7o9edeEqMD+XCAwCQpxhWCcBTKseHNIREooJj5dbj8KDIQJtIz8742+l4O/V9QdKyEhzr7u6WpUuXyk033eT6+g9+8AP50Y9+JDfddJO8+OKL0tTUJGeeeaZ0dnZmY/eKS8s91uOBI6qj4cyAAYpReMjfesnOJmPWHPNj8deil7398+hlux8QeXK4VkLD0fbX7qyMXn/Jf4qU1bt/5ju/IssMAJCnCI4BBSc8mJ7RSkO9yb/XzPKKKYFhlQFjm+EhkT+P9fcRf3+vz31BJmQlOHb22WfLd77zHbnggguiXotEIvKTn/xEvv71r8sFF1wgRx99tPz2t7+Vnp4e+eMf/5iN3StebZtEtv3O+/Xe1uztC5BrO+7wt15nsvUAXIJjR3/Te/XS6uhl7/wyeln3TqvQ5zQja2zMMe7bbXyvyD+1iyy4Ovq1V2PsDwAAAJBOr35T5KnoGEHCevck/966uf7Wi1VzrPNt+4RbQaNO8M47rcdkwOa1nNcc27Ztm7S2tspZZ501sqyiokJOO+00efbZZz3f19/fLx0dHbYfJOjlr4isvSJ6uW606/8tu/sDZITjJOR1Ygu7DEH0sz0//rrAXnNMm3a+yOmPRq9fOUnk8Ev+tm3+PeawzbaN6vcJv7CW/bNxV+tdP/a3fSAfDXZyAwcoOlxUAgWnb39iE0L17nMPMMUKXMXl971x1qsxaooFK9zXifgcqYKcyHlwrLVVdW4bGxttyxsbG0dec7Nq1SppaGgY+Wlubs7ofhakQy+4L79/lvrdvUNkr8uFO1BMnGnase747HnYfXnn2yrd2iz4ed5WkXHvEmk6Q+T84RoEl0REjvm2iARFhnpcNxXljR9Zj6dfFP36vM+KnPwbkbp50R2HmpkqkwwYbTZ9V+TvK3O9FwCyiYwLoPCEhxIY1igi9zaJHHo+zTuRgZIiQY8Z5p31hJFXch4c0wKOi7ZIJBK1zHTNNddIe3v7yE9LS0umd7EwLPiS+/JzXrMed+9Qv9tfE3nq/MzvE5BVCZ4A73IMb9z6G+913/yR92uRsNgOubWzrMc1RnC/cqJ6rWKcv/3r2mI9HnO0yKzLh58ERGZ/Qj2cfaXIuS4FPs/fFv9iY6hb3dUD8kl4iAtloOjQ5oGCExn0DiR5vifksiwbx4cEriECHn/TXbXp+wykXc6DY01NTSIiUVli+/fvj8omM1VUVEh9fb3tBz64zXb3nrsd09QaEikgDoxqfk9GPk6+8z4XvaztFX/tae5nRM54SqR8vPvrh9ZZj7u2Rb9e1jD8IKJmvEzVo+8Wucf7WAzkRoTzE1B0CI4BBSc8aC9en6zIYPLv9TskMxAQqV8YYx+MY1SiAT/khZz3LGfNmiVNTU3y6KPW8L2BgQF58sknZcWKNFzYwXJ7qbh2LJrOjPEmotcY5f4y07Egg99pfXKd9pHo19o2+ruYDwTVCbXMcWdp0f9Tv/v2Wcuedilgan5GaU38zzOPCW6zWB7Z4GMbQJZFwsL5CSgyZIsChSfR2dw9t+OSTeZbIv0Jx3Foyoc8Nlnivhx5LSvBsa6uLtmwYYNs2LBBRFQR/g0bNsjOnTslEAjI1VdfLd/73vfk3nvvlddee02uvPJKqa6ulksuuSQbu1c8IiH3zLGyOu/3DHVlbn+AvJLGTrc5W40pkRNl4/tUBplWUhm9jlvgatrwUOiznheZ6nHCNg12uD8G8hqZY0DxSeE8/UeC6UBBC2ej0L3LceSY66zH+9cYq/rs85dUOT6CY1UuZSXfb926dfLe91pFn7/85S+LiMgVV1wht912m/z7v/+79Pb2yuc//3k5cuSInHTSSfLII49IXV2MoA2SYwbHFlwtMvn98d/TtlFkzDEZ2yUgpp49qlBn5cTE3vfq9SJLro9entGTzvC26+Z4vB7jYr7pDPvzslqRSe+xno9kgcW5OKiZqX5PODH2etqRl/2tB+STdN1pBjB6kDkGFKgE++Zux4JsZI4FAtGf7dUX8XvD+WM9BO/zSFZ6litXrpRIJBL1c9ttt4mIKsZ//fXXy969e6Wvr0+efPJJOfroo7Oxa4Vrzbn25yMz3xnBsSXfFpnygfjb6tqerr0CEvePj4m8/H8Tf99r3/K3Xqhv+EE6TkxxthHrYv70ODPD6jtL8S4OyupFxiyNvQ4w2jknuABQBAiOAYXH0a533i3y6n8ksRkfwbEznk58uzYBidpfr769nuAOowo9y0K15wH787uGs04iIZFjfyBSNib2cEoTU84iH7RtdB8WnIqBNpE7q1Qx0H1PpHfbblLJdBlJuw6LDHaJPO7I+tSTAFSMFzlnQ/KfA4wKZI4BSNDtFMgG8k/EPqrjwDMiO/9sX2XNB31sxsc1wqR3i1ziEmQPBETq5sd/v4hL5li6a4uRRZZL9CyLgTkGe+CIyKxLRc7fGr3e0ddFLxNRmTWhAf/p7HdWi3RuSXw/AS+RiMiDS0R6WtKwMeOko0+kb/88PcGxeEM2k72Yf98akYmnqMdPfVhkqFOk9RHr9WO/L3LCzcltGxiNKMgPIFEpDbsCkB0uNUX3POjjbSm070BQ5Ny3/KzocxlGK4JjhWzL/6d+h/utZS33iATLRcrHRq/vVp9JRE2Ne/+s+Aemtk0ifztKJNQr8td5jJ9GmmRydsnhQ2DXVknLcI2BI6lvw+nCIyKNp4lUT/NeZ1ESw06BUY2C/EDxYVglUPAiEXHt+6/7kkhHjABWJAsF+QMJDKtMxLE3WI8J4ucUPct817ZR5KmPJPfeFz6rfof6HS8kGGwID4j07olfWPCVa0TaX7cv+2NAJEwjRz4xvv/6hBYIiu9Od90879faNyW9V57Kx6jfAWM4iHNGHoIEKDZkjgHFh4L8QOEZaHckYAwPs+w7aF/v7Z9GX2ea3IJKfodK+uYSHPMKp5z4S/+bnXiq9bh3T6I7hTTiiiqfDbSLvHqdyK77Yq831CMy1Ov9+t3j7c8TvZB+66f+1vPqtNxRKrL7AffXgISk+2I4YP320+nuOyjSudn79XTXRDOZNQ303bHpF2Xms7q2uS/PRl02wJeISF+r/9mgABQAgmNAwel6x/48ElbJIfdMVNfCfrn1wT+YgZvWzuuFoEctw5FawRhNCI7ls7aNIrvujb/e858SefEqkcdOUwUMzUyxP7r8FycaHOtyqU/mxjkJgOnFzyf2mShePXtE/v6+zG3fVhdMn+Acd4Ja7vN4cwaDX/GYmWMtw8eFTJ14vYLZfz89M58HJCoSUTUIN61K/7ZXH5/+bbrZ8iuRv+XpzNyRsMjLX831XgAACp2znvD231uPDz7rfztuwyq9AldJc7lJH/AKjlXE39zUc1PbHaQdwbF8Fhn0t95gp8hgu8j+p0Se+Sf1WESkfoFE3WU7+jqRsvrE9iPUp363PpbY+0xpKaSOotDXKrLvccfCDN8tdhbSf+0/vVaMvZ1MZo4Fjcyxl7+ifp/4iwx9WIy/8+kLM/SZQCKGjwmv3xB7tWQcfin923TzwqfVUOzBzux8XiLCgyJv/CDXewE45HnmWP8haxKroe7c7UfffqvvDow2g0a2WN9+x4sxjgHZqNU17l0i086zL/OajKuk0ns7lZOG38sMuvmG4Fg+6z/sb71ISOz/lcONtGpq9LqlNbG31XSG2weoXy1/dnkNSLMdt9ufx5sBMmHmbJXD322/Ncfinniz3HGPdeJNRax/85a7M/OZQCLyMaCUrNe+nes9AEaHfK85tvp4kbd+JvLQEpG7arP3uU+eL7LNyLZ5cInI5kzdPAOyqPVR/+tmIzg2/aMi7/qJY2ECwbGZH1eBsZN+o56f/D/Dm6CGar4gOJbPnvGZobH3IZH9a6KXR2XfiEj/gdjbOv1RkbNf9ve5QCa03BPjRZ8nj/Y31e+Dz/v8UGfNMY8OeCQk0vxR782EYtT+i1XIPxUf3pWe7ZxyR+zXwz4zWYFs0DdrSqpzux/pwEUs4FMeB8daHxMZ6lRDu2LNqJcJh9aKdO+wnod6Rdb/W3b3AciEREYezf6XzO1HTB7XJsEKkVPvsy+rnStywT6R8Seo53rSLeQNgmOFYuCI8cTRSEtrRWZ/Qj1uWBx/W2OPdV+e6pCxnWScwId0DAX42yL1+5GT46zoFRDzCo6FRYJlie9P7VyRD8aYYScZej+qXTJEk1E+znjicqJniAby0ewrc70HqRvqyu3nD3aJPLLC/bXtt7svB0arRGZQj0RE/nFJ/PX+GBB5/EzVRzAnz0mH9jfV9k29rfbnkYg984SJSlAonNeeIzeyXfrpQR81vjIh1rBKZ5kGXYesrE5k5mWZ3S8kheBYQXIcMMYuE6luVo9TOXCk2oH3mwmH4tbvmLp5/1PWDJHpSDt2K8gfCIoMmMOYPT4nEhIJlif+mf0H018UtGpaerdnBv1c/51J+UYeSqUWJpShTpGDz6l6SU7P+ggMAFmThsyxV7/pf93ubdGlHkz7nxK5w+hXDxxxb0ep0Df7tNCAyL2To9d75evp/VwgH5iTzMUz5ezM7UdMHuGUYEX0qItJp6nfJZUiK/7XWp7vQ8aLCMGx0a7dJRvlnuEif1VT1O/3rhY5+huqEL8tOwTIQ+GB6GWH/A6PTFbAfnfKq25BssGxeLX+kpGuu9Mjw0SNE3OoX53QzZO1n5lzgWzrfDvXe5C4XX/N9R7Y6WPf3RPMhTnZFSCmdFxA9jsLfMfgvLDd+C2Rdf8qsvtv6nn3jug+S6Ymsnjjh6qO2Z3DwbhI2P3fI5HMOCDfHX7R/jzWTXKdCJJtnpljFdHXDBM9srSRNwiOjRZeHYK/HeX9nsEOkaXfEymtVlkhH9krMvmszOwfMBqNtCvHia3tVff1+w+KDPUk80FJvCeOYJqCY8dcJ7JytX1mrfX/JvKXWSJ7HrKWPXd59Ht79lCLDLmV7iFMmXbgOZGnzhMJu0w5nyuZnGUXSKs0nEsT+b47z/cbrxd5+yaR/U8OL8hwRnXPbuvx9t/bz9O3l1g3rXQ94c2/ELmD2e9QJMzzaM3MnO1GzIL8yZRiQU4RHBstzGlt/RrqEtn7sPW8tDq7s2GU1Wfvs4BUDLb5W2/tFSI7/pj49nv3JP6eeJrTNEx5zDEiU95v74SLiPTujj+Bx31TRV7+f+nZDyARMz+ufps1Mv8YSGwIRi688Cn1e9dfRCa/P7H3vvmTxD8vEokfDHDLdMmn4B0wIsvBMd2PHTgiMtBmvBCjLz33qmT2yt2OO63Hbm2yx9G3ePFz6ftsIB+ZySJmsHjyB7K/LyO8CvJX2ssZXZLA8ctZZzAZO/+c/clBCgDBsdEi2Q7/yN2tHDj+ptx9NgpUGk4Wex4S6do+/GT4ROUsbusl1xfe8//Vejzz0vRuu9Rl2nmv2a5e/D8iB9eqx7vzbIgYisP2Pww/cBwT3IZl5xM9sUV4UKTx9MTeu/7fRN7478Te8/oNIi/FmbXubeNc3f6mugj/U11inwMkYv/T6RteHA4ldm5OKFNyuI/w7GUiLxhBr1g3mivSWL7k5a9Yj9tfi3493g3vpDLdgVHC/P6XZLkY/1lGuZcyj/NlSYVI7ezs7I+bZ/5J5IGFufv8UYrg2GjRtSW597ld8KbKb8eiYqLIWWvty9IRCUdh6Hg7NwUo2zeJtPzZvszv0MBcDz86/qfW43R2wEVEysdGLxs4oib0cNryC2voKUVEkUsBRzcm123Uy6vXiXRttS5W+1qTOz8nmqnZ8aZqryIi7/xP/GLhf1sk8o9/ti9zq20KpGLr/6jAbSIiEffg95ZbRR49JYENJXCM0JMBhfrEnrUWFDnyisi+x6Pfs+l7CexLDIOd8dfp2RX79fZN6dkXIJNq5ybxpojYbo7N/Wy69safBmOijNJq93WC5SIlVerxyofc19Eqxkcv60ugPqKI6v94ZX23v+E/EaDIERwbLZI9wY0/Kb37IaLqHJjum+G+nlfRwVe+yQU1RB5YEH/YXqbp7+GeB3y+IYFOdWVjwrvjy5xPD29/Upo3nECbtBUCpi0jh3TNsfY3hxfkaXDstW+LHNmggmIiKguspDLzn6sDCg8dJ/L8J1XR/aeHJ+EYaFPLnZw3D/52lMjj1CtFju1+QOTFz6vHm2+xlg8ciS4LEIvXhDux1t33d5GAUcvr9VUiL/+7yNbf+N9WokK98dd5/YbYN50T+VuBXNE3uXb9Nf6EEmYZAPPmWMOi6HUzykeyR2m1tY9T4gz7rJ8fvaz9DX+7orNwX/++yJPnRr/evVPkb4vdZ7lFFIJjo0WyJ7hlaZ41x+1OVs/O6GXl41SthtpZ0a9t+k7+3t1HcRjJvogT2HF2uBNph3q22HQ78Rcipz+WgQ17/Fscedl9+YtprKuCwheJRJ8/QgMiA0nU0zTpjudgx/Dn5PG5xblvz38yGx+qfpntuOUekcMvi/x5rHf7dmp9NP27hiKX4I0VszaoDpIls61EjhFVU63HwSwXuncLjh39HyLnD/e5F345/jbMPstbP6P+EPKTvsn11HkiQ3EyJg+9oN8kUQGqtN80jsFvDW9ndnsiSqvVLLUDR2Kv99R56nfffvdr8r59ye9DESI4ls/mGSf/1gQvhkuqRY77iSq2nU5/8llkXwcGKieJHPfj9O4DCoczg9A5vDHXMyFu/oX9eSKd6vfcnd590QJBkab3ZWbbQKbsfURlLZne/qnII6lmNw93Y4ZGYXAsHq+sbO1PDfG34dUxX+2SMQZkTSolNhzvTXiiqUQCaUZw6dCL9tfCGa5BqouNm5NblY8RqWlWjwcOR7/ng5tEznrOer7ui9bjl74ocvC56PcAuTbtfOtxIjNQOwPIlROtxxOWp7ZPcfk97qRwrItERF7+vyJ/Hi6jsu33Ik/HmYzLbaj1wycmvw9FiOBYPqswGrlb3R9TqaMYYKhHZOGXkp9Cdv4X/K3nOTzSuAhIJWqOAuf4/ji/T23OArRprFkXHoz+/CiO1xO5+1I7S+QD6xLdq9xJdqgz7Rt+hHqi6wUN9Yp0bhHpd7nI80t//x4/U/0upOCY2x1gk86WiymNx8xN31OF1IF0SPqc4/adztDw/sPGObzDOcQpwyUF/naU+v1uY5iz/jcbs0Rk7Lvs618SEWlYLFJvFOA+st6+zs4/pX8/gVSVjzGeJNCuYtUtbMpwKQC/ZRHGLBE59vvJfYazz/TcZSItsW68B3z2CxALVzX57OivW4/HvWu4dohHob0Pt9jTv1Plt9Oih2S88SP78qVmQVK3rxl1iuDC2emNl16dCl81Sjy+p5NW+vuMccOd12Ou97d+TtEmkWVbfqEyM178XPLbiArO5nFwbP+a7H/mtt9aj0/+rf1CO1Fv3Shy4JnU9wlIRVSQebjfMHBE5J1f+3h/Aue6WMembNXOnbBcBb7Mm+DnvKIm5Rl7nMiFh0VOvc96LVgevQ197VBSKfJwpjNqgASZN8i6d/h/Xy5Hl8S7MXzCcF3EqkaRxf+e3Gc89p7E1g91W4/f/ElynwmCY3nNzPrq2SXy0tUid5RFzyQlIlLeIDL7yjR++PBJ/+wNsVfT09Kb002LiEw0GjSZJfASckwzbnY2e/eKPHaa/fWEh0/EEonfufV6PdHv9DHXJbZ+Tgz/rQ2Lc7sbKB69e4YfpNKuHW0xkcLcsWy+VaTvYHq2pW251f+6PXu8X0um0xsoEZn5cZHpH1UX2sEkp70/vF6ka1ty7wVSEet8HYmIHHlV5PlPxd+OcyhW777ES5eoD03iPX43Pbzt99wtUjY8q231VOuxiMiMfxb5wItqpmlzWJpbcOyhY9XvlntEDq2Nfh3IJbPIvu/+QJ7f0E32HDvptPjreAUFQ8ZQ7/X/ltzng+DYqLHrL6o+i4jIrvvsry35TuY+t7QmzgoeB6eIkeHmGkjI84MasuP+OY4Fxvfi7Zsy/OE+voOvr0r+vaON7oxPPT/2ek6DnSJbb0v77qDQDHd4h7pdXkohOOY8v3S9k/y2TC9eJdL2Snq25ddeo+j9fTEywbt3Jp618s9DIkGjlksydQtDfWomy/tnJ/5ewCadN7oCIhLxfxzZ86D9+e77rWHZichkFmXvXvXbDJJ/4CWR2cYkHoGAe//aWbMpNJD8jPdAXovR5tN6Mz1Lzt3iffP9kDHE+8Gl6veGr1nLIhFmp00TgmP5bt7/Ub/3/M1YGFRT3T45PDvFmKPV78Vfk/TRHe8YB5fnP+N+oSNiH/7p1tDTmY4eGhDpbknf9pBDxvdi0/eiX9762+hlSX9URJIOciXy/f3I3uQ+I+uG/6ZEiqGKiPQfEFn7CcemIrRJKOv+VeSd31jP76r1XjcZzvPLll+KvJXpwHoGPHupyBM+a6REQql3gk97wP68Zmb891DLBLkUtwB+srPHDb8vPJg/NQvbNqrf226zlpVW2wPcXpxBgTtdMlj0qA+gIIzCQJibujni+bc8fIL1uOMNkfVfEXn9+yoeIKIm6DiyQT0OZXiykAJHcCzfnXBT9IyToR6RO0pFdv/VvrysVuQixzC1ZPm5+H/nlyKD7T42luGv2d0TRP4yPbOfgfRKNjiqsyfTYev/iGdwrH5BnDcnsP9VTf7Xzanhv6n5ApEyH7PgxXJkA20SSuvfRdpejbNSKpljjovFIy+LvPSv6vFLV+d/AXldPHv7HxJ4U1hk++/jrDKkZgj1Yl5An/QrNTQrEQeMWe/+Mtv+HPAlwX7AgX+4Lw8MZ475PY44A8t6drcnz1MFvp/+aGL7lQm1M9XvTNUrvbMqM9sFciFXWWK1sbKok00C8fm3vDlc6/uOUvX7wD9E2vUkZgU4uiWLCI6NBoFS/+v6nT3D92fHaaRuhRMvbBOpnmJsI8PDKt2Ktu95SKRvf/o+A2nmNRw33vcizTOveZnyofR9zmgx/kSR5b8XGbcs+VluNefFxx+ZQadodbyhhtn3u9TvmnpeGj7AcX4ZMAr7brnVupOalCx0uJ3Bvfvnuq/36Lutx5FQdLamU89OkSferx5f4nFcPXa4zsucTyaeMXrwHyJv/ljk9f8S6d4m8uiKxN6P4pbMxWy8rK5ktjnYJfLat9Tj3r0inZtVXa5c06Mvqpsz/1lDPfSXkT8SOhflURAoXfW1kw705dG/xShHcGw0WP67OCtkoAMft9bYsMPro5eVO7NOkmiwvUkMRTPTSNecI7L34cS3gezwDIJl+eAebz+mfSRru5Jz1dNEZn1cPU70QtkPr7v+KHxv3yTywqet56E+kYE29Z0TEc9z2O4HvWdo1uJ2SNNwTGnbKPL0hcm/P9aMWs5zXdc79iCALn5vth8/Q7923Bl/HTNb7JQ74q9vGuwUWf9lkQ1JzsIFJGp7BvrCfzJmgAyW5U/9TD1pQE0WMrDf/JHII8xgiTxRMcHfepGIcS7Mg2GVp/89TRtK8m8xr2eyNZNugSI4NhpUxyjMKyIZOSiMOy592973ZPSyO4cz3AY7RA6/bH8tPCRy7xSR1set5350vKkyVHQtBQ4Oo1AWM8di0SfcXfeq31PPda6Qnf3IlUzUXUlnvTiMbq//l5qJdvPNsdd78oMiPS0iLfd6rxMzOJam40XXVpGWu5N//8CRGK8djl5mZlm6/RuZmZkdb7tv95VrfeyYcRyrc06OEsdr305sfSATIhGV/SUiKbf3VDOm0+nFz6nfQ2kqlRJLeIgaRcgjSfSvS6qjl2WjPR/1DetxlfNaPUPDKmvniCx1G/li9tsL/BolwwiOjQbxgkNjjkr/Z449Lv46ItFTYruK0Uhb7hNZ7fisvn3q9+PvUxfpd5TFvvOu6amqRy5E8qSwKlwkO6wyjv7DIgeeTW0/zt3ivryYpNypcPn3G40zByE1b/zIY/n37XXIYn03nv+kyNMX2JeFBqLXW/rdxPfPzaOnWo+fu2z4QYrf3USL55vB6Tf+W+Sx90a/XtmoHj+wgBtBKF4H14ps+o5qA+ZxJDyU+E2ezs3p3TenPpeh5V4OD89MVzExfZ9/4i9Flv+v9VwfN16/QaR3t8gjp6Tvs4BMG6k1KCKL/l/06wu/nPl9mGOUN0hXHzdeNnzdPJFF/zd6eb5MJlIACI6NBpUxUkzLGuIUBExSw0J/6+26z8dKsabadfkKmnfNn/+U+u03e0xEZZ2JqAuS0IC/wBqyzONi7vBLqW225R6RR1Ps4AWC0RebC/8ttW2ONif9OvH3uAUsbLPZcropOi9/xX251yzHbvY9Eb2sa4v1OFiufrudI0K9idccO2xMl967Z/hBip3eWOegGRdbj6dfpH7rv0nbv0b9HjM8fXskJDLnU9brkQTOj0DeSENQ1zaDpdFO15wjcv/sBDOiMhhkHuwSuSfBQNe0j4iUlMdfz6/p/yQy6zLreahX5O9nWP+GB4dvLHZuEenZnb7PBRJx6MXE3+PWTtJdgztRk89O8o3Dx7F5n3N/uXyM+w1sMzi29l+8N881cVxcrYx26SoA6CkNnYV9j3m/NnLxYXj+k9bjrb8Z3o0kOv9tG0WeOEvkjjR2LpAeXpkOf1/pfxvhIZcL4hjf16ihkV7rByQq67DxvS7rFLBEZ64TcZ8uftMq67GepKNtkxomF+oj4wXDUmhPugPslZ2VcP3KDGQ9dm31fq1mhhUMG6n159Eu9EXstt/aA2ixAgATYtUS8vl3zf2MSIOPDPWnLoi/DiAiCbf5Ia9RCno7jtkqu3eonzsr/QfjzRs8fQdUXb1URSKq3IeubfbKN2KvLyLy1vCs3HUek3P4dd479udldfbnm1aJ7HPUSXrsvSLPXS7y6jdT+2wgWU8mMCGW7kP6OT9lynnDdUGdxzRzYrpE6P5GwGMEh3nun/8F67GZ+bozRs3RO8pF7qoXORJvFvHilTfBsc7OTrn66qtlxowZUlVVJStWrJAXX0wielxsEh2ukfD203DxGuviZMNX7c8PPCty0GVK+GT+zlCvyH6XemfIA8b3quU+/28zL1Jf+pK9yPfIdj063afd77IbHhfCbsvnfsbvXo5+zsyVZG0yhrq98d/q9/bfq2Fyd1aJbLwuPZ+D4nLIyO7S7d3zHJHgRbjrOS/F4Fj5uBgvBtSdYPXhjt8OHW9aj827xAf+YdRdEpEHFvv8bJ/n9xNv9Zehrms0AvEMdSeWweB1wWzeIPYKYrsdG+LV8gr1pSc45mxjm3wM/37pS+p305mpfXT1DPtz5810nZHqXBYsFwm7ZIIDeWe4fU01jg9Blxu1mVQ7M73bqxneXo2PmWoXflnk3X9SjxMZVjnUKfLQ0oR3rVjkTXDsU5/6lDz66KPyu9/9TjZu3ChnnXWWnHHGGbJ7N6m9MSUy3HA02P4H9+VunZtwSKTtNe9tmTPuuQ35Qn7oaRF5+d9FtvuYLa3fKF7du1ekt9X+eloykYLietFobjvjGZs5VupS3NRUFeeOWKz/hyOvWI+d/38oUgkEnzZ9T+T1VdHLvbKLQ3EuggfaRPY8ZG7IZaVUa47FCAIEy63t69mf/QxpMov8r/mAyONnWM873rAeJ1J2wbXI7zAKdiOddtwucuTl+Otpffvdl+tz8cARsbXTeNmeO/8c5wMjIn1pOD91bolepieNikdfJCfjkohIsMS9FtPM4aGVB55xfy/BMYwGm1aJ6/k6mbIg6ZCummPH/0xk8Ve9bx6Y/evwkHGtS82xdMmLK7ze3l65++675Qc/+IGceuqpMnfuXLn++utl1qxZcsstt+R69/JbpjPH8qUwudvfeUepyIGnY7zJ+Hr3EmTNL47v1e6/ihz2kSnqvNDdu1rkmY+J7NApxJHobSeyHyLDmWNuJ5nhdYNlUvDDKusXxH69YbH78oNrYwesRVQwVDMD2CheiXQqd/7ZnkG17bciPbuSzxx79lJVn2hEjOPH85/yfi2WWDexGldak9Do487fhtvX9I95v+/tn9qfjz8pep3T/iZy3A9976bUx6g12vqIv2307vP/eUDK/GSOubVpl2VDRqZYJCzy1o0p7ZmIqAkznO6scuxKxNrHgTZruXmcS5aeQa9sjLVsxf+6rjqC4BhGg72r3ZeP9smfAkGRY29wv0k26VSxHbsiIev53oezsXdFIS+CY0NDQxIKhaSy0l48r6qqSp55xv3ORn9/v3R0dNh+ilKuCvF63cXLFPPCx7zrpmfscmNm9/QdENn9N2oc5Qtn8CkQTKIA7PD/5c67RLbcal+WkuHMsVZHrTy9zytul4IPjpnMTrU27l3u6274qsjGb0nM/4d2I3hGcAwiIode8Lfe/qfcl/e2qkxiNwf/EXubI0MahznPES8bQ//fSfKOdMzhY+YMe46MkjFH+/8MZ7CspFpk6jlxZp51HMcmf8D/53nZ80Dq2wCiuAWznLXEAh6PXd7bvT32xwUCItviBJHS4cgGkbWfEHn1P9Tz9eYMe+nIBBn+289Yk9h7dv0lDZ8N+PDspendXmmte791tCsfKzLxPY7+t3GMcCtJhKTkRXCsrq5Oli9fLv/5n/8pe/bskVAoJL///e/l+eefl7173etVrVq1ShoaGkZ+mpt9jM0tRF53y4/6eurbPvUv3hevXp+byHCzv8yyHre9Nlxw1SPoMNRtDeu4s8p6HGtYlm1fwqpmxXqP2dOQZUZntWub+p7FKiAZbxu6tlx3i/uqfrahBQIq2Pb4cL2Pjx60r1taXfjDKk3/dCR62Rxnrbdh+58SaYkzXKVqsvVYFxh/8yciPS6Tc6A4+M2QeOw0cQ+8RrzPSfHqGjnf57zh9MYPRIa6JCWxhlWaf0/PLvtLZfXJf+acGLNVeSmtil523I8T20ay2XWAiOrr9R2Mv56IyNs/d2SJJHDTKl6GczZupL59s8hDy1TfZ2C4ZIRZhD9Qmvpn6Ak5KlxmyjQzxM/fYbxQRDf/kHte5XT8cGunU88V+ciu6OWjjTMD7kNviiz9jsjCq61lkXASkw4hnry5wvvd734nkUhEpk6dKhUVFfLTn/5ULrnkEikpcQ/OXHPNNdLe3j7y09KS6EXxKLT4Gv/rLv1O6p837Tzvmgf3etQcmnCK/+2bd+4ePEZk70Oeq8oLnxVZe6X1XHfA1/0f7/eYgb0n3q9+t2/0v3/IHPOE1rlZzSya0vaG75641SJKmOOEVFpr/wy3dYrF7CvV73izWca6QK6bZz1+51equPr6f1N30IF43L4nkXDyWdQ7hmsd9u33LsD9jxjDG/2IFaBzu2gdMXycWfbfIufvFFnyn/4/8/if+V83Fmc22bE/iF8LaVOM2mVALBu/LfLXOf7WdU7o5DmcShftNmesjpOVteZsf/uQCt1/DfWJbL5Z9YteMW5sx8z69GnC8HDroCPQtuBqkaazrOdmHdF4WXVAuiQyKYcrjxvcpTUpbjdFx/0kDRtxHM/MmstaJGSVZUDa5E1wbM6cOfLkk09KV1eXtLS0yAsvvCCDg4Mya9Ys1/UrKiqkvr7e9lPwJg4Hni50yeTIFN3ZSOUkPfU8n58V4y5Z+yb7UM7tv4+/PXM2osHhYbetj4ncWZ2GAzJSkyfF7V1nq3Tsz8h3X68bcL+jc+wP0r13+eP4n6vfVVNFztsqUhFrBjyxD51s22R/zTk07uET1O9iysYrBG0b48/4li3BstTrbz5+psjG6xN/X//h+FkmzppjOuAuEmfoZEDV/1n0FTVz1dHfiL8/aZ+kx/G3Lf5/Iudvc19Ve8Ujcz0SFune4f4aIKL6ZoOJlEnxkTnm1j7jHS/SUe8rUc46X+m8wHf2r6ua7OdcM3hmZncDmTTQnuIG8qlUjnH8yUQ98BLHLJzNH1WlhWp93kyAb3l3NVJTUyOTJ0+WI0eOyMMPPyznn39+rncpjwwfBJw1UrKh8XR/67ndufM7406g1Lsoe3Vz4pkBW37hvjzUK3JHeWLbQpqlITiWyLCHMcfE348Rju+w3r+Rz4uIdL5jX6ekyrtIfSHQgfmp54nUut+w8PSgcfEfq2YTwbHR5cEl6atLU78otfeXNSTfGdUZxpFQctu4e7x3LTTNee5a4XMYSSAQfcFcPT32e8IJzCrpdr5ebtx4ajgqdpH+RB16QeQvM9O3PRQgr4wuP+f74e+zn75BfR6er3fcbn+uh0SmQ1SJlID3v5POsGOWd2SaM6OxYKSjXqBxfl58jUj1NPvL7/mzCnL3plCSpOPt5N9bwPLmauThhx+W1atXy7Zt2+TRRx+V9773vbJgwQL5xCc+ketdyx+uM+i5mJ1ErZF45l6V/m06vfBp78LMh9fFvwAREalJ8MIduWHrlCU5RHH3/bFfbzrTetz4Pv/b9QzSDO9z1eToWkDV0yS/7mCl2dilIvP/VaQuxTtU22JkfD7zMZGDPguzIz+kWotLm+Yzu9hL55bkh1WWD2dBtm9KPlskPCDy5o0iL/2bx+v9Iif+f8ZnxhmWrLl1XGd+3H1dnaEd6heZdbm/7buZ9XGRKR9Sj2tmpXfmr7RntQHG91N/Vwc7xLNfsXR4yG8iN2PelYZZK53c+vNmzcGVD6X3hpFbcMyrz6Kz5e+sUHVcH1uZvv0ATH4nZdr3pPvyfJ1kze/1ul/Hfs97BJczaObFHEatPZVi36tA5U1wrL29Xf7P//k/snDhQrn88svl3e9+tzzyyCNSVpaGMfcFIyJSNz/2KoGAyMlJzqgV86P93lFPoSMdM/odEGnwMXPXvKtE/jkD6axIM+PEkalpl31lcvkYVmmuO2mlyNhj1cXt9Ivs70n3yTDfHP9TkYrxqW0j1nHkzKdU/ac154rseSh/Oz2wvHR1mjaU5DFg3ufV7zUf8J6tUjv4vPtysx07Z6hNxPqrRd76iftrz39G5KUvWs8nOmpzfuAlkQ+71E3t2hq9bO6nPDrDw+3l8Ev+Z9krrbPXGtJ0dvry2/xtx7cCP0YidSkd9/VxxLkN4/lRw7V7Ezlfx5sYo7Ip8ZleXWeWM46DU9Iwc6xt0y5BiLd91CV860ZrwiMg7Xye+1/8rMcLedpPTMv1gM+/Ld4xUw+pLquLfq3jrcR2qUjkTXDsoosuknfeeUf6+/tl7969ctNNN0lDQ0Oudyu/RCIi5xpf5JoZWfxwvw3d5UCXluBHxF7HyM1HD4ks/neGZ40G5sH8yKuJvfeexuhZ3dxMOtV6XFrtvo5bgctAjIC8/i43LHIJVOfpSTpZK26Pv06iYgXHamaIvOtHIst/qy7wnzhLZNsfyDbJZ6E01RxL9phttuuoWScd56xHTla/+w/Zl2/+ufc20qXxNJEp5xgLHOfEcce5B7zc9idQ5nH8G97mEy53h71Mv1Dk3C3Ry3UphFSD4U6Z+vdF8fLqX5rLDzwT/fq+xxP4jHhDv5I492/9jfV47DL1+1UfNQWTcf7O6Jlo3f7ddG1Rs3/25g8zs0+AiMiLn/e3nmcQJ0/73Vk918X5Nzjr2eEHRTqRWBKIIowqjs7+/H/N4ken0tCz1CDjFQlHHjEO5v0HEntr336Rd/7Hfbmp+QLr8dH/4b4tt4vMoEc9utrZVkDs+J+JLB2eOS44XCRTX4yf9lf39482E1ekf5sHn/V+Td+drxinCo+fer/IYLuaafatn4kMdad/f5AnfJwjnEEtEXs2xI4/+vuouyeIDPVaz2f8s7/3pWLaR0RmXGI993vDyDU4ZnTbzJkuhzqN46LP7QeC0RfNIurftWqqv2349eLnRQba3F8byOIkQ8hzw32DZI73vXvt29Ce+nD0uoc8MkndxJ2QKiIy7nj10M8IBxF7/c10B6GdappdFprDUYeDf7me4Q/FZ/vvUnt/vo4wKHE5r2aKW/a3KW5wH04Ex0YT50EgUCpS4pERk25jjvK3XqaGyGH0+5NRZ8f8Lqcr0y/WzHnOWV60Df8eXaxfd4SdHcUl3xY50THJw6TTRBbqOkN6uvgP+drdvJfrYaKlVSLzPy/y3odFKieJPHWByMZvifQdzO1+If38HAMGO93e6L2+24zEbw9nRpjnqY434n92PINtsV+PhPz9jbOvtD8fivM3mxft+54Qef6T6rE5G2YyyurSP/HP5lu8Syf8mRtb0IbPoy33+VzfaA9eNWtTFSwTmes1rGt4H6qa1I2yKWfbX3r3n+Jvv9oRvPLznpQZ/246ONf80eG6RHkacACi5NN31WhTkxPI4Pbk82+bfKb3a9M+Yj32uj4f7FIlMkZuLoDg2KiSw4tVPdTslDvjrehzWRwllYm/B/ltsE3k8PrhoEuqBfnTNHy3c7NI1zb37Zz7TvT6Tiv/JnLMt9TjXAeT0i6Nf49XNp6v95aKzPiYyHtXi0xYoQIA674o0r0jffuH7DnqWpeFftquW0cxRudx8y3Ry/Y+HP15Rzb4+Ow4nrnI+7WDa9WxwU/h4ZN/Y3/uVpdIB9mO+ZZIv0egePwJ8T8rlgVfFDnLrSZSipwzbwKpetj8rhvHA+f5uG+/yG5HVrffrJNAWfSNMVOpWcvHOLZMOlUNpz4pRh3g5b+PzhCdfqG//UqF2V86d/PwshIVFG/flPnPB9Iin4JjpjzZr5N+ZbR1j37Wwyeo2oJrmQBRIzg2mkRljsWYbSad5n9RpKpRPXYWEhaxZ9g0fzQ9n/mx3vjrJGLlg+ndHpKz+l3DQxlT/N62udUpSzJr0WvGvbhDKUR990t04CdPTobpUjZGZcal6l0/E7koDbWpAgF1h+y0v4jMvkJkw7Uiz12ReM065NYx345e9prLsihu7StGmzeHZb0wPNvyyDk0ixnOjyz3nznmh97OuOO9g01+ZwDzEixzL96bjGcuEnnzx+rxK1/3Xm8ozed8jE6pDJPSAbFIJHrm2a7t0et3bva3XT99AX1MCRpDmAKlqi7inBgzyM/6uH0EyFEx2khaGcdA3dYDAZFQr/uNBYY+I9vm+ahHtvW2jO+Gb2bAOR03y1M5FlZNVjNk+yk3pI+VidRhLHAEx0YVZ0PJUgf/+BuNqecD0Z38c4yL0/kuB7NECxOWxZiIwSvVvvF9sbfpHDqH3LINq0zie9zy5+hlb9+U/P64SXRYUaFljlWMEzljTerbmX6hSDDFi3Wnce8SOeUPIkd/U2TLL9SQy31r8rf+RLEZ7PAe/prsd8Et+7Bmuvf6u+61Hm+5dfhBlr8fT+gZ53xmjvkyfLzsizEEws9FRba0bxLp3qkeh2IEwP5xcXb2B3luuI06+wW+ju3D67gW73Z5v99zthkcm3lp7M8+6lork8ytzc//YvSy435kbCZLhbxdg/WB6Ow6jaHPyDa30gijRTZnq3Qz6wqRuZ8efjJ8LJ0Qp45wzazkP6/AEBwbTVwbWw5qfEXCImOPM3YhTrG/3X9JbPvvutH7tac/4r7ceWfu5N/an7vNBIYciUjqwypdvPFfyb2v2rjAviRi/U4002PCcpUlVSwu8XnizuTssXVzRU64WeSEW0RaHxVZc45Iyz0pTiCClP2pIf13IV1nkY1x7Dj8ksvCiON3Bm29zRrGGQ6J7+7W+TtFms7wfl23Jz0c/Ojrotdp/rDPncwgMzj61k/ir5+pelHIPxuuycx2dR/ZLcCTysWqGZgvqRQZf6Jz49bD0hqRaeerx27nvuNd+rfmpBh7Hkp6NxPjERwD8sWom93YbD9p6GPo7PeZH0/izS6fP+646GWm6mYVkOxuSeLzCgvBsVHF8WWfeq7Iit9ndxf03byxS0QWfkU97m2N/Z5E64wk2om5qEdk5iX2ZTUz4r9v629F+g8n9llI3bbfS0aCY8mKVd/uhJv9b6dmusiCL6S+PwXHx2lm0srUPqKqUWTpd0XefZcKGjxxlsiWX4mE+lPbLuIbaHdf7lpMPgUvpWF25nRnFsbanlm/46V/9Z8xV9MsMnaZeuw2i52+4O5p8V4nE87bmtj690wUCQ2ItL8e/ZrbzKN9cfoRKByv3xDjxVSGVca6mHbpV/rNWrcNqwy4tHvHc92HNW8cL/lPf5/V9oq/9VIVcpkNlAm1kE+Co3iWxXRkjm0bTvI49gdJfH6CZShEVB3f/kMir/k8VhUwgmOjibOx1c4UafbIpMqYgEj9ApHy8SIVE4YXDX+NvKLbJQlODx3usz9vijPrh9tU9BPfHb3MmekSCIq8eJXIk+epWcx6die2n0jOq99IfVhlOsUqFj/vc9nbj0IyYbn12E/m2P416fncsjqRRV8RWfmQ6lit+aDI69/3DuAgdS982n35jruil5nfi0Tt9DGDW2m8OllxMsf83FQx7X4ggZVd2sEF+9xXrZsvagY8lyna9VAtPXtn9dQE9iEFycyMfafHLMHOelBAFGe/wEfQrOVu79eSuVjUzOCYrvU7+f3WMudskzoQZ9ZGPfobIh96277awi9Hf9bir/nbp1S51uokOIYM6XhbpD3BmaHjjUrKO2muOaZVu/QDYqmbZ3/ud1+6tiT2OQWM4NhoYn7Bp2U7KGYIlKlsMJ1xU1qjAgzHft99/dpExzE7TtD/f3v3HSc1nf8P/DWzfdnGwhZ26SAdERHpVUAUpClSlNOzdz3Pu7MenuX0FNvh+bN8FfHsnqioiIouIIqAsCiioiJ9aQK7CyywLJvfH5/JTiaTZJJMpr+ejwePmUk+ST5skpnknc/n/TnNIJfUOToJVc08pW8zQ7Q0GfC6uAn59nag7CxxM139c+DlKQjKL+tItxxLE62Oki0GccnXmauAqXXivfJJVyi7VepJSgXaXgwM/wTI6Qx8OQ0o/xuHqg6F2krt6eqHHIC13I91JgZxUAfbzObI02vxZXUEVK0k1ZKk/TdR5x8qGg6kF2qvt3i4GOFu5DKg29+115PTUbwe3W2+i3MwMoqAaQYtc1pMsrAyxXf++x287/d9Y7laFGfkc/PwZuvLGgZdgwiOKbt0l44D2l0mRk+WDf9UtSnPeaIeNTZHddN66iP+21Kf76FS9b3GRAbHKES+vQ1YoxEMNhJzwTElB4JjdvOU1teqHvrLLVlNXovv/Nj78C1BMTgWUxQn2+B5kavG6c+IhL/yiZbVDph6zOAJtsZFScsp3ven/UdcbMjazPAtq76gUMpuH7i+WQHKJGeKFnj95gJD5ot8ahseBz4fBXx7F7C/nIm+nab8e1rtduuErLbe964kMeBEms6NKunr9zLQ8UZxc97kNG9QunAgcEaZeK/3gzwhDC01XW6g+Thg2ALRDf2bG4AVV+gkbCZb9n7p+1nuTqjVpdXsxW7tAeBNE8Hqxj18PydnGZc/UO55E+T3+da3gC/O008wf7zaf5r6PDjjM/31Z7UF2v0RSMkBTv6Haj2ev6GcXHe7J6enlS7gdin/D+puYoMMWu34r0i8HNnpO2LgFw6Ndk2xQy8/5Le321/nca2WwhbP+dJzvO+VLcdKxwAnXelbVj2aZUO3Shs3t1o9IUJBK51EoFb8Zh5YEGkxcw+lTq/h2CA2YaI8f3I6O7A+m8HBk64BihWD1MnfsU37mtkoULMVKL/F3rbjBINjsSTSo+H1e1nkNynoD+R2Ek++e80WrTSMpGqMcpPVWrwWDBAjXCq/BLVa8EwJIneQVOd93/FGoNlZ+mXdKUCzkeJGY9hCoORsYMtrIofR6j8Be5YmdrLvmgpg9xIHVqT4oVT/aI4NQ5ebfi953x/bB7S7HDh7bei3G2/aXAD0elx7XtFQzxudnxm9VjOhUjgQGPSW+A744V/AsqnA7yvCW4dY8P191sqfUN0wyUOrK793ZWYvdus1ljUlwAX4UU83xuNVwXW1/eX/iS5cmzVyfurlPdq3yrgLt1nyBXPRMPEqd+lqp9O9NVTkVoCBApJaXIrgmNZ0ShzH1KPaOvAg8vev/acprzOyPa0VjY63Ln8TrcQAb/BL3UJzsGqwKXl9cvlYu7kPZMlYcQ1MZEuA7/f2qqBzJHodOCG9GEjNDX499Rbue8crWr13+avi+hsiR/jwRdb+nr8+a75sHIrRIy9BRXrkjjYX+D4hy+tmLgF5/1fE64A3vNMKBgFtLwFGeH5oA11EqANw7S4DRi0PvG25rKzX46LV3WQTTUZdbqCgH9DzIWDYJ2JEzN2LxYh4Ky4HdixIvITf398DfDY0uHW0mGR8LNvJbWOVcvu5XUR+qpSc0G83Eck/yCO+8E5LyojchU9eV6DvC0DPh4EtbwCLzxEjhLF1qPDdXc6sR2sYdjP7/Aed7vmB9LMwOM2KK4AVl9jvOnDQk5vj96/85504qj1IzYkaOHLj704C0gqAFE9QSn74FO7kxfJv9riN6hmBl934vHhVB0Gtdmul2PGqCzj0G3D8kO/0UFzXal5PKh4uNwTFDI7VggHA4HfFe3XLMFnpWN/UHvJviJyr1Giwn0izk4Nt0DvA5ldFC+w6jYT+RLps/PbFXHDMc/5E4iFPo5aAOw0YopEHNSndtyWZET6gAsDgWOxwJUW+5Zhd8kW78uK9dAzQ93nvl5/82u+/+utRNlPt85zJJqIAut3h+zkp3XtjYZbLJZ6Ud/87MPxjoOttIr/FF5OALy8QyacToY/2zo8dWInb91hWfxmH48tZeUHul0yXguKX/8izP5U3CkMXwNRNdCg1agH0elR0p96/WrQO3fSydlCHrNNqOWZ0ySHfrK21mZDayqiN9UfFSIq7Fnmndf+Hfnk/nrpq/SZvfQvY9Yn/9KRMoPf/s7ANA+fu8b5PbezMOi3T2ZenPx140d2fi9dt/3OuOhT91v3Dvyuy3/eEQatys7QCxT7rko/dAOuXr0VcOsExl1s7tUfhYPHaQefhsV5esWEa3xvhFOjaKzVXnN/NxwFLzgF2l4WnXhQfrF7bx2zLywhd2049Ku6tjRSP9L5veb7//HD36IhSDI7FCpcbjiT4iyTDLzrPoWgU3W7U2snaBCerLdD5ZmDohyKp6vFKYPkfRM6UjS8AR9VdBeKEI4EDyTc45TcaaZiDYzmdQr+9RCYHvpXdpYuGRs8TqrR8MZLY4PlA3UGgbDSw4d/x+WT86B7t6V9MDi6fjFaQ6Nh+/2n5PfXXEexgCcrR4wKRb5TlbpbTJfHgw+ryMmVukBWXaLe+S84Eikw+vbUio5nz6zSj4am++uGGiRZsRyrEsfjjw45Xi6KZy/+7wqjl2I737W1m/2qNiRojZBuNbqlk9iZd/Zvm1hmtNber9vTsdua2E2nFI0SX0q1vA6uuSYwHwxQ6cv5MtVhtORbpB79GUgKM6M2R3QEwOBY7XEmxn+sqran+PPlL0OhCXx6da7TWhY+OMxabL2tXRjHQ/gpg8DtAnxdEC5lvrhPdtTb8Gzi8LfR1CBfJgeDYsb2+F8R+T3kd/GE5v8bbNQIARsm5SBRffR2vd2575E8+t/W6pkSL5AzRHWbYx0B6EbB0IvDd3fET6K6pAOYVac/b9r/gbnBeS/LvYn5Uo2uherAVJauJqPs87/vZ5TLf0mS3Jxm+3dxmR1SDSXT+c+BlkjLhSLdKtVZTApcJCZ3v6bSCwIueOKp/LFL82jQX+F2VDsMoOGY3YK85yI9GyzG9VqrqY9jub5fegB0lGnlvW8/Qzs8brVKygd5PAi0nA0vHAzs/DbwMJZatbwE/Peb5YPDbJ98DND5FNSOKg0xGYqXFm9b3DXMKAmBwLHa4khDzLceyDUadNPOEwJ0i1pF/qvlt5jowYogVqblA6+nAwNeBgW+K1m7rZorWKOv/CVT9GN76OM1sy7H32oiuplr2LPV9erz5Fd/5Lrfvk1U5KGpHcgbQfLz3c6OW4lWZrJJCzHNua+WSS3EgaanT3Mki4DDsY5F3ZsWlIsfKoc2Rrllwlnia2+t1z99d5j/ypBV1hwKXMWTxQrjVNPGalOHtxmQ1+KTZ9dMOE3VPzgRS80S+TadMl3y7K6eHMeCk1/Iz5p72k643QpD/c6vqusCvJZneORxkYNkolYMfVZ3s5vPTHDUT2i3K+r8kvh/CxalRMYuGAUPeByo+BFZeyZYn5LXzE2DL64oJeued3LsgTCO1hoqc4iCrbWTrYUT+fp1cDRQM9J9/8Ofw1idK8SomVoxYCrSaHulaBCc5W+SF6fFP/3kdbwq8vCs58oMSWJGcIXIz9H1BJEls0hf45Sng85HA2tvF6GWxlgRcfiJbVwNsnKNf7vBm4MspwKIh/vOSs2D8FCkFOP057+cWk+3UVJvcMtHlBibtdW69pE++Wc4s8e/COrky7NUxzeUSI9cOeQ9oexHw7R3AV38ADnwb6ZrZc2CteK38Tnv+ij8CK6+yv37phPmuqFOOAI0NulhWfR94HfIN6+Qq4Iwybx2ssBMc00tkLQfr9CRliIvnkSF8MtvfwqAEjtHJMUixT6/lUzC2vKaaYPIaqHpDcNtVBscCfU+oe2kk2bxp13sQEQ0pBXK6OLeu5EZisKvWM0Qe3oqPnFs3xTCT57bc0kr92xpr+V+TM8S1zdAFka6JAc/fOCUbqNHo1aR3fZhgGByLFfmnAukG3RJjQVIacMq/gJKz/ec1aqEdxVZq+0fg9BgdXtadDBQPB06bLVqkNJ8AbJsHlJ0pWqXsXmy/i084yT9WNTtEbp1A9iz1z/9RdwhY0F1/GVeyGCW0QYgCiFYHZSB7lDcC4WzZ4qT8XsCAV0Reql+fAZZOEudsrAW3AegGL04cNReU0iPVm7+BTUr3f7p6pML7vma78fJpBd6uTu4UbwDWarDL6Ds3v7f29DKN3GYuFzDgVeNtJenkH3JUGG+6czoDnTS6k7LlGFnh9x2qkRvMiZtkK8Ex9cjVZrpVtr0YOFv1/ak7iFYUBMfMXlcZ9fhQKxwoWpHt+gz4+lKg9oC9qlHsqKkAXjf726Zz3OedrD39WAymtEhKd64FXMivlzW+n5S5gRMYr2IojFxAu0uBxj20Z4/8wnjxnJPMD0cbzVxuoOnpwCkPiEDZSVeJ7kxLxooLih0fiBvVaGTnInXXIv98RFqKhgFN+2kkjAxRACJWR3+NZfIQ90pd7wAyW4a/LnZktwd6PyVGHdy1CFh8tghyx1I+yECBJ7ukE7B2rrpEt1WZ8jtv+R8CLKpzkW31AYPRTbKyu6LSLq3cOhr1UXbnBgC3zvqclF4UXDd0Kxq1AE6d5RvcOOkaBsfImg9VqS+Uecbq64Dt8+FMMEnxe59/un6x0nHA2TZaByc38k+or9tyLIbOke73WCufnCm+F9pdBnxxnmf/UdyqO6iT409F70Fi+yuBPDmNinqgm2gIIkdQSwd7zWjJaO4/7RfFiNof9w3t9qNYDH1DU8yLyBddlH+5ulxAbheg2x3AsIWiZcrBjWL0uC+nAZtfA45XR7qWCp4fr688XXy3vwe8o/EFq/aGiRvDYZ8Ao77yv3AMVescvZGkKLykOvs5XSIlowjocZ/IK3hoM1A2Cvj1OXNB4EirD1EdpRPWz1VlHjpLAVKd73Ur3Sr3LtPuBpqaDwxdaPH3SqNsz1kir4fMnWphfTbldQPG/hT67ejp/R9E/W8uBfaqQ/vwVY3RKQNR3mgf2S6SvTthx4fe911v0y/nTvXN/dX1jiA2GsUtx+TrrFD1xijoJ0Zz//0rYPlFwLF9odkORZbW+X1ok+KD51jfMR/Y97V/WUhoCEWkF/vOcmIk+QkhehgYDqXnOL9OZfqH1gFSQexb4fz2YwSDYxQeoY6Ax4tGrYBONwJD3wd6/Rs4UQN8/UfRjevX54CjeyJdQ2H/N+J16QT/kdvsyO9lECDx3HBPcHjUT3eMjCgTT5rqPImK1UBlSjbQ+WZg6Eei683iMcAP/4rupMRWR0Q7uNFcuaofrd0Iu1wAJJGLEYDlVmda0pqYX8XxSu38Gi4XUHKm/jY0q6NxKZWSJ44PebCAcCbbDid1EDGWWsVQYG8FOWjKGxnWWtbaySvbtH/gMspcZ+pWocrAvPr47XGf9frI9P4vUdEixlOH9peHbhNJ6cApDwIdrgOWTRGtrCnOeH63d3zgnTS/regNc3QPULnOO10rQCrVe885dXdElwMPTTNLg19HxITge6LV+d737hSgSR/ntxEHeBVD4TFQZ+RC0pdeILqhDnob6PeiyIOx+k/A4rFieORYGT3vaLCJ7yWRnygtxnPukQj+TlcFQbre4U2oHquSUkXOmeGfiFxMX04Dyv8q8nFEm7QC0aLjeDVQppH/Ue399ubWu3g0bHWBbnh6aWFZvZvLbJN1lWnlKJMDfEVWuvBr1EfOETpiiWiNktPBWt1ihbq1IINj8SXYluv1tRZHslXmBjMZbHdZfNClDo51vF7xwcGW6kbdzdS/g+HmcuvnenJak96iFdn+cuCrCx24JqSoIZ+jS1StnPZ9A+x4Xzzgl2n9bkv1+uevPD2/V/D1JG395orXzBaRrUeU4VUMUSxIyQFaTRFJwQf9D8juAKy/HygbDay7F6hcH73JwX96xIGVuGK3dVEi62li36dki26K8cDlFiPUDlsgck6tvhFYcXnwI62FQm0VsNPpUcUMvoO63aWa4LlQtpX7z6EnquocZV1v977vrq6vUXVUF/cTd/l+nhoD3W0dEw2tYiggSQIO/hrpWvhTfh986zkfPwnQMsxMSyxlLlO/Ls4u0dLTaVE9srE7vHlXk9KAHvcCnW4WaTm2vBm916wkVP0geqwY0TuG1tzkfd/Q40XrPK3Xf6CiN4ploshsLnIxO+18RToJOUfpUI4wq8TgGFGsSUoHSscAfZ4Dhnwguu1sfE6Molb+N+D3FeFPNn9grfe9rdwSBhe3kiTmR0VXBLKk882RrkHkFAwABr0FdLxJdLVcNlWcm5Emn0dyYKzuiH5ZqwMNGF3EFo9QV8TzPSUFXtaPQ98Fuz/z/dz1duBsC0OZT9otXpXH+Rll8RPsNcVkyzG//a8yJUoHoYlXx6uA9y2MRBiMQxaCcFpdEfevCrCQiVuZbn/3vtfqWj7oLc/2HbwRr93v3LqcltEMaKSR5zH/NGDg//yn53T2n2ZH/qnAkA+B6h9FkOzIbmfWG222vwessziYQbTZ+Qmw+qYAhUycL/tWGiyuyDmmJgfHErXXSG5n4IzPnV9vcmbgMgmOwTGKXlOOAuM3R7oW0c2dDBQNAXo9Lka+bHW+aMpcNhpYda0YUc+JYdAD+ain9/3+NTZWYHSzW++9oT9P52Kz8y02tgkgI5bzEVBMyOsK9H0B6PkwsPVNYPE5wI4FkXsaKqlyhLxpcKG0+b/W1n1MIydis7M821UF7OWcY2YC+eqWHqEKlCc3Ek9rzZLrJQ8s0KQPkF7ofL1iis5l5fBPgfFbgG4ztecneVoGl50l0gdsfw+oPRCaKpL1kV2DsfA082Xt5Bwz05X3G0XXSb/vD+UNuoPfy2ZaTkdKl78CgzVGkhy9Cmh5rv90J0fBTUoFus8EutwKLJ8BbHol/loH7V0GrJsJ7F5irnx9XXSOoB7ot9ZMneXuxVrntmTUcsyz7cHvAs1GB94O2cfGBz4YHKPolZQmchQFJYFOeJdL9M3vcZ/IfdTxBtHvf8k4YPnFwLZ3fYdJDxWtPD5B8+xHvZYsJSZyJ2mZGMMj2VBsadQCOPURoP9LwIFyMcLlppfDE7z2IV/MmvhuPH7Q2qp3LfKfNuhtoMW5/q0UstoBWe3RcDO66SX99Z7+jGpClHyvyxf18oXlmV+L0YcTiuqmtmk//yLd7xavjVoCJ1QtFcf+7G01Nl0Chi4A2l8BHKkAVl3jCZbdDGyfz2CZk0LyO+2AUAXHDEfpdQGNe8gVsL59PeoE49HE5Q48KJEyD9HAt5yvQ+MeIhfZ4c3Al1OAIzud30akSCZ+15TKRgM/Rlsw1cy5YCI4ZjiKt0FwTP6dT84QyeP1tL0kcB1I34TtomWonAfR6G+dIBgco/iWyNHwnI5A11uBYR+JgFnNduDLqWLUoE0vA7WV1tb3VuPAZWorgcU2A1VqGaVAl7+Jiwx5P8oXzspgWKZG14CTgxhhiiiUUhsD3e4QT+3rDoqL4g3/BuoOB17WCT897nlj4sJXPt9WXGZu3cru1bLkDJEnMaut7/Qe9wF9nvU+edYKrMm0umRGWvd/ICrqEW3UN9xjfhCtRGTqfZlzkrfVGCC+63M7AyddDQx4zRMsu1yMisxgmXOstFLZsyx09VCz03omyYEglJWRbhNFXnfve93RxIPkThG/h91mipHZf5sbJ63IPP8Hs4NFHN4MHPs9ZLUJSDnapGz/GgT8jTN1vhrsz82v+AbHlMecz7YN6tFCo6UjmZdZ6r3H6nIrk/ODwTGixJDZHOh4HTBkPtD7KfHUeMXlwNIJwC9PA0d2GS9f+T1wvNK4zOIxwP8MAmhD3tefpxXEdKfCmzTWMz8lB2h/pRhxT6a+6QaAEjbBpiiXnCECAMM+AdKLgaWTgO9mAkdDfIF8zDNS2A6D81EmB+y2v2tu3XZafcgXzvu+1i+iHtI9Gh56SCeisxtMuPklN1eYLolAl1KzkcBUT2vJnrMCr5/BshBRHbt1NUDFQu/nb+/0vv/12fBUCbDXoi0piBw6LrcYPIU0eLq+h0NeV5FD9+huYNl54mFuPDA9kqoU2d819WiTALD5ZTRce39/v+LBmoKZQGagMsq/kfLa3mzQu3i4uXIUWNfbgOEGDyoTBINjFL9OuhZIzop0LaJPWhOg7cUiAW2/l0Wyy/K/iODWj7OAgxv9l9nw78DrrVhgPL9RG6DjjTozA10UKJpXn/6096a0441A6wv8f0SVP7BE0cydJHIFDlsIFA4CVl4m8uMc2uzcNn581Ptezv9hxvb3xOuxfb7r0OuebSePkXwuH682KOQ5/xvyeUVBcMzK3zGepTURCbatkFuhnHSN9e3pBctqtgMrrxYtMVffDGx/33rr6EQi37DK3br3rwEWn+Wdv/7+8NcJsBlgD0KfOUB2e8X246HVkkPCff3sTha50E6+Xzy83fh87O6Pnzy/l2aDY4c2iYF7ZEd/FwNshVvFx8CrGr+v390JrPmTxgKq/VOzw8ZGdUIRraaaXD4KrgfiRUoOkNUm0rWIuBC1kyWKAr2fjHQNol9KFtDyPPHvRC2w+3Pgx4fEjXnTfkDNFqDvnAA3ribldfX9nNtVXJRuf08MGa0nvyf8n156Pvd63PNRAs4/JBJqf32pcReJaWG++CYyw+USXc6KRwD7VwPf3iEurDv/WZEPx6afFd+FOz82v9zh37zvf1/uff/tHdrl7bT6UN8Mu9P88wPJT9TbXgr88ACi4mL4xDEgNTfStYgOpTa60o/7zZmcTHKwLLcz0OEa8VtQ/SOwezGw8ioxKmNuF6BwqAg+p+YFv8244AlKr/+np9urQRAinC1a7ATYzdYvJcd/mjq/TjS0So0WLc+LQE5MALmdRCuyDU8AX0wEej3hQP7hCLHSckxpw2PiWrznv7SLO6mmQrx+3Ne/HlYS8m/6L7D8D/5lLJ1Tiu0HyolHFCJsOUZEQlKq6I54+jPiaXz+qcBvL4p5FRr5COzI6eR9P+Z77w9rnVbib8+PZJsZQK/HVLPqxc2OzOUSgTEA6Pu8970WM8l7iSIpvxcw4BVx0/rrs8DSicDusiCeotvt/qe4qK1VjBR74qh2cTutPo7utVYPAGhzofXt6MkosbccW44FJ1RPp10uEQzrcA0w8HXxW9buUqBmmwiWlZ0FrPlzYrUsk+qB6g3+0wDFoBuq7xafQJLDASOjUcitfIe0mOR5Y7J+ff7Pf5o6eOFUS6XpMdriyU+EgoXuJKDzzcApD4vu0788jZjsxv6ziV4XWvR+Y0NBfqi1bwWwb6X/fK2WZA0U+0QrMAZon1Pb3wM+6iXeK4NntvYxA9rkrKi4S6yrq8Odd96JNm3aICMjA23btsU999yD+voY/CIkigfuJHGDLgv2RnCyp+VZ076+0+UfwoJBFldoNMINUZzIbgf0/o8IWO/6THR72vq2/qiteuze8CnPsd2fe99XfqtdvvI769tIy/e+P3FMZ1Q5z8WvfBF98j3662s5xdr2T30scBktDI7FBgbLgKofgQ86+U6Tf3vloJn6plTZWtxOayq9oPfUWuNWQFZanzY8IDNbP41yhqNYJroI58ECxIAdQ94XLdiWTgAO/RZwkagT06NwBtj/RgPpNNC4/tj0EnBgjXivDMTbCY5xdEVyWFTcXf7rX//C008/jSeffBI//vgjHnroITz88MOYPXt2pKtGlLjkJ6r1x+03rW/iCYalZGvPt/skMK87kH+avWWJYk16oRjdceBbQM1WoOxM4NfnzD9drtlqb7t6XUKUXSxPVeQiy+7gW67XE4G3oQzc/fCgTj1c/mX1DHw9cBklM6Owtb/SfxqDY7FJK1jW9hJxjjQEy24Ro7fFerDsyE5g27s6Mz3nktwq/LNh4nXPUme2Pa9Qe7rejWzdYRH0D2W3Sq0Hail5qgnx0uIrSI1ai5GV05pqjwgeTi430PF6kUbjmxuBDbNjqxVZ5brQb6NmB7D1LZujXmsc82b/vuvuDlzm2D7/aScUv58Fg4BJe8T7wsHmtqsU6QAuxZ2oCI4tX74c48ePx5gxY9C6dWucd955GDVqFL755ptIV40occkXknrJtwNxpwClY4BOf1au1LdMv7nitcc/deqg86PX9fbw5GIgiiYp2UCnP4kbencqsHgssP5BoLYqNNsz1eVIcRmh7hJVPMLERhQX4XoX2qFsJRoo4DZoHtDtTv/pcosTra5aFDtcLpEPs8O1imDZH4HDWzSCZSE6z0KlYqHI2XRC4zdc7+Z30RCNiQ7dfA56W3/eh12Bza/YTMhvsn5VP/pPyyi2sb0EMO438f1dNBwYvynStRGy2gJD3hMPNJaMAw7+GukamXPCRuvEpHRr5Te/Aiw7H/h0oLnyFQtFfl5A+7xo+B5w4Nw/rvG9qUzV4nIB6Z5BtLrd5VuuYTR6Bq3DrscDka5BxERFcGzgwIH47LPP8PPPPwMAvv32Wyxbtgxnn62f5PXYsWOorq72+UdETvJ8PWj9sAXS5HRg1HJxU3nqLMUMzw9to9biVf5BzD7JbiWJEk9SKtD2ImD4J2Jgi6+mA+V/9SbWdYzqEkHuBiE7r9L3ZlZ9wx3sMO895OT7qm6VgXS8yVw5UQHj2U37AZnN/afLNzztLrWwrQSSrtNyKNoZBsuujI1gmSSpWmRqPEiy1PLGoeBY84n6845UACcOi8EUTJP/jybrd3iL/zT1tQe7aAkuxXduNKWwcLnFSLW9/wOU3wL89Jj1NAOhpv5NsxLw3b1YvBYNt7ZNuXfGYZOtxCvXAdvmiffKUWple5eJ1+OV1uqhyUJgKynN9/O4jQ5sn2wptJruJn5ExTfe3/72N0ybNg2dOnVCSkoKevbsiZtuugnTpk3TXeaBBx5Abm5uw78WLVqEscZECUAeKUbrh72j1pDOCulFvjnL1MaoRqfUuukd8gHQ4Qbj7RAlMpcbaH4OMPRDoPl4YM1NwIor/JNvB7N+JXX36tRc1feDja4u7a/Qn9fxeuCcX2D95tzm6FhGzlV1DWGuImOnPBzpGjjDL1j2oQiWHdoMrLwCKDsbKP8LsOPD6AmWVSwAPuzs/Szn8apcrygUgW5pesHt+uMIKgBnNmiuDHylNhav6iBh41Ps14PCp1ErYNA7QHI2sGSsc795TlDnzbOSR68ht6fN37zkLHPFpRPBBz0PmgxcOTLIhcbfQz6HiRwWFcGxN954Ay+//DJeffVVrFmzBnPnzsWsWbMwd+5c3WVuu+02VFVVNfzbtm1bGGtMlAg8Xw/z2/pOzu0KdP+78aI7AoxumZwRePN5XYGMosDliAgoGAAMfBPodBPww0PAsinA718Ht85GGrlm1CNXKZPp+rXMMHFR3MjgwVZyIzEoQTA5RSZrjYRrQVoTz2u+7/RmGk/bSSFOu8G43OK3qeN1wMA3gKEfAG0uAg5t8gTLzop8sOzY755ggWcfyDenW98Ajh8Cvvu7eDXrtxccr6KP11MRnuNFsY3cLiJvqd8NNvMXxQyXC2h/GXD6s8Da24AfHo6OVmTqXKC5Xc0va6tbMYA6z/l8zMzoz4AY1MrzANwv755J77c3WVBx3kmSzX2k8f0wcZf1AXjInIFvAnknR7oWEWMiE23o/eUvf8Gtt96KqVOnAgC6d++OLVu24IEHHsBFF12kuUxaWhrS0tI05xGRA/SScZ+9zsTNqs6FbkazoKpERAHkdgH6Pg/UbBddTr6/z/66zFyot78cWHWVzvJOtU4J4obVnWo83+ip9ogvtLtZTY/TwI+jEuRv5HIDed3Ev47XiWO+6gfRPWrTS2LUx7xuYmTFgoGitWWo+bVq9OyLfSuB/auA7+8FjuwKfT2sstrCRC5vNj+TpLpJz+3qfy1jJZBB0aFRC5HPbtNcYMkYMUhMbpfI1UcdHNO7ltai/s08utebfsRwOc+xfeKI+e3I9bLSdVKyM1K84rx7zbOsK8l+IFCWlGp9AB4yp+XkSNcgoqKi5VhNTQ3cbt+qJCUlob4+hkYjIYo3ej+A8sVkv5esr1PvRz7QDSwRWZPZHDj1EaD/f+2vQz1y3Bblhaick8boMsKpAIlL9RqIYruBAvlG8wtNJjcmksnBsoaWZR/qtCxbIAJnobBSNbrq3i+97ysWiNeNz4Vm20BoW8zJ3ZvTi9FwnjfpY3Jh1feR+txv8wcGx2KVywW0vRjo8wLw3Uxg/T/tjXzqhGC63MsBI/nY1Bv1VW3tX61vx063ytcsBPpkP87yn2Y5MMYWnRQ+UREcO+ecc3D//ffjww8/xObNm/HOO+/g0UcfxcSJBsk7iSi0rDztCsa0E0BqXni2RZRogsnLoc6VsuEJ5UwzK7C/bSX5RsHWMPUGF9Xd7waaT7CxTjLU+2mgIHGT+frQDJb9ATi0EVhxmSdn2V9DGyyr3e+pSzLCcpP5v7zQrVvu3jzuN8VEswN1BMhh2m+u6MZNsSuzRHQJy2wJLD4bOPBd+Ougbjl2xMJAOXLQ6EStd5rZ3F5W1GyzVi+ltbdaK2+2NZuhBGmJTFEhKrpVzp49G3fddReuueYa7NmzByUlJbjyyivx978HyGtERKGjfqpUMAg4+V7vZ7tJNtVPeaNpJCQiAt4pBSbuAOprA5cFgKl1wOsalxOOJOIFGm5+Nzxuf1kt3WfaqQwFctKVgcskKpcbyOsu/nW83tMNc72nG+aLIheY3A2zcKBvTr9g7VkM5HRybn2RZCZvqZqyq11OByCzlXP1oejhcgFtLgSKRwCrbxL7vett4RuJVD3C+2fDzHfFl4NjygdT77d3viv/b/o5vQP64V/AKQ86Vxc73EyrRKETFcGx7OxsPP7443j88ccjXRUikqlbjo1YouqGYPPH+swgk4QTkTU5nYHqH43LNOkDtJgongrLT5Qr15lbv1uvlanDwbGTrgF+ecp8ecD3O2u65D+gAFEkBRss2zBbLFs0NPC26g4DPz3i/P/BjORGAQq4ENbWIX3nhG9bFBkZxcCA14Ctb4pWZKc8BOT3DP12F55mf9kNTwC9HkdIW3ge2WltBM1oUzoOaDYq0rWgOBYVwTEiikaKH+cmff3zczRqHdbaEJFNgQJjgLgpN527J4C8HkDlt/a7Sw/9CEhXjFQrf/f0/o/4F5DyJtuzbItJvkXsPIlv+0fgN95UUwjpBsvKFMEyTzAspxOw+gagw/Ui2b9Uh4jk5ln3D28rzK/+YH655hOA7e8Gv/1gRrOl+OZyAa2mAEXDgTV/Ahq1AbrdCSRFccujmu3WelR8e6f3fV6PwOXX3Gy9TqGS191cuTrF6LpD3gtNXYg82J+JiLQpLzj3abT2KhoCnK+TAyirbWjqRET2JWfpzysda671iRl53cSr3QB6yWjnnvDL32OD3g5+XZktg18HkRVysKzjDSKX0tAPgNYXAAd/AeZ7fmd/ni1axiy/CFh9Y/jruO5u7/str+gUCkUAy+pAHZSw0guA/i8DjU8BFo8B9n0T2fqsuxc45skF+LHqoVT9cRMtLRXW3+99r34IpEU5sE7levHqTgOmmkyjkNPZfN0CMTsY1+4y57ZJFACDY0Rkn17S/o43hbUaRGSGwU1kk96+nwN1P+zxT/15RkG4sAjRzTJzlFGkudxA45NFsKzoDO/0mm3Asb3A0T2hr0PVT/7TDm/zTLdw7pWc7X1vNr+hluKR9pelxNLyXGDA6yKgvPY2/+T54bLu7yLADQD7VqpmSp7BM+yw2CJ665vite8L5nOypTV1LljV5W/OrIfIQQyOEZF9yqbpaU0iVw8iCmz4Iv15VhPcqnN+pOZ735eOE69OJ+SPNJcLaDU90rUgEnxaXbjEDev2d7yTVlwamu1+qNFy5Pt7gK8v8iYUD2RqHdD+ct9pRt8XRgGwzBJz2yQCgPSmYmTSpv1EK7LfI5QHV6o3mmlznRaX+/4e69vY+wVQNtr6clpaTrZWvlMUdQmluMXgGBEFNvSjwGUGzQt9PYjIus5/FV0Cm56uX6ZomMWVqgJWyqfOGcUW16Vcj0Y3C1eyyKlkV0Yz+8uqDdDrNkYUZsqHU7X77a9nocH3gtqml3VmGNyUNxsN/+8LvUE8dAxb6D/N5QKSMv2nD2ZOIjKh+Thg4FvAr88Ca24B6o44t+5uJloZr7zMYGYYB6cAYPkBVDAtPWUTd2lPT8nVXya1cfDbJQqAwTEiCqzExFOi9GZA8/HifemY0NaHiMzL7yVuBBq4gPMOeD92vd1GUmtV+XzFCF0NyYRtXOBrddV2JwEjvzC/juMHfD9PrLBeD6JopzxXju62v579q8yV+/YuYPkMnXWs0ege5lE8wl69lMwmKO9wg+q7zqNUYxpRWr7oUlg0DFgyFtj7pTPrbdo3cJmqH7Rbep2oDdCqzMCRHfaWC0fr7A7X+37OKNIud+4+/XUcWOtYdYj0MDhGRPomV5krN/AtIKs10Ptp8ZkJ+YmiR6vzgdNmez9PrfUdSbLH/X6LBNRYNSpWp5u9T3UzSj0T7QTHHLgsqTG4QUhrAqTkBL8NoogLc3fj9ffpzztQrj+vYCDQ5a8mNmCntYxqmVMfFa/KFmVjNwCnP21j3ZQwSseI3g+/zQVW/wmo0xlsyixlmgEA+Lifdrm9Gg99PuoBLBpsb7sb/8/7vsrEKNVW9XzEf5o66KXntH+LrqyBGLUqTUo3ty2iIDA4RkT6zN5EFp8hulXZTiJKRGExcRfg9pynZxnc0AaiDmIVDfN2k0gvEK+2co45cFmS1lR/XqsLOOokxQfLrT1D4Nu7Apdp2gfodmcINq74//d9UbzKN9ajPC2ARiwFcjo427Wa4lNqLtDnWdENeMk5wO4l9teVlg+kF3o/a434DgCLhvhPc6LLIgB82AWor/OddszTKmu6+rfZxG91Rqn2eZRrYfTKUV+ZL6tlb5DLE5nA4BgRBU9+Spve1Pxw0EQUfsquDI1P0S93xufitcc/vUlwszsAXW7VLu9yAUmp3pvUrPbmW4EVDFCsx2IuIi3ZHYJfBxF5/fp//tMObTZuTRZqUj0aAmRtL9IuUzgobNWhOFFyJjD4XWDrG8A31wPHD1lfR2pjYFIQXZ2dsnSC7+e3dR4cyQNe6D0Qb3wqMHG7b/qEBhaD9DmdrJVXGrnU/rJEJjE4RkTBOfd338TAZoeDJqLoJSfob9zT223inA1A97uBMQbdNeSb1HG/eFuoBaJsYeZEt0qjdTTtC5SeE/w2iCIujC3HDm/ynza/jbPbOGExIXr9Ud/u4T6ioFUdxa6UHKD3U0DzicDSccCuz6wtn5wVmnpZdXiL9331L/rl0j1Bs17/1p7f0BrbkwutmUEe4kl7jOs0/FPgrLXGZfxatnlkNjdejsgBDI4RUXDSmkS6BkRkl1byWzln4KjlQOFgkU9QvlhNSgNyg3jyq0UZzHIkOGbQ+qz1NOCUfwa/DaKIC2MASJ3w/1WT227Sx/w21v7NeL76hrnDdcDo1d7PypY6We3Mb5dIT/FwYPB8YPt7wMqrgePV3nlVP/mWVXZh1Bp1ORiHNILTRhoeOCnOmbV/8S2jlf9LrwWmvB45If7OhUB+b/9ikw+KtApGrdIzm/vnLCWKIgyOEZGx1hdGugZEFCpp+f7Txm0Ur037AsmZ/vOdFs7gGFG8CGfOsY3P21sumJEqC4eK1+53+04/39PNLbkRkFHsna7M8ZSSpd/6hMiKlCyRTL71NGDpRKDiYzH9w87AiWNiAJgfHwFeTwEO/SbmOX1uftLfWnnphHitPSDqePyQCPApWUluL4+eWTDQO00OrinTGKR4Wsw16SNGySaKQQyOEZGx/v+NdA2IKFwicUPpM5CHA5clRk+tieJGiINjpeOCW97lDr4bVOsLgO4zfaclNwpunUR2FA4GhrwP7PwYWHGZmPZGOrDyKqD8FvF5+3zfZTre6My25RQFK68ElijOy82vaZeXg1lHKoDv7hJdQ2UjPUnt9R4iyXlDtSh/q+UHZ8XDRY7SMxYrKwB2baZYxeAYERERRZDiItqJlmMlBvlQiOKFla5bylZVptcfZP7QUx8DCjVG4zOj9YWi9U3/l4OrA5GTkjOBXo8Cbf/onbZXkSRe7nYo6/W4Qxv2/Eb++iyw433x/qsLga+m+xetXO9tOQYAtZW+gwrILcbk4Fij1r7L11b6r3PAq55lFL/VxSOAM8rE+6JhQJHiXN/4PLD/G4P/D1H0YnCMiIiIIke+4E7OBjreENm6EMWKpAzzZdMKgNYzrK2/IMiRHjveAOR2tr7c2J9EN7YBbwS3faJQUY6wrLRprv4ytVXO1mHzK9rT6w76Bsd2vA/sX+X9nJItXuVWYONV+cxKx/qvUw6uyy3SADHoQNFQ7TrkdRevdoPjRBHE4BgRERFFzkFPjrPiM4Ci4ZGtC1GssNLKsuON3htWswr6++YYCpecjkBqY5HYmyjaKQNGxgXtb6NmG7BnaeBygAiMKYNjR3f5zpe7Out1qzQaaVNSDDpwoka/XNP+ImfgKQ+Kz+rWaURRjMExIiIiipzDnifXVT84062SKCFYyOnT/nKRG8gqK0m7S8/xvtcaCc+MrnfYW44oUuoOBS4DeH/bag/Y284Sxfm17Hz9cil5vsExNXW3SjU5KN3+Cv95ypxjboPvhp4PAYPfQcN3VOFg/bJmZJ8U3PJEFvAqlIiIiCLv4M9wLImvXrcXorhhsSWK1dHjGvcUCfHNSG0MNFPk+mt/pbVtydpcZG85omi37R3xemSX9vyRXxovf7za+37rW/rlUnJ8W3jp6fUYcOZK/+lyEO/0Z4CiM7yjxgK+o8MaPchKbgSk5qHh97zjTYHrY2TsBmCa2RZ6RMFJDlyEiIiIKBwcCo6NXObMeogSlTsZyO5grmxaAXDiqHif2Vwk1LdqyIdADluIUIxLbaw9ff8aoO1F0P2NyyhxZvvvtQQmVgQu16iV+KflvP3itddjQH2t77xxm4DfXgByuwTehpxPNL9n4LJm1kMUBgyOERERUXT4/avgL6SJyGvSXvvLFvQ3V6773UBeN6AcwNnrALdOly0jpWdbX4Yo2gTKrxWOQE/9ce3pfZ43t7wc4NPKU5jVGjj5HnPryWwOZLU1V5YoSrBbJREREUWH6p8iXQOiGGGyW2V6U+3p3e4KvgqTdovXouHiRvr0Z4wTequdUeZ5XRx8XYiiQZM+vp+nqfN/6QTHjPKEWaVu7SVr+0fntmFGRjNg3MbwbpMoSAyOERERUXSoMxgBi4i8pCBGvwP8W390uMH6OtILgcnVQEaR+Nz+CtEd06yioZ7XIda3TRRN+r0kXhufopohB8M85+uBtdrLu1Odq8v7Ot2T2T2RKCAGx4iIiChyBr/rfd/5LxGrBlFMqT+mPV15k93uco35KUDBIP/ppz0hXqfqtDrp+Yj29JRs/TqaMWFHcMsTRYM2M8SrOsilDkh9OcX7Xh7FMa1AJLEnoohjcIyIiIgiJzXf+z63U+TqQRRLes4CJmqMfNdYkbNPr6WIUSsVdwowXaNVWscbrdXPrEyHEpETRUrXO73vi4Zpl/l5NrDzE+/nlDygZKwIDp+7B0jL9y3f5HTHq0lEgTEhPxEREUVO3smRrgFR7FHfTANARingUibD1wiO9XgQKD3H+vbUSfaLhltfB1E8qv7R+95lMBhF2Zne9+4kAPX6weH6Omt1SC8Cju62tgwR+WHLMSIiIoqc1Fxg5JfarVWIyLxGLQGpPnCZHE9OotJx1tbfarr3fbPR1pYliidDF3rfb3tbMSPA+Sc7+T6geIT+/ANrrNWn/RXWyhORJgbHiIiIKLIK+ke6BkSxr3iUuOGeatDqxKXoNJJeZG39A15RrMeghQxRvCs503/axF1AZktzy590FZDfS39+bldr9cnrYa08EWlicIyIiIiIKBaN2+R9f/LdQI97/btAyibt8e1SGUweMQbHiHxlFGnn+UvKsL4uq92W83sGLkNEATE4RkREREQUi7JaG8xU3ainF/gGzvIstk4BvC1jWkywvixRPGo1zXj+yC+srS+9EGjaz1zZ4pFAbjdo5hckIssYHCMiIiIiSlQ5nfXnnbsPOK/S+7nHfeK1UauQVoko6qU1Fbm+OlxnXM5sK8spR8Tr+C1A6Vhg2MeBl+l4EzDqKzA4RuQMjlZJRERERJSIWk4BTputP189KqbEgTOIAADn7jVXzmXydjsp3VM+CUhJB5qNCrzMkR1ASjZQu9/cNojIUFS0HGvdujVcLpffv2uvvTbSVSMiIiIiim5dbvWfln1S4OUGvi66W5rVYiJwVrn58kSJrrbSfNkzygB3ivnyld973kTFLT1RzIuKlmOrVq3CiRMnGj5///33GDlyJCZPnhzBWhERERERRblmZwHFZ/hO6/kI0GKS89tKyQYan+L8eoniVX2t+bJFQ62tWw6kaQ0EQESWRUVwrKDA94nVgw8+iHbt2mHIkCERqhERERERUQwYtsB/Wuebra9nyrHg60JEvpIzw7ARBseInBB1bTBra2vx8ssv45JLLoHLIAp+7NgxVFdX+/wjIiIiIiIbklIjXQOi+FNX4/u574vml83tZjy/5Xni1RXglv78Q+a3SZTAoi449u6776KyshIXX3yxYbkHHngAubm5Df9atGgRngoSERERERERBVI0DDhzJZBeLD63vsD8smPWGc9v2tfzxqDlWPe7geRG5rdJlMCiLjj2/PPP46yzzkJJSYlhudtuuw1VVVUN/7Zt2xamGhIREREREREF4HIBTXp7B8hwO5TVKCVHuRH9ct1nOrM9ogQQFTnHZFu2bMGiRYswb968gGXT0tKQlpYWhloRERERERER2TT4XeDtJs6tr5si6KXVrTIlBxj2qXPbI0oAURUcmzNnDgoLCzFmzJhIV4WIiIiIiIgoukzaC6Q3VUxQtRxLbQyctz+sVSKKB1HTrbK+vh5z5szBRRddhOTkqIrZEREREREREdmTlg9MORqadasHsev059BshyjORU1wbNGiRdi6dSsuueSSSFeFiIiIiIiIyDlJTqUEknw/qrtVdrvDoe0QJZaoCY6NGjUKkiShQ4cOka4KERERERERUWQNnm+ikEFCfiIyLWqCY0RERERERETkkZyhMS1TNYHBMSInMDhGREREREREFG0Kh/hPS27k+9mdGp66EMU5BseIiIiIiIiIoo07RbwOX6RfRtm6bOCboa0PURzjsJBEREREREREserc34GUXMDN23siu3j2EBEREREREUWjkcuAxqcCU44BqNcuk9YkrFUiikcMjhERERERERFFo4IBka4BUUJgzjEiIiIiIiIiIkpYDI4REREREREREVHCYnCMiIiIiIiIiIgSFoNjRERERERERESUsBgcIyIiIiIiIiKihMXgGBERERERERERJSwGx4iIiIiIiIiIKGExOEZERERERERERAkrOdIVcIokSQCA6urqCNeEiIiIiIiIiIgiSY4PyfEiI3ETHDt48CAAoEWLFhGuCRERERERERERRYODBw8iNzfXsIxLMhNCiwH19fWoqKhAdnY2XC5XpKvjiOrqarRo0QLbtm1DTk5OpKtDYcL9TjwGEhP3O/EYSFzc98RjIDFxvxOPgdCSJAkHDx5ESUkJ3G7jrGJx03LM7XajefPmka5GSOTk5PBESUDc78RjIDFxvxOPgcTFfU88BhIT9zvxGAidQC3GZEzIT0RERERERERECYvBMSIiIiIiIiIiSlgMjkWxtLQ0zJw5E2lpaZGuCoUR9zvxGEhM3O/EYyBxcd8Tj4HExP1OPAaiR9wk5CciIiIiIiIiIrKKLceIiIiIiIiIiChhMThGREREREREREQJi8ExIiIiIiIiIiJKWAyOERERERERERFRwmJwjIiIiIiIiIiIEhaDYxY98MAD6N27N7Kzs1FYWIgJEyZgw4YNPmUkScLdd9+NkpISZGRkYOjQoVi/fr1PmWeffRZDhw5FTk4OXC4XKisr/bb1888/Y/z48WjatClycnIwYMAAlJWVBazjunXrMGTIEGRkZKC0tBT33HMPlIOS7ty5E9OnT0fHjh3hdrtx00032fpbJJJ42O8XX3wxXC6X37+uXbva+6MkmHAeA2vWrMHIkSORl5eHJk2a4IorrsChQ4cC1pHnvvPiYb/z3A+OE8fA/v37cf3116Njx47IzMxEy5YtccMNN6CqqspnPQcOHMCMGTOQm5uL3NxczJgxQ/NYUeO5HxrxsO95/gcnnMfA/fffj/79+yMzMxN5eXmm68jz33nxsN957gcnXMfA5s2bcemll6JNmzbIyMhAu3btMHPmTNTW1gasI8995zE4ZtGSJUtw7bXX4uuvv8ann36Kuro6jBo1CocPH24o89BDD+HRRx/Fk08+iVWrVqG4uBgjR47EwYMHG8rU1NRg9OjRuP3223W3NWbMGNTV1eHzzz/H6tWrccopp2Ds2LHYtWuX7jLV1dUYOXIkSkpKsGrVKsyePRuzZs3Co48+2lDm2LFjKCgowB133IEePXoE+RdJDPGw35944gns3Lmz4d+2bduQn5+PyZMnB/nXSQzhOgYqKiowYsQItG/fHitWrMDChQuxfv16XHzxxYb147kfGvGw33nuB8eJY6CiogIVFRWYNWsW1q1bhxdffBELFy7EpZde6rOt6dOnY+3atVi4cCEWLlyItWvXYsaMGYb147kfOvGw73n+Byecx0BtbS0mT56Mq6++2nT9eP6HRjzsd577wQnXMfDTTz+hvr4ezzzzDNavX4/HHnsMTz/9tOG9IsBzP2QkCsqePXskANKSJUskSZKk+vp6qbi4WHrwwQcbyhw9elTKzc2Vnn76ab/ly8rKJADSgQMHfKbv3btXAiAtXbq0YVp1dbUEQFq0aJFufZ566ikpNzdXOnr0aMO0Bx54QCopKZHq6+v9yg8ZMkS68cYbzf53ySPW97skSdI777wjuVwuafPmzab+z+QrVMfAM888IxUWFkonTpxomFZeXi4BkH755Rfd+vDcD49Y3++SxHM/WMEeA7I333xTSk1NlY4fPy5JkiT98MMPEgDp66+/biizfPlyCYD0008/6a6H5374xPq+lySe/8EK1TGgNGfOHCk3N9dUfXj+h0es73dJ4rkfrHAcA7KHHnpIatOmjWF9eO6HBluOBUluFpmfnw8A2LRpE3bt2oVRo0Y1lElLS8OQIUPw1VdfmV5vkyZN0LlzZ7z00ks4fPgw6urq8Mwzz6CoqAi9evXSXW758uUYMmQI0tLSGqadeeaZqKiowObNmy3+70hPPOz3559/HiNGjECrVq1M14+8QnUMHDt2DKmpqXC7vV/PGRkZAIBly5bpLsdzPzziYb/z3A+OU8dAVVUVcnJykJycDEDsy9zcXPTp06ehTN++fZGbm2u4Hp774RMP+57nf3BCdQzYxfM/POJhv/PcD044j4GqqqqG7ejhuR8aDI4FQZIk3HzzzRg4cCC6desGAA1d34qKinzKFhUVGXaLU3O5XPj0009RXl6O7OxspKen47HHHsPChQsN+6Pv2rVLc9vKulFw4mG/79y5Ex999BEuu+wy03Ujr1AeA8OHD8euXbvw8MMPo7a2FgcOHGhoWr1z507d5Xjuh1487Hee+8Fx6hjYt28f7r33Xlx55ZUN03bt2oXCwkK/soWFhYbHEs/98IiHfc/zPzihPAbs4vkfevGw33nuByecx8DGjRsxe/ZsXHXVVYZ14rkfGgyOBeG6667Dd999h9dee81vnsvl8vksSZLfNCOSJOGaa65BYWEhvvjiC6xcuRLjx4/H2LFjG26UunbtiqysLGRlZeGss84y3LbWdLInHvb7iy++iLy8PEyYMMF03cgrlMdA165dMXfuXDzyyCPIzMxEcXEx2rZti6KiIiQlJTWU4bkffvGw33nuB8eJY6C6uhpjxoxBly5dMHPmTMN1qNfDcz9y4mHf8/wPTqiPgUB4/kdGPOx3nvvBCdcxUFFRgdGjR2Py5Mk+gUye++ETXJvOBHb99ddj/vz5WLp0KZo3b94wvbi4GICI2DZr1qxh+p49e/yiu0Y+//xzfPDBBzhw4ABycnIAAE899RQ+/fRTzJ07F7feeisWLFiA48ePA/B2vykuLvaLFu/ZsweAf2SbrIuH/S5JEl544QXMmDEDqampputGQqiPAUAkZp4+fTp2796NRo0aweVy4dFHH0WbNm0AgOd+BMTDfue5HxwnjoGDBw9i9OjRyMrKwjvvvIOUlBSf9ezevdtvu3v37m1YD8/9yIiHfc/zPzihPgbM4PkffvGw33nuBydcx0BFRQWGDRuGfv364dlnn/WZx3M/fNhyzCJJknDddddh3rx5+PzzzxtuWmRt2rRBcXExPv3004ZptbW1WLJkCfr37296OzU1NQDgk39G/lxfXw8AaNWqFdq3b4/27dujtLQUANCvXz8sXbrUZ/jXTz75BCUlJWjdurWl/yt5xdN+X7JkCX799Ve/0XLIWLiOAaWioiJkZWXhjTfeQHp6OkaOHAmA5344xdN+57lvj1PHQHV1NUaNGoXU1FTMnz8f6enpPuvp168fqqqqsHLlyoZpK1asQFVVVcN6eO6HVzzte57/9oTrGDCD53/4xNN+57lvTziPgR07dmDo0KE49dRTMWfOHL/7QJ77YRSaPP/x6+qrr5Zyc3OlxYsXSzt37mz4V1NT01DmwQcflHJzc6V58+ZJ69atk6ZNmyY1a9ZMqq6ubiizc+dOqby8XHruuecaRicsLy+X9u3bJ0mSGLWwSZMm0qRJk6S1a9dKGzZskG655RYpJSVFWrt2rW79KisrpaKiImnatGnSunXrpHnz5kk5OTnSrFmzfMqVl5dL5eXlUq9evaTp06dL5eXl0vr16x3+a8WPeNnvkiRJF154odSnTx8H/zqJIVzHgCRJ0uzZs6XVq1dLGzZskJ588kkpIyNDeuKJJwzrx3M/NOJlv0sSz327nDgGqqurpT59+kjdu3eXfv31V5/11NXVNaxn9OjR0sknnywtX75cWr58udS9e3dp7NixhvXjuR868bLvJYnnv13hPAa2bNkilZeXS//4xz+krKyshnP24MGDuvXj+R8a8bLfJYnnvl3hOgZ27NghtW/fXho+fLi0fft2nzJGeO6HBoNjFgHQ/DdnzpyGMvX19dLMmTOl4uJiKS0tTRo8eLC0bt06n/XMnDkz4HpWrVoljRo1SsrPz5eys7Olvn37SgsWLAhYx++++04aNGiQlJaWJhUXF0t3332335CuWttu1apVMH+auBYv+72yslLKyMiQnn322aD+HokonMfAjBkzpPz8fCk1NVU6+eSTpZdeeslUHXnuOy9e9jvPffucOAbKysp017Np06aGcvv27ZMuuOACKTs7W8rOzpYuuOAC6cCBAwHryHM/NOJl3/P8ty+cx8BFF12kWaasrMywjjz/nRcv+53nvn3hOgbmzJmjWyYQnvvOc0mSJ3MbERERERERERFRgmHOMSIiIiIiIiIiSlgMjhERERERERERUcJicIyIiIiIiIiIiBIWg2NERERERERERJSwGBwjIiIiIiIiIqKExeAYERERERERERElLAbHiIiIiIiIiIgoYTE4RkRERERERERECYvBMSIiIiIiIiIiSlgMjhERERERERERUcJicIyIiIiIiIiIiBLW/wdgpc1sWuOYfgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "def plot_dfo_mooring(mooring_depth):\n", - " \n", - "\n", - " df = pd.DataFrame()\n", - " \n", - " df['Salt'] = ds.sea_water_practical_salinity.data\n", - " df['Temp1'] = ds.sea_water_temperature.data\n", - " df['Temp2'] = ds.TEMPST01.data\n", - " # Get a final temp\n", - " df['Temp'] = np.where(df['Temp1'].isnull(), df['Temp2'], df['Temp1'])\n", - " df['depth'] = ds.depth.data\n", - " df['Time'] = ds.time.data\n", - " \n", - " # Need to figure a better way to capture sensor depths - using this from the filename for now\n", - " df['filename'] = ds.filename.data\n", - " df['file_depth'] = df['filename'].str[-10:-8].astype(int)\n", - "\n", - " df_depth = df[df['file_depth'] == mooring_depth]\n", - "\n", - " x = df_depth.Time\n", - " salt = df_depth.Salt\n", - " temp = df_depth.Temp\n", - " \n", - " \n", - " # try to put labels on the blank shared x axis\n", - " #tcks = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - " #tklbls = [\"2018-01\", \"2018-07\", \"2019-01\", \"2019-07\", \"2020-01\", \"2020-07\", \"2021-01\", \"2021-07\", \"2022-01\", \"2022-01\"]\n", - " \n", - " fig, ax = plt.subplots(2, figsize=(15, 8), sharex=True)\n", - " \n", - " ax[0].plot(x, salt, linewidth=0.05, c='blue')\n", - " ax[0].set_title('Salinity')\n", - " \n", - " ax[1].plot(x, temp, linewidth=0.5, c='orange')\n", - " ax[1].set_title(\"Temperature\")\n", - " \n", - " \n", - " fig.subplots_adjust(hspace=0.5)\n", - " plt.suptitle(\"DFO Mooring Station E01 at depth {} metres\".format(str(mooring_depth)))\n", - " plt.show()\n", - " \n", - "plot_dfo_mooring(75)" - ] - }, - { - "cell_type": "markdown", - "id": "bcd637fe-3419-4774-b53b-bf43a3467e6a", - "metadata": {}, - "source": [ - "### Have a look at the various salinity variables." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "94eddde2-007a-4bfd-b05a-99c65a4d31ef", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAALjCAYAAADX+SjhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUZfb/z8xkJpMy6T1AGhB6EykivSgKNrAXbGv7uq6uurZVLGt31XXtimVtKCooFhBUEBSQ3juEEEJ675OZ5/fH5/fkuXdaJgUI5Lxfr3klM3Pnzr137nmec85zikEIIYhhGIZhGIZhGIZhGIZhGJ8YT/QBMAzDMAzDMAzDMAzDMMzJADvSGIZhGIZhGIZhGIZhGMYP2JHGMAzDMAzDMAzDMAzDMH7AjjSGYRiGYRiGYRiGYRiG8QN2pDEMwzAMwzAMwzAMwzCMH7AjjWEYhmEYhmEYhmEYhmH8gB1pDMMwDMMwDMMwDMMwDOMH7EhjGIZhGIZhGIZhGIZhGD9gRxrDMAzDMAzDMAzDMAzD+AE70hiGYU4CPvjgAzIYDE0Pq9VKCQkJNH78eHr66aepoKDA7TOPPvqo7jPax6uvvqrbtri4mB544AHq06cPBQcHU1hYGI0YMYJee+01stvtfh3juHHjyGAwUHp6Ogkh3N7/7bffmr7/gw8+aNV1aCvLli0jg8FAy5YtOyHfv3PnTrr66qspPT2drFYrxcTE0JAhQ+j222+nioqKpu0+/fRTevnll9v0Xa+//rrH65yVlXXCfgNf96TBYKCsrCzd9nPnzqVBgwaR1WqlpKQkuvPOO6mqqkq3TWVlJf3jH/+gKVOmUGxsLBkMBnr00UdbdFyLFy+mKVOmUFJSEgUGBlJSUhKNGzeOnnnmmVad57XXXkupqam611JTU+naa69tt/099dRTtGDBglbtryPQlvtQyvGXX37Z7LbynuuI7Nixgx599FG3+76lHI9zrKmpoUcffdTj2Cm/v6ioqFX7Tk1N9TomWK1Wv7a95ZZbWvXdx4r2GMMZhmGYjkvAiT4AhmEYxn/ef/996tWrF9ntdiooKKCVK1fSs88+Sy+88AJ9/vnnNGnSJLfPLFq0iMLDw3WvpaWlNf2/a9cumjJlClVVVdHdd99NZ5xxBtXW1tJ3331Hf/vb32jevHn0ww8/UHBwcLPHZ7PZ6ODBg/TLL7/QxIkTde+99957FBYWpnMYHW+GDBlCq1atoj59+hz37964cSONGjWKevfuTY888gilpqZSUVERbd68mebOnUv33HMPhYWFERGMsG3bttGdd97Z6u97/fXXKSYmxs15k5iYSKtWraKMjIw2nE3b8HRPEuHYJJ988gldddVVdOONN9JLL71Ee/bsofvuu4927NhBP/30U9N2xcXF9Pbbb9PAgQPpggsuoHfffbdFx/Lmm2/SrbfeSjNmzKBXX32VoqKi6PDhw/THH3/Ql19+Sffff3/rT1TD/Pnzm37flvLwww/T3/72N91rTz31FM2cOZMuuOCCdji6409HuA9PNDt27KDHHnuMxo0b5+Yo7WjU1NTQY489RkRYNGlP5s+fT/X19brXsrOz6dJLL6ULL7zQbftRo0bRCy+8oHstPj6+XY+prbTHGM4wDMN0XNiRxjAMcxLRr18/Gjp0aNPzGTNm0F133UVnnnkmXXTRRbR37143g+K0006jmJgYj/tzOBw0Y8YMqqiooD///JN69uzZ9N4555xDY8eOpcsuu4z+/ve/05tvvtns8XXr1o1sNhu99957OkdaZWUlzZs3j6688kp65513WnrabcZut5PBYGiKtDsRvPzyy2Q0GmnZsmVks9maXp85cyY98cQTHqP4jgWBgYEn7BpIfN2TRLgv7733XpoyZUrT/TJ+/Hiy2Wx05ZVX0o8//khTp04lIqKUlBQqLS1tiohpqSPt6aefpjFjxrhFN1199dXkdDpbeGbeGTx4cKs/eyo5mxwOBzU2NnaI+5DpGHiSjcWLFxMR0Y033uj2XkRExCl172hlgmEYhjk54NROhmGYk5xu3brRv//9b6qsrKS33nqrRZ+dP38+7dixg+6//36dE01y6aWX0pQpU2jOnDmUl5fn1z6vv/56+vrrr6msrKzptblz5xIR0WWXXebxMytXrqSJEyeSzWaj4OBgOuOMM+j77793227btm10/vnnU2RkJFmtVho0aBB9+OGHum1k2tdHH31Ed999NyUnJ1NgYCDt27fPY2rntddeS6GhobRv3z4655xzKDQ0lLp27Up33323W5RETk4OzZw5k2w2G0VERNCVV15Ja9eu9StFrbi4mMLCwig0NNTj+zI1a9y4cfT999/ToUOHdKlLkscee4yGDx9OUVFRFBYWRkOGDKE5c+boHHGpqam0fft2Wr58edPnZcSLt5Q6f34DmWL866+/0q233koxMTEUHR1NF110EeXm5vo8/5awevVqOnr0KF133XW61y+++GIKDQ2l+fPnN73men1aSnFxsS4STovRqFeTXnvtNRozZgzFxcVRSEgI9e/fn5577jm/0p9dUzvlvfjZZ5/RQw89RElJSRQWFkaTJk2i3bt36z7rmtppMBiourqaPvzww6bzHzduHGVlZVFAQAA9/fTTbt8vU6vnzZvn8fgKCwvJYrHQww8/7Pberl27yGAw0CuvvNK07W233UZ9+vSh0NBQiouLowkTJtCKFSt0n5P32nPPPUf/+te/KC0tjQIDA+nXX3/1eB/u27ePrrvuOurRowcFBwdTcnIyTZ8+nbZu3erxmOvq6ujvf/87JSQkUFBQEI0dO5Y2btzocVtXPv/8cxo5ciSFhIRQaGgonXXWWW6fPXDgAF122WVNKb/x8fE0ceJE2rRpk899r1u3ji677DJKTU2loKAgSk1Npcsvv5wOHTrUtM0HH3xAF198MRHBSexv2vv3339PgwYNosDAQEpLS3OLzJIIIej111+nQYMGUVBQEEVGRtLMmTPpwIEDuu3GjRtH/fr1oxUrVtCIESMoKCiIkpOT6eGHHyaHw0FE+B1jY2OJCOOPPFbXaNf8/Hy6/PLLKTw8nOLj4+n666+n8vJyn+fj7djff/99Sk9PpwkTJrT4896QMvfpp5/SfffdR4mJiRQaGkrTp0+n/Px8qqyspJtuuoliYmIoJiaGrrvuOrdUcn+uq68x3JdMEOHeOe+88ygqKoqsVisNHjyYvvjiC90x1NTU0D333ENpaWlktVopKiqKhg4dSp999lm7XSuGYRjGN+xIYxiGOQU455xzyGQy0W+//eb2nlztlg9pHBERLVmyhIjIZ3rYBRdcQI2NjX7XFbvsssvIZDLplPo5c+bQzJkzPaa2LV++nCZMmEDl5eU0Z84c+uyzz8hms9H06dPp888/b9pu9+7ddMYZZ9D27dvplVdeoa+//pr69OlD1157LT333HNu+33ggQcoOzub3nzzTVq4cCHFxcV5PWa73U7nnXceTZw4kb755hu6/vrr6aWXXqJnn322aZvq6moaP348/frrr/Tss8/SF198QfHx8XTppZf6dV1GjhxJR48epSuvvJKWL19OtbW1Hrd7/fXXadSoUZSQkECrVq1qekiysrLo5ptvpi+++IK+/vpruuiii+ivf/0rPfHEE03bzJ8/n9LT02nw4MFNn9c6n1zx9zeQ3HjjjWQ2m+nTTz+l5557jpYtW0ZXXXWVX9eByP2edL0vt23bRkREAwYM0H3ObDZTr169mt5vD0aOHElfffUVPfroo7R582bdcbiyf/9+uuKKK+ijjz6i7777jm644QZ6/vnn6eabb2719z/44IN06NAhevfdd+ntt9+mvXv30vTp030ex6pVqygoKIjOOeecpt/39ddfp9TUVDrvvPPozTffdPv8q6++SklJSR5T5YiIYmNjadq0afThhx+6ReK9//77ZLFY6MorryQiopKSEiIimj17Nn3//fdNTo9x48Z5HCdeeeUV+uWXX+iFF16gH3/8kXr16uXxGHJzcyk6OpqeeeYZWrRoEb322msUEBBAw4cPd3Muymt34MABevfdd+ndd9+l3NxcGjdunJuzyJWnnnqKLr/8curTpw998cUX9NFHH1FlZSWNHj2aduzY0bTdOeecQ+vXr6fnnnuOlixZQm+88QYNHjxYt0jgiaysLMrMzKSXX36ZFi9eTM8++ywdPXqUTj/99KY6Yueeey499dRTRAQHrfwdzz33XK/7/fnnn+n8888nm81Gc+fOpeeff56++OILev/99922vfnmm+nOO++kSZMm0YIFC+j111+n7du30xlnnEH5+fm6bfPy8uiyyy6jK6+8kr755huaOXMm/etf/2pKJ05MTKRFixYREdENN9zQdKyuTtcZM2ZQz5496auvvqL777+fPv30U7rrrrt8XitPLF26lA4dOkTXX3+9Ryf5b7/9RjabjcxmM/Xp04f+/e9/+5QXVx588EEqKCigDz74gP7973/TsmXL6PLLL6cZM2ZQeHg4ffbZZ/SPf/yDPvroI3rwwQd1n/XnujY3hhN5lolff/2VRo0aRWVlZfTmm2/SN998Q4MGDaJLL71U52D9+9//Tm+88QbdcccdtGjRIvroo4/o4osvpuLi4hZcZYZhGKZNCIZhGKbD8/777wsiEmvXrvW6TXx8vOjdu3fT89mzZwsicnskJyc3bXP22WcLIhJ1dXVe9/vjjz8KIhLPPvusz2McO3as6Nu3rxBCiFmzZomhQ4cKIYTYvn27ICKxbNkysXbtWkFE4v3332/63IgRI0RcXJyorKxseq2xsVH069dPdOnSRTidTiGEEJdddpkIDAwU2dnZuu+dOnWqCA4OFmVlZUIIIX799VdBRGLMmDFuxyjf+/XXX5temzVrliAi8cUXX+i2Peecc0RmZmbT89dee00Qkfjxxx912918881u5+SJuro6ccEFFzT9DiaTSQwePFg89NBDoqCgQLftueeeK1JSUnzuTwghHA6HsNvt4vHHHxfR0dFN10oIIfr27SvGjh3r9pmDBw+2+jeQ9+Ftt92m2+dzzz0niEgcPXrU5/F6uyeJSGRkZDRt9+STT3rd35QpU0TPnj097r+wsFAQkZg9e7bP49Cyb98+0a9fv6bjCAoKEhMnThSvvvqqaGho8Po5ee3/97//CZPJJEpKSpremzVrltvvl5KSImbNmtX0XN6L55xzjm67L774QhCRWLVqlc/9hYSE6Pbnut/58+c3vXbkyBEREBAgHnvsMe8XQgjx7bffCiISP/30U9NrjY2NIikpScyYMcPr5xobG4XdbhcTJ04UF154YdPr8l7LyMhwu5ae7kNP+21oaBA9evQQd911l9s5DhkyRHfPZ2VlCbPZLG688cam1+Q9J8nOzhYBAQHir3/9q+67KisrRUJCgrjkkkuEEEIUFRUJIhIvv/yy1+Pzl8bGRlFVVSVCQkLEf/7zn6bX582b5zYe+WL48OEiKSlJ1NbWNr1WUVEhoqKidOe4atUqQUTi3//+t+7zhw8fFkFBQeIf//hH02tjx44VRCS++eYb3bZ/+ctfhNFoFIcOHRJC+JYteY2fe+453eu33XabsFqtut/IHy699FJhMplETk6O23u33XabeO+998Ty5cvFggULxJVXXimISFx11VXN7lfeN9OnT9e9fueddwoiEnfccYfu9QsuuEBERUU1PW/JdfU2hvuSiV69eonBgwcLu92ue33atGkiMTFROBwOIYQQ/fr1ExdccEGz58swDMMcOzgijWEY5hRBeKmxtXTpUlq7dm3T44cffmjVfluSPnf99dfTunXraOvWrTRnzhzKyMigMWPGuG1XXV1Na9asoZkzZ+pSHk0mE1199dWUk5PTFIkiGxh07dpVt49rr72Wampq3Fb8Z8yY4ffxGgwGmj59uu61AQMG6FKxli9fTjabjc4++2zddpdffrlf3xEYGNiUSvvSSy/RZZddRoWFhfTkk09S7969PUbceOKXX36hSZMmUXh4OJlMJjKbzfTII49QcXGxx+6tzdGS30By3nnn6Z7LyDHt9fKF6z25du1ajx0ovd1z7dmhMCMjgzZv3kzLly+nxx57jCZNmkRr166l22+/nUaOHEl1dXVN227cuJHOO+88io6Obrr211xzDTkcDtqzZ0+rvr+t19KVcePG0cCBA+m1115reu3NN98kg8FAN910k8/PTp06lRISEnQRTosXL6bc3Fy6/vrrddu++eabNGTIELJarRQQEEBms5l+/vln2rlzp9t+zzvvPDKbzc0ee2NjIz311FPUp08fslgsFBAQQBaLhfbu3etxv1dccYXuXkhJSaEzzjijKU3OE4sXL6bGxka65pprdBGRVquVxo4d2xRRFxUVRRkZGfT888/Tiy++SBs3bvS7Zl5VVRXdd9991L17dwoICKCAgAAKDQ2l6upqj+fhD9XV1bR27Vq66KKLdJ0sZeSolu+++44MBgNdddVVunNMSEiggQMHukUN2mw2t/vwiiuuIKfT6THK2Rue7uW6uroWjUslJSW0YMECOvvssyk5Odnt/ddee42uu+46GjNmDJ1//vn08ccf0+23304ff/yx32m906ZN0z3v3bs3EZFbNGDv3r2ppKSkKb2zpdfVF64ysW/fPtq1a1dT1Kd2/+eccw4dPXq0aRweNmwY/fjjj3T//ffTsmXLvEY3MwzDMMcOdqQxDMOcAlRXV1NxcTElJSW5vTdw4EAaOnRo00ObLtetWzciIjp48KDXfWdlZRERuTmwfDFmzBjq0aMHvfXWW/TRRx95TdEpLS0lIYTHGlXyXGS6irdaVq7bSbzVvfJEcHCwzjglguNL60QpLi722Bmupd3ievfuTXfeeSd9/PHHlJ2dTS+++CIVFxd7rE3lyp9//klTpkwhIqJ33nmHfv/9d1q7di099NBDREStMqha8htIoqOjdc9lkWx/v9/1nhw6dCj169fPbf+eUpVKSkooKirKr+/xF6PRSGPGjKFHHnmEvv32W8rNzaVLL72U1q9fT++99x4RoYvg6NGj6ciRI/Sf//yHVqxYQWvXrm1yWLXWmG3rtfTEHXfcQT///DPt3r2b7HY7vfPOOzRz5kxKSEjw+bmAgAC6+uqraf78+U3pix988AElJibSWWed1bTdiy++SLfeeisNHz6cvvrqK1q9ejWtXbuWzj77bI/H7a8s/v3vf6eHH36YLrjgAlq4cCGtWbOG1q5dSwMHDvS4X0/nk5CQ4DPFTabfnX766WQ2m3WPzz//vCn10mAw0M8//0xnnXUWPffcczRkyBCKjY2lO+64gyorK32exxVXXEGvvvoq3XjjjbR48WL6888/ae3atRQbG9vq37W0tJScTqfXc3Y9RyEExcfHu53j6tWrm85R4mkMk/tsSbpge9zLH3/8MdXX13tsMuANmVa+evVqv7Z3HT8sFovP1+U80NLr6gtXmZD35T333OO279tuu42IqGn/r7zyCt133320YMECGj9+PEVFRdEFF1xAe/fu9fv7GYZhmLbBXTsZhmFOAb7//ntyOBw0bty4Fn1u8uTJ9Pbbb9OCBQvo/vvv97jNggULKCAgoMX7vu666+if//wnGQwGmjVrlsdtIiMjyWg00tGjR93ek8XrZXfH6Ohov7aTtGfUkvz+P//80+11f5sweMJgMNBdd91Fjz/+uF91v+bOnUtms5m+++47nePPUzSXv7TkNzhe9O/fn4iItm7dSn369Gl6vbGxkXbt2uV3FGBrCQkJoQceeIA+//zzpt9lwYIFVF1dTV9//TWlpKQ0bdtc4fkTwRVXXEH33XcfvfbaazRixAjKy8uj//u///Prs9dddx09//zzNHfuXLr00kvp22+/pTvvvJNMJlPTNh9//DGNGzeO3njjDd1nvTmY/JXFjz/+mK655pqm2mGSoqIiioiIcNvek+zl5eW5OXS0yHv5yy+/1P2OnkhJSaE5c+YQEdGePXvoiy++oEcffZQaGhq8djEuLy+n7777jmbPnq0bU+vr65tqy7WGyMhIMhgMXs9ZS0xMDBkMBlqxYoXHTpCur7nWTNPu09e1PBbMmTOH4uPj3aLGfCGjpl2bg7Q3Lb2uvnCVCXlfPvDAA3TRRRd5/ExmZiYRYXx67LHH6LHHHqP8/Pym6LTp06fTrl27/D4GhmEYpvVwRBrDMMxJTnZ2Nt1zzz0UHh7e4qLnF154IfXp04eeeeYZj6lpn3/+Of3000904403NhvN4sqsWbNo+vTpdO+993pM0SGCQTB8+HD6+uuvdVELTqeTPv74Y+rSpUtTN9GJEyfSL7/84tYd8n//+x8FBwfTiBEjWnR8LWXs2LFUWVlJP/74o+512ZG0OTw5qojgrKqoqNBFEwYGBnqM4jAYDBQQEKBzatTW1tJHH33ktq23fbjSkt/geDF8+HBKTEx062D45ZdfUlVVlVdDszV4+11kCp78XaThqzWWhRD0zjvvtNuxtARfv6/VaqWbbrqJPvzwQ3rxxRdp0KBBNGrUKL/227t3bxo+fDi9//779Omnn1J9fb1b91SDweDmNNiyZYtbenVL8bTf77//no4cOeJx+88++0yX0n7o0CH6448/fDr9zzrrLAoICKD9+/e7RUXKhyd69uxJ//znP6l///60YcMGn+cghHA7j3fffdetIH5LIrZCQkJo2LBh9PXXX+siZSsrK2nhwoW6badNm0ZCCDpy5IjH85OOau0+vv32W91rn376aVOkZkuPtbWsW7eOtmzZQrNmzaKAAP/X+v/3v/8RER3zOaAl19Xf8VeSmZlJPXr0oM2bN3u9L202m9vn4uPj6dprr6XLL7+cdu/eTTU1Ne1yrgzDMIxvOCKNYRjmJGLbtm1NdVMKCgpoxYoV9P7775PJZKL58+dTbGxsi/ZnMpnoq6++osmTJ9PIkSPp7rvvppEjR1J9fT0tXLiQ3n77bRo7diz9+9//bvGxJiUl+RUp9fTTT9PkyZNp/PjxdM8995DFYqHXX3+dtm3bRp999lmTA2P27Nn03Xff0fjx4+mRRx6hqKgo+uSTT+j777+n5557jsLDw1t8jC1h1qxZ9NJLL9FVV11F//rXv6h79+70448/0uLFi4mo+WiIm266icrKymjGjBnUr18/MplMtGvXLnrppZfIaDTSfffd17Rt//796euvv6Y33niDTjvtNDIajTR06FA699xz6cUXX6QrrriCbrrpJiouLqYXXnjBYyRE//79ae7cufT5559Teno6Wa1WNwNa4u9v0F6sX7/e4+/Vp08fCgsLI5PJRM899xxdffXVdPPNN9Pll19Oe/fupX/84x80efJktzp1P/74I1VXVzdFRO3YsYO+/PJLIkLnxeDgYK/H0rdvX5o4cSJNnTqVMjIyqK6ujtasWUP//ve/KT4+nm644QYiQvSmxWKhyy+/nP7xj39QXV0dvfHGG1RaWtpel6VF9O/fn5YtW0YLFy6kxMREstlsTRErRES33XYbPffcc7R+/Xp69913W7Tv66+/nm6++WbKzc2lM844Q7dfIjgUnnjiCZo9ezaNHTuWdu/eTY8//jilpaVRY2Njq89p2rRp9MEHH1CvXr1owIABtH79enr++eepS5cuHrcvKCigCy+8kP7yl79QeXk5zZ49m6xWKz3wwANevyM1NZUef/xxeuihh+jAgQN09tlnU2RkJOXn59Off/7ZFO2zZcsWuv322+niiy+mHj16kMVioV9++YW2bNniNXqXiCgsLIzGjBlDzz//PMXExFBqaiotX76c5syZ4xZVJ9OZ3377bbLZbGS1WiktLc1rFNgTTzxBZ599Nk2ePJnuvvtucjgc9Oyzz1JISIgu2m3UqFF000030XXXXUfr1q2jMWPGUEhICB09epRWrlxJ/fv3p1tvvbVp++joaLr11lspOzubevbsST/88AO98847dOuttzal/9tsNkpJSaFvvvmGJk6cSFFRUU3n117I6D8pc658+umn9PXXX9O5555LKSkpVFZWRvPmzaO5c+fStddeSwMHDmy3Y/FES66rtzHcF2+99RZNnTqVzjrrLLr22mspOTmZSkpKaOfOnbRhwwaaN28eEWGhYdq0aTRgwACKjIyknTt30kcffUQjR470OdYxDMMw7ciJ6XHAMAzDtATZLVE+LBaLiIuLE2PHjhVPPfWUW9dHIVQntcLCwmb3X1RUJO6//37Rq1cvYbVaRWhoqBg2bFiznQu1aLt2esNT104hhFixYoWYMGGCCAkJEUFBQWLEiBFi4cKFbp/funWrmD59uggPDxcWi0UMHDjQbV+yM9u8efPcPu+ta2dISIjbtq7d/oRAx7+LLrpIhIaGCpvNJmbMmCF++OEHj13vXFm8eLG4/vrrRZ8+fUR4eLgICAgQiYmJ4qKLLtJ1aBRCiJKSEjFz5kwREREhDAaD7jjee+89kZmZKQIDA0V6erp4+umnxZw5cwQRiYMHDzZtl5WVJaZMmSJsNpsgoqYOct66JfrzG3jrHuvpunrCV9dOIhJLlizRbf/pp5+KAQMGCIvFIhISEsQdd9yh6ywqSUlJ8bpP7TXxxFtvvSUuuugikZ6eLoKDg4XFYhEZGRnilltuEYcPH9Ztu3DhQjFw4EBhtVpFcnKyuPfee5u62rreU/527XS9Tz39Pp72t2nTJjFq1CgRHBwsiMhjh9Zx48aJqKgoUVNT4/MauFJeXi6CgoIEEYl33nnH7f36+npxzz33iOTkZGG1WsWQIUPEggUL3I5Tnsvzzz/vtg9P51laWipuuOEGERcXJ4KDg8WZZ54pVqxYIcaOHas7P3ntPvroI3HHHXeI2NhYERgYKEaPHi3WrVun+x5PciyEEAsWLBDjx48XYWFhIjAwUKSkpIiZM2eKpUuXCiGEyM/PF9dee63o1auXCAkJEaGhoWLAgAHipZdeEo2NjT6vX05OjpgxY4aIjIwUNptNnH322WLbtm1u94AQQrz88ssiLS1NmEwmv7r/fvvtt00y0a1bN/HMM894Pcf33ntPDB8+vEmmMzIyxDXXXKO7RnLcXrZsmRg6dKgIDAwUiYmJ4sEHH3TrHrl06VIxePBgERgYKIio6Vy8zTVyvGhOBoUQoqamRoSHh3vstixZtWqVmDhxokhISBBms1kEBweL008/Xbz++utNHS194U3mvI1r3s7Ln+vqbQz3JRNCCLF582ZxySWXiLi4OGE2m0VCQoKYMGGCePPNN5u2uf/++8XQoUNFZGRk0zxw1113iaKiomavAcMwDNM+GITw0uaNYRiGYZhmeeqpp+if//wnZWdne42cYZjjTUFBAaWkpNBf//pXeu6550704TAdlHHjxlFRUZFfNRoZhmEYhgGc2skwDMMwfvLqq68SEVGvXr3IbrfTL7/8Qq+88gpdddVV7ERjOgQ5OTl04MABev7558loNNLf/va3E31IDMMwDMMwpxTsSGMYhmEYPwkODqaXXnqJsrKyqL6+nrp160b33Xcf/fOf/zzRh8YwRISi9o8//jilpqbSJ5984rXRB8MwDMMwDNM6OLWTYRiGYRiGYRiGYRiGYfzAd4sxhmEYhmEYhmEYhmEYhmGIiB1pDMMwDMMwDMMwDMMwDOMX7EhjGIZhGIZhGIZhGIZhGD9gRxrDMAzDMAzDMAzDMAzD+AE70hiGYRiGYRiGYRiGYRjGD9iRxjAMwzAMwzAMwzAMwzB+wI40hmEYhmEYhmEYhmEYhvEDdqQxDMMwDMMwDMMwDMMwjB+wI41hGIZhGIZhGIZhGIZh/IAdaQzDMAzDMAzDMAzDMAzjB+xIYxiGYRiGYRiGYRiGYRg/YEcawzAMwzAMwzAMwzAMw/gBO9IYhmEYhmEYhmEYhmEYxg/YkcYwDMMwDMMwDMMwDMMwfsCONIZhGIZhGIZhGIZhGIbxA3akMQzDMAzDMAzDMAzDMIwfsCONYRiGYRiGYRiGYRiGYfyAHWkMwzAMwzAMwzAMwzAM4wfsSGMYhmEYhmEYhmEYhmEYP2BHGsMwDMMwDMMwDMMwDMP4ATvSGIZhGIZhGIZhGIZhGMYP2JHGMAzDMAzDMAzDMAzDMH7AjjSGYRiGYRiGYRiGYRiG8QN2pDEMwzAMwzAMwzAMwzCMH7AjjWEYhmEYhmEYhmEYhmH8gB1pDMMwDMMwDMMwDMMwDOMH7EhjGIZhGIZhGIZhGIZhGD9gRxrDMAzDMAzDMAzDMAzD+AE70hiGYRiGYRiGYRiGYRjGD9iRxjAMwzAMwzAMwzAMwzB+wI40hmEYhmEYhmEYhmEYhvEDdqQxDMMwDMMwDMMwDMMwjB+wI41hGIZhGIZhGIZhGIZh/IAdaQzDMAzDMAzDMAzDMAzjB+xIYxiGYRiGYRiGYRiGYRg/YEcawzAMwzAMwzAMwzAMw/gBO9IYhmEYhmEYhmEYhmEYxg/YkcYwDMMwDMMwDMMwDMMwfsCONIZhGIZhGIZhGIZhGIbxA3akMQzDMAzDMAzDMAzDMIwfsCONYRiGYRiGYRiGYRiGYfyAHWkMwzAMwzAMwzAMwzAM4wfsSGMYhmEYhmEYhmEYhmEYP2BHGsMwDMMwDMMwDMMwDMP4ATvSGIZhGIZh/OCpp56iBQsWnOjD6FB4uybLli0jg8FAy5YtOybfm5WVRQaDgT744INjsn9/MBgM9OijjzY9b+s5u+5vx44d9Oijj1JWVlabjpNhGIZhmPaFHWkMwzAMwzB+wI40d7xdkyFDhtCqVatoyJAhx/+gThBtPedVq1bRjTfe2PR8x44d9Nhjj7EjjWEYhmE6GAEn+gAYhmEYhmE6Kw6HgxobGykwMPCYfo/dbieDwUABAcdH9QsLC6MRI0Ycl+/qKLT1nDvb9WIYhmGYkxWOSGMYhmEYpsUUFhbSTTfdRF27dqXAwECKjY2lUaNG0dKlS5u2Wbp0KU2cOJHCwsIoODiYRo0aRT///LNuP/v27aPrrruOevToQcHBwZScnEzTp0+nrVu3tuh47r33XgoPDyeHw9H02l//+lcyGAz0/PPPN71WXFxMRqOR/vvf/xIRUV1dHd199900aNAgCg8Pp6ioKBo5ciR98803uv0bDAaqrq6mDz/8kAwGAxkMBho3blzT+3l5eXTzzTdTly5dyGKxUFpaGj322GPU2NjYtI1MR3zuuefoX//6F6WlpVFgYCD9+uuvfp1jamoqTZs2jebPn08DBgwgq9VK6enp9Morr+i2kymGH330Ed19992UnJxMgYGBtG/fPiosLKTbbruN+vTpQ6GhoRQXF0cTJkygFStWuH1ffX09Pf7449S7d2+yWq0UHR1N48ePpz/++KPZa+ItzXHNmjU0ffp0io6OJqvVShkZGXTnnXc2vd9e94M33njjDRo4cCCFhoaSzWajXr160YMPPtj0fkuujyuezvnaa6+l0NBQ2rdvH51zzjkUGhpKXbt2pbvvvpvq6+t1n9emdn7wwQd08cUXExHR+PHjm67vBx98QE888QQFBATQ4cOH3Y7h+uuvp+joaKqrq2vF1WEYhmEYxh84Io1hGIZhmBZz9dVX04YNG+jJJ5+knj17UllZGW3YsIGKi4uJiOjjjz+ma665hs4//3z68MMPyWw201tvvUVnnXUWLV68mCZOnEhERLm5uRQdHU3PPPMMxcbGUklJCX344Yc0fPhw2rhxI2VmZvp1PJMmTaIXXniB/vzzTxo5ciQRwZEXFBRES5YsoXvvvZeIiH7++WcSQtCkSZOICM6ikpISuueeeyg5OZkaGhpo6dKldNFFF9H7779P11xzDREh7W7ChAk0fvx4evjhh4kIEUhEcKINGzaMjEYjPfLII5SRkUGrVq2if/3rX5SVlUXvv/++7lhfeeUV6tmzJ73wwgsUFhZGPXr08Pu6b9q0ie6880569NFHKSEhgT755BP629/+Rg0NDXTPPffotn3ggQdo5MiR9Oabb5LRaKS4uDgqLCwkIqLZs2dTQkICVVVV0fz582ncuHH0888/NznCGhsbaerUqbRixQq68847acKECdTY2EirV6+m7OxsOuOMM3xeE08sXryYpk+fTr1796YXX3yRunXrRllZWfTTTz81bdNe94Mn5s6dS7fddhv99a9/pRdeeIGMRiPt27ePduzY0bRNSUmJX9enJdjtdjrvvPPohhtuoLvvvpt+++03euKJJyg8PJweeeQRj58599xz6amnnqIHH3yQXnvttaZ00YyMDBJC0JNPPklvvfUW/etf/9Id+9y5c+n2228nq9Xa4uNkGIZhGMZPBMMwDMMwTAsJDQ0Vd955p8f3qqurRVRUlJg+fbrudYfDIQYOHCiGDRvmdb+NjY2ioaFB9OjRQ9x1111+H091dbWwWCzi8ccfF0IIkZOTI4hI3HfffSIoKEjU1dUJIYT4y1/+IpKSknx+v91uFzfccIMYPHiw7r2QkBAxa9Yst8/cfPPNIjQ0VBw6dEj3+gsvvCCISGzfvl0IIcTBgwcFEYmMjAzR0NDg97lJUlJShMFgEJs2bdK9PnnyZBEWFiaqq6uFEEL8+uuvgojEmDFjmt2nPN+JEyeKCy+8sOn1//3vf4KIxDvvvOPz896uiTyGX3/9tem1jIwMkZGRIWpra5s9Lu3xebof5LV8//33/d7X7bffLiIiIvzeXn6/p+sjhBBEJGbPnt303NM5z5o1SxCR+OKLL3SfPeecc0RmZqbP/c2bN89tf9r9xsXFifr6+qbXnn32WWE0GsXBgwdbdI4MwzAMw7QMTu1kGIZhGKbFDBs2jD744AP617/+RatXrya73d703h9//EElJSU0a9YsamxsbHo4nU46++yzae3atVRdXU1EiHx66qmnqE+fPmSxWCggIIAsFgvt3buXdu7c6ffxBAcH08iRI5tSS5csWUIRERF07733UkNDA61cuZKIEKUmo9Ek8+bNo1GjRlFoaCgFBASQ2WymOXPm+P393333HY0fP56SkpJ05zt16lQiIlq+fLlu+/POO4/MZrPf56alb9++NHDgQN1rV1xxBVVUVNCGDRt0r8+YMcPjPt58800aMmQIWa3WpvP9+eefdef7448/ktVqpeuvv75Vx+nKnj17aP/+/XTDDTf4jJZqr/vBE8OGDaOysjK6/PLL6ZtvvqGioiKP2/lzfVqCwWCg6dOn614bMGAAHTp0qFX7IyL629/+RgUFBTRv3jwiInI6nfTGG2/QueeeS6mpqa3eL8MwDMMwzcOONIZhGIZhWsznn39Os2bNonfffZdGjhxJUVFRdM0111BeXh7l5+cTEdHMmTPJbDbrHs8++ywJIZpS6P7+97/Tww8/TBdccAEtXLiQ1qxZQ2vXrqWBAwdSbW1ti45p0qRJtHr1aqqurqalS5fShAkTKDo6mk477TRaunQpHTx4kA4ePKhzpH399dd0ySWXUHJyMn388ce0atUqWrt2LV1//fV+15nKz8+nhQsXup1r3759iYjcHDaJiYktOi8tCQkJXl+TabW+vufFF1+kW2+9lYYPH05fffUVrV69mtauXUtnn3227noXFhZSUlISGY3toyrKlNIuXbr43K497wdXrr76anrvvffo0KFDNGPGDIqLi6Phw4fTkiVLmrbx9/q0hODgYDfnYWBgYJvqmA0ePJhGjx5Nr732GhHBmZuVlUW33357q/fJMAzDMIx/cI00hmEYhmFaTExMDL388sv08ssvU3Z2Nn377bd0//33U0FBAd11111ERPTf//7XayfC+Ph4IlK11J566ind+0VFRRQREdGiY5o4cSI9/PDD9Ntvv9HPP/9Ms2fPbnr9p59+orS0tKbnko8//pjS0tLo888/J4PB0PS6ayF4X8TExNCAAQPoySef9Ph+UlKS7rn2e1pKXl6e19eio6Ob/Z6PP/6Yxo0bR2+88Ybu9crKSt3z2NhYWrlyJTmdznZxpsXGxhIRUU5Ojs/t2vN+8MR1111H1113HVVXV9Nvv/1Gs2fPpmnTptGePXsoJSXF7+vTEbjjjjvo4osvpg0bNtCrr75KPXv2pMmTJ5/ow2IYhmGYUx6OSGMYhmEYpk1069aNbr/9dpo8eTJt2LCBRo0aRREREbRjxw4aOnSox4fFYiEiOHsCAwN1+/v+++/pyJEjLT6OYcOGUVhYGL388suUl5fX5FSYNGkSbdy4kb744gvq06ePzrFlMBjIYrHonE55eXluXTuJEEXkKSpp2rRptG3bNsrIyPB4rq6OtLawfft22rx5s+61Tz/9lGw2W1NBel94ut5btmyhVatW6V6bOnUq1dXV0QcffOBzf96uiSs9e/akjIwMeu+993w6KdvzfvBFSEgITZ06lR566CFqaGig7du3e/1+T9fneCCPw9v1vfDCC6lbt250991309KlS+m2225rk5OWYRiGYRj/4Ig0hmEYhmFaRHl5OY0fP56uuOIK6tWrF9lsNlq7di0tWrSILrroIgoNDaX//ve/NGvWLCopKaGZM2c2dYzcvHkzFRYWNkX8TJs2jT744APq1asXDRgwgNavX0/PP/98symAnjCZTDR27FhauHAhpaWlUUZGBhERjRo1igIDA+nnn3+mO+64Q/eZadOm0ddff0233XYbzZw5kw4fPkxPPPEEJSYm0t69e3Xb9u/fn5YtW0YLFy6kxMREstlslJmZSY8//jgtWbKEzjjjDLrjjjsoMzOT6urqKCsri3744Qd68803W3U+nkhKSqLzzjuPHn30UUpMTKSPP/6YlixZQs8++ywFBwc3+/lp06bRE088QbNnz6axY8fS7t276fHHH6e0tDRqbGxs2u7yyy+n999/n2655RbavXs3jR8/npxOJ61Zs4Z69+5Nl112mc9r4onXXnuNpk+fTiNGjKC77rqLunXrRtnZ2bR48WL65JNPmo6vve4HV/7yl79QUFAQjRo1ihITEykvL4+efvppCg8Pp9NPP71F1+d40K9fPyIievvtt8lms5HVaqW0tLSmyEOTyUT/93//R/fddx+FhITQtddee1yPj2EYhmE6LSe62wHDMAzDMCcXdXV14pZbbhEDBgwQYWFhIigoSGRmZorZs2c3dY4UQojly5eLc889V0RFRQmz2SySk5PFueeeK+bNm9e0TWlpqbjhhhtEXFycCA4OFmeeeaZYsWKFGDt2rBg7dmyLj+0///mPICLxl7/8Rff65MmTBRGJb7/91u0zzzzzjEhNTRWBgYGid+/e4p133hGzZ88WrmrSpk2bxKhRo0RwcLAgIt3xFRYWijvuuEOkpaUJs9ksoqKixGmnnSYeeughUVVVJYRQnSaff/75Fp+XEOjaee6554ovv/xS9O3bV1gsFpGamipefPFF3Xaye6T2Okvq6+vFPffcI5KTk4XVahVDhgwRCxYsELNmzRIpKSm6bWtra8UjjzwievToISwWi4iOjhYTJkwQf/zxR7PXxFMHSyGEWLVqlZg6daoIDw8XgYGBIiMjQ9eN09/7oTVdOz/88EMxfvx4ER8fLywWi0hKShKXXHKJ2LJlS6uuD/nZtTMkJMTtWDzdX677E0KIl19+WaSlpQmTyeTxfLOysgQRiVtuucXv68AwDMMwTNswCCHECfDfMQzDMAzDMC0gNTWV+vXrR999992JPhSmg/Df//6X7rjjDtq2bVtTcwuGYRiGYY4tnNrJMAzDMAzDMCcRGzdupIMHD9Ljjz9O559/PjvRGIZhGOY4wo40hmEYhmE6NA6Hg3wF0BsMBjKZTMfxiNqXU/38jgfN1S8zGo3t0n20o3DhhRdSXl4ejR49mt58880TfTgMwzAM06ng1E6GYRiGYTo0qampdOjQIa/vjx07lpYtW3b8DqidOdXP71iTlZVFaWlpPreZPXs2Pfroo8fngBiGYRiGOaXhiDSGYRiGYTo0CxcupPr6eq/v22y243g07c+pfn7HmqSkJFq7dm2z2zAMwzAMw7QHHJHGMAzDMAzDMAzDMAzDMH7Q4SLS3njjDXrjjTcoKyuLiIj69u1LjzzyCE2dOtVt25tvvpnefvtteumll+jOO+/0+zucTifl5uaSzWYjg8HQTkfOMAzDMAzDMAzDMAzDnIwIIaiyspKSkpJ81lbtcI60Ll260DPPPEPdu3cnIqIPP/yQzj//fNq4caOuI9GCBQtozZo1rQrVz83Npa5du7bbMTMMwzAMwzAMwzAMwzAnP4cPH6YuXbp4fb/DOdKmT5+ue/7kk0/SG2+8QatXr25ypB05coRuv/12Wrx4MZ177rkt/g5Za+Tw4cMUFhbW9oNmGIZhGIZhGIZhGIZhTloqKiqoa9euzdan7XCONC0Oh4PmzZtH1dXVNHLkSCJCWubVV19N9957ry5CzRf19fW6Ir6VlZVERBQWFsaONIZhGIZhGIZhGIZhGIaIqNkSYN6TPk8gW7dupdDQUAoMDKRbbrmF5s+fT3369CEiomeffZYCAgLojjvu8Ht/Tz/9NIWHhzc9OK2TYRiGYRiGYRiGYRiGaSkdMiItMzOTNm3aRGVlZfTVV1/RrFmzaPny5VRbW0v/+c9/aMOGDS1qEvDAAw/Q3//+96bnMlyPYRiGYRiGYRiGYRiGYfzFIIQQJ/ogmmPSpEmUkZFBvXv3pr///e+67gkOh4OMRiN17dq1qdNnc1RUVFB4eDiVl5dzaifDMAzDMAzDMAxz0lNfT5SbS9StG9GKFUT9+hHFxJzoo2KYkwd/fUUdMrXTFSEE1dfX09VXX01btmyhTZs2NT2SkpLo3nvvpcWLF5/ow2QYhmEYhmGYDk1VVdv3IQRRXV3b98MwTPvy9ttEF19MVFBA9M47RL//7r6Nw0G0cCHR3XdDlhmGaTkdLrXzwQcfpKlTp1LXrl2psrKS5s6dS8uWLaNFixZRdHQ0RUdH67Y3m82UkJBAmZmZJ+iIGYZhGIY5XmzaRLR4MdH11xPFxp7oo2GYk49164gGDyYKD1ev7d5N5I8qLQSRrK6Sk0PUvbvv7RsaiCyW1h8rw3RW8vMxxxlbEPZSUQEnWUEBUXEx0d69RIcPQ+aHDlXblZYSZWdDNisriThBi2FaToeLSMvPz6err76aMjMzaeLEibRmzRpatGgRTZ48+UQfGsMwzWC3EzU2en9fCCKn8/gdD8Mwpx5CEJWUEM2f3377zM3lVXmmc7BmDdGWLUS1tfrXTSb/Pv/DD/grBJxkzZGd3bLjY5jOTm4u0bZtRAsWEO3ZQ1Re7v9nN2yAjNpskPHqasyVP/1EtHGj2s7pJOrRg6hXL6Jvv8Vre/cS1dT41uM9UVrasu290dLvZZgTTYdzpM2ZM4eysrKovr6eCgoKaOnSpT6daFlZWXTnnXcevwNkGMYr+/f7TvWoriZatgyKwcGD7Tf5MgzTebDZiE47jSg5uf32+frrcM4xzKmKdHr9+itqJ9ntRLK0sLdUT4dD/3zFCkSvEMHoralx/8xvv+mddBUVeDBMZ8fPUt504ACcZ1u3Ej3/PNG+fc1/RureX3wBGZ8wgWjlSsyTv/wCvfvIEbW9wwG5DwsjWrKEaPt2ok8/RWTq//7n/6J3dTXR5s3+bdscZWWcLs6cXHQ4RxrDtBZ/VkaZY8u2bb4nQSGghM+bh9/rxhsxeTMMw/hLQwNRezbebmggCg52dxowzKlEURHRu+8SFRYi8mTRItzzR44QPfAAHGtlZfrPlJbq5SI7WznF5Hzuyo4dWCiTvPQSUssYprPjb8TV7t1Iuy4tJVq6FM0DvLFhA/5K2d23D6nXaWlEX35JdP75eP3774lCQ5WDTAiivDw47MLD4VT7z3+QTvr44/7bVEVFynF+6JB/n/GGw4GyDQxzssCONOaU4ZdfTvQRMA0NnleoJTk5UNp37YLT7aefiNauPX7HxzDMyY/djqi09nKmVVZin2Zz++yP8U5eHiIYPLF16/E9ls5GVRWuv8OBuks7dsAI37YNC1rr1uE1LQ4HDGXJH39gHm9shCHuKeWstFT9xnV1+N6FC4/deTHMyYK/DuX+/aFLl5bCKeat7EBZGWS6vh4OtPJyPGJjUfusthYyHBwMB9offyhnl9xnYyNRYCDkOioKTrziYv+dfvX1yunmybHu6pz3RWMjO92Zkwt2pDHtjqdV/bw8op07j20NmramCXI0QtspLfWewlFQgEl9wwZM8I8/TtSzJyvYDHMy4ctRfryw27GC7muVviXs3AlDIyfH/b32+g4GVFV5Nrb270dUlGvdLgmn+7SdmhqigACir74iio/HaxUVKGReWgpjuKBA/xmHAylh8ncpL4dhXFKir5GWl6c+Y7erVNGyMkSn5eYeyzNjmJOD4mL/t928mWjAAKLevb03G1ixArJ1+DBkbf16bDtwIBxw5eVYdDKZ4CQrKEBHTym/BgO2r62Fg62ykujHH6Gj2+3+HafdruoretL/vS2ceMLh4BILzMkFO9KYdsdVESOCInbgwLFVptpaxL4lqyaMZxISUJPBE/v3496oqsLEm5CAGg6+QsGFcHe+eiu6yoXCGebY0xKlmEgfzdKedOnSsk5mvnA6iZKSPDvNeHW8/fFkoH32GYwwb+P7unXH9pg6A3Y75NFiwd/QUDjCcnJg4FdXIxpFu6jocEA3OnoUn4mJwTze0IDfasMGvK+tsbZrF5x2JSWIMDl4EA48hunsVFcjtVribeFgzx4s7tx2G7rrBgZ63q6gADKZmwsZW7cO0WzDh0MnrqggCglR+nFsLNEzz0Amd+zAHBoWhm3k2CuzRPzVqbXR3J6i2FqS7ulwYKxhmJMFdqQx7U5urntBzf/+FwOszOU/FrTVkcaOmLaTkaEUclc++AAFTaOiiCZOxEpbcDAcahLXlaiKCn2XISLP0QxEvg12bw5cbeFVhmGap6XjrD9FkltKejpW0g2G9tlfbS1Rnz7quXYuaEm3NFcaG72PV50NeU3z85UjTVtHa80aGFD79+s/V1CADnSrVx+f4zyVMRhwfSMjEQ0eG4vmP7t3Y46MjESjAK2j0+GAPmcyQRa2b8ffhgZ85uhR91pKjY2IcNu5E/s680yO7GQYItVEQLJ7t/s2tbWoYZicjAWjvn2JrFbIm2tE+IYN2KfTCUdaXR2iTXv1grzHx6OxiMEAZ9zw4fjc+vX4noAAONICAjBXh4RA7x4zxv9zkqmhdXWeF0kOHMDDF/K8Dh9u+WIdc+LxFM3fWWBHGtOuVFVB6dIOpg0NUIKLi/1vr94a2JF2YnE48LsHBUE5d3WAVVSgPsPGjZi0Z80iuvhiPOQku3Sp/ncoKVHdgGQ9Fm+h8XIV3VOKbnk5HG3yHpHG7ZIlzTt3+b5gGEVL5eFYduZtL0daXR1RYqI6N61Dvy11u/bv97/OzKnO0aMYmwMDlX6gHat/+gnvLVyov8cKCohuugmGH3d5bjvR0XAah4fjsX8/IlACAzF322wqPauhAY7PvDxEnBw6hPs5KAh/f/9d1VzT6l8jR6Ipgew6aLFgn7t24X1ewGI6I3Y75haHQ+mxnhZ5KyrgTDrzTESMxcdDVmtqoCtro9gOHiT67jvs12rFQnVoKFH37ni/thZ218iRRGecAblMTlbOPLsdY0Lv3tjH2LFw3iUl+X9eTifGB1k70ZXGRuj9vuZCeR0WLPD/e5mOQ2cuvcCONKZd2bpV1cSQbNuGATYn59gWc25r2mhbHXGdnbw8/PZ9+mBVSU6aDgcmc7sdDtW6OqLTTiPq1w+rZnV1cGjJbbVNIwoL0eHT6cQ+i4q8R4h4inIoK8OjpgZ/v/4arx8+jJX1DRtQL8IXxyo1jWFONoqKvNeSrKvzPIbu2dP+xyELordXamdUlH6RR+vIaUs36LIydsRLSkpUUWpPdXSsVqK4OCyc/PGHMharq2HoJSfD+DxwgKP82kJkJOQmLg4LWtnZeD0jA/LrdCpdqqQEzssNG6C71dUhUsZqxf/y95RRa5KgIMzdBw5A/7NYEHmelYUInL17sd3hwywfTOehrAy67pEjSk/1NIc1NGDhQaZDp6RA783Lg0xpo3bLyhBxVleHz0VEQP4iIvB+ZiYWI4YPJxo/nmjTJjTp2bcPfwsL1WdMJqLp0+FE69LF/2hsmw1jRFaWGk8k5eUYA3bt8l37TM4Jssabt1rL/sKLLscXdqQxTDtw5AgUXNkFSiKVprq6Yxv+2daBlxW6tmG1QqGOikJNh9xcKNpr12Iy/eorbHfJJXCgEUFRGDxYGeAFBaixlp+P5wYD7pnaWijgRUX6e0tLRYWqPdHQgN9z8WKiX3+Fwr54sfqsXGXPymre0Je1X7wZgAxzquJw6BXSsjLIqifn8qpV+jpJ8v9Dh9pfbmS6qDdHWkvrXdbUYF9GI8YtbQ0bOX+1hiNH1FjW2XB1uMpunSUlMNyEUIZVYyPmhWuuwX2za5dyllVXE6WlwZm2bx/SBdvi3OzMyPSvgwcxt5aVobzCgQNEU6ZgLnQ6cf2PHsX78fGYP48exfW3WrFY9sMP+N1278ZfGR0qdby8PKSkbdmCzwQHE/35J/QAGZEmMxgYpjOwezfGrrw8lDrZvh0OLFfq6iAvEoOBaPlyyK3d7r7Q07cvtsnPR2qmxYL3UlKgjzc2ItIsORnyFh0N51d1NdI6u3bFe0IQjRgBh9vMmUi394eYGBxzdTUWQbRUVuK4qqp8p3fL8T4kBOfS0pqYrpkq2uYnzLGHUzsZph2QK8ibNulD96XRVVNzbHPf21qLhyPS2obs/mM0wnGWm4twbtcJcfBg/XO7HZO6jB6LiUGKJxFW3uLjkfZTWIhoBW+pVocPqxW07Gyib74hmjOH6Pvv8ZmDB9X9V14OB59WWfGGdAjY7WzAMZ0DuVre0ED07beQPadTFSt3dT7v3w/F9Ztv1Gv5+ZCzykoYDO2JrCvjzZHWks5oRJBxkwn7q6nRr64ajS0rlqyltPTUamLj7Tp4ilxwTZk/eBDXOTVVzbUyarmujuj004l69MD8YLEoR1xREeYWOVYLwXN1a8nORmRZTAzu9717cV0jIhDVkp+vCn0//zwWngoKcB/X1UGuoqLgGKupwW8RGAjjXBr3dXUwzhMTsc3PP8NwN5ngBC0pUUbz/v2YtztCJ2DGN7yI2Ha+/Rb67NatcDy88QYcza78+qv7wr7DgXExLw8OaUlDA5xgZWWQu/JyfIcQSPFMT4fjOzUVz0NDER1qNGL8TUnBfqVj3WRCCqjNRvTll/7JpsMBWd61C0557ZyXlQUnfVoajtU1cmnzZhyHdLLJxbuWlESorHSvral17Lg69ximPWFHWifheLQTlsq0yYTBVA5kTifSCQICjq0jYv36tnVYO3qUo9LayoEDmNQdDtwHmzbh99emTQ0Zov+MyYRJ8KWX0IAgJgbpnbt2YdK3WIheeAGTc14eVqyKitzvJW0EhMEAJ15tLf7u3w9lXobKl5eroq/NpQnJCX3fPu9pbQxzKrFunYrwLC3FyvSyZTCK8/JU3ULJ++/DuSZXsDdvxmLKokVwvrS340Ou4ntzpLV0HG9sxL6kki+dCbIcwY4drVvh/v33U6selKdC0kSeja3SUr2D7Z138FpeHvZTV6fm6/JyjNnp6TDgHA4YVjk5cO4UF2P8Ly/H6+xIax0JCZCdMWPUolefPtDPwsPxut2O652Xh98nOxsGuhCYc0tKUE/JZMLvc911+jlUCBj6/fphziwqgrMtLg7zcFUV5mQh8Lm8PM/OBKZjUVBwoo/g5CcyEimTBw9CloKDPS+0rFihsjYk0slVVQXdtaoK+m14OBzhlZWQ10OHIK9ESOfs3h0LFETYLjOTaNAgvN7QAKe4pLYWY0JmJr5r2DD9vLdhg+cSOhYLvre8HHKtzRqJjMR+CgpQ2sU1AnXPHuyzoABjfUwM9qON1MvN9a17Hzni7qDr2hV/HQ6iH3/0/lmGaSvsSOskHA/FU6bDlJZiUJUDm81GNHkyBuhj6UhLSmrb/isr9QXyhcB5HIuuc6cqUlE3mYguvxwr0AkJavLt1w8OLS2pqZhEP/sMIerTp2NCX7UKE2RICJSFI0eg5O/aBQP9l1/0k2t1Ne657duhqOzapVbex43D/bF2LQyxsjI4C+rrm4+WkcZjWVn7FTdnmI5MQwPmjKNHlVN740YUgt+yRV+HsLERyrhM3xACjrTiYqRTV1e3rfNlc8fpCZPJczc0bxgMMD7y83E+MuJu3z4YO2vWuK94+0N4OMaPUz2a4/Bh9wWJ/fv1KbJr1+I65OcTvfoqIoVltLrDAadMYiJey8vD71BbC+Nr9Wr8LxfL2JHWOrp1w1w8cSL0sbAwovPPx3tdumCujY8n+vxz/E6RkXAiOxwYCwoK8L7sBnjgAPZjt+M5EXQmWehczp3dukEPyM7G4+238V5wMO6DvXv5Nz0Z4HqxbaOsDA0EfvoJ9752cVfL7t36LtIJCahhKGsS1tZCPo8cweKD0Yj9GI0Yh202pYv366f2060bHj16oGOvdl4yGjH+Sh03MhJRZNpuyXl5GKe1KZp1dXCur1uHiHTpTCsowFidmIjj2LQJEXk//IDPHTyImsVLl2IhpqgItuP+/URTp+L45Pds2qTXOTxdL9e00cJCjFuVlXzftjeeAlY6cyotO9I6Cccr0qqgAANefr5e2P7v/6CItbUhgDeEwKDZlg5rRPpuOA6HCjtmoOhWVsJA1j5KSvBXuzoWH49oMlkP5/BhrBCdfbZ759aEBNRkeOghKAUy1WTOHKzMXXkl9rNtGwZradh++qn6vQ8cQOTIypVQLtauxT2Rng7FJTISTrXDh7Htr7/C6Hc6YUzIOlDakHkiKBp2OxSguXN913hgmFOF+nrIz5EjcGjv3YtuWj/9hBpH2q6LK1ci8koWSHY68dnSUnyuosK7U6u1Cq500MiIUtf5LTQUEXT+Isd4oxGGvkwNPXQIY5ksst4c2vPcvBkGQkyMfl453giBhYf2wNNCgt0O40pG8UmOHHGPtli1CsbUvn1It5HKd1GR+g3T03FfVVTgvlqzBoZYfb1+3D7ZEQL3nawtVF6Oee5YPux2zLfh4ZiHbTZ08zMaMX+azXCoBQXht6quRnpXVhYM6v374SSrqMA+yssxt8qUbyLc68nJkAX5OyUmIiVURqoTQVdsaMB9UlqqZO5k0reOR6ZHR6KldasYPdnZiOYsLYUzq18/OK9dC+OXlekXnENDMc81NOBzMm1eu8gfFASZCgzEwlZoKF4PD8dfgwHOtshIyKXDoZ9/DQai/v0xJshGJF27QnYltbVYVNPadiUlWHiqrcU8sG8f5r5586Cf//knnHfdu2PsLinBdrt3E33yCZ4fPYox5sMPoftHRmI/R4/i2qxcibHG29iwerUaa2QAR309xqX9+3FsK1Z4j6hmvNPY6L4QKu0gOYcR6evjdjY8+MIZpuWUl0MRstuxkpCVpYQtJgZ1T+rrMTg2NkKZas/oHlk3pS0FD+UqisThwITR0OAeZn0yIYSq+6O95tJwMRj0/3t732DA5Gyzef8uOfmnpKhGASEh+O5//9t7owCbDXUZ5OrcddcRzZqF63/55cq4IoIh8M03uN/OPBNh6m++CUWje3fcWw0N+BsfD2MtMBDHERuLiBq7HfdhYSGUlqwsTN7r1yMMXbJzJ96vqoIS9PXXRH/7W/PXnGFOZgICIPNZWVCk8/NVtO6RI+r/wkLI9sGDWDGXDUeEwGcOHIDi72kBxenEeBsT0/Ljk8qyw4F9/PknomzkOGUyqXSRoCDfYxaRGvdMJqUcZmWpc8nKgmPu2mt97+eXX5AWY7dj3Fm/nujii0+sc6CoiGj+fCxiHAvy8uBcDQ3FfZOejtd37YKBNXSo2vbwYYynERGIMujSRe1DRjSlpMBpKQ3HgQMRFbVtG17btAnbOZ34nDY16WQjIAD3XEAA5qj21otciYhALTqrFd/XuzfkNjAQf2trMYdu24b/IyMxh2dk4FobjYhSGTaM6IsvoNPV10PWIiLw12iE4bx0qfpNQ0MRES6/q2tXVSeqrg5zq8MBx11Fhd54d8VuP7bd31tCdjYchJ2FltaeZPTIsapvX+ij5eXKgR4ZifdqaiAj2og0ImxXWko0YYJ6b+NGyBoRSqYsXAhnWFKS+pwcjyVRUZCx+Hh9IxyTCZ8LDMSDCPr899/DfouIgKzv36+PcjtyBLLbtSvkob4ex3XaaRgD+vfHdrGxkOuDB7FAJQTsqs2b8byqCo61zEyca0AA5s3ly3G8a9bg2owe7X5dt25FMwUizBFWK2zN4cPVMZWUQB9ITvbrp2L+P3JRSzpktdTW4veZOvX4H1dHgh1pnYRjHZFWWAgl2WbDgJqVpdJujh6FcjhgABTikhKsRngaEFuLjIJYtYro9ttbv4+dO4kuvBDPGxsxSZzIAvN1de1TiDc4GBPosU5NlIqCbL09ezYcX7ImzvTpnj8XFaWUbiIo+7174z7KzMQK2Y4dcLY1NqrGFXPmEJ1zDibnpUuJbrsNhrPBgHuxe3flgAsIwLGsX68m8IAAfLc0zNesIbr1VnUcDgf2U1QEZeJUT9FiGCIVKSQjqjIyEEkko0mqq+GQttmg3IeHQ6mSTqgjR2B0VVZiXNVGEElnl6yRVFWlVs/9QQi1shwain19+inmk+3bIaeNjVDcd+6EceDLkVZXp45PHpd0oNvtmK927oSDQDqBvCE/X1GBbbduxb5PpCPNZCI666xjs2+HA4bK2rVEF12k1zNMJn0EwOjRuCahoRjr//xT1bEpL4dhSYT38/PhlJEpg+XlmMOEQFSM0YjrGhqq6gExzWM0osyBnMfi4nDP1tTgOlZW4nn37ogCWbQIsj9gAPQ4oxHza2Cg6h5YV4c51OlUUQlWKxyo27djoatLF2yTnIyugA0NMMBsNlXk3OHAGFJc7NuRtnevu5PhRNGZ9AFZt5BpObLsiFw4uPpq1QRg5079OHnkCBzZrnNWfj7kr6gIeiwR/pfzUUgIfqMtW5DhIZE6v5SpgABlLxkMcHgRQTZdG4HJ5i9yfiwtxULGkCGq1nFxMeS+WzeM59HROI6sLNUdmAgO+HnzcB3WrMFxp6fjfPfvV9HltbXY3/79GPPl/PnDD7AzXe1GhwPXS+omDge2f/NNHOP+/divvM4zZzb/ezEKX1G3stkMUeeO9uPUzk7CsXakyRX4DRug+GZmKmPshx8wAUREQLHKyWn/7p1C4PsWL279PmQan8ThgLKnrRHgL3Y7Jp22pmLIRg1RUW17WK0npr5Xly74bWTRU210gpbSUveUz759EZ0QFARlfMcOXNfJk6FA9OkDY6y+Hl2BZDHqVaugLISEYOVcOu9iYrCflStxj8pVtfh45WxzrYcnV85yctRqPZG6t+X9IldqWdFkTgWkY3n7dhjRR44gCsThwNi+cSMMWqnEOhxYHLFaIQv79+P1vn2hXGvnnwMH4CQ5dAhy3NIGMfX1qmCxdNytXw8Hy5o1kNU//sCYsn178+NeVZWqiSajS0pK4FwoLMRcdfAgxpvm5gKLBSkkWVlQ3ocMUU1STiTaKNu24KpHSOMnNxdjsasjLTwcc1hFBaL5IiPhkLFYsFASEoLrXFGhDMKICHxm6VLcS+HhWPEuKMA+g4NVwwGuWdlyLBYVXSD/yjTPrCzIpHS8JiTg2g8ciHnYasVvlpysImcsFvw2tbWQ+7o66HvDhsF4fuABzMdmM+TrtNNwn1RXY9yIjYW8NjYqZ5ovTlQ6pTZ6R3IqdeRtDtn8g2me6mp9+ROTCQ6m9HTMpwMHwkEVHo7/tePmypWeF34MBoyNMmpayopsJGCxQHa7dvVcmF8W75fzscMBeY6NxesyIs2VsWOVg3zXLpxPbi7G/iVL1EJ/VBTmy7g4/N28GTr2zTfj/eHDcf55eZhvt26Fbi67fYaG4h5LTcV5lpcjCtxoJPrPfyBrK1a4Bxb88Yfquk2E83I6oWfMnYvxok8fRIufyBILJyuexlt5v2o7uCcmdl5nGjvSmHbh8GEMoCUliCbq2lWtcMqVj+BgDJYOR/sX8K+thbLWltDz2lq9g+/oUayc5uVhwGiJA6yuDpNkWx1gwcEnt7EgI8OCgrCy7Q1PhURDQ6F8Jycrwz47GxNqjx4oWCw5dAh/y8tVR0FZEyImBr+f7Ay3ahXC4y+9FIr+uHG4J2tq3BVFmdpbUYFzkMbe6tWqGYXTCeWHqHOtUDOnLiNGQGZGj0YUaH09ZGbwYNQsdDigRBcWEn3wAZRx6ZD+/XfIUXk5ZC8hAUq+ZO9edP/8+GMoYS3tBnfwoKopI9PHzWYsouzdC4dedjacarJm24ED6vOuzqAjR9R8VFYGh1BAAGT54EGce2UllH7XWjauBAbimixfjkWlyZNxTVatatk5tidlZTjHnTvbf99bt8L5YrfDuVpersbAESNUmv2WLTDadu3CODt8OPSFggIYZY2Nap6TKT3vvafuj7FjMfbKotSyw7a3rq2Mb2RqpIwCvOgi9Z6M9ktOJjr3XOhEycm45larkp/4eDhGk5Kgd82fj99Npl7GxCAypndvbC8dAT16EE2ahPevvJJo1CjI7d69qs6SJ2RdRBnd7i/euv01J8uu7Njh/trJVM+trTidcCZ2trpw/lBTo68XbDTCcSYfMlNjzBjMhz16qDrCkycrmSovRx3IESPcv6OiAo6pPn0gSxs2YPxNTIQchoRg/omO9l1DsmtXyJ7DoU9zDAz0Hgn6zTc4t4oK3PM2G+Rx40Y1r4wahWNLSYGcn38+5LxnT7xvNmMx5cIL8X9WFo4jMREL1DI6+eabcS4REeq9wECiyy7DPmtq9PdgYaHq6kyk7MvwcBzrypXQ82trocswLUPa71rbRjZeKinBe04nfpfOOh930tPufBzriLTSUig4hYUqn/6nn+BwiIhQCkdyMga57Gy9cdNWSkrUpNVaDhxQRl1jI5wo2kKdLXGA2Wydd1DRkpGhUjZb6hDs0UPdt2PHwqDNyMBvImuZDR8OYzc3Fw6xqioM6MnJmHxlDZoJE2CAybppiYlE11yDybtrV9y/9fX4/bWyYrfjXjUYcDzSANm+Xa/YyxU7Xy26GeZkoLpapTHa7XB4VFRgJf3KK+HcJyJ66y04wwoL4WQOCsIKsuyMS0R0wQWYD+RniLAyvH8/DNOKChjOlZXNR6Zpoz6HD1evL1qE4y0thcNOGvM2G+agujqiZ59V28saWxLZ5YwI88ivv2KcqK3FGFJXB+W+f384yLzhdGK8qavDuR09qtLQjUY4kU4EJSUYt1rqsPQHWS8vOBi/fWGhUrinTFEdXGVR69WrlZFYVIR7iwiNLOS4Gx6uxtOiIlzPhATcf1FRKsLD6eQ5tq3ImqQyKoUIRnlxMeQ2MRHv9e6Na6+dG1NS8DscOqQaTFVVYQ7MyMD2ffqoiBmDgeiOOyBr0lGXkYHvGz0azlbZcdsTBQW4F+rqINf+sm6deyMMIvfoCWmIe+swbLG4N7PqTBEYmzfjd+tMUXjekI4z+TAYYHtEReGvjP5yRS4mx8ZCDiIiMN5JuSoowL3qKf1w2DBEr/XtCzmT9UWTkyFnBQUYh2Nimrf3Ro5UkW2S0FD9PK3lhx+I/vEPjOmPP45xPjcXunNSkmrsI519PXrgPZk2SoRzHT0adY3LyjAWGI3YNiBApegHB2NeSEvDtUlLw+sDB2JhZdEivSNNLlLJc3E44GSMjsY1LivDX7v95K6neaLIycEipdQfyspwz8sGOVVVeO377zvvfNxJT7vzcawdaXV1GKhk1E9QEAyH/HwMnHLQzsiAIRUaqtJz2oOiorZP8hs2KEdIVhYeFgvRb7+1wwEyPklJcX9tyBCl4MfFYTUpOhqrVTYbjMOzz1ZRC0lJmGBLS6Ho9OyJyVmumtfXQ+EYOlQVdu7ZE/flxo2qboRWVioqcG/V12N1rV8/3OsFBcrYs9tVwXR2pDEnG/X1+g68JhMM6O3bcT8PGQLnx7nnIjVDKx9GI6JZzGY4mtLTVQRpSAhSu4cMUcY0EZSyLVtQcy0wEDK2c6fv+aCiAg6vkhJ8VjrnKyog70Lg+6xWOLsKCtCsZMsWOPu2blVGuGtkSU2Nisyprladz3buVOlukydjLJGr3Z4iUWS6TEMDPicVz6wsfP+J6ngna1e1d4H2ykrs0+nEvG63wwisr8f3SYfJvn1wkgqBeysqCvNqcDCikDZvRhqndGampan6O7I7ndUKI27aNOgXBgO+42SO1u4ISMNy4ED8dThg/NbXI2K7Z0808YiPx8JTZKSqiVNYiHvcZsO9XVSE1woL8bvI+81qhUFsNOIRGorvk4ueZ52F+2flShhtH37ouS5tVRXuubVrYbR5wzUrwVspEYdD72CTzt66Os+p2OvWuZcOac/F4I6Op+7InQVZu08+iPQRZ94cZ95wresor6ucVzxFpIWHq8/ZbCpSOiEBz2VKY3y83jHuCaNRLTr5Q2Eh5tkZM+DIKy4meuUVzPcBAcohmJmJ8WHyZDzX1j61WHCdiorw/TIVc8wYON0mTMC5JCTAHjjtNIw/cozv2lWVViFSUXdyHNE60urqoJNXVKh6bYWFWPhh/Ec24Fu6VL22fTuu49GjKjhhxw5Vb7Mzwo40pl1wOKBI19ejDtXpp0PJKCqC8yE4WBWo/flnlQLZXhQVYf9tcWSUlSnFsroaypRcsc3ObvMhMj4YM8b9tYAAhHNLevTQp1cSwbm2fTv+14a05+djgLdY1G8YFYXP9uqlHF+9esFpIFdZEhP1dRR274YCn5EBpcBiIXrkEXzPZ5/hPrHb4ZzLy+MaDEzHx+HQGwUNDcogkPUUw8KwyiyLuZ9xBpTaoUP1yrHTibF9yBCkPnbrBkeaxYLtY2OhXEnFXjpaDh6Ek62gANFpL78MRddbSspPP6Ej2erViF6S+wsPh7LcvTuO1+nE+fXrhzmof38Y6JGRKvpt+XJV14MIqahSqV+zBotBViteDw+HAdGli0pDOXTIe9TK3r0YL6ThHhyM8UEWYHb9HVqSotZaDAZ8j7dog9ZSU4M02KIiZUh+9x3G2w8+UGm32dnKkTlgAAylpCS8bzSq6CKZ2mO1qv2lpan0/BEjYKjJCI5t2zrvCnh7IQ1zef8fOoR7PToa15oIkWkJCfgNLBbVJbBbN3SwDgqCQV5ejvnSkxMsNlZFEZpMmMtlvdTkZMzD5eV4f/9+dAT15LSRtfMqKrw7dVxrKGnnZBlFTgT9U+p5WhobMca4yqvZDJ1Wu4/2jPLs6JFejY0tdxidrLg6zoTQO87aeywlUo7oqCjPHRJDQlRnz4gIzDNjxijnRWMj7qG4OP8ir0wm/xdXLroIi9ZWK8YCWfMtIgJOlKlTMd+OGwddefBg79GaTicyTOS5hIcrvWHSJLwWFwfZ1HYxDg7Ga+ecg+dS9uQCjNwuLw+/V0wMHGg7duCzsps24z8NDbjmsvSF7LQqKS/H771kCdEVV5yYY+wIdDg15I033qABAwZQWFgYhYWF0ciRI+nHH39sev/RRx+lXr16UUhICEVGRtKkSZNozZo1J/CITw6O9UqSwwElQ0bnhIZCCH//XeXIJyVhgqqrwwq1VOJyc9v23bII6rBh7q2eW4LsbEmEASIvD4bYyJEq+og5NnhSTAICEM1IhPv3tNNgOEknGBF+m6NHMXF366aU35AQ9+YFMTHYp4x2IEKEWkYGFIKCAvyV9daI4JD7+WfcD1K5WbsWhvuKFSoaJicHRqX2s544VWqq2O2+63AwHQch9I1PKitVCopMf3BFrh5Lp1mXLsox3auXqnu0cSOcS/37Y5/nn4/PXH45HB/JydiPxQLnWU0Nvm/LFhjTVVWYN+rqkKLhbZw9cAARYkJg7pAy3LUrnHwpKdhfQQEilyZNgpGQng7joksXpWgLoY8kKS9XEW67d2PcDwvDuLJ1K8admBich9EIpdJTLU4hIBN2O5RPWchZFsWXKWtyLpa1w44HGRnt393S4VANYOSYvGePWriQ0YalpXCCCoHfQRp5TicKS8vrIaMCidRrkZEq4iAkBM6XIUNwPfft67wr4O2NTDnr3h33SXq6krHYWMh0UZG+hpLBALlJSoIDID3dd52cgADlALdaleOUCNGjffrgnkpMhAzu3q3/vEzZkveMt/ln7lz98/p6zLtFRUSffKJel85wOebIe8nhwJjhutAbHo4xRb5eUtK+hnl7N+BqbxobMc6eilFpdXV6x5nTeewdZ1qMRtWpODHRc0CA1ra59FJlb2nHTenc8oeQEP/HzwceUCmWJhNk1WLB2N6rFyJMZT3UsDBcr3HjPO9r2DCkeMrGBnLskU1MiFR30tNOU3p3XJxqHEakHNrFxRhbZKRsTQ0W188/H7qO3NZsxvVydbQz3qmogJ1jMGB8amjAc1kjTdZF/f57zzUkOwsdzpHWpUsXeuaZZ2jdunW0bt06mjBhAp1//vm0/f+HnfTs2ZNeffVV2rp1K61cuZJSU1NpypQpVKhdJmLcONaTX2MjBnbZljwgAJFpS5aobZxOTFhxcUrZEkINdq2lthaC3rMnVrxbi8mkJqWVK2H4jBhBdPHF7k4Z5tgTEKAmeqcTyrd0dEoaGhDxcPrp+tDi6Ghl0ElkAWS5oiUZOhQKwOHDUGK0nTfr6pDS8eef6jVZB6i4GH8rKhAdIcPIfXEsVp1PhGJbUMCrex2ZykplFJSWQrmV9RsjIppXoKXRKB2/XbtCOTYaMUaefTacVaNG4bnFAqM6Olp157v2Wnxvt244hrw8pPFddBHkuWtXOKCjorDf3FzcV9nZ7lEt+/erIubBwSpV1OEgOu88OLnkgk1hIb7XYICSnpkJB05REZTB2Fg4wyVff61W5nftwvEKocaWwEDlUExIwOuffur5ujU2qtTPlBTsVxaAXrRInQsRrkF7G8+eIuWWL8d1aK+0Frk6Leu/1dfj9w0KglFVVaUKFOflqd+eCL/bmWdibE5MhAEmG1FIZ6Zk2jR3543JRHTDDfhf26mNaR/GjcM8mpnp7hA77TTV6ZoIv2GXLsogDgrC/e6tQ6zRqJyorqlnMTGQlx9/hBO+pobonXf0zrJNm+BsT0lRxa098dVX+ueJiRh3ysr0DvRNm+Ccb2zUR6XJVDDt/CbrRe7fr+okrl2L19prTvcUydeRMJlOHXlzdZw5HHrHmdY5dTwwGFRjK7n44oqMECWCrDkcWECWWCxE993nf5RZ795wSvt7fNptIyPx+cGDMaZHREC26+vdo1xdkamncoEkNha6RGioinY1GjE3RkfrdRXtwktNDeaAr75S3UyJEBXetSuul9UKOzQgQHUTbc+SQqcqUu/LzYV9bbOpyN5165QuU1ODxRft794Z6XCOtOnTp9M555xDPXv2pJ49e9KTTz5JoaGhtPr/952/4ooraNKkSZSenk59+/alF198kSoqKmjL8VraPUk5Vsa23Y7BPz8fjiepVAUG4v/ycvXdTicGM1nwXXY9bMvAVloK48fpRJizdrJpCbL1umTfPqyuh4aiYHZnHiROFNrGEREReLg2k5CdUY1GhIvLFNy0NM8rc+Hh+tfl/RgRgckgJER/PwqBe1yudhFh8sjIUA7W3FxM1GvWNO9IOxb+fmmYH09OxVXpk5m6OtUxrLgYSrU2XbOlBpDVqrqBEWEfISHKWB48GNGgAwZAwerRQynbGzYop5aM4tq5E8fwwgtEt92GfZ11FmSnogLb1NZChvbvh8GrjfrKzYURL2ttSmNBGh4DB0Kx79YN+5FdIJOSUBx54ECsnhYU4JrIZgfyGKUDqqFBdZw2GnFsMiKNSK28v/SS+zUTQtVPLCiAMzM4GI6FgABV7ysvD8eXnd3+cuTJuSAL+nuq+9Qa5HjT2IjrI8dGec+Ul+Mhf4ctW3BfREWpIvQREbjGAQFwcsTF6Rc+goJUBJM2naxLF/zG+/fjXuDUzvZFOjUTEtyd7UFB+lqmZjPm0/p6/L6ZmdCXWhupPGAAZDI8HPrkmjVEH32E92QTg5wc3BPp6e5NQ4hwj+/Yoe/IKTuouyau5OUpJ3BpqaqRJlOutU7pujqcX79+SPskgn7orf5aa9Cmm3dEgoPxm5+MUaDaOqDFxRiXTqTjzBWHA9fVbofsNTdWWyxqYVhSUOC+0OyLgAA1T/uD1kEXFobvDgxERLjBoM/o8YVssuB6LESowWazYWzXdonUflZ29m1owG+5ZQtk02DA/JedjWsRFoY5qaZG1Xb87bdTJyvkWCLtKKcTeqVcXCTCvZqZiefFxUrH7OgLAceSDq2GOBwOmjt3LlVXV9PIkSPd3m9oaKC3336bwsPDaaCsluqB+vp6qqio0D2Y9mHrVhgIdjseUthkxxUivbEgVyTj49WqUFtCbYuLsTJYW6vy91vjmCspwQBhs0FpW7kSA25CAhRI7vZyYrFYoKS7/g7SmEpJwT0li7T26OG+razzokU6SGU32fR0vSEgW31ro9ROOw3FVM1mfL9sdGAw6NNRtKkhsqhxaWn7pwmfCKdWbS07004kjY2qOYAcu7TpmlrHb2ux25GCoUXWTDvrLJVKHxWlDGyjUV8sXtKzJwxTmdr55JP43MyZeD0sDN0yDx9GDaStW1VXz/Jy1WzAYIADTxr8RDjXAQMglykpqNcSGopjOfNMpJ3K1eigIHxvZiaU8awsvCbls6ICK649e6qGJETqr+wmFhjoXjezvBzvySLsQUE4JqsVirzJhPMvKlIRLloDXktrZctT3VEZSdBeBoSM1KmvV+ny3brBkGpogBEoa++VliKaV0YmGgzY3mbD/4GBWAi78kr9dyQnY0w1GpUjkAjXMi4O16c9a6wyzSPLIsiUzIAAPJKSMB4MGIDfubUGlZSr6GjMo1u34vcuLkY0pcOBCFjZhGj3bv3CVWEhXqusVBETRJBpaRBWVqraSvHxOH6HA1EtMrKspATfq12bz8tTEZeyFMmhQ5Dp9nKkbd7cPvs5VvTv797psaPS0KDmRtc6oNHR+jqfHQEZxWu34z5rLiDAYlGNgCQyiOFYodWnhw3TR6cSYaz2JxrONfLYdR8ysl3bWEBLba2KJJVz8E03Ya7Ztk01nYuLw5wUEoJxyWyGfdDWDKjORG0txr7AQPw1GJDBs38/rrHZDNl68kl9Q6nORod0pG3dupVCQ0MpMDCQbrnlFpo/fz71kTmDRPTdd99RaGgoWa1Weumll2jJkiUU42oha3j66acpPDy86dFVW5yhk3CsJj+5ordnj34Q7doVk25QkD70XRo4gYFEf/yhBsO9e1t/DIGBMFAiItRqvz9oQ/f37MFxSkNg3z4ohjKyoyUrPcyxQUbHaDEY0O2na1dM9A8/jNddIxyIcO95i8yRv7/ZrHeaEcGo7tJFPT/9dFVEPDcXq1yy+6e2C5i2yHF1NZ47nUTffIPXDh9uHyVc1l46nhw96t+Ywl1M2wfpOJAr6lVValyS0WLtzcyZnqM6pTPjtNMwPmqV+ZQUld6vJTkZjqtp0zD+n3UWjnnkSDh6cnKU/G3YQPTWW6ivWV4OJe3IEXzX4cOQYekodDjwPC0Nn+3SRRVD1jY5iImB4RsWBkX6mmugqK9eDUNbzhnJyYiaCg7Ga+np+oiojAwc0//9H6JmtBQU4Hfauxf/19ZiDAoKwlwSFYWufxYLzvWLL7CtJ0faqlX+/UauuB4TkTr+9jK0ZKSOHL9yc3H9zzsP57l9O34fg0GNt7ImVpcuuA7SmIqJwbjuWqfPYMA429jofg8mJuq7QjLHB/lbSvnu00c5UlNTia66CsZ1ayPSevTAPkeMQJRLTAwM5t9/RyORzZvx2+/ZAznbvFmlGRNBB9y1C/eYNvI7LAzHlJ+PxdvcXDjJzGa81tiI9G5Z3zQnB+PrZ5+p1w4cUJGv8joIgX1py5e0BU/jQEfCbD7xkVvekNFJ8lFfr+ZGb3VAOxLx8ZiHCgvRFbO5rptyEULrEGxLWRt/0C5oGI2e5/mEhLZ9h/Z8vNV6Ky3FHF5aioCHUaPwvWlpqsyP2Qy5j4vDnB0UBOef09l+kdmdgexsjIdWKxYdt23DfC0bBe3ahbE/Pb3jjg3Hgw7pSMvMzKRNmzbR6tWr6dZbb6VZs2bRDk0lu/Hjx9OmTZvojz/+oLPPPpsuueQSKvDRPueBBx6g8vLypsfhw4ePx2l0KI6VI622FoP/gQNYrZORArJeVW2tPvVMhtomJUFBys7G819/dXdg+IvNBoUrKgoDsb+d0LSF4Q8ehOImnWvJyZjQiFTNH+bE42k1KzRUTbrBwWqQb0k6W10dnENhYZigpRPMbIajQHYVdTpVtEpSEu6bkBAc18UX6yeT+np91MTy5SoKpqEBcrF1a0vOvmMhhOfwey0nwsl3qlBRoVbVS0tV4fWWFBRuC3L880ZiIpRUrYPGW3pHt24wWGWEW0yMqofSvTtkWDYTMZsxJ8jU+iNHoDgLAaO1a1flRBFCpfeZzXrnisGgVtFtNjh+DAbVBCEigmj9en26eJ8+eC6dO/36qWLIkpoanKOnOoGytpqcC2WDhowMNEHYvBnOu2XLEHHnbdHHkyPNl4NCvrd7t/tcL597W+FvKTKitrwcTpSuXXFd+/TBOPjjj7iGQsDAiY5GnRqTCddV/l6yhlxior4TGJGK9B061N1AlDX52JF2fJELUzK1T45BISH4LQ0G/M7+1l3yxKRJ+J6LLsL+DxzAnFlZCbkqLMT7w4fjvaws3I8HD+KxeTO21y5oJSfj2IqKcN9UVhK9/TbGFbMZKZ8bN2J+LinB3B8YqCIsiaAfyBq6FgvuzcOHkXXRXg4w2cCloyKdN/4gxLGNXLPb3R1n2oizju44cyUsDHPRunX+p6ufdtqxPSZX/EnpbWukn3bRylvjOCGUE2/9ejgd09KgIzU0QP7798f7p5+O/WRkYO4JD8f7jG+0aZyytmVBAdLpN2yAjFVX473gYOhE2sCBzkaHdKRZLBbq3r07DR06lJ5++mkaOHAg/ec//2l6PyQkhLp3704jRoygOXPmUEBAAM2ZM8fr/gIDA5u6gMoH03aqq1UL8SlTEGUgjRKjUYX+y3oVcnJNTVXFpletgrAePty8UU7kuWByaakSaqOxdQNlYyOUeTmA9Ouncv+ZjoHJ5J+CJJ1prhFpvpDpHF26YJVl3TrcU1FRuF/l9xqNMOwCAnC/lJQo5bJXL/2953Tq0zi/+gr376ZNMEJzcuAAbisnonumwYDv9TR5HosotM7QIbSmRjnOSkpUGqJ8dMSxKCDAPV3akwM7MhKO48mT8TwkBK/17IkotREjkM6yfTsM27Iyovffh/wkJuKvzaYag0i0Tq7ISH3UqjYiKj6e6MsvMcdoq0DI45dB6jJtVdY2mzjR3XhMSsL+Cgr0Dq+8PESYjRwJ5f2MMzBepKdjv6NHqyLpH37ou+mD1oCX+OoILB32RqP3BSmtkdIWZK2phgZcgwED4KRLSMC5d++uxoeEBPwmMTG4plrVKzUVY67Z7D5mmEz4bHKy5yiHY22oM+54W0y02dTvKp2rreX66+Fg794dcp+cjH3+8gscVjLSNDxcOXDz8nCvSUf5qFFq8dZuV0606mrchx9/jMiKsDDI8caN2PaPP+AELinBuLJ3r7rHcnMxZkkds6IC++zf393gb+3iUUd3/kgHj7b+nDdKStp3Ec3VcVZbe3I7zjxRW4v72986urKj/amKt6i82lrIrewc37MnZNxgwOJUYKBaZJF6k0w7lI50X/gbiNFeHO/vawlOJ+b5qCjItMwKsFoxlk6ciPFApuB3VjqkI80VIQTV+whXau595tgonUePQomprcVKRGqqPo2zRw8YSNqV40mTYEDExmLSWL8e4fUOh/vqvOuEXVLieZKpq4PyRNR6Y9PhUMbL1q0wtuLi2ra6yrQvsv22K1oDMSkJXb9k+rC/hIRg0ggLwwQta4AlJhKNH6/ackdFqRD38HA8ZMHWuDj9JF1a6l4wvawM95rDgXt//nz/j9EbsnX68cRgwPXx5DTTRuG1V2dPf5T3kw1X44BI7zg7GSJuwsLcU649OdKsVhjI0hiTTQtkdFn//nBcrV6t6osRYSw2m9HwJSUF+9HOAdrx3mzW1+mQdRW1OJ36cUF295SdIUNDsZ/UVMi2Np1FMnw4xoOsLFUviQiGen4+HD9ax7uM3Bk+HLKRmIhxIiTEvYOoRMqN1jHvqzuglMPAQPWZY6WgyxR1WSA7LQ3XY9AgjL91dTBoDh3CnH755Spd1hWbDc5VbWdOIlWPS467rsg0XqZjIB1pkZH6+oUtxWrF5y0WyE1aGtGDD2JMkE1JKirw+//xhxoLZOHr+nrM13LslM7n7Gw45CIj4SBbvhz3aWioqtFbXQ0Hm9kMp762TpWMUDUYMBcVFqKuX0aGey3W1ujaMnrTG5WVJ75Iupzz/VmobuvCV2OjvpSBq+PsVIuFCA7GWDdwoP86k6fx9FRC1th2paQE96DTiflTztFRUZDLwEClk0h9IzoaeonZrKLbvXG8I9ZORLOw5pB6VUEB7OKAAGSNCYGFh4gIlZUTFYWxtBNWzGqiwznSHnzwQVqxYgVlZWXR1q1b6aGHHqJly5bRlVdeSdXV1fTggw/S6tWr6dChQ7Rhwwa68cYbKScnhy6++OITfegdmmO1eutwYPAyGtUqoSQiAoWftatFvXrBgJCKc7duWF1ISdEb5QcOqOelpTBQGhqgPGmRxrw0jmJj/Q+N1hpBO3eqwaOiAiHBffpwV7CTAW26Z3AwDDC5au0vXbrgXuraFUqcbJyRmOi+MiaNc5sN96TWcOjVC9EzdjvSrKR/X6agVVVBAaivxz3322+tO2fJwYOIEDne/VN278Z5eFLutUp0W+pRaMeDUyEizenUNwhwNQ5OFcXYW9qprwLKKSnouiube5x+OpTe11/HdUpLU4sasqGIJ7ROPG1EGpG+cyaR6syXlaWM2KgolSYknZmeFmdSUxG1rE3lFgJzVXKyWvk2mVSETlwcol3j4zGmyO6qrivkOTnuDmoZyeYNWXQ5Lk7NkdIgaO9Ixi5dMD8fPoyxUNa600YHyvQ4s9l7ZLccb7t3d0/fNJlgLHtzLtTVdfwuh50JmUplsbhHqLYGsxn3j4xgLSzEXOd0wuFeWwv9TaZwHj6MaNa9e+HguvZayPbRo6rDHxHutfx8RPPIjsIhIarkyLp1GL9ce5fJ+1cuAH/xBcaA+Hi9Hknkf6qn1mEioze9UVFx4rviSZ3In0U7IVo2Z8vmOXJ+lNkAp6rjzBWrFdc1JMT/WlOeFnk6A926qa6RISGw06KiIL8BARiDpM1pMCibNC0N85UQzQdtHE98LZCdKOTCrsyYkZ249+xRNVGPHMHcLuloDTyOJx3OTZCfn09XX301ZWZm0sSJE2nNmjW0aNEimjx5MplMJtq1axfNmDGDevbsSdOmTaPCwkJasWIF9W2uoAvTrkjPtN1OtGIFBrDwcBSolnTr5rkA5oABGOgsFtSe2rMHirmroeB0QilpaCB65x0VyaPlwAF8twyvj472X5HRrtjn5kKJCgzEIBsS0rkHhpOJsWP1z2U0S0sMyPBwVQ9ACExuQuAe9eZMNRphmEsjggjKcG0tPv/nn0pZlhEcmzapFe2qKlW4u7XU1UE2PEW1HEuys+HA82TMamV0167Wf8fRoyp1VC4EdESlwxfl5cpxVl6ujzg7VY0Db5F03uSxoADOmd694VCTDqqMDKILL4Rs2mwYm1NTW1b7UMuwYapjn/xemZYmnV3Dh0Pmg4LU8XpyyEdHEw0erO+053RiHqmrw3nIjsKS2FjcxykpiMwmwnm7pkdXVyvnmvzrKWJbi3Skx8TAqdDYeGxWug0GXLPsbBRol901rVZ1vSwWXIvERNUYwNNv1q0brmN8vHvaaWwsHMva+nVaDh5sWwoh075I57nZ3D4LAgYD5s60NKQP2WyQK6cT0SZCYP6sqcFD1lHLzsb9WFyMueKHH6AjOp3KqetwwBlvsynn96BBkLulSyE/suu81CVlSZGwMKSXl5Xh80aje8q1Vk59Ob+0n6uv953SJ7uLnkiys3G9/Ckx3ZwjzeHQR2PL5jlyAaMli6CnAgYDbJi0NP9r5Z2q+kNzREYq59jQofgbFQVHZGws7i3t4rY2clnO9VlZ+n16Khl0PHA42i9ro72oqVElK6qqcC2rq5Wzu29fzOdHjuizEY5119iOTIdTRXzVOrNarfT1118fx6M5dWjviLS6OigoW7diMDCbsdqnjUgzGqFsyIghqWjbbHBSTZmC/ezbBwfDqFEqTY5IdViJjib6+Wd8/tdfif76V7XN0qVE48Ypge7bF8fVHPX1yoBxOlXOd2oqjF5uLnDy4LqC53q/+UNiokpVMhgwSTQ0QKHzVvTUaIRBp51M5GQTHg5H0MGDqI1kMODeXr4c3/Pbb/g7YYLqPNgahEAUXH4+ZEWuau/f714k3V8qKppX0oxGrP6ffrr7e1pDwtvqqiye39xxbNtGdPbZSin/9lvU1Oqo8lldrXfQh4ezwS8ZPNjz65WVatEiNhb/p6UhGuWSSxD9WFOjam21JGVby4AB+miZP//EnLN2rVICMzJwPMHBkNuuXT1/n9WKuUI2TCDCfFJain3JhSLXz3bvDqdDdDTui/p6nLOMbJX1nuSikoxoLSpCxM3o0Z4d+9LINhjgVPj8c+Wkl3O/TM1qa4SaXKyqr8eY5hqBZLHgfEwmvJeRoeRXe70sFuVkc120kim63hznsskB07FoTwfI1Vfj70MPEd17L5y2ZWVqXrNY4HxavRqv19cjUiUsDPK7Zw/0yiFDoJ+efTbmjSlT4FArL8dYLSPTJNXVuCeHDsW9npenn5/791e6Y3GxvrEBkd6BlJOD45bjgGsEu0Qbve4Jk+nEp3Zu2ICFDW1Ury+018Hh0MuyyeTdSd5ZkRG4fF18Y7OpbJDMTCW7RiPuMW0WiRD6pgxpabjGrnNgdTX0TZsNMt1ejXmaIyur43URdTgwFkk9xGJRNsrBg1jYSEyEjaGNSHNNce9MdLiINObY0N6OtPp6dN0sKoKQBQe7KwiyDbEMs5WhyAkJGPS6d4cSs3cvnFfbtumVCacTipLdDoVn+3YMeJLqahSHzchQtVS6d8d3NheqKyOEiLDCVl6Oa5SWhpXCzrYidioh74WWGIwmE4y8gAB8rrIS94GvIrahoVix0X6PTNkrKsIkpF2RjonB5JOejnt9yxYY47IhQUtXxWTBbelIk7XJystb3w3Ubtc3SPD13V26eHZoaT/vLf2qoaH5MamuDoaQ/D6Hg+ibb/xzlB8vZGdW+ZAGgnywE03RnOOUCGlZp5+OqK2+fVXnzKQkXM+2pDfFxSHiTGI0QoZvvlk50rp1Uw6/4GDfTruAAH0kVXU19ie7BPbs6e6Q7tEDzuV+/TBHZWdj3pTG+JEj+pRpaYyWlOB/b/e+THuNicF+6+vdtzUa26d2UUUFHk6nqhulJS4O56nt8igXIzw5EVpTPqFnT/9ToJjjR3saUzKt87TTVO012WxAdggtL0dk6f79kKGzz8Zn0tMhMwYD7tnYWGwfGoo05P791YJuSYl+nJb1dtPSMOa8+qr+Hg8NVR0CGxr0WRdS9iSuEVzeCvA3V6hbRsqfSKQjzB+9qqgIOpSMOKuo0KdqHo+u0ycbp5/uXiuScUfakbL5mIzgMxggJwaDei083L2T95lnutcPlY2znM7mmxG0N8e7LEtzHDqEsVRek7g4XNeaGnQbl/Wkg4PVdWztov2pAjvSOgn+hpv7y549cGyVlqpUSNeomogIKDTSsSFXnU0mDHAREarD19Sp6GSWna3SwWQuu6yHUVenBLe8HBN7SooqhkikarXJzmLe0Hb9krWLJHl57VPngzkxSKO4JY40OfnKdKzAQNwfvhQ+q1VN3JLKSijSGzeqbrQSGe2Sm4somJ498R1SHlvaPrq4GPsbPx4r39IgLSrCvnzVVPJGfb1/n/O1Qi67oEknnyeEgAHkqrRo01dqaxFtUFqK7Q8ehPP+eDdWcD0+bZ0zu12frtmZV+Vaizb1YvBgottuQ9TIxIl4zWpVDtuKitan3Dc26tPORo6Ew3nqVDXem0z+Ofwk2qioxkYo7UFB3mtF9e+Pe9lqxcPhUPMbERzsBQVKlv/3PyXLsbHeyxbI7cPDie68Ew686mq946w9HGllZTi+I0cgB4MGuZ/nqFG4Dlp9wFf0WGsiMGJjO2YXW6b9kfeyyaQvo3DGGXAgf/QR5CgoCKVCiLDtokWQQ9nkRI4hp5+O7bt3h7w0NKhIbtnJkwifXb0auoB2QS08HPP67t3KYSzloqzMt2Gcne3ZaVZf3/EXXaS8+ePQ274dNoF0nEVGsrw2h8Vy6tRJPR7ExuK+kotVRiMyPLT2rWuda1kzzVUGZWCF03l8nUIGw4nRZ51O7+NUdbWKjHc4VN1xpxP2d58+GDstFpUC2tllmx1pnQTtSpgsTNwWysqwYpeVBYFKTHQ3QKSjwRWTSa1MDxgAZWTWLHx+1SoVmdPYiP8rK2FI7NihjPzsbKSEZmZCCXE1YF1z4D0hjXYhYAxIJe3oUR4YTmbkb9eSSIfGRhVdUlLiXkDYGzfeqL9XZETjkiVEl16qPwZpWDqdMJgHDULqWmsVaFljrW9foptuUkpYWRkmP39kwBWtY0+La4pVQACumSel+ptv8Fd2KCRyv55CwBBxrQuzfj3+Hj4MZ2N4OJQe6fh2OJDOfbyQNXRcV9blg+soth1tedOEBCjGgYF654s0gkeP9l2U2xdTpuh/r/h494hTbbSEPzWJtF1CDxzAopHRiHNwrftFpJqaWK1432RSaRREkIk//1TnW1SE8SUkBLVIPUVauyrEQUH4/OmnQ5blvtvDkUakjj8wEEq362JDaCjGB5NJjXneOna2loEDT1xdG+b4c9ZZuK+1qcEJCXjs2YMFjR49kMZJhAWcyEhEoMbH6zt+R0RAjmSTgehoJbejR6t7NTAQC7KVlfoFodBQyHd2Nr6zSxcVfSU792qpqoJjiUgZ667U1fnWVyoqWrcw1p6YTJD9bdua39Zubx87ozNhs7k3tmK8U1enX8wNCICDZ9Ag9Zrsyi2RUWyu6dhCqBqMx9uhfSJsTWlTe2LPHizMZ2VhPEtIwHWLiFC1KtPSoN+f6HTzjgI70hifVFd7NqwrKzHgFBRAIMPC3CPSUlL0yoE0jLTpLmYzFP4BA7CSvXIl9ikEwvWzs7HNuHEQXBnW+/33+N7gYCXkkshIvcLlCbl/Iig3OTlEM2bg9eDgEx9Gz7QeaYS2ZIIqKVH3jNOpCus2tzp11136e/yMM5Cq7HBASfdUa6GsDMr9RRdBKZeKdWlpy5oPyDSSuDhE4UknQW0tJjh/nYFavDnSXPclix97usZah6GMsnOdtIuKVH1ELTIttKAAYeTZ2bgmjY1wpBcVwdlwLKmqUhFnpaVw5vHK+vHHU1plW9L5XIvhxsR4doTK8cNfh52Ul/37VRpJVJRnw1imqKWnY/8REfp5s74er8tUyLg4yGR8PAx2T7UUf/lF/zwwEOeVkQFZkWNKezjSDAaVjuqaNiOxWNT7KSneHWbabsstJSiI00k6E/fei/tJe/9efLHeQXbjjep/g0FFTQwejO3kuB0To/TIgADoo337wul23nlqH2FhiL6wWvV1UmNiVH1UItzHwcHQXWVpByLliLfZIId79mBucdUty8qQheHLkVZQ0PKI9ZbSnGNaHp8/qWhOp74MC9M8cXGtr5XbGcnJ0Rfql43BfEU/m0yQ59JS6OkSpxPN5pzO1pUaaAl2uxrHZGaGq2PvWCH18EOHvDvEd+5UNZeLijAORkdDX6+uxuK3bATEEZSAHWmdBO3knZPj/+cWL0Z0iGtESmGh2k9KiufVdyK90SkNI5nqKUlPh7D+7W8Q1qws1fWntBR/e/ZU6RzV1Xh9xw4YF66KujcjxhU5mK1aBeXIZoPyk55+YtshM22jNY4OGR1CBKeN7OjVHAEB+nstPBwOoPx8TOgy4kq7r7IyKE1xcTCapUJeVqbaTfuiogIysm0bZCoiAoaCdHo3NMDR3ZpuQDLqyxVZf00inegmk/v2MhpOCKKFCz2vfC1YgONcu1ZFm1VVqdS1/ftxPYqLEaFz8KCSyWPROEVb58xs1kedHWvFijk+eBoXRozwvr2/XdF27MDfigploHfp4vm+CQlR9UStVsjuwIEqQjs3F//L/ezfr2qjJSW5n0N5ubtj2WaDvERHY39SPtvDkeZw4DyXLoWzTtscSBIdjbpW8pzaEmXhS/ZGj279fpmTi+BgonPO0d8PycnKEX7GGejKqyU3V+ml2uhIIuUADghAVPiUKaidpK2haLNhPjh4UO/Aj4nB6zIDQ5YnWbBAH2H955+qRlpWFlJNZTdRLfv3u+sRrqxZ413Hbi/8XaCStYt90bUrz5vMsUUIvUxHRUEOMzP123layKmuRuMvicOh6gwfa2dmdbVa3CothR69dGnzMtUeyAVxh8N7/eItW3BtP/4YuvHppyMid8gQpNLLiPvy8paVwTiV4aHuFMLf9tiuhRZ9sWQJwtL/+19lEK9eDeXiggsweMXHe1+99zSIuQ5U48bhb7duqn3xzp2YsPPz4RC48koIb10dDO4tW/Dc2ypdc9dCCBjtVVXoBKo1miZP5tXuU4GWKHJpaWoiCwlR0YrNIWuqaamsxL2rNYglQUHYf+/e7tFqeXmISGnOiWu3q25hMqXZZIIifOiQSudqjUNRKslVVap+WV6evoiyEFD8DxyAQeLqsHM6kd5ZWQmjW7syvXkz/gYGIrJl3jxc6337sN22bZDxjRtxHjk5SPfcuhXdwtojGqyxUTnNiosxVmgdZ63tCsl0fFyL3be16HVRkVLIIyJUKrO2JpOW8HBVU6xnT5UGKZ3DsqmATC8pK1OpYr17u89rubnuBcyDguBkCAtTqaHymNrqSNuxA06BigrM+d5W/10Xy3zhGimoxVvHZKJj71hgOhbx8aqphkRGpHlqDuVwqNTrwEB9ypbUQQMC0J0zLAzGYkiIkheTCXObwaB3BgcF4TNGIx4ykl2mikrn3u7d+KxMlZI6havOunUr5lFf0ei5ud472LYXzdVOltc6IKD5tE2zmdMUmWNL9+56XS0iAnLsanN60uccDsi2bMizcSPu66NHW5auKOv3+suePYiEk7K+fj3GkNpa6MvtUb/cF1J/aGz0Xm91/36MtdnZGOtkp/HwcKTNSp1JdiZn2JF2SvH77+2/z6Qk1GZ5/32srP30Ewza334juvxyKA+DB3svGOxJ0FxX+rWrfUOHYkDLzYXSHx2NwS4yEkp7bS2cbAMH+h50PBkxkvJyDKK7dsFIWbJEKfNCQOnh9K2Tn5b8hhYLts/IgMEqV7eb24ergh4QAIfzyJG4l1JS8PrOnZi8Bg7Evq+4Qk1I8l6VKSDNdfAyGCAbdrs+taqhAc4oIVRnM198+aVeeZeRYRs34hxWrMDrf/yBSVWmfuTnQy5HjMB1k440aaRHRhJ99x1W0Q8cwIqb04nvOnQI29jtUChMJrxeVITn338PI/3AARjRtbVImdm+nejnn6Gc+zK8PSGEPuKsulo5zaKjuftfZ6K5lP+WEhCASBSZxpySgvtXGtm+GDYMcqBV/ENCsA85JpSWwrFcWQkDXSr+Utk3m/HIytLLssEAORwyRC1ytYcjTXbxKirCvO9pjHF1djQHp4cw/uApDTshAXqoJ+O3rk7ppV27us/TRJA3KR9ms77Wbng49uEalWw2Q66k7En698fzXr2w+GQwYO45cgRyU1iI+c5Vby0pgU7sKyKlsrLl8157I3Uiu735yHmzWd9EhmHaG9fOzd5qcku0wRG1tZB7OR/W1+O+Pny4ZbX9ysr8D2Ahgi598KAKZpHRqH/+ieetKcfiimu5FC0ys8Th8B4sMGIE9OxDh2ALy4YOISFEY8eqhT2zmQNOJOxI64RolQ6Hw7dHfcoUZSB88w06JC1ciEmyb1+izz5DIdiW4LpC4DrAya4qpaUQaNm+PCQEoffFxXBIbNjgvc6Kr7S2+noYHjLyp6hI7UeIE9sVkGk/WuJIk9ENBgNWXmU32ObCvC0WvTJtNkPhDQpSRbmJcM86nXAUBwerNK2YGDiKiLBtTIyqE+aKNkVS1i7QplzK/dXWQlaaS+202aDk79qFSDHZYTQkBN+1axeM8+3b8f7Ro1AA1qyBzOblQQmQ3yMjY0aPxgT85Zd4X9ZVWLdORbV9+SUcdf37q667gYFEV1+N76moUIZMTAye79iB9Bt/isFWVKgGAaWlUAak88xT9AJz6tNSB48/ZGRgvqivhyz17Qsj259oWKPRc13RwkJ1j9vt2LesvyZTKbTRKQEBRG++qTfEhYB8azsOtlezAYsFcpmc7DniXCufbWkowDBaPM3nAQHIIPAU/XTeefqOstoIRmkEyohQIsz7WuePvM9dF2WjozH39u6tXyiOjITcxcVhzpNGsayJJJ3r0tCV52O3e8/okLp5errqhn0icDqVnhMe3vz4lpzcsqhUhmkpVqtel2tukUw7fpSXQz7z8qAr1tdD7zxypGX2ny+HlBa5OC67XEpH2o8/Ygzau1fVS2srvhxp0vZ3OpUuTqRfhEtLQ/fT1FSMmTExGCOTkmAXyCwbm81zjdTOCDvSTiGam7jkpKzt5ldR4TuU1WhE5Ex6OgT+o49Qj2LsWLw/YEDr86Q9KUYhIRDYqioIcU6OSiWLjMSxmM0418REhO572o/WieDqKJTnu2aNKjIfFqaaDByvwo/MscVblKQnAgOJ+vXD/4MGwclTUtLyDj5BQXDcWK24l9LSVESJ0wmlXN7HUrZkOpjszidrLrkiDeXdu3EPh4bq79WYGHx/XR0M9IEDvR9nZSVqH/TsiXP//Xe1urdjB5SJujqib7+F0d6rF1bq8vMRNVZbSzRmDI5ZTsgrV+Kchw4luvlmovnzMSHv3Ikx5513VETNpk34bLduRB9+iOtcVoZj+u03OO9+/RXbbtwImY+OJpo0ybODsKZGn64ZFKQaBMjaGUzn5lh14/rHPyADqamqPou/aeXSoX74MGRHOo8lslOeTDmT977W2W63q66ARJAFbdq4vPdlhExb2bJF1Xnzhow6b0tDAYbR4k3PnDzZ833WpYs+YkWbCeGpaYw0CrWvy9IlWoxG6J+jR+uPKTER86PZjDlv2zbMaY2NGHsCAmB8ymL9cj53ODA/ukail5XB0CeC08+1Tml745oi7noscvw888zmo0iDgtjIZo4t/tYw9YTZDHnLy4MufOAA5LyiAqnW/rJ3r2d93bUhhwzayMqC7ixLnAih7zbsLd2yJbiOa1qHmXTUGY36EjIOhz5SduRILOrJsU82WLHb1WKDXLRn2JF2yuKqMBsMaqKWhjsRjPvmcsItFgjMqFF4PmOGCvO22VrmsGiO6GgItBTs/Hw1sA0aBMNbGhXdumF7T0ayduXdVUFxONQ5l5TAOLdYVOh8e6f/MB0fmQpFBCVw8GDVMbYlhIXBGNamiDgcMIirqlS3G+2k1a8fvksaujId1BUZcm4y4Xvsdv1qeXCwqs2Wm+s7ZVFOgAEBmNzlKpNcnQsLwz5iY2GoJCRgu/378f2bNqn6SDLCdMAAGPEmExR/Wa+id28oHD//jDTqtWuJ/vIXjENBQYgsLSsjevxx/P3mGzgWBgwguvNO/BZ1dZDLuDj8n5OjT9c0GPTpmqzEM8eL6dORBhEZCXnp1s0/R1pUFGQoKAjz3O+/Q26Sk1U9ooQEKLO5uRhTZEqVVIgbGjCuSAc1Eb5bG/WtjcSrrGxbN72sLMyT8fG+Zcy1NiTDtBVvjrQuXTx3x05JaZluKhtnaKPDQkI8O4yDgjDnSBmQi71HjkBODxzAPLV6NeY5sxkyXlODhaHqahVV6nR6Tvn83/9UFHpUlO96gW2lvt73Qrx0pKWkYF7mhSnmRNOWaOcuXSCDxcWQU9mJur6+ZaUGDh/2XGJI67ySyJTOoiKMBU4n9NioKIwRQrSsfrk3XGVTGzEno+2MRvcao9ryLeHh0GkuvBDPQ0KgmxgM+gYvJzrdvKPAjrRTCCFUgXCtYm23Q3CEgKGsXc321qXPleHDlbe8Tx/3DkmtPV5XAgNVAcd162Aky+4icgUvLw+PuDgMfp7ytOW+s7MxYGlXCI4cwb7OOw//2+1qcBCCuw11VrRFhnv3xr3RmmKamZm4N2Xn2UOH4FTKy4PhbLWqNEoi3PMNDeqelU5eX7XS8vOhDGjrxgiB7zAaVaqLN9nWRnXFx0OGhCD697+x0tTYiNfliviwYdjXwYNwbIWHq2sjjXmbDVFnAQEwRubPx8pWZSX2mZCA/S1divHkiivglN+/H3WmZLRpUhL2FRMDA2nCBBgUF16IyLi6OqSGahsEcOFx5kQRHY1VaTmvynqLzREVhbEgNlbVHSspgSzKlM99+3Bvn3YaDN2CAjykMyw7Gwb2tGmqLqJMK5do00cbG1V6iSuuq+ieuu1GRWHhadQofdocw5xIPNVPa+ncLR11WkO6SxdEYLkSHa3XO6Ujbds2pEmVl0PWhICs1tXBGWU0Ioq8pkaNETJt0tUgX71aRVrv2XNsm+CUlfmuObxuHcYR2fBh9epjdywMc6xJTcWcW1gI+QsMhDzu3NmyOmWbN7uXYqmo8OwQk1Fo9fXQ/w8cwGdHjiQaPx6NB1qaDeUpCMbVftUunEm9wGh0X7A3GNQCu9RBEhOxqBcaqkpRyHHPZuP6phJ2GZxiSGHdt08VD5cFyGUrbldvubeItKNH8ZngYAhdS4oqtpaYGFXkMC4Oq18yhNdqRRhsWRkcAZ46JhJhMJBh6IsWuTvS9uxBetygQfiOrl3VyqXDwattnRVZbyE1FavTsbG+m1Z4IyhIrdRUVyNFMSoK+xw0CPeb7FTriaIiKNCu3Tu19RNWrdIr40SQ1a1bMcFJw8JbuoZW5iMjIUf792N/zzwDGbPZIIvBwZC1pCQ40adM0Yemf/YZHHsGA7Y3m+GIDAyEMVNcDJmLi4NRkp+PaxEXh7/bthG98ALRE0/ASSedgHFxSPUcNgzHO2oUalDdd59aKWOYjoAQqPcnaclqucWC+3rtWsxxWqewjEyTynCPHojgPHIE3xkfjzlSKrdCQP58ORG81WGRY4WMlNm5E4q+du40GonOPpvommu8R84yTEdCu2jVGmTnT19IR9rQoXBI7dmD+dDhgPwEBEDHNBoxH7qWHjGb1ZwsF8PnzsWcXFCAaFXX2ke+uny2FJl+6o2jR1VJmN693euMtiXKlWGON7Ijb3Ex7nsZYZqc3DKHtWutMSLIkqtzTXagdzohK9LJPmQIdOCqKjxcdf7m0JZpkrjWgtVG8mrLPOTkqNflmEMEHcRggD7Tp49aiEtJOXblMU522JF2CmG3q8lVTuL5+coB5nTCANcKvtGoFyItUoGWrW/bu0OHJ4dV7944zuJiKBLdu8NQIFIr/UeOwFHgqc4FEd6XxsiePXCsac+5vh5Gw3nnYbUvNFSlghYV6Q0ipvOgnSQSE3HPt0ZZlQWHiaAgm0y4r84/H060gQP1qZ+ufPed5/psWmVVRmJpiyzLe7hbN+zfV80TbZMRhwNRLbt2Ef3znzheGdodG4taaGlpcGQ5HJC7lBT1+aVLsbInnfayHozsUmq3YxyaNInooYewbUoKIs2IVOpLWBiUmJgYXKfu3eFEGzAA6TC9emH7YcM4/ZrpWMTE6B1LLY2GCQiAEj14sH5xqEcPOMyl4R0YCLn4/nvIu80G5b9/f8hebS3mM08ROkS+a6SFhmJu/OUXPI+IQATp8uVqm8REROkEBamuwwxzPGitEecpzcpfmmvYI3E6MVfGxMDpJKO7ZFRHcDDmOCk3u3erzwYGQvakbMpIUCHQzU8IzKVbtuj1EW+1VFuDw+E7E6OxUWWhmEzuTUsOHcK1khE1/l43hjkRpKXBwS7tP3m/9u6NeqP+1hLdvNl9sV0Ifc1SIujWMTEYFyorYZc6HKo8SnY2xqnaWn12SnNo7V9fXX+1x0aEcah3b/X6H3+o6DKZQj56tD7irG9fdqR5gx1ppxCrVmFCI4Ii73Bg4nU6oaTn56tOJVpcw0ntdijP0hMtDePj1e3OaIRRsH49HBCydsXppyMqprYWSkvPnp4n/4AApYw4HBiktBP74cMY6Pr2xf9xccowt1hg8DOdm/BwFcnZUs49V6VSy9oH8fEwem02z3JUVqZqJJx2Gu5xs1kfBVpfD1mWk2dGhn6ikxFpJhPkw9exGwxKGXY44HgbOFDvAAwOVk1FiDD5NjbivfHj1XfecYdK+5ZFSU0mbGu1qojW4cNhhF9zjVIgtISEwJnWrRucdnKbkBCs3MlJXKawMUxHoaam5d2rtcTHI1o1OVmND7Lr7y+/KMM8OFjNb9KoFoLonHPgOHddFPM0BniLshWC6Kef9GNOcTHSriV9+qCmY2Agl0Bgji/Houtuc/hba1MI6KMJCZj3wsIgpwcOwHEWFYWFoNhYyHR5uXLwuZZokDWB4+IQcZKXh8WkXr30stjaiDRPn5MND4g8p3QLoa8355rFUloK3SU3F/+3NQqQYY4lVivmr8hI6Kqy2U9kJORuyRL99jU1nuWiSxfIjTaV02DQ1yEnghN8507o0PX10JcPHVLRrnl5eE+WSWmNI9qbzBUXY59y8TwnR3Ue1iIj8aQtXFrq3rSIO957hlWhU4hNm+D5Li3F4JCTA+Xa6cTkXFYGgdcKvcOBgUMbUqpVxg0G7Kt79+NXEyU8XCkwe/aoAWLQIBgSvXrBiRAV5VmZ37ULE/2BAxgctEoCEQbRiAj8ravDSpssMBsXx0Y6g/ts587WOdK0kZKyOKf2PvW0qlNXh0jKykrl5DpyBLVJvvsO29jtKi1LCHennNOJfcvv1sr5rl14v7YWq+Glpcpgrq+HjGvT0UpKYNxro066dcNnAgMhiwYDUk+EwKTc0IB6D0RqJZ4ICoLNppqEVFd7ljF5LtHRRFddpYofm0xICfUVxccwJ5JBg9rWoTIsDBGa2vlHCDgP8vJUvcSEBCz2JCSoLn6xsYgeX77cXQH3JGfBwe4pJJs2Kce61pEXHY39y+2lsh0T4z3qjWFOFTwt+HjC6cQcP348ZC4uDvNecTH016gozI0mEyJHKipUapVsMiR1hMJCzN3XXIN97N0LOUxP1zdCaC2e0scaGrDgnJ3tOU3TtQap6+J7cTGOv76e6NNPiZYta/txMsyxQggEUmjtPqMR8/Ds2Sg1omXlSvd0TSK1eKZNkyTSR6TLDKiICNUIq7ERgS1SZ3A6od+azTg2X440rRNbq+N7K9nQpQvOrbBQ6exms/ouIr3OISkv19sq2kYDjB52pJ1C1NYiZDU7G8pwQQGEweFQ9c4MBr1RX1qKwcO1ja020iU09PiGdKan41inTsVxaFNK09JU9z6t00BLZCTOua5OdQDVnt+ZZ8JQJ4KDLSNDGQ+DBh2rs2JONnbtap0jTTqk5L0ZG6tfzfUUEVJbi4m6pEStFmVnI31j5UrIaVCQCjuX+9Mq1k6nUnhdJ72yMowH69cjTTIgQBnOskGB9lxDQhD67dr1LCJCjR9C4Br17Ak5q6lRioHRqFcmysrU8XhLJZeOMoMB6aQyxDwsDDXl2tLunGGOJe3RJVYq0kQYCwoLIUeHDilZ6t8f/1ssStkOD8ejqMi/leyiIhjyMsqtqAhjgCx6TgTjXxr4R4+iRlNBgYpSNxiObfFzhmkv2rIwKmsUNsf+/ZBVWQstNhYLviEheB4UBHkxmeCoqqlRkWdhYXhdyrjdjjl66FDovw0N+F87ZxPp00Nbwp497sXQ5TGuWKGPSJUOAm3DEiLUc5RNwIigR1dV4fhyc93ruTFMRyM1VTmEu3ZVWRBdukCeXdOXPc2tZ51FNGKEXmZcx5vycjjSbDbI2fbtmEtLS1V6pUyblvq7Nx2ZCLLlWk/RFyaTahQmBJzeMqVVdvGUUWjabLXERL2t4qnTJwPYkXYK0asX0bx5ENTkZETU7NuHFS2DAf9rO/oRqQFA27FHKtBE+CsjStobbwqOyQTHwtSpGNz69NG/N2SIeu7puNLSoKwUFqpw1t9/V8qD1YqC6UR4X6skcNQLI+nfv3VKuHQ+SYeTxaIv+OnJKZ2Tg4n6wAFMXjLq67TTcI/LSV3WXvBUx08WPBZCOZ/Xr8dkaTJBSY6PVwWP5T5lYwStMiBrvrjKQ0SEuibSQZ+SgnNsbPSe7nXmmUppyM72vI03jEaVcsowHZHWdPd1pUsX9b/s7BsdDSeZVGBlmYaqKtUUQOJwuDcE8jTWdO8OA7+6GuPAunX429io0s3q6uBUKytD+smSJUQffuhuUDNMR6ct96y/huOmTWruMxohsykpSlcdOhSGu8mEuayuThmtDoeKEJH1CHfsgDymphI98gj+pqerOVsWL28ptbU4tkWL9HWcli3Dc9dyEhUVcJK5RqLceKO+u+Hu3UQLF+KzlZWc2sl0fLTO6zPPxJzap49aJNIGX8iyK64EB2OMWLlSv62Wxkbsb+tW1B3LyMBcv2ePcmBJ3Tg6Gt+/YoXnY87JwcKXnKe1zj1vtoqsV7x3L2zi/HzoEMHBqq5acLBKOZX7cV24Nhi8R711dtiRdgoxcSJSLmTXjU2bMKkVF6PWkRB4rg3dlpOmFEinUz20HE8Hk8MBI37AAPx1rY2hTaHxtCoeEIBVgLo6OA9ra6EQyBVAgwGGBJF7LjvDSKZObZ0jTTqb5Gf9SXOoqcFkp52oDAbIgEwXEUI1APEkj7KNt3ZlOzoa+9y1C4p9RQWi2GTNBCLPToDCQs9h3FpHWWOj6ugZGIjv16aaSiM+PR1yrI1k88Xo0e6vyTRPhumItKa7ry/i4rCCHBsLg1VbMD0oSNUg1I5PY8a4FyD3ND/KNBYiVRumtBSGfXi4cjwEBWGcGDQIBnZuLjvSmJOP49FdtrJSP78FBmLOkg11bDbITkgIFq42b8Ycvm8fFqOKi2Fc19VBrr/6CnIaFQXZDAnB/qVefvRoy+ooybS0336D/r9uHdHPP8OhtmoV0eLF0JkrKvSONIcDxy6jwyUTJuhTRE87Dfupq4PuwF08mY5OUBBsS6cTkWXahakxY/RzrhBwRHkiJQW25fbtyoEsBJzd1dWIKDcYoCtfeSVqjMbGYn6XOrbZDCeWlDNvsl1fD1tBlmbRpnl6a6ois01yczG/79qFfQwejMhSIjj09u4lWrNGjWOu42ZYGFFmpufv6OywI+0Uom9fCIiMMKmpwSBRVARluKICgqI1nOWkuXEj/h4+TPT66/h7rDvveFPKZTvwrl2JLrig5fuVzRGIcM7btmFAk2Gw2pWF669v+f6ZzkFEROtSO4lUJy4iKMvNOeRKSjCBVVToI0aJiM44Qx2HdKR5Qiq9MvqtvBzKgt2OlaxhwzAe9OqlV8plOpfWWSWEZ+eANtWlsVGdY//+OAdtVI10gPfsqU/PdlXKXdGmlUs4pJzpyBwLB1NxMcaN0aNV9EdNjZIP2ciECNtpo0wlcsFIi8UCnUAIyG94OORWrsAHBCAKpaICCntqKpTodeu4Gx/DeCI3V83xVqtqmiPnPTk+WCxY8B48GAtcixZhzq6pweuHDqk6qdHRmMtllIo0iBsaYAxLJ7mvrqSyc7dMYRMCUTcXX0x0yy1En3yCLJbMTKKzz1ZpX5Jdu/BwbVCwa5c+Ii49HTZEXZ1KC2eYjkz37tB56+ogZ1q91JPuazRiW6mD19Wp2oBOJ7JJtBHd+fmoc7xpE+RHNscbNQpzd2ioikiLjMS8Kz8fHY19uEaY5+RgX2VlKotFsmmT7/OtroYtYTJh7ImOhqzOmYPj/OwzfL+UXVfdISCgfWo0noqwI+0UwmzGapCcYENDYfhaLFCMQ0KQ0qg1xqVH22SCEG3ahIl00yb37p7tja+VwrQ0rMi1xkBJSYFSIutVyNbcf/yB97WORK7zwngjLq71tY9CQ+HYJmpeqXQ4iFavhjJ+zjnKEaZ14smItMRE7/tzOqG4y3TnIUMgP3a73uAWAt8pjW45YWoj0GJimo+yaWxUxxoc7DtiRRv52ZwjjWEYKN7dukHG5Cqxw6HqGEnZk+OBTLHW4q2uoOyyl5eH+bFrVxVFYjJh7szJQcpJv36YjydM8G20M0xnxWxWc19cHB5yzk1M1DvSMjMxvzqdmHP794cz22hUkewBAVg86t1bpZvJBmIbNsDxNmIEvmPOHH0amlZGXWsfy2MYOBB/77uP6KabMHbI71m3DtsJAXvCbFa6jKRLF70eIseeFSvUeTBMR0UIOIW6doW9KyM+JdIBfviwWtBKT4f8ye6d9fWQ4cZGOJHffRf73bYNjq6SEmy/fTtek4vBkZFY1NaWLAoIwOtyEb1HD1XjW5KXh4jSI0dwXLJeskQG0HjDaMR4U1KCSDSrFePLd99B5mXDE3kdPOny/jZf6Wx0OEfaG2+8QQMGDKCwsDAKCwujkSNH0o8//khERHa7ne677z7q378/hYSEUFJSEl1zzTWUq03W7+T06qU67R06hAmzvh6rXE4nHEzaiA+HAwNFYiJWrXbswMqUbGGdnd28gLY35eVqtby1dO2KcNvzzsOAkJeHFQLZuYRhmiM9vfUTh7bbZXMtow8exMRbXo5VMqnAapVgWbMoKQmTrsnkHi3ndLo3BzAYIPtShmWIt0zpIvJsbGuP3xsOh347h8O/piTHot4iw5xqmM1I7TabVROc4GAowl27qg64dXX4v6bGd8SqltJSjC+1tSolXEawy9IH+fnK6X3++TA8tKkkDMOAfv3U/0YjIj5kCZJu3dR8bbPh/WHDoN/W12PObGhQDmyDQZVzsNnU/Gw0woguKUFEaUoKDPigIH0qZXk5tqmqgrF94IBaEHRNuezXD2NA//5K39m5U+2nvl4dq5aqKjgEpQ4RHg4dpqxMNVpgmI6KtAHDw4leesn9/TPPxN/6esimwaBSNGUUmN0OubLbIQ+lpXCcbdmCz9TWqnTPwEC1mJyeDnlzdVQJoWoBy2wYrSOtqgqyXFWlaqXJLKvycn1GiWtkOhHRjBmwA44cQT3D8HCksK5eTbR0KcaXvXtVVomnescceOKZDudI69KlCz3zzDO0bt06WrduHU2YMIHOP/982r59O9XU1NCGDRvo4Ycfpg0bNtDXX39Ne/bsofPOO+9EH3aH4aqrVDefLVswMYeHQ/BkTrYsKCq7eO7dixUys1mFlJ93ngo/9ZRqdSwpLm6f/Xz+OQS/SxcMOAUFGAz371fbsFON8UZ73RuuaRGuZGQoQ1mmeObl6dMZi4qwgjRgAFZ+Pa36Op16p7fJhNdWrFCraDIarT3Orbpan8opV7SawzV1lWEYd2Tb+oAAtXptMmEsOHIEz0NClPNL1in0hTR8S0rwMJlUZ2uZ1tGjB+b8AQOU4hwWBiObFWnmZON46HhaI9ZsRnSJXDCKi8PzoCAYyI2NcEqnpcEwDgjAvG0yKYM9IgI6eVISIlOJ1FiwejVksagIukV8vGr8Q4SFspoa6BCDB8PAl46wQ4fcj72wEN9hNuM75WLcnj2qJpJrdHpCAuwKraEfGIiF99hYLAgyTEdF6qBCYL4j0mdIaZ1c5eWQH7sd86t0pNXUQBcPDye67Taiyy6D06ywEHJQWwtbtnt3pFTKRWajEbLm2tnWZtPLk9PpntpZXY1t0tKUPUuExTSt7p2V5X7OMjU8K0sdS3w8nGkDBqCEg9Wqxgpv0eyMOx3OkTZ9+nQ655xzqGfPntSzZ0968sknKTQ0lFavXk3h4eG0ZMkSuuSSSygzM5NGjBhB//3vf2n9+vWU7aMVXH19PVVUVOgepyq9eqlVp+HD8XfoUNQakykiUVEq2qWiApO3XBGLilLF0i2WE1MTRSoUbaWxEd57iwWrgvX1GHw4z5s5nrhGgbqSlYUJrLiYaORITKiuzuSKCsimxQL59BR2LYQ++k0WJO/fXxXwl9GeRP5Fj/ni6FF9dJnsPNQcLH8M0zwyfSo5WdUbNBgwd2tTPePi8Hq3bmolvTl69YLSX1amuvxKR7jTqaJotKSnc1dr5uRDW5/zeKEtCdGtG+RKLjo1NECO+vXDXB4VpWoXFRZiIby8XDmvZAq3rNGUlqb0Y2ncm0xI+ZTfl5cHRxsRdAk55+/Y4XkBTr6WmqqM96Ii73N6erpqlECEz6Sn4xy7dPHcMIhhOgrSSWQwKH1UK7NxccrRtWqV0t9LStRi1YoV0K8jIoiuuw5RpPv3Q5/v2RNyfPgwPpuYqC/U73CoxTBJQoK+kV5Ojt6xRqQ6a1dVQT6l/n3kCGwEpxNjhKfumklJCK6pqFCR5gYD0T/+gfduv11FwhK1TyfyzkKHc6RpcTgcNHfuXKqurqaRI0d63Ka8vJwMBgNF+MhFevrppyk8PLzp0fUUTvTt0UPVSEhOVg6z8HAY6SYTDPv6eve6SVoPuHSkmc2qIOLxwmRqn+LNEydiALNaoUzJTp7aMPXWFpNnGH9JTvbdHTY7G5OoyYRV67Aw99RKs1nJI5Hn1M7AQP2qVEAA5H/QIDjTiLDf2Fi859oNV4s/ctG1q37i53QOhmk/pKxr5yuDATIn34uNVZHkZjNKOfhC1mAKDoaB7nBgbpT1VAsKoAfIFDMtFgt37WSYtiIdXykpqus1Ef7KKNSVK5X8XXkl/hoMMILDw5X8NzZif0YjotsaG5VBLZsG2GyIYpMp3K5s2oR9Z2Tgr3QypKd7L0sho+hkR/KSEpxP796op+ZaU41hOiIyY8mVsDC1uFRXh/raQUGYL+vqiH78EV1v8/OxfUAA7v/du4mWL4fT7KefUHssOZno9NMR7SlJTnbX8SMj9XNudjbkPCcHDrrDhyHfUq8fOxZOO4cD2x4+jOOprFRNRlwpLYWtMXGieq17d6R9Bgdj3/5klTB6OuQl27p1K4WGhlJgYCDdcsstNH/+fOqjrcz3/6mrq6P777+frrjiCgrzEYf4wAMPUHl5edPjsOxRe4piMMBRZrNhBYoIQhYfj8k6Lo7ojTfgcdcWOdXWP+nbV4W/Hm/PdEBA+0TCpaerVT8Zev/mm/omCp66mjFMe9KcUyokBKnUffpAZgMC3FerZFcwWdTYYnFP4xo8WD8RS4e0Ns1CdhRrLhrNk3Lhimt0Slsj3BiG8Y3JBGdZZKR+1VkuhvmDrL3SowfmfGnIh4dDb5CvsTwzTMtpThal45tI1UQiUvN1WJg+SkzbnGfbNszN0pF26JAq2xAXB8N69268LrvTG42IXrHbsXjmemzaxXMilUbe0OC74VBsrEotk93BL7wQ0TjHuxwMw7QGbe0yVyoqiN56C//bbMpGzslRZY+00a7BwXBiBQVBBlNTIXspKe5pkgaDe9qmLMsi5bmxEXb7kiWQ2fx87CspCU65hASVNSbLrMjyDjI61RWZ7aWNvgsPV/KakMCOtNbQIS9ZZmYmbdq0iVavXk233norzZo1i3ZIj9D/x26302WXXUZOp5Nef/11n/sLDAxsal4gH6cysbEQup49YexGRaluf0YjBMdmI/riC7VCHRKCiK3aWpVOEh2tn+iPFyZT+9RiiY/HANTYCMeg1YrCqVrHoK9IIYY5HuTnY/Lt3l1NaK4rujLd2miEfAcGuk/E2ppqRDCEXYuDS4dyc85x1315wjWiTaagMAzTfmjnwoAAzNWjRmF1WWIw+D9XCwHlOzhY70iT44rsEOg6RrTEWccwnQmtjAYF+ZZFrVzJ8itEypGlrbfmypgx+Cvn/gMHYPDn5uI7ZZMis1k5wg0GOLi8LU7LFFCJjEKTjjhvHDmCFDMios8+QxSMEP6XeGCYE01srPemdmFhWKzat49ozRrV3KeiAllakye7R5U99xzRl18inXrQIHS6HjcOzXq0dOnirj9LnVv2TnQ40DAvNFR1C5WOcHnMw4dDrmVpJiI40vbu1e9byv7GjbCLR4zwfM5WK9cNbw0d0pFmsVioe/fuNHToUHr66adp4MCB9J///KfpfbvdTpdccgkdPHiQlixZcso7xlrK2LEwzidOJBoyBI60khJ9DaXaWtQ32LsXAhgSAm96YqJSliMjke5xvLFY2qfNbs+e8OBLB4TZTDRzZtv3yzDtSWAg7nltDYWwMP2EFh2NbaSRGxfXfAc9X4avNsy8tbimeXEEC8O0P1rDWtY9jI/HYlhZmXrPtWOvN7TRLtHRygEuI9llZIxrxGloKMs4w3hCu/BktfrWm7X1mUJD9QtiQsBo1kaMaImLwzYlJdDhy8ogq9XV+ExcnCrpom0qFB4OY1qWeNDiqiPIc2nOoM7JUVHxl12mFuE5ooU5WZAljDwRHQ0HdFISnMrR0ZChggI4kCdMcJ8P+/ZFRGdICGqTp6VBnjwtcjcnXw4HHOMREUR//gk7ISMDTjCjEQ492TXU4VD6eG4uUkG19oEsId+zJxx72qZkWtLSWH5bw0lxyYQQVP//C39JJ9revXtp6dKlFO2v9tiJ0NZPkamLNhsGDBmBNXo0BO7QIRVOLguaaweHExFlMnCgvoNKa5GrckIox9ygQagVxzAdhYkTca9q643JttaSw4dVeDkRZNY1Iq0lcNFwhjn5kI40oxEyLA3ZlhiwDodKH4mOdo/KllFprmld8fG+6yoyTGelJXIh5cpggJGs7X0m0669ZWR07w75TUmBbt/YCGPbalW6rtEIvV2aRkKoVDJPx6k16GUzk6oqfSMhTwwapMq/2GwYizilkznZ8Oa0JkLk9w03QN6qq+G4TkqCY9pbWSCDAQ6pjAzfmR/eFrll6SGnE+UXhMDCd3q6SkU1GIg2b4ZT788/8VzK/9atcOjJhmXaBmOXXgr7WmtrMG2nwznSHnzwQVqxYgVlZWXR1q1b6aGHHqJly5bRlVdeSY2NjTRz5kxat24dffLJJ+RwOCgvL4/y8vKowbW9RSdHhpbLHO6QENWEgAgCWViojHGtUX6ileXISFWnoS1oFYnevVXxVQ5gZDoS0dHuRqu20xYR0i+Sk/WOtOYi0nxxIjqZMQzTNkJCVBt7u12NBzJS1R+cTsyvFguMdhmlXl0NBZvXJhmmZbSkE7W2C6fFok8DratDNok3R5rZDF09MxNOrDFjIL+NjWrx2WqF4S2jYOS44HDA0eUaCaN1JAiBz+/f77nzn5bu3dW+ZA1XNtCZkw3pDPZETAzkq39/yHhICNIyvTXhkCQnQ4Z9bedp4ctsJlq/Hv83NECeGhuVQ66mBjIcFIT63zL9s6xMOdKsVqIpU1BPUQjY+bIhicmEqDRvsG3cOjqcIy0/P5+uvvpqyszMpIkTJ9KaNWto0aJFNHnyZMrJyaFvv/2WcnJyaNCgQZSYmNj0+OOPP070oXco5GqSnOhiY/V50zYbcr8bGxH94nDgb3sU+W8rza2E+YtUWGTnUrkKzzAdDVfl1lUO+/bFBConX2lMN4e3iZwVXoY5+ZBd/oRAuoY0kgMC/GsKVFGBuT4kBAq3tg7SgAHNGwgMw7QP0lmm1XdLSuBYc629JDGbVdfPLl1g6EdHo0xLQQGc4WFhSCuTETMyw0Smf7nqDdoaUUlJeC5rrflCNi1qaFAGPHf1ZU42fKVYykZ8Q4dCLkJDvXfE1CL1a1/1Dj2VSQgIgCwTIfAlNhbynp4OOevfH3ZteDgc5716YcyQkenyb2IiOv/KxXZtLVRt8xJXTkRN9FOBDlfxYs6cOV7fS01NJcHVbluN1ngOClKeahn2XVPTMTzS/hQ6bwnaFsUMczIQHq6PEg0KUo1BWsLAgZ5fP96deBmGaR8yM9EVjEgZ42az7xQVSWEhol9lV07tGGMwcDQawxwvPC0YFxbC0PXWLdNsxoK31AWsVpR9mDgRNctsNuVAS0xEmpg268TTGKHN/pCpmZs3+5cV0qsX0bx5RFOnopEXw5yKBAerFGl/XBBST/cVqepJl5d6PhHSq4uK4NCur8fiulxI79YNf6OjIYMyelQIzO2hodAN6uuxH4tF2b9cA6394Ut6iuJJSLV1x7p1g9CGhKjJ1un03s3jeOPLa/7/2Lvz+Cjq+4/j781BwpGEI1whUS65BUVUDhUUUTkEvKn+qNpWxdYDr1qPetRatLbaWo9qi0frgYrihaB4gFgBQQGRS1EuSTgFEsKZZH9/zE52dndmd3azmw3Z1/PxyGN35/wmm92Z+cz3+/nEui2qCSEZYqmCs3t34N3drl2NA6B1yIeb7QbnLPF4/HetABx+MjKMnyOPjL73dnZ2YEU/ciUCydG7d+g0j8eoxNe3r/06jRsbF8tmQMys5m0mLz940H9eUFlpXGCbPcuslf2szjgj8HWTJsboFTejU1q29H+HxPsGOFBXmIHtdu3iV7naqfdmebmxj86djWXMIgfZ2aE93MxgutlJpqrK+C5o29ZfzXPzZgoFJRqBtHrK7sMe3F28Y0cjCf/q1cYHMDOz7gztiGcJXvP3Dk6qDNSGWPL9Bf//myfKNU3mW9MiBQCSKz3dOKZlZAQOy3LDHA5mcqreBSCx7M5xc3ONYJlT6oUWLYy8aMFDNM2L7e3b/dNycoxhX3v2GK9nzLDvjRI8CqVVK+NGnnXYdzhbt8b3fB2oq5xyF8bCKZCWkWFcj+fkGJ/Fli2NaYWFocHqtDTjc9+pk/GdUVJiXMd7vUZA7uBBI39aTg7DrhOJQFoKCb4IP+kkI3CWm2tcXCejQmdtML98unZNbjuQmsyKsdHIz0/MyanbrukA6qa0NCOQFm0QTZIWLgy8GAge6sV3A5A8p59uHPvteqtJxkgS83OfluZPzWJ+H+zb5/8MZ2UZhcM6dzZer1nj/pyiqMhdQSIzZ2NmJsE0IBpOQyx79zY+wz/8YFyXb95sfO7tRmmZaZlatTKCZRs2GMM509KkMWOMQNr27f5iA0gM/rT1lJuDWt++xofTDKQVFye+XclgnlhQ2BWHC/PkN94yM2O7AAdQdzRpEl2lQNOxxwa+Dj65pocakDzl5c6FBoJlZgZW9GvdOjQQbh36vXmz+0B5ixbuzpcLCoxtZmVxXoH6bfdu4zo5XgFjp6HQQ4cagS+zMNDBg/68h8E8Hn8QOzPTqMjZrJnxmWzbNnCoNxKHQFoKKyw07ialpRkf2LpQaCCR3NxhA+qCpk2NE99wYikYkJ3NCS+QqoJ7ZQcP96jp0HEAsYvmwjcjwwikWfMmhQuU5ee7qzgoGdUBW7aMvFzz5kZAwMzbCNRXO3dKq1ZFt064G1NO5+99+hiBtMpKIxDevr1zWqK0NKlnT+N5RobxWezc2fgOKSgIrNaJxCGQlsLS0owDb6dOxofWmjulPjHvurdvn9RmAFGJ9HmMZcgoAJg4yQbqjo4d3RcQycgw8iMVFhqv27UznluDadbgVq9e/txJkWRlue8VX1REygjUfyUl/mIfboW7MRUu35rXa/y0bOkPlNnxeIxgmWT0SKuq8l8XZGYaRUPS0uJbvA+hCKSlsLQ044No5lqIpYfL4cD8wiKQhros+ADNHV4AiUQgDag7Cgrc9QSTjM9uRYX/QrthQyMIZy0mZM2BeNxxxrwtWyJvO5pggdmDrr5ePwCSMXS6b9/4DZUMF2SrqnIuOGLl8Rg50SQj37nX6w9qezxGD9T0dI7ziUYgLYUFf7jq65Av8w4fgQnUZeQyAFCbSEAM1B1OeZPseDyh57TmcE/ra1N6unHR3bdv5G1H871gBu5GjXK/DnC4MXMXxqvn5TnnOM+rqpI6dIi8jbQ04zNt5im0m4/EI7SQwrKzAw+09TVHWn39vVC/MDQCQG2qrzfPgFQQfPGckeHcIy0317ip7ObiOriabzhm4M5NDxrgcJaeHvj5qom8POd5VVXuigmlpdn3BDVvyu/Y4b54CWJHvLKecpM0uGNHfyCtWTN6bAHJRB4DALUpOzvZLQAQq2bNAl9nZAQGypo39z/PznbfQ8WpSqCdaIJuwOHq+++NQFpt/L+bucsjSU+XevcOHM2SlRUYSIumlytiQyCtnnKq8mGVlmYceD0eo9x1fQ2kUa0Th4Pgk1yGegIAADvBF8nmOb2dnBz3vd6jGcVhrRoK1Gfp6e6urWuqqsr9+X9wcZKiIn8A/YgjpFat4ts2hCKQlsKysgK7hdbXQBoBCRyO6JINAADsBN98a9vWebh2uKFkNcGNaqSKjIzaS9xfk+tW89ohM1MqLo5LcxAGgbQUlptrRK7Nu1TRdOcGkFjWYRkAAACm4EBa48bxOY+Ppkdafb0BD1ilpdXe0M5oFRbaT+/bV9q/v3bbkooIpKEaiYcBAACAui1Roy0YDgYEatbMCKbVxg3ugwejW94p12l2dvTbQvQIpIGhjwAAAMBhwm3xAAA106+f8WhXJTPe4tWLLCvLyLeGxOJrGAAAAAAOE9wEB2rXEUckfh/RDK0O54gj+I6oDQTSUCfHfAMAAAAIxUUyACfZ2dLRRye7FfUfgTQoKyvZLQAAAADghpuhnW3aJL4dAJLvwIHA19nZ0vHHJ6ctqYRAGqpL5QIAAACo29z0SKOIGJAa9u4NnZaeXvvtSDV1LpD25JNPqnfv3srNzVVubq4GDBigGTNmVM9/4403dOaZZyo/P18ej0dLlixJXmPrCXqkAQAAAIcHig0AMDVrFjqNQHri1bmv4cLCQj3wwANatGiRFi1apNNOO01jxozR8uXLJUnl5eUaNGiQHnjggSS3FAAAAABqV7Q50uwutAHUX9nZyW5B/ZeR7AYEO/vsswNe33///XryySc1f/589ezZU+PHj5ckrVu3LgmtAwAAAIDkiba3SYsWiWkHAKSqOhdIs6qsrNRrr72m8vJyDRgwIObtHDhwQAcsWfhKS0vj0TwAAAAAqFX0NgHqn1ir8VLFNznq3NBOSVq2bJmaNGmirKwsTZgwQdOmTVOPHj1i3t6kSZOUl5dX/VNUVBTH1gIAAAAAAMTG6012CxCNOhlI69q1q5YsWaL58+fr6quv1qWXXqoVK1bEvL3bbrtNu3fvrv7ZuHFjHFsLAAAAAABQu378MdktSE11cmhngwYN1LlzZ0lSv379tHDhQv3973/XU089FdP2srKylEVpSgAAAAAAUMfEOkSzUaP4tgPu1MkeacG8Xm9AjjMAAAAAAID6INahnVTlTY461yPt9ttv1/Dhw1VUVKSysjJNmTJFs2fP1syZMyVJP/30kzZs2KDi4mJJ0urVqyVJbdq0UZs2bZLWbgAAAAAAgNrSqVOyW5Ca6lyPtC1btmj8+PHq2rWrhg4dqgULFmjmzJkaNmyYJOntt9/Wscceq5EjR0qSxo0bp2OPPVb//Oc/k9lsAAAAAACAqFG18/Di8XpTrz5EaWmp8vLytHv3buXm5ia7OUn3/fdEsgEAAAAASIalS6U+fZLdCriNFdW5HmkAAAAAAACpoqQk2S1ANAikAQAAAAAAJAlDNA8vBNIAAAAAAAAAFwikQQ0bJrsFAAAAAAAAdR+BNKigINktAAAAAAAgNTG08/BCIA0AAAAAACBJWrRIdgsQDQJpAAAAAAAASdKzZ7JbgGgQSAMAAAAAAEiS7OxktwDRIJAGAAAAAAAAuEAgDQAAAAAAAHAhI9kNSAav1ytJKi0tTXJLAAAAAAAAkGxmjMiMGTlJyUBaWVmZJKmoqCjJLQEAAAAAAEBdUVZWpry8PMf5Hm+kUFs9VFVVpeLiYuXk5Mjj8SS7OXFRWlqqoqIibdy4Ubm5ucluDmoR731q4/1PXbz3qY33P7Xx/qc23v/UxXuf2nj/E8/r9aqsrEwFBQVKS3POhJaSPdLS0tJUWFiY7GYkRG5uLh+qFMV7n9p4/1MX731q4/1Pbbz/qY33P3Xx3qc23v/ECtcTzUSxAQAAAAAAAMAFAmkAAAAAAACACwTS6omsrCzdfffdysrKSnZTUMt471Mb73/q4r1Pbbz/qY33P7Xx/qcu3vvUxvtfd6RksQEAAAAAAAAgWvRIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAABLoueeek8fjqf7JyMhQYWGhLr/8cm3atKl6uZUrV2r8+PHq2LGjsrOzlZ+fr759++qaa65RaWmp7bYfffRReTwe9erVy3H/Ho9H11xzTdg2Hjp0SE899ZSOP/54NW/eXI0aNdKRRx6pMWPGaNq0aZKkIUOGBPweTj/33HNP9XY//PBDDRgwQI0aNVJ+fr4uu+wybd26NWT/d955p0aNGqV27drJ4/HosssuC9teAACAZMlIdgMAAABSwbPPPqtu3bpp3759+vTTTzVp0iTNmTNHy5Yt07fffqtBgwape/fuuuuuu9S+fXtt375dS5cu1ZQpU3TzzTcrNzc3ZJvPPPOMJGn58uVasGCBTjzxxJjaNn78eL3xxhuaOHGi7r33XmVlZemHH37QzJkz9f777+ucc87RE088ERDQmz59uv74xz9W/16mwsJCSdKcOXM0fPhwjRw5Um+99Za2bt2qW2+9VUOHDtWiRYuUlZVVvc4jjzyi3r17a/To0dW/EwAAQF1EIA0AAKAW9OrVS/369ZMknXrqqaqsrNR9992nN998Ux988IHS0tI0e/Zs5eTkVK9z/vnn67777pPX6w3Z3qJFi7R06VKNHDlS06dP1+TJk2MKpK1du1avvPKK7rrrLt17773V04cOHaorrrhCVVVVkqQePXoErLdq1aqQ38vqlltuUZcuXTR16lRlZBinnB06dNCgQYP0zDPP6Oqrr65etqysTGlpxkCJ//73v1H/DgAAALWFoZ0AAABJ0L9/f0nS+vXrtWPHDuXm5qpJkya2y3o8npBpkydPliQ98MADGjhwoKZMmaK9e/dG3Y4dO3ZIktq2bWs73wxwRWPTpk1auHChxo8fXx1Ek6SBAweqS5cu1cNFa7IPAACAZOCsBQAAIAnWrFkjSWrZsqUGDBigkpISXXLJJZozZ4727dsXdt19+/bp5Zdf1vHHH69evXrpF7/4hcrKyvTaa69F3Y7u3buradOmuvfee/X0009r3bp1sfw6Ab755htJUu/evUPm9e7du3o+AADA4YZAGgAAQC2orKxURUWF9uzZU51fLCcnR6NHj9bNN9+ssWPH6uWXX9aQIUOUk5Ojvn376s4779S2bdtCtjV16lTt3r1bv/zlLyVJF110kZo0aVLdSy0ajRs31osvvqiKigpdddVV6tChg/Lz83XhhRfqnXfeiel3NXu5NW/ePGRe8+bNq+cDAAAcbgikAQAA1IL+/fsrMzNTOTk5GjVqlNq0aaMZM2aodevWysrK0rRp07RixQo98sgjGjdunLZt26b7779f3bt31+rVqwO2NXnyZDVs2FDjxo2TJDVp0kQXXHCB5s6dq++++y7qto0YMUIbNmzQtGnTdPPNN6tnz5568803NXr06IgVP8OxG5IabjoAAEBdRyANAACgFvznP//RwoULtXjxYhUXF+vrr7/WoEGDApbp3r27Jk6cqBdeeEEbNmzQww8/rB07duj3v/999TJr1qzRp59+qpEjR8rr9WrXrl3atWuXzj//fEmKueplw4YNNXbsWD300EOaM2eO1qxZox49eujxxx/X8uXLo9pWixYtJMm259lPP/1k21MNAADgcEAgDQAAoBZ0795d/fr10zHHHOOY2N/K4/HohhtuUNOmTQNyij3zzDPyer2aOnWqmjVrVv0zcuRISdLzzz+vysrKGrf3iCOO0JVXXilJUQfSevXqJUlatmxZyLxly5ZVzwcAADjcEEgDAABIspKSEtvpxcXFKi0tVUFBgSQjz9rzzz+vTp066ZNPPgn5uemmm1RSUqIZM2a43ndZWZn27NljO2/lypWSVL1/t9q1a6cTTjhBL7zwQkBQb/78+Vq9erXOPffcqLYHAABQV2REXgQAAACJdOWVV2rXrl0677zz1KtXL6Wnp2vVqlV65JFHlJaWpltvvVWSNGPGDBUXF+vBBx/UkCFDQrbTq1cvPfbYY5o8ebJGjRpVPf3777/X1KlTQ5bv0aOH9u7dqzPPPFPjxo3T4MGD1bZtW+3cuVPTp0/X008/rSFDhmjgwIFR/04PPvighg0bpgsuuEC//vWvtXXrVv3ud79Tr169dPnllwcsO2fOnOqiCpWVlVq/fn11ewcPHqyWLVtGvX8AAIBEIJAGAACQZNdee61eeeUV/etf/9KmTZtUXl6uli1basCAAfrPf/6j/v37SzKKDDRo0CAkEGXKz8/XOeeco6lTp2rLli1q3bq1JGnmzJmaOXNmyPJ33323Jk6cqBtvvFEff/yx3nrrLW3btk2ZmZk66qij9Mc//lE33nij0tKiH8QwZMgQvffee7rrrrt09tlnq1GjRho1apQeeughZWVlhbRjzpw51a9nz56t2bNnS5I++eQT26AhAABAMni8Xq832Y0AAAAAAAAA6jpypAEAAAAAAAAuEEgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4EJGshsQ7Mknn9STTz6pdevWSZJ69uypu+66S8OHDw9Z9qqrrtLTTz+tRx55RBMnTnS9j6qqKhUXFysnJ0cejydOLQcAAAAAAMDhyOv1qqysTAUFBUpLc+53VucCaYWFhXrggQfUuXNnSdLzzz+vMWPGaPHixerZs2f1cm+++aYWLFiggoKCqPdRXFysoqKiuLUZAAAAAAAAh7+NGzeqsLDQcX6dC6SdffbZAa/vv/9+Pfnkk5o/f351IG3Tpk265ppr9P7772vkyJFR7yMnJ0eS8cfJzc2teaMBAAAAAABw2CotLVVRUVF1zMhJnQukWVVWVuq1115TeXm5BgwYIMkYljl+/HjdcsstAT3Uwjlw4IAOHDhQ/bqsrEySlJubSyANAAAAAAAAkhQxBVidLDawbNkyNWnSRFlZWZowYYKmTZumHj16SJIefPBBZWRk6LrrrnO9vUmTJikvL6/6h2GdAAAAAAAAiFad7JHWtWtXLVmyRLt27dLrr7+uSy+9VHPmzNG+ffv097//XV999VVURQJuu+023XjjjdWvze56AAAAAAAAgFser9frTXYjIjn99NPVqVMnde/eXTfeeGNA9YTKykqlpaWpqKioutJnJKWlpcrLy9Pu3bsZ2gkAAAAAOPwtul769lHp9E+lD08xpl3scLm/f6uU3ar22gYcBtzGiupkj7RgXq9XBw4c0Pjx43X66acHzDvzzDM1fvx4XX755UlqHQAAqDWV+6W0LCmKnukALGadJA2dI6Wl+6ft2yI1bO1+Gz99KR3aI7UeHP/2AYhNyQdGEE3yB9EkqapCSrNc9i/5nbTiQeN5o0Jp7MbaayNQT9S5QNrtt9+u4cOHq6ioSGVlZZoyZYpmz56tmTNnqkWLFmrRokXA8pmZmWrTpo26du2apBYDAIBa80pD/3Onu+wAnG37nzQlI/DzM61N5M9T5UFp41SpcKz07WNS6bfSGf8Lv86P7xjBtkxGgABReckjjfpWyj3K/TqfnGk/fUqmdN4OKau58doMoknS3h+Nx4pyKb2h5KmTKdSBOqfOfVK2bNmi8ePHq2vXrho6dKgWLFigmTNnatiwYcluGoBIts6Vtn7mPL98o7T6Ucnr9R+4ASDZXvJIG6YmuxVAYm180/hfN+0tjm799S9Jn18irXzI2Nb2z0OXOVQW+PrT0UbvNSDV7dvibrmXPP7P6btdpNX/iM/+X2/hPG/LHOnVJtLbnaVt84yguRsr/xL4nVITP74j7VkXn20BtaDO9UibPHlyVMu7zYsGoBZ8eIrUuL00Zq39/LeOMB6/vN54zGgsdf+tdPRdtdI8AAhxqNR4/OwCerih/vrqZql8XeC0N9tJo1Ybw7wkyVsV2Btlw1TpiPP9r+df7l/u0C77/bzm63l2sdfo+SZJn46VLthdw18AOIxV7HXX69POl9dJXa8NnW7elG5cJH19t5TVMvb2fTTEeCxfK80aKPW4VTrmgcjrLb7F15Yq41jaoGnsbfh0tJRzlHT2t7FvA6hFda5HGhCz5X+SKvYluxUIPlEPp6JcWnZ3wpoCABFNK0h2C4DEW/VXaeProdPf7Sr9OM14bs2pJBnB5fWv2mzMZQ+U9VOMRzNYDaQs32fGbU8vN4rf89+g/uYP0oo/RV5n62dGvrRIVj8aXVtK3pemNg+dXnUouu2UfRfd8kASEUhD/bH0DmlbmGGFAAAEqyhPdgtSx9Tm9sOAVj9mTN+/tfbbBL9t/5MO/BQ47X8XhQbCflrobnvfPhafdgGHu70bjMcVk+K3zTmjjMfv/mk87iuJvM6HJ0vrX468nCc98jJWu76RZNPb7tXG0o5F0W0LOEwQSEP8bZwWOs0c7z/3vNpvjxtVldL6V5LdivrD7u7z6/nx2XZVZXy2AyA661+Rlv4+2a2oXd8/6+7uPdw5uNN++pe+YUtv2FSNLF1tDEtE7fjh2dBpcy8IfF38nv/5ltnS9J7Gc6/lQnr/9rg3DThsla42HoNzCMbDwqujW37ezyMv0/aM6LZZusJ+etUheqSi3iKQhvibe27gCdT2Bf7nG99I7L49MSa8rCiV/jcuvm1JZcEJjKsqpAM7ot/OgR2B61XsMyqN2flpcfTbB+Dets/9Q8Dceq+3tP2L+LelcGz8t2lnwS+kij2xrVtVSRDOScVedxeUezdJWz81hiWidmydEzpt8wfOCcU/OlXa7buItvbufCMoX9P+bfFpH3BY8n1+rN9lc8a4X91bFd/mxFu4IZzRDu/E4aXyQLJbkDQE0hBfZtDDegK1fV4tNiDWyjFxqjiTyqx3opf+LnCe27xpr+UF9jh7PT+wJ5s3TG+0mX2d573kCWyfZATl7KYDsOfxyHboRji7lknr/hvfdhSOlY77W3y3aTqwI7SisFMvqkjmjfcnZ091e9ZKlfv9rxff4q6H+puF0hdXGs83f5SYtiHQpndiX7d8vfO8XUuNx3jmiAIOF9Yb/YfKjM/BprdDl7P2+u50hf/5y+lGpdydSxLVwkDRnhuve9F53uyzwq+77N66HyiEs1eyk92CpCGQhvj66qbQaStcVH2JGwJiSVO2xv/8x7eMIJWZryHSAfklj1S+0ej+vfT20PnFM40T9E9cdDXf+pn/gOz1+vc9a5AxT5JmneLv2v5ymK/BQ3sCfy8gpcX4/VoV5wvnjBwpMze+2zQtvV369JzAabH2Klv/cnTFV+qztztKHw31v67c6++9FHx82POD/TY+Pp2h/bVp2X3Rr7PtU+d5Hw8zPkuvZMXeJuBw9f2//c9fbyEddBilsfyPxmOfP0n9ghL+zz1HmnGs8fxQjD2lXYtDYMs6omTDVOccbsvuie9N7coDHCtQKwikIX68VdLa50On79+S+H1/96TxGOvQTtTcF78KnVa+3giurno4dN6526TB7/pfL73DeFz559ChobOHS2+1d9e78cOT/Qmr54zyB8q2zzPmSdK2udLGqf51nIacrP2P9G5343lFeS2cuAB1iLfKH5Su2Cut/pvzye6KP0vb5wdOM4f1xzuQtu6/0SdCdquqQjq4K/AkPM1hOLkrHJOqbf888PX+LcaQn+Cexm93kj5x6MEwJUOa/4vEtA+Blt0V/TqRhnBNyTQevV7prY7SF1HmdgIOVz++5X9edUiq3Bd++Z63SelhevrEu6d3MGt7Y2UdUfLZBeF7FVdahoUvvrVm+/14qLT6kZptA9FxugFWzxFIQ3xsnSu90SZw2t5Ntbf/su99TxjamTR2F7af/58RRFvzz8Dp3W+RsvOldiP90xrk+Z+/2S78vpwu5j86zXhc+x+jSpA1IXI4B3+yn77+Jcnr642y6BpjqBZQ35m5q768wRhOsm9zYDDMLlfSklulDwb4Xy+63t8b+YfnEtZUW6v+Jm14LbZ1f3hG2rPG+OybapIoedvc2Netaw7usv/uteux9/0zEXoEeKQ93xvDgb66MXR2yfuBQ0Gtdi9301rUhFM+tEi+vN7dct4qqXxt6LkBkCre7hT7ul5v7QyFdNNLLPjcf2uYY561zV5vYODdmmdr5Z/dtU+S1k2RFv4mcNq2//nbEW64OeInHoHXwxCBtFRQuT/xSV4P/iQdCNqHtxaTLJvJO6kMkzx2yf73fB86TZI62FQM+vaxoHXD3N2ockhsueUT43HJrdL7xzuvH8LhosFaKKN0dcrecUGKeS3XOPn81jesZFpbf1CsdGXgspUHAy+6K/YZ38PfPir9+Gbi2hjuBH/dC9Lmj2u2/UNl/pP8GccwTESSpjazDwxOyZT2rAuctuCX7noEVB2Svv2H/TyS09djlgvqTe86L4a64fPxxnc7EsvtNYy3KnzO4Gictch53rJ7/M9LV9vnNwxux4enOB+f51/qf776b9KUBtL/LvZtJ8bA4Oc/k757InT6zq+Mx7faS6XfxrZtuJei+aYJpKWC1Y9KM/sldh92Ef/PLkzsPu18GkUFHCtzSOj8XwZOr6o0kiSTBDOyQ7uMx2bHRF62aa/Iy4S7W/dKQ+nHd+I41NLhAGC907Z9nrTr6zjtD6jjFlwR+HrFg/bLfX1H4OsvrjKKhiRaekPj0baH1KEaDseUVFFmnOSbnKoFO9liqXxYn44fTkP37CqbLr7FeNwwNXTeD88aj+H+Nm8dYT/9gEMPYhw+rEH2OWcnrRlwad0LRl5DJJbbfJxfTZS++UP4ZQb6elX3iDBMsvlxzvOs+3i3m31+w1an2KzoNdJBOPFWSbu+MZ6vf9l4nNbGftmXPM5DQu2O/+a05v386wWnFUDsnHqKpygCaanAzVj8mir7LnRa6Wr7ZRNRsclTw4sm0w/P+J9vmWNcPL3dUdrGl7Br7Wp6UuxySMmno/1DLaNJBj7zhNBpW30XvXvWBR4kzEAaVcaQavZvdrfc+imBrw9sd7+PeAy52GeTQmDX16E9XKO17qXIy1hVVfpzM0rS9v/5n7+coHxubkXKWxUVh+/n9452XmXzrDDbs1wIDZ3trgl7KABz2Au+0VpblQgRO2u+K8RPQE8/m8DQkeNCp337WGAi/2Dtx0vtf2Y8P/oe4/H0MIVAgrU+1XmetQfp7LOlrTbbfTlderWxdNSvQ+dV7jfmW6+37Cy63h8U+/h0+2XMG/hWJTONx+bHGXmSJSNox4il+Hilof30bx+1n17PxSn6gDrN45Fjj5tEOrTbfvrXd0rHRjH+3Y30hkYPgpjZXBxYK+w4DSWsryoPGAedQ6XG+xjwGPT84O7A3gi9/yB9E6ba19H3Br4+7UP/QbLtcGnQy9LUpu7aad7VNhMYu/HTwtBpyx+Qstsawbmed0p9fO0378BSZQypZvfKyMtsnCbt/TFoosveV1UVxpCLi6M8Nq0OCpB9fonU/beB+RbjwS6QuGm6835KZhg9ay72Gr/b0jvsl6ttS39vVIGL9u/sljUvSvlGqXGRzUJhbo6Ub/A/b9g2bs2KCzMPkbfCGL5kPlbF8trlsjXaR4TXddknw6URS6XNH0rtL052a9x5+yhptM1NZCBYuJsZr7eQLvKda9r10O12U+gNq0iOf9z/3Oxo0OrkyOu1v0TKaCx1uEyaNdCYtneT1MiSt3j+ZdJ5vhtmxRGGZX/3hHTcP6Qvr/VPcwrEBPv20cDgzOp/SF2vdV6+5AMj/UqD5v5p5o3xVX81bnQN/I+7fcOw5mnjOq/7zaHz9qw13l8zUJvRpFabVlcQSEsJtZBIP9Ld/xYnSjt8+abWvyx1/IWU1y1++49XrgCrLZauxGVrpDZD47+PeKs6ZOT2cRP8OlQqVZTaH7jTGkiZeVJmru/H8rxJZ+OxgWVaRhMjIbmZo6z1qcbr4HxKktQkaMhmuuWgesqbUnoDRSVc93G3ytf6e03Eu8IgcDiKlOPywA5p7rk267kMpC35XfRtkqTdy4xHczj+1k+Nn4u9Uul3UpOO/mVfaSR1+qXUZ5KUGeVJnrV3menru5wDaXvWGo8Hd0e+016blv8xsdv/dKz/+VtHGO/DwZ2By6x5ynl9ax7Nxg5DOe1s+cRIMJ3bNfzx3+zREGtFb0+67yfDeEzLqMHrDCnNMi9gmaw47cPmtSdD8qRJS34rrfyL8Xud8LT0xZVS/sD4DXuKtUCBZASu32htPHcKpFUeNC6Ie94W+37iiZ6RcCtcINs6YmjZ3aHzw1XutJPeSMrMMZ6P+ja6NAcnPC1lNAqc9mZh4I2YcD3h7LRx6E0WrS+vCx9I2zRd2vKxcTNfMoLyVuv+SyAtWls+Mc6F7AJpc0ZJu1dIR/h6F1emWIcTHwJpKSNJSQDNk9gdlqTte3+UpneP7x3yghHSxqn+fcZ60my1z9ojIcF/v6pKo0edbW+voOCXOd/uQteTERr4apAnZeRKjY60BL98jxk5xol9PDQqkDpcYjwf+rG0fX5gFT9TTufA1019Q4KG/c8fRLMGXiN5tXFs7Q226W3jMR7/O0B95zTMJ1JBjj0/SFmtpIO+k/H5l0v9n3W/X6ekwRtelz473+jhaqrcZ9zk6XKdlHmU/XqrfXe88wcYeRDDMZMX2zF7La96OHLumtoUz0CJpIBj4cY37ReJ5kLr4C7/82guGA/skLrdIHW83Bcs4ns7oq7XSw3bSV/dILUbLelKKbuVMa9Bc+fq1XXFwZ+kpbfXnUAaEMmetdKW2ZF7bpm+ezJ0WrSBNGsuu1zfcS94JIgTaxDtglKj8FCTTvZ5Kd1+z2c1j7xMrLZ/4X/uSTNuqpgFEsyULYjd+ilSqyH288xrZDNIXNePHwlCIC0leJJXTaOsliqlNGnvf75jgZTfP8oN2P19LNOcell4q6SKcvfBr0OllmGiliG3nnQjqBXc0yszT2pYIOV2swTH8oy7TWlRDGdMBut7MOAFad7/SWcskPKDcpSZJwktB/qnZdZCsvIQvguxQ74hwnY9UiSjq/hruUa+iapDRpf3d7pKp31g5HzqeFmttBaok5wq9ZqCi4j88Fx0gbSts43H4GPaZ+cbj3a5VML1WDJ7U/f4XezFaiT/0J26FESTpKLzjEDagR1SVos4bNDyd597jv0i1mFMdoUGrDZ/EGMzqoxjR02LSqSSRoVSt4nG+9OgmTHNTMEx8CVp9lnuttPlmuhzEGa1DK3snkwHdxm94dNdpm14yRN48zdFK9Rp03tSuxHJbkXdVb7eCJxtnW0EGhq3N0ZoHPUbaeMb4dfd9j/76dEG0uwcfZf99FPe9O2jUWgxicwc6eQ3jJ7na/4ZOO/1lu7zoTaIYyBt6Z1SH0sva+t3liddUhVFweLO5vp3/1ZL4Mz3XZiio3k4A0kFybxTu/rvzvP2/GAcZDxxqHnxw3P+54mo6LXoN74Elta/pddoe0YT+yGQWS2NOznB092euNUnHS6Rmh8r5XSxmWn3/ltOUrvdaPTySLTydcaj2c2+zCEgsPxPxoXIZxcYJxJNOhm9AzdOM7pBE0gD7FWFCWhV7A0dUmJ1aE/g8MxohvNbe0Dv+kbK6+k/LpqFctwOK6yqsA/eRCro8/0zUqdfuNtHPC2+yXh8PT9xedKs/ndx4IVOpEBazLyiXlaMetzif25+jqI5TywYFX0grabpN15pLI32DaXcMsfo5WL2Zg9n7YtGsnaPJ/Bcc9ZJUvv/k3oGDTGvOuQbCmvz9yj7Xsrx3QioT5V4ozFnZO18jxwuyjcaQbMtn0j7SqTGRxo9ePpMkhpaqlDu9wWdhsw0gj8tTpB2WHpT7V5h/E/aSYvjNcNZX0kz+/pft/UFonr8Vrbfp7ldjcfgnJ9ug2g/q6z5NV6Xa6Vv/2E8X/13aV+xcV3QtFfgcp60up8L8nC0fZ702UXSSa/4p1lziJvPm3So3XbVEQTSUkaSDnx23ZRNb3eShrwnFQyv+X6sX+oZMQz1s95dPFRmPzzplLcYPhKt0Wv9F6h5PeyXsTvIWt/DghH2gbS0BjW7A2Ke0ASLdGGxe4XxuPdH4472Xl/VQPNuGHC4Kt8YmlcknuwqbErS9J7G5yrcBdprOcZJuSnWu/TvHS0Nfjc015nbys8Hd0oNmob2CF77Qvj1FvwyOYG0eIvUE2fnYqN3g2nDK87L1qgdVfG5CZfqYqlkF3wBG6z9eKl5X+OYv+Q2Y0h061Olja8HLnfeDiPRejC7oHPlXmnlX43nHw0xevBfaNP2fVukhq39r+f9n/HT50+BQ0IPlfl74Oz82kiqffxj0szjjYv0jj8P3fY7nf3fUYnIy4u6b+8mI2i2dba0t9jo5dl6iNT7j0Z6EyfZlhsZHX8h9X3Y6PG16R0jz+SubwKXP/4J/3PrsW70WuntoIBFh0ultc+7a3/T3kagz+zZbR7HjrbJzSbVLIF827P839EdfxGaO7TvI8Yw83COvNgY3WIG0ir2SD88a2zbLpAWqUc8old1SNrwqqRX/Hkwlz/gn/+Db0TBrmW13rS6gLOQlJDEoZ2m1g6J+tc8Hf991TTYdWC79P7x8d9uKmrSPvLFjt3ftZnljlmboVJWUD6mAf+VRq6IvP8etxq5Iewu0K1DSa3MO80bp9nPD74YMIfIeNJS9y41Dk8Hdxr/5wt/I31yllFtN1yvsJra+qn9dDM47VTZzLwb/rIln2O038c/vuUfWrPSpmp0Zq677bzRSppmc8F0aFd07TncOSWWL11lBEYT7fOLCWbEQ//nnOed5ZAT0FrBz052S2MIadszjGHb+QONC/bWpwUu53RusOCX9tNX/dX/vMP/hc73VknT2oROt9uXt9JfXXzXMuk7X5XDXUul+Zfab8PK2puoprxVRiEF1D17i6V1L0kLrjQqyy67W5LHqFR46nvSiU8bxTHCBdGC9Z9spHDxpAUWx7Fqd7b/ubVHmjWNjWT0bBvwXOC09pc47zst3UgVY4p0fm4NpLm92WTqa7kB3n+ydOxfAud3mxh5G5k59sVHbPN+EtKIq5++dJ5XURY6LcchD209x39dSqgDAaDTHPKgHNxZB7viesKXqkb8hTvwS/7u5ZJ0xAXGyUdOJ+flTT1+Z58bov0lzicF63w9S8wKpFYFowJfV+7zdYmX0WuudFXkNgHJUrlf2vyxEZj6ZIS08NdG3qLuN0mnzjQuCo68KHCdTlfEZ98V5dK88eGXsSskcHCnMZw6WtbvDEn67p/S3POM52ZAz5oHMZrhM3bDWqINom/9VCp+P7p16gQXN+VqknT4uEdDp532oXTsQ6HTv3sidBrc+1mV1KyP8dzugrr5sVLR+dFv13psbdZbOuN/qj4P7XKNP2id3si5F2pwD52QfdgUSQo3vHr/tsDgr9k7dmpz+14sP75lv53XfDfOVkwK375orHlK+vDk+G0Psdu3WVo3RfriKiNw9vWdRtC1153SqTOkE/9tpCppVBif/WW3NR7/F3TctW7f7DV2gU3wooNN0HdghN7R0fSMtgbSzpwvHWNzEypY4yONx+CbU+Z3TTScCuXYpQ2y+05A7L4KqtQZKW2Sbeqe+q/OBdKefPJJ9e7dW7m5ucrNzdWAAQM0Y8aM6vn33HOPunXrpsaNG6tZs2Y6/fTTtWCBy+p+Ka0We6T1/Vt0y791ZM329208Tqatfx96FdU6uwN/dmtphJk01HICfNKrzr3JQjgEkZsfL2U0DL9qcC67YZ85nKhHEaj+7in3y9ZlOxYZw2FQt3mrpJ++klb8WZozRvrfOOmnRUYC+iHvSoNeljpf6XxXXDKWlYx8ljXxqoshIh+f7s8lY1oWptpYw7bO81oGXZjuXBz42uuV9m/xv47Uwy1SARQ3gbRdy6XyDcbzD4e4T+7ultcbvvd5LMP4Yt1Gm2Ex7sCm/W2GSt1vDp0eqcoqwjP/58esl1qdar/Mya9Jwxfbz3OSbnNs7Xqd1NPXszTXl7PQrNJt5z1L/rOACuo+dv/nK309XuwC1GZvtuDvl4M7jeFiwT4d63++Zbb/udnztPg94zEeN10P7oxc7RiJsW+LtP5V6YurjV7ZS28zCoL1vN0InPV/Ruow3n0OzWiZIxqsggNC5uc00+YY2uXXga/7PhJ5ny1sRtw4SW/gL0iw6xvjc2ynwJIqYcw66ZgHQ3uutrEUAuoU1Ou02TH22zUDd8f9I3ReRXngazdD/Vfb3KiBPXP4r2nhhPDLF09PWFPqsjoXSCssLNQDDzygRYsWadGiRTrttNM0ZswYLV++XJLUpUsXPfbYY1q2bJk+++wztW/fXmeccYa2batD1YDqGo+lOmRtsH5ZRrLneyNxZE2sCw7C1LAHXiy9HxBfaZlGXojqZMIx/v86XRxbCwI4VRQK6aGSZhQVCBbp4BLrsm6Vflf7Q0qX3hbfO/KInz0/GEPm//czac7ZxlDkFscbiWJPedPoQdm8r/v8UuaQlUjf6yNXBr4+Y4HU5gzp2L/aL29n/2bpjZZSySyjB4kUGgCzcsrfktst9ALXGjSTjIvngIIiEf4e+ZGC9y4+g+/1Mm4c7StRQo7JH/Q3hiEFG/iy8RiP/HefXeBuubwoh3emhQmqILEaH2EM+Ro8XTp/pzGtyzX++U17R7e94It7ychz1OY0I1fZ4HcD541yqO6+wtcL8XOboV3fPR5avGS3cZ2gH31DuO2Oi3Z5Glfa9Ha0+jgoKGwNek1pIJWuDr9+JJ500kLUlv3bpA2v+dMZLPmtEZDp8VujV3b/Z6WOl/p7VSVamk0vKrv/hXNcXie5GS4p2ffwdVLoq2ad3z/wBrM1aGfmcTOD7uZIjWBm/uMTfQnqx6yXBk2xD9aPOygV+G42tRwo5fUKHD4YfHPOzTnNl9dHXibVbf/Cf/5lFWn0WPAogBRR54oNnH322QGv77//fj355JOaP3++evbsqYsvDjygPvzww5o8ebK+/vprDR3qkIcr5SVwaOfGN6RtQV1vc226dzrdJd/7Y832/9HQ0LvSpSulVlF2k7dW/WR4XvJ1vT7wjlWP26Q5o5yXdxT0v9/oCOPuYgNf75Iu1xq9cewSngZf2KVnRXeyu3+7kWA20d7tIo1YFjkBdDwlO+ci/PZvk7Z8bARJ9m40qsi2Od1IVmx3t9uNoR9LH/nyGTU9Whp3yKhUuesbacd8+3XyugW+zj9BOs3XM8SsHOnWJ2cYjxdH6GFVud9+eukqo9dpOK/lGifwbpzyliSvVOLvHa/NHxuBAVM0n4lZp/ifH/jJqEAYD6Xf2t+YMv8PgoOJibT6b9Etf6ZvZEFWS+dlOl0hff8v/+sjx0XdLITRboTxeOHewOOfJ80Ipu1y2Qs5u5XzvMwc48fKqdrbkt8a+ZHs0ixIUkWp8b/t9RrDtDe8Zkxf87R0wlP2OfRi6ZUZfANtblAwufJA9NsMkFaz4dBwtn+7tHWO0bum7Dspq5XUerCRzqBxhzqa+9jmWBLQ+9qhc0SbM9zvovvN9r18wzYr6PPUbaIRcPekGecGG1+PfBxsd3ZgipTGR4Tp7WcJjDXvK41c5pybU5KW3RN+33Dno1OlYx6IvFwwu57IKaDO9Uizqqys1JQpU1ReXq4BAwaEzD948KCefvpp5eXlqU8f57HXBw4cUGlpacBPyknEhW/FXiPnzKqgHgfB1cyMBsR//5JxARnsi6ui3441kLLtf6Hzo727jprJaGgkLDa1Gmw8BudcsFaHi6TTFdIp06SjrvZP6/eo1KjIfvngYSdpDeSq18l2XxLiN1r6P3fWg//8y6Wtc52DALGI57bc2PJR7e4PfhV7jaFLi28xcrh8daMxrdfvjTvqxz8uFZ0TexBNkhoG5X9J891zO3OefeGYwrGBr8/fFfu+rT46Tdo2N3S6Ody0UWHoviWpw89V/Vk9+Q3n7f/PEoipCvMZKhztvytv+jjo72BWAHRjzxr/8+CqhVWHQm9OuXVol30lY3PYTGYN/icSzWxjuOBY8HtAL7bEyGho01PGIxWek5j9pYW5p/9mmFxUm33nf+Vr7YsM2AXSZkdRJd4pJ9DOoCIMNc3NdHBnzdaH34GfjAI6i673HR8nGkHKrtdLQ2ZIA/9j3KRt0rGOBtEUOY2C003T5sfFvSkBzF7ejS2B77QMI5DWzOy1GuEcedDLRo45JxfulcZuNJ5TlTk5POn2o2+Ch9IGC3cTrB6rk/+ly5YtU5MmTZSVlaUJEyZo2rRp6tGjR/X8d999V02aNFF2drYeeeQRzZo1S/n5zj0/Jk2apLy8vOqfoiKHC+d6K0FDO+0+aM4Lh58d7i5DomyablyARnLEBcYPksfMDREcMDrbMqRi5PLw2zjxaeOuVqSKY9WCvh4btfP3SAt34rze0stlvyW3y/eTjccfnpPWvyy90lBaeqfLtkRQFwNbFfukbeQwqrGqCmn7Aumb+6XZZxsJ+0tXGkmGh7wnDfyv1Ony+OZwMSt3nvhM6LyhH4YmCO9zf+Brs8dnTTn1RGk5yHj0VhpDs63tGXfIaLcZxG51Suj6dtxcDI9Z725bNfF+f2nWoNjXt+vZYvYQChewSLQmnY3Hxh3C51ENd3Hb7FhfkNSnbRRBEdRco3b+42zjDu4qZ7vVPkIhEjuf+Qoh2AW8Kg/YB9Iqyp3PN4OHLgUHuZ3U9IL/AKlpYnZwp1EY4ssbjMDZomuN3oldfuM7Pr4gdb5CyulcdwNnwcasDT/f7End2ZIqZNyh0ONwPI1cYQytlKQxP9gXCen1+5rlUm1+vHGMMgst1OT96u4wtBSRedLtvzs3OxQNNDn1LK7n6mQgrWvXrlqyZInmz5+vq6++WpdeeqlWrPAfsE899VQtWbJEn3/+uc466yxdeOGF2rp1q+P2brvtNu3evbv6Z+PGjbXxa9QdtZ0jTQr9QnfTI255hJxLXm/4EuE9b4+8D6s5o9wNVTjpVenou6PbNhKjx62Br80Dbq+7pbweocu7YXewfqN16BCQBs38d+ROeDpwXv/n/M+tB6BplpLoC37lf/7dk8bj8vulnUujbnKdMb2nVOJwcN02V5rltigEqnm90u5V0urHpLnnS5+OkYpnGL0yT37d+Ok20bgrnagLg0btjBPlTpc7L3Ox139ibX72ut1k5CcL5+h7pIbt/IGVWHSz9CAOvohNyzB603grpdanSVk2F8PjKkJ7N7k5HQoOVi67z1Vz1bAg8jKm4N4ukpFTbffK0OmmLbP9N4Xsemmb/yd2vdVqje8coMetsQceGhUEvvctQ0cqIEHSG0qeTP9nfcwPUl53/3xrTrVYVPdoidLCX/uHggezuxgMZ4rNaAo3N1vNILy3SiqPIdjulKf1cLVvs7RjYWK2fXCX9OM70pc3GoGzhb8xvh87X2UEzga9KB11lZFi5nAJnHVxSODvxPwMmnnJJF/PsAT+vnnd7fO5WfX+g/3x1q2zvnAY0RSDtmGK3az5d3z2UV95PO5HsXWOYQRYPVMnA2kNGjRQ586d1a9fP02aNEl9+vTR3//uL3XbuHFjde7cWf3799fkyZOVkZGhyZMnO24vKyurugqo+ZNaEvDleuAn6ZswFxGNg6vAufhQLg0KhO0Lyuey7iXp7TDV5VqcGHkfIerkRwBOnE7W4132ev9W+15eZpf64PLh1gp1m94OnBfpgFT2XfTtC5ZtM6ylNuxeEZqUtPh9X2+AOCZP3vxR/c7Ltq9EWvuCNO8yafYIac0/pSbtjYphQ6ZLve+RWp0UvspdMjQ7RjryZ5YJLt6jFidK7S+R+kZRhMDJKW/7kyYHB7dV5f9eaHasf/Jxj/oCbXH4/1x2l7vlxmwIP9+pLcUzjKDqij9L03sYQ5bsfHSq/8J15xLLdi3vR01y5gVbE/y3dqHovNgCaE2D03ZYzmfi/b0PZ0OmS31szvnMVAkeX29HM5l4tMzhdoNeiW6I2ndP2g852vujUY2xpjb6hoaHS+9h/l/v+EJ6q30MOznMjm2R8sy93VF6/4T47OvgbmP0yFc3G4GzLyYYuUA7/8oXOHtJOmqCkaPzcAmcBWsc4yipbjfGtx11SdsaVrRuECagt8imGIpknM863RhOlOBCJnVCFJ1vyO14eEQRvF6vDhxwTuYZaT4U/4vQPd/7S43b77Bm29+7yZ/zwjxoz/s/+4pLppAqiy5EOvCewdC0OuOcYuckxuYw43aBxUpcXbi5+Wyc6+vx2v/ZwLuA1v2M87WhfF1QdbwI24+UdyAcM7fK/Mti30aszL9b8Gdo9lnG0MN4Xhx8fHr9qmp2qNS4q77oeqNy2NLbJXmkYyZJp86Qjvub1G5UaE7AuuaEp/zVt8IxS9cf9w+jCtexDxp5x+yGh0SjYWupQVPjeadfGUUSTD1v9/eMtlb+7HyF8RjrMXHAf6Nb/oSnI9/JP7Tb16ag//GFVxtVqc2eNXvCDPkJ7n2z4bWgwgNp8fsMbXrXfnpXm6ItpmMfjG1fIb2KCKQlRVZz+yCZecGa379m22/QTBr9vXTkhZGrwwWz+7/2VkhfXFGzNhkbMh4GPB9mEd8ywZWC3WrSKfz8bx+Xfgiz/9q244vw86PtCWh1qEza9J60+LfSJyOkL640vvc6XmYEzk6aYlSFzetx+AbOgsUafI41AHc4OHVG5GXCsf5vBKfmcfqc/vCstKiGPWujseG1+FTSjjePR6rc527ZovMT25bDQJ2r2nn77bdr+PDhKioqUllZmaZMmaLZs2dr5syZKi8v1/3336/Ro0erbdu22rFjh5544gn9+OOPuuACclg5S8DQzognDMH7873u/6yRbD2Sd31ldMs3Sm+5zP3TNoqKNaZtn0stHKq7Zbeq+ckh4iegalGQH9+Set8r9b5P2vSO0VNm5xKXJyguPhvWwgcX2RxgDu6SGlp6hS39vWXzES5ei6cb5dZjMTWJQ0LMISx2Fcu83tiqo1ltnGYkzTcdzifNlQelHQuMk6afFhlFMloPMS4Icg6jISjBzFxqpg6X2hcj6Phz6ctrpa4JPEn1eKTWp/pfm8nrJWPoVPWdU19wvdghGBRJuyirB3d2cTFv9ub54dngGcb3R3VuxjA3BsyKhZIRiPjswsCgnyeegbR3Al836SwN/cho7+pH4rMPk7U3YTACacnXcqCRWqGhL/dox1+EX96NaIcg2+XrfTfCEHPX2/YFhRq0MIYxrXnKZiHf52pvmBu9wTZNl9oMNW7MRRoO9+ObRqAx1vOEeItY3CiK641De6RtnxlVNXd+beTDbXmSUV09r2dqJJwvXR15mWB2RXZSVatTpK2fBk20/N90/23g8THY5/8n9bxTCRm9Fc7eH41Hr7funAPu3SQd2CH99KW75c10Fy3i1AP1MFTnvqG2bNmi8ePHq2vXrho6dKgWLFigmTNnatiwYUpPT9eqVat03nnnqUuXLho1apS2bdumuXPnqmdPqio6SsQHdNm90S1fffc/wr+ceSJinki5DaJJ0f2e5gVFuGpJ525xnoe6o//zRvd+q+CeaYnWpH3g6x3z/c8jXbw6JVSP1rqX47Mdb5W73jrm72jmewtQJZXMdF63cn/4YLzXK80918gTVs1jDO0oW+O4Wp3h9Uq7lkmrHpE+Pdeobrz1U6lghHTKW9LJrxnJkHO71p0TqHho1ltqNyJ0enqEgPaxf5WOchhuEQ8dLBegThdmmTn20xsFHYMaNJWO86eaUIXLO7cdw9xAMnuOBQefy9dJ8vov5sNdVO63HK9mnWw8rrN8L3rS5KrqcCyOmWScUJu9AyMxq66aFy6ZYdYLvkFm/bzEK58OYlcw3Bh6bgZP+j1a822W+vIBDrOpXuuphfv/1f+f8t8oqjoo9bzDfnnzGG8N6B3aY9zgczJnlDGUTJI2TA3fHqfk37Ul+HwgUo/BcOcPFeXG8Lklt0uzRxq96UtXGSkChrxr5CTuep3U9OjUCKJJ9jcjIznFYZh/Kjp9Tug063GiUZiee6XfSutelMpWy7hxVYvDrM20LlEV7kuw6Q4VYSPp86eUzZdW53qkhct1lp2drTfeCFPKHmHE+cvBqXrHSb4TgpDggW//kU58N0yVul0f/sts9yojH8Kub1w11dYiM7mnV9pi8yWMw0dHSxU38654VENDInw2znJxZ8ZuuGf15iOcAB/YbjxWVdSsqt7nF0vtffmqXvLEPmzukzONu51dfuNu+aZHh07zVkm53UOnm+aebySvNfNbhazv+5sF92IqmSm9c1TNhwQmQvkGo8fZ5o+M3k9Nj5banG6cXAT33Eo1kYY2dvm18Rn67gnnZTJzY+/l2G2iv6eUUy8mu/fomAdCC5xIxoVe+Xpp1cPGe53hohJwuKTl39xnVJf7yi7njdfImScZPTe6OiWmthxzzSD3Xmvi8zj2SAuW3tB4jHThO/g943PRyFd8Iecoqezb0BshF5YblQzfah9+aGdamO9d1K4mHYzh1fHQ+jSjaIZdMYnR30tvHRmf/ThpOUja+LrxfKGvMqK3wvm7Y4+v8IL1f3XnYunTscbw946/NL4D1/xbyh8gNTVv/PuOYxteCd8eT5xyOsYqOO9rpIC8NTBQsVfa/rlxw3DnEuO7ouUgY7hd7/siHxtSgbWIzbHhUuZAGY2lDpdJ3z0eYUHLcSIr33hserRxg9NqxwLj8dOxRq/PcJ0r4s28Cb2vWGqc4O80N6oqpEO7jOfRft+0sRmJkCJSJNyf6moxym5WUXQKpJkn3E6+mugrZR4ukOb7Ivz49NB5Zo6W15qG/533mV1qK6WPhoRvEw4f2b4DZrhhoNFq3td+egu3w35dHpDsKoaF85NNdT/J6KYeq++fMYJB+6Pojdnq5NBpXq8/75OdA9uMQIRTbx673mq76lh104M7jUTUC39t5Dn75o9SRhMjv9mpM6Rj/2z0pkn1IJppXIQeiHZO+JdRmECSLgjz/xSJ9ULFrgdgcC8XM9m5XRDNZBZZCBc8OskynKRBnvNy614MnWZWqLZ+FsINTyk813meFN+hnaEb9z1EuCguONMfRJMsNw6C3pOMRv4Li3BtTqtjxTdSWaNC6cR/xWdbp82SLvAFzU8IGkrZ+Ahp8Duh67iR77bKq81nOre78//3yj8bj1/fGTrvi6ukSl8Q/YsrjItn8/vO7Xl5snuk7V4e+Nrt98jskdK88UZl8qJzjeIwJ081Ku82P5Ygmqnr9f7n3W9KXjsOBxfuCRwB0t7mfHfUt4HDpc3/s9we4bddm0E0q1h6JNZEVYX9Ofb6Kf7ne35wt63mx0tnHwajRBKIQFpK8EpVlg/q2v9Gn8w1WtZcNReWWxKT+/7lwlUPe71F+AO112tcuNpd7Gf4AnWHdkfoveA7ca9PCczh5yYvkSnWIPMQlzmWEvU/NtOhspl5Ub4ihuTe5l344ENDVYXz72GXlHT/FinDYaicZATLN7wmvRoUZDKHjFs/uzN8v+eMMLmSakPlfqO32ZLbjCTIC39t5JLofrN06kzpxKeNRNnWfHrwC9fb0hoQad7PyJEjGceJgS8E5juLt3EHpZ8FnVS2Gx15PTN3V7h8Ttb8m5FuIgWb5+tpu+phd8tnNJIKRgZOsx5nEzW0s+PlRs8ySY6nlE7V5bq5uWgMF0jjQrxe8qT5h1p3vjJ0frg8hdX/izaG/c/dcGDbYLvHOWi+9VPpvd7+nEeSAm4GW49n3z1uWe4wCaRVBe3b7TnNKW9JJ79uBIeaH8fn1Qk326JjTQMx0Kb4T3oD42b68cFpR2w+b9bz/yMuDH/emig/Lard/S3+rf/8wsoaJ6jY425baelSToRiKfUcgbRUsH9b4Ot5P09M5P2UN6WmvvHV1ovJgIOE7wTlGN9FvuOQuDAnGFUHpZL3HWZa/qXDRtR97TCH1aGeqYW8U+Ydr5aDwi8X6aQzUV26l/wuhpXMniWWv5+3Svp4qLTaKfeN5TNnnnB/Olpaept/+kuewLtuexzuYC27x3icZincsNOh512iVVUaCVdXPCjNGS39b5zRC/CIC40g6qCXjYBtk47JaV998bMq/wXWxV7prIXSsLnS0X8wei1I0nBf1c0jL/b3VIkX64X16LVGrxU3F9tp6VKXa/09x+xYP9vN+0XXLjfDWA/skD63nBAHX+gHVANMUI+0/s9Iub7ghVOPnb5/DZ2WP0DK6exbL8ypaHAAoXH7qJuIeiJcLj1J6vuwNHKl83yPRyo8x3m+f0GHyWECQcFDxqzeLDQKElnbYQr3/WH68U2p+L3Iy9VEcLAsgEPxsEhqkqoi1aQ3lAb8J9mtODxECjyalYSPmhA4PX+gf5in3Q30rJbGEPXaVvZ97e5v9SOBvc/s7N1YO22pBwikpYQaDOtc9Yg03SYHkp3CMf4qienZ0vm7/PPSGxpd9M0TCHPo3dFRFi2QpGV3h04b5zsZaWG5WGkUJm+N2Y7v4zQUAXXHqG+jXKGGw56zW0dYIMLF64Ed/h6i7/WOvL+qysCqWebJvV0X96h5gh4lff9v4467XQ9QT4YC/342f8tDZYHtDLb9i8DXFeUu2xpnXq9RyOC7p6TPxklzzjaGbrY4wUiAfMqbUo9bjOBOqiRBrg1OxRaO/n1okHLQi85FAaJ1nE1guEl76YzPjYvtnjbDtIJlNDaGau38OvKyHf7PGPor+YeFWjn1jM1obFQls7N3o7TO5o68aa3lwiyhQzst+zAdEaGS+hmfW36vMIGL4DZnNvH/HZFawg2PlowKyGnpUqdfOi9zUoR8ZJJ93k/JfZXYqkrph+cDp021jsKwjIh4JcvdNhNp7yZpShRBL0ZyxN9Fe41Kpai5TIfjQ7frjcJGkvSyzTlcZbkSfhP+x7eNkQ1Wy+5K7D5NS38f+DrWz3GkY3uK4WogFdh1Cd9X4m7dr26Udn8jfTzMP+2gy1w11pOetHRfF33fl5TZNT/fl2cqXLL2YHY9zcweBIVjLMNywn0h1qNKeQiUG2Zoh53sNpGXcdL2rMhDQ0u/Cz+/Yo+qA1Dh7mqbXm8hvWIZJnb+Tun4f0rrXpC2zo28fjhmUMN6QWz22rQ76HrSA4eJr3kqdJmFV/uXrdhrBA6tVv9NWnqH9OVE43W4ap7xtn+rtG6KtOBX0uzh0qq/GYHRE/4pnfqe1Od+Y5h6NN9PODy0O9s5Z1JeN6nPfZG3sflD4+5u9ZDoCJr1MR6Dk+tLocfpUl9Fv4pyI5BtJ2C4c4TvoVoJpFmOq0eOM4bZdb8luvWsMhrL9lh95hdS37/F0kIcjs5caDxah12dFnQxeuFeqZ1vaHO4Kn12rFU6Jan1EPvl3N5A+eFZ6YdnIi9XVwJSa56OsEDQZ/DzixPWFCBmzfpKHX8ROK1D0BBGa2XpvZsC5/3wXOJvki6+xT6/90u1cE26/I+Br4PPK9ymuTFzkUMSgbT6ZfsCX6L+IHaBtKookxtu/tD4oO/bLE1t6n69o4Iq/wV/SeUP9D0Oks63aXtNOJ2kVB2SiqeHX3fM+vDzUcdFcVBqPTix+3GTuN96APvw1PAV/oKT+Gc0lgqG+9Z16Lliu51SmwOn7/f5+vfSp77k5UvvMB7NhMo/LbYsHpS7Zfu80P2YOdsO7pRebRyae2H9y9LyP0mr/268fj2BOcYqyqXimdJXNxt5Fr+6SaraL/W628hzdvxjUtHYwJMt1E9m77OaMHOblNscL+wCSMM+k87dFjpdCj1exZrH1Jqf1CpROdKceKvcnZgf96jUtI/9vFHfSh0vC52e193oXYDUYA63shYZaHNa4DIZlptLTjn5gpk9zE6eGn65Yeb3hM3xfsjM0GkRj/lmj7Sgc/OaVKKviUj5kJwC3UBd0vdhqf/kwGkDgnqGWvOGvlkYuo2di0PTITlZ+RfphyiG477kMapUO/l+svM8N6oqjZvDrsU4GifFc6IFI5BWn3zQ36iQE8wuoBRrgvVpDtUQL3bY3vGPBb5uerTU8w7LBI/U4kQpt2sChms4tGlKg8ChcXasVd4AJwXDpbbDwi/jVG0yIKG55X916+zw/5/BQ0k9af4h1W4d3CW9lie9c5S0e6Ux/HL/1sAT5h+nBeZ1kYzvkpmWKqZpGf6LgS1zpLQww1TeiZBHqXofcSyEUlUhbZtnVNScPUr6fLxUusq4OB8yw0hU2/EyqXGUPRhweBqzLjHbXft86DSz8mcws7JwsOCL6nB3xlf/I3TavMt8T5zWq4UeaZI/2OGtkuSNfIe/67XOBToatpbS68DQNySXmY80eGhn/2ftlw8e/u00FKnNGVLhWPt5Xa7xPzeHetoWIbD5/7ar3hmwjkMgLbg6Zm2J9BnN6VI77QCikds98HVeT+dlR/iC1G5ukpaucrf/H54zzpPdCD722t18W/Ard9tysvZ56Q2HVDNOI0pikd0qtvXqKQJp9Y1dgMz25Nk3bfsCozR1LIbFcDe/UaHUJ6h76eB3pWMmhf9Qu0n+HKyudJtH7Yv1DmqjKAOoXa+Vjrra/9ru/3TLbPt1c7s4FxoI7jF6qMyoFCkFlvU2pUdZ9WmNLzfgnu+l6T2k13KNUvXlGwKXC8jrIundoBMXT7o/8PXRkPB34g/6epzGGsR3w+s1AoOr/yHNPV/6dKy0+QOjl84p06RT3pC6TTSKonCXPbUMmSk1tLkDXRP9bQJo1aL8/woOIIc7Hn55Xei0yr3GPs2L4uCbW4kY2hk8bEayVFT0+goKcBGOeAm6ZLHrrWincYfQwPap7xvD90+xXAiPXmvZtmWImHlcT28kDf0kcDsxDQUzvxuCP49BRQgipYWIl0jpFGI5VloDkUAiDLUM776gzPkmlSQ19QXZMnMDp8+/NHRZt5/p3cuNQiDBgo+zM/v5z7lNNQ2a2VkfJv+jbQ933++5+LfOveGa0PssEgJp9c2RF4VOM+96lVuqcJgXs0tvM6rSuWXmqpCklgOM3mRtz4y+nSaPx/jyy8wN/+XlJvFzCN/v+NOX7haPJViHuiktUxodRSWc6qIXNbzQDD5Y9bpb2vKR/bJ9HvAXRggerrn3x8DXFXulkhlGdZ/dK0K3FW0Or+//ZQTk+tzvn/bTIqNbezjB3dIP7gys/tNuVORhNYt+E35+tPYWS2v/K8271MhztuZpI0l9/2eN6ppH321UVuXzndoKzvRXB42XjjaBJFO0F59L7wh8nRkhsbotr7R5lkN7EjC0M/iixNTqFKlhO6PHZ6df2C8DRCvW/EUFw6WzFvlfn/+T1PaM0OWc6M/1WgAAYYZJREFUej+mNfDt3xOYP+2YB2oWSAvukbbhNf/zV7Kkd7sk9saT6bsnws//7MLottfxF1KvWkqgjtSU1TJwFJNTgYFg6Q0jL+P2mtHJy0HnGT99aTOkMxHhF5vvik3vGdf+Wz4JnWdq2FbaPj++o0FSCIG0+sa8i73nB/9FvXmwnmtJqNqowPckyrvU1qqYknTmfCO3UKJFmzxW8v9eM/uFX840zkUZchw+giv+hXP0XcaFa017bPT9a+DrcMGbtHQp3XeCHtwdu0FQTzDzZN3p4jzai/ay74yk/z1u808LTrjsRsOCwKEx3/zBueKZadM74ee78ZJHWnS9kefs6zskpRkXNafOlI57xEg6Ha/qjkA0BpmB5QifydxuxsWA6dug4Zq5MfbkSssM/O7rZ6ZXSJOW/M7IDxgvTr3mTp8jtTopfvsBJPug1cnT7G/eDH7Xknc36AIz+Phqnd7LV9nOekx1Or72uDW24VEf+IqcVAXnL7Y5/yhd6X8efIMtXho0j/MGq0RBLyTUeVtjO8dzM3ojp2vkZSod8oxXOlxHrno48PXmDyLvI2o2gbQ5I6WVD/nzuVqZ36flG6Xv/+0vDOZGVr50Yg1zutUTBNLqm3njjWTgb3fyl9j98Q3fTK+lMoh5YR7DXeqxG6Xzd9W8rUYD3C22P0yV0ROcKg5V+X/fmSfUvKIh6jmvcefZabilG22HB77+7snI67Q7O3Ta+lekJbdbmuYLioeceEewZU74+dYLBLeVB03tRhu53L65T5r/S2PavhL3+SVqqsuvjTxn/Z+VOlxi3FUDattJrwa+tusVbmfUSum0WYGVCE253RVybGzuuyH0sU1PmmoeqWBkYO6YVr4CJJ40owLvqr/ar/pq0B39z8ZFHvLVKM5DZYFw7IJWRWNDb2BJxs0UM2DmplfXeduNnt29/xB52VGrpXPNNAYxXEaVm0NIg9vl29bySf5J0y15n6JKJB4FNwWRJGmkpTd8uO8Gr4vciEAyuOmR5iYJ/z6Ha9L5l0XTmprZsci4IW7yZNgvt3Oxfd5lc3m7goSmwW8HFnkx88yet43e5j5809VH5h2sZXcZ+c9sP/C+LwqnvCnbPpfecbgj3qgwNOlrolXsc57XsCDw9aa3jUfr7/XTQmn/5vi3C/XHoFeNvCln1aBbd1bQnd19m+yXKxwTfjtf3ymtsJxMmwe6kih6f2bkGHnLEsWTZuQ981ZIPzzjnx7NXfNTfXflzOq+LU4Mv7w1WXxuV/KcIfmyLIl3zd5fxz0qtTgh8rrN+kgjgxKMF4yUcjob/99W5t13c+jmNpsKufJKTXtLzY71TzILgES6sK0oN3IxvuQxjp0bXpHmjJZmney8Tv6g8NsE4irG7/sdX0Rexi73qCT1vD10Wm4Xf8LtmgSMgs+90zKMkSNLbfYp+XutHiqV/ndJ7PuNVV53f+4za9tX/iUodUwVgTTUTW7SO7gZmWKXG00KHcIZKYjf+77I+3Iya1BgahW7USVZLaW2Z0lVNj3lzBv03z4aOP2Ut/zPc7oGFjirSUeDeopvuvrC+mE1h3Tm9ZRmHOOfHtC105I/zK4nyt4fjeFfiRZ8IXyRQ7XCsHf5Hb6oQqLsXHQjjIIzjRNkpxNqN8IN5Wx+nP8Ct99jzsvZMf+Xo+ntVVHmfllrnsMhQcG6MeulE4ISpUrOQ1oO/OR/Hi5f2ui1RsXTi73+6r7Bw3GDcyM2PlIau0k6h6A46gjrMazTFcZj12vdV34OqRjr217wEOngE/Jv7lWITe9Ive+V+lhOzqvzPrk43XvNl/PMrNZbMlPa9plzT9iWAyJvE4ibGM/hKsqjX8fswWGbpNuiRoG04Eq9GdLWML3If3jOeCzfKK1/Kfb91oTZ694abFh8izF07SWP8T217r/ifBuHrV0uCvDZ5SqWQvOrRerVHTyset0UI6+ZK5bP2NQW9ufkFXuMwLv5fWY9j3DKiWY9D+dmdUQE0uqLA9v8z80Ph1MiYMn/YTqw3Xi0nmh8Pl76n03gKrt16LR4c0r22rRX9NsK7onn9oSn1eDo94X6Jdb/9eADWdH5/udnLZKGf2U8d5tAeMsc46TZ7JG5caq79UIuwqv8+wy+KM5q6R/+ddZXUpMOgfMbHyE1ahe6D6du5ActXc2Dh9yY5clHfC01aR+67oCgKoh2n9lGBVLDWvguAtzYbclhZOY8jJY1V9rxTxgB+eAL+ODvlpL3/c/D5YOsTpTucPyrOuQPnFmnBby23OAaFZw0GagF526L/fMVU5EN3+cl0oWw0ozjbbQ3x6TQ6txbPw0cquWkJsG7d7tLO5fYz6s8IL3X235eZlPjsfo9CDqH+f7fxuPL1rQxwGFo6e2BN4TfLJIWXBm4jPWzu/YFoxCYFJhWQYqcwP+IoEIea56S1r3gvq3mef3Bn2TbqaRyn7Tyz/5tTrHc7He6SRBwvU0gLRK+6eoLa9BoyW+Nx9V/D7OC1//Bl6SpluSrTgfyc5PcC+ScYv/zwrFSfoS74R+eEvg6+MK/3+P+500tJw/db4mpeahHhru4I2UnLehEv9Up9su5PbH/aIj01hHGHV8pMEdK2BPVoIPfy+lGYv4ZfaUpQZ+DA9v8n/lmx4RWEJWMHmsDXzSeHznOyCfjlFehYq/U+jT7eeZdbLuCBIVjQnv0xRJAB2qTOeTy4hpU1zPzLZ3wlNFDLa1B6HG4eqiozYntnh+ct+3xfaY8aVLOUcbzFQ9JG6cZz9f8K/D4LwUGzqTA/Gk5naWhs2OspA3EKDs/9nVjKSLU1HfTJ9KFsCdN2rvJyMcW3Js7EvNGtungT/bLBYu2SrdV6arQ/ZpeyZZ2LbOfV7HHeDS/T4J7+Znzgfpg0TX+53t/NCrdW1lzjs0bLxVPN55b0ypI0uf/F34/GUE52zxp4b9zNr1rpF7a9U1oIN4ukJbVQuo60f/dYj1vd1Od1OMRwbTwCKTVF9ZhJG7uaMkrrXrE/9J61y2vR9yaFVcN2xp36yXplGnSGZ8bz9327gm+o2/NX2XmxTru70aSWqS2WO+mBp/gWodMmvo/L2W38b+uDJP/z1T8bug0r9f54t0aND7oC4xt/sBIOmrHLEzi8QR2Ne/0K9/0NKNKjyQVnmMcnJ16x3W91ujVZpcjKlw38VPe9D/vM8kY5n3EBf5k7jUJVAB1mfm56Oy7671+ivTltYHLdDBPyIM+B4XnhM+5mOb7LvCk+e9Ab3hVKp5h9EBZ9JvQdd5qHzptanN/W1sPDhw+CtRpMRw7MhpLQ96TOl4WfjkzV6g8RnqIaGyaHvjabTDK47a3nIOPh7lb7iWPUelXMvKjSf6L9zda2a9jqmkFdKA2NA3qgdnSlxPUmnvMTuvTAgsX7PN1NAk+x/1xWvjtZDQOfF22Rtrwmv2yFfukOWcbudHMVE3W/dl95jJynQPvZqcbJx0vDz8fkgik1R9O5bydeKssH8CgD75dNLyuJBgsGCllWgod9LzTvneLncU3G71lJN8Fi+/fv80w/8VG1+vi1lQcxmIpaW9q0d+yHZuv2I4/DxzCvPnD0GXc3HEOVzHv1Bn+51ObRt5Ou1H+1w0tQb4TLXfhzL/JkUFd0Yd+EvjaWynJExrgPuVN6ZgHw7elWpX/b3TEBS7XAZIhTndrIwWK0xzSHqjKvvKnqTqoniZ5fRfe6Q2NAP4rUfRsObjT/bJAnRLjpU7BcKl53/DLmMf4Q7ui377dDTI3vrzBeLRLIO7E65UWWoLmL3mMHu6RgnErfMfsHr4CCG1cBuFcVUcEkqxBU//zi71St4m+FxGOx7ldAgNN3z5mFOup6fnA3g3O8+aMCp0WcJ5t02ZPeviqnOG0G+3bBj3SwiGQlqq8XlV/4NMsvVf2rA3MvWI6yWVupkSwXmA0PkK6YJf/dZ/77HMt2SldJW3xXfQf86B/GFlO53i0EvVJTQJpZ1qq6R0qjW0bZs+R83xDMDKaOC9rJzvC3eIAaQo4+AffIatezCE/Teshga8zmxkX9plBF/eFY0ITq9rper3U4bLAaX3+FHk9IBkKzpJOD5MgPBan2QTXnXp4VFWG/57xWHIWmRfN6dnuesIC9UHzYyMvE7Ma9g5zI7eb/3n5Bn8vl0gXyPu3GsPSFl1vfH9890Tg/DdaS1Nc5p0zC35ZL6qt6WGCxZzPDqhFZWsCX5sjKZr2Cb+e1xs4EqyizFesx/f5WHaf9FFQihPHVC8uWXOhb7Tp6VaxVyGBvPQG4b+bvvunc3Dc7KCT2006/smomppKCKTVJ1FdbFrKU5sX6d4q6e2O9pUBk9VNO7i3S02ZX5reKunInxnPj7apfobUVpNAWoAYhyOaJ8hZLaRjHjDykoVwuEvkFHQ7Y4HTzoyHLtc6zPdpOUg6p8R+XuuhxmOrIVL7cdIxf/KX0L7IksfBzdCV4/5mFBSw6nlb5PWAZGjQrOYnyMGsQ79NjhfNVdKmt523ZX6XmYG09EbS5lnOeZIAuGd+vr6+O3ReuCIgwY59yHmedRTGMsv56s6vpUVhjttvtDbOeb99VNV5WWPtKWbXK2Xr7Ni2BdQV+4qDJvj+z/N6GnnQ9lrmr3jQ6MkpGSOczGHPVuXrjMdld/k7bpiKzrNvg92oqtX/kL5/xv/6+8mB+Qvtjvn7t4R+TtMaBOZzC7bwauN8wI7Z2SSjsXTUBOdtpDgCafVJ27PcL1tVoeovDHMY2ewR4VaItVXOzATL4QT3dnG13W3O83580//cjLZnt7RdFCnMDDIX1CBf3vm7Yu+RZg3AtTjB12U8iFOw70Lfsj1vD5xuvXtmbMB4aHq0Ma/fo4GzBwRVDvKkBQ77tOp+k/G47TPjMT1byvQF9NIb+HuV5nSxXx+An5noPIDDMdhbJR15sf28i72WYeRpgXemt7rsRXfCvyIvA9RlbvPoxsI8V+htc0PW7TBIyZ+DNNw+JOkHy8X1hycbQ8pW/Nk/beMb0vYv/K/NIdlmIL7nHcb3wnlhAul7i6WSD/yvnVLHOPVSB+q6E572Pz/q15ZgtWWk1quNpTctFeutgbOy7+y3u22u8z5bnxr42jzHHjrbP838rG96Ryp+zz99wa+ct1vl+2xXHVLIDXZPprT7G+d1wwralvVvhmp1LpD25JNPqnfv3srNzVVubq4GDBigGTOMfD+HDh3SrbfeqqOPPlqNGzdWQUGBfv7zn6u4ODiinKKsB7tId8JK3lf1h8Ss+Gk3pNMU6xjrcCINPzv2LzFuN995KKp5B83jkdLi1esI9U56Q2nE1/5E99H6WaXUIE8q31jztmQ0kTa8YjMjQnC7QYvA1+lBOZbMQNyQ6VLnK0LXdwqa2XJZ8t46jBxAeE06+Z83bGe/TMlMqezbyNvy+HKkRfMZ7P+c1P5nkYe5AHVaLQTSgqvCd/i51P6SKLYT5nzUTCzuZPOH/pttc8+TFk6QvrrZ9/pc49E8FzF7rGS1cM7LuHWO9ImvcELv+5xzJFNQAIerhpZRD5X7VH09bF6XNmwX/v87lqHcaQ2kUZYRX2bwPKORf1r78cajJ93dPjweaYrvu8fsebb1U//89AbSziXG81ZD/NNHr3W3bSu76wTUvUBaYWGhHnjgAS1atEiLFi3SaaedpjFjxmj58uXau3evvvrqK/3+97/XV199pTfeeEPffvutRo8enexm1w3WXGF7fgi/7LoXo0sgmIhAWiSxVk6UIieIlUd18N8fdYXHY/TUsh7golrf/N+Kw4mm01DNaO+yBycrj/T5iuYzn2YZPhZORhPuYgNuWQuKNMhzXq5hgfM8kyfNSE4ezeev46XGsI4RS9yvA9Q1NTmXjMQc/hRcpGvA81IrXwXAfo8Zj9Y0B8GCj7eZudLJbxjPI/WM3zzLl5/JZ+diadVfA5fZu973xOa8P39g4OvG7f3Pe/xOGvaZ/X4TmRcOSJRuNxpDN62vB79jPDdvNB3cEX4bZvXaXr93v19PhpTb1TLBdw5vPTf3Vhk38ktXhi88YMd7yPge+XCwf1paA39KFetQ7MzcwKCeqev1xmOvu6Qm5A93o85FEs4++2yNGDFCXbp0UZcuXXT//ferSZMmmj9/vvLy8jRr1ixdeOGF6tq1q/r3769//OMf+vLLL7Vhg/M/3IEDB1RaWhrwk/Iq9hgHW7eSceepJnmqIl7QN07syRUghZ6gxsJaVSiATSAtXE/U4EBacDGAYFU21XsjLRupXHaDptK4MBcTAAynfuCvcnvcP5yXG/xOYA4lJ5404zjuJjdaTYa0A3XJ2E1S4djEbd88rjrdeLpwj9TlN9JF+50T8J+7VaoMOi72+J0/HUNezzBVe4M4nTdv+9x5neC8aZmWoFxaRmgBIrO4yhdXJHbYLJAIff8a2PGkaS+p1Un+161OkdaEGcZ4cLf/ee8/SIOnu9tv8HHa/M4wO7U0KjSmVe6TytcbPcmqKoyCIU5WPOB/bteBxpMpZbf2n0tU77sisMd7cJt632uM7kJEdTqSUFlZqSlTpqi8vFwDBgywXWb37t3yeDxq2rSp43YmTZqkvLy86p+ioqIEtbgOGLMudJrdgbXs29Cu6E4GvyM1P65GzYpJTQ7QTl3RTWmZqnGZYiCSXF9OsGP+HH45q+A8BBlBAa/mxxuPdsHtg7vst3ne9tChzIPshotaBN9ht9PtRuOx4Cyp0RHOuVQARKftMCn/ROO5bc40SZ1+JbUbpeqg+riDYTYY5nQvuKgPvUZRXzQq8PcaSwTzs2LeTAo+XptBqODUCtU8vjy9wcdzr79nWI9b/dUEw9n4pnNAb5lZDMHmvHfLR1L/5wP3HU7Lk/3PD+0KnV90fvj1gbps6Gwpr5fz/KlNA1+3C5df3Gfk8tDAVLOgasJdrg39/E7JlN4ME7OwBtk2W6p9m8M80xoYgbngOIAn3QiSF4ySis71dyyJ5gY6JNXRQNqyZcvUpEkTZWVlacKECZo2bZp69OgRstz+/fv1u9/9ThdffLFyc3NttmS47bbbtHv37uqfjRvjkLeorrINIDkcFJ0qdQRrNypy75VEqEpwz5W4VWYEIoimUlbbMwNfh1wEmCfcQZ/rPvdLQ95TiGH/M/KhmMzn4e5wn/AvqcXxkdsacLLhdR+cB+Ce002lYt+dcDOoHi5gEK4HdsiNMnIfAa6kB/VIy3S+FrHn+2wH3xjzVvnzmGXmSDk2vUeCzT0n8jJOKV3stu9UkMC6jT02uZaOjeLGIVDXeDzRJ+g//snw8/NCYxgBo036/Mk4f7bNh+ySNdi+31d0Ly3TF0gLOjc3zweGvCOd/LrUyZf/LBlpnA5zdTKQ1rVrVy1ZskTz58/X1VdfrUsvvVQrVqwIWObQoUMaN26cqqqq9MQTT4TdXlZWVnXxAvMnpRz1aynbkjj8/J2R1/lZHTiRTnTwLqOhc7JVIJ4c70YH6ftwaIDXenGc3Ubq5/u+Cz7x7nm7vweLFNhd3HTEBf7n4Q6YnX8lNWwbvq1nLTLuZJkG/FfqeFn4dQBEx5Pur6wdzCwU5CbwFRxIa3OG/3lwHkaSiAPumD3SKsqNx+BeJm4FH4+Dg+d9H45tuyFcjMQwb2JnNo287KJrA1+f8LTUpEPUrQJqXZ/7nedZ8wQ6MUdkSKE3wK2s592S1GeS74nls9jztpr3nLVeO7zjC4ynNTByGQYXGQruOZvbLXQbcKVOBtIaNGigzp07q1+/fpo0aZL69Omjv//979XzDx06pAsvvFBr167VrFmzUi8wFknzoJ4k/f4h7d/sf+2Yc8nC4zGGiVi7cNe2dmfXfBuU60Vd4HQhHKzzBOc7R5IxVDT/BKnzlYp48WxuJ+ACOk3VB283QzfDaX5cYAL01oM5gQbi7YIyKd8+tUU1b5XU5vQIGwo63ctu6X9u7WHSvJ9IewC4ZAbSfvrSeDzpVenCcnfrWnt0hwSvg17XJG1C379JrU/zvXDx2V7zL9+iLi4Ry9cFvo70XQXUFeGCZaO/D79upysCU7Y06WB0zBgR1JNt6MfGd4KVWegguHdoPIegm4VAzG2GDO0M+myb3z/0Jo1anQykBfN6vTpwwLhDYgbRvvvuO3344Ydq0aJFhLVTkNkrpOsN/iizyawC5EZapjTs08jLJYpTtcJoNO8X+HpchdS0d823C0Qj3NBOa4GAjIbu7gg1PjJyDkHzDlTAcl5VDyUhFwJQ92U0jFxh21uliKdzwSfO2a0d9tfY+H4J7rn+syojKToAP0+a0ePE7J2d0TB8te/m/fyV+6y910J6pMWxV2hahuWC2k0g7Sn3y3rSpC7X+F/HWukcqG3hzrU9ac55CbNaSic+HZp3WArNZxpNru9l90Zexq5AgJOyNdK6F/yvzaIr4ypsguRVxrD0ZKRxOszVuUDa7bffrrlz52rdunVatmyZ7rjjDs2ePVuXXHKJKioqdP7552vRokV68cUXVVlZqc2bN2vz5s06eDBckt0UY374j75bOs2XBy27lfFol88g2PCliWlXtNz0nAun3WipYUHgtLR0aUQd+f2QOsLlIxu+WDr6HpcbMk9s0+S6R1rACbpXyulqMx1Anec4bKwqcu8R6/yG7fw9aU74V+Byp7wlHfNA6PHX4wnsxQbAcNKrRjoEN4bNlbrfajw/aoK/mp7Zg8QU10Bapj/5eLzt/VH69jHjeWau1KgeF3ND/VI4Vjp7jfP8Af+VTnotdPp5EW4oNW4vdb/Z98ImkFYdoA4KVFtHjjkJvqYN2G7QOcCSW/3PvZXSKdOM53YBwCadpTbDIu8fIepcIG3Lli0aP368unbtqqFDh2rBggWaOXOmhg0bph9//FFvv/22fvzxRx1zzDFq27Zt9c/nn4cp7ZxqzMTBDfL8+ZHM7qZr/hl5/ZoGsGqq9dD4bGfwW1JDh7vuQG0KN7QzM1dqdoz/tdNd4MJzApeJdKcrp7PxaA2Yeb1Gj5N+j0vNY8zlAiA5hn9lPz23u9Q0TJUxSdWne5m5Rg8aM5Bmft+c5dt2gzx6lQCJkp7t7/XRcqDU47fG84o9QQuGOb53+pXx4+TYvwa+9mRYAmk25xc5XYzvkOMeDdfyQHbJ1dudndgKqUA8pWeFL+KR20U64vzoi2gN+0zqeaeLBWNIoXDaB87zgkeZbLSMQDOvA878wn7dorHSyVOjbw9U50qsTZ482XFe+/bt5Y2mm2SqsrsQN+8ktzgxdF6wcL1nasMJ/5TeOSq5bQDiKWKONMs9jSyH4eoBn+u0yHesW59q9CxpaCk0Iq8kj9Tl1xHaA6BOan2atOXjwGl9/hh5veq71R7jpDp4CAeBdaB22A2rDq5SH+74vvVT5+Tm3X8rdb1WOrhDWv4nY5onw6jcZ7wIXafoPCmrubHel9dFbL6xGZteLQ2au1sXOJw0KgzNBRh2+XaWF2FiFsHX6j3vkJaHKYAgGdcSF5Qan78Nr0rzL7fsKky6FjPI1uJ452UQkzrXIw0J1sVXYcepul7rU/3DQJOlSafw3W2Bw02kO1qRcpGc9JrUor//IOjxKOwB2tTjVqMHGoD6wTp0qvWp7tczcyY2aC7JE1q1C0DtaDlIGrkycFrFvqCFwhzfs1vKsTfLge1Gr7DNH/mnpWVKu742ngefa3S9Xmp/iZtWBwoYRmZuk44OqIdGLHNRzMeBbUDcYWhnToQOJD1vNx4zc3y9xoPWP1Qaph3kRE6UOtcjDQnU9iypYVvjeZVDfqSBL7lLMJpIHk/47rbA4abxkREWiPCZO+L8oAkueqQBqH+sF7ADX3S/XrpvuGaf+41gXF4PaeEEUaETqGWeNCkvqBBYVVAOM6dE6G2HGzfIfpxmP3/T28bjod3+aQE9xYI+78f9LfB1u9H+bYRl+R5q0FQ6uDO6xOrA4SIzDoXvAjgE0loNDnyd1VI6sM3/utfdQZsJ6gtV9p3D7jLIiZxABNJSyakz/M/NgFowN+WuD0cNmksHf0p2K5CKLnZzchnlxazHRbEBW97kB8oBxK7ZsVK35tKqv0bX29TMe9b+Z0Ez+D4Akq7X3dL3vtQ2Y9YZF9HBLig1qtl7PNKPb9lvp8pXeG3gS9LMvsbzgPQOET7vbqv2WUeuZDQ2AmkxnZMAh4FYA1HhgsvB5+JN2ge+Tm/of37uNim9QfAG3LUhvWFo/jTEDYG0VOVYfaueBtIIoqEuCz6gejLCd8X2pMV297flyaHVwQAcPrr60jN0v8koHOCWm6CbqwTJAOKusWXItlMPdmuQy+mGmHleYP28WwsAVJaHb4fbId8FI/zPW5xgVO8sOs/dusDhZssnMa4YLrgcIRBmza2cnR86321wLy2ToZ0JVE+jJoioyzX20+3K4tYHhWOT3QIgjKCv4qEf2y9matjWRZU+G90mSj1uiX49AHWLU6/ycMZsCD+/z32xtQVA8nSe4H9uBtisQ0M9lkDa6r+H35bbHmkej9TyJOP5sQ8Zj22GulsXSAUn/tvoQR6sosx4tAuGW0ewFAw3Hs8psd/+3o3u2pGWydDOBCKQlqocqwjW03+JIy5KdgsAZ8EH1Eg9TQrPlYbOTlRrANRH1l4vAA5jlnOG5n2Nap0Bsy2BNOsN8v1bw2/W7JHmJiVF/gDjsXGHyMsCqabTL4OGVfuUuSym12eSdO4W+21I0vf/tp+e2z3wRttps4yiIkgIhnbC4Ek3Itb1NUda7lHS6Z8muxWAveDPnVOiYVNaupTWMPwyABAJOROBuqHv39wX2jI/t9aA18o/+3ueBJxDRHFe77ZHmuTvbcN3COCe25QMHk9gLsJgZj5ESep2o7TqYXNGYH613O7+qt2Iu3oaNUHUzAv5+hpIS8uSWp2c7FYADoI/d5yYAgCQMrpdL7Ub5XJhh3N120CaJU9TzlHhNxtN3sVmx7hfFoCh6Dyp9WnO86tzGka4DrDmOz7mz4Hz9vzgf15fr+vrCP66MFTnUKin/xJ8kaAu4/8TQG3rdhMXw8DhyKkXmFmdL81S4S/ggvvB8NuNJpDWxDKk01V1cgBqVCAN/ajm27FeNwR8H3iktmcFvkbCcPUGQ7uRxmOkIWWHLb5IUIe1HCSN+Nr/mqESABKt718IpAGHo4ALZQuzOl92vnTC08ZzayAtu3X47TZo5r4NjrmWAcTM65X63C+lZ4VfbuCLUtM+vhdB1wyN2/ufcz2RUATS6qto7w4d/QfjsT72jBnxjZTbNdmtAJylZUpNj7ZM4MAHAABstB4SeRkzaJbe0P25fVZ+zE0CEA9edwHtNqdLI5YYz81g2VFXS+3/jxtktageRk0Qk+qS2fXwX6Jpz/r5e6H+ymrhLy0PAAAQTm5Xqcs1lgm+8/qcTtLPKgOnOUmPsojRkPeiWx6ACzHeTG83Rup1R3ybgrCILqSyn1VJo1b7XnikzDzREwaoA7JbScPmJrsVAADgcDBqldTvH+GXiTTMq0Hz8JUCgxUMd78sABeiHFHW9xH/c7PTSMdL49cchEU91FQWUFrXI12wK5mtAQAAAJAQEQJp2fnSuVtqpynA4SSvp3RgW+L3460KrLoZSbeJ/udmII38hbWGHmmpzvzQkYwQAAAAOPxxXg/Ex8iV0hEXSrk9amd/ezfFuCKf+dpGIC3VmSWyySEGAAAA1FNcaANRy+sm9bxdOnVG7eyvzdDY1uNavtYxtDPVeTLNJ0ltBgAAAAAAdUpahup+2IRr+dpG6DLVpaX7nvDhAwAAAA57zY6VjnkgcBrDPYHDQJQFB0zWHmnjKuLTFIRFIA0GDq4AAADA4a9RO6nHrUETOdcH6jxvjIE0b5X/eXVHGSRSnQukPfnkk+rdu7dyc3OVm5urAQMGaMYM/5jkN954Q2eeeaby8/Pl8Xi0ZMmS5DW2XuHgCgAAAADAYcV7KPB1y0HJaUcKqXOBtMLCQj3wwANatGiRFi1apNNOO01jxozR8uXLJUnl5eUaNGiQHnjggQhbQnQIpAEAAAD1TutTpezWyW4FgIhi7JFWVRn4ethnNW8KwqpzWfPOPvvsgNf333+/nnzySc2fP189e/bU+PHjJUnr1q1LQuvqMSp9AAAAAHVf2+HRLT/048S0A0Dd4K2MvAziqs4F0qwqKyv12muvqby8XAMGDIh5OwcOHNCBAweqX5eWlsajefUMPdIAAACAOu/U95LdAgBx51HMPdIIpNW6OtkNadmyZWrSpImysrI0YcIETZs2TT169Ih5e5MmTVJeXl71T1FRURxbW09QbAAAAAAAgNrn8dSg2ACBtNpWJwNpXbt21ZIlSzR//nxdffXVuvTSS7VixYqYt3fbbbdp9+7d1T8bN26MY2vrCwJpAAAAAAAcVrZ8kuwWpJw6ObSzQYMG6ty5sySpX79+Wrhwof7+97/rqaeeiml7WVlZysrKimcT6yECaQAAAAAA1L4aDO3MzI1rSxBZneyRFszr9QbkOEMCMLQTAAAAAIAkqEEgLbdLXFuCyOpcj7Tbb79dw4cPV1FRkcrKyjRlyhTNnj1bM2fOlCT99NNP2rBhg4qLiyVJq1evliS1adNGbdq0SVq7D38E0gAAAAAAOGyM2SBlt0p2K1JOnQukbdmyRePHj1dJSYny8vLUu3dvzZw5U8OGDZMkvf3227r88surlx83bpwk6e6779Y999yTjCYDAAAAAADEJtZiA40ppJgMdS6QNnny5LDzL7vsMl122WW105iUEmM3UgAAAAAAELuqQ9Lu2AssonYdFjnSUAtiLbULAAAAAABqZsuHyW4BXCKQBh8CaQAAAAAAJAWdWw4bBNIAAAAAAAAAFwikwZCWmewWAAAAAACQouiRdrioc8UGkATjKqS09GS3AgAAAACA1OStSnYL4BI90kAQDQAAAACAZGp5UrJbAJfokQYAAAAAAJAsJ78htTgh2a2ASwTSAAAAAAAAkqXonGS3AFFgaCcAAAAAAADgAoE0AAAAAAAAwIWUHNrp9RplZUtLS5PcEgAAAAAAACSbGSMyY0ZOUjKQVlZWJkkqKipKcksAAAAAAABQV5SVlSkvL89xvscbKdRWD1VVVam4uFg5OTnyeDzJbk5clJaWqqioSBs3blRubm6ym4NaxHuf2nj/UxfvfWrj/U9tvP+pjfc/dfHepzbe/8Tzer0qKytTQUGB0tKcM6GlZI+0tLQ0FRYWJrsZCZGbm8uHKkXx3qc23v/UxXuf2nj/Uxvvf2rj/U9dvPepjfc/scL1RDNRbAAAAAAAAABwgUAaAAAAAAAA4AKBtHoiKytLd999t7KyspLdFNQy3vvUxvufunjvUxvvf2rj/U9tvP+pi/c+tfH+1x0pWWwAAAAAAAAAiBY90gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAIAEeu655+TxeKp/MjIyVFhYqMsvv1ybNm2qXm7lypUaP368OnbsqOzsbOXn56tv37665pprVFpaarvtRx99VB6PR7169XLcv8fj0TXXXBO2jYcOHdJTTz2l448/Xs2bN1ejRo105JFHasyYMZo2bZokaciQIQG/h9PPPffcU73dDz/8UAMGDFCjRo2Un5+vyy67TFu3bg3Y95dffqnf/OY3Ovroo5WTk6PWrVvr9NNP18cffxzpTwsAAFDrMpLdAAAAgFTw7LPPqlu3btq3b58+/fRTTZo0SXPmzNGyZcv07bffatCgQerevbvuuusutW/fXtu3b9fSpUs1ZcoU3XzzzcrNzQ3Z5jPPPCNJWr58uRYsWKATTzwxpraNHz9eb7zxhiZOnKh7771XWVlZ+uGHHzRz5ky9//77Ouecc/TEE08EBPSmT5+uP/7xj9W/l6mwsFCSNGfOHA0fPlwjR47UW2+9pa1bt+rWW2/V0KFDtWjRImVlZUmSXn75ZX3xxRf6xS9+oT59+qi8vFz//Oc/NXToUD3//PP6+c9/HtPvBAAAkAger9frTXYjAAAA6qvnnntOl19+uRYuXKh+/fpVT7/rrrt033336YUXXtAHH3yg119/XSUlJcrJyQnZhtfrlcfjCZi2aNEiHX/88Ro5cqSmT5+uK664Qk8//XTIuh6PR7/5zW/02GOP2bZv7dq16tixo+666y7de++9IfOrqqqUlhY6iMHp9zKdcMIJKi8v19KlS5WRYdy7/fzzzzVo0CA98cQTuvrqqyVJW7duVatWrQLWraysVN++fVVeXq41a9bYthsAACAZGNoJAACQBP3795ckrV+/Xjt27FBubq6aNGliu2xwEE2SJk+eLEl64IEHNHDgQE2ZMkV79+6Nuh07duyQJLVt29Z2vl0QLZJNmzZp4cKFGj9+fHUQTZIGDhyoLl26VA8XlRQSRJOk9PR0HXfccdq4cWPU+wYAAEgkAmkAAABJYPa0atmypQYMGKCSkhJdcsklmjNnjvbt2xd23X379unll1/W8ccfr169eukXv/iFysrK9Nprr0Xdju7du6tp06a699579fTTT2vdunWx/DoBvvnmG0lS7969Q+b17t27er6TiooKzZ07Vz179qxxWwAAAOKJQBoAAEAtqKysVEVFhfbs2VOdXywnJ0ejR4/WzTffrLFjx+rll1/WkCFDlJOTo759++rOO+/Utm3bQrY1depU7d69W7/85S8lSRdddJGaNGlS3UstGo0bN9aLL76oiooKXXXVVerQoYPy8/N14YUX6p133onpdzV7uTVv3jxkXvPmzavnO7nnnnu0Zs0a3X333THtHwAAIFEIpAEAANSC/v37KzMzUzk5ORo1apTatGmjGTNmqHXr1srKytK0adO0YsUKPfLIIxo3bpy2bdum+++/X927d9fq1asDtjV58mQ1bNhQ48aNkyQ1adJEF1xwgebOnavvvvsu6raNGDFCGzZs0LRp03TzzTerZ8+eevPNNzV69OiIFT/DsRuSGm66JP373//W/fffr5tuukljxoyJed8AAACJQCANAACgFvznP//RwoULtXjxYhUXF+vrr7/WoEGDApbp3r27Jk6cqBdeeEEbNmzQww8/rB07duj3v/999TJr1qzRp59+qpEjR8rr9WrXrl3atWuXzj//fEn+Sp7RatiwocaOHauHHnpIc+bM0Zo1a9SjRw89/vjjWr58eVTbatGihSTZ9jz76aefbHuqSUZl06uuukpXXnmlHnrooeh/CQAAgAQjkAYAAFALunfvrn79+umYY45xTOxv5fF4dMMNN6hp06YBOcWeeeYZeb1eTZ06Vc2aNav+GTlypCTp+eefV2VlZY3be8QRR+jKK6+UpKgDab169ZIkLVu2LGTesmXLqudbPfvss/rVr36lSy+9VP/85z/D9loDAABIFgJpAAAASVZSUmI7vbi4WKWlpSooKJBk5Fl7/vnn1alTJ33yySchPzfddJNKSko0Y8YM1/suKyvTnj17bOetXLlSkqr371a7du10wgkn6IUXXggI6s2fP1+rV6/WueeeG7D8c889p1/96lf6v//7P/373/8miAYAAOqsjMiLAAAAIJGuvPJK7dq1S+edd5569eql9PR0rVq1So888ojS0tJ06623SpJmzJih4uJiPfjggxoyZEjIdnr16qXHHntMkydP1qhRo6qnf//995o6dWrI8j169NDevXt15plnaty4cRo8eLDatm2rnTt3avr06Xr66ac1ZMgQDRw4MOrf6cEHH9SwYcN0wQUX6Ne//rW2bt2q3/3ud+rVq5cuv/zy6uVee+01/fKXv9Qxxxyjq666Sl988UXAdo499lhlZWVFvX8AAIBEIJAGAACQZNdee61eeeUV/etf/9KmTZtUXl6uli1basCAAfrPf/6j/v37SzKKDDRo0CAgEGWVn5+vc845R1OnTtWWLVvUunVrSdLMmTM1c+bMkOXvvvtuTZw4UTfeeKM+/vhjvfXWW9q2bZsyMzN11FFH6Y9//KNuvPFGpaVFP4hhyJAheu+993TXXXfp7LPPVqNGjTRq1Cg99NBDAYGx6dOnq6qqSl999VVIzjhJWrt2rdq3bx/1/gEAABLB4/V6vcluBAAAAAAAAFDXkSMNAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXMpLdgGSoqqpScXGxcnJy5PF4kt0cAAAAAAAAJJHX61VZWZkKCgqUlubc7ywlA2nFxcUqKipKdjMAAAAAAABQh2zcuFGFhYWO81MykJaTkyPJ+OPk5uYmuTUAAAAAAABIptLSUhUVFVXHjJzUSiDtiSee0EMPPaSSkhL17NlTf/vb33TyySc7Lj9nzhzdeOONWr58uQoKCvTb3/5WEyZMqJ7/3HPP6fLLLw9Zb9++fcrOzo7YHnM4Z25uLoE0AAAAAAAASFLEFGAJLzbwyiuvaOLEibrjjju0ePFinXzyyRo+fLg2bNhgu/zatWs1YsQInXzyyVq8eLFuv/12XXfddXr99dcDlsvNzVVJSUnAj5sgGgAAAAAAABALj9fr9SZyByeeeKL69u2rJ598snpa9+7dNXbsWE2aNClk+VtvvVVvv/22Vq5cWT1twoQJWrp0qebNmyfJ6JE2ceJE7dq1y1UbDhw4oAMHDlS/Nrvr7d69mx5pAAAAAAAAKa60tFR5eXkRY0UJ7ZF28OBBffnllzrjjDMCpp9xxhn6/PPPbdeZN29eyPJnnnmmFi1apEOHDlVP27Nnj4488kgVFhZq1KhRWrx4sWM7Jk2apLy8vOofCg0AAAAAAAAgWgkNpG3fvl2VlZVq3bp1wPTWrVtr8+bNtuts3rzZdvmKigpt375dktStWzc999xzevvtt/Xyyy8rOztbgwYN0nfffWe7zdtuu027d++u/tm4cWMcfjsAAAAAAACkklopNhCcqM3r9YZN3ma3vHV6//791b9//+r5gwYNUt++ffWPf/xDjz76aMj2srKylJWVFXP7AQAAAAAAgIT2SMvPz1d6enpI77OtW7eG9DoztWnTxnb5jIwMtWjRwnadtLQ0HX/88Y490gAAAAAAAICaSmggrUGDBjruuOM0a9asgOmzZs3SwIEDbdcZMGBAyPIffPCB+vXrp8zMTNt1vF6vlixZorZt28an4QAAAAAAAECQhAbSJOnGG2/Uv//9bz3zzDNauXKlbrjhBm3YsEETJkyQZOQv+/nPf169/IQJE7R+/XrdeOONWrlypZ555hlNnjxZN998c/Uy9957r95//3398MMPWrJkiX75y19qyZIl1dsEAAAAAAAA4i3hOdIuuugi7dixQ3/4wx9UUlKiXr166b333tORRx4pSSopKdGGDRuql+/QoYPee+893XDDDXr88cdVUFCgRx99VOedd171Mrt27dKVV16pzZs3Ky8vT8cee6w+/fRTnXDCCYn+dQAAAAAAAJCiPF4zk38KKS0tVV5ennbv3q3c3NxkNwcAAAAAAABJ5DZWlPChnQAAAAAAAEB9QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFyolUDaE088oQ4dOig7O1vHHXec5s6dG3b5OXPm6LjjjlN2drY6duyof/7znyHLvP766+rRo4eysrLUo0cPTZs2LVHNBwAAAAAAABIfSHvllVc0ceJE3XHHHVq8eLFOPvlkDR8+XBs2bLBdfu3atRoxYoROPvlkLV68WLfffruuu+46vf7669XLzJs3TxdddJHGjx+vpUuXavz48brwwgu1YMGCRP86AAAAAAAASFEer9frTeQOTjzxRPXt21dPPvlk9bTu3btr7NixmjRpUsjyt956q95++22tXLmyetqECRO0dOlSzZs3T5J00UUXqbS0VDNmzKhe5qyzzlKzZs308ssvh2zzwIEDOnDgQPXr0tJSFRUVaffu3crNzY3L7wkAAAAAAIDDU2lpqfLy8iLGihLaI+3gwYP68ssvdcYZZwRMP+OMM/T555/brjNv3ryQ5c8880wtWrRIhw4dCruM0zYnTZqkvLy86p+ioqJYfyUAAAAAAACkqIQG0rZv367Kykq1bt06YHrr1q21efNm23U2b95su3xFRYW2b98edhmnbd52223avXt39c/GjRtj/ZUAAAAAAACQojJqYycejyfgtdfrDZkWafng6dFsMysrS1lZWVG1GQAAAAAAALBKaI+0/Px8paenh/QU27p1a0iPMlObNm1sl8/IyFCLFi3CLuO0TQAAAAAAAKCmEhpIa9CggY477jjNmjUrYPqsWbM0cOBA23UGDBgQsvwHH3ygfv36KTMzM+wyTtsEAAAAAAAAairhQztvvPFGjR8/Xv369dOAAQP09NNPa8OGDZowYYIkI3/Zpk2b9J///EeSUaHzscce04033qgrrrhC8+bN0+TJkwOqcV5//fU65ZRT9OCDD2rMmDF666239OGHH+qzzz5L9K8DAAAAAACAFJXwQNpFF12kHTt26A9/+INKSkrUq1cvvffeezryyCMlSSUlJdqwYUP18h06dNB7772nG264QY8//rgKCgr06KOP6rzzzqteZuDAgZoyZYruvPNO/f73v1enTp30yiuv6MQTT0z0rwMAAAAAAIAU5fGamfxTSGlpqfLy8rR7927l5uYmuzkAAAAAAABIIrexooTmSAMAAAAAAADqCwJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcCGhgbSdO3dq/PjxysvLU15ensaPH69du3aFXcfr9eqee+5RQUGBGjZsqCFDhmj58uUBywwZMkQejyfgZ9y4cQn8TQAAAAAAAJDqEhpIu/jii7VkyRLNnDlTM2fO1JIlSzR+/Piw6/z5z3/Www8/rMcee0wLFy5UmzZtNGzYMJWVlQUsd8UVV6ikpKT656mnnkrkrwIAAAAAAIAUl5GoDa9cuVIzZ87U/PnzdeKJJ0qS/vWvf2nAgAFavXq1unbtGrKO1+vV3/72N91xxx0699xzJUnPP/+8WrdurZdeeklXXXVV9bKNGjVSmzZtEtV8AAAAAAAAIEDCeqTNmzdPeXl51UE0Serfv7/y8vL0+eef266zdu1abd68WWeccUb1tKysLA0ePDhknRdffFH5+fnq2bOnbr755pAea1YHDhxQaWlpwA8AAAAAAAAQjYT1SNu8ebNatWoVMr1Vq1bavHmz4zqS1Lp164DprVu31vr166tfX3LJJerQoYPatGmjb775RrfddpuWLl2qWbNm2W530qRJuvfee2P9VQAAAAAAAIDoe6Tdc889IYn+g38WLVokSfJ4PCHre71e2+lWwfOD17niiit0+umnq1evXho3bpymTp2qDz/8UF999ZXt9m677Tbt3r27+mfjxo3R/toAAAAAAABIcVH3SLvmmmsiVshs3769vv76a23ZsiVk3rZt20J6nJnMnGebN29W27Ztq6dv3brVcR1J6tu3rzIzM/Xdd9+pb9++IfOzsrKUlZUVts0AAAAAAABAOFEH0vLz85Wfnx9xuQEDBmj37t364osvdMIJJ0iSFixYoN27d2vgwIG265jDNWfNmqVjjz1WknTw4EHNmTNHDz74oOO+li9frkOHDgUE3wAAAAAAAIB4SliOtO7du+uss87SFVdcoaeeekqSdOWVV2rUqFEBFTu7deumSZMm6ZxzzpHH49HEiRP1pz/9SUcddZSOOuoo/elPf1KjRo108cUXS5K+//57vfjiixoxYoTy8/O1YsUK3XTTTTr22GM1aNAgV23zer2SRNEBAAAAAAAAVMeIzJiRk4QF0iSjsuZ1111XXYVz9OjReuyxxwKWWb16tXbv3l39+re//a327dunX//619q5c6dOPPFEffDBB8rJyZEkNWjQQB999JH+/ve/a8+ePSoqKtLIkSN19913Kz093VW7zAqfRUVF8fg1AQAAAAAAUA+UlZUpLy/Pcb7HGynUVg9VVVWpuLhYOTk5EQsfHC5KS0tVVFSkjRs3Kjc3N9nNQS3ivU9tvP+pi/c+tfH+pzbe/9TG+5+6eO9TG+9/4nm9XpWVlamgoEBpac61ORPaI62uSktLU2FhYbKbkRC5ubl8qFIU731q4/1PXbz3qY33P7Xx/qc23v/UxXuf2nj/EytcTzSTc4gNAAAAAAAAQDUCaQAAAAAAAIALBNLqiaysLN19993KyspKdlNQy3jvUxvvf+rivU9tvP+pjfc/tfH+py7e+9TG+193pGSxAQAAAAAAACBa9EgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4AKBNAAAAAAAAMAFAmkAAAAAAACACwTSAAAAAAAAABcIpAEAAAAAAAAuEEgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4AKBNAAAAAAAAMAFAmkAAAAAAACACwTSAAAAAAAAABcIpAEAAAAAAAAuEEgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4AKBNAAAAAAAAMAFAmkAAAAAAACACwTSAAAAAAAAABcIpAEAAAAAAAAuEEgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4AKBNAAAAAAAAMAFAmkAAAAAAACACwTSAAAAEmzBggU655xzdMQRRygrK0utW7fWgAEDdNNNN1Uvc+jQIT311FM6/vjj1bx5czVq1EhHHnmkxowZo2nTptlu99ChQ2rTpo08Ho+mTp1qu8w999wjj8ej7du3h23jypUrNX78eHXs2FHZ2dnKz89X3759dc0116i0tFSzZ8+Wx+Nx9WPas2ePJk6cqIKCAmVnZ+uYY47RlClTQvb92Wef6Ve/+pWOO+44ZWVlyePxaN26dS7+sgAAALUrI9kNAAAAqM+mT5+u0aNHa8iQIfrzn/+stm3bqqSkRIsWLdKUKVP017/+VZI0fvx4vfHGG5o4caLuvfdeZWVl6YcfftDMmTP1/vvv65xzzgnZ9rvvvqstW7ZIkiZPnqzzzz8/pjYuXrxYgwYNUvfu3XXXXXepffv22r59u5YuXaopU6bo5ptvVt++fTVv3ryA9c455xx16tRJf/nLX2y3e+6552rhwoV64IEH1KVLF7300kv62c9+pqqqKl188cXVy3300Uf68MMPdeyxxyo3N1ezZ8+O6fcAAABINI/X6/UmuxEAAAD11eDBg7Vp0yatWrVKGRmB9zCrqqqUlpamtWvXqmPHjrrrrrt07733hmzDXC7YqFGjNGvWLA0ePFgfffSR1q9fr8LCwoBl7rnnHt17773atm2b8vPzbdt46aWX6vXXX1dJSYlycnJC5nu93oCeZqb27durV69eevfdd0Pmvffeexo5cmR18Mx0xhlnaPny5dqwYYPS09NDfr+//OUvuuWWW7R27Vq1b9/etr0AAADJwtBOAACABNqxY4fy8/NDgmiSqoNHO3bskCS1bdvWdht2QbTi4mLNnDlTZ599tm655RZVVVXpueeei7mNubm5atKkie18uyBaJNOmTVOTJk10wQUXBEy//PLLVVxcrAULFlRPs/v9AAAA6iLOWgAAABJowIABWrBgga677jotWLBAhw4dClmme/fuatq0qe699149/fTTrvKDPffcc6qsrNQvfvELnX766TryyCP1zDPPKJbBBgMGDFBJSYkuueQSzZkzR/v27Yt6G8G++eYbde/ePSSA2Lt37+r5AAAAhxsCaQAAAAn0wAMP6KSTTtI//vEP9e/fX40bN9agQYP0wAMPaM+ePZKkxo0b68UXX1RFRYWuuuoqdejQQfn5+brwwgv1zjvvhGzT6/Xq2WefVbt27XTmmWfK4/Hosssu09q1a/XJJ59E3cabb75ZY8eO1csvv6whQ4YoJydHffv21Z133qlt27bF9Hvv2LFDzZs3D5luTjN74QEAABxOCKQBAAAkUIsWLTR37tzqpPtjxozRt99+q9tuu01HH310dTXNESNGaMOGDZo2bZpuvvlm9ezZU2+++aZGjx6ta665JmCbc+bM0Zo1a3TppZdW5xm7/PLL5fF49Mwzz0TdxqysLE2bNk0rVqzQI488onHjxmnbtm26//771b17d61evTqm3z3ckNBYhosCAAAkG4E0AACAWtCvXz/deuuteu2111RcXKwbbrhB69at05///OfqZRo2bKixY8fqoYceqg6W9ejRQ48//riWL19evdzkyZMlGVUzd+3apV27dikvL08nnXSSXn/9de3atSumNnbv3l0TJ07UCy+8oA0bNujhhx/Wjh079Pvf/z7qbbVo0cK219lPP/0kSba91QAAAOo6AmkAAAC1LDMzU3fffbek8LnCjjjiCF155ZWSVB1I2717t15//XVJ0vHHH69mzZpV/8ydO1f79+/XSy+9VOM2ejwe3XDDDWratGlM+cyOPvporVy5UhUVFQHTly1bJknq1atXjdsIAABQ2wikAQAAJFBJSYnt9JUrV0qSCgoKVFZWVp0vLdxykvTSSy9p3759uu+++/TJJ5+E/OTn50c9vNOpjcXFxSotLa3edzTOOecc7dmzpzroZ3r++edVUFCgE088MeptAgAAJFtoHXYAAADEzZlnnqnCwkKdffbZ6tatm6qqqrRkyRL99a9/VZMmTXT99ddr9erVOvPMMzVu3DgNHjxYbdu21c6dOzV9+nQ9/fTTGjJkiAYOHCjJGNbZrFkz3XzzzcrOzg7Z389//nM9/PDDWrp0qfr06VM9/Z133lFOTk7I8ueff76uvPJK7dq1S+edd5569eql9PR0rVq1So888ojS0tJ06623Rv17Dx8+XMOGDdPVV1+t0tJSde7cWS+//LJmzpypF154oTq3myRt27ZNc+bMkeTvsTZjxgy1bNlSLVu21ODBg6PePwAAQCJ4vLHUSAcAAIArr776qt566y0tXLhQJSUlOnDggNq2bavBgwfrtttuU/fu3bVr1y49/vjj+vjjj7V69Wpt27ZNmZmZOuqoo3T++efrxhtvVMOGDfX111+rT58+mjhxoh555BHb/a1evVrdunXTtddeq0cffVT33HOP7r33Xsf2eb1effDBB3rllVc0f/58bdq0SeXl5WrZsqUGDBigW265Rf3797ddt3379urVq5feffdd2/l79uzRHXfcoVdffVU//fSTunXrpttuu03jxo0LWG727Nk69dRTbbcxePBgzZ4927H9AAAAtYlAGgAAAAAAAOACOdIAAAAAAAAAFwikAQAAAAAAAC4QSAMAAAAAAABcIJAGAAAAAAAAuEAgDQAAAAAAAHAhI9kNSIaqqioVFxcrJydHHo8n2c0BAAAAAABAEnm9XpWVlamgoEBpac79zlIykFZcXKyioqJkNwMAAAAAAAB1yMaNG1VYWOg4PyUDaTk5OZKMP05ubm6SWwMAAAAAAIBkKi0tVVFRUXXMyEmtBNKeeOIJPfTQQyopKVHPnj31t7/9TSeffLLj8nPmzNGNN96o5cuXq6CgQL/97W81YcKE6vnPPfecLr/88pD19u3bp+zs7IjtMYdz5ubmEkgDAAAAAACAJEVMAZbwYgOvvPKKJk6cqDvuuEOLFy/WySefrOHDh2vDhg22y69du1YjRozQySefrMWLF+v222/Xddddp9dffz1gudzcXJWUlAT8uAmiAQAAAAAAALHweL1ebyJ3cOKJJ6pv37568sknq6d1795dY8eO1aRJk0KWv/XWW/X2229r5cqV1dMmTJigpUuXat68eZKMHmkTJ07Url27XLXh/9u79+CoyvuP45/lkk0oyVJIs0uExigOctEWgoaEItSBEIUpVIeiods6Q0G0iECZtkg7ATo1ihTLRQpYrjOW0qkwZToxJRQadAhXE6ARKVpuJVkCNOwGqQkhz+8PfmxZNgmHJbvU3fdr5vyxzz7n7HP2y5eZfObsOXV1daqrq/O/vn65ntfr5Yo0AAAAAACAGOfz+eRwOG6ZFYX1irT6+nodOHBAOTk5AeM5OTnatWtXk/uUlpYGzR8xYoT279+vK1eu+McuXbqktLQ0devWTaNGjVJZWVmz6ygoKJDD4fBvPGgAAAAAAAAAtyusQdr58+d19epVOZ3OgHGn0ymPx9PkPh6Pp8n5DQ0NOn/+vCTpwQcf1Nq1a7VlyxZt2LBB8fHxGjRokI4dO9bkMWfNmiWv1+vfTp8+3QpnBwAAAAAAgFgSkYcN3HyjNmNMizdva2r+jeMDBw7UwIED/e8PGjRI/fv315IlS7R48eKg49ntdtnt9pDXDwAAAAAAAIT1irTk5GS1bds26Oqz6urqoKvOrnO5XE3Ob9eunbp06dLkPm3atNEjjzzS7BVpAAAAAAAAwJ0Ka5AWFxenjIwMFRcXB4wXFxcrOzu7yX2ysrKC5m/dulUDBgxQ+/btm9zHGKPy8nJ17dq1dRYOAAAAAAAA3CSsQZokzZgxQ7/97W+1evVqHTlyRNOnT9epU6c0efJkSdfuX/a9733PP3/y5Mk6efKkZsyYoSNHjmj16tVatWqVZs6c6Z8zd+5c/eUvf9E///lPlZeXa8KECSovL/cfEwAAAAAAAGhtYb9H2rhx43ThwgXNmzdPVVVV6tu3rwoLC5WWliZJqqqq0qlTp/zz09PTVVhYqOnTp+utt95SamqqFi9erKeffto/5+LFi5o0aZI8Ho8cDof69eunnTt36tFHHw336QAAAAAAACBG2cz1O/nHEJ/PJ4fDIa/Xq6SkpLu9HAAAAAAAANxFVrOisP+0EwAAAAAAAIgGBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFEQnSli1bpvT0dMXHxysjI0Pvv/9+i/NLSkqUkZGh+Ph43XfffVq+fHnQnHfffVe9e/eW3W5X7969tXnz5nAtHwAAAAAAAAh/kLZx40ZNmzZNs2fPVllZmQYPHqwnnnhCp06danL+8ePH9eSTT2rw4MEqKyvTK6+8oqlTp+rdd9/1zyktLdW4cePkdrt18OBBud1ufec739GePXvCfToAAAAAAACIUTZjjAnnB2RmZqp///76zW9+4x/r1auXxowZo4KCgqD5P/nJT7RlyxYdOXLEPzZ58mQdPHhQpaWlkqRx48bJ5/Ppvffe88/Jzc3Vl7/8ZW3YsCHomHV1daqrq/O/9vl86t69u7xer5KSklrlPAEAAAAAAPDF5PP55HA4bpkVhfWKtPr6eh04cEA5OTkB4zk5Odq1a1eT+5SWlgbNHzFihPbv368rV660OKe5YxYUFMjhcPi37t27h3pKAAAAAAAAiFFhDdLOnz+vq1evyul0Bow7nU55PJ4m9/F4PE3Ob2ho0Pnz51uc09wxZ82aJa/X699Onz4d6ikBAAAAAAAgRrWLxIfYbLaA18aYoLFbzb95/HaOabfbZbfbb2vNAAAAAAAAwI3CekVacnKy2rZtG3SlWHV1ddAVZde5XK4m57dr105dunRpcU5zxwQAAAAAAADuVFiDtLi4OGVkZKi4uDhgvLi4WNnZ2U3uk5WVFTR/69atGjBggNq3b9/inOaOCQAAAAAAANypsP+0c8aMGXK73RowYICysrK0cuVKnTp1SpMnT5Z07f5lZ86c0fr16yVde0Ln0qVLNWPGDE2cOFGlpaVatWpVwNM4X375ZT322GN6/fXXNXr0aP3pT3/Stm3b9MEHH4T7dAAAAAAAABCjwh6kjRs3ThcuXNC8efNUVVWlvn37qrCwUGlpaZKkqqoqnTp1yj8/PT1dhYWFmj59ut566y2lpqZq8eLFevrpp/1zsrOz9fvf/14/+9nP9POf/1z333+/Nm7cqMzMzHCfDgAAAAAAAGKUzVy/k38M8fl8cjgc8nq9SkpKutvLAQAAAAAAwF1kNSsK6z3SAAAAAAAAgGhBkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWBDWIK2mpkZut1sOh0MOh0Nut1sXL15scR9jjObMmaPU1FQlJCRo6NChqqioCJgzdOhQ2Wy2gO2ZZ54J45kAAAAAAAAg1oU1SMvLy1N5ebmKiopUVFSk8vJyud3uFveZP3++Fi5cqKVLl2rfvn1yuVwaPny4amtrA+ZNnDhRVVVV/m3FihXhPBUAAAAAAADEuHbhOvCRI0dUVFSk3bt3KzMzU5L09ttvKysrS0ePHlXPnj2D9jHG6Ne//rVmz56tp556SpK0bt06OZ1O/e53v9Pzzz/vn9uhQwe5XK5wLR8AAAAAAAAIELYr0kpLS+VwOPwhmiQNHDhQDodDu3btanKf48ePy+PxKCcnxz9mt9s1ZMiQoH3eeecdJScnq0+fPpo5c2bQFWs3qqurk8/nC9gAAAAAAACA2xG2K9I8Ho9SUlKCxlNSUuTxeJrdR5KcTmfAuNPp1MmTJ/2vx48fr/T0dLlcLv3973/XrFmzdPDgQRUXFzd53IKCAs2dOzfUUwEAAAAAAABu/4q0OXPmBN3o/+Zt//79kiSbzRa0vzGmyfEb3fz+zftMnDhRw4YNU9++ffXMM8/oj3/8o7Zt26YPP/ywyePNmjVLXq/Xv50+ffp2TxsAAAAAAAAx7ravSJsyZcotn5B577336tChQzp79mzQe+fOnQu64uy66/c883g86tq1q3+8urq62X0kqX///mrfvr2OHTum/v37B71vt9tlt9tbXDMAAAAAAADQktsO0pKTk5WcnHzLeVlZWfJ6vdq7d68effRRSdKePXvk9XqVnZ3d5D7Xf65ZXFysfv36SZLq6+tVUlKi119/vdnPqqio0JUrVwLCNwAAAAAAAKA1he0eab169VJubq4mTpyoFStWSJImTZqkUaNGBTyx88EHH1RBQYG+/e1vy2azadq0aXr11Vf1wAMP6IEHHtCrr76qDh06KC8vT5L06aef6p133tGTTz6p5ORkffTRR/rRj36kfv36adCgQZbWZoyRJB46AAAAAAAAAH9GdD0zak7YgjTp2pM1p06d6n8K57e+9S0tXbo0YM7Ro0fl9Xr9r3/84x/rP//5j1588UXV1NQoMzNTW7duVWJioiQpLi5Of/3rX7Vo0SJdunRJ3bt318iRI5Wfn6+2bdtaWtf1J3x27969NU4TAAAAAAAAUaC2tlYOh6PZ923mVlFbFGpsbFRlZaUSExNv+eCDLwqfz6fu3bvr9OnTSkpKutvLQQRR+9hG/WMXtY9t1D+2Uf/YRv1jF7WPbdQ//Iwxqq2tVWpqqtq0af7ZnGG9Iu1/VZs2bdStW7e7vYywSEpKoqliFLWPbdQ/dlH72Eb9Yxv1j23UP3ZR+9hG/cOrpSvRrms+YgMAAAAAAADgR5AGAAAAAAAAWECQFiXsdrvy8/Nlt9vv9lIQYdQ+tlH/2EXtYxv1j23UP7ZR/9hF7WMb9f/fEZMPGwAAAAAAAABuF1ekAQAAAAAAABYQpAEAAAAAAAAWEKQBAAAAAAAAFhCkAQAAAAAAABYQpAEAAAAAAAAWEKSFUUFBgR555BElJiYqJSVFY8aM0dGjRwPmGGM0Z84cpaamKiEhQUOHDlVFRUXAnJUrV2ro0KFKSkqSzWbTxYsXgz7rH//4h0aPHq3k5GQlJSVp0KBB2rFjxy3XePjwYQ0ZMkQJCQm65557NG/ePN34INeqqirl5eWpZ8+eatOmjaZNmxbSdxFroqH2zz33nGw2W9DWp0+f0L6UGBLJ+n/44YcaPny4OnXqpC5dumjSpEm6dOnSLddI74dHNNSe3g9da9T/3//+t1566SX17NlTHTp00Fe/+lVNnTpVXq834Dg1NTVyu91yOBxyOBxyu91N/ju5Gb0fPtFQf/o/dJGs/y9/+UtlZ2erQ4cO6tSpk+U10v/hEQ21p/dDF6n6nzhxQhMmTFB6eroSEhJ0//33Kz8/X/X19bdcI73f+gjSwqikpEQ//OEPtXv3bhUXF6uhoUE5OTn67LPP/HPmz5+vhQsXaunSpdq3b59cLpeGDx+u2tpa/5zLly8rNzdXr7zySrOfNXLkSDU0NGj79u06cOCAvv71r2vUqFHyeDzN7uPz+TR8+HClpqZq3759WrJkiRYsWKCFCxf659TV1ekrX/mKZs+era997Wt3+I3Ejmio/aJFi1RVVeXfTp8+rc6dO2vs2LF3+O1Ev0jVv7KyUsOGDVOPHj20Z88eFRUVqaKiQs8991yL66P3wycaak/vh6416l9ZWanKykotWLBAhw8f1tq1a1VUVKQJEyYEfFZeXp7Ky8tVVFSkoqIilZeXy+12t7g+ej+8oqH+9H/oIln/+vp6jR07Vi+88ILl9dH/4RMNtaf3Qxep+n/88cdqbGzUihUrVFFRoTfffFPLly9v8e9Eid4PG4OIqa6uNpJMSUmJMcaYxsZG43K5zGuvveaf8/nnnxuHw2GWL18etP+OHTuMJFNTUxMwfu7cOSPJ7Ny50z/m8/mMJLNt27Zm17Ns2TLjcDjM559/7h8rKCgwqampprGxMWj+kCFDzMsvv2z1dHGDL3rtjTFm8+bNxmazmRMnTlg6Z/xXuOq/YsUKk5KSYq5eveofKysrM5LMsWPHml0PvR85X/TaG0Pv34k7rf91f/jDH0xcXJy5cuWKMcaYjz76yEgyu3fv9s8pLS01kszHH3/c7HHo/cj6otffGPr/ToSr/jdas2aNcTgcltZD/0fOF732xtD7dyIS9b9u/vz5Jj09vcX10PvhwRVpEXT90szOnTtLko4fPy6Px6OcnBz/HLvdriFDhmjXrl2Wj9ulSxf16tVL69ev12effaaGhgatWLFCTqdTGRkZze5XWlqqIUOGyG63+8dGjBihyspKnThx4jbPDi2JhtqvWrVKw4YNU1pamuX14Zpw1b+urk5xcXFq0+a//5UnJCRIkj744INm96P3Iycaak/vh6616u/1epWUlKR27dpJulZHh8OhzMxM/5yBAwfK4XC0eBx6P7Kiof70f+jCVf9Q0f+REw21p/dDF8n6e71e/+c0h94PD4K0CDHGaMaMGfrGN76hvn37SpL/p3dOpzNgrtPpbPFneTez2WwqLi5WWVmZEhMTFR8frzfffFNFRUUt/nbe4/E0+dk3rg13LhpqX1VVpffee08/+MEPLK8N14Sz/o8//rg8Ho/eeOMN1dfXq6amxn95d1VVVbP70fuREQ21p/dD11r1v3Dhgn7xi1/o+eef9495PB6lpKQEzU1JSWnx3xG9HznRUH/6P3ThrH+o6P/IiIba0/uhi2T9P/30Uy1ZskSTJ09ucU30fngQpEXIlClTdOjQIW3YsCHoPZvNFvDaGBM01hJjjF588UWlpKTo/fff1969ezV69GiNGjXK/wdVnz591LFjR3Xs2FFPPPFEi5/d1DhCFw21X7t2rTp16qQxY8ZYXhuuCWf9+/Tpo3Xr1ulXv/qVOnToIJfLpfvuu09Op1Nt27b1z6H3745oqD29H7rWqL/P59PIkSPVu3dv5efnt3iMm49D799d0VB/+j904a7/rdD/d0801J7eD12k6l9ZWanc3FyNHTs2IPCk9yPnzq4ThSUvvfSStmzZop07d6pbt27+cZfLJelaEty1a1f/eHV1dVBq3JLt27frz3/+s2pqapSUlCRJWrZsmYqLi7Vu3Tr99Kc/VWFhoa5cuSLpvz//cblcQSl0dXW1pODEHKGJhtobY7R69Wq53W7FxcVZXhvCX3/p2g2n8/LydPbsWX3pS1+SzWbTwoULlZ6eLkn0/l0SDbWn90PXGvWvra1Vbm6uOnbsqM2bN6t9+/YBxzl79mzQ5547d85/HHr/7omG+tP/oQt3/a2g/++OaKg9vR+6SNW/srJS3/zmN5WVlaWVK1cGvEfvRw5XpIWRMUZTpkzRpk2btH37dv8fN9elp6fL5XKpuLjYP1ZfX6+SkhJlZ2db/pzLly9LUsC9cq6/bmxslCSlpaWpR48e6tGjh+655x5JUlZWlnbu3BnwyNytW7cqNTVV9957722dKwJFU+1LSkr0ySefBD01CM2LVP1v5HQ61bFjR23cuFHx8fEaPny4JHo/0qKp9vT+7Wut+vt8PuXk5CguLk5btmxRfHx8wHGysrLk9Xq1d+9e/9iePXvk9Xr9x6H3Iy+a6k//375I1d8K+j+yoqn29P7ti2T9z5w5o6FDh6p///5as2ZN0N+A9H4EhecZBjDGmBdeeME4HA7zt7/9zVRVVfm3y5cv++e89tprxuFwmE2bNpnDhw+bZ5991nTt2tX4fD7/nKqqKlNWVmbefvtt/xMay8rKzIULF4wx157c2KVLF/PUU0+Z8vJyc/ToUTNz5kzTvn17U15e3uz6Ll68aJxOp3n22WfN4cOHzaZNm0xSUpJZsGBBwLyysjJTVlZmMjIyTF5enikrKzMVFRWt/G1Fl2ipvTHGfPe73zWZmZmt+O1Ev0jV3xhjlixZYg4cOGCOHj1qli5dahISEsyiRYtaXB+9Hz7RUntj6P1QtEb9fT6fyczMNA899JD55JNPAo7T0NDgP05ubq55+OGHTWlpqSktLTUPPfSQGTVqVIvro/fDK1rqbwz9H4pI1v/kyZOmrKzMzJ0713Ts2NHfs7W1tc2uj/4Pn2ipvTH0figiVf8zZ86YHj16mMcff9z861//CpjTEno/PAjSwkhSk9uaNWv8cxobG01+fr5xuVzGbrebxx57zBw+fDjgOPn5+bc8zr59+0xOTo7p3LmzSUxMNAMHDjSFhYW3XOOhQ4fM4MGDjd1uNy6Xy8yZMyfoMbhNfXZaWtqdfDVRL1pqf/HiRZOQkGBWrlx5R99HrIlk/d1ut+ncubOJi4szDz/8sFm/fr2lNdL74REttaf3Q9Ma9d+xY0ezxzl+/Lh/3oULF8z48eNNYmKiSUxMNOPHjzc1NTW3XCO9Hz7RUn/6PzSRrP/3v//9Jufs2LGjxTXS/+ERLbWn90MTqfqvWbOm2Tm3Qu+3Ppsx/3+nOQAAAAAAAADN4h5pAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAF/wfvq3dqYovrTwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "def plot_dfo_salt(mooring_depth):\n", - " \n", - "\n", - " df = pd.DataFrame()\n", - " \n", - " df['sea_water_practical_salinity'] = ds.sea_water_practical_salinity.data\n", - " df['PSALST01'] = ds.PSALST01.data\n", - " df['PSALST02'] = ds.PSALST02.data\n", - " df['SSALST01'] = ds.SSALST01.data\n", - " df['Time'] = ds.time.data\n", - " \n", - " # Need to figure a better way to capture sensor depths - using this from the filename for now\n", - " df['filename'] = ds.filename.data\n", - " df['file_depth'] = df['filename'].str[-10:-8].astype(int)\n", - "\n", - " # isolate the sensor depth\n", - " df_depth = df[df['file_depth'] == mooring_depth]\n", - "\n", - " x = df_depth.Time\n", - " var1 = df_depth.sea_water_practical_salinity\n", - " var2 = df_depth.PSALST01\n", - " var3 = df_depth.PSALST02\n", - " var4 = df_depth.SSALST01\n", - " \n", - " fig, ax = plt.subplots(4, figsize=(15, 8), sharex=True)\n", - " \n", - " ax[0].plot(x, var1, linewidth=0.05, c='blue')\n", - " ax[0].set_title('sea_water_practical_salinity')\n", - " ax[1].plot(x, var2, linewidth=0.5, c='orange')\n", - " ax[1].set_title(\"PSALST01\")\n", - " ax[2].plot(x, var3, linewidth=0.5, c='purple')\n", - " ax[2].set_title(\"PSALST02\")\n", - " ax[3].plot(x, var3, linewidth=0.5, c='purple')\n", - " ax[3].set_title(\"SSALST01\")\n", - " fig.subplots_adjust(hspace=0.5)\n", - " plt.suptitle(\"DFO Mooring Station E01 Salinity variables at depth {} metres\".format(str(mooring_depth)))\n", - " plt.show()\n", - " \n", - "plot_dfo_salt(75)" - ] - }, - { - "cell_type": "markdown", - "id": "c2fdcfb3-214f-43d2-a619-7d94017ca82d", - "metadata": {}, - "source": [ - "### Have a look at the various temperature variables." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "127f964c-4196-479a-8537-ec90f1f818a7", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAALjCAYAAAAWfmJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsG8Hs3vYeEQCoktFBDrypFitIEEQSx0FTsIiiIDVSKKL6iIvrJS1EBAaUoTQGlKSDw0ntNA0IgIb0n8/3xODu72d1kExICyf27rlybnZ1yZndmds6zzzlHpyiKAiIiIiIiIiIioipIX9EFICIiIiIiIiIiqigMjhERERERERERUZXF4BgREREREREREVVZDI4REREREREREVGVxeAYERERERERERFVWQyOERERERERERFRlcXgGBERERERERERVVkMjhERERERERERUZXF4BgREREREREREVVZDI4RERVj8eLF0Ol0hj9nZ2f4+/ujW7dumDlzJuLj482WmTp1qskyxn9z5841mTchIQGTJ09G48aN4erqCk9PT3To0AFfffUVcnNzbSpj165dodPpUKdOHSiKYvb6zp07DdtfvHhxqd6HW7V9+3bodDps3769QrZ/6tQpPPnkk6hTpw6cnZ1RvXp1tGrVCi+99BJSUlIM8y1btgxz5sy5pW3NmzfP4vscGRlZYZ9BUcekTqdDZGSkyfzLly9HixYt4OzsjMDAQIwbNw5paWkm86SmpmLixIno1asX/Pz8oNPpMHXq1GLLor4PtvwVLldVUhbHYmWgHrulMXLkSLi7u9s0b2hoKEaOHFmq7ZS3sjoWbsc+7t69G1OnTkVSUpLF7ffr169U61W/Q6z9PffcczbNu3fv3tLuWpnLyMjA1KlTK+x7kYiINPYVXQAiorvFokWL0LBhQ+Tm5iI+Ph5//fUXZs2ahdmzZ2PFihXo0aOH2TK//fYbvLy8TKaFhYUZ/j99+jR69eqFtLQ0TJgwAZ06dUJmZibWr1+PV199FT/99BM2btwIV1fXYsvn4eGBS5cu4c8//0T37t1NXlu4cCE8PT1NgkC3W6tWrbBnzx40btz4tm/70KFDuOeee9CoUSO89957CA0NxY0bN3DkyBEsX74cr7/+Ojw9PQFIJfT48eMYN25cqbc3b948VK9e3awSGhAQgD179qBu3bq3sDe3xtIxCUjZVEuXLsUTTzyBp59+Gp999hnOnj2LSZMm4eTJk9i8ebNhvoSEBHz77bdo3rw5Bg4ciP/+9782lUF9H4y98MILSE5OxtKlS62Wq6opi2OxMnj66afx4IMPVnQxKtTddCzs3r0b77//PkaOHAlvb+8yW6/6HVLY119/je+//x4PP/yw2WszZsxAt27dTKY1bdq0zMp0qzIyMvD+++8DkB+5iIio4jA4RkRko6ZNm6JNmzaG54888ghee+013HvvvRg0aBDOnTuHmjVrmizTunVrVK9e3eL68vPz8cgjjyAlJQX79u1DgwYNDK/16dMHXbp0wbBhwzB+/Hh88803xZavVq1a8PDwwMKFC02CY6mpqfjpp5/w+OOPY/78+SXd7VuWm5sLnU5nyIirCHPmzIFer8f27dvh4eFhmD548GB8+OGHFrPtyoOTk1OFvQeqoo5JQI7LN954A7169TIcL926dYOHhwcef/xxbNq0Cb179wYA1K5dGzdv3oROp8ONGzdsDo5Zeh88PT2Rk5NT4e9PecrMzISLi0tFFwMZGRk2BdwrmlrO4OBgBAcHV3RxqIJZ+g5RFAWPP/44ateujZ49e5otU79+/Up1Tblbzl0iorsRm1USEd2CWrVq4dNPP0Vqair+7//+r0TLrlmzBidPnsSbb75pEhhTDR06FL169cKCBQsQFxdn0zpHjx6N1atXmzRnWb58OQBg2LBhFpf566+/0L17d3h4eMDV1RWdOnXChg0bzOY7fvw4BgwYgGrVqsHZ2RktWrTAd999ZzKP2pTlhx9+wIQJExAUFAQnJyecP3/eYrNKtcnT+fPn0adPH7i7uyMkJAQTJkxAdna2ybpjY2MxePBgeHh4wNvbG48//jj2799vUzPFhIQEeHp6Wm1epTbZ6tq1KzZs2ICoqCiTZjiq999/H+3bt4ePjw88PT3RqlUrLFiwwCS4FhoaihMnTmDHjh2G5UNDQwFYb1Zpy2egNu/dtm0bnn/+eVSvXh2+vr4YNGgQrly5UuT+l8TevXtx9epVjBo1ymT6kCFD4O7ujjVr1himFX5/ylpKSgpef/11hIWFwdHREUFBQRg3bhzS09NN5tPpdHjppZewaNEihIeHw8XFBW3atMHevXuhKAo++eQThIWFwd3dHffffz/Onz9vsnzXrl3RtGlT7Nq1Cx06dICLiwuCgoLw7rvvIj8/32TenJwcTJs2DQ0bNoSTkxP8/PwwatQoXL9+3WQ+tfnY6tWr0bJlSzg7OxsyRL766it07twZNWrUgJubG5o1a4aPP/7YpBl1UceitSbKlo4v9Rw7duwYevXqBQ8PD0Pw3NZ9KWzOnDnQ6XRm7yMATJo0CY6Ojrhx4wYAYMuWLRgwYACCg4Ph7OyMevXqYezYsYbXVWrTyYMHD2Lw4MGoVq2aIcPSUrPKFStWoFevXggICICLiwsaNWqEN9980+zYUJ04cQLdu3eHm5sb/Pz88NJLLyEjI6PI/QRsPwZ/+ukntG/fHl5eXnB1dUWdOnUwevToYtd/q8eCNbm5uZg4cSL8/f3h6uqKe++9F/v27bM4b1xcHMaOHYvg4GA4OjoiLCwM77//PvLy8gzzqMfWxx9/jOnTp6NWrVpwdnZGmzZt8Mcffxjmmzp1Kt544w0AkiWtlrXwsfrbb7+hVatWcHFxQcOGDbFw4cJi3ytLtm3bhosXL2LUqFHQ68uuWqOeN6dPn8YDDzwANzc3BAQE4KOPPgIg18l7770Xbm5uaNCggdl3IVD8+xoZGQk/Pz8A8t2ivldqxnFR54SiKJg3bx5atGgBFxcXVKtWDYMHD8bFixdNynDo0CH069cPNWrUgJOTEwIDA9G3b1/ExsaW2XtFRFRZMHOMiOgW9enTB3Z2dti5c6fZa/n5+SYVDJ1OBzs7OwBSaQSAgQMHWl33wIEDsXnzZmzfvt1qcMvYsGHD8Nprr+HHH3/E888/DwBYsGABBg8ebGg2aGzHjh3o2bMnIiIisGDBAjg5OWHevHno378/fvzxRwwdOhQAcObMGXTq1Ak1atTAF198AV9fXyxZsgQjR47EtWvXMHHiRJP1Tp48GR07dsQ333wDvV6PGjVqWA3w5ebm4qGHHsKYMWMwYcIE7Ny5Ex9++CG8vLzw3nvvAQDS09PRrVs3JCYmYtasWahXrx5+++03Q/mK07FjR2zYsAGPP/44xo4di3bt2lnM4Jk3bx6effZZXLhwwSQIpIqMjMTYsWNRq1YtAFJBevnll3H58mVDWdesWYPBgwfDy8sL8+bNAyCZUtbY+hmonn76afTt2xfLli1DTEwM3njjDTzxxBP4888/bXovCh+TgOlxefz4cQBARESEyTwODg5o2LCh4fXylpGRgS5duiA2NhZvvfUWIiIicOLECbz33ns4duwYtm7dahIgWL9+PQ4dOoSPPvoIOp0OkyZNQt++fTFixAhcvHgRc+fORXJyMsaPH49HHnkEhw8fNlk+Li4Ow4YNw5tvvokPPvgAGzZswLRp03Dz5k1DP4EFBQUYMGAAdu3ahYkTJ6JTp06IiorClClT0LVrVxw4cMDkuDp48CBOnTqFd955B2FhYXBzcwMAXLhwAcOHDzcEXI4cOYLp06fj9OnThiBBccdiSeTk5OChhx7C2LFj8eabbyIvL6/E+2LsiSeewKRJk7B48WJMmzbNMD0/Px9LlixB//79DdmJFy5cQMeOHfH000/Dy8sLkZGR+M9//oN7770Xx44dg4ODg8m6Bw0ahGHDhuG5556zGugCgHPnzqFPnz4YN24c3NzccPr0acyaNQv79u0zOxdyc3PRp08fw/7v3r0b06ZNQ1RUFNatW2d1G7Yeg3v27MHQoUMxdOhQTJ06Fc7OzoiKirLpnCyvY+GZZ57B999/j9dffx09e/bE8ePHMWjQIKSmpprMFxcXh3bt2kGv1+O9995D3bp1sWfPHkybNg2RkZFYtGiRyfxz585F7dq1MWfOHBQUFODjjz9G7969sWPHDsPnnJiYiC+//BKrV682NIs2bk5/5MgRTJgwAW+++SZq1qyJ//73vxgzZgzq1auHzp0727R/qgULFkCv15sF81Uvvvgihg0bBldXV3Ts2BHvvvsu7r33XpvWnZubi0GDBuG5557DG2+8gWXLlmHy5MlISUnBqlWrMGnSJAQHB+PLL7/EyJEj0bRpU7Ru3drm9zUgIAC//fYbHnzwQYwZMwZPP/00ABgCZipL58TYsWOxePFivPLKK5g1axYSExPxwQcfoFOnTjhy5Ahq1qyJ9PR09OzZE2FhYfjqq69Qs2ZNxMXFYdu2bWbHARERAVCIiKhIixYtUgAo+/fvtzpPzZo1lUaNGhmeT5kyRQFg9hcUFGSY58EHH1QAKFlZWVbXu2nTJgWAMmvWrCLL2KVLF6VJkyaKoijKiBEjlDZt2iiKoignTpxQACjbt29X9u/frwBQFi1aZFiuQ4cOSo0aNZTU1FTDtLy8PKVp06ZKcHCwUlBQoCiKogwbNkxxcnJSoqOjTbbbu3dvxdXVVUlKSlIURVG2bdumAFA6d+5sVkb1tW3bthmmjRgxQgGgrFy50mTePn36KOHh4YbnX331lQJA2bRpk8l8Y8eONdsnS7KyspSBAwcaPgc7OzulZcuWyttvv63Ex8ebzNu3b1+ldu3aRa5PURQlPz9fyc3NVT744APF19fX8F4piqI0adJE6dKli9kyly5dKvVnoB6HL7zwgsk6P/74YwWAcvXq1SLLa+2YBKDUrVvXMN/06dOtrq9Xr15KgwYNLK7/+vXrCgBlypQpRZbDGuNjWFEUZebMmYperzc7737++WcFgLJx40bDNACKv7+/kpaWZpi2du1aBYDSokULk89mzpw5CgDl6NGjJtsGoPzyyy8m23rmmWcUvV6vREVFKYqiKD/++KMCQFm1apXJfOq5NW/ePMO02rVrK3Z2dsqZM2eK3G/1OPr+++8VOzs7JTEx0fCatWPR0rmkKJaPL/UcW7hwocm8JdkXSwYNGqQEBwcr+fn5hmkbN25UACjr1q2zuExBQYGSm5urREVFmb3f6vH53nvvmS2nvmaNut4dO3YoAJQjR46Y7f/nn39usox6nP/111+GabVr11ZGjBhheG7rMTh79mwFgOE6WFqlORYsOXXqlAJAee2110ymL126VAFgso9jx45V3N3dDce4St2nEydOKIqiHVuBgYFKZmamYb6UlBTFx8dH6dGjh2HaJ598ogBQLl26ZFa22rVrK87Ozibby8zMVHx8fJSxY8fatH+qmzdvKs7OzsoDDzxg9trBgweVV199VVmzZo2yc+dOZeHChUqjRo0UOzs75bfffit23epxY3x+5ObmKn5+fgoA5eDBg4bpCQkJip2dnTJ+/HjDNFvf16Kum9bOiT179igAlE8//dRkekxMjOLi4qJMnDhRURRFOXDggAJAWbt2bbH7S0REisJmlUREZUCx0mfV1q1bsX//fsPfxo0bS7XekjRdGz16NA4cOIBjx45hwYIFqFu3rsVf49PT0/HPP/9g8ODBJs0N7ezs8OSTTyI2NhZnzpwBAEMn/yEhISbrGDlyJDIyMsw6SX7kkUdsLq9Op0P//v1NpkVERCAqKsrwfMeOHfDw8DDrlPuxxx6zaRtOTk6GZqyfffYZhg0bhuvXr2P69Olo1KiRYT+L8+eff6JHjx7w8vKCnZ0dHBwc8N577yEhIcHiqKXFKclnoHrooYdMnqsZXsbvV1EKH5P79+/H2rVrzeazdsyVZzNKY+vXr0fTpk3RokUL5OXlGf4eeOABi820unXrZsjMAoBGjRoBAHr37m1SZnV64ffLw8PD7L0dPnw4CgoKDFmh69evh7e3N/r3729SphYtWsDf39+sTBERERabTB86dAgPPfQQfH19DcfRU089hfz8fJw9e7Zkb5SNCp+TJd2XwkaNGoXY2Fhs3brVMG3RokXw9/c39EkHAPHx8XjuuecQEhICe3t7ODg4oHbt2gBkBNniymnNxYsXMXz4cPj7+xvewy5dulhd7+OPP27yfPjw4QCkWZ41th6Dbdu2BQA8+uijWLlyJS5fvmzTPgDlcyyo+1R4nx999FHY25s2Glm/fj26deuGwMBAk31UP8MdO3aYzD9o0CA4Ozsbnnt4eKB///7YuXOnWRNka1q0aGHIvgUAZ2dnNGjQwOZrmGrp0qXIysoyZFwZa9myJebMmYOBAwfivvvuw6hRo7B7924EBASYZTpbo9Pp0KdPH8Nze3t71KtXDwEBAWjZsqVhuo+PD2rUqGFS/pK+r0WxdO7qdDo88cQTJuv29/dH8+bNDcdlvXr1UK1aNUyaNAnffPMNTp48afM2iYiqIjarJCK6Renp6UhISECzZs3MXmvevLnVzs/VysGlS5fQsGFDi/NERkYCgFlQqiidO3dG/fr18X//939YuXIlxo0bZzGgcfPmTSiKYnE0wMDAQADSV5f6aMt8qpKMMOjq6mpS2QIkmJWVlWV4npCQYDbYAQCL04rSqFEjQ3BEURTMmTMH48ePx7vvvouVK1cWuey+ffvQq1cvdO3aFfPnzzf0I7N27VpMnz4dmZmZJSoLULLPQOXr62vyXG2yaev2izomjddv6T1PTEyEj4+PTdu5VdeuXcP58+fNmt2pCvdZVbhcjo6ORU43Pr4Ay8eSv78/AO0zuHbtGpKSkgzrKK5Mlj7X6Oho3HfffQgPD8fnn3+O0NBQODs7Y9++fXjxxRdLdRwVx9XV1axZdUn3pbDevXsjICAAixYtQq9evXDz5k38+uuvePXVVw1NdAsKCtCrVy9cuXIF7777Lpo1awY3NzcUFBSgQ4cOFvfVlmtHWloa7rvvPjg7O2PatGlo0KABXF1dERMTg0GDBpmt197e3uy8KfzZWmLrMdi5c2esXbsWX3zxBZ566ilkZ2ejSZMmePvtt4sM4JfXsaDuk7qPKkvvw7Vr17Bu3Tqbz7PC61Sn5eTkIC0tzeJIuIUVLgMg17GS7u+CBQvg5+eHAQMG2DS/t7c3+vXrh2+++camwTEsfTc5OjpavAY6OjqaXFNK+r4WpfA5ce3aNSiKYvX7r06dOgAALy8v7NixA9OnT8dbb72FmzdvIiAgAM888wzeeecdq2UjIqqqGBwjIrpFGzZsQH5+fomHYe/Zsye+/fZbrF27Fm+++abFedauXQt7e/sSr3vUqFF45513oNPpMGLECIvzVKtWDXq9HlevXjV7Te3gXQ2i+Pr62jSfqqyzi3x9fS12Jm3rQAWW6HQ6vPbaa/jggw9s6kdr+fLlcHBwwPr1600qTJayrmxVks/gdlGDvMeOHTPpJygvLw+nT5+2OVvvVlWvXh0uLi5WO+ou6/fl2rVrZtPU40utzKuDIPz2228W12E8Eipg+TxYu3Yt0tPTsXr1akMGFQAcPnzY5rKqx1/hQSusVbgtlaOk+1KYmt34xRdfICkpCcuWLUN2drZJ30/Hjx/HkSNHsHjxYpPrkKWO/Isqa2F//vknrly5gu3btxuyxQCYDERiLC8vDwkJCSZBmcKfrSUlOQYHDBiAAQMGIDs7G3v37sXMmTMxfPhwhIaGomPHjhaXL4tjwRJ1n+Li4hAUFGSYrr4PhfchIiIC06dPt7guNUivsnTNjYuLg6Ojo9UBT8rDoUOHcOjQIUyYMKFEQZ7SZGOXRknf16IULmv16tWh0+mwa9cui/1ZGk9r1qwZli9fDkVRcPToUSxevBgffPABXFxcrN53EBFVVQyOERHdgujoaLz++uvw8vLC2LFjS7Tsww8/jMaNG+Ojjz7CoEGDzJpfrVixAps3b8Zzzz1n8df6oowYMQL//PMPGjVqZFI5Mubm5ob27dtj9erVmD17tuFX9IKCAixZsgTBwcGGMnXv3h1r1qzBlStXTG7qv//+e7i6uqJDhw4lKl9JdenSBStXrsSmTZtMmmypI3EW5+rVqxYzUq5cuYKUlBRDJ8qA9QwGnU4He3t7Q1YMINlaP/zwg9m8tmZBlOQzuF3at2+PgIAALF682GQwgJ9//hlpaWkYNGjQbSlHv379MGPGDPj6+iIsLKzct5eamopff/3VpGnlsmXLoNfrDc2S+/Xrh+XLlyM/Px/t27cv1XbUiq5xBVZRFMyfP99sXmvHkTr66dGjR/HAAw8Ypv/66682l6Ms9mXUqFH4+OOP8eOPP2Lx4sXo2LGjSRaspX0FUOKRfQsrzXqXLl2KV155xfB82bJlAFDkDw+lOQadnJzQpUsXeHt74/fff8ehQ4esBsfK4liwRN2npUuXmlzbVq5caTYYR79+/bBx40bUrVsX1apVK3bdq1evxieffGII0KampmLdunW47777DNfGkmazlsaCBQsAAGPGjLF5mZs3b2L9+vVo0aKFWUZYWbP1fS3Ne9WvXz989NFHuHz5Mh599FGbltHpdGjevDk+++wzLF68GAcPHrR5e0REVQWDY0RENjp+/Lihb4/4+Hjs2rULixYtgp2dHdasWWM2wlRx7OzssGrVKvTs2RMdO3bEhAkT0LFjR2RnZ2PdunX49ttv0aVLF3z66aclLmtgYKBNGU0zZ85Ez5490a1bN7z++utwdHTEvHnzcPz4cfz444+GytuUKVMMfai899578PHxwdKlS7FhwwZ8/PHHNjWluRUjRozAZ599hieeeALTpk1DvXr1sGnTJvz+++8AAL2+6C40n332WSQlJeGRRx5B06ZNYWdnh9OnT+Ozzz6DXq/HpEmTDPM2a9YMq1evxtdff43WrVtDr9ejTZs26Nu3L/7zn/9g+PDhePbZZ5GQkIDZs2db/OVe/bV+xYoVqFOnDpydnS02uwVs/wzKyv/+9z+Ln1fjxo3h6ekJOzs7fPzxx3jyyScxduxYPPbYYzh37hwmTpyInj17mvX7tmnTJqSnpxtGPzt58iR+/vlnADKSq6ura6nKOW7cOKxatQqdO3fGa6+9hoiICBQUFCA6OhqbN2/GhAkTSh3UscTX1xfPP/88oqOj0aBBA2zcuBHz58/H888/b2gCPWzYMCxduhR9+vTBq6++inbt2sHBwQGxsbHYtm0bBgwYgIcffrjI7fTs2ROOjo547LHHMHHiRGRlZeHrr7/GzZs3zea1diz6+/ujR48emDlzJqpVq4batWvjjz/+wOrVq23e37LYl4YNG6Jjx46YOXMmYmJi8O2335q9XrduXbz55ptQFAU+Pj5Yt26dYaTe0urUqROqVauG5557DlOmTIGDgwOWLl2KI0eOWJzf0dERn376KdLS0tC2bVvDaJW9e/cucuRCW4/B9957D7GxsejevTuCg4ORlJSEzz//3KQfNEvK4liwpFGjRnjiiScwZ84cODg4oEePHjh+/Dhmz55t1rz2gw8+wJYtW9CpUye88sorCA8PR1ZWFiIjI7Fx40Z88803CA4ONsxvZ2eHnj17Yvz48SgoKMCsWbOQkpKC999/36SsAPD5559jxIgRcHBwQHh4eLHZiLbKysrCsmXL0KlTJ0Mz+cKGDx+OWrVqoU2bNqhevTrOnTuHTz/9FNeuXcPixYvLpBxFsfV99fDwQO3atfHLL7+ge/fu8PHxQfXq1Q0BcEvuuecePPvssxg1ahQOHDiAzp07w83NDVevXsVff/2FZs2a4fnnn8f69esxb948DBw4EHXq1IGiKFi9ejWSkpLQs2fPcn8PiIjuOhUzDgAR0d1DHSVQ/XN0dFRq1KihdOnSRZkxY4bZaIeKoo0ydf369WLXf+PGDeXNN99UGjZsqDg7Oyvu7u5Ku3btlLlz5yo5OTk2lbHwSH+WWBqtUlEUZdeuXcr999+vuLm5KS4uLkqHDh0sjjZ37NgxpX///oqXl5fi6OioNG/e3Gxd6ih6P/30k9ny1kardHNzM5vX0uh00dHRyqBBgxR3d3fFw8NDeeSRRwyj4xUeZbCw33//XRk9erTSuHFjxcvLS7G3t1cCAgKUQYMGKXv27DGZNzExURk8eLDi7e2t6HQ6k3IsXLhQCQ8PV5ycnJQ6deooM2fOVBYsWGA2MltkZKTSq1cvxcPDQwFgGGXO0miCimLbZ2Bt1FRrIxcWVtRolQCULVu2mMy/bNkyJSIiQnF0dFT8/f2VV155xWRETVXt2rWtrtPSaHXWWDqG09LSlHfeeUcJDw9XHB0dFS8vL6VZs2bKa6+9psTFxRnmA6C8+OKLJsuq7/Unn3xiMt3SMapue/v27UqbNm0UJycnJSAgQHnrrbeU3Nxck+Vzc3OV2bNnK82bNzecrw0bNlTGjh2rnDt3zuR96du3r8V9XbdunWH5oKAg5Y033jCMTGv8ORZ1LF69elUZPHiw4uPjo3h5eSlPPPGEYXS6wqNVWjrHSrIvRfn2228VAIqLi4uSnJxs9vrJkyeVnj17Kh4eHkq1atWUIUOGKNHR0WYj9BV1zbR0Pdi9e7fSsWNHxdXVVfHz81Oefvpp5eDBg1b3/+jRo0rXrl0VFxcXxcfHR3n++edNRjdVFPPRKhXFtmNw/fr1Su/evZWgoCDD90OfPn2UXbt2Ffv+lcWxYEl2drYyYcIEpUaNGoqzs7PSoUMHZc+ePRb38fr168orr7yihIWFKQ4ODoqPj4/SunVr5e233za8R+r5NGvWLOX9999XgoODFUdHR6Vly5bK77//brb9yZMnK4GBgYperzfZF2vnRZcuXSyO8GuJOupm4RFYjc2cOVNp0aKF4uXlpdjZ2Sl+fn7Kww8/rOzbt8+mbVg7b6x911raL1veV0VRlK1btyotW7ZUnJycTEYTLe4+YuHChUr79u0N3xt169ZVnnrqKeXAgQOKoijK6dOnlccee0ypW7eu4uLionh5eSnt2rVTFi9ebNN7QERU1egUxcoQa0RERHe4GTNm4J133kF0dLRJdgNRSXTt2hU3btywqe85oqooMjISYWFh+OSTT/D6669XdHGIiIjKHJtVEhHRXWHu3LkApKlWbm4u/vzzT3zxxRd44oknGBgjIiIiIqJSY3CMiIjuCq6urvjss88QGRmJ7Oxs1KpVC5MmTcI777xT0UUjIiIiIqK7GJtVEhERERERERFRlVX08F5ERERERERERESVGINjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkRERHSLZsyYgbVr11bY9ufNm4fFixdX2PbvZMuWLcOcOXMquhhERER0B9MpiqJUdCGIiIiI7mbu7u4YPHhwhQWomjZtiurVq2P79u0Vsv07Wb9+/XD8+HFERkZWdFGIiIjoDsXMMSIiIqI7UH5+PrKzsyu6GHeczMzMii4CACAjI6Oii0BERERlhMExIiIiKlPXr1/Hs88+i5CQEDg5OcHPzw/33HMPtm7daphn69at6N69Ozw9PeHq6op77rkHf/zxh8l6zp8/j1GjRqF+/fpwdXVFUFAQ+vfvj2PHjpWoPG+88Qa8vLyQn59vmPbyyy9Dp9Phk08+MUxLSEiAXq/Hl19+CQDIysrChAkT0KJFC3h5ecHHxwcdO3bEL7/8YrJ+nU6H9PR0fPfdd9DpdNDpdOjatavh9bi4OIwdOxbBwcFwdHREWFgY3n//feTl5RnmiYyMhE6nw8cff4xp06YhLCwMTk5O2LZtW7H7FxoaihMnTmDHjh2G7YeGhhpeT0lJweuvv46wsDA4OjoiKCgI48aNQ3p6utl+vPTSS1i0aBHCw8Ph4uKCNm3aYO/evVAUBZ988gnCwsLg7u6O+++/H+fPnzdZvmvXrmjatCl27dqFDh06wMXFBUFBQXj33XdN3nsAyMnJwbRp09CwYUPDMTJq1Chcv37dbN/69euH1atXo2XLlnB2dsb7778PAPjqq6/QuXNn1KhRA25ubmjWrBk+/vhj5ObmmpRpw4YNiIqKMrw3Op0OALB9+3bodDqzbDv1szDOAhw5ciTc3d1x7Ngx9OrVCx4eHujevXuJ9oWIiIjuXPYVXQAiIiKqXJ588kkcPHgQ06dPR4MGDZCUlISDBw8iISEBALBkyRI89dRTGDBgAL777js4ODjg//7v//DAAw/g999/NwQdrly5Al9fX3z00Ufw8/NDYmIivvvuO7Rv3x6HDh1CeHi4TeXp0aMHZs+ejX379qFjx44AJDjn4uKCLVu24I033gAA/PHHH1AUBT169AAAZGdnIzExEa+//jqCgoKQk5ODrVu3YtCgQVi0aBGeeuopAMCePXtw//33o1u3bnj33XcBAJ6engAkMNauXTvo9Xq89957qFu3Lvbs2YNp06YhMjISixYtMinrF198gQYNGmD27Nnw9PRE/fr1i92/NWvWYPDgwfDy8sK8efMAAE5OTgAku6lLly6IjY3FW2+9hYiICJw4cQLvvfcejh07hq1btxqCRQCwfv16HDp0CB999BF0Oh0mTZqEvn37YsSIEbh48SLmzp2L5ORkjB8/Ho888ggOHz5ssnxcXByGDRuGN998Ex988AE2bNiAadOm4ebNm5g7dy4AoKCgAAMGDMCuXbswceJEdOrUCVFRUZgyZQq6du2KAwcOwMXFxbDOgwcP4tSpU3jnnXcQFhYGNzc3AMCFCxcwfPhwQ9DvyJEjmD59Ok6fPo2FCxcCkL7Ynn32WVy4cAFr1qwp/mApQk5ODh566CGMHTsWb775JvLy8kq8L0RERHSHUoiIiIjKkLu7uzJu3DiLr6Wnpys+Pj5K//79Tabn5+crzZs3V9q1a2d1vXl5eUpOTo5Sv3595bXXXrO5POnp6Yqjo6PywQcfKIqiKLGxsQoAZdKkSYqLi4uSlZWlKIqiPPPMM0pgYGCR28/NzVXGjBmjtGzZ0uQ1Nzc3ZcSIEWbLjB07VnF3d1eioqJMps+ePVsBoJw4cUJRFEW5dOmSAkCpW7eukpOTY/O+qZo0aaJ06dLFbPrMmTMVvV6v7N+/32T6zz//rABQNm7caJgGQPH391fS0tIM09auXasAUFq0aKEUFBQYps+ZM0cBoBw9etQwrUuXLgoA5ZdffjHZ1jPPPKPo9XrDe/Djjz8qAJRVq1aZzLd//34FgDJv3jzDtNq1ayt2dnbKmTNnitz//Px8JTc3V/n+++8VOzs7JTEx0fBa3759ldq1a5sts23bNgWAsm3bNpPp6mexaNEiw7QRI0YoAJSFCxeazFuSfSEiIqI7F5tVEhERUZlq164dFi9ejGnTpmHv3r0mzdx2796NxMREjBgxAnl5eYa/goICPPjgg9i/f7+huV9eXh5mzJiBxo0bw9HREfb29nB0dMS5c+dw6tQpm8vj6uqKjh07Gpp1btmyBd7e3njjjTeQk5ODv/76C4Bkk6lZY6qffvoJ99xzD9zd3WFvbw8HBwcsWLDA5u2vX78e3bp1Q2BgoMn+9u7dGwCwY8cOk/kfeughODg42Lxvtmy/adOmaNGihcn2H3jgAYtNCrt162bIzAKARo0aAQB69+5tkiGmTo+KijJZ3sPDAw899JDJtOHDh6OgoAA7d+40lMnb2xv9+/c3KVOLFi3g7+9vVqaIiAg0aNDAbN8OHTqEhx56CL6+vrCzs4ODgwOeeuop5Ofn4+zZsyV7o2z0yCOPmDwv6b4QERHRnYnBMSIiIipTK1aswIgRI/Df//4XHTt2hI+PD5566inExcXh2rVrAIDBgwfDwcHB5G/WrFlQFAWJiYkAgPHjx+Pdd9/FwIEDsW7dOvzzzz/Yv38/mjdvXuJO2Xv06IG9e/ciPT0dW7duxf333w9fX1+0bt0aW7duxaVLl3Dp0iWT4Njq1avx6KOPIigoCEuWLMGePXuwf/9+jB49GllZWTZt99q1a1i3bp3ZvjZp0gQAcOPGDZP5AwICSrRftmz/6NGjZtv38PCAoihm2/fx8TF57ujoWOT0wu9DzZo1zcrg7+8PAIZmtdeuXUNSUhIcHR3NyhUXF2fTexIdHY377rsPly9fxueff45du3Zh//79+OqrrwCUT6f9rq6uhuayqpLuCxEREd2Z2OcYERERlanq1atjzpw5mDNnDqKjo/Hrr7/izTffRHx8PF577TUAwJdffokOHTpYXF4NsKh9k82YMcPk9Rs3bsDb27tEZerevTveffdd7Ny5E3/88QemTJlimL5582aEhYUZnquWLFmCsLAwrFixwiRrqiQjSFavXh0RERGYPn26xdcDAwNNnhtvpyxUr14dLi4uhj64LL1eltTgp7G4uDgAgK+vr2Gbvr6++O233yyuw8PDw+S5pfdk7dq1SE9Px+rVq1G7dm3D9MOHD9tcVmdnZwDmn6e1gJalcpR0X4iIiOjOxOAYERERlZtatWrhpZdewh9//IG///4b99xzD7y9vXHy5Em89NJLRS6r0+kMHcurNmzYgMuXL6NevXolKke7du3g6emJOXPmIC4uDj179gQgGWWzZs3CypUr0bhxY5NglU6ng6Ojo1mH84VHqwSkA3xL2Ur9+vXDxo0bUbduXVSrVq1EZS6JorY/Y8YM+Pr6GgKA5Sk1NRW//vqrSdPKZcuWQa/Xo3PnzoYyLV++HPn5+Wjfvn2ptqN+JsbHh6IomD9/vtm81t4bdUTPo0eP4oEHHjBM//XXX20uR1nsCxEREVU8BseIiIiozCQnJ6Nbt24YPnw4GjZsCA8PD+zfvx+//fYbBg0aBHd3d3z55ZcYMWIEEhMTMXjwYNSoUQPXr1/HkSNHcP36dXz99dcAJPCwePFiNGzYEBEREfjf//6HTz75BMHBwSUul52dHbp06YJ169YhLCwMdevWBQDcc889cHJywh9//IFXXnnFZJl+/fph9erVeOGFFzB48GDExMTgww8/REBAAM6dO2cyb7NmzbB9+3asW7cOAQEB8PDwQHh4OD744ANs2bIFnTp1wiuvvILw8HBkZWUhMjISGzduxDfffFOq/SmsWbNmWL58OVasWIE6derA2dkZzZo1w7hx47Bq1Sp07twZr732GiIiIlBQUIDo6Ghs3rwZEyZMKNOgjq+vL55//nlER0ejQYMG2LhxI+bPn4/nn38etWrVAgAMGzYMS5cuRZ8+ffDqq6+iXbt2cHBwQGxsLLZt24YBAwbg4YcfLnI7PXv2hKOjIx577DFMnDgRWVlZ+Prrr3Hz5k2L783q1avx9ddfo3Xr1tDr9WjTpg38/f3Ro0cPzJw5E9WqVUPt2rXxxx9/YPXq1Tbvb1nsCxEREd0BKnhAACIiIqpEsrKylOeee06JiIhQPD09FRcXFyU8PFyZMmWKkp6ebphvx44dSt++fRUfHx/FwcFBCQoKUvr27av89NNPhnlu3rypjBkzRqlRo4bi6uqq3HvvvcquXbuULl26WByZsTiff/65AkB55plnTKb37NlTAaD8+uuvZst89NFHSmhoqOLk5KQ0atRImT9/vjJlyhSl8C3U4cOHlXvuuUdxdXVVAJiU7/r168orr7yihIWFKQ4ODoqPj4/SunVr5e233zaMDKmOkPjJJ5+UeL8URVEiIyOVXr16KR4eHgoAk9EZ09LSlHfeeUcJDw9XHB0dFS8vL6VZs2bKa6+9psTFxRnmA6C8+OKLJuu1Vi51pEfjz6tLly5KkyZNlO3btytt2rRRnJyclICAAOWtt95ScnNzTZbPzc1VZs+erTRv3lxxdnZW3N3dlYYNGypjx45Vzp07Z5ivdu3aSt++fS3u87p16wzLBwUFKW+88YayadMmsxEoExMTlcGDByve3t6KTqcz+eyuXr2qDB48WPHx8VG8vLyUJ554Qjlw4IDF0Srd3NwslsPWfSEiIqI7l05RFKViwnJEREREVFl07doVN27cwPHjxyu6KEREREQlwtEqiYiIiIiIiIioymKfY0RERHTXys/PR1FJ8DqdDnZ2drexRGWrsu8fERER0Z2AzSqJiIjorhUaGoqoqCirr3fp0gXbt2+/fQUqY5V9/4iIiIjuBMwcIyIiorvWunXrkJ2dbfV1Dw+P21iaslfZ94+IiIjoTsDMMSIiIiIiIiIiqrIqTeZYQUEBrly5Ag8PD+h0uoouDhERERERERERVRBFUZCamorAwEDo9UWPR1lpgmNXrlxBSEhIRReDiIiIiIiIiIjuEDExMQgODi5ynkoTHFP73IiJiYGnp2cFl4aIiIiIiIiIiCpKSkoKQkJCbOqjtdIEx9SmlJ6engyOERERERERERGRTV1vFd3okoiIiIiIiIjoLpSRUdEloLsFg2NEREREREREVKmkpQHR0RVdCrpbMDhGRERERERERJXK0aNAdnZFl4LuFgyOEREREREREVGlotMBqakVXQq6WzA4RkRERERERESVip0dcOVKRZeC7hYMjhERERERERFRpaLTAd7e2vP9+01fL67JZW5umReJ7mAMjhERERERERFRpeLoKM0q4+Lk+aZNQEGB/B8dDbz4ovkyV64Ae/bI/wcO3J5y0p2BwTEiIiIiIiIiqlT8/YHAQBm1MioKyMgAVq6U186dA4KCgPPnTZc5cAAYMkSCZ5mZwKVLt7/cVDEYHCMiIiIiIiKiSsXBAUhMlGyxP/4AGjUCkpKA/HzA1xdo316yyVSKAvz2G+DsDFy+LMvt3SujXmZlVdhu0G3C4BgRERERERERVToNGwLbtkkWWHQ0cOMG8PffQGwscO+9QM2a2rzXr0vQrFMnySALCgI8PWX+b76puH2g24PBMSIiIiIiIiKqdGrWlOyw+vWB0FAgIkKCYOfOSeCrZ0+ZLy4OOH0aOHUKePBB4MwZwMMDCA+XQNqRIxW6G3Qb2Fd0AYiIiIiIiIiIykpiojy6u0vH+4oio1eGhgKvvab1PaaaNEmaUj76qPRV5uQkWWb29sCxY4CfH5CQIJllqrQ0WT9VDswcIyIiIiIiIqJK49o17f9GjaT/MFdXoF49oG1b0yAXIFlinTrJ67VqybT4eMkoS0gAbt4Etm8Hdu/WlsnIKPfdoNuIwTEiIiIiIiIiuqulpmr/37gBZGfL/46Okjnm6gq4uAC1a2vzKYo81qghfYyFh0uATJ3H2RmIiZE+y3bv1uYHJGBGlQeDY0RERERERER0Vzp1Sh6Ns8UyM4HFi+V/4ywxnQ5wczNdXlGkuWWzZhI8A6Qj/+vXgZwcrWP+vDwZAROQES8vXiyPvaGKwj7HiIiIiIiIiOiutHmzNJt0ctKm5eVJYAsA7OzkLz9fnrdsqc2n08kolj16SEDNx0emq5lmWVnS31j37pKZ5uEhfY1FRUnmGPsdqzyYOUZEREREREREd6XTp2VUSkXRmlbm5UlQS3X1qgTCACAszHT5I0ckkKZmhQESbHN2luyxwYOBgABpVlmzpmSopaVJsC0urnz3jW4fBseIiIiIiIiI6K4SGyuP/fsD6ekSGEtKkmnJyUBwsDZvQQFQt678b5zpdeqUZIzl55sGxwDJHHN1lWCaTgecOSN/mZmAXg9Ury59mxW2Z0+Z7SLdRgyOEREREREREdFd5fJlefTzkwyumBgtWBUfL/2EqRwctGaVxk6ckKaTbm4SCFPZ2cmoldeuSRDM1xdo3VqacN68Kc0q9+wBjh41X+exY2W3j3T7MDhGRERERERERHeVjAxg717J4oqNBRISJDCVkwOcPy/BLJWPDxAZab6OmBgJolWvDnh5adP1egmONWokgbVq1SRAduiQNOO8dAnYv1+CaMaOHNGabVoKxtGdi8ExIiIiIiIiIrprJCbKaJGHDwM1akggKidH/g4fBlq1ks7zVcad9RvLzZUMNLU/MlVsrAS+QkLkuV4v88THS5PNrCxtNEtjf/4pwbQLFySARncPBseIiIiIiIiI6K6RnQ04OgIbNwIpKRK8ys+Xjvh/+QVo1850fr0eqFPHfD116kiArHBwTO2frEEDCZBVry7P09NlO7m50o9ZfLy2zPXr0uQyNFSe5+YWvQ8FBcwuu5OUODi2c+dO9O/fH4GBgdDpdFi7dq3J64qiYOrUqQgMDISLiwu6du2KEydOFLveVatWoXHjxnByckLjxo2xZs2akhaNiIiIiIgqKUWp6BIQ0Z0iK0syvpKTJXNMp5PAlb09cOWK6UiVgATH7O3N11NQIBlihYNjbm7a/05O0izT318CcjEx0jF/eLiWWQYAP/wAHDggo1x6ehY9kmVBgQTTmF125yhxcCw9PR3NmzfH3LlzLb7+8ccf4z//+Q/mzp2L/fv3w9/fHz179kSqOqaqBXv27MHQoUPx5JNP4siRI3jyySfx6KOP4p9//ilp8YiIiIiIqBKyNCocEVVNWVkSrNLpJBCmBr/S06WpY16e6fx2dub9gwHSp5jaZNKYcdBL5esrQbLr14Ft24C2bSVorwbudTpg0ya5VtnbA1OmmK8jJUVG1Fy+HJgxQ0bLTEws1VtAZazEwbHevXtj2rRpGDRokNlriqJgzpw5ePvttzFo0CA0bdoU3333HTIyMrBs2TKr65wzZw569uyJyZMno2HDhpg8eTK6d++OOXPmlLR4RERERERUCbH5ERGpMjOl2WJKijyPi5Mglb29ZGUVDo45OloOjrVrJ68VZpw5prKzA1JTJQB3/Trg7i79i8XHy/aiomQQgMBAKYtxk0u1ieXRo8CqVRJku3wZ2LkTOH5cmolSxSrTPscuXbqEuLg49OrVyzDNyckJXbp0we7du60ut2fPHpNlAOCBBx4ocpns7GykpKSY/BERERERUeXE4BhR5aIoEuQqjexsCYipQazsbC0g5uIiATJj1oJjzs5AzZrm011dzafp9bIeNZjm6CgZbFlZsi9qFhsg/7dqJVlsV64A0dEy/cwZ4MQJ4No1oGtXYP16CbIlJkoTUao4ZRoci/u3UW3NQkdXzZo1Da9ZW66ky8ycORNeXl6GvxBLeY9ERERUKVkajp2IKrfCmSBEdHfLyJBMLFslJWn/5+RIAEptkpifLyNEZmdLf1+FVatmOTgGSLaXLerVA/r0kT7O7r1XglqXLsm2FUWmh4VpgwO0aCFlPndOmlrGxAB79shrLi4yGMB//iPzZ2Uxe6yilctolbpCDXYVRTGbdqvLTJ48GcnJyYa/mJiY0heYiIiI7iqsJBNVPaU9742bNhHRnSM723In+dYYXwNycqRJozoqZUGBNF28eVP6CyucaeruLkEoSxwcbNu+n5+MROnlJesaOBD45x/Z1uXLsg13d9mn5GQJpmVnS3Ds2DFg/35Z3t9fgmjt2wMREbK8OtImVZwyDY75+/sDgFnGV3x8vFlmWOHlSrqMk5MTPD09Tf6IiIiIiKhyKu1olSkp0qyJiO58Fy6YPr92zbyJJCDBMV9faboISNPIggKZ1qaNNJc0pnamb4m3t+3l8/WVwFdWlgTB1CaWGzZIM89jxyRwtmOHZKqlpQF//w3UqiUBtHr1pE+yrCxZl6ur7AvA4FhFK9PgWFhYGPz9/bFlyxbDtJycHOzYsQOdOnWyulzHjh1NlgGAzZs3F7kMERERVU0FBdIZbnm4XTemiiLNSe5UasfBRJXFnXy+EVVlR4+aPo+P1/rnAqTZ5c2b8r9xgFxtVtmsmTz39ZUmlnXqyPn+b96OCWuZY05OtpfX21sCb9WqyfMmTaQZ54ULwNWrMoKlq6tktHl7A//7nzS9jI0FunSR1xs3Bho0kOWrVZOMsgMHgIsXbS8Hlb0SB8fS0tJw+PBhHD58GIB0wn/48GFER0dDp9Nh3LhxmDFjBtasWYPjx49j5MiRcHV1xfDhww3reOqppzB58mTD81dffRWbN2/GrFmzcPr0acyaNQtbt27FuHHjbnkHiYiIqHJRFGDv3vJZt3oDXt7y82UY9zuhwm4pGycq6vaXg6g8ZWWVz3rz86XZ1OXL2rTNm8tu/cVly127Zvo8IaH8fjwgKg+Fz5eTJyVYZOz6dXksHBzT67WsL2dnLZNMpytZwMtWtWtLhlpyshYcCw6W60BmpjzWrSvTQ0OlHBs2AAEBwGOPSeAuJESyyKpX19a7fz+wZcudcU9QlZU4OHbgwAG0bNkSLVu2BACMHz8eLVu2xHvvvQcAmDhxIsaNG4cXXngBbdq0weXLl7F582Z4eHgY1hEdHY2rV68annfq1AnLly/HokWLEBERgcWLF2PFihVo3779re4fERERVTIFBVIhLG0Tq6KUd8aUWmnNy5OOeX/8sXy3Z4vz580HOEhPlxt6ospi5cqSXzO2btX+z8oyH1UvKkqC3Dt3SnMqRZFzu6wGDDl8WPozSk+XZqGnTkkl2rgcqakyn6JI1szp08Cff5bN9oluh3PntP8VRb7fs7Ml0KuylDmWlydNpuvXl+d6vczn7l5+ZXVwkCBcbq7W6b+7u2SNnTwpzSVdXLTpDg7AgAHAfffJdHd3aYZZs6bp4AB79sg9wYED5Vd2Kl4Jur8TXbt2hVLEN4tOp8PUqVMxdepUq/Ns377dbNrgwYMxePDgkhaHiIiIqpizZ6U5Qn6+1pHvzp1A5863vu7yCI5lZcnNtKIAr78OfPmlbMfNzfaRqaKi5FdwS81ErMnNlYqDr69sx9FRfsU2duMGcPCgVKb/7/+kop2aKpWVrCx5j62N7kVUWhkZ0uyoJKxVP9LSbKsMX7ggx7RacbXF4cNAy5ay/nXrZHQ6Fxc5L/R6qchu3SqZKqGh0peQnV3ZBO5jY+Va16EDsG2bdADu5yeBsscfB376Scpw8iSwfr28FhYm5++/OQxEdwW1zzBAfvxKTpbj2sMD6N9fvrfUPseMz62EBGDYMPkuBeR86NZNvutq1y6/8np4AJ06SUAckGaVFy5IUM/V1fR65OEBPPhg8X2atW4t9zCHD0szTFtHzzSmKNp3/O7dMnJmvXpyL6DX87vcFiUOjhERERGV1M2bWhMEVWKi9c5xi7J+vdx85uVJcCwvTyqpd2pw7PJlaWaxbp3c4P/zj0yvX18bgr6wwu/X/v3Apk3AggXy3JbgQmoq8MsvUpEPDZV9y8uTIFt+vnQQvHOn9JFSs6Zkpvz2m7y3W7bI9mNipBnIkCHW+2ohKqnSBMcSEqTiFxkpx7MqPr744JiiSLApM7NkwbHsbMmsbNtWAsht20rfQT4+EvD+7TephDs7S4X+n3+kUmuc8VIaeXnAd98BTzwhwT97e6BjR7l+uLoCS5cCK1bIOZ6WJtvs21fO7c8/l/29fl0CZoC8RzVq3FqZiMpLaKicM76+cuzHx8sxb9zNgaKYn1eZmfLdpQoIkAC4o6Pto0+WhpOTlFVtqp2bK2VRy6OOngnItcmWzv5HjpRAmre3FnQ7eBBo2lT2JzdXrpteXqbLRUdLE01AvsODguT/3btlXQEBwMaNQMOGWt9sZB1vc4iIiKjcJSSYZ1Ps2KGN0FQS3t5y86x2nn/9etn1QXbjhlRyy1J8vFSo7e0l68PODvjjD6lQqwEn45G4srJM+y8CpPNe476FjHqnsOrsWak0t2kD9Owpf61by812YqLs65AhwLx5UnF+7TVp2nH1qmSq5OcD+/bJvJcuyaO1YB6RrRTF8shzxcnNlWUvXTJfHyBZkkUtaxxQM2atL7LISFnu6lWtqWJWlmRs5efLufD333J+paQAERHSzCoz07wCW1Jz5wJjxkjgrXFjyVJRR8WrVUsCfA8/DDzzDDBuHDB2rPR75Ocn2755U2tamZICzJ4tmThHjtxauYjK2rlzcs6sWSPP1fPc1dU007mgQF4zvmcw7rQfkGPf01PLKC9PTZtqZcnJketEXp4E5Xx9tfmsXXcKq11by/y8dk2yxePigKQk2fetW4EfftCud+oPecY/6H37rTzGxckyx44B778PrF5t2nSVrGNwjIiIiMrF2bNys5iTIxkYhSu1pW1+lJOjrRuQdb/2mlT+Tp6UaWlppSuzk5P5DfetNpEKCAB+/10qAN27SwU7Pl4y3dq2lV94Z87UmljOni03xKrsbClD9+7ymJmp7ac1V6/KexAWpjWxcnCQX5WDgrSK9ejRQIsWQPPmwKFDwK5dcmOelCSVbR8faTKSnQ1MmiSBNLVMgGTslXUwkSo3RSn5OZWfD5w4If9ba4pcuD8wY/HxUnE2vgbl50smRnKyBJPy86Viqrp6VSqYq1bJ62fPyjl08aIEjWfPBu6/XwLLTk5yPcvMlAD4rQbHcnJMm1CrfRsZc3Gx3FQqIkLLOl25UirPdetKJfncOQnoGbtdI/QSWfLPP5LVefq0PM/NlcCYnZ1ph/qKIpnMxtlkZ8+arkuvlwDy7eDsLN/fgHSwv327nEs1aph3X2CLxo1ln93dgUaN5H0ID5frzbffSlZYTg7w6afyvfvzz8B//qMFvRITtYENDh2S69fWrXLtW7789g02dLdjcIyIiIjKXHq6BH3OngXOnJHg0BdfyA3fsWOSteTkZD2DRL1RVkeoMpaUJNPVZdUb4p9+0oZBL01wLCNDbnKXLDENThUO6pXUzZtyk+vuLjfOx49L8wkXF6lMp6VJnyRqUO7bb4Fnn5X/09Pl/XN3l4p4To4s4+8v76Mlf/0l77WHh+VKNSB9tHh7a2Vq1UoqHx4ewNq10gQjJkYq1Q0bShZNzZrAxx/L+3P6tJR72TJpuklUEiUNjl26JH+KYhocS0vTKqLGmRSFryvx8RLkNc6cSkiQ6Vu2yDkVG2uanWlnJ02ft22ToLE6zcVFrjdnzkh5nJ0lO8TOTppBZWaaNyEvSXPtxESgRw/b5y/MzU3O65MnZf8uXpQstKlTJTtl1SqZr6BArsOHDlnu7JzodkhOlnNHzfbKydGOQ2dnbb78fOmPS/0xpqDAvOmkXm9+7pWXwECtW4iGDSVDs6Dg1vs68/CQfVCvI4mJ8h199aqcx6+/rt3nfP21dq904YJ83+flScBMvQZ27Sr3H2fO3Fq5qgoGx4iIiKjMRUZKpfPiRakwXrokN48//ii/gGZmFp05Fhsrj6dOadPUzJDz56WJoMrdXW4EY2LkBlGdxxbGTaqSkuTmOixMq0ACt15hzM6WCqiXl/TfdfWqvAeAVKq9vWWbycmyrTffBGbMkH0YP17KpWbf/e9/sq916wLff2/e/PL8eakUN20qGSS2attWsseSkiQg99JLEoybOFHek6goucHu1k2aaPzxh5QlOVnew6ioW3uPqOpITS1Zs0o10B0YKMe32h8PIAGu/Hz5X82ASk6W645xpkRenlS01fMOkOtJVJQ0P7Szk2VWrNBej42VwFudOnKeubnJ9cjBQcqwZYucN66ucg7Y2ckIr5mZsn/5+XKO/POPXJf27Cn+WnLqFPDVV6YdlJdUnTrS1PPZZyWbRe2/qVEjuY6omWZTpsh19ORJ4JNPJGh/40bRGXhEZU1tZq1+5588qf1QY5zVeO2aHKOHD0uwOT8f6NLFdF1qYPh2cHGRrGvV9etyblWvXvp1enjId3eNGtp3qru7fJcHBGjBwpo1gccekwzWlStlWm6uXN+mTpXv8TfekPLVqSODFhw+LO/t33+bXkPJFINjREREVOZ0OrnZzcsDjh6VgEvDhhIkUyuoe/ZYryTn5WmdaANSabtyRSqh6enA8OGmgTNFkSCT2hdXVJRkghVnyxbtf/UX6dBQqZCnppr2a1ZadnbyFxMjGSeOjtqv24mJ8v7cuCH/79ghN8GdO8uNb5cu8uv0jRtSEb92TbLwAKnoJiWZ9iVy/LgMG//44yXreDwgQPotqllTbsCbN5cOwO3t5Wba01P6K/vwQ8lai4+XjLHq1aUMr74q00rTlxRVLfHx1oNElvr/UoM1cXFyTkZFacunpcm5AWjnqnoMGlesW7SQiqdx0DwvT87533+XAPDGjVqw7cwZeS0kRM6Dxo2lMnr1qvT5de6cXCfCw+W6U1Ag1zx3dy0D7eOPgUcekednzsg1a/162XZ2tlzPLl7UMuGys2W50jYJVwUGSlmCgmSkv759tdfuuQfo00f+v35dKtRDhsg1IyNDrlOHD9/a9olspZ5jrVrJ9zogx2TbtvJjkvodrijyA9OZM9qIyvn5QO/eputzdpbz/HYxbj5pby8/WpV0oBFjbm6yDkC7bly4IN/LTzyhZcqpne5Xqyb3UUeOyPuWkABMny7XOb1e3tfEROCBB+Rx1y5pXm38IwGZYnCMiIiISsSWTtnj42UkxOhoySKzs5Og0P79Emxxc5MbuKKCKWlp2o1mUpLc0F24IDe/wcHSbNO4c9q8PK35UlqaafDMktRUqdiq8x08KMvl5spjSopWgbRUaY+Pl0dFsd5sSlHkxtbJSSr3tWrJTb+a1XXjhoxslZQk865fL++ZTieV8uHD5Zfkjh1lmo+P9qtvcLDcPBv3OdSihenoXSXRrp30Kfboo1JGtVPhqCgZla9xYxntas8eKe9330kZCgrks123ToJz1hg3WaOqq6gO+Y8eNZ+Wny/H/tmz8njqlJyrgASX1E6x1SCTum41owyQgG6bNqaV2ZwcuQbl52t9d4WEyDUqOVmCy40aSeC4TRvJpExIkIy0rCwJIAcFSYVVrbS6ucm5oV63mjSRrLPLl+WcUvsK/OYb6XR/3z45nwDpN/HUKWDUqBK9nUUKDzef1ry5PHbrBkyeLGX19dUGB/n7b+09LY/Re4lU27fLDyx2dkD79nJuxcRIc2Zvb9PO97OypCuBjAw5j9XRqgsryY9CZUmvL7org5JycZGAYJcusl4nJ+0cDQ7W5mvQQK5Xfn7AwIFyHVGvfR06yPSgILl3io6WvhszM02vj6RhcIyIiIhK5MwZ6yO8qdQb1KQkqYAGBkqldc8eqeSqfWZYyyBJS5PgU4MG8jw/X4JVBw5IBpNOJ5W4U6e0frsSEyUQB8gNtBrEUwNPhTuOz8qSG/D586XfjkuXZP3qIAJZWbLuxETLo2qqo+Pt2WP9l9ibN+XXXUWRirODg/yaq/7y27GjBMocHaXiffWq1meJpRE4AwOBhx6S/3v2lBteJyfZ3337TPtoKY7xDTagBe2GDJHtqJo2BerVk/91OmnysX69BBxSUyXA5+AgfZGpzVqNqe+dcWfnKla+q55z56x3qm8p21MdGVJtjpmRoQWU9u7Vji81+KpeUwp31l2rlgR41W1kZ8s14bHHJADs5SWZKDk5sp2kJDnW27SRc7huXTnXfH3l+hURIZV6Ly8Jqnl6ShOmvDyZt18/Ob+PHpXnAwdKsC09XZpvVq8uGVvVqklAIDhY5mnY8Bbe3ELUQFhhhw5JYEEN0oeGaoMInDghHX0fOyZBcaLyEB8v5/TmzRL0qV5dvj/S0+VHIHt7CYKroyVnZcn3kpopbS04prrdA004Osq1oqwUFMj+1qlj/prx93ynTnLPcO2avI/Dhslyvr5SHn9/ufYlJcl7HBgo/bP+8EPZlbUyYXCMiIiISiQ5WWu+aI2aSZGRITfBbdsCr7wi2UleXlKBrVvX+ghK169Lc6fdu+X5xYsScHvnHa1JYpMmwJw50geWvb3cIBpnlBw9qjXFTEw0H8r85k1g0yZ5/PVXqaiqw6a7u0vQJy9Pym9tRMboaKlYx8SYTs/L05piqr/6BgTI85AQ8/7AWrSQivOUKVLJVhTLgYKEBLnRVTvlv3FD61coMbFkwTFr8zZubD7fI49oz3v1kk5+J0yQMiQkSHOtF180/TzV8p8+rY2yWVhUFANkVc3hw5YzxBRFC24by8+XQFdOjgRng4Nl0IkrV6RvQLUSrAbcCwqkMm0cHFMD2SEh2v/Xr0twrVo1rSLq7S0Br5s3tfnuvVe227ChvN6wIXDffTK/Wjn395dAWq9esh/t2kmW5YQJUrl1dpbmjDduyDVmzBg5Xxwd5drw66/SNFm9RpQVa1k0SUmyn40ayXN7ewlI/P23XJv27JEfHiIjTQcnISorKSnyV6uWBGezs6UvSzs7ee7nJ+dNerqcn1FR8l1avbqc6xcvaplUlli6lpQnR0fpO7Ss5ORIBl1xHnxQfoD873/lR7dGjaS/MScn09E+fX3l3sLJSfpB/PRTuVZ99JF2rSMGx4iIiKiEFEVGcLOUTaVWek+elMpifr40A6xXTypg9erJDa9OJzfA//xjeRv29tIfmKOj/CL6558S5IqN1YI3Dz0k6/f2lspptWraDbG/v1R8V6yQynN+vmnzQ0DLenJ3l4wRd3fZhl4vN+RxcXIDfuqU5X5MkpOlj7ADB0w7xk9JAWbPlhtWNVjn4SHBPEAqrJbW16KFvD+BgVLWDh3M59m8WW5us7JkHx96SN6Po0dlvd7elt/Pkij8a3zbtqaV9gEDpMLfsaOW/XL//TLf6dPyGWVnS+Bw82bplHzlSsujZSUlaQFQqvxOnwa2brV87cjPtx4cc3TUssdatZLz8sIFrS9CQOtPrKBAG7hCpVb+6tbV+ig7fVrOsZo15fWcHDnvg4IkC7Nw30EeHlqWRtOmspyjo7ymXlu6dJHrldp808UFeOYZqei3ayeV3aVLpf8gJydZLipKrjlubiV+O0tFr5eBA1xcTM/1ggIJNjo4SDlPnZJr8KZNt6dcVDkVFFjO4srKAlq2lONQr5fg7IED8qOYu7scgyEh2kA16oiWahbznTb6YseOWtnKQmio+Q9VlqiZq23bStDew0PuvQp78km5hrZuLe+n+sPU5ctaf2+WsrurGgbHiIiICIB2g1ScOnVkFMPCvzZeu6ZVVE+ckOyiyEipBKpNhZo2lV82jxyRzA3jZpXq/2pwpU0buXnbtUuCTWrlUf01tVo1uRHs0kUCT8a/Ivv4SOZIdrasIz1dsrvy87Ub9fR0qWg3bixBGi8vuTnU6+UX1oMHJUNOr5dMFJUa0Pv7by2wtmGD9voXX0jW1G+/SfAMkOZNajZdzZqWR9TS6WRb4eFSFjWYZky9+VbLc889kukRFKQ11SxrDg5a/2OABAdat5b32NFRmoI5O8vn4+Ym73NSkgQ033pLbr5jY6XiY/x5b9smgYJjx7T+26jyMQ5SnTkjgavoaPP58vO1UWcLT79yRc6ZtDQt6/TECQk4qeejmrVYUCABMOM+ddRmnMHB2iAfOTkSkG7QAPi//5N5FEUqpX37SoVT5ecn52fduvLXtq0sq2axGgfeC/c55OenVXIDAuS6Y5zRkZho3rF4eXJwkKwRtRmlSs3uzM+Xc/zqVZl27pxkhyYkWG8OS2SN2uVBYbm5cg7Z28sPQi1byrGnZhIrikxXg83Xrsm5dPWqHIeWmvAbu5VRI0ujd2/LTSBLy8nJtI9Ea8LDZd527Sw361SvUT16yLWnXTsZqKN7d7nHcXHRrol//237fWBlxeAYERFRFWCtUmPc1K24ppIqd3cJIm3aZHojde6c3MCqw6z36SMBtO7dtXm6dpVfN//5x7xTbrXPoMuXJfjj4CA3w+o2XFwkyKYGydzdpRJbq5bp8oBUQo8elQr0zZtSWT5yRG7S1SaSCQlStjFjJMMsP19+zfbxkQysS5ckgHPzpha8yciQTuvffFNuXPv1k/n8/KS5WHS0BADuv1+2rWaU1a2rZWkUd8Nb1OvDh8ujesMLaP0e3S4ODhJkMO7439FRKiNNmkhH47t3y8iWsbFSyfnmGwmWpaTI+x8dDSxYIBk6N29yhLzKbMMGLSC9YYNcOwo3cQZkHp1O67RepdfL6K0FBVqQ1tdXgutNmpg2eVYH0Th4UGuOBWhBWTc3Ofays+V616SJXD9WrtT6MgSkkmnc95ca8FJfd3MzDUYbB+bV0SAtqVfPPCO0fXutn8HbQb0ONWtmOl3t083ZWa6XzZtrGbm+vvKXk6MFyhIS5Hpqqbk0kXrPoSiWv9PS0+VY8/aWLE0HBwnyqFmlOp2cF7Vry3F58KBkRCUkSFb33LlFf1eWRRZ1SXh4lN33cHa2FrAqTliYvEedOlnuKsHHRx47dZLrnYeH/Gjl7y/ZocHB2jX33Dnb7wMrKwbHiIiIKrnz500zm4wlJUl6vdpEyRbx8VKxWr8emDTJdPqhQ3ITm5wsAZOCAmDwYG2eunWl0jVihKwjLU17Tc1UGDNGsoyuXJEKs6urZJwBEmRRb4hr1DANvKkV8JgY2Ub9+lKOTZtkvd7ephlKwcES1HJ0lF9VU1JkWvXqcqOelyc3i2lp0owrKUn2+dQpYNYsWdbBARg6VH4BX7MG+PxzCf7VqycZbX5+si07O+0mtSy0bm36PCzs1oaQLym1bxU1KKA2L1MUaTY3caJUYBo0kEyh8+e1JjJz5gAzZkglp2lTCXreriZlZJuy7K/n5EkJWJ0+LX+qwsHx/Hw5fgoHSlNS5FysXVteT0zUBrEYPFjWmZEh149Dh+R4O3ZM9kG9JqgVTQcH+T8qSgLXdnba9aRjR+04Bko26pxx317FXUcL9yNUp45tGSJlxcFB3rfC51xMjAS6PDzkuvr001LZf/RRbR4PDy1Q5usr1zRFMQ2WJSSYXtep8ipqYB41A9RacKxaNZmu/rilrs/4/MnLk+NVvVb4+krg6MoVCSrfSTp0sJwRXhr29iXrP9QWjo5yD/TQQ/K+q91QBAVpmegeHvLjprWBkqoCBseIiIgqubNnpcNnQKssqk2OMjIkmHHokHmn85b6BQLkZjYgQEY82rdPy+xKS5OK0f79EhTx8AAef9y0qYG9vQRx6tSR9H7jgM7+/VIRdnOTG9+AALkpdnOTpgOA+bqMMzb8/SUwdfGiLKfTSZPMdevkRn3fPlm/2q+G8Q1g8+ayrscek/W4ukol9p9/pGlHYiLw+utSGWzbVjoEV38Z9/SUG8yICAkAPfusLDNsmGS8qAr3eVaW7OzKvjPvoqiBPvUGXm3Ccu2avPfXrklzy3fekQDY/PnSnHbaNMnoy8mR6a1aSUVdbXJKFUvtfD0//9aa15w5I9cCQAIsFy5Ilqe3t2QcXr5s3t9gXp5kdakDWagVtshICbQGB0sQKjtbsg3VpteNG8uyKSnA8eNyzgMSZMvNleNRbd6sNv/99Ve5XqnZJV26yKNxU8qSNMsyDjQV14eepf4Gbye9XvpBK8zTU87FvDwJFDo4yPXW2veAytXVNFjm6yvXZjVYpgbMrA1qQnevGzdMs9LVILSiaMdNTIzljvPV7yvjH43++EPLvrKzk/PVyUm7X/H0lGPpzBn5ni7q2Lyd2ZiAXJvK6jvez888s/NWOTtLk3HV22/LjwRt2shncPQo8OOPcv4fOlS2276bFDEAKhEREVUGycnajeKFCxJoSkiQG7l9+ySLJzBQsn2MRUVZHi1Jp5Mb08GDgZ07JWOjXj2pTB84IL+edu4s21SDRsYcHKTSGhBgetOcni7lunxZRmDKyZGK1tWrkmkGFH3z2aqVVKR9fSXo17at9Gl1+bLcXKelSeXZ3V3r10wVGirbc3KSyp6Xl5T76aflptfBQSrAqala1tvevdry9evLe6I2WdLr5Qa3b9+iPpmydTuzT1SFs0+uXZNME3d3CTi0aCGfAyA33UuXAsuWAQ8/LMEynU6OvRs35LPX6aRi5ego66iIfaoKYmJMA0Gq9HQJGOXmSkCqbt3Srf+vv6Q/PFdXOWdPntQGvfDwkHPSUrAkIUFej46WczYhQbJe771XglXu7nJN8faWa5mdnWwjI0OOo1WrJCPCz0+uSTk5ci6qffHodLKP587JCKy+vrK8cR9gqtIGbP39i37duDlyRWnVynxa3bpyTqqj/wJyDbQ24mVRnJ3NM19yc7W+p9QfJvR6+Swr23l+7Zrtn7O1zKqKlpRUfNPEmBg5n9Qfry5elO8ELy95Dxo3lmD1sGHW12E8KERqqvadYm8vP8Sp782YMZL5nZMjP/gFBBR9bN7tP7gYB7LKgp2d6f2cmxswdarcpzk4SAbugAGSPWprK4LKiMExIiKiSqygQG6+1UDQiRPyK2FiomRmpKdrw6IXvoGNipIKqXH/VqohQ2Tdv/yiNXn480+5wapXT27CmjWT1wr/auzoKBVZQMqRni43aiEhko0WFydNJs+fl8DK/PkSLLtyxXwkRWO+vpJdUq2a7E/nznKT5+QkTa1ycuTR31+CeMYjOul0phXknBz5lXroUJm+c6e2j3PmyI2m8Y25pUBDVWDcUT8g762/vwS/AgPNK35Dh8r72qePacZA4Y6Es7PNO3FWA2eFGU/39Lz7K0W3w9WrpsdsRoYEibKzpYJ6+bIEM8PCLGd9FMfXV0Y69PKSc3DzZgkUt24NfP890K2b5c/y5k0513/6SfrzS0yUCrGiSNBMr5frR5062oAg6enAnj2yPxcuyLlrby+V+8xMmc84C2P4cBkt8osv5LmLi+WOrEvrnnvKbl3lxVJWnJqx4+urnbP+/mXXsbmDg3nT8oIC+czVY0Hdrrd36Y67O0FBgQRv/Pxs24fr1+U9Np73dgbMLl/W+s9TR3VOT5dzx9tbzh9nZ9Mmxyp1EB41OJaVJYHnxo3l/gGQc9NScOzCBdPjIThYHtXsVXt7eV8SE+W9CQqSdfr6yvZq1Cj7ANKdxFLAvqyp79/zz8tnnpsr1+vCTd6rkrv0skNERES2uHFDgkV5edJXVlqadD6/erVkc+zbJ/N5e5tXVvfuBZYv125WAZln507JMggJkRtUtRnUzz/L47lzWoXKUuVAp9OCXDk5Wj9E998vIzyOHy/BMnWekBApX15e0X161KghleabN+Umr317Wc/o0VLhd3aWG/ndu6WMlrInVGpTIbUvL7Wfk6AgLXttwADry1cVhSsndnYyTQ1+Fq7gBQRI5l1x/a85OZn2bWTcZMvadB8fqdAZ93+kNukq/Gc8PTm5cvexYqlfoAsXTEdzVEeZVRT5/+ZNmUcdOa4kFEUCTuvXS1Ppc+ekmfVjj0lwrGZNyUjav9982cxMqYTv3CnNvf/5R8py8KC8fvOmfNaNGmnnYXi4BMMVRTIVk5MlEFOtmqwvK8s0Y0Kvl2NU7Q8Q0Po0LAvqsX+3Mm66Xt4BGr3e9Lz28ZHPLTlZO3/VP7VLgDvdli1yDBceddWanBz5scbY1q1lXy5rVq2Sc/HGDcnsBeQ7X80eTU3Vrg/GCgqkU/yoKPm8Ll+WzOzDh2WacVNI4yzRnBx5b44dk+fqPYKTk2SXqoEZ9fzW6eSvfXs5x2vXlkxSdeRmKhtublqm4O0e6fNOwuAYERFRJaZmQIWHS+ApOVkqvatXS3aGmi3w3nvar7+qffukkqr21wNIBeXwYanANGkiwY49e7Qb2k6dpOJq6y+6at8kGRlSic7NlQwT4z43zpyRym5OTtGdzvv7A716aRU6e3sJbjVuLEG1iAi5AfzpJ5m3qD661D6x6tSR96hNG6kg3H+/No9x5ZpERATQsmXR85RX32s6nRzrxhXt4gJqarO6mzeLDqhZml5UZ9QVSa2UHj0qj4VHfwQkG0Tt0yshQYJLkZESQI+KksyynJzSBSS2b5dglpubVLzbtgWmT5fAsqenBLu9vLTgtzo6mhqADgmR60lmpjy/cUMLjsXGSoDNeHkvLwnM63RS3urVZVpAgATXIiNNrxt2dtIptTFL2bGldTsHxigPxn01qdk8t5PaWbh6/qp/6emmwbKEBOujMFeky5fl++ybb2ybXx0IwVhJBoMAtD5FbaVmXV6/Llluf/8tWeC7d2vXtqQkGVE4K8vyiKRxcZLVefGiXDf+/FPO5dhYufao1534eLm+qlJTpS9SNXPVOBg7cqR2L6G+B2oWnaurBG+GDJF7j7LM9iRTt7P/0jsNm1USERFVYtHRUkFs0wYYN06CQgkJ0rwQkH7D6teXX2KNO+BWmzF5eEgwraBAbpavXpXmTmrmz8svSyVA7dC6WzepHNjK01MqtJmZcrOdna2NGqdmifn4aP2UFUft/LtaNaBhQ6noubgAPXvKzfXffwNdu8pfUdTR8ADJkktNleyXxo21eSw1M6nqatS4+zJnLDX3Ko6iaH3kqcHYwtlnlqbr9XLMl1eAMDdXgkH168tjRIQ0Y1SzJP/5RwbCuHJF6xg+L08CYqmpcp5fvCiVe3d3qbg3bFiyMsTHSzbopUtS2a1b1zQTISBAAvF6vVSg1eZDKSly7Kh9Bh44IOdcRIRcH2rWlEq22pxZzThRg1F16sj1KTxcAvudO8tItb6+wAMPaNvX6cybeamjr5Jpc67b0bTLVuoPOcbS0rTvLfU8c3UtXT9pZcXZWUYutnVAi6tXJQCsfocC8j2YmWnbfuTnA0uWAP37257pl5go1yG178/sbAlmqyNDnjwp328pKfIDWVaWnF/q8RATI522q/1CZmRIoK2gQNZ57Jj8aKYo8hkdOSL3Hqmpci1ISbEc2AwI0LI8jfusU8vm66tlfRpnvlLZCQm5s877243BMSIiokqsRg25eXVxkYysDRvkptbJSaucbt0qFeXjx+Wm1dNTbuyrV5dlU1Ikc+PcOZn322+19Q8bJoGoLVvk5rlVq5L1+XTunCynVtA/+sg86NSihQQT1H5RihMfL2W3s5OgoKOjZKEdPy4VrIEDi29GVbhTbR8fadZRVkO1V1aVuQ8YYzqdHAslPR7y8+V8UivytgTUAKkourqaVn6zssw7Pb90SQsaHT8uFe7jxyWw7eoqWZ9hYTIq2SOPSMApL0/698vPl/NF7e8tJ0emlyQ4du6clL1ePaks33+/efaRg4OUxdVVAgBqRSw/X65Trq4S2Fq5UirdL78sI862bCllUzM21QBjw4aSEVu/vnT+/eCDEhRr2lSyYdT+AlVeXubXmMJZs3R3sHT+ZWSY91do/GNLeVKbaPfrJwHZwYOlqWBR3NwkOJaYqAXpz5zROpwvLnsvLk7OHXVAmeLcvCnf+6Ghci3q2FGuCQsXSmAkJkYCWw0ayPUlJkaaSCcnS399tWrJ/cGiRZKBefiwnLMnT0rw6soVCY7v2yflcneXLM8//5Trw8CBck5bCkgriukPUMbvkYeH9FWp9kd3t/ZJd6eryoExoByCY6GhoYhSe+Az8sILL+Crr74ym759+3Z069bNbPqpU6fQsKQ/VREREZGJGjXkZicgQG4uBw6UvrIuXpSKsbe33OwCchO8e7f0CZWUJBkfNWpIv2Nbt2rZJMY3pQ4OUgHu3x/4+mtg0CD5ddhWDz8sN/W5uXJT3L27+Tzq6FVNmti2TuPmbvXrS4VDr5dfsF99VbLkSqpWLfMKF5krasAEkoBOaZrwZWZqTZMURc7P48elyaKbm5xDjo7SdPq++ySDo1o14KuvJJi0erWcBwUFktmZmCjNnyIitJFc1cwcFxc515s0Mc/Wyc01DX5HRmojvcbGSmV7xQrglVekct2tm9YnoaphQ+09SE3VKmNq5lp+vnRqv2GDVPxbt9aaaBlnoKmBBGdnyQwNDJTlfH2l3A4OEijv3990+4UHkaDKRQ28GrM0wIedneVstFtx7JiWYfXgg1rTZWPx8dpgMJcuaf0e/vwz8OyzMl1RpLN7b++ig2NXrsi1QaeT773iAhvffw/897/AU0/Jubx7tzRxdHCQwPj585J5rXZzEBSkjdLctq2Wvb1uncwzaJBMi4mR+QMCJOh15Iic/2oA399f3puMDAnCPfyw5R+7dDrz7/kjR2Q5NeOUqDyV+S3M/v37kW+U53j8+HH07NkTQ4YMKXK5M2fOwNOogbUfO/IgIiK6ZR4ewKOPSqWyZUupmKq/VEdFmY7i5uIiFdutW+UG9eGHJahUvbpUTl95RSqrhZtuuLpKlofaLKQkIzc6OMg28vPl5tuSkjbTi43VOpb18tKCeS4ut1YZatGi9MsS3QoXF9MmVtevSyU2L0+CvdnZwNq12oATzs5Swf75Zzkfr1wBfv9dMrq+/loqu7GxWsfZGRlSOdbp5HypW1e2d/asBNsSE2UbBQWmldrjx+X5pUsSGPvhB9mug4MEu+3szLPb1GZTKSnS7Pn33yXL6+ZN7XxVB7548EEJgqkBAuPAfIMG8ujhIfvo5yeDb2RmyjacnaXi36dPmX8cdJdxcjIPHOXlWR4R19u79AMRqEGm69elSbEavDI+dxMTJaAUFCRB7tRUyXi0s5NRVB0dgXnzgI8/Ns9gLiw9Xcp67Zp2/gDWR7usWxd46SXpI+yjjyTra/Roea1aNS3Q7uMj60pNlXuGzz6T68DZs/L6jz/K+xQaKplnx4/LfYaLi3yP79wJdOggGWfVqsl7kpsrTboLCuSaZSnzq1UryWw3tny5lKFvX5s+AqJbUubBscJBrY8++gh169ZFF+OG1BbUqFED3uqdLBEREZUJnU7LtujZU5terZrcyBrffAcEAC+8IDfoZ85IRVqnk1+558yRyqbaeXZhQ4bITTMgmR62atoU+OsvyWKz1g9T4cp1cRIStJHCjLNcgoLKf/Q1otuhVi2puK5YIZXTjAyp8F64oA1gkZ0tFc0nnjDtz+uvv6QCHh0NzJ8vTRgdHKRynZgozaGGDJFgk9oY5PBhyXhxdJTs04wMeT5vnmQLnj2rNWccO9Y0KGbt9l5tDgZo/Q56eWnL6nTSPA2QDDfANCNIXX+jRvJeqBlhTk7AqFGyrkGDyugNp0rH3t68r8GCAtPO4wEJNFWrZlszPp1Ojl8/P/n+3L9fzjfj795t2+Tcee45OQfs7SUjys1NzlcfH8kksyUDW/0+CwjQsjgBCXx7epr+GBQbK9t99FH5seu556SrAFXduvK9mZ8v15F69eRcatpUzi07O7mOpKYCX3yh9Uvm6SnXC3t7uQfw8JAgWNeu0vfac8/J+9enjwTzUlKsv5dububNuHNzyz7Dj8iacm2tm5OTgyVLlmD06NHQFXM32rJlSwQEBKB79+7Ytm1bsevOzs5GSkqKyR8RERHZRqczz/Bq0gR4+mmpdDZvLjeqrq5y4672G1JUVpjaj09JbmQdHbUKeFl1Uh4aar15393WWTyRJXq9BJP+9z+p0O7dC/ToIefSX38BH3wgldGOHSUzpHlzOS///ltGkmvWTALeW7cCS5fKfJs2SeXZ318yO2rXloyWuDhZ/6VLkhGye7dklR4/LsscPSoV5OPHpSx6vTStUjPErElPl+aeSUkyIu7161LJ9vKS9X36qRZoV9elNkcDTLPJOnQwXTezTKg09HrzUTLVYJXxSJlHjkhWWH6+nB+nTmmDdADyXRYSIn+FO47v00eO+eho+SGnZk05H+vVk0EooqOlKbD6XRUdLY+ZmZLxDUgwOS1N/r96Vc4L46Deli3a9+qNG3LufvGFlt0dFCTlMB6YIihIzpvkZOkqIT1dmojq9dp38++/S5PKe++VJtOA3B94eMh+hITIfcPTT0vA7tIl0+C4m1vxIyEaN50GZDvMn6HbpVyDY2vXrkVSUhJGjhxpdZ6AgAB8++23WLVqFVavXo3w8HB0794dOwv3nlnIzJkz4eXlZfgLKUkbDiIiIjKjjl53u50/LwG5kmaIWVO/vm0jWxLdrfR6CQC3by/NjrKzpXIbFiZZHpcvy1+HDlpfg/XqAdOmSROnV16Rx3/+kYp6eLgEt1xdpfLq7y8V3chI6Vzb11cqxufOASdOSFBt+XLJEGnfXjof//13yeJ68snim4MBkskSHS3ZNT/9JMH5QYNk+z4+ErCztN+2YIYolRWdTjKfjINlCQnAsmWSBbVunfSPd+SI6UAPNWrIOXr0qOn6HB3lPFm9WjI2q1eX87ROHfneunZNsrXs7CRYfeWKnN+nTsm5mJkp5+W2bRKs/u9/JQAWH69tY8cOKc/ly5IJumGDBJ3VTDknJwmYF87yVpuUdu8uZQgNNQ1WOTvLNQPQAtZqMFtlby9BsMaNJZvU1oF0rOnXTxuEg6i8lWu3qQsWLEDv3r0RWMTPtOHh4Qg36l2vY8eOiImJwezZs9G5c2ery02ePBnjx483PE9JSWGAjIiI6C50+rRktDz8cNmsr1Mn80wSospEr5cKo7u7VJJr1JDgV5s2UjlNS5PMk/HjtayPe+6Riu7AgRJ4SkuTSvR992kdiPv5yToAWS4iQrLTmjSRrK5lyyTD6+mngeeflwp4s2ZS6b7vPuDdd22vyDZtKttt3VqadqoDbxDd6XJzgZkzpZP51FTgxRflnNi1y3S+Tp2AVatMp61YId9Pjo7SlDE/X/rPi4uT7K/jx4FnnpFg1+7dksUVEyPPN2+W70t/fzl3T50CNm4EliyRdV29KsHl+HgJYAcEaE2vR43SyuDsbH0UzWeflbINH26e9fbqqxJML4pOp2WH9ehx64O0VKsm1xai26HcgmNRUVHYunUrVq9eXeJlO3TogCVLlhQ5j5OTE5yq+lijRERElUBmptZEpKxwmHeqzPR6qdxGR0tF+OhRqfAOGSJZXq1ba02cVE5OUunt31/6LOvZU7I7mjaVLJKhQyUwVlCgLdO6tay/WzfJENm+XTr+37hRAnItWmjn2hNPlGwfhg6VQBuzQuhu07SpZHq1by9ZVnXryrln3PE+IIPgLFsmffQ5O8vxXr26NlBOVpY2unJGhjRpvHFDOqZftUqaLbu6SgbXsWOSobVunWSO1a0rGZ8ZGdIJ/vnzsi61v7HISOnUPy0NGDzY9i4F1Ow3vd78e9TSSKDFvU9Ed5NyC44tWrQINWrUQN9SNPo/dOgQAoprkExERESVwrJl5pUKIrJOr5dsE1dXye44f16m+fsDI0ZIEKtwJpaLiwTI1IYWgYHy5+Ym2R21apn39+PpKZVttWPuRo1km2rfX7cahGZgjO5GAQGSLaY2i7S3N83MMjZ0qIwQ6+Mj546zswS2nJ1NA02OjtJM2ddXztWAAAl6ff+9ZE5lZkofXjqdBMMTEyV7s0kTaeK4caOcn0uWyLxZWdLskqMsE9muXIJjBQUFWLRoEUaMGAH7QrmUkydPxuXLl/H9998DAObMmYPQ0FA0adLE0IH/qlWrsKpwDioRERFVSuxsl6h0goOlIty0qVSa1b5/LA1uUa2aPKr9cTk4AJMnSz9lgDbao7Hu3bURIz08ZP5r18p2H4juNnq9nBs5Odo5ZzxYhLE2bSR7a9cuCWTZ21vuX1MNYqkjrLZsKSPP/vkn8Ouvsp3wcGDBAnk9JESyP7Oy5JzOy5O/0FAJev/0k5Sxdm3ro0wTkalyCY5t3boV0dHRGD16tNlrV69eRbQ67AZkRMvXX38dly9fhouLC5o0aYINGzagT58+5VE0IiIiIqJKw99f+h4z1qqVbcvef7/2f+F1AFLRNubiIhlmRFVdSbq6PnhQgmRXrph3gq/y8QG6dtWyMX18JHOsZUvp28/fXzLLsrOB//xH1gVogbZ69aSJZVyc1qH/fffJ/xERpd5NoipFpyiKUtGFKAspKSnw8vJCcnIyPI2HzCAiIiIiIiKqAImJEtS6etX2wDUgmWBffikjW44eLZ3/Z2XJ4DVJSRI8U/3yi/RZFhsrTTJr1ZK/2rVNR9EkqmpKEicq19EqiYiIiIiIiKoqHx95VJs228reHujSBTh0SJo1Z2ZKc+h69bTm0arYWOn/rGFDWcZSM2kiKhrHciIiIiIiIiIqR5b6GitOq1ZAr14yOma9ehJoKxwYA2RgjhMngI4dGRgjKi1mjhERERERERHdgfr2layz1FTAWodIzz0nWWWWAmdEZBsGx4iIiIiIiIjuQGpzTA8P6/OwXzGiW8dmlUREREREREREVGVVmswxddDNlJSUCi4JERERERERERFVJDU+pFhrk2yk0gTHUlNTAQAhISEVXBIiIiIiIiIiIroTpKamwsvLq8h5dIotIbS7QEFBAa5cuQIPDw/oKklPhCkpKQgJCUFMTAw8PT0rujh0m/BzJx4DVRM/d+IxUHXxsyceA1UTP3fiMVC+FEVBamoqAgMDodcX3atYpckc0+v1CA4OruhilAtPT0+eKFUQP3fiMVA18XMnHgNVFz974jFQNfFzJx4D5ae4jDEVO+QnIiIiIiIiIqIqi8ExIiIiIiIiIiKqshgcu4M5OTlhypQpcHJyquii0G3Ez514DFRN/NyJx0DVxc+eeAxUTfzcicfAnaPSdMhPRERERERERERUUswcIyIiIiIiIiKiKovBMSIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiIiIiIiIqqyGBwjIiIiIiIiIqIqi8ExIiIiIiIiIiKqshgcIyIiIiIiIiKiKovBMSIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiKiYuh0Opv+tm/fjsjIyCLnmTp1qmG9I0eOhE6ng4eHB9LS0sy2GxUVBb1eb7bc9u3bTdZpZ2eHmjVrYsiQITh16pTJOmJiYvDCCy+gQYMGcHFxgY+PD5o1a4ZnnnkGMTExxZbX+C8yMhIAkJubi/fffx+hoaFwcnJCw4YN8eWXX5qV/8SJE3jhhRfQsWNHuLm5Gd4jIiIiojuJfUUXgIiIiOhOt2fPHpPnH374IbZt24Y///zTZHrjxo2RmJgIAHj55ZcxfPhws3UFBwebPHdwcEBeXh5WrFiBMWPGmLy2aNEieHh4ICUlxWK5ZsyYgW7duiEnJwcHDhzABx98gD/++APHjh1DUFAQYmNj0apVK3h7e2PChAkIDw9HcnIyTp48iZUrV+LixYvo0KGD2f698MILSE5OxtKlS02mBwQEGF7/4Ycf8OGHH6Jt27b4/fff8eqrryI1NRVvvfWWYf4DBw5g7dq1aNmyJbp3745169ZZ3A8iIiKiisTgGBEREVExOnToYPLcz88Per3ebDoAQ3CsVq1aFl8vzNHREf3798fChQtNgmOKomDx4sUYOnQo5s+fb3HZ+vXrG7bRuXNneHt7Y8yYMVi8eDHefvttzJ8/Hzdu3MC+ffsQFhZmWG7gwIF46623UFBQYHE/PD09kZOTY7H8J06cwIIFCzB9+nS88cYbAICuXbsiISEB06ZNw3PPPQcfHx8AwJNPPokRI0YAAH7++WcGx4iIiOiOxGaVRERERBVs9OjR2L17N86cOWOYtnXrVkRFRWHUqFE2r0cNZkVFRQEAEhISoNfrUaNGDYvz6/UlvxVcu3YtFEUxK9eoUaOQmZmJ33777ZbWT0RERHS78Y6FiIiIqBwUFBQgLy/P7M+SHj16oHbt2li4cKFh2oIFC9C5c2fUr1/f5m2eP38egGS2AUDHjh1RUFCAQYMG4ffff7faPLMkjh8/Dj8/P/j7+5tMj4iIMLxOREREdDdhcIyIiIioHEyaNAkODg5mf3/99ZfZvDqdDiNHjsT333+PvLw8JCYmYu3atRg9enSR21ADcJmZmdi1axcmTJgAOzs7DB06FAAwfPhwjB07Flu3bsWDDz4Ib29vNG7cGOPHjzd0rl9SCQkJhmaTxtzc3ODo6IiEhIRSrZeIiIioojA4RkRERFQOXn31Vezfv9/sr0WLFhbnHzVqFK5du4ZNmzZh6dKlcHR0xJAhQ4rcxtChQ+Hg4ABXV1d07twZ+fn5+Pnnnw1ZXDqdDt988w0uXryIefPmYdSoUcjNzcVnn32GJk2aYMeOHaXaN51OV6rXiIiIiO5E7JCfiIiIqBwEBwejTZs2Ns9fu3ZtdO/eHQsXLkRkZCSGDRsGV1dXZGRkWF1m1qxZuP/++2FnZ4fq1asjJCTE6rqff/55w/OVK1fisccewxtvvIF9+/bZvlMAfH19cfjwYbPp6enpyMnJsZhVRkRERHQnY+YYERER0R1i9OjR+PXXX3H48OFim1QCQJ06ddCmTRu0bNnSamDMkkcffRQRERGl6h+sWbNmuH79OuLi4kymHzt2DADQtGnTEq+TiIiIqCIxOEZERER0h3j44Yfx8MMPY/To0YaRJ2/F1atXLU5PS0tDTEwMAgMDS7zOAQMGQKfT4bvvvjOZvnjxYri4uODBBx8sVVmJiIiIKgqbVRIRERGVg+joaOzdu9dsup+fH+rWrWtxGWdnZ/z8889lVobp06fj77//xtChQ9GiRQu4uLjg0qVLmDt3LhISEvDJJ5+UeJ1NmjTBmDFjMGXKFNjZ2aFt27bYvHkzvv32W0ybNs2kWWVGRgY2btwIAIb3YseOHbhx4wbc3NzQu3fvstlRIiIiolvA4BgRERFROfjyyy/x5Zdfmk1//PHHsWTJkttShieffBIAsHz5cnzyySdITk6Gj48PWrdujY0bN5Y6ODVv3jwEBQXhyy+/RFxcHEJDQ/H555/j5ZdfNpkvPj7ebFCBqVOnApB+0Eo7YiYRERFRWdIpiqJUdCGIiIiIiIiIiIgqAvscIyIiIiIiIiKiKovBMSIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiIiIiIiIqqyGBwjIiIiIiIiIqIqi8ExIiIiIiIiIiKqsuwrugBlpaCgAFeuXIGHhwd0Ol1FF4eIiIiIiIiIiCqIoihITU1FYGAg9Pqic8MqTXDsypUrCAkJqehiEBERERERERHRHSImJgbBwcFFzlNpgmMeHh4AZKc9PT0ruDRERERERERERFRRUlJSEBISYogXFaXSBMfUppSenp4MjhERERERERERkU1db7FDfiIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiIiIiIiIqqyGBwjIiIiIiIiIqIqi8ExIiIiIiIiIiKqshgcIyIiIiIiIiKiKovBMSIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiIiIiIiIqqyGBwjIiIiIiIiIqIqi8ExIiIiIiIiIiKqshgcIyIiIiIiIiKiKovBMSKispSfAxTkVXQpiIiIiIiIyEYMjhERlaU9TwCH3qjoUhAREREREZGNGBwjIipL8TuAM3MquhRERERERERkIwbHiIjKUlZ8RZeAiIiIiIiISoDBMSIiIiIiIiIiqrIYHCOiqiP5FJAWWb7bsHMu3/UTERERERFRmWJwjIiqjr2jgOMflu82AvvI4zIdEP0TELlMe+3KpvLdNhEREREREZUYg2NEVDUs0wFQAF0xl719z1uefuBVy9MvLAB2DdGeu9fV/v/rUWD34/J/VjywvQ+w2h8oyLW52ERERERERFS+GBwjospNKQBi1/37fz4AXdHzn//G8vSzX1iennoeuHlQe+4SaPp6rUflMfOKPGZdA7Z2LboMREREREREdNswOEZEldvNw8DOh+T//OziM8dKIumYBN+ML6VKgek89q7yeHy6Nu3Gbslky7phOu/13cD5+UDKWdPpe0YCuallVWoiIiIiIiIyUuJa4s6dO9G/f38EBgZCp9Nh7dq1Jq8rioKpU6ciMDAQLi4u6Nq1K06cOFHseletWoXGjRvDyckJjRs3xpo1a0paNCIic8Yd5KeeRbGZY5asrmn6POOyPG6MABL2AWnntdeOTTWdV2cvj1c2WlivH7A2RAJlif8DttwD7HsWWB/+bzNQSFDs0nfAT56AopS87JZc21E26yEiIiIiIqoEShwcS09PR/PmzTF37lyLr3/88cf4z3/+g7lz52L//v3w9/dHz549kZpqPethz549GDp0KJ588kkcOXIETz75JB599FH8888/JS0eEZEpO1ft/4KcojPH/uxpeXpWvOnztcHAzaPyf/x209fyCl3r1O3VGwv0PgQMiDR9PSNWHn9rY77d8/+VoJi1dRvLSQb+fkx7nnrB9PXkU8BP1STo9kdXefzRAbjxD5B0XJ6XVfCNiIiIiIjoLqJTlNLXhnQ6HdasWYOBAwcCkKyxwMBAjBs3DpMmTQIAZGdno2bNmpg1axbGjh1rcT1Dhw5FSkoKNm3SRnJ78MEHUa1aNfz44482lSUlJQVeXl5ITk6Gp6dn8QtUVVErgL+HAX73AD12ATodcO7/gP3PafMMV4BNrYFeuwE7p4orK1FZSI8GfqmtPa//ItDWQnBfUYAf/w1kDS90WVSzuIYrQPxfwNb7zJdvOB5o9ak2r7HhCrD/BaDxZMAtRAJZP3uXfF8e/B/g08p0Wn4OkHwC+K2VhfkPWA66WTMgGsi8ClRvV/KyERERERER3UFKEicq0z7HLl26hLi4OPTq1cswzcnJCV26dMHu3butLrdnzx6TZQDggQceKHKZ7OxspKSkmPyRDf4eJo/X/5ZAwDKdaWAMABIPSQfjZ78y7xOJ6K5TKNCls9Ks8vKvlqfnZ5s+3/6g5flO/wfISbL82oFXZD1qE09HL3n072F5fgBo9635tN9am0+78F8tMBY+rtD8hQJjOnvg4StA0/eAmt3M17U+HNjc3nqZiIiIiIiIKqEyDY7FxcUBAGrWNO2fp2bNmobXrC1X0mVmzpwJLy8vw19ISMgtlLyKiF4F1Blt+bUWs7T/1Yr2oQnAxiblXy6i8nSu8OiTVoJj2VYCwSucTZ/npVvf1u4nLU8/+yVwcaFpJubgJOD+LZJVNvTfANzQTKDnbqDVHOvNP1ON+jc7+xVwarb2vMVM4N6ftOf2brL+wTeBPkeBx3IBlwAg4n2g+59A35OAn1EWXH6m+fa29QHWBFvfZyIiIiIiortcuYxWqSuUmaEoitm0W11m8uTJSE5ONvzFxMSUvsCV0alPTZ8feBn4azDgUCiV0L0e8FgB0Hii5fVkxctof0QV5fx/gZjVQG5ayZZb7iiPJz8ynW4cdFIU6XNLKQDys26tnACg5Mnj4CTLr+uNAm1q9hgA2DkCNTpLZplfR6Dhq0Dt4dIsUqUGsJP/HeAk6zpw4CUg/ZLRepwB338zv/qfAx75N+Dn6A14NzMvj1cj4Pquovfp6iYg83LR8xAREREREd3FyjQ45u/vDwBmGV/x8fFmmWGFlyvpMk5OTvD09DT5q5Ty0oEb+0q+3KHXga1d5f+kE8DZf/tYOjNHMka6bpKMkofOac3MGr9peV2JB6W/pJtHit7mtW3STNP47+QnQHqUBB+ISuPSd0DMWuAnDyDjiu3LFeRaecEo6J6bBGzuIE0ijTOwSis7QR6NA1/G9A7Wl+1RaARJexfApzUQ2BdoPh0I6ifTdw4EMuOA1TW0eZu+Czz0bwf8biHA0CzAo57pSJ1ERERERERkUZkGx8LCwuDv748tW7YYpuXk5GDHjh3o1KmT1eU6duxosgwAbN68uchlqoSbR4CV7sX3AXR8GnB8ugSjljsDeRkyPX6HTNvY1HR+ryZAoIV+k1rMtLz+/c8B574GYtcWXY4/7jefdngi8Eso8KNd0csSqdIuAluMO7zXwdBvmJqZdSuMM8d09vKYcdm0SeGZLy0vm51Y9LpTThaz7aIzaC3quh5o8hbg0UCbtibAdJ6IDwD3OtrzWx1II/ony9OX6YBLP9zauomIiIiIiO4wJQ6OpaWl4fDhwzh8+DAA6YT/8OHDiI6Ohk6nw7hx4zBjxgysWbMGx48fx8iRI+Hq6orhw4cb1vHUU09h8uTJhuevvvoqNm/ejFmzZuH06dOYNWsWtm7dinHjxt3yDt7VNrWwbb6j7wJH35H/C7KtdwoOAG2/BpxrWH+98y9A8EDTaWoGzrGptpXHms1VPNhJttn2IHD9L+15drwc1wCs9hdW2G//jrZoaeRI43WoGY16e0DJ16ZfXGR5vfkZ0vzRmqL6I6v/ovXXbKG3N582XAHaWBh581ZlXTefpjY73fNU2W+PiIiIiIioApU4OHbgwAG0bNkSLVu2BACMHz8eLVu2xHvvvQcAmDhxIsaNG4cXXngBbdq0weXLl7F582Z4eHgY1hEdHY2rV68annfq1AnLly/HokWLEBERgcWLF2PFihVo356jphlYayJmqfK/Nsj0ed8TwMDL0mzSv2fR2wl+COi8pnRlLM6NPeWzXqpcUs+ZPk85o2Uy2Zp5lbjf+mtKgfQ1BgD4NzimKKYd8t88ZHnZy+uLDj4XpW0ZB7F8/h2JssEtBt2aTpHHzmu1aQdeBLb3B65t16atcNH+z02T9/HAq6Vr9k1ERERERHQH0SmKoZZ4V0tJSYGXlxeSk5MrT/9jxoGvbpuBAAuBLYuZMYUML8VHbG29w3Ilc+SeZdq0o1Nk9LvCy3TdCMT+CpwvNFpgu/8D6j5TuiZmVHls7wfcuxKwdzWdrh5H6nFrfFwNjAVcCwV/LSnuvGg+A2gyWfoIW1Xd8jzDFQlKqx37l8RwxbwMpTkPC4taAfw9TP4fGAO4luEokjFrgF2DbJ+/6RTg+PuAWygw4FKxsxMREREREd1OJYkTlctolVRGQgZr/8f+ItktuWm2j6rn0wYYkly2ZVruAET9qD3PTQOOfwCkFMr28W0PBPaWJl/1nzd9bd9Y0yZsVDVd2QDkpppOKyjUp1hi4QyuMgqoHnkLyMssfqCI0/8p/Tbu31r6Za2pPVRGl+19uGwDY4DW/5qtjr9fttsnIiIiIiKqIAyO3cnuXan9f+4r4Ee9jNi3oSmQfBI4P197fVge0PoL0+Uf3A84lDKLrv4L8nhfEU0so1YAif+T/9c3MH3tnuXyqLcDvJtZWLgMExazE2VQArr7rPE3fW4cNF2mA35rZfp64oGy23bqueKDY0fesjy9Zrfi1+/fXcsWeyShZGUrik4HVGtedutTlTZgnR4J7B1tOq0gT0bJJSIiIiIiugswOHYn0+mARzOAOqNMp6ddADY0AfY9K887r5UgVPjLZVcJt/u3f6FqEdbn+XsYcPU38+lt5wEuRqPp5WebzxO/Ux4L8sxHAFQUYM8ILasoLxNFWuUrgxLkpgFXt8jyu59kX0h3MmtBqeKCVfufL/r1ktjUHIY+xwoLfth6eXR2xZfT2HAFcPIpcfFuO5+WQMMJwCM3AMdqJVu28AAGNw+ZjpK7TAfE77r1MhIREREREZUDBsfudPYuEmwqim877f+SVmqtCX/VtvlOfmQ+rf7zgJ2T9vzyevN5/uwhj6c/leCWqiAfOP9/wKXvgZ88geVOwEpX25qS/uQBbOslGXaRS4Abu4Grm4Hj023bF7p9jLOUjAebsHQ8mTBqVpmbCuSmmL4ctxX4s1cJymEhyNVlPeAaYjrNZERIHco08/FO4VYbaDUbcPIFwkaUfHnjTFb1fY03GnX07JfymJ0A3DwC3DwM5GWUurhERERERERlhcGxu4GdcxGvuZpmaZUVt3+DA9bGayhJ5sy1P6y/dvhN0+cnpplmBxXkyGNeutG0f/ul2v8CcP1v6+tOOQNsewA4+o5kp2XG2V5mKl/GwbGLi4D/jQcuLpb+64qSeVn7f99Y4Ccv4NBE7ThIvQDEbbG87OCbFsph4Tj2jpDjzjjw1uBFrQ9ABw9U+ktnw/ElX2bfs0DSMTnv1M93633a6+qIo38NATa1ADa1BA5PvuWiEhERERER3apKXsOrAvKtZF7UGXnr624+w3om2o92t75+49H8dgyQTJKs65bnPTUbOPtvBt1yB2lWeu5rYMu91tefYxQMWeULrAmQbR5+C8hJutXS060w7nj/xj/Amc+AvaOsz2+Jeuyf+kQ7DvY/Z31+R29LBTGfpHeQEVZ/8pLnHZfIo4OHPN6zHNCXsPP6u42bUebc/RaC270LD5Twr40RwPqGwJZ7tGlpRiNZFuQD17Zpz89+IefkMp2FwReIiIiIiIhuDwbH7iadf5HHYblFz1etBdBhUdHz2KLJZK2vpIYTbFumRmfzaWrn/kW5/Ktkkpz7yvLrJz8CDryoPU8+Wfw6o1dYWddM4Ocyan5KpWOcOZZ9o2TLZsRKxlfsL7YvE9i3+HKoCo/aGDpcHtWAnlsYkHnFdJ7BSaYDaFQm/vcDD/+7vw9dAoZmyjXGVr/W0f4vKgCacqZUxSMiIiIiIrpVDI7dTZQ8YEiKlrUSPMB8Hp3OelbHrQh44N/1F5Mxo7OQUaZ3LPvyWPJwHDA0SxshkO4s/zwLZP0bCFOMM8eKaBprydoQ4KyFIGpWvOnzgTHa/81nWF7XX8PMpzl6mT7X/ZvhGNBLRoT1rA90/AHoc1Sm+7SRZdRzo9WcYnfhrnDfau1/lwA5r9xDi27mXZzIH6y/Vmtw6ddLRERERER0Cxgcu5sU5GpNuwCg5v3aqJLlqdV/gOod5f8+R8xft3fX/m/0hvnrhbNsbNFrr+XpB162PN2nNeBS03QgAGPN3jefxs7Ab68L84HVfkB6jGmzytL43yvm07Y9aPrcNVj739qoq4n7zafpHeTx0XTT6WFPyIiwAODTCvBuJsHYXnv+Xc4JsPcAGto4mMWdLqAX0HTKra/H3gN48H/Fz1fZm6oSEREREdEdi7WRu0lBoeaUoU8AfvdZnrcsNXxN+9/RR7LD6oyWwNzZL4Cef0kH2+51gMDe5sunnCrZ9tr/F6jeXnvu4A3kJsn/Z+eaz995LRDYz3Taw1eANYHa82bvAemR0vm7au8o0wCZvQvg7A+4+Mujyf9+WtCEbs0vtYCBRh3rW8o2LI2bpcyY9GoKJB+X/9WsQ/XRUn9bxoyDsYG9gUFXS1eGO5G9GxAx1frrwxXTfgOtGRCpNc8mIiIiIiK6AzE4djcpyNb+fywf0Olvb6Wz0evSQf/DcRIUyIiVgJF3BPBomlSmLQl/DfhntOm0tl/LqJQNx0ufZCema4GrOoX6JRpyE4hZDex6xHR6zfuB7laCF8YjeIY+Lo8dFgIOnsDNI5IxdG+hPsnyMoCsazKqZVYckBEFJOyT/7PiTYOTjt6Wg2gu/v8GEG0IGtyNTn8GHBx/601X1VFIASA/x/S1pu8Cxz+8tfUXp+08Ge0UkMBntxjLfV7532/7OnU66+dAZfXwVSAnUQLjanPLZTo5PjJipQms2qzaJQDINAoeDooHVte4/WUmIiIiIiIqhMGxu4W9G5CfpT3XVUCL2JafyKOaLePVCGg1W/4vKihQd5QEx3ruBrZ0kmn1n5M/lYO3PA66ZnnfQgaZPrc1OBPwANBpifa89Rzr89q7Au5h8lcURQFyk7UgWmYckHQMyNoiwbXsRACKzKfTS/DFUhDN2R9wcC96W3eakx9p/+dnW2/GuncMUPdpeS9d/E1fc/AyPZbVrEBVvedkdNL8zDIpMtyNOoSv9yxw/lutmTAANP9ImmAaN8Mk27j4m3++6rmpvp/qMdLzL+DXuvL/oxmSqUlERERERHQHYHDsbtH3FODkW9GluDW+7YAWH0tQrbCIqcD1vwDnIjJJeu4Gkk8A9Z62fZsdvy9xMYul00nmmKM34NWw6HkL8mU0RjWIlhUnHdCr/+emaVlmekfAuablIJpzTcDuNg1sUJTsRHmM+wP4swcwMBbIuAxUb2c638WF8gcAnX81zaTLTQY2WDgGVI5eMirimn+DLk3eAk5Y6VC/OIWDqO3+T4Jj1VoAA6KliWfhslPZUgcqcAsDAvsAVzZqgbEhKcBPnhVXNiIiIiIiIjA4dvdwC6noEtya0CcAvR3Q2EKH/YA0d3xwX9Hr8OsofyVSwc0b9XYyUIBLTaBa86Lnzc+S5ptq4CzrqvSjlRUnGWn5ORJkUhQZmMFSEM3FH3CqXn6Zheook3/2kMe1/2YHPVZgvSnpqU+A67uKX7dxIMs4E1EpkMeWnwKHJpSsvEW528+pu4V6XOh0QPuFwOYO2msOHkDXTZJ5SUREREREVEEYHKPbo9MPJV8m4kMgN+UWN3wX9f1l5wy41ZK/oigKkJdmFESLk/6y4nfItOwbWkBJp5eMQ2sZaQ6etvePlnre+ms/6iW4VZAvgzQYsyUw5tPG+mtKPuBeD2g0HriyHri2zXwe/55A3Jbit1NYtRYlX4ZsNzTb9LlLTWDAJdNpgQ/KHxERERERUQVhcIzuXE3fubXlnXyt94l1N9PpJOPGwQPwrF/0vEqBNIVUg2iZcTIYgRpYy0nW5tU7/BtEq6kFzxy9gZpdgbPzgAMvFr2t4kYubDYVODbV8ms5SebTnPy0wRnUZnhdNwGHJwFpl4DLv8q0+s8DdccAW/4G8v8dfbS7hQCaJb1LOcIl2eZOaApMRERERERUDJ2iKLc47NydISUlBV5eXkhOToanJ/uwISqx/Bwg+7oWREs5DRx6HRiWByy/xTi6bzvggX9kvWv+HUl0YAxw4CUg9hfA3gN4tFCW4C9hQO3HpM+x/CzAubr22r7ngaQjQK/d2rSCfGnGmnlNMpSsUZTKO5ooERERERERAShZnIiZY0Qk7BwB1yD5AwDf9hIcUzvWLwmn6tJHmE8rIPMqENBTpqsjGwY8IKMZtl8IxPpK4Kww/56Ad1MZ0bPwqJ6tP9Oajqr0dv9uo4jAGMDAGBEREREREZlgcIyILFObMu571nT6g/8DqrWUbLLCASpV9g2gzlPyv3dT89e7/SaPTj6Azg5wCTSfp/231stm51x02YmIiIiIiIhsVE5D2hHRXU9fKADVfDpw78+SDabTAfeuKt16m71v+vyxPMDRq3TrIiIiIiIiIrpFZR4cCw0NhU6nM/t78UXLnXlv377d4vynT58u66IRUUmozRRVTd4Caj2iPQ8eAAy6bnnZRhOtr7fZe7deNiIiIiIiIqIyUubBsf379+Pq1auGvy1btgAAhgwZUuRyZ86cMVmufv1iRuEjovKnjhY5NNv8NZ1O6yTfv4cEyhq9Ls/DX7095SMiIiIiIiK6RWXe55ifn5/J848++gh169ZFly5dilyuRo0a8Pb2LuviENGt6LAQuLhIOuu3xiUA6PY7oNMDLT8BGr0BONe4fWUkIiIiIiIiugXl2udYTk4OlixZgtGjR0NXzAhxLVu2REBAALp3745t27YVu+7s7GykpKSY/BFROXjoUtGvP3xFAmMqBsaIiIiIiIjoLlKuwbG1a9ciKSkJI0eOtDpPQEAAvv32W6xatQqrV69GeHg4unfvjp07dxa57pkzZ8LLy8vwFxISUsalJyIAgHtoRZeAiIiIiIiIqNzoFEVRymvlDzzwABwdHbFu3boSLde/f3/odDr8+uuvVufJzs5GdrbWD1JKSgpCQkKQnJwMT0/PUpeZiIiIiIiIiIjubikpKfDy8rIpTlTmfY6poqKisHXrVqxevbrEy3bo0AFLliwpch4nJyc4OTmVtnhERERERERERETl16xy0aJFqFGjBvr27VviZQ8dOoSAgIByKBUREREREREREZGmXDLHCgoKsGjRIowYMQL29qabmDx5Mi5fvozvv/8eADBnzhyEhoaiSZMmhg78V61ahVWrVpVH0YiIiIiIiIiIiAzKJTi2detWREdHY/To0WavXb16FdHR0YbnOTk5eP3113H58mW4uLigSZMm2LBhA/r06VMeRSMiIiIiIiIiIjIo1w75b6eSdLRGRERERERERESVV0niROXW5xgREREREREREdGdjsExIiIiIiIiIiKqshgcIyIiIiIiIiKiKovBMSIiIiIiIiIiqrLKZbTKiqCOK5CSklLBJSEiIiIiIiIiooqkxodsGYey0gTHUlNTAQAhISEVXBIiIiIiIiIiIroTpKamwsvLq8h5dIotIbS7QEFBAa5cuQIPDw/odLqKLk6ZSElJQUhICGJiYooddpQqD37uxGOgauLnTjwGqi5+9sRjoGri5048BsqXoihITU1FYGAg9PqiexWrNJljer0ewcHBFV2McuHp6ckTpQri5048Bqomfu7EY6Dq4mdPPAaqJn7uxGOg/BSXMaZih/xERERERERERFRlMThGRERERERERERVFoNjdzAnJydMmTIFTk5OFV0Uuo34uROPgaqJnzvxGKi6+NkTj4GqiZ878Ri4c1SaDvmJiIiIiIiIiIhKipljRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERExdDpdDb9bd++HZGRkUXOM3XqVMN6R44cCZ1OBw8PD6SlpZltNyoqCnq93my57du3m6zTzs4ONWvWxJAhQ3Dq1CmTdcTExOCFF15AgwYN4OLiAh8fHzRr1gzPPPMMYmJizLb5yy+/oEuXLvD09ISbmxuaNGmCb7/91my+rVu3omPHjnB1dUX16tUxcuRIxMfHm833zjvvoF+/fggKCoJOp8PIkSNtf+OJiIiIbgP7ii4AERER0Z1uz549Js8//PBDbNu2DX/++afJ9MaNGyMxMREA8PLLL2P48OFm6woODjZ57uDggLy8PKxYsQJjxowxeW3RokXw8PBASkqKxXLNmDED3bp1Q05ODg4cOIAPPvgAf/zxB44dO4agoCDExsaiVatW8Pb2xoQJExAeHo7k5GScPHkSK1euxMWLFxESEmJY30cffYS3334bzz33HCZPngwHBwecPn0aOTk5JtvdsWMHevfujb59++KXX35BfHw8Jk2ahO7du+PAgQNwcnIyzPvZZ58hIiICDz30EBYuXGjtLSYiIiKqMAyOERERERWjQ4cOJs/9/Pyg1+vNpgMwBMdq1apl8fXCHB0d0b9/fyxcuNAkOKYoChYvXoyhQ4di/vz5FpetX7++YRudO3eGt7c3xowZg8WLF+Ptt9/G/PnzcePGDezbtw9hYWGG5QYOHIi33noLBQUFhmn/+9//8Pbbb2PmzJmYOHGiYXr37t3NtvvGG2+gQYMG+Pnnn2FvL7eTYWFhuOeee7Bw4UI8//zzhnlTU1Oh10tjhR9++KHY94OIiIjodmOzSiIiIqIKNnr0aOzevRtnzpwxTNu6dSuioqIwatQom9ejBsqioqIAAAkJCdDr9ahRo4bF+dWgFQDMnTsXTk5OePnll4vcxuXLl7F//348+eSThsAYAHTq1AkNGjTAmjVrrG6DiIiI6E7EuxUiIiKiclBQUIC8vDyzP0t69OiB2rVrmzQ7XLBgATp37oz69evbvM3z588D+H/27js8inLt4/hvQwlBSZBOIAIiooAUu3gUBBERUMQDKAoCHo+KDRHFqEfBAiIWVPSgngOoqOABwYZKkWJBAREFCzZKpIgUk1ADyb5/PO9kZnZnWwop+/1c1167Ozsz+2yZ3Zl77ud+TGabJJ199tnKy8tT79699dFHH4XsnilJS5cu1UknnaRZs2apefPmqlChgho2bKi7777b1a1y7dq1kqTWrVsHraN169b5jwMAAJQVBMcAAACKwciRI1WpUqWgy6effho0r1Wo/pVXXtHhw4e1a9cuzZkzR0OGDAn7HFYAbv/+/frkk090xx13qEKFCurXr58kqX///rr++uu1YMECXXTRRapevbpatGih4cOHa8OGDa51bd68WT///LNuvfVW3XrrrVqwYIEGDRqkxx9/3JW9tnPnTklSjRo1gtpTo0aN/McBAADKCmqOAQAAFIPbbrtNV199ddD0E0880XP+wYMH68EHH9QHH3ygDRs2qHLlyurTp4/27dsX8jmsIJilSZMmmjlzZn5Wl8/n06RJk5Senq65c+dq5cqVWrp0qZ566im98MILmjt3rjp06CDJBNqys7P1xhtv6IorrpAknX/++dq7d68mTJig0aNH6/jjj89/Lp/P59mmUNMBAABKK4JjAAAAxaBhw4Y67bTTop6/UaNG6ty5syZPnqwNGzboiiuuUNWqVcMGx8aNG6dOnTqpQoUKqlWrlmvkycB1O4vkv/nmm7ryyit15513avny5ZKkmjVratu2beratatr2W7dumnChAlatWqVjj/+eNWsWVOSPDPEdu3a5ZlRBgAAUJrRrRIAAKCUGDJkiN555x2tXr06YpdKSTruuON02mmnqV27diEDY1769u0bVB/Mq4aYZEbNlOzC+q1atZIkrVmzJmjeNWvW5D8OAABQVhAcAwAAKCUuu+wyXXbZZRoyZEj+yJOFsXXrVs/pe/bsUUZGhlJTU/OnXX755ZKkDz74wDXv3LlzlZCQoNNPP12S1KBBA51xxhmaNm2acnNz8+f74osvtG7dOvXu3bvQ7QYAADiS6FYJAABQDDZt2qQvvvgiaHrt2rXVtGlTz2WqVKmimTNnFlkbHnnkEX322Wfq16+f2rZtq6SkJK1fv14TJ07Uzp07NX78+Px5Bw8erBdeeEFDhw7Vjh071KJFCy1YsEDPPfechg4dqkaNGuXPO27cOHXp0kV9+vTR0KFDtX37dt19991q1aqVq3i/JC1ZskR//vmnJCk3N1cbN27Mf40dOnTIH1kTAACgpBAcAwAAKAbPPvusnn322aDpV111laZNm3ZE2jBgwABJ0vTp0zV+/HhlZmaqRo0aOvXUUzV37lx169Ytf95KlSpp/vz5uueeezRmzBjt2rVLTZo00aOPPqrhw4e71tuxY0fNnTtX999/v3r27KmqVauqR48eGj9+vBITE13zPvDAA1qyZEn+/cWLF2vx4sWSpEWLFqljx47F8+IBAACi5PNbhSQAAAAAAACAOEPNMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhVsaQbUFTy8vK0ZcsWVatWTT6fr6SbAwAAAAAAgBLi9/uVnZ2t1NRUJSSEzw0rN8GxLVu2KC0traSbAQAAAAAAgFIiIyNDDRs2DDtPuQmOVatWTZJ50cnJySXcGgAAAAAAAJSUrKwspaWl5ceLwik3wTGrK2VycjLBMQAAAAAAAERVeouC/AAAAAAAAIhbBMcAAAAAAAAQtwiOAQAAAAAAIG4RHAMAAAAAAEDcIjgGAAAAAACAuEVwDAAAAAAAAHGL4BgAAAAAAADiFsExAAAAAAAAxC2CYwAAAAAAAIhbBMcAAAAAAAAQtwiOAQAAAAAAIG4RHAMAAAAAAEDcIjgGAAAAAACAuEVwDAAAAAAAAHGL4BgAAAAAAADiFsExAAAAAAAAxC2CYwAAAAAAAIhbBMcAAAAAAAAQtwiOAQAAAAAAIG4RHAMAAAAAAEDcIjgGAAAAAACAuEVwDAAAAAAAAHEr5uDY0qVL1bNnT6Wmpsrn82nOnDmux/1+v0aNGqXU1FQlJSWpY8eO+u677yKud9asWWrRooUSExPVokULzZ49O9amAQAAAAAAADGJOTi2d+9etWnTRhMnTvR8/LHHHtOTTz6piRMnasWKFapXr566dOmi7OzskOtctmyZ+vXrpwEDBuibb77RgAED1LdvX3355ZexNg8AAAAAAACIms/v9/sLvLDPp9mzZ6tXr16STNZYamqqhg0bppEjR0qSDh48qLp162rcuHG6/vrrPdfTr18/ZWVl6YMPPsifdtFFF+mYY47RG2+84bnMwYMHdfDgwfz7WVlZSktLU2ZmppKTkwv6kgAAAAAAAFDGZWVlKSUlJao4UZHWHFu/fr22bdumCy+8MH9aYmKiOnTooM8//zzkcsuWLXMtI0ldu3YNu8zYsWOVkpKSf0lLSyv8CwAAAAAAAEBcKdLg2LZt2yRJdevWdU2vW7du/mOhlot1mfT0dGVmZuZfMjIyCtFyAAAAAAAAxKOKxbFSn8/nuu/3+4OmFXaZxMREJSYmFryRAAAAAAAAiHtFmjlWr149SQrK+Nq+fXtQZljgcrEuAwAAAAAAABRWkQbHmjRponr16mn+/Pn503JycrRkyRK1b98+5HJnn322axlJmjdvXthlAAAAAAAAgMKKuVvlnj179Msvv+TfX79+vVavXq0aNWro2GOP1bBhwzRmzBg1a9ZMzZo105gxY1S1alX1798/f5mBAweqQYMGGjt2rCTptttu03nnnadx48bp0ksv1dtvv60FCxbo008/LYKXCAAAAAAAAHiLOTi2cuVKnX/++fn3hw8fLkm65pprNHXqVN11113av3+/hg4dqt27d+vMM8/UvHnzVK1atfxlNm3apIQEO2mtffv2mj59uu677z7961//UtOmTTVjxgydeeaZhXltAAAAAAAAQFg+v9/vL+lGFIWsrCylpKQoMzNTycnJJd0cAAAAAAAAlJBY4kRFWnMMAAAAAAAAKEsIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhV5MGxxo0by+fzBV1uuukmz/kXL17sOf+PP/5Y1E0DAAAAAAAAXCoW9QpXrFih3Nzc/Ptr165Vly5d1KdPn7DLrVu3TsnJyfn3a9euXdRNAwAAAAAAAFyKPDgWGNR69NFH1bRpU3Xo0CHscnXq1FH16tWjfp6DBw/q4MGD+fezsrJiaicAAAAAAABQrDXHcnJyNG3aNA0ZMkQ+ny/svO3atVP9+vXVuXNnLVq0KOK6x44dq5SUlPxLWlpaUTUbAAAAAAAAcaJYg2Nz5szRX3/9pUGDBoWcp379+nrxxRc1a9YsvfXWW2revLk6d+6spUuXhl13enq6MjMz8y8ZGRlF3HoAAAAAAACUdz6/3+8vrpV37dpVlStX1rvvvhvTcj179pTP59M777wT9TJZWVlKSUlRZmamq3YZAAAAAAAA4ksscaJiyxzbuHGjFixYoH/84x8xL3vWWWfp559/LoZWAQAAAAAAALZiC45NmTJFderUUffu3WNe9uuvv1b9+vWLoVUAAAAAAACArchHq5SkvLw8TZkyRddcc40qVnQ/RXp6ujZv3qxXXnlFkjRhwgQ1btxYLVu2zC/gP2vWLM2aNas4mgYAAAAAAADkK5bg2IIFC7Rp0yYNGTIk6LGtW7dq06ZN+fdzcnI0YsQIbd68WUlJSWrZsqXef/99XXzxxcXRNAAAAAAAACBfsRbkP5IoyA8AAAAAAACplBTkBwAAAAAAAEo7gmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuFctolSXBGlcgKyurhFsCAAAAAACAkmTFh6IZh7LcBMeys7MlSWlpaSXcEgAAAAAAAJQG2dnZSklJCTuPzx9NCK0MyMvL05YtW1StWjX5fL6Sbk6RyMrKUlpamjIyMiIOO4ryg88dfAfiE587+A7ELz578B2IT3zu4DtQvPx+v7Kzs5WamqqEhPBVxcpN5lhCQoIaNmxY0s0oFsnJyWwocYjPHXwH4hOfO/gOxC8+e/AdiE987uA7UHwiZYxZKMgPAAAAAACAuEVwDAAAAAAAAHGL4FgplpiYqAceeECJiYkl3RQcQXzu4DsQn/jcwXcgfvHZg+9AfOJzB9+B0qPcFOQHAAAAAAAAYkXmGAAAAAAAAOIWwTEAAAAAAADELYJjAAAAAAAAiFsExwAAAAAAABC3CI4BAAAAAAAgbhEcAwAAAAAAQNwiOAYAAAAAAIC4RXAMAAAAAAAAcYvgGAAAAAAAAOIWwTEAAAAAAADELYJjAAAAEfh8vqguixcv1oYNG8LOM2rUqPz1Dho0SD6fT9WqVdOePXuCnnfjxo1KSEgIWm7x4sWudVaoUEF169ZVnz599MMPP7jWkZGRoaFDh+qEE05QUlKSatSooZNPPlnXXXedMjIygp7z7bffVocOHZScnKyjjjpKLVu21Isvvhg034IFC3T22WeratWqqlWrlgYNGqTt27cHzXffffepR48eatCggXw+nwYNGhT9Gw8AAHAEVCzpBgAAAJR2y5Ytc91/6KGHtGjRIn388ceu6S1atNCuXbskSbfccov69+8ftK6GDRu67leqVEmHDx/WjBkzdO2117oemzJliqpVq6asrCzPdo0ZM0bnn3++cnJytHLlSj344INauHCh1qxZowYNGuj333/XKaecourVq+uOO+5Q8+bNlZmZqe+//15vvvmmfvvtN6WlpeWv79FHH9W9996rG264Qenp6apUqZJ+/PFH5eTkuJ53yZIl6tatm7p37663335b27dv18iRI9W5c2etXLlSiYmJ+fM+9dRTat26tS655BJNnjw51FsMAABQYgiOAQAARHDWWWe57teuXVsJCQlB0yXlB8eOPfZYz8cDVa5cWT179tTkyZNdwTG/36+pU6eqX79+eumllzyXbdasWf5znHfeeapevbquvfZaTZ06Vffee69eeukl7dixQ8uXL1eTJk3yl+vVq5fuuece5eXl5U/76quvdO+992rs2LG666678qd37tw56HnvvPNOnXDCCZo5c6YqVjS7k02aNNE555yjyZMn68Ybb8yfNzs7WwkJprPCq6++GvH9AAAAONLoVgkAAFDChgwZos8//1zr1q3Ln7ZgwQJt3LhRgwcPjno9VqBs48aNkqSdO3cqISFBderU8ZzfClpJ0sSJE5WYmKhbbrkl7HNs3rxZK1as0IABA/IDY5LUvn17nXDCCZo9e3bI5wAAACiN2FsBAAAoBnl5eTp8+HDQxcsFF1ygRo0aubod/ve//9V5552nZs2aRf2cv/zyiyST2SZJZ599tvLy8tS7d2999NFHIbtnStLSpUt10kknadasWWrevLkqVKighg0b6u6773Z1q1y7dq0kqXXr1kHraN26df7jAAAAZQXBMQAAgGIwcuRIVapUKejy6aefBs1rFap/5ZVXdPjwYe3atUtz5szRkCFDwj6HFYDbv3+/PvnkE91xxx2qUKGC+vXrJ0nq37+/rr/+ei1YsEAXXXSRqlevrhYtWmj48OHasGGDa12bN2/Wzz//rFtvvVW33nqrFixYoEGDBunxxx93Za/t3LlTklSjRo2g9tSoUSP/cQAAgLKCmmMAAADF4LbbbtPVV18dNP3EE0/0nH/w4MF68MEH9cEHH2jDhg2qXLmy+vTpo3379oV8DisIZmnSpIlmzpyZn9Xl8/k0adIkpaena+7cuVq5cqWWLl2qp556Si+88ILmzp2rDh06SDKBtuzsbL3xxhu64oorJEnnn3++9u7dqwkTJmj06NE6/vjj85/L5/N5tinUdAAAgNKK4BgAAEAxaNiwoU477bSo52/UqJE6d+6syZMna8OGDbriiitUtWrVsMGxcePGqVOnTqpQoYJq1arlGnkycN3OIvlvvvmmrrzySt15551avny5JKlmzZratm2bunbt6lq2W7dumjBhglatWqXjjz9eNWvWlCTPDLFdu3Z5ZpQBAACUZnSrBAAAKCWGDBmid955R6tXr47YpVKSjjvuOJ122mlq165dyMCYl759+wbVB/OqISaZUTMlu7B+q1atJElr1qwJmnfNmjX5jwMAAJQVBMcAAABKicsuu0yXXXaZhgwZkj/yZGFs3brVc/qePXuUkZGh1NTU/GmXX365JOmDDz5wzTt37lwlJCTo9NNPlyQ1aNBAZ5xxhqZNm6bc3Nz8+b744gutW7dOvXv3LnS7AQAAjiS6VQIAABSDTZs26YsvvgiaXrt2bTVt2tRzmSpVqmjmzJlF1oZHHnlEn332mfr166e2bdsqKSlJ69ev18SJE7Vz506NHz8+f97BgwfrhRde0NChQ7Vjxw61aNFCCxYs0HPPPaehQ4eqUaNG+fOOGzdOXbp0UZ8+fTR06FBt375dd999t1q1auUq3i9JS5Ys0Z9//ilJys3N1caNG/NfY4cOHfJH1gQAACgpBMcAAACKwbPPPqtnn302aPpVV12ladOmHZE2DBgwQJI0ffp0jR8/XpmZmapRo4ZOPfVUzZ07V926dcuft1KlSpo/f77uuecejRkzRrt27VKTJk306KOPavjw4a71duzYUXPnztX999+vnj17qmrVqurRo4fGjx+vxMRE17wPPPCAlixZkn9/8eLFWrx4sSRp0aJF6tixY/G8eAAAgCj5/FYhCQAAAAAAACDOUHMMAAAAAAAAcYvgGAAAAAAAAOIWwTEAAAAAAADELYJjAAAAAAAAiFsExwAAAAAAABC3KpZ0A4pKXl6etmzZomrVqsnn85V0cwAAAAAAAFBC/H6/srOzlZqaqoSE8Llh5SY4tmXLFqWlpZV0MwAAAAAAAFBKZGRkqGHDhmHnKTfBsWrVqkkyLzo5ObmEWwMAAAAAAICSkpWVpbS0tPx4UTjlJjhmdaVMTk4mOAYAAAAAAICoSm9RkB8AAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuxRwcW7p0qXr27KnU1FT5fD7NmTPH9bjf79eoUaOUmpqqpKQkdezYUd99913E9c6aNUstWrRQYmKiWrRoodmzZ8faNAAAAAAAACAmMQfH9u7dqzZt2mjixImejz/22GN68sknNXHiRK1YsUL16tVTly5dlJ2dHXKdy5YtU79+/TRgwAB98803GjBggPr27asvv/wy1uYBAAAAAAAAUfP5/X5/gRf2+TR79mz16tVLkskaS01N1bBhwzRy5EhJ0sGDB1W3bl2NGzdO119/ved6+vXrp6ysLH3wwQf50y666CIdc8wxeuONN6JqS1ZWllJSUpSZmank5OSCviQAAAAAAACUcbHEiYq05tj69eu1bds2XXjhhfnTEhMT1aFDB33++echl1u2bJlrGUnq2rVr2GUOHjyorKws1wUAAAAAAACIRZEGx7Zt2yZJqlu3rmt63bp18x8LtVysy4wdO1YpKSn5l7S0tEK0HAAAAAAAAPGoWEar9Pl8rvt+vz9oWmGXSU9PV2ZmZv4lIyOj4A0GAAAAAABAXKpYlCurV6+eJJMJVr9+/fzp27dvD8oMC1wuMEss0jKJiYlKTEwsZIsBAAAAAAAQz4o0c6xJkyaqV6+e5s+fnz8tJydHS5YsUfv27UMud/bZZ7uWkaR58+aFXQYAAAAAAAAorJgzx/bs2aNffvkl//769eu1evVq1ahRQ8cee6yGDRumMWPGqFmzZmrWrJnGjBmjqlWrqn///vnLDBw4UA0aNNDYsWMlSbfddpvOO+88jRs3TpdeeqnefvttLViwQJ9++mkRvEQAAAAAAADAW8zBsZUrV+r888/Pvz98+HBJ0jXXXKOpU6fqrrvu0v79+zV06FDt3r1bZ555pubNm6dq1arlL7Np0yYlJNhJa+3bt9f06dN133336V//+peaNm2qGTNm6MwzzyzMawMAAAAAAADC8vn9fn9JN6IoZGVlKSUlRZmZmUpOTi7p5gAAAAAAAKCExBInKpbRKgEAAAAAAICygOAYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIW0UeHGvcuLF8Pl/Q5aabbvKcf/HixZ7z//jjj0XdNAAAAAAAAMClYlGvcMWKFcrNzc2/v3btWnXp0kV9+vQJu9y6deuUnJycf7927dpF3TQAAAAAAADApciDY4FBrUcffVRNmzZVhw4dwi5Xp04dVa9evaibAwAAAAAAAIRUrDXHcnJyNG3aNA0ZMkQ+ny/svO3atVP9+vXVuXNnLVq0KOK6Dx48qKysLNcFAAAAAAAAiEWxBsfmzJmjv/76S4MGDQo5T/369fXiiy9q1qxZeuutt9S8eXN17txZS5cuDbvusWPHKiUlJf+SlpZWxK0HAAAAAABAeefz+/3+4lp5165dVblyZb377rsxLdezZ0/5fD698847Iec5ePCgDh48mH8/KytLaWlpyszMdNUuAwAAAAAAQHzJyspSSkpKVHGiIq85Ztm4caMWLFigt956K+ZlzzrrLE2bNi3sPImJiUpMTCxo8wAAAAAAAIDi61Y5ZcoU1alTR927d4952a+//lr169cvhlYBAAAAAAAAtmLJHMvLy9OUKVN0zTXXqGJF91Okp6dr8+bNeuWVVyRJEyZMUOPGjdWyZcv8Av6zZs3SrFmziqNpAAAAAAAAQL5iCY4tWLBAmzZt0pAhQ4Ie27p1qzZt2pR/PycnRyNGjNDmzZuVlJSkli1b6v3339fFF19cHE0DAAAAAAAA8hVrQf4jKZZCawAAAAAAACi/YokTFVvNMQAAAAAAAKC0IzgGAAAAAACAuEVwDAAAAAAAAHGL4BgAAAAAAADiFsExAAAAAAAAxK2KJd2AomINupmVlVXCLQEAAAAAAEBJsuJDVrwonHITHMvOzpYkpaWllXBLAAAAAAAAUBpkZ2crJSUl7Dw+fzQhtDIgLy9PW7ZsUbVq1eTz+Uq6OUUiKytLaWlpysjIUHJyckk3B0cInzv4DsQnPnfwHYhffPbgOxCf+NzBd6B4+f1+ZWdnKzU1VQkJ4auKlZvMsYSEBDVs2LCkm1EskpOT2VDiEJ87+A7EJz538B2IX3z24DsQn/jcwXeg+ETKGLNQkB8AAAAAAABxi+AYAAAAAAAA4hbBsVIsMTFRDzzwgBITE0u6KTiC+NzBdyA+8bmD70D84rMH34H4xOcOvgOlR7kpyA8AAAAAAADEiswxAAAAAAAAxC2CYwAAAAAAAIhbBMcAAAAAAAAQtwiOAQAAAAAAIG4RHAMAAAAAAEDcIjgGAAAAAACAuEVwDAAAAAAAAHGL4BgAAAAAAADiFsExAAAAAAAAxC2CYwAAABH4fL6oLosXL9aGDRvCzjNq1Kj89Q4aNEg+n0/VqlXTnj17gp5348aNSkhICFpu8eLFrnVWqFBBdevWVZ8+ffTDDz+41pGRkaGhQ4fqhBNOUFJSkmrUqKGTTz5Z1113nTIyMlzzfvTRRzrnnHOUlJSklJQU9ezZU999953ne7JgwQKdffbZqlq1qmrVqqVBgwZp+/btQfPdd9996tGjhxo0aCCfz6dBgwZF/8YDAAAcARVLugEAAACl3bJly1z3H3roIS1atEgff/yxa3qLFi20a9cuSdItt9yi/v37B62rYcOGrvuVKlXS4cOHNWPGDF177bWux6ZMmaJq1aopKyvLs11jxozR+eefr5ycHK1cuVIPPvigFi5cqDVr1qhBgwb6/fffdcopp6h69eq644471Lx5c2VmZur777/Xm2++qd9++01paWmSpLfffluXXXaZLr30Us2aNUuZmZkaPXq0zj33XK1YsUJNmzbNf94lS5aoW7du6t69u95++21t375dI0eOVOfOnbVy5UolJibmz/vUU0+pdevWuuSSSzR58uRIbzUAAMARR3AMAAAggrPOOst1v3bt2kpISAiaLik/OHbsscd6Ph6ocuXK6tmzpyZPnuwKjvn9fk2dOlX9+vXTSy+95Llss2bN8p/jvPPOU/Xq1XXttddq6tSpuvfee/XSSy9px44dWr58uZo0aZK/XK9evXTPPfcoLy8vf9rIkSN18skn66233pLP55MktW/fXieccILuv/9+vfbaa/nz3nnnnTrhhBM0c+ZMVaxodiebNGmic845R5MnT9aNN96YP292drYSEkxnhVdffTXi+wEAAHCk0a0SAACghA0ZMkSff/651q1blz9twYIF2rhxowYPHhz1eqxA2caNGyVJO3fuVEJCgurUqeM5vxW02rlzp9atW6du3brlB8YkqVGjRmrVqpXmzJmj3NxcSdLmzZu1YsUKDRgwID8wJtmBtNmzZ3s+BwAAQGnF3goAAEAxyMvL0+HDh4MuXi644AI1atTI1e3wv//9r8477zw1a9Ys6uf85ZdfJJnMNkk6++yzlZeXp969e+ujjz4K2T0zJydHklzdIS2JiYnat2+ffv31V0nS2rVrJUmtW7cOmrd169b5jwMAAJQVBMcAAACKwciRI1WpUqWgy6effho0r1Wo/pVXXtHhw4e1a9cuzZkzR0OGDAn7HFYAbv/+/frkk090xx13qEKFCurXr58kqX///rr++uu1YMECXXTRRapevbpatGih4cOHa8OGDfnrqVu3rmrUqKHPPvvMtf6//vorP9i1c+dO13WNGjWC2lOjRo38xwEAAMoKgmMAAADF4LbbbtOKFSuCLm3btvWcf/Dgwfrjjz/0wQcf6LXXXlPlypXVp0+fsM/Rr18/VapUSVWrVtV5552n3NxczZw5Mz+ry+fzadKkSfrtt9/0/PPPa/DgwTp06JCeeuoptWzZUkuWLJFkuj7edNNNWrhwoR566CFt375dv/zyi66++mrt27cvfx4nZ/fLaKYDAACUVhTkBwAAKAYNGzbUaaedFvX8jRo1UufOnTV58mRt2LBBV1xxhapWrZofnPIybtw4derUSRUqVFCtWrXyR570WrezSP6bb76pK6+8UnfeeaeWL18uSbr//vu1Z88ePfzww7r//vslSd27d9fgwYP1n//8Rw0aNJAk1axZU5I8M8R27drlmVEGAABQmpE5BgAAUEoMGTJE77zzjlavXh2xS6UkHXfccTrttNPUrl27kIExL3379g2qD1axYkU9+eST2rlzp7799ltt2bJF7733njZt2qQmTZqoYcOGkqRWrVpJktasWRO03jVr1uQ/DgAAUFYQHAMAACglLrvsMl122WUaMmRI/siThbF161bP6Xv27FFGRoZSU1ODHjv66KN18sknq379+lq1apUWLlyo2267Lf/xBg0a6IwzztC0adPyR7CUpC+++ELr1q1T7969C91uAACAI4lulQAAAMVg06ZN+uKLL4Km165dW02bNvVcpkqVKpo5c2aRteGRRx7RZ599pn79+qlt27ZKSkrS+vXrNXHiRO3cuVPjx4/Pn3fx4sVasWKFWrduLb/fr+XLl2vcuHG66KKLdPPNN7vWO27cOHXp0kV9+vTR0KFDtX37dt19991q1aqVBg8e7Jp3yZIl+vPPPyVJubm52rhxY/5r7NChQ/7ImgAAACWF4BgAAEAxePbZZ/Xss88GTb/qqqs0bdq0I9KGAQMGSJKmT5+u8ePHKzMzUzVq1NCpp56quXPnqlu3bvnzVq5cWbNmzdLDDz+sgwcPqlmzZnrwwQd16623qkKFCq71duzYUXPnztX999+vnj17qmrVqurRo4fGjx+vxMRE17wPPPBAfuF/yQThFi9eLElatGiROnbsWDwvHgAAIEo+v9/vL+lGAAAAAAAAACWBmmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxq2JJN6Co5OXlacuWLapWrZp8Pl9JNwcAAAAAAAAlxO/3Kzs7W6mpqUpICJ8bVm6CY1u2bFFaWlpJNwMAAAAAAAClREZGhho2bBh2nnITHKtWrZok86KTk5NLuDUAAAAAAAAoKVlZWUpLS8uPF4VTboJjVlfK5ORkgmMAAAAAAACIqvQWBfkBAAAAAED5smKFdPrpJd0KlBHlJnMMAAAAAABAknTGGSXdApQhZI4BAAAAAAAgbhEcAwAAAAAAQNwiOAYAAAAAAMovv1/6/Xfp0KGSbglKKYJjAAAAAACgfMrOlt5+W0pLk+6800xbtEjy+YKDZfv3S3v2SJ9+KvXoceTbihJDcAwAAAAAAJRPycnSrl3m9tNPm+tOncx15crueatWlapVk849V3r//SPXRpQ4gmMAAAAAAKB8qVfPvn3ttfbtTZuiX4fPJ1WqVHRtQqlFcAwAAAAAAJQvp5/uPb1Ro+Bp27aFzhQ7fFi68kpzjXKL4BgAAAAAAIhf770XvsbY9OnS/PlHrj044giOAQAAAACA8sXnM0X4Q8nLM7XHdu+Wrrsu8vo++8x9f9++wrUPpQrBMQAAAAAAUH4cc4y0caM0cmToeXw+6eijpfXro1vnI49Ir75q3z/qqMK1EaUKwTEAAAAAAFB+/PWXCXoF1gnr29dcP/WUPS2WgvsDBxa6aSidCI4BAAAAAICyac8ec92kiXt6VpbJDnNq2NBc16gRen3fflt0bUOZQXAMAAAAAACUPd9+K1WrJn39tbRhQ/Dj//yndOut9v1q1cx1YqI97bHH3Mscd1zk5507N+amonQjOAYAAAAAAMqeQ4fM9SmnmOucHPfjVapItWrZ99PTzfXpp9vTpk2zb/v9UlJS+Oc86iipe3dz+9prY28zSiWCYwAAAAAAoOzw++3ulE4nnxw8LS/Pvp2YKL3+utSokbm/fXvw/AkRwiTOUSonTw5+/Isvwi+PUongGAAAAAAAKDv+/nfTRdLvd0//6afgeZ3BMUm68kqpQgVzuzgCWWefXfTrRLEjOAYAAAAAAMqO994z16+/Hnne3Nzo1tmmTcHbY1m50lw/8kjh14UjiuAYAAAAAAAoO6zaYk89FfxYYObW7bdHXt+gQdLq1e5pNWuaa2fNsnDWrLFrmc2bJ82cGd1yKBUIjgEAAAAAgPLB6irZsqW5toJc4QR2z5TsUSsj1SCzOLPFli6Vhg2LbjmUCgTHAAAAAABA+TJ/fvTzegXHbrhB2r9f+uqr6NYxY4b7/ubN0uHDoecfPZrul6VIzMGxpUuXqmfPnkpNTZXP59OcOXNcj/v9fo0aNUqpqalKSkpSx44d9d1330Vc76xZs9SiRQslJiaqRYsWmj17dqxNAwAAAFAe7dghTZ1a0q0AUJbUrx/9vGPGBE9LSJCqVJEaNpQuvjj88v/+t/d0q/un0+7d0mmnSaNGSffdJ2VlRd9OFJuYg2N79+5VmzZtNHHiRM/HH3vsMT355JOaOHGiVqxYoXr16qlLly7Kzs4Ouc5ly5apX79+GjBggL755hsNGDBAffv21Zdffhlr8wAAAACUN19+KQ0eXNKtAFAa9e1b+HU0aBD+8caNQz+2aJEUkDSU78MP3fd9PqlGDXc2WkpKNC1EMYs5ONatWzc9/PDD6t27d9Bjfr9fEyZM0L333qvevXurVatWevnll7Vv3z69HmYUiQkTJqhLly5KT0/XiSeeqPT0dHXu3FkTJkyItXkAAAAAyptoR5sDEH/y8gq+bKii+U89JZ1zjn0/XN2xW281BfgtFSrYt99/X/rzT+maa8K3o2FDMx9KTJHWHFu/fr22bdumCy+8MH9aYmKiOnTooM8//zzkcsuWLXMtI0ldu3YNu8zBgweVlZXlugAAgDiwc6f0228l3QoARxLBMaD8+fe/pbvuin7+H3/0ruH1++8Fb8O553pPHzZMatbMvh8uOBZYRuqYY+zbkydLdepIr7wS/nds82bprLMiNhfFp0iDY9u2bZMk1a1b1zW9bt26+Y+FWi7WZcaOHauUlJT8S1paWiFaDgAAyowxYyLX/gBQvhQmOHbgQNG1A0DRWbIk+mL3knTSSaaLdaA9ewreBmcgKxxnNlggv1/q2NG+X72693wVK4Z/joMHo2sLikWxjFbp8/lc9/1+f9C0wi6Tnp6uzMzM/EtGRkbBGwwAAMqOQ4ekSpVKuhUAjqTCBMeSkkxBfwClS06OlJho39+wQVq50j3P3r3u+16jSgbO4yUgGSdfhDhFvgoVpBNOcE9zdslcvNi+vXNndOvs1q1gbUGxKNLgWL169SQpKONr+/btQZlhgcvFukxiYqKSk5NdFwAAEAdycqTKlUu6FQCOpMJ2q6xdu2jaAaDo5OW5yyQ89ZQ0aJA7g+roo02XxDC9yqIKjm3aJG3ZEjy9QgXpP/+JvHxCQvDvUPPm3vPu3h15fZI0d677fmG6h6LQijQ41qRJE9WrV0/z58/Pn5aTk6MlS5aoffv2IZc7++yzXctI0rx588IuAwAA4tShQ9KqVdL48UW/7quvLvp1ennuOalVK/NaSpu8PFNrBShNClNw+0jYtcsc0O/bd2RrIu7b567BtHOnOYEAlAVvvy2tW2ffX7TI1O+qUsWdQXbNNVKYeuTavz942pIl7vuVK0v16wfP5/NJ114bua2JicHdIqtU8Z73lVcir88S7nXhiIo5OLZnzx6tXr1aq1evlmSK8K9evVqbNm2Sz+fTsGHDNGbMGM2ePVtr167VoEGDVLVqVfXv3z9/HQMHDlR6enr+/dtuu03z5s3TuHHj9OOPP2rcuHFasGCBhrFjBgAAAlk7nQ8+WPTrfu21ol+nl5tvNgcAJZ0Bd+iQ9N//ugMPhw5JTz8tvftuybULCFQUwbHMzNieb9y40I8fPmwKaN96q9S1q9S2rTRxoslyadq00E2VZLqYTZzonrZ2rft++/aS47hK9eq5u6kBZcmaNfbtf/3L/ZjVndKrW2W7dsHTzjuv6NolSXffLX3yiXtaqG2tcWPpqKPc0xo1kq6/XvriC3N//XpzTVfKUiPm4NjKlSvVrl07tfv/L+Dw4cPVrl073X///ZKku+66S8OGDdPQoUN12mmnafPmzZo3b56qVauWv45NmzZp69at+ffbt2+v6dOna8qUKWrdurWmTp2qGTNm6Mwzzyzs6wMAAOWNlSXhLMD7+uveO8ylyZIlZid4167Yly1IV4u8vMhd0VaulP7xD3eh4X37zPUll8T+nEBxKYrRKkeMiH7eX381B8P795uC/j6fdM45dnB+5kypYUPp2WelefOkjAzp8ceL7nfo11+lJk2kW26Rhg83z+/zSSefbK4XLTLzffONeV7rca+R/ICy6MMPQz8W+D1//PHibYskVa0a3D07VIH9+vWlO+90T1uxQpo0STrzTPO70rix97LO2mUFtX27dzYdwoo5ONaxY0f5/f6gy9SpUyWZwvqjRo3S1q1bdeDAAS1ZskStWrVyrWPx4sX581v+/ve/68cff1ROTo5++OEH9e7du8AvCgAAxIEzzjDX2dnSVVeZ69Lo7ruln3+2R7K68MLgM+KRpKXFfnZ51Ciz4/7UU2bkrH79zEG8328O5Dt1MlknFp/PZJ3UqGFPS06OrhYLEK1HH5VuuCG2ZbZskaZPN7edXa3mzjWZW9GK5WDRGuHyvPPs5/j8c2nyZGnOHOnVV4OXCVcTKRaZmdLxx9v3n3oqeJ5Ondyj4wX65Rf79sGDpf/kAeKTlT29enXk7+jXX9u3ndvyjBkmcHWkvPWWfdv5f+lUv74JZEvS6aebrs7OwJqzO2bNmu5lzz/f/EdHky1rZZKuXSs5y1TVrWvek337zHs8YEDkdaF4RqsEAADIt2yZ1Lq1e9rzz5suB7/+WvD1Wt0ZBg0y16V1CPRx49w1Rb76SnroofDLhAqEWQcPgTvTXubMMdfDh5uD7TffNN2/EhKkY4+1M0+c/vjDfT87W7ruOlMX5qefIj8nEMlPP0nffhvbMgsXmsCuZA40LatXm++13x/d6HCx1OK6/HJzvXKl9NJL9vQlS6RnngkupF2Ujj02eNodd9jboBXUdtZUSkqSBg607zdrZq7z8syB+MyZpiA5UJr8/e/mul27yFnVjzxi3/70U/t2377SccfZ9088seja5+Xii+3bobpVHnWUyQyrVUtavjz8CNvWtuo0b57J6Lb2BU4/3Xu/wArA/ec/5sSb5B6Z96ijTKmEadNCPz/yERwDAADFY80a0x3wjz/MbWfW+E03mTOa995b8PVbO6XWWdy33jJdjCRzEFzQGkWnnGLqgRUlK4Dn5dtv3Tu94TLEnnjCdC+Lpmums3bLn3+a7LV+/aRjjom8bKCrrjKjcvl87rP72dlkpCA2gd+haITqUpmQYLbzL780B6GRrFjhvr94sdS7t+minZPj7qr188+h1+MVWC4q27ZJWVnmdm6uuaSnS5deag6ic3JMPcDly81B8MaN5v3ct8/9GytJXbpILVqY2337mppHpTXDFvHp9dft214jSXrx+6WPPnJPS0qyb19xReHbFU6kmn5Wpucpp5j/3mg5u1n+4x/27RtusDNmfT5Ti/Css0x2mWSCX9b/fV4eI/MWAsExAABQPFq3Nt0BL7vM3B882GQwZWSYWj2SObj1snSpOSgM1w0qcJSoG24wRbElcxa6oMX1v/7azqDascNkphRUNHWS2rQx1y1buoMGVgDMmSnz6692ECDUum+91Q6wPfigWWetWqab1vTp7gybGTOiG6Fz71779n33SQ0amOyV5OTQnyEQSqzBscGDvaf7fOZgMNpA+IYN9u1HHjHdl2bPNoGnxMTw2R1HitUd8tlnzbaVkCCNGSOde66ZXqmS6cp1+ukmg9SZZRYYWF+wwD0SoGS2WcuKFWZADqA0cAa4wnH+fjjrZR5J9eqFfsy5jUXL73d3pXZ64QX3/SZNzAkBa9ufO1f6+GNzm5FqC4W9GQAAUPRCZT9Vr2526KwC86ECKx06mKBRYB2R7dvt21ZwrFu34OW//z72rludOwff/vxzk21VUOG6MQV2nfr+e/doejVrmvfHWWPpyy/NjrFk6okFFiX2+81BtcWrtpnPJ734orndt6937aRwxowxZ/iXLbOnBY6gB4QSa+aYVfsr0OrVpp6f3+8+QJ44UerRw3RLChc0u+8++/aPP9q3c3OLLhty4UIzMl2PHibDK5Lff7eDYEVZI+iWW9z3t283n8MZZ5gMFZ/P/F4uW+bOOAWOpFWrop/XOjnUv3/wY336FE17wnEWzQ/MMvXqFh2NUMX9La1be2e0Ogcn+tvfQi+/cKEJov31V4GaFw8IjgEAgNLJ2bXRCvo4d4Q/+cRkllmZV4GcQSUv8+e7g3jOGiaSqWFmHXQXdPQoZ+2PQDfdZN8+6yxzHTgcfeBB+tdfu9+XSpWk/x8xXJI72JieHn07Q2XMfPVVdMuffDIjYyE6//2v6RIYrR49vKdbB4S7dgUHx95/39TXcx40WpYuDZ7m7M71++8Fzzp18vmkCy6Qzj7btKdx4+DC+vv22cG/fftMpq0kvfeelJJS8Od2ZnpK0tNPu39L6tYNXqZNGxNMDxxhDygu1sjIlmhPRD3/vB34fv55e7rVhdi6Lk7Nm9tBpsCTgRdcULB1Wl0pQ5WbaNPGzi5btszOKrfqi0rh/7MvuMCc+CtIaYU4QXAMAADEZs+eosusiLbLYkKC6S64cKE97Y8/TI2xwANBS6SA1j//aa7XrjUHxIHdEapUsbOqzj8/ePloBgDwOji3dOhg3/7iC3Ntdft67LHQywW20yrub30mXbuas+rO4sWBAnfmrRpHTmecYWqmRKtqVel//wv9eOCBEOC0YIHUq1fwdK8RIGvVcmdZOINjzu+2V+ZYpG6EkyYV38huw4eba5/PXI46ynQl8/vNbUusI9M6+f1mW/zsM3PfWdPQ+o1wdkl3Hojn5gbXcgKKw+HD7u98LN58084cO/poe/oHHwR3QSxOVgC7MNur0+WXm23UmUEuSaNHm+3Z+v2QzHtn1TKdObNonh8ExwAAQIyqVZPuuqto1tWpU+GWf+WV0MExi1W0NpCVLXLyyd4H5ZKpyRVKcrI5e/vEE6GDWZ984r7vPMt9xhmh121lnPn95pKXZ4Je4ViDEXz4oQkmxrLDXqWKNH68e1pg0XG/P3ywTzLdNL2sWlXwAyHEh/ffN6OiBvIKxO/c6c6StAJlgdmL1gF0z572tGrVwrfj0Uft2+EG0iio3buDpwUe0IfrGhUta0RLZ5FvyYy06eyq+vDD9m2rO7nPZ37bYgmOA7GItmtfqMCPV+D72GPtk14lJdyJrWgF/nffeafZnq2aqqtXSyedVLTPAUkExwAAQEE8/njRrOe00yLP4zUy44gR5vrf/5YmT3Y/Fjga27HHmsLTPp8768p5O9rug045OWa5ESOkkSO9H9+xwx1IvOEG+7bPZ7KpvAroOjPkrHn/85/QbTnxxOAumeH07y/99JN72ogRdhbaoUPB9d6kggW4Lr3UDCTg5Y47Yl8fyicrkBVYQD6UrVvt29b368AB90Ff+/YmuLZrlx1ke+656Ns0dmz4x+vWDa7nFUmNGvbtk0821zfeaE/z+wtW0NvLJ5+4M2sk7y7UVnDO+bzt25tu3EBxiHZExVD1w6IZ7OZIcf7m1KxZ+PU5Twj4/cEDFbRpY04IWL8focyeba7//nfvx3/5xew3sJ3nIzgGAACKzrx5oYcuf++94Gnhuv5ZvLr8Va8eev6BA+3b1k7r6NGRn6cgvA6Md+40dUESE831eecFt8eSlGQOVgMDZF7BusqVzfWTTwY/ZgUUhg2Lrt1Vq0rNmgVPHzHCBPQiFQYOx8qMufpqU0PlnXdCZ5Q9+WTRnGlH2RAqSCrZmSCRagVanNmeVtbkTz9JP/xgT//pJ5NlYXUxtIQbKMOpYsXwtfSqVTO1hxITzUiwltNPN93GrBHkvPz0k+kqbmnZ0gSli9Lf/hb8m+Pctq1Rea3fzNtuC14HGSY40iJld0rBJ8VKkjOLtSiyLaP9HbAG7wh09dUmo97KGg01QECzZub38ZRTzO+Vs/ZinCI4BgAACiYwq2L/ftP17557vOfv3j269W7e7L5vjc7oFG40KGdxWos1qmO40euiceiQeZ0rVgQ/5vebx2vVsoMAt93mru9jueYa9/1KlUw3E+s99epumphorq1ROJ9+OniewILfsapSJfjM9wcfxLaOGjVMwOC114LrOzkDF1a2ysiRobu+onyxikl7sbZNZ0aYFF19w/nzzbVXt0yvWnehRsAMVKmSvf2OGCFdeKH78TZt7OBRv37SFVfYba5QwdQqdE6zNG9uDkytAtySCY4VJigdLau+oSTVqWOunTXbgKL04YfSu+/GtsxVVxVPW4qLMzjmlQkeK2s06YKMHDtypKmVWrWq/Ztz2WWRl9uxw+x3xHltUIJjAADAOPXU2OYPDIJZ3fC8UvRvvjny+qZMMTtoDRtGnjdw+PZIXbGsItMzZphLpNpZoVx+uXmdXvXCdu50jyRp+eUX9/1du6SpU4PnS0kxXTD37jXdKgML/lvdo/71L3O9YoXZ+bWyZorLRRe5D+yfeMJcN2hgrr1qKAV22bRYgbZly9xdTMMFO1G2XXaZ+T4EHjTu3Om+bwXH7rwzuFtRJFZmmNcomF5ZGAlhDoFeecW+bQWrJkwwWa6zZ5v2XH21CQLPnOluX9Om5rpVK3vaG28Ev4Yffwx+3nD1DYtS4Ki8UuTgWI8e5rdv9GiTCfr770U3KAvKtxdfNOUPwrnuOvf9slaf0pld2bp14ddnbVvO35FQnNvu559LQ4fa9xs2NKULrNGww/H5zH5UWXvvixjBMQAAyrsFC0z2ldfBjM9nDlz//NMUTY+VzxccxPHqEhhuiHYruDJkSHQHXJ06uXcId+2KPiNs0CBp2jT7APj222OrtxHuDHjt2t51vypVcmeahRtGPSHBDjJa3SgtFSqY9/q448z9668310WxMx6LFi3MtfV9sbq4vvFG5GXvuMN8Z6xi4SidYs0WDGfOHHOQN2uWe3pgQW7ntv/hh97TIwms1Se5g2MtW5pr50ixgQYMCB7V8bbbzPZobZuvvuoO7lkHx1bNvlBFwZcu9Z4eGEAvToE1yKTwwULJdIl/7TXp4otNZt9DD5lBDnr1ktLTzSi1v/5KwAzGvHn2f6zfH7prrnVSJPBkV+B/X2lnBdHT0rwzxYvT4cMm28vvl84+232iqXZtUx+2YkWpY0d7upXN6nQkf4NKMYJjAACUd126SBs2SF9+6f148+Z295qC2LVL+vnn8PNYo6998410wgnux5wHmdGMNDVvnrlev94cqB1zTPTdpCQTYLKK9j/5pD0CVCReO/jp6ZELfKelmay8oug6aB005OW5R7R7553CrztaTZuane7AA+FwQT+UDb//bq4vvrhw69mwwX3/0KHgA2DnKInWPJbdu6XFi03R7WgL9IfiHKAjJcVch6qtE9j1O5ruhmefLd17r7lt/UZkZoaeN5Dfb2ecHQnRDILipUoVU0vt+utNl+j33jNBsSuvNNmuzzwjXXKJCZoNH25OQnz/fekqnI6is317cH0tq3zBm2/a/4sZGaGDptb2Fjiiaqjtp7SqV8906V62rGSeP7BgvxfrJFZenvc+j3N/4vbbi6JVZRLBMQAA4sWhQ6Y70P790n33RZ7fubMUTufO3l3rvLRuber0XHCBPc05QppXvTCnevXsA9bGjc19Kbbg3vz53jXDjjnGHJAPGRL9uipWdHdjkKRt28zBt3XA26KFOWiOprtotAIDdT16eI/qWRyaNTMHRs4DnoMHvUfBQ+kU6ruSlmbfLkwh9iZNzPLhgtaBXYudvyEffWTqdTlr1BWU80BvyhT3Y1bXYMmM6OYcNMTrN8LLKacE/56Gen8rVDAnK0qSFWAP1fXZEk0maKVK5jd90CBTA/Hdd02Q4PrrzW/j1KmmW2337tJNN5kahKtWBWcblyd+f9nPoDtwwPyPhfPnnybr2jliYqVK5nvw0Uemi3Nurskkt2oCOl17rd3dL7BbvddgMbHauLHw64jFJZe4f08Koygzdy1WPVKfzwSvwwX+J0wo+ucvI45A1UcAAFAqVK1qusYcc4w0cWL4kSI//tjU8cnOjjxy1A8/hD+IDSySXbWqqfn1+OOmyPVPP0Uf3ApVsDo1NbrlLYFdvH77zWTNnHuuGV0y0khY775rMiSsWinnnCPdeKN06aV2t6VffgnfpaQo+XxHPnPLeQBYuXLoIexvuUVau1ZatMj78cWLTZePSy4xn2+NGmZd1sXrflnrdlOa7N5t3sdoDuBzcwtXrD2ajAaLc1RIq0uW88DbS6dO4UeElNwjUwZmaA0bJtWvb04aBCpohpUUejRdn8/OfC0pvXqZ9zUwAPHEE6Z7ZWDWiNfgIOEkJJhs5ObN3YMRbNxogimzZ5tumTk55r1v184EGFu3Lh/1jp5+2ryHc+dK3bpFnv+jj0xQ2uqufqTl5QV3q33pJemBB8KfcLFqCK5d657uHDH5/ffNtZVR5rRli/07Hvj81u/Giy+aeqUFKXJflutYXnBB5OB1rBo3tovtV6pkPhOfz+z7WKUaQHAMAIBybe5c+/bw4eZ64sTIy02bZq6Tk01XAesMb+BIkpZJk4Kn+f1m5zowaPPss+ag21rm3HNDH6hv2uTeyS2uUdWaNLFHxYwUzLriCrtmkZVp41XkOpp1lWWBB7Jt2ti3u3Y1Xa9q1LCDqxs2mAPA/fulRo1Mt1jr/bE+/0OHzHdm1y7T3da6/PKLubYeCzxYOuqo8AG1mjVNl7ry/HlEa+9ec719uwlKZ2SY7sHWNt+jhz1verr02GNHpl3O4Fi0Yg0IB/5+nHuuGVzj6qsLP5KtU2G7pRanTp28A17W/8Ptt5tsL2ub9KrjFiufzxycN27sHjlv61YTMFu40HRx37fPbLtWwKxt29CBxtLqzjvN9TvvRBcc697d/B9a7/e2bebE0eOPF18bLXl5Zpv44QdzIuyMM0w7br3VPslz2mnmscDuzc7f4N27pZUrg9cfbuCbDz5wl1Fo3Njujm2VXrjuOpPNGapsQFEHkEqLihWLJnsuUODJirw8s21aJ/HuuMMecCdOERwDAKA8c2ZEhCoG7cU64yuZOjnWjrtXIVcpdD2zGjWCp1nBEmc3qsCzzxZrZ27kSGncOLu2T0lKSYmcTRcPkpNDBzWdBdUt1pnrP/6Q6tb1Xq5SJfNYqMe9+P1mvc5g2s6dJvi2cqUdaMvMdLc3IcEEV0IF06zpsWQ/lRYHDphuT5UqmQPNrCz7MeugtkMHc1D873+bjNKxY81057a/fXvszx3q4KpqVRMAcY5SKpnC/EcfbQftotG6tfTtt1JiYnTzP/hg8LTXX5fOPNO+X1TBsZLODCsK4QZQKUr165uLM5i4a5cJmK1YYTKHMjPN96NtWxMwa9eucDUyi5uVJTVpknT//eb1hRNYk+2xx0wXuGiDYwcPmsEQmjaNbnvIyzMnIRIT7ZNdJ51kP24FqRMSwp9MGDXKvu31Py95jxT74IMmK00ytSutNp9wgh0cO/98e/5wGa7WCS0UjPPztd5ngmMAAKDcirYWWKDAEZd++cV0gbAypG64QTr+eNMtUjJnOp07wl4jVgZy7tgGdp/629/Mc1ndKK2Mj8Ah351i7cL4v/+Ff3zOHHMQHtjlwAoYvPlm9M8FWyyBr2j4fCZz7KijYutKk5trAjOBQbWMDPf9wLpZVaqED6bVrGmCbsWV5RjOpk2m+6rfLw0ebLJYsrPtgGRmpl3v6ccfzbUVFPN675xBtWhZvwlO/fpJ06eb287g2G+/mS7JjzwS3W+G5dprzQiS0b7HXr+DZ5zhvl9U3ZJLuqZYYf32m+mm7vOZoMuRVqOGqWPZubM9LTvbDOayapWphfbnnyao0rq1HTBr2LDkM0MDA6xffmm6sUbjo49Mxm2sow9PmWK69J9xRuiTVE7//a/JHv/mG+9t3hqRNdy2/9NP3idAAgUOzCHZgTHJbPvWgBlvvOHumj9mTOT1hyqzgMJxfkZxhm8UAACwWTWGGjRw1+r517/sg1vJZJv89pt9IBx4hjiandbrrzc79V4++cRcWzvO0Y54NmyYXUz299/DF8EPd5a9c2dTUywhwR10GzPGzqro0ye6NsWTypXNwVdZUKGCHdSKxf79wd0+t2yR1qyx7+/e7T5Q9vlMpl24gFrNmibAV5gD/EaNzPV//mOun3zSXN9wg/m+XnWVydaI1uzZsT3/Cy94T3f+djg1bWqy22LpUlm1qv3eFqSuUPv25nclMOh95ZWxr6s8cp60KC21iKpVMydMnIPEHDhgtrlVq0z5gIwM87/TooXdLfO444LrWRWnwEzLWrWiX3bRIhMcs7rqX3CBOQETKivLYv2HRptN9/vvJusyVvXqSZ9/bt7T5s2jW8Y5AEao3zVrIJfA15meHnq927eHzjZH4fzwgznxGacIjgEAAFMv6ptvzMGF3x88JLnXwe1xx5kz1c6uSZZoin2H2ll2dmOzMkO2bo28vkDO7izNm7trpvz2mx1I8LJggff0cDvsMAHVSAdzZV1SkgkexzIyWV6eycRwBtR27ZK+/949LbBrYaVKoQckuOkm6Z57zCiLPp93EMAKKs+ZY48E++efBXnV3pYtM92uJXNwH9hlMhrRBgOtIPXOnXa9wmgP4pyDj9x0k3kPvboUoeyoUkU6/XRzsRw6ZA7uV60ytS2tzLdmzUyw7JRTzH9BcWUcBXah9KqneeCAnZntzM4aN85k7FiZnQsXRh444/PP7dtWXdBwxo61uxjH+p3/4w8TzI5luaIYMTKwzukJJ5gAv7PrJYrOiSeWdAtKVJH/MjRu3FgbPTaEoUOH6rnnnguavnjxYp3v8eX+4YcfdGKcfzgAABSZrl1Ntw0vr75qsqGskaMiHaw6izkHdk26/36z892qVcHaefCgu6uUdcD/8svmEgtr2Z073QfDBTkQXr48+LUiWFF3mSwvEhJMYfHq1YNHTAwnJ8edpWbd/sc/zOP//Kf03HMmk8IZQB45Mrr1r18ffVt275YGDjQjtVratzfZZZs3m1HlvFiFvZ2mTpUGDTK3c3Ji2yarVLG3ZWdgJBxnwL1//+ifC2VLpUqmW2Lr1vb3Ky9P+vlnU8fs5ZdNd+LcXHNyxAqYtWwZff26wkpKMv/FF15o6lc6bd1qMkyjdc459u1osqvvuce+bf0/Xn65CTZHm1HqHI2yMJ5/Prr5Vq2ybxPERjEr8uDYihUrlOvYONeuXasuXbqoT4SuB+vWrVOy48egdiwp3wAAwNu8eaaWz913mwPKo482O8NWoCk93XS1iqUr1yuvuO/fe6+dmTFkiAmOWaNgxaJCBTtAZ0lM9B4FK5TADLOlS4smk+n006Pv2gkUlcqVTXemevXc063gmGQyPgPt3Bnd+qPpNnf4sMkmCKw/9cMP5to5+mCgyZOlt992T7MOcK3ghXOal0OH7K5XTgkJJqhheewxqXfv4GwyK7MN8SkhwWSLNW9uDyjj95ss11WrTHD3oYdMkLZePbuGWZs2wSPyRmP6dPfANZ06SR9/7J6na1czCEag4cODt5doPfCAOTklmf/jYcPc7bdKFATq3Tu27p9PPx17284/32SWWnbs8O7OvnChu9acU/v2sT8vECOf31+8Idhhw4bpvffe088//yyfx463lTm2e/duVS/EUL1ZWVlKSUlRZmamK8gGAAD+X06OHXzat8/sODt3A6z/6WeflW65xQTUatSQ7rrLFL9u185M9yrUm5cnvfWW6eL16KNmmWhqvaSlmRooknmuaA/qQxk1Sho92twO3MV57TVTo+bRRwv3HEBJGzBAmjbtyDzXTTeZ7DRLjx7Se+9Ft2y4w4xYu1M6r996y9S2e/99M8hA9er2c/3yi+lGd/BgcLAdCGfrVpNhtmqVCTrv3Wv+l6waZu3ame/aZ5+ZrC2/3wSd/vzTrm+2Z48J/jRubK/X6382Wr/9FnpUxsB1+f3mkpBg6rNZI1S/9JKp8WnN41xu1y4zGMV119m1Cp1q1zaZ01u2uDPVJFN7NFTd0MB2SSZgt21b6BqEksk6d9YTs9r6/ffuUTWBKMUSJyrW4FhOTo5SU1M1fPhw3eNM43SwgmONGzfWgQMH1KJFC913332eXS2dDh48qINWn2yZF52WlkZwDACAgpo61RSlPlLdSyRzVt06o9y4cWzdvLysXGl3taILBsqra64JzuAsbWbMkPr2Df14uCCB1Q182TJ3LaWtW+26TuFGp921q/zXvsORsWuXHTD7+msTjJ071zx24YUmO1uyR1i2/nf+9S/p4YfN7cOH7UzqWINjDRqYwQaOPtoMXJGXJ913nzRrlj3irOWPP0xXTaum2W23may1NWvM/V69TKbchRdK8+ebac7/yeOPD84Qffhhkx2+ZYtdZ9E6gfbHH2bQj7w8k7kpmS6t1vNZCvNfXJhyCIBKUXDszTffVP/+/bVp0yalpqZ6zrNu3TotXbpUp556qg4ePKhXX31VkyZN0uLFi3XeeeeFXPeoUaM02joz7EBwDACAMqRiRbu74scfF02RXXamUd7dcEPokSEDffSRqUk2YED061++3NQtc3aFCqdBA3fh7IIOyJGZaYLzeXnuOmFAaRIuwOWVJfbNNyZotHt3wYK2VsZkJO++a7ofhhqBNzvbBNluuUWaODF4nXv3BtcItObZudPufvnpp8FZZJbXXzeF+Js1MyPkXnCBHYgriGOOkf76i/9zFFipCY517dpVlStX1rvOwp1R6Nmzp3w+n955552Q85A5BgBAOeA8yHjmGbPTXlh795oz2tHUUwLKoiFDpClTIs/Xvr3pAibFlrHi95vuT4Gj73kZN07q0sV0O2vd2mRvetUIC+Rsz7JlZtTbWLNqgJIQ6ntat67ZbgLnu/VWU6tr1Srp1FODl/v119gG6gjnzTe9MzZTUkyQSbJPSHnVBZ03z2SW/f67KcXg/B/98kuTSfa//9nZaaFs3SqlpprniqbEAlBMYgmOFds3dePGjVqwYIH+4SwYGqWzzjpLP//8c9h5EhMTlZyc7LoAAIAy5pln7NuhzkTH6qijCIyhfDv33Mjz1KhhB8YsxxxjrvPy3NOt4vpPPGFPcw4CcN11wev3+02Xs7vuMrWY/H6TIRNNYMxa/tZbzfVZZxEYQ9m1ZYu5DuzqbG1nzzxjBr9xBsaaNDGZWMcfL9WpU3RtCdWV2QqMSSYoFmrAnAsvNNcNGwb/j555pslOixQYk0xg3ap/BpQRxfZtnTJliurUqaPu3bvHvOzXX3+t+tGcqQIAAGXbLbeY4eV//dVkngCIbPDg4G5GDz5oRqwbOtTcDxwpvl07U6fowAETiHKOFnniieZ6+HDv7ksvvmiKelusWkpWsK2gCjLyHVDSAoPO9eub7S1wREVnwNc5EMz8+aaMwJ9/Sj//HNyV0VnMPxpPPhnb/AA8FUu3yry8PDVp0kRXXnmlHg0YESo9PV2bN2/WK/8fWZ8wYYIaN26sli1bKicnR9OmTdOjjz6qWbNmqXfv3lE/J6NVAgAAIO541djz+cwocs8/H/2yXnWNevWS3n7bnn7TTWadVu0iIF75fCY4PH26nW3l5YsvpLPPdk/zOvweO9acKJo61dTenD7d1P0L5847zUmlNm2kFi3Cz0vNLsSpWOJEFYujAQsWLNCmTZs0ZMiQoMe2bt2qTZs25d/PycnRiBEjtHnzZiUlJally5Z6//33dfHFFxdH0wAAAIDy4+mngw++H3rInRkWivOAuV+/4MfnzHHff+YZ6ZFHCIwB0Qab9u+Pbr70dBPQrl7d3L/rrsjBsZQU6YorTJ1NAIVWrAX5jyQyxwAAAAAApUZurgl8/fab3a05MTG6Zf/4w137z2vdCQneo0xa3ntPKkCZI6C8KPHMMQAAAAAA4lqFCtJjj0mHD0vvvx99YEwyo196Wb9eSkuzi90H5ro8/bQZRCMpqWBtBuIUmWMAAAAAAJQ2mzZJjRq5px08KFWu7L7vHEGyfBzeA0WCzDEAAAAAAMqyY4+Vxo+XBgyQJk+WatVyB8Ykk4323Xcmk+yEE0qmnUA5QOYYAAAAAAAAypVY4kQJR6hNAAAAAAAAQKlTbrpVWglwWVlZJdwSAAAAAAAAlCQrPhRNh8lyExzLzs6WJKWlpZVwSwAAAAAAAFAaZGdnKyUlJew85abmWF5enrZs2aJq1arJ5/OVdHOKRFZWltLS0pSRkUEdtTjC5w6+A/GJzx18B+IXnz34DsQnPnfwHShefr9f2dnZSk1NVUJC+Kpi5SZzLCEhQQ0bNizpZhSL5ORkNpQ4xOcOvgPxic8dfAfiF589+A7EJz538B0oPpEyxiwU5AcAAAAAAEDcIjgGAAAAAACAuEVwrBRLTEzUAw88oMTExJJuCo4gPnfwHYhPfO7gOxC/+OzBdyA+8bmD70DpUW4K8gMAAAAAAACxInMMAAAAAAAAcYvgGAAAAAAAAOIWwTEAAAAAAADELYJjAAAAAAAAiFsExwAAAAAAABC3CI4BAAAAAAAgbhEcAwAAAAAAQNwiOAYAAAAAAIC4RXAMAAAAAAAAcYvgGAAAQBzasmWLRo0apdWrV5d0UwAAAEoUwTEAAIA4tGXLFo0ePZrgGAAAiHsExwAAAEqI3+/X/v37S7oZAAAAcY3gGAAAiHujRo2Sz+fTt99+qz59+iglJUU1atTQ8OHDdfjwYa1bt04XXXSRqlWrpsaNG+uxxx5zLZ+VlaURI0aoSZMmqly5sho0aKBhw4Zp7969rvl8Pp9uvvlmTZo0SSeddJISExP18ssvS5I+/fRTnX322apSpYoaNGigf/3rX/rPf/4jn8+nDRs2uNYzY8YMnX322TrqqKN09NFHq2vXrvr666+jfr2LFy/W6aefLkkaPHiwfD6ffD6fRo0alT/PypUrdckll6hGjRqqUqWK2rVrpzfffNO1nqlTp8rn8+njjz/Wddddp5o1ayo5OVkDBw7U3r17tW3bNvXt21fVq1dX/fr1NWLECB06dCh/+Q0bNsjn8+mxxx7TI488omOPPVZVqlTRaaedpoULF0b9egAAAAqD4BgAAMD/69u3r9q0aaNZs2bpuuuu01NPPaXbb79dvXr1Uvfu3TV79mx16tRJI0eO1FtvvSVJ2rdvnzp06KCXX35Zt956qz744AONHDlSU6dO1SWXXCK/3+96jjlz5ujf//637r//fn300Uc699xz9e2336pLly7at2+fXn75ZU2aNEmrVq3SI488EtTGMWPG6Morr1SLFi305ptv6tVXX1V2drbOPfdcff/991G9zlNOOUVTpkyRJN13331atmyZli1bpn/84x+SpEWLFumcc87RX3/9pUmTJuntt99W27Zt1a9fP02dOjVoff/4xz+UkpKi6dOn67777tPrr7+u6667Tt27d1ebNm00c+ZMXXPNNXriiSf07LPPBi0/ceJEffjhh5owYYKmTZumhIQEdevWTcuWLYvq9QAAABSKHwAAIM498MADfkn+J554wjW9bdu2fkn+t956K3/aoUOH/LVr1/b37t3b7/f7/WPHjvUnJCT4V6xY4Vp25syZfkn+uXPn5k+T5E9JSfHv2rXLNW+fPn38Rx11lP/PP//Mn5abm+tv0aKFX5J//fr1fr/f79+0aZO/YsWK/ltuucW1fHZ2tr9evXr+vn37Rv2aV6xY4ZfknzJlStBjJ554or9du3b+Q4cOuab36NHDX79+fX9ubq7f7/f7p0yZ4pcU1J5evXr5JfmffPJJ1/S2bdv6TznllPz769ev90vyp6am+vfv358/PSsry1+jRg3/BRdcEPXrAQAAKCgyxwAAAP5fjx49XPdPOukk+Xw+devWLX9axYoVdfzxx2vjxo2SpPfee0+tWrVS27Ztdfjw4fxL165d5fP5tHjxYtc6O3XqpGOOOcY1bcmSJerUqZNq1aqVPy0hIUF9+/Z1zffRRx/p8OHDGjhwoOu5qlSpog4dOgQ9V0H88ssv+vHHH3XVVVdJkut5Lr74Ym3dulXr1q1zLeP1vklS9+7dg6Zb75tT7969VaVKlfz71apVU8+ePbV06VLl5uYW+jUBAACEU7GkGwAAAFBa1KhRw3W/cuXKqlq1qitwY03PysqSJP3xxx/65ZdfVKlSJc917tixw3W/fv36QfPs3LlTdevWDZoeOO2PP/6QpPx6YYESEgp/3tN6jhEjRmjEiBGe8wS+Jq/3LdT0AwcOBK2vXr16ntNycnK0Z88epaSkRP8CAAAAYkRwDAAAoBBq1aqlpKQkTZ48OeTjTj6fL2iemjVr5gelnLZt2+a5rpkzZ6pRo0YFbXJY1nOkp6erd+/envM0b968SJ8z8HVa0ypXrqyjjz66SJ8LAAAgEMExAACAQujRo4fGjBmjmjVrqkmTJgVaR4cOHTR37lzt2LEjPziVl5en//3vf675unbtqooVK+rXX3/V5ZdfXqh2JyYmSpL279/vmt68eXM1a9ZM33zzjcaMGVOo54jWW2+9pfHjx+dn6GVnZ+vdd9/VueeeqwoVKhyRNgAAgPhFcAwAAKAQhg0bplmzZum8887T7bffrtatWysvL0+bNm3SvHnzdMcdd+jMM88Mu457771X7777rjp37qx7771XSUlJmjRpkvbu3SvJ7i7ZuHFjPfjgg7r33nv122+/6aKLLtIxxxyjP/74Q8uXL9dRRx2l0aNHR9Xupk2bKikpSa+99ppOOukkHX300UpNTVVqaqpeeOEFdevWTV27dtWgQYPUoEED7dq1Sz/88INWrVoVFLQrrAoVKqhLly4aPny48vLyNG7cOGVlZUX9WgAAAAqDgvwAAACFcNRRR+mTTz7RoEGD9OKLL6p79+7q27evnnnmGTVs2FCNGzeOuI42bdpo/vz5SkpK0sCBA/XPf/5TLVu21NChQyXJVXMrPT1dM2fO1E8//aRrrrlGXbt21V133aWNGzfqvPPOi7rdVatW1eTJk7Vz505deOGFOv300/Xiiy9Kks4//3wtX75c1atX17Bhw3TBBRfoxhtv1IIFC3TBBRfE9gZF4eabb1aXLl106623qn///jp8+LDef/99nXPOOUX+XAAAAIF8fr/fX9KNAAAAQLALL7xQGzZs0E8//VTSTSkWGzZsUJMmTTR+/PiQxf8BAACKG90qAQAASoHhw4erXbt2SktL065du/Taa69p/vz5+u9//1vSTQMAACjXCI4BAACUArm5ubr//vu1bds2+Xw+tWjRQq+++qquvvrqmNbj9/uVm5sbdp4KFSp4jpoJAAAQj+hWCQAAUI4sXrxY559/fth5pkyZokGDBh2ZBgEAAJRyBMcAAADKkezsbK1bty7sPE2aNFHNmjWPUIsAAABKN4JjAAAAAAAAiFsJJd0AAAAAAAAAoKSUm4L8eXl52rJli6pVq0aBWQAAAAAAgDjm9/uVnZ2t1NRUJSSEzw0rN8GxLVu2KC0traSbAQAAAAAAgFIiIyNDDRs2DDtPuQmOVatWTZJ50cnJySXcGgAAAAAAAJSUrKwspaWl5ceLwik3wTGrK2VycjLBMQAAAAAA4llurrRzp1SnTkm3BCUsmtJbFOQHAAAAAADly+uvS3XrlnQrUEYQHAMAAAAAAOXLwIEl3QKUIQTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAADlV1aWNGKEtH59SbcEpRTBMQAAAAAAUD7NmWMuTzwh3Xyzmdanj+TzSWvXuuf98EPphRekO+80jyNu+Px+v7+kG1EUsrKylJKSoszMTCUnJ5d0cwAAAAAAQElxBrcuuUR65x1z2+93P+YMiQQGxH76SapRQ6pZs/jaiWITS5yIzDEAAAAAAFC+XHSRfdsKjEnSwoXRr+OEE6RatYquTSi1CI4BAAAAAIDypXJl7+kXXBA8bcUK6YorQq/L55O2bSuadqFUIjgGAAAAAADKl0gVpK691r79/vvSjBnh51+1qvBtQqlFcAwAAAAAAJQfGRkmOHbnnaHn+c9/TC2yDRuk0aMjr3PIEPf9efMK1USULgTHAAAAAABA+XHssWYkyrS0yPP+9Vd06/zjD+m44+z7XbsWqGkonQiOAUBR+vPP6P9gAQAAABSNPXvc9zMypNxc97TbbzfXL71kT6tUKfrnWL++YG1DqUdwDACK0pVXSrfdVtKtAAAAAMq/Awekt982t6tVcz+WmxucOebzmeukJPd8Tn/8Efl5I9UzQ5lDcAwAitLChdIrr5R0KwAAAIDy79tvpV69pJtu8n788sulhx+277dta66dwbE2bezbvXtLycnhnzMnR7rjDnP74MFYW4xSiuAYAAAAAAAoeypUMNfPP2+uv/02eB5nZtiAAeb6/PO91zdrllS5cvjnTEyUnnrK3D7hhOjbilKN4BgAAAAAACg7duyQFi0K7t546qnB8+blue/v2iUdc4y5/c47wfMnxBAm2bQpeFpiYvTLo9QgOAYgfrz3nvTZZ8X7HI0bF+/6AQAAgHjXrp3UqVPw9MOHg6cFBseswFhxOHzYdLvcv7/4ngPFguAYgPiwc6epNzB5ctGu9/Bhad8++/4pp5hrn88U5r/xRvuxLl2CC34CAAAAiM22beb69NODH8vJcd+vWTO6dY4b5z09sNB/KLm5Uo8e5vZdd0W3DEoNgmMA4kOtWibtOlKadIsW3tPbtfOe/sQT7rNWrVvbt595Rpo0ydz+/XdpwQKpYkVp9+7o2w0AAADAzStDzBLYrfGWWyKv75prggNazZt7ry+U6dOljz4ytydOdJ8kR6lHcAxA+bZ/v3Tzzeb24cP28M2h/PCD9/TVq72n795tah5YUlLcj199tbneutWeVqNG+DYAAAAAKJyBA811LDXEnM44w4yE2bJldPNPmOC+/+67BXtelAiCYwDKt++/l557ztw+eLBgf46hMr0mTjTZaM7HA2saVKpkrq+4wj3d55OWLTO3N2821y+8YEbO+e9/3cVFfT5p7drY2w0AAADEq//+N/p569QJntapkzR7trR4ceTl9++XVq50T9u82Rx/hFK/vtSgQfRtRLGK+Shx6dKl6tmzp1JTU+Xz+TRnzhzX436/X6NGjVJqaqqSkpLUsWNHfffddxHXO2vWLLVo0UKJiYlq0aKFZs+eHWvTACDYUUfZt7/7LnLmmJfATK/XXzfBq1tuMd0qd+2yH7vjDve81vDSXrUK2rc37WnYUHrgAemGG8yf7z/+YYJ4hw5J69ebeU8+OXg0noLIy5NGjw6enp1d+HUDAFBcvv9e6tmzpFsBoDRyljVxqlgx+nWMHRv+8X/+M/zj99/vPf3QIff9nTtNEM3nM3XTtmyRXn01+nai2MQcHNu7d6/atGmjiRMnej7+2GOP6cknn9TEiRO1YsUK1atXT126dFF2mAOvZcuWqV+/fhowYIC++eYbDRgwQH379tWXX34Za/MQDb8/9EF2uL7bQFmUlOS+Hy5zLNrA2VVXSUuXmtuRCuxbwbHzz5d+/tkEpzp0CJ7vwQeDpz30kHTccfb9zMzQz7N9u3mtfr8pQjp9upmelWWmPfeceX0VKkijRpnbPp+Unm7OqiUnB/95AwBQWvz2mxl1GgACWbXBCsPaZ3dyHhtYvUG8jB4tvfKK92PPPmuurePvWrWCBxEYOFDauzf6tqJYxBwc69atmx5++GH17t076DG/368JEybo3nvvVe/evdWqVSu9/PLL2rdvn15//fWQ65wwYYK6dOmi9PR0nXjiiUpPT1fnzp01IbDPLgqvf38THEhIMIEwv98+SPb57I3e53OPwAeUVYEBr1ABsGgDw1OmmOuOHd3TTz3Ve/4XXjDXBw5IVaqY51+4MLrneugh9/0lS4Ln+fNP6Y03pLp1zXMkJJiioVdeKfXrZ2qgJSTYddcCPfqoyVSTTGYdI+sAAEojRnsGyp8DB6Q9ewq/nsL8Pixf7j39l1+kvn3t++FOsM+YYU5UW5wn59euNb1OIpV2Ofpo04UTJaZIa46tX79e27Zt04UXXpg/LTExUR06dNDnn38ecrlly5a5lpGkrl27hl3m4MGDysrKcl0QhTfesG9XquS9kd59t7m++ebgftNAWROYJRkqOGZlWgXatMl9f8gQ7/lWrTLBJS+tW9vBMck+M/Xcc9Ipp3gv45Wd26tX8LSXXzZBb0l66in3Y2++6b5/9dWm7sEPP0gvvRS8rnbtpPHj3dP8fg5IUPp89pk0eXJJtwLAkcR/EVD+jBwp/f3v0c8/apQ7CGX59deCtyHUSPVNm7qDXF6ZZZYffpAaN7bvV69u3379ddPrRPI+0e0U6mQ2jogiDY5t27ZNklS3bl3X9Lp16+Y/Fmq5WJcZO3asUlJS8i9paWmFaHmcuOUW6c47g6f3728i45Zx48z1lCnSOeccmbYBxeXKK933QwXHQhXLbNQo+uey6o2ddZZ7+po10tSpdnBMMkGnoUOlr76yA3h+v9kWP/rIZIJ5+fpr+3a7du5t+rbbpHnzzO0aNaR//csObmVlmXoGlStLJ55ossWysqTTTgv/mhISYqvXABwJs2ZJjz9e0q0AcCQVJjgWTTFtAEfe5s3Bg1mFM3q0KVMSKFzR+0gqV45uvkiZX87yJIGj11sCe54EKkhtZBSZYhmt0hfwofr9/qBphV0mPT1dmZmZ+ZeMjIyCN7g8uuQS+7bVdXLixOAfjqefll57zUTGveTkRI5wBwo1sh9QEOnp5nv688+xFaS3fj+sESEtzj+2Q4dMAGn/fmnr1sK31Vr3J594P56YGHpZq4hn06bShRdKvXtLO3bYj1tZYR9/bA4QFi2SVq92r8Pns4NdGzbYhfcTErwHBKhWjexQlE05OeFrfwAof2I5gA50/vnmJBWA0iU31/1/PneuGezK6f333fe9jgf274/8XIMHe08PlxHmlJAgNWvmnrZqlX3bGn1ekn78Mbp1BnbpjBSAQ7Eq0ne/Xr16khSU8bV9+/agzLDA5WJdJjExUcnJya5LueP3m25aVs2iUA4fDq6X9O67dnDA+QPzzDMm7XTjRrP+W2+1H5s713v9q1dLf/ubXYA8lClTzHPWqOGuY3bHHdH9YAFePv3UZFedcEJwF8eCcAbd9+6VHn7YFMP/978jLxspOGcF6UNlWoXLwAocQTIhQapZ07Rv+XK75sGIEWZkm06d7HkXLrRHmzzmGNPOatUKfvYpVP01uq+jtDh0yOxQM4gMED8K260y1IExgJKzZ4/7GPTDD80+8aef2gHxHj2kyy6zTwp77Y97FbOvU8d9f/Jk72UTEkwN30gqVAgO0oc78R2N00+XTjrJvk/CT4kq0uBYkyZNVK9ePc2fPz9/Wk5OjpYsWaL27duHXO7ss892LSNJ8+bNC7tMXJg/X2rVSrrhhvDzXX21CXJZwSjnAazPF9yVsnp16dhjg9fTrZv3+ocNM/VdXnstfDtC1WJ68kmpatXwywKWTz5xB3V8PvuPrChSjZ1nZKzbBw+6d7qdQWOnSH+cGzaEf7wg7b/3XvPH+f8nHyRJDRua6zFjzHWnTqaIZ1EJdXY9JUW67rqiex6goPbsMSePInVPKIgj1aWha1fzXF7dQ0ra4cPBI/0CJa201xz74ANzAnrJEpMBfqQsXy5t2WLff+89ad26I/f8QGEsWOC+/8IL5oTvueeaciCWOXPMiLWheAXHYqlDVqtW5HmOP96UNHEKdYwbrrD+iSea6/PPN9fUUC01Yg6O7dmzR6tXr9bq/4/crl+/XqtXr9amTZvk8/k0bNgwjRkzRrNnz9batWs1aNAgVa1aVf2tgtGSBg4cqPT09Pz7t912m+bNm6dx48bpxx9/1Lhx47RgwQINGzas0C+wTOvaNfI8hw6Z0TGcWS/O+mGBpkwxmV2h/P576I35xRcjtycc+lAjGoE7lF98If3xh7kd7XfIms9rfuc06+xPxYru7MZPP/Ve74EDdkFNL+FG2yns9uOVZp2eHnqEnVjdcot9Oycn+PHMTHP9n/8UzfMBhWGNgL1+fcm2oyAOHDDXVn3AE04oubZI5nerdWv3715urmlnLDUXgeJWmG6VljCDfQXZu9e9z5CZaU5AWyVKNm82J6Ctk9MXXyw9/7wJ2gec9C+wRx8169671wTAMjKkyy93z9Ozp9Sggfu+dfANlDXOfdCHH45+uX/+7JFISAAAO+dJREFUM3haUZ44lky93v/9zz0tVImH1FTpmmvc0554wvSC+eILM8q9tR+AUiPm4NjKlSvVrl07tfv/qOnw4cPVrl073f//9XLuuusuDRs2TEOHDtVpp52mzZs3a968earmqHezadMmbXXU92nfvr2mT5+uKVOmqHXr1po6dapmzJihM888s7Cvr/ywdqYDeRUQPPVU9/3MTPNHPn261L17+Odp0MB7RLyiEkvNKMSnwO/6oUP2TmZRBFh37rR3bK0d7f373RmXzqL3Ts8/b87IFkRRZ1z17GmuTz+9cOt55x1TP+Fvf7On3XSTea+ff96e5hx1Z8MG857Vr+8+qwccabt22bd9vtLfzXL0aJORtXZt7Ms+/rg5gRWL7dtNGYVw0tPNoCHnnivt22cOTKzf3KLoyg4Eys52b7vR8socy82NrXSH10jNoVjf/2++Mdts9eomg3rsWDP944+DBwYJPHAujIceMtunZA7yGzQwPT/eesv83j30kHnMGrnPCtJZ2OdGWReY8OH8TjuPF1JTTeCqJISqV1a/vtSypXvasGFSWpr5HVm5MnS5lUsvLXy77r/fJMUgNv5yIjMz0y/Jn5mZWdJNKTrmJ8Bcpk+PPI/X5eSTC//czsvGjebaqUMH72W++cbvf+214OlXX+335+YWrF0oPyS/PyvLe7rzO+b87vz+e/TrDnfp3dvM9+efoefx+/3+zMzI6wq1rNe0wvrtN3t9Xu9dYbz7bmyv8dRTzXWTJkXbDpRPhw75/Zs3u6ft2+f3b9tWsPVZ38OzzjL3MzLM/d27C9XM/HUXtRNP9PuXLHFvQ+3ahf99CHwtgfPu3Bn5eYcM8d5+R470+y+6KPbfNaAoXHedve8YrS+/tL+LQ4bY0ydONNtSJNayV14Z/XMuXGgv16+fe3u45x6/v3r14ttmfv+9YPsfzsvixfb6vvrK7//rr8K1CSgOTZva++YHD4bfp/7b38z10qV+f3a2PX3tWr9/3boj97+1dav9HHl53ttfTo7f/8EH5vbkyeHXt3178PLffuv3T5ni9//xh5nn4EHvbfjmm831jBl+/7332tOt9fz0U9z/j8cSJ2I4hNLs6aft28uXm3pHn3ziHgnD4jVc7OzZoTNgIrFqGgUK7GKxfbuprfDGG+7pf/+76aZx5ZX2mS3LtGlFkxqPss/qqmdxDoF8+LAZYdWpqLrmvvWWee5I38Nx4wr+HBs2mJqBRalJE/P3dviw9+iTheH3xzb/V1+Za7pLIxpz57q7/Uimi3K9eoXLtLAK4aalmetQWdax2rEj9m0inB9/tEectYT7f96/3wyu4eWvv8x1zZqRnzdUHZNx40zR41jccov05psMsIPCO3zYu/t+OM4aWs7vdVaW2S/OypJmzoy8Hud+hmQyz0INNtO5s317xgz3Y59+am+LxcHaD//nP83o1ZLpkpWXJ511lvsYwbJmjfT99/Z9qybjli2mV8kdd0hXXFF8bQYKwuoF9dZbkWv7Wt3//X53mY+WLd2jSDrKORULZ32yUPvBlSpJLVqY2uGRBgOpXTt42tChZjlrgMLERJO9GrhvYh0rffKJ9Mgj5va0afbjJV26oYwhOFaaOYuCP/mkGXHjvPPMH+bYsdI555jHunUzf9DvvONevlev6IemDWR12VqxIvQ8t9wiffutuR34I/Tss+ba5/Pe4IvyoGPpUg7Qyxrr87cOaC3OYFWlSu46WJLpGlxUVq6M/D20Ct4HsgpohtOokdlRbdcueGe8sAq6XYdjdVe58srYlvvtN+m449zTsrPdqdxFFbBA2TNxoqmpYW3bp51mP2bVt3zrrYKvP3CUqOHDpQsuMLfXrJF27y7YemvXNjuaRWnOnNCP9e1r/sesbSWwwK8zkDBqVOQh4v1+e1QvyZzAysszl337gruCRWPiRKlfP9O2v/4y6/L7zee3Y0fs60P8cg60E61Q3zGfz3wXv/lG6tMn8noCA2hPP23+w7780nThWrUquvZEGsG9MH76yVw3bmyKk8+aJS1ebLY/n09atszsH+3f7841adXKPeqdZOa3Tkz8978myOc8cAZK2g8/2Ldj+c8OLBngPBZ0BsqKQ7jR5yWzrUmmG7SzLng4113nHoneWQfU+doSEqTrrzfTrMDZli12kOzwYWnAgOieE0EIjpV2fr80fnzw9HvusYuKWqNZ9uxZdPVWrIBWuOL9Eyd6H9R8/bV76FyvHZp77zXX2dnuHXjJvAafzwQvpPAjk0hShw7m+ttvzTC/hw+brLWPPgq/HEpOqIytSCNRPfFE+Mf9frueWCQXXBC6HV5FPS0VKsQ2YtaqVZH/REuDDh1MgH3q1OhG7HEKLIr+44/u0WuTkuwC6ogfe/aYA7iuXc1vs2QyDhctMtvyUUeZaV6DTUhmG928WXr//dDPUaWK+/4bb0gLF5rbZ5wRe028bdvs29ZAIN99F3vQ2ClcppWVAWplzyUluQNhb79t2uQMAu7fbx8AB2ZtWxIS7BG11q832SJWPaKkJJNBMnSoefyvv2IfMOSYY8xvYUKCKQ7udRIMCKUgwbHhw4OnHT5s9hH9/oKdNGrRwmwLO3dKN95oDqgD6/YWlVher7VdOw+qO3RwZ9/6fMG/f9FyHjhPmmSCipEydoAjITk5+nmtffjAk2TSkdnvdp4ot47FLQVJAnnxxeh/x6z/bKve4Jdf2o8V9Qn5OENwrCxwZpB5caZ9hzrIiNWIEdHN5xUNb9vW3Q6vnXcr4Ne/v3tI3D17pKuvNrdPP938+Tdt6j08b6A2bcyZ+UqVTMbAqlXmDHtRj1SCwnMGpZwZCF26hF/Oeebk11/ts6uWmTOl5s0L1g7L6tXBf7QFLcJflhxzjAmwV64s/etfsS/vzB61gofPPGNPmzTJXH/3ncmEfeABM+oWyq9QXX87dTL/Mdbveqj/rYULTaZ0jx72NL/f3W3IyrC6887g5Q8ciD4LxOLMuujb11z/9lvhslbDneA566zgac5My169TFFfpxdftA9u+/c33c2cv2WBGd+NG3s/d9u25jolpWgGDOFMNaK1f39sJ3O/+cZ7+mefmQL7fr/7YPjvfzf7C717e3fftP6jnBkrzpM8e/YUTcaz329+U5o1M79z0Qx4de21Zt9VCh69uzDWrTPZZ5ZZs8x7dOONZt+pTh0TRH/ySQbaQcn5/wH+IvL77e14woTgx++4o8iaFJIzCSPwuNk5yFUsrN+xY4/1frx3b+/gl3UyTwrOPHe66iqz3ccyMEmcIThWFniNSGmpUsU++16UrIOaUJk10WbnSOZg2Mtff9lBByvCft99wXUdJNMNxGIFRFq2lD74IPTz/v67GRls715z+9lnY2s3io8z8+rVV80O4wMPRB5i3Vlv7847TSDs2GOlV14x03buDD0ym9dZHK/vd82aph6Zc6e5e3d7FJxmzYqnW2NpEqlWw8knB0974w2z7b7yiv353nab/bjVRe3SS81Oy4MP2t1WDx4s2q7WKFt27oxuvh9/NAdvzhMq06dLjtGvgzi7JXh57DF30D2whtAnn9jbu/P7HItwJ3ec25qVselVQzSQ8+D1xBOl44+3759xhn07lsB+qIOSaLfNadPC/ycDltdft+tWRuOqq4Kn7dtnToZKZuRL5/+yNRrs7NnemZtTpwZPc277O3a4t6mCSkgwv1vWiHtvv23/3hw6ZIL3X35p72/8+KNdT23RooKf8H7/fbN/4wyunXCCyT6zahX+/e/By82YYbrBDxxYsOcFYmWNjGx5+eXolhswwN6Hv/56e7pVKzgpqfBti6RSJfv/MbC8Tywn6p0mTTLbX6jagLVq2QG0H36QXnvN3L7xxujWb/XiCNdDJs4RHCvrQp3ZmjWr8Ov+7LPgM9aWUKnc1asHTwv1A+UsNtyokTkIyc72nvemm+yofPPm5kfo+++liy/2nl9yR/TT0kwGXpUqZtnC1LhB4TnPGH/6qfTuu8EDN0Ri/SlmZEjXXGNuR/vnELgOp4oVTYCnRQtz36rtY7X5xRfLfyDH2a3y99/tg45atUwWSqguy1dcYT4L5xkz59mpzEyT8WeZNMnuGlLU9Z1QvJYuLXg9r0DRFoY/6SRTED4wE+T330MHoJzfNy9WF//nnzcHhYHOO88OjDszIS0rVkQuUB+uaLdzWwksQeB8Puv3KBQr68UKTC9dan6nuncPvUzgzryVreIUGEQ4+mi7JqmXiy+2s78DHThgBvABQnnmmehryB51lDsg5rztXIfX//zcueHX3aSJ9+BXRalyZdOF86yzzPadnR1cL6ygLr7YvAfW9uvMKrF+Z6xi/ZL7pKK1r2O9b+V9fwclZ//+gmdHZmTY/3fO7X3YMGnTpkI3LWbONoTK1o7GsceaAKEzKUQypYayskxmp6VChfAnByOh+6UngmNliVXMN9If1W232SPbFEb79nZWmtdBgZc2bYKnRROdzsgwByGhRtb63/8i15uS3Gfcwx0UXX555HWh+DiDY7GO9vTuu+ZP4+23w8/nrM0xaJD3PF6ZhIGZmtbZH+tP+LjjgoO4+/cHD4hRXjRoYP6Q27UzWZvr14cOmntxbv/hfpf+8Q9z0N2nj3TXXSZwNn++6ZJWVLUUUXQ6dDBd34tCQbv0Wd/DM85w1wqTgv8nx44114F1daz/jJtuMrXRvITb+TzjDBPg9/nctTad/vMf9++Rszu4lZ3ilQFudQn1+00Gtt/v3X1EMpnUubn2wfW554Zus6VWLffZbZ/P3bVs1KjgDJLs7Mi/ddaZbKfcXDPqtvOAHAgUqgtyqP1eZ2aVFRzLynIfqFqBoZ49TdBLiq3HRai6foWxYEHwNGdQ+Y477Hq6hWH9RgZ2cX/2WXcXS2cXLut/ukIF8z4WVbkWIJBVWzqSM8/0nu4V+K5cOXiwryMtsP5YQTh/w1aulE45xWzH1m/XoUOmJ0s0meahhOuZFsf4xStLDh927yB41QXy+ULvPBeG1Y2ladPw83n9iR6pkSTz8kyghbNcpVPz5tIXX5iDJGe3yuXLY1vPJZeYrlCBAs/yOg9Avea32hQo1B/NkCGmi1KDBibTZedOs/P4j3+YzCfrDMzHH0d+DWWBs1tp1armQN2Z7VkQ4d6bdetM4POVV0wws0EDExB46inT/aNnT/PZDx1qAuVz5pjagtHUI0TxiJSVFa1oCud6ZXFYGaNScDawc6CXvXvNIDb//rcJYDkzrqPt0hnOsGHm2qug9WefmUCVFZyTgkfR8vtNjaPAHXqvrl/WaHyBGdnffWfex59/jr7O5qWXBpc9aNzYdI/s2dN0dS/s//eOHea1VaxoBuvxEq4+CuKLdbAb7f/oCy/Yt60u1Lm57qyLk04yvwHvvmsH3159NXTZkECRRqdu0EB6+GFz++yzo1uns76qFYyygs7HH29Gky2qfecDB4J/L6zuqJLpbinZ22dRjgoOhHPeedHNF+o4wVmEvqQ5t9eWLQu/Puex7KmnBv8eWPtNzrrjgc44wz7JFmok36efNusuaNmIcojgWFkSmP7YoEHoM9VF6bPP7KLBXl0i7rnHvu1VoN95kB2N1FRz5s+L14gkkjm7HS6ldc2a4GWWLzep5EVRdBWR/fST2XH87jt3JlBB6neNHh08rWFD933nAVe0I6mde67dnsCsso4d7S5KtWqZkVwPH7a7DdapY87sRNqRLiuaNo2+u1s4L71kDo4jsbbfpCTTxaRnTxN0ePZZEwh7911TP+buu837vGOHqZ0wZIiZt0cPEywZPdoc3C9bZkbxIVhevLy6FF52WehC+F7Zms8/H/l5AkdElcL//zlHl7SCRdaol0V10Gl9t5wDBFhmzDDP87e/SbffHt0IsNF0BbHO9Ibrhh4qAzuQz+f9+3vVVYXPhJ082QQorLPdkh1EDAxK7N9/5E6ioeSlp4d+zPpuRMoEtfz3v/ZtK0Psww+Da4967QMGDugTirOuUKtWwY9XqWJOHCUmuveBu3Qxyzn3d6x6X5a8PPOfZjnrLBPgLkqRRvJbt85cW1mnXiUO2D5xpHnVxAvktV2XFGdySGpq4dcXqn5yICsb1unii82JgC+/tNsVaoAA63/5mWfMSYRQZVPiyBEY5xRFxllnpXZtafDgI9M9sH17+3aFCqYrTffu5g83Pd0ckI4ZYw4AvDJxYj0z//TT7hTw22832SOS96hDmZnBQ/+uWeNeR6tW5qyi88dh3jyzA7Ztm33A5veb5erVC77UrWve9/JejD0cv9/szBXmPWjTxtQIspR0yn7btnaWydKl5traEY6lL//f/hZbgeHSrlKl0N3MJPMeOXeYL7jA7irSqpVdEPnyy727sKSkmG03FhUqmO4fxx4bHIT0+01R5l9/NZeFC019OKu+SpUqZieiaVP7kpZ2ZIb7LktycmJLte/SxV30fsECE8wMrJchmW09mnUfOhQcMPPqJugszC9J55xjTuZI9gGfk1U/MNqMkVDWrzev0avrhpUF5iymm5sbXKfzqKO8a1/6/eYk1IgRJsAXOOKWtR4rEJCebgLIzgB0qDPEhbF7t/sgPpJrrzUXL8uXmyBAYEbL1Kmhu8Cj/Hj0Uft24P+ItW0+/rh7sIpoTnI895y59vof9uqaH+1+jPM/4rbbzEFnbq6dkX777Xb72rQxo9y++aZdfqFCBVM6JD3dZKxZr/f5581tZ/f0I5W9MW1a8LRI78c335gTV86sMyAajzxifu9jqS1cr17xtac4OH/HiuI48d13zXWkmqaBjjvOHI9YQTPrty+aE/fZ2dJFF5l9k8sui+15yxGOCsoS5xn37dvNdTRno4vKkiUmOPTZZ+YgZ+dO0w/8hBPC77g89pjUqZO5WKny779vAmzvvGMOqkeMsA+GAs8WPPmk2WEIzAa7+253VxUnZ7eSBx801+ecY+pU7dhhzvTfd5/3snv22EGzP/4wowx9+qm5/+ef7i6BNWt6B9Lq1TMH/+XtbNsNNxRNQXpnkDPwQHXx4uKvS/Puu3ZR6QYNzCiZXkHcsvbnfKTt329+l5xdUU86yQSnDx0ygRDrrPXVV9s75MceawIMRRlo9vnM9lizpnu0Pmdb1683gbO1a81vQUaG2XFISDCZh87A2XHHFc9IwCXpwAHvwVR+/91sBz6f+bxi2b6tYJTF6i7kFVi+5ZbQ68nLM5/DGWeY/wfrbGY4zt+JTp3Mf8iJJ4ae3+oGOmKECcoMHhz5ObxcdFHorJOXXvJ+/1auNCdYrKBWuGzKDh1MoX9JGj7c/Zj1nRw9Who/3vwfZWeb7TDUQDlFoXp1UwfQMnu22Xl+5BEzqEFgkCOcCRNMwWFnkEQynwfBsfLJ5zPZlIGDKG3Z4q7HZ+0PfP21yWKI5TfYOhFiHVQ6OXteHH+82a8Ltw1u3Ggy0K6/3g4GbdnirrfZq5cptXDTTXZgTpL69TPBsYsusqc1bOgeYVbyHkAo1Ah1Rc06hnCK9H88Y4ad+d+ggckKPeUUM3r1kRgZEGXXypXeWeNOU6a4/5PL2nfK+v+rXt27/nZBRfO/Pm+eee82bzZBbGe2aOvW5v33GmU+kHUioHfvuO51QXCsrDj++JIvnGf1Dbf+QOvUia5bpxWtfvppe+O8+GL3hle3rrn2ygyTzGiW1aqZg4ARI8xBQTTGjnWf7b7kksjLHH20eb8jDeOdl2fOpluBtG3bTFci67ZzJLcKFcxrDJWRVlZqrlijoPr90oYN3um8kvmTuOcek3l07rnug6ajjnIHogKDUiecYAIssXbH9TJokP3dkswB2TXXuA+gJ00yf8KB3TIRWZUqwX/c1udmHVBYv1uPPmoHx6JNFy9KVndNr1H/cnNNgMjKOvviC5MdYGU/1azpDpw1bWpOTJSl4He7diZDMjs7uCZVWprJ1ChoVwCfz3SFdx7IenV38KqTadm1y7ynK1Z4Z50FCuzCP3++nRkWyfPPm264Cxea+9Z7Es3nmZcXHBj7+9+lmTPNbeeQ8k4NGpj3JNRvZrR8Pvu/MznZDiKGKjlQXKwDl+uus0f8lExGXa9e4ZedMcNcULpdcknRDjTTr5/UrZt7WuC27twvfPddO1jk1a06FK/AtTM4Zm0rp5zivXzVquYEzj//abZn6z8ucCCas8921xizfj+sGmKdOnmv//ffg/c3hg2LfcTuwqhXL7g7eKTfvzFjzLXfbw7Cv/5a+uADadw4c+KlVi07YNa2bfAgACifsrKCe+9IZp/i559NXUC/P3Qvkb/9zSQgBGaCl7UMRWu/KtTgAcWpSxd3jxynSpVMzTLJnNCaPdvcdvbKsngNphOHCI6VFYGR4LKoZUtzAOMVdLrnHhOxDvdj+O23Juhk1T+LxpAhsbczWgkJdqZKpOKLhw6ZrDNnIO2HH0wWwbZtJqvF2ilMSgqdjVa7dsn+YezaZa4fecQc6L71ljmbetNNwfOOGWMukye7u13t3Rt+lLsaNUy3CCtgeM899k5ZrKZMcd8fONAEx44/3s6iIShWvKwzUQ0aSHfe6Q5sW9lCJa1CBROAb9Qo+IAmsLvmggVmZ2/HDvNYlSomy6y0d9e0ug5/8YXJ1g00YoT3cocPR/dadu6MXCvHqreTm2u6/jm7Fe7ebWdCRzMMujUaVG6uOajz+aILqlmWLbN3GL0K2NerF1z3SPLOrmje3MwbLtO0YUPz+x1N/b1oBXZL/uEHM0DIkXDGGaYbZGDR4LJ2th/BHnvMjBj87rvm/72gQfPbbzfdgp3/sR984J4nsOeBcxves8dkQ7z0UuSsk0i+/da+fc45wQNRWI47LrhrYzRB8yuuCD4oDhzV2uL1OxF4kFrcTjrJ9OSIlJl37bXuum6SeT8aNjQXKwNfMvu4X39tsomfe868/uRkE/Q45RRzHVhzDWXb+vVmm9m/3w4iL1pkAl7ff2/vd7z9tvd+f/XqJmD+6afByRZF+V95JFSv7u5ZVFjnn2/ey6JkJQv4/d4Dbzgz9p0n4uKMz+8vH688KytLKSkpyszMVLJXBBsl6+23zchYsbB2SAr6FfX5TOp4tMXYS4t9++ygWeDlzz/do5ZWrx46kFajRtFntoRan/N9LkhNshNPDM4Us55r5EgzOuHq1d7FcEMJ9b1x/uDH8Y//EWFle1oOHDAZP7ffbk/75huThRjr70NpsW+f3V3TumRkmJ2kChW8u2uWRKaotT2tWmUOVNavNzuw69YFB4esbcLalr22Ea/fgmXLwo/W5lxPv34moHb88SbY+McfZuc4mt+s+vXNQXugffti64bVoIHJgHD+HjRvbjLQXnrJZI5EY/x4E1x0tj0nx5zI+PBDs/O/Z0/566Yrmf+l+vXt93Dx4sINSpKZaX43ylJWZlmUm2sGNBkwIPgx63+xKPbBJPP7Hi7g7Vz/pZfa2Wq1a5t9nltuMXX1Qjn9dLsbcihNmpjfPL/frNN5IH7NNSYrfs8eE7R/8037sUOHCnZC0uczJUGc/3VOVrfkknLbbaYA96FD7pMfgdvdG2/Yg5sU5HuQmWn23VatMpddu0wAvXVrO8usfv3yt71nZprvk7PLcFnz889mu3LW/gu0Zo35LCX3/2j16tJff5n7f/xhgjI+X3AZlWuvNf8XAwYEd81/9tnwpRicyuN+/IoV0oUXunshFdbhw+Y4ysqyj7SfU47e11jiRKXs1DbKrYIc+C5dav+4FlRZ/MOtWtXsyEXqfuP3mz9gZ/BszRqTnbdtm9kJsf5sfD6zoxkqkOaVOeGUlxdcL8OpTh2zI7B5c+QuNV7CPf/hwyag0LKl2YH1GoTi7rvd9Wuirb3D0MXFK/DMeZUqwQcLbdoUbX2GI61qVfPd9MoeDeyuuWyZ3V3T7zeZUke6u6ZVd+vaa832Gm7be/llc710aXRDrs+ZEzwtPd10bw/swtO6tcm+sw4e3ngj9PbYooV7+VCZbLEGHTdvdt8/dMgufnvddZGDY9ZOv3W29emnze+T84DooovK1Q5mkMDX1rRp8DwXXGCC4j/8YLqfvvJK8Dz795uD5htucP9u+Hzm865Rw1ysbG3nxZpe0qUnypIdO0wmtTM45szkdWZwbd5cuIP8aDJBLc7n/fNPcx0uMCaZA/FInN0yA0+YtmplTsK1aBF88F6YTP1wo+2VdLHr9HRp6NDg39IffjDvT2A94xdeKNjzpKSYGoodOtjT9u0zmXyrVpkT51u2mPe5ZUs7YNa4cdncf7c8/LDpVvjoo+a7FUl6ugnyWl1yj7Tly4NrtT75pNnv79/fnNi0apI6hSqF4zx2W7zYXHv9D06eHNzV2mI91/ffmxGUv/460qsoX04/3e6tU1QqVnSXn7juOpOd9swzZS+RpBiROYby69JLTdoo3TzMQfqOHd7ZaNu2udOXExPt+mg//2wOZG69NfIOaiTz55uDSK/uDFWrmu6WTscdZ7oqVKtmfrznzTOBsvffNwdY06ZJp51mus526mQO9q3i4D/9JDVr5t2OY4+VNm0q3GsBCsvvN5lTzoyzX3+1i0onJQV312zYsGDdNe+80+yox9I2ydQLtLpEP/20+R2QzFDfzmLTltNOM4VfvdYVygMP2IOmhCrqbgWh6tc3hf4bNw5dg6ggB1ThskxDGTnStL1q1fId/IrEGgjA+R5Y79v69aarcmBG3YYNJkNv/nzvLr6BDh0yBwk7d5qL87bzcuiQO9vp6KNDB9SsoFpKSuno2l3cAovbb9pkPpvFi03g4ttvzcHYwYPB3/sBA7wDmpFEuy06vzvnnGMGyInFFVd4dxEK91xW2y691GRP1K5tpvXubddWLYyynpXu85nf+7POMsGR4n4tOTlm3/Drr03QbP1604YTT7QDZs2alZ3R4p3fL6+TRqHmD8zAPRLfISvjetAgE5B+/337vzg52QTOrDq9ge354gs7W/yNN0z34OXL3fNMm2YGZHIuv2ePea7jjrN7Fvn9Zl/e6kr488/mM/f7Tf1Dr4E2rHWVx6zskrBhgzmB27mzuV+Wf8MCkDkGSOYHF4Y1IEDdupGzdA4cMN0kv/tOuv9+U2+isIGxl182B0ErVtjZHTk5Jktg8mTvNll/znfdZddDqljR/Il+9ZVZ1lmU2zqIj1THisAYSgOfz5ydr1XLu4Crs7vmt9+abjhWd82EBFPXLNrumrEExpycNcRuu810cfD5Qo/yGBgYi2a0V2eNjlADrVgHRIMGmSy0+fNDr69Xr+gORiz33BP9vE7bt3PiRQo/uqlXxlDlypFHuA5UqZL9/xUtv98EhAIDauvXm++pNT0ry92WhATpmGMiZ6mVhc/+t99Mja8OHcxgSM7XaWV8dOxopl9+uZnmHJHUUpCARKjA2DvvmN+7wM/yo49MBpfXKIqhjBxpisFHG9ycOjV42tVXuzMmiupgMPBkX1nTpIkdsCjsICLRqFzZ1CRr186uFZyba050rlplApg//WT27447zq5h1qJF6c4YffttUzoi2ux4a/81VCAolF9+MSeIX3rJ/L5GsnOn2Z9o29YewMK5fXzyibk+eDD8CNDOMgpW99tAXj2AevWyB8Rp0cKUWZDM75QVHHPWpw4XaC8Lv8VlRePGsWX6llMExwC4Valisqus7lbOdPho1a9vhjhv0sT82VtFWK0/sSefNAc8kyaZ4JizxoflllvMH3eFCsE751amiZd4yAJA+Repu2ZGhp1t9vnn5kDY6hLo7K553HEFb0P16iZry7JypSnivHWruf/VVyZb08ooCxQuiGXp1MkM8CGZQLjTzJlmJz0wWy7cSMKzZ0t9+0r/+1/k55bMb0w4mzaZ37Pzz3cPLGLtrBe26395dfHFJfv8Pp/5Dzv6aJMhFa3cXFPjJTA7bdMmd6DtwAH3clWqRM5SO+aYI5P58vnn5j/24oulm28224NkBhP529+kiRODu0n/8ou5vvHG4PXNmRM8uE1B7Npl3oNAd95pMlOfftpuRzSsgQKifU+XLTP1xSTzmezcaWr6OBXVgWFZGYE8lN9+s29bXfGPtAoVzMABJ51kutVJJli3fr0JmL35pjmJe+iQyaq2Cv+3bl2yAZPAwSO2bYs+OPbcc2bf94ILzDYcKps60Ny5pvzBWWdF1xXvP/8xA2/s3Bk8SqRk/z4EvhZne6IdXdUZ8M7IMN20rcCYZP7PrczPCRNMFz+LNbK5V9DaqjXIPn/RS0ws+sEAyhCCYwC8WTsXy5a5p+/bZx674gppxgzvZbduDT1MumTXnapUyXTd8tphHj489jYD8aBCBfsMn5X+bgnsrhlNgCrQt9+aA4zA2n2BNUlOOcVke4QKjkUzclPg6KBOl19uLla378AaYaE4R8fLyQmfWRDuYPj7702GnmSCdNZBwR9/2AH/lJTo2hRP/va30IXIS7sKFeyMzljs3x8cUNu82WxLVkBt9+7gmlYpKeEDajVrmi5DsXQXPuccc23V8rFOPt11l+k2+K9/xfbaYg0Ah+ri5PU/L5nM1kqVosva6t7ddPsaONCev23b8DVRLVbhcMl06z3hBNNtzLnum2+OvJ54U5pqf/l85oTPccfZNd38flO3bNUqMwDK+PFme6xZ0+6S2bat+7MuToFd/u+7T+raNbplrUCkdUIoIcEEjqzMqlCsep0DB0b3PGvXFqyeVUKC+b9/+mnTsyQazpPZxx4bft7A71q4+ZcvDz5JgaKxb19cBx0JjgHwFlh4c+1aU5TXCprdcEPo4Fg4a9e67y9dWrD2AQjm1V0zmp3Y00833SWHDjVnuXftMt1BIqlc2dQC9KqFVq1abG13smqUSHZmSMeOoQsAh2K169RTzai3HTvaj0U6GD/pJO/pgUPOw83qkhNPkpLM/2Mshevz8ky3zsDaad995w60BXbRq1TJBM42bTK1OCXTLbFy5fCD0Xz9dfEUtR440B6846673EX1oxVtja733jPzvvyyyTKRzHsRjaFD7duvvRa8j/Pee9GtB6WLz2dvez172tP//NN835ctk55/3mxrycl2hlm7drEHwaMR+L8RWG5AMm065ZTgDJ2nnzbBa+e2cMUV4YNjzkE1onk9zgBUZmbk+QM984y97R0pzm6mQ4faPVqiHXwLsYnjwJhUDMGxxo0ba6OVBukwdOhQPffcc0HTFy9erPM9hv3+4YcfdGK4fs4Ailfgj2Ng966OHUMfFD/2WOj1enUTA1B8Klc2QaWnngqd0TNpktlZtw4gIx1wOuuTBHZreuUVc8AcS3c2p8CDZGv9gweHrncWannrQCDWgQK8ZGcXrJs54CUhwXRdrl7de5TPUHJyTPCsfn172iWXBHeB+sc/olvfU09FN9+OHab71jXXuLefV181mTxr1khvvRW8XPXqZl/BqX9/U++vVStzPycn/DZ51FHBQUJr277ssuh+F5yoq1P+1a5tus06u85mZpqTPqtWme/tzp0mwNKmjR00S00t+my5wO6R7dubbWDatODs6V27YiswP22afds5uFY0rJFe//1v6frrow+KhCttEItvv419GY9YAlCUijw4tmLFCuU6ulKsXbtWXbp0UZ8+fcIut27dOtfoAbUZUhQoeR9+aEalC7XTah20jh5tiuZ/843506drAlB6ZGSYHe4TTzTBsfffN5lU555riu7//HPsO7uXX+6+v2iR6Za0b5/Uo4eZlpsbe40lq9ahU+XKpq5MtJx10iR314sKFaLr7hmqbV99VbBlgaJSuXLwYBeBgbFYRFPC4Pff7S7Glq1bpRdeMLdHjw697JIl9kjSltdei62Ne/YEByx8PpOxl5JiAiF//in9+KPpMnnqqSYAUreuyaZxDt6D+JWSYuppOWvu7dtnArurVpkBI7ZsMdmZLVrY3TKbNIktYBZYhD8hIXg/+vXXves6RVNQP5Rx46RHHzW3fT4zmqRzwB8r0zRQ/frRvb677jInv5016fr3N68lkm++MRnqVvZ3qOOKPXu89wMkU/sTKGY+v794x+kcNmyY3nvvPf3888/yeWx4VubY7t27Vd2KYEfh4MGDOujYGcjKylJaWlpUQ3QCiEGk7g7/+Y/7DHW0BUQBlLwhQ8ygGBZr283Olu64Qxo2zJzFHjjQZIulpJiD3V69vNeXmWnm2bQpcn0Ry7nn2sXua9UyB7mFMWaMdO+95nbgb9fq1ebgp6QLxgOFNWCAO2ukONWrZwqLF0S4/Ydo9xX8flPr6Jln7H2SVavM4APWyTjnvsr27SYwVryHOCivcnJMzclVq8xl/Xrz/Wre3A6YXXaZ3Z35q69M179HHzVZ14cOmV4Vzu+3V0ZztKZMMaM1//WXycK0uk/u3x88+IPfb7psWyemdu828518ssmUs+ZxtsEaBXvhQjMYQKALLjD1S1euNAEuJytTXDIZnAMHmpErA38vrNf/00+mi+tpp4V+vVbdU4vVVut9BWKUlZWllJSUqOJExRocy8nJUWpqqoYPH657QgyXbgXHGjdurAMHDqhFixa67777PLtaOo0aNUqjPc5UERwDitjBg8G1OQCUTzt32sXmj5QOHezagxddJH3wQeHWt3OnffDAwTHKqyFDoh9FMjEx9uyynj3dtX5idf/9pmj6ySeHnidUkGDwYNP1sXZt6Z//PDKjfALh5OaawM6qVaaW2RNPmOnVqpmTSU7W/86KFfZANgcO2PvSBTmB7Myoys0124ZXUf3vv3ePOB/o449NBla3bqZ3iLO9kqnnN2iQe5n5802AbNs2uzv3//5n6iPed5854ZSTY3cPb9YseOTZwvwXW+8X/+cooFITHHvzzTfVv39/bdq0SanWkMsB1q1bp6VLl+rUU0/VwYMH9eqrr2rSpElavHixzgscatqBzDEAAMoB54HCihXhzyjHuk52plFe/fOf0ksvRTfvzp0mIzOWWr6bN0vPPmt304qkb197ZMzzzjMZppEEBgluuIEukCgbwgW4vLLEZs405QgyMryzqi+8MHS3x1gMHSo98IDJnAzXtilTTIA98D/y8GHTrfSRR4IzsPfssQfaWb3a3XXU6bffzLwHDphunRMnSjfdVPDXdPfd5rfOynwDYlRqgmNdu3ZV5cqV9W6MZ5569uwpn8+nd955J+plYnnRAACglHDWFEtPN90iAYQ3eLB7YIxQvvrKdAOT3Af0V1whTZ8eejm/32SoRNONaflyky1yzDEmuyTUgXkgZ3ucmTVAaRcqOHbVVe7uzt27m4Esbr3VjEZpBaUCrV9vapsVhfr1TU3AQB995B6gIBJrIA3nb4Dfb+q0Va0aOQNu3z4zsmWI3mPAkVIqgmMbN27Ucccdp7feekuXXnppTMs+8sgjmjZtmn744YeolyE4BgBAGbRmjV1fZN8+U2QbQHhffy3NmmUyPJxOPNEUppdM7R9nsWyfz3SPOuMMs5zz4DYvz9Qd2rHDjOQ3bJi9jCStW2dqLjkVxSHEtm3BAwwApZ1z26lZ02w3Pp93RpVXEKl6dbON1a9vRna+4ILir6dFJjXiVCxxomLbCqdMmaI6deqoe/fuMS/79ddfq75ziGoAAFA+nXyy6YIRy/D1QLxr185cPv5YWrbMTFu40GR7HHusdNJJUuBBwOjRJrPFqg00e7YpLC7ZB/A1a9qBMacTTjC1hawyKa++WjSvg8AYyqIDB6QqVcxtq7vf8uVSq1bRLb9+vcm+qlzZ+/Err5TeeCP69nzwgakjBqBQiiU4lpeXpylTpuiaa65RxYAoeHp6ujZv3qxXXnlFkjRhwgQ1btxYLVu2VE5OjqZNm6ZZs2Zp1qxZxdE0AABQ2hAYAwrm88/twFanTu7H6tRx37//fvd9a9TZZ58Nvf4NG+xuz/Xrm2DcY4+ZIBsQrxITTX28pk3tERwDR3K0fPmlqb3lVL168Hxbt5ptLDPTZFA/+KDprhzO6NGmzti+fTG/BADBiiU4tmDBAm3atElDPPpUb926VZs2bcq/n5OToxEjRmjz5s1KSkpSy5Yt9f777+tihlkHAAAAwvvlF3sUOcuWLWZEu0icXa0WLQp+vFEj9/3zzzcXIN7dcEN084XKDgtUr557ezz++MjLtGhhRmfeuzf8fFbpAgBhFWtB/iOJmmMAAAAAgFLF7zfdJK+6KvbaX6EK3990kxkJUjLBsaOPDp6ne3dpxgyysxHXSkXNMQAAAAAA4prPJ/Xvb4JVReHPP03GmCUw4Pbrr9JxxxXNcwFxJKGkGwAAAAAAQLmWkhL7Ml5dJp2BMckeHEAyg9wQGAMKhMwxAAAAAABKm6pVTV3BRo2kHTukChWC56lYMfbumgCCEBwDAAAAAKA0atrUXNerV7LtAMq5chMcs8YVyMrKKuGWAAAAAAAAoCRZ8aFoxqEsN8Gx7OxsSVJaWloJtwQAAAAAAAClQXZ2tlIi1P3z+aMJoZUBeXl52rJli6pVqyZfqCFvy5isrCylpaUpIyMj4rCjKD/43MF3ID7xuYPvQPziswffgfjE5w6+A8XL7/crOztbqampSkgIPx5luckcS0hIUMOGDUu6GcUiOTmZDSUO8bmD70B84nMH34H4xWcPvgPxic8dfAeKT6SMMUv40BkAAAAAAABQjhEcAwAAAAAAQNwiOFaKJSYm6oEHHlBiYmJJNwVHEJ87+A7EJz538B2IX3z24DsQn/jcwXeg9Cg3BfkBAAAAAACAWJE5BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHYjR27FidfvrpqlatmurUqaNevXpp3bp1rnn8fr9GjRql1NRUJSUlqWPHjvruu+9c87z44ovq2LGjkpOT5fP59NdffwU9108//aRLL71UtWrVUnJyss455xwtWrQoYhvXrFmjDh06KCkpSQ0aNNCDDz4o56CkW7duVf/+/dW8eXMlJCRo2LBhBXov4kl5+NwHDRokn88XdGnZsmXB3pQ4cyS/A6tWrVKXLl1UvXp11axZU//85z+1Z8+eiG1k2y965eFzZ9svnKL4DuzatUu33HKLmjdvrqpVq+rYY4/VrbfeqszMTNd6du/erQEDBiglJUUpKSkaMGCA53clENt+8SgPnz3bf+Ecye/AI488ovbt26tq1aqqXr161G1k+y965eFzZ9svnCP1HdiwYYOuvfZaNWnSRElJSWratKkeeOAB5eTkRGwj237RIzgWoyVLluimm27SF198ofnz5+vw4cO68MILtXfv3vx5HnvsMT355JOaOHGiVqxYoXr16qlLly7Kzs7On2ffvn266KKLdM8994R8ru7du+vw4cP6+OOP9dVXX6lt27bq0aOHtm3bFnKZrKwsdenSRampqVqxYoWeffZZPf7443ryySfz5zl48KBq166te++9V23atCnkOxIfysPn/vTTT2vr1q35l4yMDNWoUUN9+vQp5LsTH47Ud2DLli264IILdPzxx+vLL7/Uhx9+qO+++06DBg0K2z62/eJRHj53tv3CKYrvwJYtW7RlyxY9/vjjWrNmjaZOnaoPP/xQ1157reu5+vfvr9WrV+vDDz/Uhx9+qNWrV2vAgAFh28e2X3zKw2fP9l84R/I7kJOToz59+ujGG2+Mun1s/8WjPHzubPuFc6S+Az/++KPy8vL0wgsv6LvvvtNTTz2lSZMmhT1WlNj2i40fhbJ9+3a/JP+SJUv8fr/fn5eX569X7//au7uQJtswDuD/veWmtblQcNMCMzwp04M8UKOypMxIKIIO1KSToA+MIDrozKKDpE/CkDRq6UnUgYKERYamRSsjJkqRZGiQuhSZmySm5vUe9PbYXtuyfTzRs/8PPPD23v3c23X9hd3swyoVFRXKnMnJSTGbzXLt2rV5t29tbRUA4nK5vMZHRkYEgLS3tytjHo9HAMijR4987qeqqkrMZrNMTk4qY2fPnpWkpCSZnZ2dNz83N1eOHTu20LtL//nb6y4i0tDQIDqdTvr7+xd0n8lbuHqgurpaEhIS5OvXr8qYw+EQAPLu3Tuf+2H21fG3112E2Q9WsD3w3d27d0Wv18v09LSIiLx580YAyPPnz5U5drtdAMjbt299rsPsq+dvr70I8x+scPXAj2w2m5jN5gXth/lXx99edxFmP1hq9MB3586dk5SUFL/7YfbDg68cC9L3l0XGxcUBAPr6+uB0OpGfn6/MMRgMyM3NxbNnzxa8bnx8PFavXo26ujp8/vwZMzMzqK6uhsViQWZmps/b2e125ObmwmAwKGPbt2/H4OAg+vv7f/PekS9aqPuNGzewdetWJCcnL3h/NCdcPfDlyxfo9Xr888/cv+eYmBgAwNOnT33ejtlXhxbqzuwHJ1Q94Ha7ERsbi8WLFwP4Vkuz2YysrCxlTnZ2Nsxms991mH31aKH2zH9wwtUDgWL+1aGFujP7wVGzB9xut3IdX5j98ODhWBBEBMePH8eGDRuwdu1aAFDe+maxWLzmWiwWv2+L+z+dTofm5mY4HA6YTCZER0fj8uXLePDggd/3ozudzp9e+8e9UXC0UPehoSHcv38fBw4cWPDeaE44eyAvLw9OpxPnz5/H1NQUXC6X8tLqoaEhn7dj9sNPC3Vn9oMTqh4YHR3FmTNncPDgQWXM6XQiISFh3tyEhAS/vcTsq0MLtWf+gxPOHggU8x9+Wqg7sx8cNXvg/fv3qKysxKFDh/zuidkPDx6OBaGsrAxdXV24ffv2vL/pdDqv30Vk3pg/IoIjR44gISEBT548QUdHB3bt2oXCwkLliVJaWhqMRiOMRiN27Njh99o/G6fAaKHut27dwrJly7B79+4F743mhLMH0tLSUFtbi4sXL2LJkiWwWq1YtWoVLBYLFi1apMxh9tWnhboz+8EJRQ94PB7s3LkTa9asQXl5ud81/r8Os//naKH2zH9wwt0Dv8L8/xlaqDuzHxy1emBwcBAFBQXYu3ev10Ems6+e4F7TGcGOHj2KxsZGtLe3Y8WKFcq41WoF8O3ENjExURkfHh6ed7rrT0tLC+7duweXy4XY2FgAQFVVFZqbm1FbW4uTJ0+iqakJ09PTAObefmO1WuedFg8PDwOYf7JNv08LdRcR3Lx5E6WlpdDr9QveG30T7h4Avn0wc3FxMT59+oSlS5dCp9Ph0qVLSElJAQBm/w/QQt2Z/eCEogfGx8dRUFAAo9GIhoYGREVFea3z6dOnedcdGRlR1mH2/wwt1J75D064e2AhmH/1aaHuzH5w1OqBwcFBbNmyBTk5OaipqfH6G7OvHr5y7DeJCMrKylBfX4+WlhblSct3KSkpsFqtaG5uVsampqbQ1taG9evXL/g6ExMTAOD1+TPff5+dnQUAJCcnIzU1FampqVi+fDkAICcnB+3t7V5f//rw4UMkJSVh5cqVv3VfaY6W6t7W1obe3t5535ZD/qnVAz+yWCwwGo24c+cOoqOjsW3bNgDMvpq0VHdmPzCh6gGPx4P8/Hzo9Xo0NjYiOjraa52cnBy43W50dHQoYy9evIDb7VbWYfbVpaXaM/+BUasHFoL5V4+W6s7sB0bNHhgYGMDmzZuxbt062Gy2ec8DmX0Vhedz/rXr8OHDYjab5fHjxzI0NKT8TExMKHMqKirEbDZLfX29dHd3S1FRkSQmJorH41HmDA0NicPhkOvXryvfTuhwOGR0dFREvn1rYXx8vOzZs0c6Ozulp6dHTpw4IVFRUdLZ2elzf2NjY2KxWKSoqEi6u7ulvr5eYmNj5cKFC17zHA6HOBwOyczMlOLiYnE4HPL69esQP1raoZW6i4js27dPsrKyQvjoRAa1ekBEpLKyUl69eiU9PT1y9epViYmJkStXrvjdH7MfHlqpuwizH6hQ9IDH45GsrCxJT0+X3t5er3VmZmaUdQoKCiQjI0PsdrvY7XZJT0+XwsJCv/tj9sNHK7UXYf4DpWYPfPjwQRwOh5w+fVqMRqOS2fHxcZ/7Y/7DQyt1F2H2A6VWDwwMDEhqaqrk5eXJx48fveb4w+yHBw/HfhOAn/7YbDZlzuzsrJSXl4vVahWDwSCbNm2S7u5ur3XKy8t/uc7Lly8lPz9f4uLixGQySXZ2tjQ1Nf1yj11dXbJx40YxGAxitVrl1KlT877S9WfXTk5ODuah0TSt1H1sbExiYmKkpqYmqMcjEqnZA6WlpRIXFyd6vV4yMjKkrq5uQXtk9kNPK3Vn9gMXih5obW31uU5fX58yb3R0VEpKSsRkMonJZJKSkhJxuVy/3COzHx5aqT3zHzg1e2D//v0/ndPa2up3j8x/6Gml7sx+4NTqAZvN5nPOrzD7oacT+e+T24iIiIiIiIiIiCIMP3OMiIiIiIiIiIgiFg/HiIiIiIiIiIgoYvFwjIiIiIiIiIiIIhYPx4iIiIiIiIiIKGLxcIyIiIiIiIiIiCIWD8eIiIiIiIiIiChi8XCMiIiIiIiIiIgiFg/HiIiIiIiIiIgoYvFwjIiIiIiIiIiIIhYPx4iIiIiIiIiIKGLxcIyIiIiIiIiIiCLWv37GwT63Cj6dAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def plot_dfo_temp(mooring_depth):\n", - " \n", - " df = pd.DataFrame()\n", - " \n", - " df['sea_water_temperature'] = ds.sea_water_temperature.data\n", - " df['TEMPST01'] = ds.TEMPST01.data\n", - " df['TEMPS601'] = ds.TEMPS601.data\n", - " df['TEMPS602'] = ds.TEMPS602.data\n", - " #df['TEMPS902'] = ds.TEMPS902.data - ? doesn't exist\n", - " df['TEMPS901'] = ds.TEMPS901.data\n", - " df['Time'] = ds.time.data\n", - " df['filename'] = ds.filename.data\n", - " \n", - " # Need to figure a better way to capture sensor depths - using this from the filename for now\n", - " df['file_depth'] = df['filename'].str[-10:-8].astype(int)\n", - " df['depth'] = ds.depth.data\n", - " \n", - " # Saw some data gaps - populated the nans with TEMPST01\n", - " # Merge the two temp columns\n", - " df['merge_temp'] = np.where(df['sea_water_temperature'].isnull(), df['TEMPST01'], df['sea_water_temperature'])\n", - " \n", - " # isolate the sensor depth\n", - " df_depth = df[df['file_depth'] == mooring_depth]\n", - " \n", - " # look at the depth range for 75m sensors - can we use this in the erddap option?\n", - " # print(df_depth['depth'].max()) # 80.15737 \n", - " # print(df_depth['depth'].min()) # 68.238\n", - "\n", - " x = df_depth.Time\n", - " var1 = df_depth.sea_water_temperature\n", - " var2 = df_depth.TEMPST01\n", - " var3 = df_depth.TEMPS601\n", - " var4 = df_depth.TEMPS602\n", - " var5 = df_depth.TEMPS901\n", - " var6 = df_depth.merge_temp\n", - " \n", - " \n", - " fig, ax = plt.subplots(6, figsize=(15, 8), sharex=True, sharey=True)\n", - " \n", - " ax[0].plot(x, var1, linewidth=0.05, c='blue')\n", - " ax[0].set_title('sea_water_temperature')\n", - " ax[1].plot(x, var2, linewidth=0.5, c='orange')\n", - " ax[1].set_title(\"TEMPST01\")\n", - " ax[2].plot(x, var3, linewidth=0.5, c='purple')\n", - " ax[2].set_title(\"TEMPS601\")\n", - " ax[3].plot(x, var4, linewidth=0.5, c='green')\n", - " ax[3].set_title(\"TEMPS601\")\n", - " ax[4].plot(x, var5, linewidth=0.5, c='red')\n", - " ax[4].set_title(\"TEMPS901\")\n", - " ax[5].plot(x, var6, linewidth=0.5, c='red')\n", - " ax[5].set_title(\"merge_temp\")\n", - " fig.subplots_adjust(hspace=0.5)\n", - " plt.suptitle(\"DFO Mooring Station E01 Temperature variables at depth {} metres\".format(str(mooring_depth)))\n", - " plt.show()\n", - " \n", - "plot_dfo_temp(75)" - ] - }, - { - "cell_type": "markdown", - "id": "afcf6bbb-30de-434a-b208-bf767bc2b26a", - "metadata": {}, - "source": [ - "### Have a look at the various oxygen variables." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d3eceb45-5c63-4ffe-b927-5c52840a2e60", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Not seeing any oxy in this time frame at any depth.\n", - "\n", - "def plot_dfo_oxy(mooring_depth):\n", - " \n", - " df = pd.DataFrame()\n", - " \n", - " df['DOXYZZ01'] = ds.DOXYZZ01.data\n", - " df['DOXMZZ01'] = ds.DOXMZZ01.data\n", - " df['Time'] = ds.time.data\n", - " df['filename'] = ds.filename.data\n", - " \n", - " # Need to figure a better way to capture sensor depths - using this from the filename for now\n", - " df['file_depth'] = df['filename'].str[-10:-8].astype(int)\n", - " df['depth'] = ds.depth.data\n", - "\n", - " # isolate the sensor depth\n", - " df_depth = df[df['file_depth'] == mooring_depth]\n", - " \n", - "\n", - " x = df_depth.Time\n", - " var1 = df_depth.DOXYZZ01\n", - " var2 = df_depth.DOXMZZ01\n", - " \n", - " \n", - " fig, ax = plt.subplots(2, figsize=(15, 8), sharex=True, sharey=True)\n", - " \n", - " ax[0].plot(x, var1, linewidth=0.05, c='blue')\n", - " ax[0].set_title('DOXYZZ01')\n", - " ax[1].plot(x, var2, linewidth=0.5, c='orange')\n", - " ax[1].set_title(\"DOXMZZ01\")\n", - "\n", - " fig.subplots_adjust(hspace=0.5)\n", - " plt.suptitle(\"DFO Mooring Station E01 Oxygen variables at depth {} metres\".format(str(mooring_depth)))\n", - " plt.show()\n", - " \n", - "plot_dfo_oxy(90)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fb659d01-4804-4e95-8120-bff0ef9bbac0", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:root] *", - "language": "python", - "name": "conda-root-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/_build/dirhtml/_sources/index.md.txt b/_build/dirhtml/_sources/index.md.txt index ea1c9e8..e4c26a7 100644 --- a/_build/dirhtml/_sources/index.md.txt +++ b/_build/dirhtml/_sources/index.md.txt @@ -35,6 +35,10 @@ Download and display mooring data on a github pages website. * Tobias Ferreira * Veronica Martinez * Johnathan Evanilla +* Christian Sarason +* Danilo Silva +* Halley McVeigh +* Hameed Ajibade ## Goals @@ -58,10 +62,6 @@ Its objectives are to: --> -Here is a plotly plot! - - - :::{admonition} Participant Quotes :class: note diff --git a/_build/dirhtml/_sources/interactive/holoviz_plotting_tests.ipynb.txt b/_build/dirhtml/_sources/interactive/holoviz_plotting_tests.ipynb.txt index 0eb9edb..2d3df7c 100644 --- a/_build/dirhtml/_sources/interactive/holoviz_plotting_tests.ipynb.txt +++ b/_build/dirhtml/_sources/interactive/holoviz_plotting_tests.ipynb.txt @@ -5,7 +5,17 @@ "id": "ab23ab7d-347c-4968-9168-5a3c8a901533", "metadata": {}, "source": [ - "holoviz plotting - shrinking the time range" + "# Holoviz plotting - shrinking the time range" + ] + }, + { + "cell_type": "markdown", + "id": "62867e5f-8d1f-488d-98dd-1b8792b0be20", + "metadata": {}, + "source": [ + "We've attempted to use the Holoviz package to make some interactive figures. The figures need an active python kernel to function, and so can't be inserted directly into a static webpage.\n", + "\n", + "In this notebook, we show some examples of creating interactive figures to highlight what can be done. At the end of the script, we build a plotting function, and bind it in a Holoviz Panel, which can then be launched as an app. This requires a separately running server to host the python functionality, and highlights the sort of possibilities that these tools can have." ] }, { @@ -1135,10 +1145,7 @@ "import numpy as np\n", "import pandas as pd\n", "import xarray as xr\n", - "import cf_xarray as cfxr\n", "import datetime\n", - "import netCDF4\n", - "from netCDF4 import Dataset\n", "\n", "import matplotlib\n", "from matplotlib import pyplot as plt\n", @@ -1151,7 +1158,7 @@ "import panel as pn\n", "\n", "\n", - "pn.extension(template='fast')" + "pn.extension(template='material')" ] }, { @@ -1257,56 +1264,28 @@ ] }, { - "cell_type": "code", - "execution_count": 3, - "id": "84294870-a539-4905-8634-b8d71877b617", + "cell_type": "markdown", + "id": "7758cdee-61f2-4880-9a9f-fae4f8c6041f", "metadata": { "tags": [] }, - "outputs": [], "source": [ - "def datetime_to_ordinal_withseconds(x):\n", - " \"\"\"\n", - " Converts a datetime object to an ordinal number, \n", - " taking into account both the date and time parts of the input.\n", - " The resulting ordinal number represents the number of days \n", - " since January 1, 1 AD, at 12:00 AM, \n", - " plus a fractional portion representing the time part of the input.\n", - " \"\"\"\n", - " # Import libraries\n", - " import numpy as np\n", - " import pandas as pd\n", - " import datetime\n", - "\n", - " # Extract year, month, day, hour, minute, \n", - " # and second components from input datetime object\n", - " year = x.year\n", - " month = x.month\n", - " day = x.day\n", - " hour = x.hour\n", - " minute = x.minute\n", - " second = x.second\n", - "\n", - " # Create a new datetime object using the \n", - " # extracted year, month, and day components\n", - " date_obj = datetime.datetime(year, month, day)\n", - "\n", - " # Get the ordinal number of the date\n", - " date_ordinal = datetime.datetime.toordinal(date_obj)\n", - "\n", - " # Calculate the partial ordinal number for the time part of the input\n", - " date_partial = (hour + (minute + (second / 60)) / 60) / 24\n", - "\n", - " # Combine the date and time ordinal numbers\n", - " x_ordinal = date_ordinal + date_partial\n", - "\n", - " # Return the final ordinal number\n", - " return x_ordinal" + "# Load in data from the ERDDAP server" + ] + }, + { + "cell_type": "markdown", + "id": "af82699a-160f-4350-902d-024d0fd61f32", + "metadata": { + "tags": [] + }, + "source": [ + "First, we need to get some data. To do this, we can download data from the NANOOS buoy near Hansville, WA. The data is a gridded product of individual CTD casts taken for the last 10+ years on a near-daily basis." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "2da6d7e2-c858-4636-bd8b-1bfe5a704b29", "metadata": { "tags": [] @@ -1321,7 +1300,7 @@ " \"sea_water_practical_salinity\",\n", " \"mass_concentration_of_oxygen_in_sea_water\"]\n", "\n", - "constraints = {\"cast_start_time>=\":datetime.datetime(2010,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}\n", + "constraints = {\"cast_start_time>=\":datetime.datetime(2016,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}\n", "#constraints = {\"cast_start_time>=\": \"max(cast_start_time)-365\"}\n", "\n", "nwem_grid = get_erddap_data(nwem_url, nwem_dataset, \n", @@ -1331,35 +1310,24 @@ ] }, { - "cell_type": "code", - "execution_count": 5, - "id": "544da9c4-d24c-4fe0-bf5f-f4d3f3246fe0", - "metadata": { - "tags": [] - }, - "outputs": [], + "cell_type": "markdown", + "id": "a97901d1-35f9-43af-b741-1234e450040e", + "metadata": {}, "source": [ - "date_slider = pn.widgets.DateRangeSlider(name='Earliest Date', \n", - " start=datetime.datetime(2010,1,1), \n", - " end=datetime.datetime(2023,1,1), \n", - " value=(datetime.datetime(2015,1,1),datetime.datetime(2020,1,1))).servable(target='sidebar')" + "# Create a slider to move between individual casts" ] }, { - "cell_type": "code", - "execution_count": 6, - "id": "9fe66dfc-5245-4395-96cd-51ff3ae44e5d", - "metadata": { - "tags": [] - }, - "outputs": [], + "cell_type": "markdown", + "id": "d30ff148-3978-41dc-b386-abbfcf98e8a7", + "metadata": {}, "source": [ - "nwem_interactive = nwem_grid.interactive()" + "Next, we can create an interactive plot, where we can show the sea surface temperature for individual casts." ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "id": "9b5f047a-dcd0-42f8-80f0-72b3f6f258c3", "metadata": { "tags": [] @@ -1379,12 +1347,12 @@ "data": { "application/vnd.holoviews_exec.v0+json": "", "text/html": [ - "
\n", - "
\n", + "
\n", + "
\n", "
\n", "" ], "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 4, "metadata": { "application/vnd.holoviews_exec.v0+json": { - "id": "87f28aa0-b1d8-4526-ba63-2c479c76d72e" + "id": "5773be60-3981-4309-9ad5-a55cc5722b0a" } }, "output_type": "execute_result" } ], "source": [ - "slider = pn.widgets.IntSlider(name='Dates', start=100, end=7000)\n", + "slider = pn.widgets.IntSlider(name='Dates', start=100, end=nwem_grid.dims['cast_start_time'])\n", "nwem_grid.interactive().isel(cast_start_time=slider).sea_water_temperature.hvplot()" ] }, + { + "cell_type": "markdown", + "id": "6f824797-a582-4b02-b73f-18391317022e", + "metadata": { + "tags": [] + }, + "source": [ + "# Create a function to create an interactive plotting time range" + ] + }, + { + "cell_type": "markdown", + "id": "e1538702-c28e-4f82-bfb7-9cd1d79aece3", + "metadata": {}, + "source": [ + "Finally, we can try to create a Holoviz Panel app, which can be embedded into a webpage, if there is an active server running." + ] + }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "id": "7638d325-878c-4c68-a6af-fb4ce5e62760", "metadata": { "tags": [] @@ -1484,123 +1470,31 @@ " dates_to_plot = nwem_to_plot.cast_start_time.values\n", " depths_to_plot = nwem_to_plot.depth.values\n", " sst_to_plot = nwem_to_plot.sea_water_temperature.values\n", + " sss_to_plot = nwem_to_plot.sea_water_practical_salinity.values\n", + " \n", + " fig = plt.Figure(figsize=(6,4))\n", + " \n", + " ax1 = fig.add_subplot(211)\n", + " cb = ax1.pcolor(dates_to_plot, depths_to_plot, sst_to_plot.T)\n", + " ax1.invert_yaxis()\n", + " fig.colorbar(cb,ax=ax1,label='Temperature')\n", + " ax1.set_title('Hansville - NANOOS Buoy')\n", + " ax1.set_ylabel('Depth (m)')\n", " \n", - " fig = plt.Figure()\n", - " ax = fig.add_subplot(111)\n", - " cb = ax.pcolor(dates_to_plot, depths_to_plot, sst_to_plot.T)\n", - " ax.invert_yaxis()\n", - " fig.colorbar(cb,ax=ax)\n", + " ax2 = fig.add_subplot(212)\n", + " cb = ax2.pcolor(dates_to_plot, depths_to_plot, sss_to_plot.T)\n", + " ax2.invert_yaxis()\n", + " fig.colorbar(cb,ax=ax2,label='Salinity')\n", + " ax2.set_ylabel('Depth (m)')\n", " \n", - " #(nwem_interactive.where(nwem_interactive.cast_dates > date_slider,drop=True).\n", - " # sea_water_temperature.plot(x='cast_start_time'))\n", + " fig.tight_layout()\n", " \n", " return fig " ] }, { "cell_type": "code", - "execution_count": 9, - "id": "bfc919a9-d3b8-4a13-b78c-2069cea2f68e", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": {}, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ], - "text/plain": [ - "DateRangeSlider(end=datetime.datetime(2023, ..., name='Earliest Date', start=datetime.datetime(2010, ..., value=(datetime.datetime(2015, ..., value_end=datetime.datetime(2020, ..., value_start=datetime.datetime(2015, ...)" - ] - }, - "execution_count": 9, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "664fb834-7814-4088-a537-ca25aeb359c9" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "date_slider" - ] - }, - { - "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "id": "3a8018ec-41d7-49c3-9ff5-c55bdfd904af", "metadata": { "tags": [] @@ -1615,12 +1509,12 @@ "data": { "application/vnd.holoviews_exec.v0+json": "", "text/html": [ - "
\n", - "
\n", + "
\n", + "
\n", "
\n", " - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
-
-
- - - -
-
- -
- - - - - - - - - - - - - -
- -
- - -
-
- -
-
- -
- -
- - - - -
- -
- - -
-
- - - - - -
-
-

Downloading DFO Historical Mooring Data#

-
-

https://data.cioospacific.ca/erddap/tabledap/IOS_CTD_Moorings.htm#

-
-
-

Constraints:#

-

Limited the search area to the mooring of interest E01. (49.1 - 49.3 & 126 - 126.7)
-Limited the time frame to 2018-01-01 to 22-07-21 to minimize download time for this project.

-
-
-
import xarray as xr
-
-# have a look at the dataset:
-
-ds = xr.open_dataset("IOS_CTD_Moorings_9614_794f_0026.nc")
-#print(ds)
-#print(ds.PSALST01.data)
-#print(ds.DOXYZZ01)
-#print(ds.DOXMZZ01)
-#print(ds.filename.data)
-print(ds.variables)
-ds
-
-
-
-
-
-
-

Combine what was learned Below - use a merged Temperature variable for the time series - do not plot Oxygen#

-
-
-
import matplotlib.pyplot as plt
-import numpy as np
-import pandas as pd
-
-def plot_dfo_mooring(mooring_depth):
-    
-
-    df = pd.DataFrame()
-    
-    df['Salt'] = ds.sea_water_practical_salinity.data
-    df['Temp1'] = ds.sea_water_temperature.data
-    df['Temp2'] = ds.TEMPST01.data
-    # Get a final temp
-    df['Temp'] = np.where(df['Temp1'].isnull(), df['Temp2'], df['Temp1'])
-    df['depth'] = ds.depth.data
-    df['Time'] = ds.time.data
-    
-    #  Need to figure a better way to capture sensor depths - using this from the filename for now
-    df['filename'] = ds.filename.data
-    df['file_depth'] = df['filename'].str[-10:-8].astype(int)
-
-    df_depth = df[df['file_depth'] == mooring_depth]
-
-    x = df_depth.Time
-    salt = df_depth.Salt
-    temp = df_depth.Temp
-   
-   
-    #  try to put labels on the blank shared x axis
-    #tcks = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
-    #tklbls = ["2018-01", "2018-07", "2019-01", "2019-07", "2020-01", "2020-07", "2021-01", "2021-07", "2022-01", "2022-01"]
-    
-    fig, ax = plt.subplots(2, figsize=(15, 8), sharex=True)
-   
-    ax[0].plot(x, salt, linewidth=0.05, c='blue')
-    ax[0].set_title('Salinity')
-   
-    ax[1].plot(x, temp, linewidth=0.5, c='orange')
-    ax[1].set_title("Temperature")
-    
-    
-    fig.subplots_adjust(hspace=0.5)
-    plt.suptitle("DFO Mooring Station E01 at depth {} metres".format(str(mooring_depth)))
-    plt.show()
-    
-plot_dfo_mooring(75)
-
-
-
-
-../_images/f6c08ae391f1d10f13a8378e6d52545e23a2e4da1a90b63e4b6985fe18600000.png -
-
-
-

Have a look at the various salinity variables.#

-
-
-
import matplotlib.pyplot as plt
-import numpy as np
-import pandas as pd
-
-def plot_dfo_salt(mooring_depth):
-    
-
-    df = pd.DataFrame()
-    
-    df['sea_water_practical_salinity'] = ds.sea_water_practical_salinity.data
-    df['PSALST01'] = ds.PSALST01.data
-    df['PSALST02'] = ds.PSALST02.data
-    df['SSALST01'] = ds.SSALST01.data
-    df['Time'] = ds.time.data
-    
-    #  Need to figure a better way to capture sensor depths - using this from the filename for now
-    df['filename'] = ds.filename.data
-    df['file_depth'] = df['filename'].str[-10:-8].astype(int)
-
-    # isolate the sensor depth
-    df_depth = df[df['file_depth'] == mooring_depth]
-
-    x = df_depth.Time
-    var1 = df_depth.sea_water_practical_salinity
-    var2 = df_depth.PSALST01
-    var3 = df_depth.PSALST02
-    var4 = df_depth.SSALST01
-   
-    fig, ax = plt.subplots(4, figsize=(15, 8), sharex=True)
-   
-    ax[0].plot(x, var1, linewidth=0.05, c='blue')
-    ax[0].set_title('sea_water_practical_salinity')
-    ax[1].plot(x, var2, linewidth=0.5, c='orange')
-    ax[1].set_title("PSALST01")
-    ax[2].plot(x, var3, linewidth=0.5, c='purple')
-    ax[2].set_title("PSALST02")
-    ax[3].plot(x, var3, linewidth=0.5, c='purple')
-    ax[3].set_title("SSALST01")
-    fig.subplots_adjust(hspace=0.5)
-    plt.suptitle("DFO Mooring Station E01 Salinity variables at depth {} metres".format(str(mooring_depth)))
-    plt.show()
-    
-plot_dfo_salt(75)
-
-
-
-
-../_images/73b7ad9b0f4ebae774c341c52f3b209efee985879fd37868633843d042038e55.png -
-
-
-
-

Have a look at the various temperature variables.#

-
-
-
def plot_dfo_temp(mooring_depth):
-    
-    df = pd.DataFrame()
-    
-    df['sea_water_temperature'] = ds.sea_water_temperature.data
-    df['TEMPST01'] = ds.TEMPST01.data
-    df['TEMPS601'] = ds.TEMPS601.data
-    df['TEMPS602'] = ds.TEMPS602.data
-    #df['TEMPS902'] = ds.TEMPS902.data - ? doesn't exist
-    df['TEMPS901'] = ds.TEMPS901.data
-    df['Time'] = ds.time.data
-    df['filename'] = ds.filename.data
-    
-    #  Need to figure a better way to capture sensor depths - using this from the filename for now
-    df['file_depth'] = df['filename'].str[-10:-8].astype(int)
-    df['depth'] = ds.depth.data
-    
-    #  Saw some data gaps - populated the nans with TEMPST01
-    #  Merge the two temp columns
-    df['merge_temp'] = np.where(df['sea_water_temperature'].isnull(), df['TEMPST01'], df['sea_water_temperature'])
-    
-    # isolate the sensor depth
-    df_depth = df[df['file_depth'] == mooring_depth]
-    
-    # look at the depth range for 75m sensors - can we use this in the erddap option?
-    # print(df_depth['depth'].max()) # 80.15737  
-    # print(df_depth['depth'].min()) # 68.238
-
-    x = df_depth.Time
-    var1 = df_depth.sea_water_temperature
-    var2 = df_depth.TEMPST01
-    var3 = df_depth.TEMPS601
-    var4 = df_depth.TEMPS602
-    var5 = df_depth.TEMPS901
-    var6 = df_depth.merge_temp
-    
-   
-    fig, ax = plt.subplots(6, figsize=(15, 8), sharex=True, sharey=True)
-   
-    ax[0].plot(x, var1, linewidth=0.05, c='blue')
-    ax[0].set_title('sea_water_temperature')
-    ax[1].plot(x, var2, linewidth=0.5, c='orange')
-    ax[1].set_title("TEMPST01")
-    ax[2].plot(x, var3, linewidth=0.5, c='purple')
-    ax[2].set_title("TEMPS601")
-    ax[3].plot(x, var4, linewidth=0.5, c='green')
-    ax[3].set_title("TEMPS601")
-    ax[4].plot(x, var5, linewidth=0.5, c='red')
-    ax[4].set_title("TEMPS901")
-    ax[5].plot(x, var6, linewidth=0.5, c='red')
-    ax[5].set_title("merge_temp")
-    fig.subplots_adjust(hspace=0.5)
-    plt.suptitle("DFO Mooring Station E01 Temperature variables at depth {} metres".format(str(mooring_depth)))
-    plt.show()
-    
-plot_dfo_temp(75)
-
-
-
-
-../_images/f2959306183b478c67bdbcfe7948459677e513bd3491c5bfa9268e5d660ebd63.png -
-
-
-
-

Have a look at the various oxygen variables.#

-
-
-
#  Not seeing any oxy in this time frame at any depth.
-
-def plot_dfo_oxy(mooring_depth):
-    
-    df = pd.DataFrame()
-    
-    df['DOXYZZ01'] = ds.DOXYZZ01.data
-    df['DOXMZZ01'] = ds.DOXMZZ01.data
-    df['Time'] = ds.time.data
-    df['filename'] = ds.filename.data
-    
-    #  Need to figure a better way to capture sensor depths - using this from the filename for now
-    df['file_depth'] = df['filename'].str[-10:-8].astype(int)
-    df['depth'] = ds.depth.data
-
-    # isolate the sensor depth
-    df_depth = df[df['file_depth'] == mooring_depth]
-    
-
-    x = df_depth.Time
-    var1 = df_depth.DOXYZZ01
-    var2 = df_depth.DOXMZZ01
-    
-   
-    fig, ax = plt.subplots(2, figsize=(15, 8), sharex=True, sharey=True)
-   
-    ax[0].plot(x, var1, linewidth=0.05, c='blue')
-    ax[0].set_title('DOXYZZ01')
-    ax[1].plot(x, var2, linewidth=0.5, c='orange')
-    ax[1].set_title("DOXMZZ01")
-
-    fig.subplots_adjust(hspace=0.5)
-    plt.suptitle("DFO Mooring Station E01 Oxygen variables at depth {} metres".format(str(mooring_depth)))
-    plt.show()
-    
-plot_dfo_oxy(90)
-
-
-
-
-
-
-
- -
- -
- -
- - - -
- -
- -
-
-
- -
- -
- -
- - - - - - -
-
- -
- -
-
-
- - - - - -
- - -
- - \ No newline at end of file diff --git a/_build/dirhtml/index.html b/_build/dirhtml/index.html index d56de6f..4967d87 100644 --- a/_build/dirhtml/index.html +++ b/_build/dirhtml/index.html @@ -424,6 +424,10 @@

Collaborators @@ -448,8 +452,6 @@

Goals# - Facilitate inclusive community building: Connect oceanographers across disciplines and career stages and cultivate an open science and a sharing culture. --> -

Here is a plotly plot!

-

Participant Quotes

diff --git a/_build/dirhtml/interactive/holoviz_plotting_tests/index.html b/_build/dirhtml/interactive/holoviz_plotting_tests/index.html index 69e32e5..620ae8c 100644 --- a/_build/dirhtml/interactive/holoviz_plotting_tests/index.html +++ b/_build/dirhtml/interactive/holoviz_plotting_tests/index.html @@ -9,7 +9,7 @@ - <no title> — Pacific Moorings Page + Holoviz plotting - shrinking the time range — Pacific Moorings Page @@ -377,6 +377,17 @@ What I do
-->

+ @@ -414,7 +425,7 @@ - + @@ -430,7 +441,10 @@
-

holoviz plotting - shrinking the time range

+
+

Holoviz plotting - shrinking the time range#

+

We’ve attempted to use the Holoviz package to make some interactive figures. The figures need an active python kernel to function, and so can’t be inserted directly into a static webpage.

+

In this notebook, we show some examples of creating interactive figures to highlight what can be done. At the end of the script, we build a plotting function, and bind it in a Holoviz Panel, which can then be launched as an app. This requires a separately running server to host the python functionality, and highlights the sort of possibilities that these tools can have.

import erddapy
@@ -438,10 +452,7 @@
 import numpy as np
 import pandas as pd
 import xarray as xr
-import cf_xarray as cfxr
 import datetime
-import netCDF4
-from netCDF4 import Dataset
 
 import matplotlib
 from matplotlib import pyplot as plt
@@ -454,7 +465,7 @@
 import panel as pn
 
 
-pn.extension(template='fast')
+pn.extension(template='material')
 
@@ -1614,49 +1625,10 @@
-
-
-
def datetime_to_ordinal_withseconds(x):
-    """
-    Converts a datetime object to an ordinal number, 
-    taking into account both the date and time parts of the input.
-    The resulting ordinal number represents the number of days 
-    since January 1, 1 AD, at 12:00 AM, 
-    plus a fractional portion representing the time part of the input.
-    """
-    # Import libraries
-    import numpy as np
-    import pandas as pd
-    import datetime
-
-    # Extract year, month, day, hour, minute, 
-    # and second components from input datetime object
-    year = x.year
-    month = x.month
-    day = x.day
-    hour = x.hour
-    minute = x.minute
-    second = x.second
-
-    # Create a new datetime object using the 
-    # extracted year, month, and day components
-    date_obj = datetime.datetime(year, month, day)
-
-    # Get the ordinal number of the date
-    date_ordinal = datetime.datetime.toordinal(date_obj)
-
-    # Calculate the partial ordinal number for the time part of the input
-    date_partial = (hour + (minute + (second / 60)) / 60) / 24
-
-    # Combine the date and time ordinal numbers
-    x_ordinal = date_ordinal + date_partial
-
-    # Return the final ordinal number
-    return x_ordinal
-
-
-
-
+
+
+

Load in data from the ERDDAP server#

+

First, we need to get some data. To do this, we can download data from the NANOOS buoy near Hansville, WA. The data is a gridded product of individual CTD casts taken for the last 10+ years on a near-daily basis.

nwem_url = 'http://nwem.apl.washington.edu/erddap'
@@ -1667,7 +1639,7 @@
              "sea_water_practical_salinity",
              "mass_concentration_of_oxygen_in_sea_water"]
 
-constraints = {"cast_start_time>=":datetime.datetime(2010,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}
+constraints = {"cast_start_time>=":datetime.datetime(2016,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}
 #constraints = {"cast_start_time>=": "max(cast_start_time)-365"}
 
 nwem_grid = get_erddap_data(nwem_url, nwem_dataset, 
@@ -1678,37 +1650,24 @@
 
+
+
+

Create a slider to move between individual casts#

+

Next, we can create an interactive plot, where we can show the sea surface temperature for individual casts.

-
date_slider = pn.widgets.DateRangeSlider(name='Earliest Date', 
-                                         start=datetime.datetime(2010,1,1), 
-                                         end=datetime.datetime(2023,1,1), 
-                                         value=(datetime.datetime(2015,1,1),datetime.datetime(2020,1,1))).servable(target='sidebar')
-
-
-
-
-
-
-
nwem_interactive = nwem_grid.interactive()
-
-
-
-
-
-
-
slider = pn.widgets.IntSlider(name='Dates', start=100, end=7000)
+
slider = pn.widgets.IntSlider(name='Dates', start=100, end=nwem_grid.dims['cast_start_time'])
 nwem_grid.interactive().isel(cast_start_time=slider).sea_water_temperature.hvplot()
 
-
-
+
+
+
+
+

Create a function to create an interactive plotting time range#

+

Finally, we can try to create a Holoviz Panel app, which can be embedded into a webpage, if there is an active server running.

def plot_timerange(nwem_interactive, date_slider):
@@ -1783,15 +1746,24 @@
     dates_to_plot = nwem_to_plot.cast_start_time.values
     depths_to_plot = nwem_to_plot.depth.values
     sst_to_plot = nwem_to_plot.sea_water_temperature.values
+    sss_to_plot = nwem_to_plot.sea_water_practical_salinity.values
+    
+    fig = plt.Figure(figsize=(6,4))
     
-    fig = plt.Figure()
-    ax = fig.add_subplot(111)
-    cb = ax.pcolor(dates_to_plot, depths_to_plot, sst_to_plot.T)
-    ax.invert_yaxis()
-    fig.colorbar(cb,ax=ax)
+    ax1 = fig.add_subplot(211)
+    cb = ax1.pcolor(dates_to_plot, depths_to_plot, sst_to_plot.T)
+    ax1.invert_yaxis()
+    fig.colorbar(cb,ax=ax1,label='Temperature')
+    ax1.set_title('Hansville - NANOOS Buoy')
+    ax1.set_ylabel('Depth (m)')
     
-    #(nwem_interactive.where(nwem_interactive.cast_dates > date_slider,drop=True).
-    # sea_water_temperature.plot(x='cast_start_time'))
+    ax2 = fig.add_subplot(212)
+    cb = ax2.pcolor(dates_to_plot, depths_to_plot, sss_to_plot.T)
+    ax2.invert_yaxis()
+    fig.colorbar(cb,ax=ax2,label='Salinity')
+    ax2.set_ylabel('Depth (m)')
+    
+    fig.tight_layout()
     
     return fig   
 
@@ -1800,81 +1772,21 @@
-
date_slider
-
-
-
-
-
-
-
-
-
-
-
-
mpl = pn.pane.Matplotlib(
+
# Create an interactive xarray
+nwem_interactive = nwem_grid.interactive()
+
+# Create a date slider widget
+date_slider = pn.widgets.DateRangeSlider(name='Earliest Date', 
+                                         start=datetime.datetime(2016,1,1), 
+                                         end=datetime.datetime(2023,1,1), 
+                                         value=(datetime.datetime(2017,1,1),
+                                                datetime.datetime(2020,1,1))).servable(target='sidebar')
+
+
+# Use a matplotlib panel pane to 
+# plot the time range, using the interactive array
+# and the date slider
+mpl = pn.pane.Matplotlib(
     pn.bind(plot_timerange, nwem_interactive, date_slider)
 )
 
@@ -1885,12 +1797,12 @@
 
-
-
+
+
+

To test out the app, we can click the “Preview with Panel” button in the notebook ribbon at the top (it’s next to the code/markdown dropdown menu)

+
@@ -1993,7 +1907,11 @@ On this page
diff --git a/_build/dirhtml/interactive/interactive/index.html b/_build/dirhtml/interactive/interactive/index.html index 94d8e45..172cf5c 100644 --- a/_build/dirhtml/interactive/interactive/index.html +++ b/_build/dirhtml/interactive/interactive/index.html @@ -48,8 +48,8 @@ - - + + + + + + + + + + + + + + + + + + +
+
+
+
+
+ + + +
+
+ +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+
+

Puget Sound Climatology Plot#

+
+
+
import erddapy
+from erddapy import ERDDAP
+import numpy as np
+import pandas as pd
+import xarray
+import cf_xarray
+import datetime
+import netCDF4
+from netCDF4 import Dataset
+
+import matplotlib
+from matplotlib import pyplot as plt
+
+
+
+
+

Downloading Data

+
+
+
def get_erddap_data(erddap_url, dataset, data_protocol="griddap", variables=None, constraints=None):
+    """
+    Function: get_erddap_data
+    This function uses the erddapy python library to access data from ERDDAP servers,
+    and to return it to users in convenient formats for python users.
+    Data can be pulled from "tabledap" or "griddap" formats, with different
+    output types, depending on the dap type.
+    
+    Inputs:
+    erddap_url    - The url address of the erddap server to pull data from
+    variables     - The selected variables within the dataset.
+    data_protocol - The erddap data protocol for the chosen dataset.
+                    Options include "tabledap" or "griddap"
+                    The default option is given as "griddap"
+    dataset       - The ID for the relevant dataset on the erddap server
+                    If no variables are given, it is assumed that all variables
+                    will be pulled.
+    constraints   - These are set by the user to help restrict the data pull
+                    to only the area and timeframe of interest.
+                    If no constraints are given, all data in a dataset is pulled.
+                    Constraints should be given as a dictionary, where
+                    each entry is a bound and/or selection of a specific axis variable
+                    Exs. {"longitude<=": "min(longitude)+10", "longitude>=": "0"}
+                         {"longitude=": "140", "time>=": "max(time)-30"}
+    
+    Outputs:
+    erddap_data   - This variable contains the pulled data from the erddap server.
+                    If the data_protocol is "griddap",  then erddap_data is an xarray dataset
+                    If the data_protocol is "tabledap", then erddap_data is a pandas dataframe
+    """
+    
+    import erddapy
+    from erddapy import ERDDAP
+    import pandas as pd
+    import xarray
+    
+    
+    ############################################
+    # Set-up the connection to the ERDDAP server
+    ############################################
+    
+    # Connect to the erddap server
+    e = ERDDAP(server=erddap_url, protocol=data_protocol, response='csv')
+    
+    # Identify the dataset of interest
+    e.dataset_id = dataset
+    
+    
+    #########################################
+    # Pull the data, based upon protocol type
+    #########################################
+    
+    # GRIDDAP Protocol
+    if data_protocol == "griddap":
+        
+        # Initialize the connection
+        e.griddap_initialize()
+
+        # Update the constraints
+        if constraints is not None:
+            e.constraints.update(constraints)
+            e.griddap_initialize()
+            
+        # Update the selection of the variables
+        if variables is not None:
+            e.variables = variables
+
+        erddap_data = e.to_xarray()
+    
+    # TABLEDAP Protocol
+    elif data_protocol == "tabledap":
+
+        # Update the constraints
+        if constraints is not None:
+            e.constraints = constraints
+            
+        # Update the selection of the variables
+        if variables is not None:
+            e.variables = variables
+            
+        erddap_data = e.to_pandas()
+    
+    # Invalid protocol given
+    else:
+        print('Invalid ERDDAP protocol. Given protocol is: ' + data_protocol)
+        print('Valid protocols include "griddap" or "tabledap". Please restart and try again with a valid protocol')
+        erddap_data = None
+    
+    
+    #############################
+    return erddap_data
+
+
+
+
+

Extracting Climatology Data for Plotting at Specific Depth for Two Mooring Sub-stations

+
+
+
nwem_url = 'http://nwem.apl.washington.edu/erddap'
+
+nwem_dataset1 = 'orca3_L3_depth_climatology_025'
+nwem_dataset2 = 'npby1_L3_depth_climatology_025'
+
+variables = ["sea_water_temperature",
+             "sea_water_practical_salinity","mass_concentration_of_oxygen_in_sea_water"]
+
+constraints = {"time>=":datetime.datetime(1970,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}
+#constraints = None
+#constraints = {"cast_start_time>=": "max(cast_start_time)-365"}
+
+nwem_grid1 = get_erddap_data(nwem_url, nwem_dataset1, 
+                variables=variables, 
+                constraints=constraints,
+                data_protocol="griddap")
+
+nwem_grid2 = get_erddap_data(nwem_url, nwem_dataset2, 
+                variables=variables, 
+                constraints=constraints,
+                data_protocol="griddap")
+
+
+
+
+
+
+
#nwem_grid2
+
+
+
+
+
+
+
ds1=nwem_grid1; ds2=nwem_grid2; 
+
+
+
+
+
+
+
# ds1.sea_water_temperature.values ds1.sea_water_temperature.shape
+
+
+
+
+
+
+
depth1=np.array(ds1.depth.values[:]); depth2=np.array(ds2.depth.values[:]); 
+date1=np.array(ds1.time.values[:]); date2=np.array(ds2.time.values[:])#325
+depth_l="50"
+
+
+
+
+
+
+
date1= np.array([pd.Timestamp(date).dayofyear for date in date1]); date2= np.array([pd.Timestamp(date).dayofyear for date in date2]); 
+
+
+
+
+
+
+
str1="sea_water_temperature"; str2="sea_water_practical_salinity";str3='mass_concentration_of_oxygen_in_sea_water';
+
+
+
+
+
+
+
var1_sst=ds1[str1]; var1_sss=ds1[str2]; var1_oxy=ds1[str3]; 
+
+var2_sst=ds2[str1]; var2_sss=ds2[str2]; var2_oxy=ds2[str3]; 
+
+
+
+
+
+
+
var1_sst=var1_sst.assign_coords(time=("time",date1))
+var1_sss=var1_sss.assign_coords(time=("time",date1))
+var1_oxy=var1_oxy.assign_coords(time=("time",date1))
+
+var2_sst=var2_sst.assign_coords(time=("time",date2))
+var2_sss=var2_sss.assign_coords(time=("time",date2))
+var2_oxy=var2_oxy.assign_coords(time=("time",date2))
+
+
+
+
+
+
+
tser1_sst=var1_sst.isel(depth=int(depth_l)); tser2_sst=var2_sst.isel(depth=int(depth_l))
+tser1_sss=var1_sss.isel(depth=int(depth_l)); tser2_sss=var2_sss.isel(depth=int(depth_l))
+tser1_oxy=var1_oxy.isel(depth=int(depth_l)); tser2_oxy=var2_oxy.isel(depth=int(depth_l))       
+
+
+
+
+

Plotting the Climatology Temp, Salinity, and Oxygen at depth for the two sub-stations Orca3 and Nbpy1

+
+
+
f, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(8, 6))  # Share x-axis
+t1 = ax1.plot(date1, tser1_sst,label='orca3'); t1_1=ax1.plot(date2, tser2_sst,label='npby1');
+t2 = ax2.plot(date1, tser1_sss); t2_2 = ax2.plot(date2, tser2_sss)
+t3 = ax3.plot(date1, tser1_oxy); t3_2 = ax3.plot(date2, tser2_oxy)
+
+
+ax1.set_title("Temperature (°C) @ depth " + depth_l)
+ax1.set_xlabel("")
+ax1.set_ylabel("°C")
+#ax1.set_xticks(ds.cast_start_time[tick_positions].values)
+ax1.set_xticklabels([])
+ax1.legend()
+
+ax2.set_title("Salinity (psu) @ depth " + depth_l)
+ax2.set_xlabel("")
+ax2.set_ylabel("psu")
+#ax1.set_xticks(ds.cast_start_time[tick_positions].values)
+ax2.set_xticklabels([])
+
+ax3.set_title("Oxygen (mg/L) @ depth " + depth_l)
+ax3.set_xlabel("")
+ax3.set_ylabel("mg/L")
+
+#ax1.set_xticks(ds.cast_start_time[tick_positions].values)
+#ax2.set_xticklabels([])
+f.suptitle("Climatology Temp, Salinity, and Oxygen at depth for Stations Orca3 and nbpy1", fontsize=16, y=1.02)
+plt.tight_layout()
+plt.show()
+
+
+
+
+../../_images/c19a585219389411301a12c2ce93db23e89bd21401a1621a8e947723ccaab275.png +
+
+

Data Preparation for Climatology Depth Distribution Plots

+
+
+
sst1=var1_sst.transpose(); sst2=var2_sst.transpose();
+sss1=var1_sss.transpose(); sss2=var2_sss.transpose();
+oxy1=var1_oxy.transpose(); oxy2=var2_oxy.transpose();
+
+
+
+
+
+
+
formatted_time = date1
+tick_positions = np.linspace(0, len(date1) - 1, 6, dtype=int)
+tick_labels = [formatted_time[i] for i in tick_positions]
+
+
+
+
+

Climatology Plot of Temperature, Salinity, and Oxygen at Orca3 Station

+
+
+
f, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(8, 6))  # Share x-axis
+
+# Plot Temperature subplot
+sc1 = ax1.pcolor(date1, depth1, sst1, cmap="Spectral_r")
+ax1.set_title("Temperature (°C)")
+ax1.set_xlabel("")
+ax1.set_ylabel("Depth (m)")
+ax1.invert_yaxis()  # Invert y axis
+#ax1.set_xticks(date[tick_positions])
+ax1.set_xticklabels([])
+
+# Plot Salinity subplot
+sc2 = ax2.pcolor(date1, depth1, sss1, cmap="Spectral_r")
+ax2.set_title("Salinity (psu)")
+ax2.set_xlabel("")
+ax2.set_ylabel("Depth (m)")
+ax2.invert_yaxis()  # Invert y axis
+#ax2.set_xticks(date[tick_positions])
+ax2.set_xticklabels([])
+
+# Plot Oxygen subplot
+sc3 = ax3.pcolor(date1, depth1, oxy1, cmap="Spectral_r")
+ax3.set_title("Oxygen (mg/L)")
+ax3.set_ylabel("Depth (m)")
+ax3.set_xlabel("Time")
+#ax3.xaxis.set_major_locator(plt.FixedLocator(tick_positions))
+#ax3.set_xticks(date[tick_positions])  # Set tick positions for the third row
+#ax3.set_xticklabels(tick_labels, ha='center')  # Set tick labels for the third row
+ax3.invert_yaxis()  # Invert y axis
+
+# Add colorbars
+cbar1 = f.colorbar(sc1, ax=ax1, orientation='vertical')
+cbar1.ax.set_ylabel('°C',fontweight='bold')
+cbar1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar2 = f.colorbar(sc2, ax=ax2, orientation='vertical')
+cbar2.ax.set_ylabel('psu',fontweight='bold')
+cbar2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+
+cbar3 = f.colorbar(sc3, ax=ax3, orientation='vertical')
+cbar3.ax.set_ylabel('mg/L',fontweight='bold')
+cbar3.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+
+for ax in [ax1, ax2, ax3]:
+    ax.set_title(ax.get_title(), fontweight='bold')
+    ax.set_xlabel(ax.get_xlabel(), fontweight='bold')
+    ax.set_ylabel(ax.get_ylabel(), fontweight='bold')
+    for label in ax.get_xticklabels() + ax.get_yticklabels():
+        label.set_fontweight('bold')
+# Adjust layout
+plt.tight_layout()
+f.suptitle("Temp, Salinity, and Oxygen Climatology at Orca3 ", fontsize=16, y=1.02)
+plt.show()
+
+
+
+
+../../_images/fa37bf67d758decdf58fb20a3355e3f685036fda991325dd70753184c2db7510.png +
+
+

Comparing Climatology of Vertical Temperature, Salinity, and Oxygen of two Sub-Stations

+
+
+
f, axes = plt.subplots(3, 2, figsize=(14, 12))  # 3 rows, 2 columns
+
+# Plot Temperature subplots
+sc1_1 = axes[0, 0].pcolor(date1, depth1, sst1, cmap="Spectral_r", vmin=9,vmax=19)
+axes[0, 0].set_title("Temperature (°C) - Orca3")
+axes[0, 0].set_xlabel("")
+axes[0, 0].set_ylabel("Depth (m)")
+axes[0, 0].invert_yaxis()  # Invert y axis
+axes[0, 0].set_xticklabels([])
+axes[0, 0].set_ylim([90, 0])  # Set y-axis range
+#axes[0, 0].set_clim([10, 22])
+
+sc1_2 = axes[0, 1].pcolor(date2, depth2, sst2, cmap="Spectral_r", vmin=9,vmax=19)
+axes[0, 1].set_title("Temperature (°C) - npby1")
+axes[0, 1].set_xlabel("")
+#axes[0, 1].set_ylabel("Depth (m)")
+axes[0, 1].invert_yaxis()  # Invert y axis
+axes[0, 1].set_xticklabels([])
+axes[0, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Plot Salinity subplots
+sc2_1 = axes[1, 0].pcolor(date1, depth1, sss1, cmap="Spectral_r", vmin=25,vmax=31)
+axes[1, 0].set_title("Salinity (psu) - Orca3")
+axes[1, 0].set_xlabel("")
+axes[1, 0].set_ylabel("Depth (m)")
+axes[1, 0].invert_yaxis()  # Invert y axis
+axes[1, 0].set_xticklabels([])
+axes[1, 0].set_ylim([90, 0])  # Set y-axis range
+
+sc2_2 = axes[1, 1].pcolor(date2, depth2, sss2, cmap="Spectral_r",  vmin=25,vmax=31)
+axes[1, 1].set_title("Salinity (psu) - npby1")
+axes[1, 1].set_xlabel("")
+#axes[1, 1].set_ylabel("Depth (m)")
+axes[1, 1].invert_yaxis()  # Invert y axis
+axes[1, 1].set_xticklabels([])
+axes[1, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Plot Oxygen subplots
+sc3_1 = axes[2, 0].pcolor(date1, depth1, oxy1, cmap="Spectral_r",vmin=0,vmax=10)
+axes[2, 0].set_title("Oxygen (mg/L) - Orca3")
+axes[2, 0].set_ylabel("Depth (m)")
+axes[2, 0].set_xlabel("Time")
+axes[2, 0].invert_yaxis()  # Invert y axis
+axes[2, 0].set_ylim([90, 0])  # Set y-axis range
+
+sc3_2 = axes[2, 1].pcolor(date2, depth2, oxy2, cmap="Spectral_r",vmin=0,vmax=10)
+axes[2, 1].set_title("Oxygen (mg/L) - npby1")
+axes[2, 1].set_ylabel("Depth (m)")
+axes[2, 1].set_xlabel("Time")
+axes[2, 1].invert_yaxis()  # Invert y axis
+axes[2, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Add colorbars
+cbar1_1 = f.colorbar(sc1_1, ax=axes[0, 0], orientation='vertical')
+cbar1_1.ax.set_ylabel('°C', fontweight='bold')
+cbar1_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar1_2 = f.colorbar(sc1_2, ax=axes[0, 1], orientation='vertical')
+cbar1_2.ax.set_ylabel('°C', fontweight='bold')
+cbar1_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar2_1 = f.colorbar(sc2_1, ax=axes[1, 0], orientation='vertical')
+cbar2_1.ax.set_ylabel('psu', fontweight='bold')
+cbar2_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar2_2 = f.colorbar(sc2_2, ax=axes[1, 1], orientation='vertical')
+cbar2_2.ax.set_ylabel('psu', fontweight='bold')
+cbar2_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar3_1 = f.colorbar(sc3_1, ax=axes[2, 0], orientation='vertical')
+cbar3_1.ax.set_ylabel('mg/L', fontweight='bold')
+cbar3_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar3_2 = f.colorbar(sc3_2, ax=axes[2, 1], orientation='vertical')
+cbar3_2.ax.set_ylabel('mg/L', fontweight='bold')
+cbar3_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+# Adjust layout
+plt.tight_layout()
+f.suptitle("Climatology Comparison of Temp, Salinity, and Oxygen for Stations Orca3 and npby1", fontsize=16, y=1.02)
+plt.show()
+
+
+
+
+

End of Climatology Plotting

+
+ +
+ +
+ +
+ + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/_build/dirhtml/moorings/Puget_Sound/index.html b/_build/dirhtml/moorings/Puget_Sound/index.html index 1fb4476..6029d9a 100644 --- a/_build/dirhtml/moorings/Puget_Sound/index.html +++ b/_build/dirhtml/moorings/Puget_Sound/index.html @@ -9,7 +9,7 @@ - Plot Temperature subplot — Pacific Moorings Page + Puget Sound Plotting — Pacific Moorings Page @@ -47,9 +47,7 @@ - - - + + + + + + + + + + + + + + + + + +
+
+
+
+
+ + + +
+
+ +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+
+

Puget Sound Plotting#

+
+
+
import erddapy
+from erddapy import ERDDAP
+import numpy as np
+import pandas as pd
+import xarray
+import cf_xarray
+import datetime
+import netCDF4
+from netCDF4 import Dataset
+
+import matplotlib
+from matplotlib import pyplot as plt
+
+
+
+
+

Downloading the Mooring Datasets

+
+
+
def get_erddap_data(erddap_url, dataset, data_protocol="griddap", variables=None, constraints=None):
+    """
+    Function: get_erddap_data
+    This function uses the erddapy python library to access data from ERDDAP servers,
+    and to return it to users in convenient formats for python users.
+    Data can be pulled from "tabledap" or "griddap" formats, with different
+    output types, depending on the dap type.
+    
+    Inputs:
+    erddap_url    - The url address of the erddap server to pull data from
+    variables     - The selected variables within the dataset.
+    data_protocol - The erddap data protocol for the chosen dataset.
+                    Options include "tabledap" or "griddap"
+                    The default option is given as "griddap"
+    dataset       - The ID for the relevant dataset on the erddap server
+                    If no variables are given, it is assumed that all variables
+                    will be pulled.
+    constraints   - These are set by the user to help restrict the data pull
+                    to only the area and timeframe of interest.
+                    If no constraints are given, all data in a dataset is pulled.
+                    Constraints should be given as a dictionary, where
+                    each entry is a bound and/or selection of a specific axis variable
+                    Exs. {"longitude<=": "min(longitude)+10", "longitude>=": "0"}
+                         {"longitude=": "140", "time>=": "max(time)-30"}
+    
+    Outputs:
+    erddap_data   - This variable contains the pulled data from the erddap server.
+                    If the data_protocol is "griddap",  then erddap_data is an xarray dataset
+                    If the data_protocol is "tabledap", then erddap_data is a pandas dataframe
+    """
+    
+    import erddapy
+    from erddapy import ERDDAP
+    import pandas as pd
+    import xarray
+    
+    
+    ############################################
+    # Set-up the connection to the ERDDAP server
+    ############################################
+    
+    # Connect to the erddap server
+    e = ERDDAP(server=erddap_url, protocol=data_protocol, response='csv')
+    
+    # Identify the dataset of interest
+    e.dataset_id = dataset
+    
+    
+    #########################################
+    # Pull the data, based upon protocol type
+    #########################################
+    
+    # GRIDDAP Protocol
+    if data_protocol == "griddap":
+        
+        # Initialize the connection
+        e.griddap_initialize()
+
+        # Update the constraints
+        if constraints is not None:
+            e.constraints.update(constraints)
+            e.griddap_initialize()
+            
+        # Update the selection of the variables
+        if variables is not None:
+            e.variables = variables
+
+        erddap_data = e.to_xarray()
+    
+    # TABLEDAP Protocol
+    elif data_protocol == "tabledap":
+
+        # Update the constraints
+        if constraints is not None:
+            e.constraints = constraints
+            
+        # Update the selection of the variables
+        if variables is not None:
+            e.variables = variables
+            
+        erddap_data = e.to_pandas()
+    
+    # Invalid protocol given
+    else:
+        print('Invalid ERDDAP protocol. Given protocol is: ' + data_protocol)
+        print('Valid protocols include "griddap" or "tabledap". Please restart and try again with a valid protocol')
+        erddap_data = None
+    
+    
+    #############################
+    return erddap_data
+
+
+
+
+

Extracting Data for Plotting at Specific Depth for Two Mooring Sub-stations

+

Visualising the Study Area

+
+
+
#
+import folium
+tiles = (
+    "http://services.arcgisonline.com/arcgis/rest/services/"
+    "World_Topo_Map/MapServer/MapServer/tile/{z}/{y}/{x}"
+)
+
+#set the boundary box
+min_lat, max_lat = 47.25,48.0
+min_lon, max_lon = -123.2,-122.3
+lon = (min_lon + max_lon) / 2
+lat = (min_lat + max_lat) / 2
+#m = folium.Map(location=[lat, lon], tiles="OpenStreetMap", zoom_start=8)
+m = folium.Map(location=[lat, lon], tiles=tiles, attr="ESRI", zoom_start=8)
+folium.Marker([47.907,-122.627], popup="Hansville", tooltip="Hansville").add_to(m)
+folium.Marker([47.761,-122.3972], popup="Point Wells", tooltip="Point Wells").add_to(m)
+folium.Marker([47.8034,-122.8029], popup="Dabob Bay", tooltip="Dabob Bay").add_to(m)
+folium.Marker([47.28,-122.728], popup="Carr Inlet", tooltip="Carr Inlet").add_to(m)
+folium.Marker([47.375,-123.0083], popup="Twanoh", tooltip="Twanoh",icon=folium.Icon(color="red")).add_to(m)
+folium.Marker([47.4218,-123.1136], popup="Hoodsport", tooltip="Hoodsport",icon=folium.Icon(color="red")).add_to(m)
+folium.Polygon([(min_lat, min_lon), (max_lat, min_lon), (max_lat, max_lon), (min_lat, max_lon)],fill=True,color= "black",weight="2",
+              dashArray= "5, 5",).add_to(m)
+m
+
+
+
+
+
Make this Notebook Trusted to load map: File -> Trust Notebook
+
+
+
+
nwem_url = 'http://nwem.apl.washington.edu/erddap'
+
+nwem_dataset1 = 'orca3_L3_depthgridded_025'
+nwem_dataset2 = 'npby1_L3_depthgridded_025'
+
+variables = ["sea_water_temperature",
+             "sea_water_practical_salinity","mass_concentration_of_oxygen_in_sea_water","sea_water_temperature_qc_agg",
+             "sea_water_practical_salinity_qc_agg","mass_concentration_of_oxygen_in_sea_water_qc_agg"]
+
+constraints = {"cast_start_time>=":datetime.datetime(2012,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}
+#constraints = {"cast_start_time>=": "max(cast_start_time)-365"}
+
+nwem_grid1 = get_erddap_data(nwem_url, nwem_dataset1, 
+                variables=variables, 
+                constraints=constraints,
+                data_protocol="griddap")
+
+nwem_grid2 = get_erddap_data(nwem_url, nwem_dataset2, 
+                variables=variables, 
+                constraints=constraints,
+                data_protocol="griddap")
+
+
+
+
+
+
+
ds1=nwem_grid1; ds2=nwem_grid2; 
+
+
+
+
+
+
+
depth1=np.array(ds1.depth.values[:]); depth2=np.array(ds2.depth.values[:]); 
+date1=np.array(ds1.cast_start_time.values[:]); date2=np.array(ds2.cast_start_time.values[:])#325
+depth_l="50"
+
+
+
+
+
+
+
str1="sea_water_temperature"; str2="sea_water_practical_salinity";str3='mass_concentration_of_oxygen_in_sea_water';
+str4="sea_water_temperature_qc_agg"; str5="sea_water_practical_salinity_qc_agg";str6='mass_concentration_of_oxygen_in_sea_water_qc_agg';
+
+
+
+
+
+
+
var1_sst=ds1[str1]; var1_sss=ds1[str2]; var1_oxy=ds1[str3]; var1_sstqc=ds1[str4]; var1_sssqc=ds1[str5]; var1_oxyqc=ds1[str6]; ## Accessing buoy1
+var1_sst=var1_sst.where(var1_sstqc == 1); var1_sss=var1_sss.where(var1_sssqc == 1); var1_oxy=var1_oxy.where(var1_oxyqc == 1) ## Extracting only good data 
+
+var2_sst=ds2[str1]; var2_sss=ds2[str2]; var2_oxy=ds2[str3]; var2_sstqc=ds2[str4]; var2_sssqc=ds2[str5]; var2_oxyqc=ds2[str6]## Accessing buoy2
+var2_sst=var2_sst.where(var2_sstqc==1); var2_sss=var2_sss.where(var2_sssqc==1); var2_oxy=var2_oxy.where(var2_oxyqc==1); 
+
+
+
+
+
+
+
var1_sst=var1_sst.assign_coords(time=("cast_start_time",date1))
+var1_sss=var1_sss.assign_coords(time=("cast_start_time",date1))
+var1_oxy=var1_oxy.assign_coords(time=("cast_start_time",date1))
+
+var2_sst=var2_sst.assign_coords(time=("cast_start_time",date2))
+var2_sss=var2_sss.assign_coords(time=("cast_start_time",date2))
+var2_oxy=var2_oxy.assign_coords(time=("cast_start_time",date2))
+
+
+
+
+
+
+
tser1_sst=var1_sst.isel(depth=int(depth_l)); tser2_sst=var2_sst.isel(depth=int(depth_l))
+tser1_sss=var1_sss.isel(depth=int(depth_l)); tser2_sss=var2_sss.isel(depth=int(depth_l))
+tser1_oxy=var1_oxy.isel(depth=int(depth_l)); tser2_oxy=var2_oxy.isel(depth=int(depth_l))       
+
+
+
+
+

Time_Series Comparison of Temp, Salinity, and Oxygen at a depth for the two sub-stations Orca3 and Nbpy1

+
+
+
f, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(8, 6))  # Share x-axis
+t1 = ax1.plot(ds1.cast_start_time, tser1_sst,label='orca3'); t1_1=ax1.plot(ds2.cast_start_time, tser2_sst,label='npby1');
+t2 = ax2.plot(ds1.cast_start_time, tser1_sss); t2_2 = ax2.plot(ds2.cast_start_time, tser2_sss)
+t3 = ax3.plot(ds1.cast_start_time, tser1_oxy); t3_2 = ax3.plot(ds2.cast_start_time, tser2_oxy)
+
+
+ax1.set_title("Temperature (°C) @ depth " + depth_l)
+ax1.set_xlabel("")
+ax1.set_ylabel("°C")
+#ax1.set_xticks(ds.cast_start_time[tick_positions].values)
+ax1.set_xticklabels([])
+ax1.legend()
+
+ax2.set_title("Salinity (psu) @ depth " + depth_l)
+ax2.set_xlabel("")
+ax2.set_ylabel("psu")
+#ax1.set_xticks(ds.cast_start_time[tick_positions].values)
+ax2.set_xticklabels([])
+
+ax3.set_title("Oxygen (mg/L) @ depth " + depth_l)
+ax3.set_xlabel("")
+ax3.set_ylabel("mg/L")
+
+#ax1.set_xticks(ds.cast_start_time[tick_positions].values)
+#ax2.set_xticklabels([])
+f.suptitle("Comparing Temp, Salinity, and Oxygen at depth for Stations Orca3 and nbpy1", fontsize=16, y=1.02)
+plt.tight_layout()
+#t.legend()
+plt.show()
+
+
+
+
+../../_images/8671adbe5b598f22646444a34b9061487c1a82ee63bbdb8c7f60de7a343abd3f.png +
+
+

Data Preparation for Depth Distribution Plots

+
+
+
sst1=var1_sst.transpose(); sst2=var2_sst.transpose();
+sss1=var1_sss.transpose(); sss2=var2_sss.transpose();
+oxy1=var1_oxy.transpose(); oxy2=var2_oxy.transpose();
+
+
+
+
+
+
+
#oxy1.max() # , vmin=19,vmax=32.6  ,vmin=0.1,vmax=18
+
+
+
+
+
+
+
formatted_time = np.datetime_as_string(date1, unit='D')
+tick_positions = np.linspace(0, len(date1) - 1, 6, dtype=int)
+tick_labels = [formatted_time[i] for i in tick_positions]
+
+
+
+
+

Figure for Comparing Vertical Temperature, Salinity, and Oxygen at Orca3 Sub-Station

+
+
+
f, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(8, 6))  # Share x-axis
+
+# Plot Temperature subplot
+sc1 = ax1.pcolor(date1, depth1, sst1, cmap="Spectral_r")
+ax1.set_title("Temperature (°C)")
+ax1.set_xlabel("")
+ax1.set_ylabel("Depth (m)")
+ax1.invert_yaxis()  # Invert y axis
+#ax1.set_xticks(date[tick_positions])
+ax1.set_xticklabels([])
+
+# Plot Salinity subplot
+sc2 = ax2.pcolor(date1, depth1, sss1, cmap="Spectral_r")
+ax2.set_title("Salinity (psu)")
+ax2.set_xlabel("")
+ax2.set_ylabel("Depth (m)")
+ax2.invert_yaxis()  # Invert y axis
+#ax2.set_xticks(date[tick_positions])
+ax2.set_xticklabels([])
+
+# Plot Oxygen subplot
+sc3 = ax3.pcolor(date1, depth1, oxy1, cmap="Spectral_r")
+ax3.set_title("Oxygen (mg/L)")
+ax3.set_ylabel("Depth (m)")
+ax3.set_xlabel("Time")
+#ax3.xaxis.set_major_locator(plt.FixedLocator(tick_positions))
+#ax3.set_xticks(date[tick_positions])  # Set tick positions for the third row
+#ax3.set_xticklabels(tick_labels, ha='center')  # Set tick labels for the third row
+ax3.invert_yaxis()  # Invert y axis
+
+# Add colorbars
+cbar1 = f.colorbar(sc1, ax=ax1, orientation='vertical')
+cbar1.ax.set_ylabel('°C',fontweight='bold')
+cbar1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar2 = f.colorbar(sc2, ax=ax2, orientation='vertical')
+cbar2.ax.set_ylabel('psu',fontweight='bold')
+cbar2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+
+cbar3 = f.colorbar(sc3, ax=ax3, orientation='vertical')
+cbar3.ax.set_ylabel('mg/L',fontweight='bold')
+cbar3.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+
+for ax in [ax1, ax2, ax3]:
+    ax.set_title(ax.get_title(), fontweight='bold')
+    ax.set_xlabel(ax.get_xlabel(), fontweight='bold')
+    ax.set_ylabel(ax.get_ylabel(), fontweight='bold')
+    for label in ax.get_xticklabels() + ax.get_yticklabels():
+        label.set_fontweight('bold')
+# Adjust layout
+f.suptitle("Temp, Salinity, and Oxygen for Orca3 Station", fontsize=16, y=1.02)
+plt.tight_layout()
+plt.show()
+
+
+
+
+../../_images/54554af65baceb3f51bfdfde6d07f8cd72aac8e3dab6871a5d2f48e37dd05ae7.png +
+
+
+
+
f, axes = plt.subplots(3, 2, figsize=(14, 12))  # 3 rows, 2 columns
+
+# Plot Temperature subplots
+sc1_1 = axes[0, 0].pcolor(date1, depth1, sst1, cmap="Spectral_r", vmin=6.7,vmax=20)
+axes[0, 0].set_title("Temperature (°C) - Orca3")
+axes[0, 0].set_xlabel("")
+axes[0, 0].set_ylabel("Depth (m)")
+axes[0, 0].invert_yaxis()  # Invert y axis
+axes[0, 0].set_xticklabels([])
+axes[0, 0].set_ylim([90, 0])  # Set y-axis range
+#axes[0, 0].set_clim([10, 22])
+
+sc1_2 = axes[0, 1].pcolor(date2, depth2, sst2, cmap="Spectral_r", vmin=6.7,vmax=20)
+axes[0, 1].set_title("Temperature (°C) - npby1")
+axes[0, 1].set_xlabel("")
+#axes[0, 1].set_ylabel("Depth (m)")
+axes[0, 1].invert_yaxis()  # Invert y axis
+axes[0, 1].set_xticklabels([])
+axes[0, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Plot Salinity subplots
+sc2_1 = axes[1, 0].pcolor(date1, depth1, sss1, cmap="Spectral_r", vmin=19,vmax=32.6)
+axes[1, 0].set_title("Salinity (psu) - Orca3")
+axes[1, 0].set_xlabel("")
+axes[1, 0].set_ylabel("Depth (m)")
+axes[1, 0].invert_yaxis()  # Invert y axis
+axes[1, 0].set_xticklabels([])
+axes[1, 0].set_ylim([90, 0])  # Set y-axis range
+
+sc2_2 = axes[1, 1].pcolor(date2, depth2, sss2, cmap="Spectral_r", vmin=19,vmax=32.6)
+axes[1, 1].set_title("Salinity (psu) - npby1")
+axes[1, 1].set_xlabel("")
+#axes[1, 1].set_ylabel("Depth (m)")
+axes[1, 1].invert_yaxis()  # Invert y axis
+axes[1, 1].set_xticklabels([])
+axes[1, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Plot Oxygen subplots
+sc3_1 = axes[2, 0].pcolor(date1, depth1, oxy1, cmap="Spectral_r",vmin=0.1,vmax=18)
+axes[2, 0].set_title("Oxygen (mg/L) - Orca3")
+axes[2, 0].set_ylabel("Depth (m)")
+axes[2, 0].set_xlabel("Time")
+axes[2, 0].invert_yaxis()  # Invert y axis
+axes[2, 0].set_ylim([90, 0])  # Set y-axis range
+
+sc3_2 = axes[2, 1].pcolor(date2, depth2, oxy2, cmap="Spectral_r",vmin=0.1,vmax=18)
+axes[2, 1].set_title("Oxygen (mg/L) - npby1")
+axes[2, 1].set_ylabel("Depth (m)")
+axes[2, 1].set_xlabel("Time")
+axes[2, 1].invert_yaxis()  # Invert y axis
+axes[2, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Add colorbars
+cbar1_1 = f.colorbar(sc1_1, ax=axes[0, 0], orientation='vertical')
+cbar1_1.ax.set_ylabel('°C', fontweight='bold')
+cbar1_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar1_2 = f.colorbar(sc1_2, ax=axes[0, 1], orientation='vertical')
+cbar1_2.ax.set_ylabel('°C', fontweight='bold')
+cbar1_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar2_1 = f.colorbar(sc2_1, ax=axes[1, 0], orientation='vertical')
+cbar2_1.ax.set_ylabel('psu', fontweight='bold')
+cbar2_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar2_2 = f.colorbar(sc2_2, ax=axes[1, 1], orientation='vertical')
+cbar2_2.ax.set_ylabel('psu', fontweight='bold')
+cbar2_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar3_1 = f.colorbar(sc3_1, ax=axes[2, 0], orientation='vertical')
+cbar3_1.ax.set_ylabel('mg/L', fontweight='bold')
+cbar3_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar3_2 = f.colorbar(sc3_2, ax=axes[2, 1], orientation='vertical')
+cbar3_2.ax.set_ylabel('mg/L', fontweight='bold')
+cbar3_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+# Adjust layout
+plt.tight_layout()
+f.suptitle("Depth Comparison of Temp, Salinity, and Oxygen for Stations Orca3 and npby1", fontsize=16, y=1.02)
+plt.show()
+
+
+
+
+../../_images/3af2551184d80e83370923dc4318d1d221b463b9cbe14c1b381f72e22daa79b9.png +
+
+
+ +
+ +
+ +
+ + + + + +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/_build/dirhtml/moorings/Puget_Sound2/index.html b/_build/dirhtml/moorings/Puget_Sound2/index.html new file mode 100644 index 0000000..d5d9e2e --- /dev/null +++ b/_build/dirhtml/moorings/Puget_Sound2/index.html @@ -0,0 +1,832 @@ + + + + + + + + + + + + Puget Sound Plotting2 — Pacific Moorings Page + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+
+ + + +
+
+ +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + + + +
+ +
+ + +
+
+ + + + + +
+
+

Puget Sound Plotting2#

+
+
+
import erddapy
+from erddapy import ERDDAP
+import numpy as np
+import pandas as pd
+import xarray
+import cf_xarray
+import datetime
+import netCDF4
+from netCDF4 import Dataset
+
+import matplotlib
+from matplotlib import pyplot as plt
+
+
+
+
+
+
+
def get_erddap_data(erddap_url, dataset, data_protocol="griddap", variables=None, constraints=None):
+    """
+    Function: get_erddap_data
+    This function uses the erddapy python library to access data from ERDDAP servers,
+    and to return it to users in convenient formats for python users.
+    Data can be pulled from "tabledap" or "griddap" formats, with different
+    output types, depending on the dap type.
+    
+    Inputs:
+    erddap_url    - The url address of the erddap server to pull data from
+    variables     - The selected variables within the dataset.
+    data_protocol - The erddap data protocol for the chosen dataset.
+                    Options include "tabledap" or "griddap"
+                    The default option is given as "griddap"
+    dataset       - The ID for the relevant dataset on the erddap server
+                    If no variables are given, it is assumed that all variables
+                    will be pulled.
+    constraints   - These are set by the user to help restrict the data pull
+                    to only the area and timeframe of interest.
+                    If no constraints are given, all data in a dataset is pulled.
+                    Constraints should be given as a dictionary, where
+                    each entry is a bound and/or selection of a specific axis variable
+                    Exs. {"longitude<=": "min(longitude)+10", "longitude>=": "0"}
+                         {"longitude=": "140", "time>=": "max(time)-30"}
+    
+    Outputs:
+    erddap_data   - This variable contains the pulled data from the erddap server.
+                    If the data_protocol is "griddap",  then erddap_data is an xarray dataset
+                    If the data_protocol is "tabledap", then erddap_data is a pandas dataframe
+    """
+    
+    import erddapy
+    from erddapy import ERDDAP
+    import pandas as pd
+    import xarray
+    
+    
+    ############################################
+    # Set-up the connection to the ERDDAP server
+    ############################################
+    
+    # Connect to the erddap server
+    e = ERDDAP(server=erddap_url, protocol=data_protocol, response='csv')
+    
+    # Identify the dataset of interest
+    e.dataset_id = dataset
+    
+    
+    #########################################
+    # Pull the data, based upon protocol type
+    #########################################
+    
+    # GRIDDAP Protocol
+    if data_protocol == "griddap":
+        
+        # Initialize the connection
+        e.griddap_initialize()
+
+        # Update the constraints
+        if constraints is not None:
+            e.constraints.update(constraints)
+            e.griddap_initialize()
+            
+        # Update the selection of the variables
+        if variables is not None:
+            e.variables = variables
+
+        erddap_data = e.to_xarray()
+    
+    # TABLEDAP Protocol
+    elif data_protocol == "tabledap":
+
+        # Update the constraints
+        if constraints is not None:
+            e.constraints = constraints
+            
+        # Update the selection of the variables
+        if variables is not None:
+            e.variables = variables
+            
+        erddap_data = e.to_pandas()
+    
+    # Invalid protocol given
+    else:
+        print('Invalid ERDDAP protocol. Given protocol is: ' + data_protocol)
+        print('Valid protocols include "griddap" or "tabledap". Please restart and try again with a valid protocol')
+        erddap_data = None
+    
+    
+    #############################
+    return erddap_data
+
+
+
+
+
+
+
nwem_url = 'http://nwem.apl.washington.edu/erddap'
+
+nwem_dataset1 = 'orca3_L3_depthgridded_025'
+nwem_dataset2 = 'npby1_L3_depthgridded_025'
+
+variables = ["sea_water_temperature",
+             "sea_water_practical_salinity","mass_concentration_of_oxygen_in_sea_water","sea_water_temperature_qc_agg",
+             "sea_water_practical_salinity_qc_agg","mass_concentration_of_oxygen_in_sea_water_qc_agg"]
+
+constraints = {"cast_start_time>=":datetime.datetime(2012,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}
+#constraints = {"cast_start_time>=": "max(cast_start_time)-365"}
+
+nwem_grid1 = get_erddap_data(nwem_url, nwem_dataset1, 
+                variables=variables, 
+                constraints=constraints,
+                data_protocol="griddap")
+
+nwem_grid2 = get_erddap_data(nwem_url, nwem_dataset2, 
+                variables=variables, 
+                constraints=constraints,
+                data_protocol="griddap")
+
+
+
+
+
+
+
ds1=nwem_grid1; ds2=nwem_grid2; 
+
+
+
+
+
+
+
depth1=np.array(ds1.depth.values[:]); depth2=np.array(ds2.depth.values[:]); 
+date1=np.array(ds1.cast_start_time.values[:]); date2=np.array(ds2.cast_start_time.values[:])#325
+depth_l="50"
+
+
+
+
+
+
+
str1="sea_water_temperature"; str2="sea_water_practical_salinity";str3='mass_concentration_of_oxygen_in_sea_water';
+str4="sea_water_temperature_qc_agg"; str5="sea_water_practical_salinity_qc_agg";str6='mass_concentration_of_oxygen_in_sea_water_qc_agg';
+
+
+
+
+
+
+
var1_sst=ds1[str1]; var1_sss=ds1[str2]; var1_oxy=ds1[str3]; var1_sstqc=ds1[str4]; var1_sssqc=ds1[str5]; var1_oxyqc=ds1[str6]; ## Accessing buoy1
+var1_sst=var1_sst.where(var1_sstqc == 1); var1_sss=var1_sss.where(var1_sssqc == 1); var1_oxy=var1_oxy.where(var1_oxyqc == 1) ## Extracting only good data 
+
+var2_sst=ds2[str1]; var2_sss=ds2[str2]; var2_oxy=ds2[str3]; var2_sstqc=ds2[str4]; var2_sssqc=ds2[str5]; var2_oxyqc=ds2[str6]## Accessing buoy2
+var2_sst=var2_sst.where(var2_sstqc==1); var2_sss=var2_sss.where(var2_sssqc==1); var2_oxy=var2_oxy.where(var2_oxyqc==1); 
+
+
+
+
+
+
+
var1_sst=var1_sst.assign_coords(time=("cast_start_time",date1))
+var1_sss=var1_sss.assign_coords(time=("cast_start_time",date1))
+var1_oxy=var1_oxy.assign_coords(time=("cast_start_time",date1))
+
+var2_sst=var2_sst.assign_coords(time=("cast_start_time",date2))
+var2_sss=var2_sss.assign_coords(time=("cast_start_time",date2))
+var2_oxy=var2_oxy.assign_coords(time=("cast_start_time",date2))
+
+
+
+
+
+
+
sst1=var1_sst.transpose(); sst2=var2_sst.transpose();
+sss1=var1_sss.transpose(); sss2=var2_sss.transpose();
+oxy1=var1_oxy.transpose(); oxy2=var2_oxy.transpose();
+
+
+
+
+
+
+
formatted_time = np.datetime_as_string(date1, unit='D')
+tick_positions = np.linspace(0, len(date1) - 1, 6, dtype=int)
+tick_labels = [formatted_time[i] for i in tick_positions]
+
+
+
+
+
+
+
f, axes = plt.subplots(3, 2, figsize=(14, 12))  # 3 rows, 2 columns
+
+# Plot Temperature subplots
+sc1_1 = axes[0, 0].pcolor(date1, depth1, sst1, cmap="Spectral_r", vmin=6.7,vmax=20)
+axes[0, 0].set_title("Temperature (°C) - Orca3")
+axes[0, 0].set_xlabel("")
+axes[0, 0].set_ylabel("Depth (m)")
+axes[0, 0].invert_yaxis()  # Invert y axis
+axes[0, 0].set_xticklabels([])
+axes[0, 0].set_ylim([90, 0])  # Set y-axis range
+#axes[0, 0].set_clim([10, 22])
+
+sc1_2 = axes[0, 1].pcolor(date2, depth2, sst2, cmap="Spectral_r", vmin=6.7,vmax=20)
+axes[0, 1].set_title("Temperature (°C) - npby1")
+axes[0, 1].set_xlabel("")
+#axes[0, 1].set_ylabel("Depth (m)")
+axes[0, 1].invert_yaxis()  # Invert y axis
+axes[0, 1].set_xticklabels([])
+axes[0, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Plot Salinity subplots
+sc2_1 = axes[1, 0].pcolor(date1, depth1, sss1, cmap="Spectral_r", vmin=19,vmax=32.6)
+axes[1, 0].set_title("Salinity (psu) - Orca3")
+axes[1, 0].set_xlabel("")
+axes[1, 0].set_ylabel("Depth (m)")
+axes[1, 0].invert_yaxis()  # Invert y axis
+axes[1, 0].set_xticklabels([])
+axes[1, 0].set_ylim([90, 0])  # Set y-axis range
+
+sc2_2 = axes[1, 1].pcolor(date2, depth2, sss2, cmap="Spectral_r", vmin=19,vmax=32.6)
+axes[1, 1].set_title("Salinity (psu) - npby1")
+axes[1, 1].set_xlabel("")
+#axes[1, 1].set_ylabel("Depth (m)")
+axes[1, 1].invert_yaxis()  # Invert y axis
+axes[1, 1].set_xticklabels([])
+axes[1, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Plot Oxygen subplots
+sc3_1 = axes[2, 0].pcolor(date1, depth1, oxy1, cmap="Spectral_r",vmin=0.1,vmax=18)
+axes[2, 0].set_title("Oxygen (mg/L) - Orca3")
+axes[2, 0].set_ylabel("Depth (m)")
+axes[2, 0].set_xlabel("Time")
+axes[2, 0].invert_yaxis()  # Invert y axis
+axes[2, 0].set_ylim([90, 0])  # Set y-axis range
+
+sc3_2 = axes[2, 1].pcolor(date2, depth2, oxy2, cmap="Spectral_r",vmin=0.1,vmax=18)
+axes[2, 1].set_title("Oxygen (mg/L) - npby1")
+axes[2, 1].set_ylabel("Depth (m)")
+axes[2, 1].set_xlabel("Time")
+axes[2, 1].invert_yaxis()  # Invert y axis
+axes[2, 1].set_ylim([90, 0])  # Set y-axis range
+
+# Add colorbars
+cbar1_1 = f.colorbar(sc1_1, ax=axes[0, 0], orientation='vertical')
+cbar1_1.ax.set_ylabel('°C', fontweight='bold')
+cbar1_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar1_2 = f.colorbar(sc1_2, ax=axes[0, 1], orientation='vertical')
+cbar1_2.ax.set_ylabel('°C', fontweight='bold')
+cbar1_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar2_1 = f.colorbar(sc2_1, ax=axes[1, 0], orientation='vertical')
+cbar2_1.ax.set_ylabel('psu', fontweight='bold')
+cbar2_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar2_2 = f.colorbar(sc2_2, ax=axes[1, 1], orientation='vertical')
+cbar2_2.ax.set_ylabel('psu', fontweight='bold')
+cbar2_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar3_1 = f.colorbar(sc3_1, ax=axes[2, 0], orientation='vertical')
+cbar3_1.ax.set_ylabel('mg/L', fontweight='bold')
+cbar3_1.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+cbar3_2 = f.colorbar(sc3_2, ax=axes[2, 1], orientation='vertical')
+cbar3_2.ax.set_ylabel('mg/L', fontweight='bold')
+cbar3_2.ax.yaxis.label.set_fontweight('bold')  # Set colorbar label font weight
+
+# Adjust layout
+plt.tight_layout()
+f.suptitle("Depth Comparison of Temp, Salinity, and Oxygen for Stations Orca3 and npby1", fontsize=16, y=1.02)
+plt.show()
+
+
+
+
+../../_images/3af2551184d80e83370923dc4318d1d221b463b9cbe14c1b381f72e22daa79b9.png +
+
+
+ +
+ +
+ +
+ + + +
+ +
+ +
+
+
+ +
+ +
+ +
+ + + + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/_build/dirhtml/moorings/dfo_mooring_plots_copy/index.html b/_build/dirhtml/moorings/dfo_mooring_plots_copy/index.html index 3e0059c..914d9ef 100644 --- a/_build/dirhtml/moorings/dfo_mooring_plots_copy/index.html +++ b/_build/dirhtml/moorings/dfo_mooring_plots_copy/index.html @@ -48,7 +48,7 @@ - + @@ -384,11 +384,8 @@ @@ -1019,11 +1016,11 @@

Have a look at the various oxygen variables.

next

-

Plot Temperature subplot

+

Puget Sound Plotting

diff --git a/_build/dirhtml/moorings/erddap_DFO_moorings_E01/index.html b/_build/dirhtml/moorings/erddap_DFO_moorings_E01/index.html index f470b62..19ebe59 100644 --- a/_build/dirhtml/moorings/erddap_DFO_moorings_E01/index.html +++ b/_build/dirhtml/moorings/erddap_DFO_moorings_E01/index.html @@ -384,11 +384,8 @@ diff --git a/_build/dirhtml/moorings/index.html b/_build/dirhtml/moorings/index.html index 3d80557..44a5f75 100644 --- a/_build/dirhtml/moorings/index.html +++ b/_build/dirhtml/moorings/index.html @@ -384,11 +384,8 @@ @@ -446,10 +443,10 @@

Moorings#

We put together python notebooks for the following moorings:

It would be very cool to be able to add more mooring pages automatically.

diff --git a/_build/dirhtml/objects.inv b/_build/dirhtml/objects.inv index 62933e1..2863702 100644 Binary files a/_build/dirhtml/objects.inv and b/_build/dirhtml/objects.inv differ diff --git a/_build/dirhtml/searchindex.js b/_build/dirhtml/searchindex.js index 467ef28..46cfed8 100644 --- a/_build/dirhtml/searchindex.js +++ b/_build/dirhtml/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["Untitled1", "dfo_mooring_plots", "erddap_dataaccess", "erddap_moorings_E01", "index", "interactive/holoviz_plotting_tests", "interactive/interactive", "moorings/Mooring_E01", "moorings/Puget_Sound", "moorings/dfo_mooring_plots_copy", "moorings/erddap_DFO_moorings_E01", "moorings/index", "panel_plotting_tests", "posts"], "filenames": ["Untitled1.ipynb", "dfo_mooring_plots.ipynb", "erddap_dataaccess.ipynb", "erddap_moorings_E01.ipynb", "index.md", "interactive/holoviz_plotting_tests.ipynb", "interactive/interactive.md", "moorings/Mooring_E01.ipynb", "moorings/Puget_Sound.ipynb", "moorings/dfo_mooring_plots_copy.ipynb", "moorings/erddap_DFO_moorings_E01.ipynb", "moorings/index.md", "panel_plotting_tests.ipynb", "posts.md"], "titles": ["<no title>", "Downloading DFO Historical Mooring Data", "<no title>", "<no title>", "Welcome to our fancy mooring page", "<no title>", "Interactive Viz", "E01", "Plot Temperature subplot", "Downloading DFO Historical Mooring Data", "DFO Moorings", "Moorings", "<no title>", "Posts"], "terms": {"import": [0, 1, 2, 3, 5, 7, 8, 9, 10, 12], "packag": [0, 9, 10], "from": [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12], "erddapi": [0, 2, 3, 5, 7, 8, 10], "erddap": [0, 2, 3, 5, 7, 8], "panda": [0, 1, 2, 3, 5, 7, 8, 9, 10], "pd": [0, 1, 2, 3, 5, 7, 8, 9, 10], "xarrai": [0, 1, 2, 3, 5, 7, 8, 9, 10], "xr": [0, 1, 5, 9], "matplotlib": [0, 1, 2, 3, 5, 7, 8, 9, 10, 12], "pyplot": [0, 1, 2, 3, 5, 7, 8, 9, 10, 12], "plt": [0, 1, 2, 3, 5, 7, 8, 9, 10, 12], "e": [0, 2, 3, 5, 7, 8, 10], "server": [0, 2, 3, 5, 7, 8], "http": [0, 2, 3, 5, 7, 8, 10], "data": [0, 2, 3, 4, 5, 7, 8, 11], "cioospacif": [0, 2, 3, 7, 8, 10], "ca": [0, 2, 3, 7, 8, 10], "protocol": [0, 2, 3, 5, 7, 8, 10], "tabledap": [0, 2, 3, 5, 7, 8, 10], "set": [0, 2, 3, 5, 7, 8], "boundari": [0, 2, 3, 10], "box": [0, 2, 3, 10], "min_lat": [0, 2, 3, 10], "max_lat": [0, 2, 3, 10], "49": [0, 1, 2, 3, 9, 10], "28": [0, 2, 3, 10], "30": [0, 2, 3, 5, 7, 8, 9, 10], "min_lon": [0, 2, 3, 10], "max_lon": [0, 2, 3, 10], "126": [0, 1, 2, 3, 9, 10], "62": [0, 2, 3, 10], "60": [0, 2, 3, 5, 9, 10], "folium": [0, 2, 3, 10], "lon": [0, 2, 3, 9, 10], "2": [0, 1, 2, 3, 8, 9], "lat": [0, 2, 3, 9, 10], "m": [0, 2, 3, 5, 7, 8, 9, 10], "map": [0, 2, 3, 9], "locat": [0, 2, 3, 9, 10], "tile": [0, 2, 3, 10], "openstreetmap": [0, 2, 3, 10], "zoom_start": [0, 2, 3, 10], "5": [0, 1, 2, 3, 9, 12], "polygon": [0, 2, 3], "fill": [0, 2, 3, 10], "true": [0, 1, 2, 3, 5, 9, 10], "add_to": [0, 2, 3, 10], "make": [0, 3, 9, 10], "thi": [0, 1, 2, 3, 5, 7, 8, 9, 10, 13], "notebook": [0, 3, 7, 10, 11], "trust": [0, 3, 10], "load": [0, 3, 10], "file": [0, 3, 9, 10], "df": [0, 1, 9], "read_csv": [0, 9], "get_search_url": 0, "respons": [0, 2, 3, 5, 7, 8, 10], "csv": [0, 2, 3, 5, 7, 8, 9, 10], "dataset": [0, 1, 2, 3, 5, 7, 8, 9, 10], "id": [0, 2, 3, 5, 7, 8, 10], "0": [0, 1, 2, 3, 5, 7, 8, 9, 10, 12], "alldataset": 0, "1": [0, 1, 2, 3, 5, 7, 8, 9, 12], "bcsop_daili": 0, "bcsop_monthli": 0, "3": [0, 1, 3, 8, 9], "iys_niskin_chl_phaeo": 0, "4": [0, 1, 3, 9], "iys_2020_ctd": 0, "iys_2022_tinro_ctd": 0, "6": [0, 1, 8, 9], "iys_2019_ctd": 0, "7": [0, 1, 3, 4, 8, 9], "primed_wavebuoi": 0, "8": [0, 1, 2, 3, 8, 9, 10], "ios_ctd_profil": 0, "9": [0, 1, 9], "ios_adcp_moor": 0, "10": [0, 1, 2, 3, 5, 7, 8, 9, 10, 12], "ios_ctd_moor": [0, 2, 3, 7, 8, 10], "11": [0, 4, 9], "ios_cur_moor": 0, "12": [0, 3, 5, 8, 10], "ios_bot_profil": 0, "13": [0, 9], "iys_2019_nutrients_o2": 0, "14": [0, 8, 9], "iys_2019_pom": 0, "15": [0, 1, 2, 3, 9, 10], "dfo_meds_buoi": 0, "16": [0, 8], "eccc_msc_buoi": 0, "17": 0, "ios_p26_annu": 0, "name": [0, 3, 5, 12], "dtype": [0, 3, 8], "object": [0, 3, 5], "dataset_id": [0, 2, 3, 5, 7, 8, 10], "search": [0, 1, 2, 3, 9], "variabl": [0, 2, 3, 5, 7, 8, 10], "depth": [0, 1, 2, 3, 5, 7, 8, 9], "time": [0, 2, 3, 5, 7, 8], "latitud": [0, 2, 3, 9, 10], "longitud": [0, 2, 3, 5, 7, 8, 9, 10], "sea_water_temperatur": [0, 1, 2, 3, 5, 7, 8, 9, 10], "sea_water_practical_salin": [0, 1, 2, 3, 5, 7, 8, 9, 10], "sea_water_pressur": [0, 2, 3, 7, 8, 10], "criteria": 0, "constraint": [0, 2, 3, 5, 7, 8, 10], "to_panda": [0, 2, 3, 5, 7, 8, 10], "dropna": [0, 2], "index_col": 0, "utc": [0, 2, 3, 10], "head": 0, "degrees_north": [0, 2, 3, 10], "degrees_east": [0, 2, 3, 10], "degc": [0, 2, 3, 10], "pss": [0, 2, 3, 10], "78": [0, 2, 3, 9, 10], "dbar": [0, 2, 3, 10], "891859": 0, "76": 0, "847060": 0, "2019": [0, 1, 9], "08": 0, "01t00": 0, "00": [0, 3, 5, 10], "00z": 0, "29": 0, "60516": 0, "9147": 0, "33": [0, 3, 10], "2059": 0, "77": 0, "521": 0, "891860": 0, "741010": 0, "9138": 0, "2488": 0, "414": 0, "891861": 0, "635950": 0, "9144": 0, "2564": 0, "308": 0, "891862": 0, "547745": 0, "45": [0, 9], "9842": 0, "1616": 0, "219": 0, "891863": 0, "495210": 0, "01t01": 0, "8992": 0, "2524": 0, "166": 0, "shape": 0, "236387": 0, "lat_moor": 0, "lon_moor": 0, "i": [0, 2, 3, 4, 5, 7, 8, 10], "rang": [0, 1, 5, 8, 9], "len": [0, 8], "marker": [0, 9], "iloc": 0, "m_moor": 0, "limit": [1, 9], "area": [1, 2, 3, 5, 7, 8, 9, 10], "interest": [1, 2, 3, 5, 7, 8, 9, 10], "e01": [1, 2, 3, 11], "frame": [1, 9], "2018": [1, 9], "01": [1, 3, 9, 10], "22": [1, 8], "07": [1, 3, 9, 10], "21": 1, "minim": 1, "project": [1, 9], "d": [1, 8, 9], "open_dataset": [1, 9], "ios_ctd_moorings_9614_794f_0026": [1, 9], "nc": [1, 9], "print": [1, 2, 3, 5, 7, 8, 9, 10], "psalst01": [1, 9], "doxyzz01": [1, 9], "doxmzz01": [1, 9], "filenam": [1, 9], "numpi": [1, 2, 3, 5, 7, 8, 9, 10, 12], "np": [1, 2, 3, 5, 7, 8, 9, 10, 12], "def": [1, 2, 3, 5, 7, 8, 9, 10, 12], "plot_dfo_moor": [1, 9], "mooring_depth": [1, 2, 9], "datafram": [1, 2, 3, 5, 7, 8, 9, 10], "salt": [1, 9], "temp1": [1, 9], "temp2": [1, 9], "tempst01": [1, 2, 3, 9, 10], "get": [1, 3, 5, 9, 10], "final": [1, 5, 9], "temp": [1, 8, 9], "where": [1, 2, 3, 5, 7, 8, 9, 10], "isnul": [1, 9], "need": [1, 9, 10], "figur": [1, 5, 9, 12], "better": [1, 9], "wai": [1, 9], "captur": [1, 9], "sensor": [1, 9], "now": [1, 9], "file_depth": [1, 9], "str": [1, 2, 3, 9, 10], "astyp": [1, 9], "int": [1, 8, 9], "df_depth": [1, 9], "x": [1, 5, 8, 9, 12], "try": [1, 2, 3, 5, 7, 8, 9, 10], "put": [1, 9, 11], "label": [1, 3, 8, 9, 10], "blank": [1, 9], "share": [1, 8, 9], "axi": [1, 2, 3, 5, 7, 8, 9, 10], "tck": [1, 9], "tklbl": [1, 9], "2020": [1, 5, 9], "2021": [1, 9], "2022": [1, 2, 3, 7, 8, 9, 10], "fig": [1, 2, 3, 5, 9, 10, 12], "ax": [1, 2, 3, 5, 8, 9, 10, 12], "subplot": [1, 2, 3, 9, 10], "figsiz": [1, 2, 3, 8, 9, 10], "sharex": [1, 2, 3, 9, 10], "linewidth": [1, 2, 3, 9, 10], "05": [1, 2, 3, 9, 10], "c": [1, 2, 3, 8, 9, 10], "blue": [1, 2, 3, 10], "set_titl": [1, 2, 3, 8, 9, 10], "orang": [1, 2, 3, 9, 10], "subplots_adjust": [1, 2, 3, 9, 10], "hspace": [1, 2, 3, 9, 10], "suptitl": [1, 2, 3, 8, 9, 10], "station": [1, 2, 3, 8, 9, 10], "metr": [1, 2, 3, 9, 10], "format": [1, 2, 3, 5, 7, 8, 9, 10], "show": [1, 2, 3, 8, 9, 10], "75": [1, 3, 9, 10], "plot_dfo_salt": [1, 9], "psalst02": [1, 9], "ssalst01": [1, 9], "isol": [1, 9], "var1": [1, 9], "var2": [1, 9], "var3": [1, 9], "var4": [1, 9], "purpl": [1, 9], "plot_dfo_temp": [1, 9], "temps601": [1, 2, 3, 9, 10], "temps602": [1, 2, 3, 9, 10], "temps902": [1, 2, 3, 9, 10], "doesn": [1, 9], "t": [1, 4, 5, 8, 9], "exist": [1, 4, 9], "temps901": [1, 2, 3, 9, 10], "saw": [1, 9], "some": [1, 6, 9], "gap": [1, 9], "popul": [1, 9], "nan": [1, 3, 9, 10], "two": [1, 9], "column": [1, 2, 3, 8, 9, 10, 12], "merge_temp": [1, 9], "75m": [1, 3, 9, 10], "can": [1, 2, 3, 4, 5, 7, 8, 9, 10], "we": [1, 9, 11], "option": [1, 2, 3, 5, 7, 8, 9, 10], "max": [1, 2, 3, 5, 7, 8, 9, 10], "80": [1, 2, 3, 9, 10], "15737": [1, 9], "min": [1, 2, 3, 5, 7, 8, 9, 10], "68": [1, 9], "238": [1, 9], "var5": [1, 9], "var6": [1, 9], "sharei": [1, 9], "green": [1, 9], "red": [1, 9], "Not": [1, 9], "see": [1, 9], "ani": [1, 9], "oxi": [1, 9], "plot_dfo_oxi": [1, 9], "90": [1, 2, 3, 8, 9, 10], "cf_xarrai": [2, 3, 5, 7, 8, 10], "datetim": [2, 3, 5, 7, 8, 10], "netcdf4": [2, 3, 5, 7, 8, 9, 10], "get_erddap_data": [2, 3, 5, 7, 8, 10], "erddap_url": [2, 3, 5, 7, 8, 10], "data_protocol": [2, 3, 5, 7, 8, 10], "griddap": [2, 3, 5, 7, 8, 10], "none": [2, 3, 5, 7, 8, 9, 10], "function": [2, 3, 5, 7, 8, 9], "us": [2, 3, 4, 5, 7, 8, 10], "python": [2, 3, 5, 7, 8, 10, 11], "librari": [2, 3, 5, 7, 8, 10], "access": [2, 3, 4, 5, 7, 8, 10], "return": [2, 3, 5, 7, 8, 9, 10, 12], "user": [2, 3, 5, 7, 8, 10], "conveni": [2, 3, 5, 7, 8, 10], "pull": [2, 3, 5, 7, 8, 10], "differ": [2, 3, 5, 7, 8], "output": [2, 3, 5, 7, 8, 10], "type": [2, 3, 5, 7, 8, 10], "depend": [2, 3, 5, 7, 8, 10], "dap": [2, 3, 5, 7, 8, 10], "input": [2, 3, 5, 7, 8, 10], "The": [2, 3, 5, 7, 8, 10], "url": [2, 3, 5, 7, 8, 10], "address": [2, 3, 5, 7, 8, 10], "select": [2, 3, 5, 7, 8, 10], "within": [2, 3, 5, 7, 8, 10], "chosen": [2, 3, 5, 7, 8, 10], "includ": [2, 3, 5, 7, 8, 10], "default": [2, 3, 5, 7, 8, 10], "given": [2, 3, 5, 7, 8, 10], "relev": [2, 3, 5, 7, 8, 10], "If": [2, 3, 5, 7, 8, 10], "ar": [2, 3, 5, 7, 8, 9, 10], "assum": [2, 3, 5, 7, 8, 10], "all": [2, 3, 5, 7, 8, 9, 10], "These": [2, 3, 5, 7, 8, 10], "help": [2, 3, 5, 7, 8, 10], "restrict": [2, 3, 5, 7, 8, 10], "onli": [2, 3, 5, 7, 8, 9, 10], "timefram": [2, 3, 5, 7, 8, 10], "should": [2, 3, 5, 7, 8, 10], "dictionari": [2, 3, 5, 7, 8, 10], "each": [2, 3, 5, 7, 8, 10], "entri": [2, 3, 5, 7, 8, 10], "bound": [2, 3, 5, 7, 8, 10], "specif": [2, 3, 5, 7, 8, 10], "ex": [2, 3, 5, 7, 8, 10], "140": [2, 3, 5, 7, 8, 9, 10], "erddap_data": [2, 3, 5, 7, 8, 10], "contain": [2, 3, 5, 7, 8, 10], "an": [2, 3, 5, 7, 8, 10], "up": [2, 3, 5, 7, 8, 10], "connect": [2, 3, 5, 7, 8, 10], "identifi": [2, 3, 5, 7, 8, 10], "base": [2, 3, 5, 7, 8, 10], "upon": [2, 3, 5, 7, 8, 10], "initi": [2, 3, 5, 7, 8, 10], "griddap_initi": [2, 3, 5, 7, 8, 10], "updat": [2, 3, 5, 7, 8, 10], "to_xarrai": [2, 3, 5, 7, 8, 10], "elif": [2, 3, 5, 7, 8, 10], "invalid": [2, 3, 5, 7, 8, 10], "els": [2, 3, 5, 7, 8, 10], "valid": [2, 3, 5, 7, 8, 10], "pleas": [2, 3, 5, 7, 8, 10], "restart": [2, 3, 5, 7, 8, 10], "again": [2, 3, 5, 7, 8, 9, 10], "check": 2, "pudget": 2, "sound": [2, 4, 8, 11], "moor": [2, 3], "nwem_url": [2, 5, 7, 8], "nwem": [2, 5, 7, 8], "apl": [2, 5, 7, 8], "washington": [2, 5, 7, 8], "edu": [2, 5, 7, 8], "nwem_dataset": [2, 5, 7], "orca3_l3_depthgridded_025": [2, 5, 7, 8], "cast_start_tim": [2, 5, 7, 8], "strftime": [2, 3, 5, 7, 8, 9, 10], "y": [2, 3, 5, 7, 8, 9, 10, 12], "dt": [2, 3, 5, 7, 8, 9, 10], "h": [2, 3, 5, 7, 8, 9, 10], "sz": [2, 3, 5, 7, 8, 9, 10], "365": [2, 3, 5, 7, 8, 10], "nwem_grid": [2, 5, 7], "sel": [2, 7], "plot": [2, 3, 4, 5, 7, 12], "dfo": [2, 3, 11], "cioos_url": [2, 3, 7, 8, 10], "cioos_dataset": [2, 3, 7, 8, 10], "cioos_tabl": [2, 3, 7, 8, 10], "cioos_table_1": [2, 3, 10], "renam": [2, 3, 10], "sea_water_pratical_salin": [2, 3, 10], "deg_c": [2, 3, 10], "confirm": 2, "string": [2, 9], "reset_index": [2, 3], "set_index": [2, 3], "na": 2, "valu": [2, 3, 5, 8, 9, 10, 12], "could": [2, 3, 10], "drop": [2, 3, 5, 10], "without": [2, 3, 10], "real": [2, 3, 10], "40": [2, 3, 10], "cioos_e01_35": [2, 3, 10], "cioos_e01_75": [2, 3, 10], "70": [2, 3, 10], "cioos_e01_95": [2, 3, 10], "100": [2, 3, 5, 10], "index": [2, 3, 10], "temperatur": [2, 3, 4], "salin": [2, 3, 4], "cioos_xarrai": [2, 3], "cioos_e01_35x": [2, 3], "cioos_e01_75x": [2, 3], "cioos_e01_95x": [2, 3], "date": [2, 5, 8], "datetimeindex": [2, 3, 10], "timestamp": 2, "ii": 2, "line": [2, 7, 9], "cb": [2, 3, 5], "scatter": [2, 3, 9], "colorbar": [2, 3, 5], "cioo": [3, 10], "2008": [3, 10], "04": [3, 10], "28t20": [3, 10], "01z": [3, 10], "73": [3, 10], "502020": [3, 10], "288185": [3, 10], "60239": [3, 10], "74": [3, 10], "146": [3, 10], "32": [3, 8, 9, 10], "9249": [3, 10], "5953": [3, 10], "21z": [3, 10], "9276": [3, 10], "5958": [3, 10], "41z": [3, 10], "448494": [3, 10], "092": [3, 10], "9293": [3, 10], "5964": [3, 10], "484170": [3, 10], "128": [3, 10], "9304": [3, 10], "5981": [3, 10], "466330": [3, 10], "110": [3, 10], "9298": [3, 10], "5972": [3, 10], "1128615": [3, 10], "14t23": [3, 10], "07z": [3, 10], "97": [3, 10], "252230": [3, 10], "288330": [3, 10], "60290": [3, 10], "98": [3, 10], "1191": [3, 10], "7387": [3, 10], "1128616": [3, 10], "026276": [3, 10], "882": [3, 10], "1316": [3, 10], "7315": [3, 10], "1128617": [3, 10], "15t00": [3, 10], "96": [3, 10], "897440": [3, 10], "752": [3, 10], "1474": [3, 10], "7214": [3, 10], "1128618": [3, 10], "605090": [3, 10], "457": [3, 10], "1669": [3, 10], "7088": [3, 10], "1128619": [3, 10], "15t01": [3, 10], "442560": [3, 10], "293": [3, 10], "1878": [3, 10], "6931": [3, 10], "1128620": [3, 10], "row": [3, 5, 8, 10], "newtime_35": [3, 10], "plot_dfo_e01_moor": [3, 10], "35": [3, 9, 10], "cioos_e01": [3, 10], "95": [3, 10], "newtim": [3, 10], "markers": [3, 10], "set_ylabel": [3, 8, 10], "sea": [3, 10], "water": [3, 10], "psu": [3, 8, 9, 10], "newtime_75": [3, 10], "newtime_95": [3, 10], "var": [3, 10], "list": 3, "ff0000": [3, 10], "35m": [3, 10], "alpha": [3, 9, 10], "ffa500": [3, 10], "ffff00": [3, 10], "95m": [3, 10], "seri": 3, "legend": [3, 8, 10], "loc": [3, 10], "upper": [3, 10], "left": [3, 10], "7bc8f6": [3, 10], "0343df": [3, 10], "0000ff": [3, 10], "lower": [3, 10], "0x7f2d6f218d60": 3, "length": 3, "float64": 3, "work": [3, 9], "creat": [4, 5], "well": 4, "copi": [4, 9], "modifi": 4, "ohw": 4, "websit": 4, "dure": [4, 9], "oceanhackweek": 4, "2023": [4, 5], "seattl": 4, "august": 4, "go": [4, 9], "download": 4, "displai": 4, "github": 4, "seth": 4, "travi": 4, "lu": 4, "guan": 4, "samantha": 4, "huntington": 4, "andrea": 4, "hilborn": 4, "hafeez": 4, "opeyemi": 4, "oladejo": 4, "tobia": 4, "ferreira": 4, "veronica": 4, "martinez": 4, "johnathan": 4, "evanilla": 4, "oxygen": 4, "etc": 4, "vancouv": 4, "island": 4, "puget": [4, 8, 11], "region": 4, "visual": 4, "multipl": 4, "interact": [4, 5], "tool": 4, "like": 4, "streamlit": 4, "holovi": 4, "plotli": 4, "build": 4, "webpag": 4, "host": 4, "highlight": 4, "what": 4, "here": [4, 6], "wait": 4, "take": [4, 5], "my": 4, "surf": 4, "next": [4, 9], "level": 4, "site": 4, "light": 4, "yonder": 4, "window": 4, "break": 4, "romeo": 4, "1634": 4, "someth": 4, "folk": 4, "follow": [4, 11], "institut": 4, "imag": 4, "asset": 4, "logo": 4, "nasa": 4, "sm": 4, "png": [4, 9], "alt": 4, "width": 4, "150px": 4, "holoviz": 5, "shrink": 5, "cfxr": 5, "pathlib": 5, "holoview": 5, "hv": 5, "hvplot": 5, "noqa": 5, "panel": [5, 12], "pn": [5, 12], "extens": [5, 12], "templat": [5, 12], "fast": [5, 12], "datetime_to_ordinal_withsecond": 5, "convert": [5, 9], "ordin": 5, "number": 5, "account": 5, "both": 5, "part": 5, "result": 5, "repres": 5, "dai": 5, "sinc": 5, "januari": 5, "ad": [5, 6], "am": 5, "plu": 5, "fraction": 5, "portion": 5, "extract": [5, 8], "year": [5, 9], "month": 5, "hour": 5, "minut": 5, "second": 5, "compon": 5, "new": 5, "date_obj": 5, "date_ordin": 5, "toordin": 5, "calcul": [5, 10], "partial": 5, "date_parti": 5, "24": 5, "combin": 5, "x_ordin": 5, "mass_concentration_of_oxygen_in_sea_wat": [5, 8], "2010": 5, "date_slid": 5, "widget": [5, 12], "daterangeslid": 5, "earliest": 5, "start": [5, 9, 12], "end": [5, 12], "2015": 5, "servabl": [5, 12], "target": [5, 12], "sidebar": [5, 12], "nwem_interact": 5, "slider": 5, "intslid": 5, "7000": 5, "isel": [5, 8], "plot_timerang": 5, "start_dat": 5, "datetime64": 5, "end_dat": 5, "nwem_to_plot": 5, "logical_and": 5, "dates_to_plot": 5, "depths_to_plot": 5, "sst_to_plot": 5, "add_subplot": [5, 12], "111": [5, 12], "pcolor": [5, 8], "invert_yaxi": [5, 8], "cast_dat": 5, "mpl": [5, 9, 12], "pane": [5, 12], "bind": [5, 12], "buoi": 5, "main": [5, 12], "link": 6, "page": [7, 11, 13], "line2d": 7, "0x7f6a05f98550": 7, "nwem_dataset1": 8, "nwem_dataset2": 8, "npby1_l3_depthgridded_025": 8, "sea_water_temperature_qc_agg": 8, "sea_water_practical_salinity_qc_agg": 8, "mass_concentration_of_oxygen_in_sea_water_qc_agg": 8, "2012": 8, "nwem_grid1": 8, "nwem_grid2": 8, "ds1": 8, "ds2": 8, "depth1": 8, "arrai": 8, "depth2": 8, "date1": 8, "date2": 8, "325": 8, "depth_l": 8, "50": 8, "str1": 8, "str2": 8, "str3": 8, "str4": 8, "str5": 8, "str6": 8, "var1_sst": 8, "var1_sss": 8, "var1_oxi": 8, "var1_sstqc": 8, "var1_sssqc": 8, "var1_oxyqc": 8, "buoy1": 8, "good": 8, "var2_sst": 8, "var2_sss": 8, "var2_oxi": 8, "var2_sstqc": 8, "var2_sssqc": 8, "var2_oxyqc": 8, "buoy2": 8, "assign_coord": 8, "tser1_sst": 8, "tser2_sst": 8, "tser1_sss": 8, "tser2_sss": 8, "tser1_oxi": 8, "tser2_oxi": 8, "f": 8, "ax1": 8, "ax2": 8, "ax3": 8, "t1": 8, "orca3": [8, 11], "t1_1": 8, "npby1": [8, 11], "t2": 8, "t2_2": 8, "t3": 8, "t3_2": 8, "set_xlabel": 8, "set_xtick": 8, "tick_posit": 8, "set_xticklabel": 8, "mg": 8, "l": 8, "tight_layout": [8, 9], "compar": 8, "nbpy1": 8, "fontsiz": 8, "02": 8, "sst1": 8, "transpos": 8, "sst2": 8, "sss1": 8, "sss2": 8, "oxy1": 8, "oxy2": 8, "vmin": 8, "19": 8, "vmax": 8, "18": 8, "formatted_tim": 8, "datetime_as_str": 8, "unit": 8, "linspac": [8, 12], "tick_label": 8, "sc1": 8, "cmap": 8, "spectral_r": 8, "invert": 8, "sc2": 8, "sc3": 8, "xaxi": 8, "set_major_loc": 8, "fixedloc": 8, "tick": 8, "posit": 8, "third": 8, "ha": 8, "center": 8, "cbar1": 8, "orient": 8, "vertic": 8, "fontweight": 8, "bold": [8, 9], "yaxi": 8, "set_fontweight": 8, "font": 8, "weight": [8, 9], "cbar2": 8, "cbar3": 8, "get_titl": 8, "get_xlabel": 8, "get_ylabel": 8, "get_xticklabel": 8, "get_yticklabel": 8, "sc1_1": 8, "20": 8, "set_ylim": 8, "set_clim": 8, "sc1_2": 8, "sc2_1": 8, "sc2_2": 8, "sc3_1": 8, "sc3_2": 8, "cbar1_1": 8, "cbar1_2": 8, "cbar2_1": 8, "cbar2_2": 8, "cbar3_1": 8, "cbar3_2": 8, "full": 8, "comparison": 8, "125": 9, "99": 9, "cartopi": 9, "cr": 9, "ccr": 9, "ticker": 9, "longitudeformatt": 9, "latitudeformatt": 9, "latitudeloc": 9, "plot_moor": 9, "master_mooring_list": 9, "skiprow": 9, "deg": 9, "decim": 9, "latdeg": 9, "latmin": 9, "dir": 9, "split": 9, "expand": 9, "to_numer": 9, "londeg": 9, "lonmin": 9, "latsig": 9, "lonsig": 9, "eo1lon": 9, "eo1lat": 9, "left_lon": 9, "right_lon": 9, "bot_lat": 9, "top_lat": 9, "120": 9, "57": 9, "platecarre": 9, "set_ext": 9, "coastlin": 9, "add_featur": 9, "featur": 9, "ocean": 9, "land": 9, "edgecolor": 9, "black": 9, "lake": 9, "river": 9, "gl": 9, "gridlin": 9, "color": 9, "linestyl": 9, "draw_label": 9, "top_label": 9, "fals": 9, "left_label": 9, "bottom_label": 9, "right_label": 9, "ylocat": 9, "xformatt": 9, "yformatt": 9, "xlabel_styl": 9, "size": 9, "ylabel_styl": 9, "cax": 9, "transform": 9, "": 9, "25": 9, "titl": 9, "savefig": 9, "dfo_mooring_loc": 9, "close": 9, "tmp": 9, "ipykernel_16973": 9, "2798140817": 9, "py": 9, "futurewarn": 9, "In": 9, "futur": 9, "version": 9, "argument": 9, "stringmethod": 9, "except": 9, "pat": 9, "keyword": 9, "ios_ctd_moorings_all_yr": 9, "ios_ctd_moorings_allyrs2": 9, "keyerror": 9, "traceback": 9, "most": 9, "recent": 9, "call": 9, "last": 9, "opt": 9, "conda": 9, "lib": 9, "python3": 9, "backend": 9, "file_manag": 9, "199": 9, "cachingfilemanag": 9, "_acquire_with_cache_info": 9, "self": 9, "needs_lock": 9, "198": 9, "_cach": 9, "_kei": 9, "200": 9, "lru_cach": 9, "53": 9, "lrucach": 9, "__getitem__": 9, "kei": 9, "52": 9, "_lock": 9, "54": 9, "move_to_end": 9, "class": 9, "_netcdf4": 9, "home": 9, "jovyan": 9, "ohw23_proj_fancymoor": 9, "r": 9, "clobber": 9, "diskless": 9, "persist": 9, "handl": 9, "abov": 9, "anoth": 9, "occur": 9, "filenotfounderror": 9, "cell": 9, "api": 9, "495": 9, "filename_or_obj": 9, "engin": 9, "chunk": 9, "cach": 9, "decode_cf": 9, "mask_and_scal": 9, "decode_tim": 9, "decode_timedelta": 9, "use_cftim": 9, "concat_charact": 9, "decode_coord": 9, "drop_vari": 9, "backend_kwarg": 9, "arg": 9, "kwarg": 9, "483": 9, "decod": 9, "_resolve_decoders_kwarg": 9, "484": 9, "485": 9, "open_backend_dataset_paramet": 9, "open_dataset_paramet": 9, "491": 9, "492": 9, "494": 9, "overwrite_encoded_chunk": 9, "pop": 9, "backend_d": 9, "496": 9, "497": 9, "498": 9, "499": 9, "500": 9, "501": 9, "_dataset_from_backend_dataset": 9, "502": 9, "503": 9, "510": 9, "511": 9, "512": 9, "netcdf4_": 9, "553": 9, "netcdf4backendentrypoint": 9, "group": 9, "mode": 9, "lock": 9, "autoclos": 9, "532": 9, "533": 9, "534": 9, "549": 9, "550": 9, "552": 9, "_normalize_path": 9, "store": 9, "netcdf4datastor": 9, "open": 9, "554": 9, "555": 9, "556": 9, "557": 9, "558": 9, "559": 9, "560": 9, "561": 9, "562": 9, "563": 9, "565": 9, "store_entrypoint": 9, "storebackendentrypoint": 9, "566": 9, "close_on_error": 9, "382": 9, "cl": 9, "lock_mak": 9, "376": 9, "dict": 9, "377": 9, "378": 9, "379": 9, "manag": 9, "380": 9, "381": 9, "330": 9, "__init__": 9, "328": 9, "_group": 9, "329": 9, "_mode": 9, "data_model": 9, "331": 9, "_filenam": 9, "filepath": 9, "332": 9, "is_remot": 9, "is_remote_uri": 9, "391": 9, "389": 9, "properti": 9, "390": 9, "_acquir": 9, "385": 9, "384": 9, "_manag": 9, "acquire_context": 9, "root": 9, "386": 9, "_nc4_require_group": 9, "387": 9, "contextlib": 9, "119": 9, "_generatorcontextmanag": 9, "__enter__": 9, "117": 9, "del": 9, "kwd": 9, "func": 9, "118": 9, "gen": 9, "stopiter": 9, "121": 9, "rais": 9, "runtimeerror": 9, "gener": [9, 13], "didn": 9, "yield": 9, "187": 9, "184": 9, "contextmanag": 9, "185": 9, "186": 9, "context": 9, "acquir": 9, "188": 9, "189": 9, "205": 9, "203": 9, "204": 9, "_open": 9, "_arg": 9, "206": 9, "w": 9, "207": 9, "ensur": 9, "overridden": 9, "when": 9, "208": 9, "src": 9, "pyx": 9, "2464": 9, "2027": 9, "_ensure_nc_success": 9, "errno": 9, "No": 9, "directori": 9, "dpth": 9, "mind": 9, "maxd": 9, "fstrt1": 9, "fstrt2": 9, "whole": 9, "must": 9, "know": 9, "find": 9, "would": [9, 11], "allow": 9, "isn": 9, "case": 9, "For": 9, "grab": 9, "to_datetim": 9, "chang": 9, "anyth": 9, "latmx": 9, "latmn": 9, "lonmx": 9, "lonmn": 9, "uniq": 9, "uniqu": 9, "drop_fil": 9, "tof1_20150801_20160714_0032m": 9, "ctd": 9, "cyp1_20160714_20171004_0062m_l1": 9, "fortune1_20171006_20181011_0090m_l2": 9, "millar1_20171006_20181011_0017m_l2": 9, "keep": 9, "fix": 9, "isin": 9, "one": 9, "e01_20150801_20160712_0035m": 9, "method": 9, "around": 9, "between": 9, "sort_valu": 9, "ascend": 9, "38": 9, "same": 9, "72": 9, "daili": 10, "climatologi": 10, "anomali": 10, "togeth": 11, "summari": 11, "histor": 11, "nanoo": 11, "It": 11, "veri": 11, "cool": 11, "abl": 11, "add": 11, "more": 11, "automat": 11, "freq": 12, "floatslid": 12, "frequenc": 12, "ampl": 12, "amplitud": 12, "sin": 12, "sine": 12, "curv": 12, "replac": 13, "ablog": 13, "dynam": 13}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"download": [1, 9, 10], "dfo": [1, 9, 10], "histor": [1, 9], "moor": [1, 4, 9, 10, 11], "data": [1, 9, 10], "http": [1, 9], "cioospacif": [1, 9], "ca": [1, 9], "erddap": [1, 9, 10], "tabledap": [1, 9], "ios_ctd_moor": [1, 9], "htm": [1, 9], "constraint": [1, 9], "combin": [1, 9], "what": [1, 9], "wa": [1, 4, 9], "learn": [1, 9], "below": [1, 9], "us": [1, 9], "merg": [1, 9], "temperatur": [1, 8, 9, 10], "variabl": [1, 9], "time": [1, 9, 10], "seri": [1, 9, 10], "do": [1, 9, 10], "plot": [1, 8, 9, 10], "oxygen": [1, 8, 9], "have": [1, 9], "look": [1, 9], "variou": [1, 9], "salin": [1, 8, 9, 10], "welcom": 4, "our": 4, "fanci": 4, "page": 4, "thi": 4, "stolen": 4, "project": 4, "descript": 4, "collabor": 4, "goal": 4, "particip": 4, "quot": 4, "team": 4, "interact": 6, "viz": 6, "e01": [7, 9, 10], "subplot": 8, "add": 8, "colorbar": 8, "adjust": 8, "layout": 8, "pacif": 9, "site": 9, "i": 9, "blue": 9, "ctd": 10, "visul": 10, "1": 10, "develop": 10, "function": 10, "from": 10, "server": 10, "2": 10, "set": 10, "map": 10, "search": 10, "polygon": 10, "3": 10, "4": 10, "check": 10, "instrument": 10, "depth": 10, "5": 10, "three": 10, "differ": 10, "6": 10, "compar": 10, "7": 10, "To": 10, "list": 10, "post": 13}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"Downloading DFO Historical Mooring Data": [[1, "downloading-dfo-historical-mooring-data"], [9, "downloading-dfo-historical-mooring-data"]], "https://data.cioospacific.ca/erddap/tabledap/IOS_CTD_Moorings.htm": [[1, "https-data-cioospacific-ca-erddap-tabledap-ios-ctd-moorings-htm"], [9, "https-data-cioospacific-ca-erddap-tabledap-ios-ctd-moorings-htm"]], "Constraints:": [[1, "constraints"], [9, "constraints"]], "Combine what was learned Below - use a merged Temperature variable for the time series - do not plot Oxygen": [[1, "combine-what-was-learned-below-use-a-merged-temperature-variable-for-the-time-series-do-not-plot-oxygen"], [9, "combine-what-was-learned-below-use-a-merged-temperature-variable-for-the-time-series-do-not-plot-oxygen"]], "Have a look at the various salinity variables.": [[1, "have-a-look-at-the-various-salinity-variables"], [9, "have-a-look-at-the-various-salinity-variables"]], "Have a look at the various temperature variables.": [[1, "have-a-look-at-the-various-temperature-variables"], [9, "have-a-look-at-the-various-temperature-variables"]], "Have a look at the various oxygen variables.": [[1, "have-a-look-at-the-various-oxygen-variables"], [9, "have-a-look-at-the-various-oxygen-variables"]], "Welcome to our fancy mooring page": [[4, "welcome-to-our-fancy-mooring-page"]], "This was stolen!": [[4, null]], "Project Description": [[4, "project-description"]], "Collaborators": [[4, "collaborators"]], "Goals": [[4, "goals"]], "Participant Quotes": [[4, null]], "Our Team": [[4, "our-team"]], "Interactive Viz": [[6, "interactive-viz"]], "E01": [[7, "e01"]], "Plot Temperature subplot": [[8, "plot-temperature-subplot"]], "Plot Salinity subplot": [[8, "plot-salinity-subplot"]], "Plot Oxygen subplot": [[8, "plot-oxygen-subplot"]], "Add colorbars": [[8, "add-colorbars"]], "Adjust layout": [[8, "adjust-layout"]], "DFO Pacific Mooring Sites (E01 is in blue)": [[9, "dfo-pacific-mooring-sites-e01-is-in-blue"]], "DFO Moorings": [[10, "dfo-moorings"]], "Mooring CTD time series visulization - E01": [[10, "mooring-ctd-time-series-visulization-e01"]], "1. develop a function to download mooring data from ERDDAP server": [[10, "develop-a-function-to-download-mooring-data-from-erddap-server"]], "2. Set and map the data search polygon for E01": [[10, "set-and-map-the-data-search-polygon-for-e01"]], "3. E01 moored CTD data download": [[10, "e01-moored-ctd-data-download"]], "4. Check and plot the instrument depths @ E01": [[10, "check-and-plot-the-instrument-depths-e01"]], "5. Plot Temperature and Salinity time series at three different depths at E01": [[10, "plot-temperature-and-salinity-time-series-at-three-different-depths-at-e01"]], "6. Compare the temperature and salinity time series from three depths": [[10, "compare-the-temperature-and-salinity-time-series-from-three-depths"]], "7. To do list:": [[10, "to-do-list"]], "Moorings": [[11, "moorings"]], "Posts": [[13, "posts"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["Untitled1", "erddap_dataaccess", "erddap_moorings_E01", "index", "interactive/holoviz_plotting_tests", "interactive/interactive", "moorings/Mooring_E01", "moorings/Puget_Climatology", "moorings/Puget_Sound", "moorings/Puget_Sound1", "moorings/Puget_Sound2", "moorings/dfo_mooring_plots_copy", "moorings/erddap_DFO_moorings_E01", "moorings/index", "panel_plotting_tests", "posts"], "filenames": ["Untitled1.ipynb", "erddap_dataaccess.ipynb", "erddap_moorings_E01.ipynb", "index.md", "interactive/holoviz_plotting_tests.ipynb", "interactive/interactive.md", "moorings/Mooring_E01.ipynb", "moorings/Puget_Climatology.ipynb", "moorings/Puget_Sound.ipynb", "moorings/Puget_Sound1.ipynb", "moorings/Puget_Sound2.ipynb", "moorings/dfo_mooring_plots_copy.ipynb", "moorings/erddap_DFO_moorings_E01.ipynb", "moorings/index.md", "panel_plotting_tests.ipynb", "posts.md"], "titles": ["<no title>", "<no title>", "<no title>", "Welcome to our fancy mooring page", "Holoviz plotting - shrinking the time range", "Interactive Viz", "E01", "Puget Sound Climatology Plot", "Puget Sound Plotting", "Puget Sound Plotting", "Puget Sound Plotting2", "Downloading DFO Historical Mooring Data", "DFO Moorings", "Moorings", "<no title>", "Posts"], "terms": {"import": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "packag": [0, 4, 11, 12], "from": [0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 13, 14], "erddapi": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "erddap": [0, 1, 2, 6, 7, 8, 9, 10], "panda": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "pd": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "xarrai": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "xr": [0, 4, 11], "matplotlib": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "pyplot": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "plt": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "e": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "server": [0, 1, 2, 6, 7, 8, 9, 10], "http": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12], "data": [0, 1, 2, 3, 6, 7, 8, 9, 10, 13], "cioospacif": [0, 1, 2, 6, 8, 12], "ca": [0, 1, 2, 6, 8, 12], "protocol": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "tabledap": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "set": [0, 1, 2, 4, 6, 7, 8, 9, 10], "boundari": [0, 1, 2, 9, 12], "box": [0, 1, 2, 9, 12], "min_lat": [0, 1, 2, 9, 12], "max_lat": [0, 1, 2, 9, 12], "49": [0, 1, 2, 11, 12], "28": [0, 1, 2, 9, 12], "30": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "min_lon": [0, 1, 2, 9, 12], "max_lon": [0, 1, 2, 9, 12], "126": [0, 1, 2, 11, 12], "62": [0, 1, 2, 12], "60": [0, 1, 2, 11, 12], "folium": [0, 1, 2, 9, 12], "lon": [0, 1, 2, 9, 11, 12], "2": [0, 1, 2, 7, 8, 9, 10, 11], "lat": [0, 1, 2, 9, 11, 12], "m": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "map": [0, 1, 2, 9, 11], "locat": [0, 1, 2, 9, 11, 12], "tile": [0, 1, 2, 9, 12], "openstreetmap": [0, 1, 2, 9, 12], "zoom_start": [0, 1, 2, 9, 12], "5": [0, 1, 2, 9, 11, 14], "polygon": [0, 1, 2, 9], "fill": [0, 1, 2, 9, 12], "true": [0, 1, 2, 4, 9, 11, 12], "add_to": [0, 1, 2, 9, 12], "make": [0, 2, 4, 9, 11, 12], "thi": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 15], "notebook": [0, 2, 4, 6, 9, 12, 13], "trust": [0, 2, 9, 12], "load": [0, 2, 9, 12], "file": [0, 2, 9, 11, 12], "df": [0, 11], "read_csv": [0, 11], "get_search_url": 0, "respons": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "csv": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "dataset": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "id": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "0": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "alldataset": 0, "1": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 14], "bcsop_daili": 0, "bcsop_monthli": 0, "3": [0, 2, 7, 8, 9, 10, 11], "iys_niskin_chl_phaeo": 0, "4": [0, 2, 4, 11], "iys_2020_ctd": 0, "iys_2022_tinro_ctd": 0, "6": [0, 4, 7, 8, 9, 10, 11], "iys_2019_ctd": 0, "7": [0, 2, 3, 8, 9, 10, 11], "primed_wavebuoi": 0, "8": [0, 1, 2, 7, 8, 9, 11, 12], "ios_ctd_profil": 0, "9": [0, 7, 11], "ios_adcp_moor": 0, "10": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "ios_ctd_moor": [0, 1, 2, 6, 8, 12], "11": [0, 3, 11], "ios_cur_moor": 0, "12": [0, 2, 7, 8, 9, 10, 12], "ios_bot_profil": 0, "13": [0, 11], "iys_2019_nutrients_o2": 0, "14": [0, 7, 8, 9, 10, 11], "iys_2019_pom": 0, "15": [0, 1, 2, 11, 12], "dfo_meds_buoi": 0, "16": [0, 7, 8, 9, 10], "eccc_msc_buoi": 0, "17": 0, "ios_p26_annu": 0, "name": [0, 2, 4, 14], "dtype": [0, 2, 7, 8, 9, 10], "object": [0, 2], "dataset_id": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "search": [0, 1, 2, 11], "variabl": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "depth": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11], "time": [0, 1, 2, 6, 7, 8, 9, 10], "latitud": [0, 1, 2, 11, 12], "longitud": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "sea_water_temperatur": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "sea_water_practical_salin": [0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "sea_water_pressur": [0, 1, 2, 6, 8, 12], "criteria": 0, "constraint": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "to_panda": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12], "dropna": [0, 1], "index_col": 0, "utc": [0, 1, 2, 12], "head": 0, "degrees_north": [0, 1, 2, 12], "degrees_east": [0, 1, 2, 12], "degc": [0, 1, 2, 12], "pss": [0, 1, 2, 12], "78": [0, 1, 2, 11, 12], "dbar": [0, 1, 2, 12], "891859": 0, "76": 0, "847060": 0, "2019": [0, 11], "08": 0, "01t00": 0, "00": [0, 2, 12], "00z": 0, "29": 0, "60516": 0, "9147": 0, "33": [0, 2, 12], "2059": 0, "77": 0, "521": 0, "891860": 0, "741010": 0, "9138": 0, "2488": 0, "414": 0, "891861": 0, "635950": 0, "9144": 0, "2564": 0, "308": 0, "891862": 0, "547745": 0, "45": [0, 11], "9842": 0, "1616": 0, "219": 0, "891863": 0, "495210": 0, "01t01": 0, "8992": 0, "2524": 0, "166": 0, "shape": [0, 7], "236387": 0, "lat_moor": 0, "lon_moor": 0, "i": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12], "rang": [0, 7, 8, 9, 10, 11], "len": [0, 7, 8, 9, 10], "marker": [0, 9, 11], "iloc": 0, "m_moor": 0, "numpi": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "np": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "cf_xarrai": [1, 2, 6, 7, 8, 9, 10, 12], "datetim": [1, 2, 4, 6, 7, 8, 9, 10, 12], "netcdf4": [1, 2, 6, 7, 8, 9, 10, 11, 12], "def": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "get_erddap_data": [1, 2, 4, 6, 7, 8, 9, 10, 12], "erddap_url": [1, 2, 4, 6, 7, 8, 9, 10, 12], "data_protocol": [1, 2, 4, 6, 7, 8, 9, 10, 12], "griddap": [1, 2, 4, 6, 7, 8, 9, 10, 12], "none": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "function": [1, 2, 6, 7, 8, 9, 10, 11], "us": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12], "python": [1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13], "librari": [1, 2, 4, 5, 6, 7, 8, 9, 10, 12], "access": [1, 2, 3, 4, 6, 7, 8, 9, 10, 12], "return": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "user": [1, 2, 4, 6, 7, 8, 9, 10, 12], "conveni": [1, 2, 4, 6, 7, 8, 9, 10, 12], "format": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "can": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12], "pull": [1, 2, 4, 6, 7, 8, 9, 10, 12], "differ": [1, 2, 4, 5, 6, 7, 8, 9, 10], "output": [1, 2, 4, 6, 7, 8, 9, 10, 12], "type": [1, 2, 4, 6, 7, 8, 9, 10, 12], "depend": [1, 2, 4, 6, 7, 8, 9, 10, 12], "dap": [1, 2, 4, 6, 7, 8, 9, 10, 12], "input": [1, 2, 4, 6, 7, 8, 9, 10, 12], "The": [1, 2, 4, 6, 7, 8, 9, 10, 12], "url": [1, 2, 4, 6, 7, 8, 9, 10, 12], "address": [1, 2, 4, 6, 7, 8, 9, 10, 12], "select": [1, 2, 4, 6, 7, 8, 9, 10, 12], "within": [1, 2, 4, 6, 7, 8, 9, 10, 12], "chosen": [1, 2, 4, 6, 7, 8, 9, 10, 12], "option": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "includ": [1, 2, 4, 6, 7, 8, 9, 10, 12], "default": [1, 2, 4, 6, 7, 8, 9, 10, 12], "given": [1, 2, 4, 6, 7, 8, 9, 10, 12], "relev": [1, 2, 4, 6, 7, 8, 9, 10, 12], "If": [1, 2, 4, 6, 7, 8, 9, 10, 12], "ar": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "assum": [1, 2, 4, 6, 7, 8, 9, 10, 12], "all": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "These": [1, 2, 4, 6, 7, 8, 9, 10, 12], "help": [1, 2, 4, 6, 7, 8, 9, 10, 12], "restrict": [1, 2, 4, 6, 7, 8, 9, 10, 12], "onli": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "area": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "timefram": [1, 2, 4, 6, 7, 8, 9, 10, 12], "interest": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "should": [1, 2, 4, 6, 7, 8, 9, 10, 12], "dictionari": [1, 2, 4, 6, 7, 8, 9, 10, 12], "where": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "each": [1, 2, 4, 6, 7, 8, 9, 10, 12], "entri": [1, 2, 4, 6, 7, 8, 9, 10, 12], "bound": [1, 2, 4, 6, 7, 8, 9, 10, 12], "specif": [1, 2, 4, 6, 7, 8, 9, 10, 12], "axi": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "ex": [1, 2, 4, 6, 7, 8, 9, 10, 12], "min": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "140": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "max": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "erddap_data": [1, 2, 4, 6, 7, 8, 9, 10, 12], "contain": [1, 2, 4, 6, 7, 8, 9, 10, 12], "an": [1, 2, 6, 7, 8, 9, 10, 12], "datafram": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "up": [1, 2, 4, 6, 7, 8, 9, 10, 12], "connect": [1, 2, 4, 6, 7, 8, 9, 10, 12], "identifi": [1, 2, 4, 6, 7, 8, 9, 10, 12], "base": [1, 2, 4, 6, 7, 8, 9, 10, 12], "upon": [1, 2, 4, 6, 7, 8, 9, 10, 12], "initi": [1, 2, 4, 6, 7, 8, 9, 10, 12], "griddap_initi": [1, 2, 4, 6, 7, 8, 9, 10, 12], "updat": [1, 2, 4, 6, 7, 8, 9, 10, 12], "to_xarrai": [1, 2, 4, 6, 7, 8, 9, 10, 12], "elif": [1, 2, 4, 6, 7, 8, 9, 10, 12], "invalid": [1, 2, 4, 6, 7, 8, 9, 10, 12], "els": [1, 2, 4, 6, 7, 8, 9, 10, 12], "print": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "valid": [1, 2, 4, 6, 7, 8, 9, 10, 12], "pleas": [1, 2, 4, 6, 7, 8, 9, 10, 12], "restart": [1, 2, 4, 6, 7, 8, 9, 10, 12], "try": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "again": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "check": 1, "pudget": 1, "sound": [1, 3, 13], "moor": [1, 2, 7, 9], "nwem_url": [1, 4, 6, 7, 8, 9, 10], "nwem": [1, 4, 6, 7, 8, 9, 10], "apl": [1, 4, 6, 7, 8, 9, 10], "washington": [1, 4, 6, 7, 8, 9, 10], "edu": [1, 4, 6, 7, 8, 9, 10], "nwem_dataset": [1, 4, 6], "orca3_l3_depthgridded_025": [1, 4, 6, 8, 9, 10], "cast_start_tim": [1, 4, 6, 7, 8, 9, 10], "2022": [1, 2, 6, 8, 11, 12], "strftime": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "y": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14], "dt": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "h": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "sz": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12], "365": [1, 2, 4, 6, 7, 8, 9, 10, 12], "nwem_grid": [1, 4, 6], "sel": [1, 6], "plot": [1, 2, 3, 5, 6, 10, 13, 14], "show": [1, 2, 4, 7, 8, 9, 10, 11, 12], "e01": [1, 2, 13], "dfo": [1, 2, 13], "cioos_url": [1, 2, 6, 8, 12], "cioos_dataset": [1, 2, 6, 8, 12], "temps901": [1, 2, 11, 12], "temps902": [1, 2, 11, 12], "temps601": [1, 2, 11, 12], "temps602": [1, 2, 11, 12], "tempst01": [1, 2, 11, 12], "cioos_tabl": [1, 2, 6, 8, 12], "column": [1, 2, 7, 8, 9, 10, 11, 12, 14], "cioos_table_1": [1, 2, 12], "renam": [1, 2, 12], "sea_water_pratical_salin": [1, 2, 12], "deg_c": [1, 2, 12], "confirm": 1, "string": [1, 11], "reset_index": [1, 2], "set_index": [1, 2], "na": 1, "valu": [1, 2, 4, 7, 8, 9, 10, 11, 12, 14], "could": [1, 2, 12], "drop": [1, 2, 4, 12], "without": [1, 2, 12], "real": [1, 2, 12], "40": [1, 2, 12], "cioos_e01_35": [1, 2, 12], "cioos_e01_75": [1, 2, 12], "70": [1, 2, 12], "80": [1, 2, 11, 12], "cioos_e01_95": [1, 2, 12], "90": [1, 2, 7, 8, 9, 10, 11, 12], "100": [1, 2, 4, 12], "index": [1, 2, 5, 12], "fig": [1, 2, 4, 11, 12, 14], "ax": [1, 2, 4, 7, 8, 9, 10, 11, 12, 14], "subplot": [1, 2, 7, 9, 10, 11, 12], "figsiz": [1, 2, 4, 7, 8, 9, 10, 11, 12], "sharex": [1, 2, 11, 12], "linewidth": [1, 2, 11, 12], "05": [1, 2, 11, 12], "c": [1, 2, 7, 8, 9, 10, 11, 12], "orang": [1, 2, 11, 12], "set_titl": [1, 2, 4, 7, 8, 9, 10, 11, 12], "temperatur": [1, 2, 3, 4, 7, 9, 10], "blue": [1, 2, 12], "salin": [1, 2, 3, 4, 7, 9, 10], "subplots_adjust": [1, 2, 11, 12], "hspace": [1, 2, 11, 12], "suptitl": [1, 2, 7, 8, 9, 10, 11, 12], "station": [1, 2, 7, 8, 9, 10, 11, 12], "metr": [1, 2, 11, 12], "str": [1, 2, 11, 12], "mooring_depth": [1, 11], "cioos_xarrai": [1, 2], "cioos_e01_35x": [1, 2], "cioos_e01_75x": [1, 2], "cioos_e01_95x": [1, 2], "date": [1, 4, 7, 8, 9], "datetimeindex": [1, 2, 12], "timestamp": [1, 7], "ii": 1, "line": [1, 6, 11], "cb": [1, 2, 4], "scatter": [1, 2, 11], "colorbar": [1, 2, 4, 7, 9, 10], "get": [2, 4, 11, 12], "cioo": [2, 12], "2008": [2, 12], "04": [2, 12], "28t20": [2, 12], "01z": [2, 12], "73": [2, 12], "502020": [2, 12], "288185": [2, 12], "60239": [2, 12], "74": [2, 12], "146": [2, 12], "nan": [2, 11, 12], "32": [2, 8, 9, 10, 11, 12], "9249": [2, 12], "5953": [2, 12], "21z": [2, 12], "9276": [2, 12], "5958": [2, 12], "41z": [2, 12], "448494": [2, 12], "092": [2, 12], "9293": [2, 12], "5964": [2, 12], "01": [2, 11, 12], "484170": [2, 12], "128": [2, 12], "9304": [2, 12], "5981": [2, 12], "466330": [2, 12], "110": [2, 12], "9298": [2, 12], "5972": [2, 12], "1128615": [2, 12], "07": [2, 11, 12], "14t23": [2, 12], "07z": [2, 12], "97": [2, 12], "252230": [2, 12], "288330": [2, 12], "60290": [2, 12], "98": [2, 12], "1191": [2, 12], "7387": [2, 12], "1128616": [2, 12], "026276": [2, 12], "882": [2, 12], "1316": [2, 12], "7315": [2, 12], "1128617": [2, 12], "15t00": [2, 12], "96": [2, 12], "897440": [2, 12], "752": [2, 12], "1474": [2, 12], "7214": [2, 12], "1128618": [2, 12], "605090": [2, 12], "457": [2, 12], "1669": [2, 12], "7088": [2, 12], "1128619": [2, 12], "15t01": [2, 12], "442560": [2, 12], "293": [2, 12], "1878": [2, 12], "6931": [2, 12], "1128620": [2, 12], "row": [2, 4, 7, 8, 9, 10, 12], "newtime_35": [2, 12], "plot_dfo_e01_moor": [2, 12], "35": [2, 11, 12], "cioos_e01": [2, 12], "75": [2, 11, 12], "95": [2, 12], "newtim": [2, 12], "markers": [2, 12], "set_ylabel": [2, 4, 7, 8, 9, 10, 12], "sea": [2, 4, 12], "water": [2, 12], "psu": [2, 7, 8, 9, 10, 11, 12], "newtime_75": [2, 12], "newtime_95": [2, 12], "var": [2, 12], "list": 2, "ff0000": [2, 12], "label": [2, 4, 7, 8, 9, 10, 11, 12], "35m": [2, 12], "alpha": [2, 11, 12], "ffa500": [2, 12], "75m": [2, 11, 12], "ffff00": [2, 12], "95m": [2, 12], "seri": 2, "legend": [2, 7, 8, 9, 12], "loc": [2, 12], "upper": [2, 12], "left": [2, 12], "7bc8f6": [2, 12], "0343df": [2, 12], "0000ff": [2, 12], "lower": [2, 12], "0x7f2d6f218d60": 2, "length": 2, "float64": 2, "work": [2, 11], "creat": 3, "well": [3, 9], "copi": [3, 11], "modifi": 3, "ohw": 3, "websit": 3, "dure": [3, 11], "oceanhackweek": 3, "2023": [3, 4], "seattl": 3, "august": 3, "go": [3, 11], "download": [3, 4, 7, 9], "displai": 3, "github": 3, "seth": 3, "travi": 3, "lu": 3, "guan": 3, "samantha": 3, "huntington": 3, "andrea": 3, "hilborn": 3, "hafeez": 3, "opeyemi": 3, "oladejo": 3, "tobia": 3, "ferreira": 3, "veronica": 3, "martinez": 3, "johnathan": 3, "evanilla": 3, "christian": 3, "sarason": 3, "danilo": 3, "silva": 3, "hallei": 3, "mcveigh": 3, "hame": 3, "ajibad": 3, "oxygen": [3, 7, 9, 10], "etc": 3, "vancouv": 3, "island": 3, "puget": [3, 13], "region": 3, "visual": 3, "multipl": 3, "interact": 3, "tool": [3, 4, 5], "like": 3, "streamlit": [3, 5], "holovi": 3, "plotli": 3, "build": [3, 4, 5], "webpag": [3, 4], "host": [3, 4], "highlight": [3, 4], "what": [3, 4], "exist": [3, 11], "t": [3, 4, 8, 9, 11], "wait": 3, "take": 3, "my": 3, "surf": 3, "next": [3, 4, 11], "level": 3, "site": 3, "light": 3, "yonder": 3, "window": 3, "break": 3, "romeo": 3, "1634": 3, "someth": 3, "folk": 3, "follow": [3, 13], "institut": 3, "imag": 3, "asset": 3, "logo": 3, "nasa": 3, "sm": 3, "png": [3, 11], "alt": 3, "width": 3, "150px": 3, "we": [4, 5, 11, 13], "ve": 4, "attempt": 4, "some": [4, 11], "figur": [4, 9, 11, 14], "need": [4, 11, 12], "activ": 4, "kernel": 4, "so": 4, "insert": 4, "directli": 4, "static": 4, "In": [4, 11], "exampl": 4, "done": 4, "At": 4, "end": [4, 7, 14], "script": 4, "bind": [4, 14], "panel": [4, 5, 14], "which": 4, "launch": 4, "app": [4, 5], "requir": 4, "separ": 4, "run": 4, "sort": 4, "possibl": 4, "have": [4, 5], "pathlib": 4, "holoview": 4, "hv": 4, "hvplot": 4, "noqa": 4, "pn": [4, 14], "extens": [4, 14], "templat": [4, 14], "materi": 4, "first": 4, "To": 4, "do": 4, "nanoo": 4, "buoi": 4, "hansvil": [4, 9], "wa": 4, "grid": 4, "product": 4, "ctd": [4, 11], "taken": 4, "last": [4, 11], "year": [4, 11], "daili": [4, 12], "basi": 4, "mass_concentration_of_oxygen_in_sea_wat": [4, 7, 8, 9, 10], "2016": 4, "surfac": 4, "widget": [4, 14], "intslid": 4, "start": [4, 11, 14], "dim": 4, "isel": [4, 7, 8, 9], "final": [4, 11], "embed": 4, "plot_timerang": 4, "nwem_interact": 4, "date_slid": 4, "start_dat": 4, "datetime64": 4, "end_dat": 4, "nwem_to_plot": 4, "logical_and": 4, "dates_to_plot": 4, "depths_to_plot": 4, "sst_to_plot": 4, "sss_to_plot": 4, "ax1": [4, 7, 8, 9], "add_subplot": [4, 14], "211": 4, "pcolor": [4, 7, 8, 9, 10], "invert_yaxi": [4, 7, 8, 9, 10], "ax2": [4, 7, 8, 9], "212": 4, "tight_layout": [4, 7, 8, 9, 10, 11], "daterangeslid": 4, "earliest": 4, "2017": 4, "2020": [4, 11], "servabl": [4, 14], "target": [4, 14], "sidebar": [4, 14], "pane": [4, 14], "arrai": [4, 7, 8, 9, 10], "mpl": [4, 11, 14], "main": [4, 5, 14], "test": [4, 5], "out": 4, "click": 4, "preview": 4, "button": 4, "ribbon": 4, "top": 4, "": [4, 11], "code": 4, "markdown": 4, "dropdown": 4, "menu": 4, "holoviz": 5, "org": 5, "getting_start": 5, "html": 5, "web": 5, "io": 5, "page": [5, 6, 13, 15], "shini": 5, "were": 5, "briefli": 5, "abl": [5, 13], "anoth": [5, 11], "commonli": 5, "ha": [5, 7, 8, 9], "both": 5, "r": [5, 11], "posit": [5, 7, 8, 9], "co": 5, "line2d": 6, "0x7f6a05f98550": 6, "extract": [7, 8, 9, 10], "two": [7, 9, 11], "sub": [7, 9], "nwem_dataset1": [7, 8, 9, 10], "orca3_l3_depth_climatology_025": 7, "nwem_dataset2": [7, 8, 9, 10], "npby1_l3_depth_climatology_025": 7, "1970": 7, "nwem_grid1": [7, 8, 9, 10], "nwem_grid2": [7, 8, 9, 10], "ds1": [7, 8, 9, 10], "ds2": [7, 8, 9, 10], "depth1": [7, 8, 9, 10], "depth2": [7, 8, 9, 10], "date1": [7, 8, 9, 10], "date2": [7, 8, 9, 10], "325": [7, 8, 9, 10], "depth_l": [7, 8, 9, 10], "50": [7, 8, 9, 10], "dayofyear": 7, "str1": [7, 8, 9, 10], "str2": [7, 8, 9, 10], "str3": [7, 8, 9, 10], "var1_sst": [7, 8, 9, 10], "var1_sss": [7, 8, 9, 10], "var1_oxi": [7, 8, 9, 10], "var2_sst": [7, 8, 9, 10], "var2_sss": [7, 8, 9, 10], "var2_oxi": [7, 8, 9, 10], "assign_coord": [7, 8, 9, 10], "tser1_sst": [7, 8, 9], "int": [7, 8, 9, 10, 11], "tser2_sst": [7, 8, 9], "tser1_sss": [7, 8, 9], "tser2_sss": [7, 8, 9], "tser1_oxi": [7, 8, 9], "tser2_oxi": [7, 8, 9], "temp": [7, 8, 9, 10, 11], "orca3": [7, 8, 9, 10], "nbpy1": [7, 8, 9], "f": [7, 8, 9, 10], "ax3": [7, 8, 9], "share": [7, 8, 9, 11], "x": [7, 8, 9, 11, 14], "t1": [7, 8, 9], "t1_1": [7, 8, 9], "npby1": [7, 8, 9, 10], "t2": [7, 8, 9], "t2_2": [7, 8, 9], "t3": [7, 8, 9], "t3_2": [7, 8, 9], "set_xlabel": [7, 8, 9, 10], "set_xtick": [7, 8, 9], "d": [7, 8, 9, 10, 11], "tick_posit": [7, 8, 9, 10], "set_xticklabel": [7, 8, 9, 10], "mg": [7, 8, 9, 10], "l": [7, 8, 9, 10], "fontsiz": [7, 8, 9, 10], "02": [7, 8, 9, 10], "prepar": [7, 9], "distribut": [7, 9], "sst1": [7, 8, 9, 10], "transpos": [7, 8, 9, 10], "sst2": [7, 8, 9, 10], "sss1": [7, 8, 9, 10], "sss2": [7, 8, 9, 10], "oxy1": [7, 8, 9, 10], "oxy2": [7, 8, 9, 10], "formatted_tim": [7, 8, 9, 10], "linspac": [7, 8, 9, 10, 14], "tick_label": [7, 8, 9, 10], "sc1": [7, 8, 9], "cmap": [7, 8, 9, 10], "spectral_r": [7, 8, 9, 10], "invert": [7, 8, 9, 10], "sc2": [7, 8, 9], "sc3": [7, 8, 9], "xaxi": [7, 8, 9], "set_major_loc": [7, 8, 9], "fixedloc": [7, 8, 9], "tick": [7, 8, 9], "third": [7, 8, 9], "center": [7, 8, 9], "add": [7, 9, 10, 13], "cbar1": [7, 8, 9], "orient": [7, 8, 9, 10], "vertic": [7, 8, 9, 10], "fontweight": [7, 8, 9, 10], "bold": [7, 8, 9, 10, 11], "yaxi": [7, 8, 9, 10], "set_fontweight": [7, 8, 9, 10], "font": [7, 8, 9, 10], "weight": [7, 8, 9, 10, 11], "cbar2": [7, 8, 9], "cbar3": [7, 8, 9], "get_titl": [7, 8, 9], "get_xlabel": [7, 8, 9], "get_ylabel": [7, 8, 9], "get_xticklabel": [7, 8, 9], "get_yticklabel": [7, 8, 9], "adjust": [7, 9, 10], "layout": [7, 9, 10], "compar": [7, 8, 9], "sc1_1": [7, 8, 9, 10], "vmin": [7, 8, 9, 10], "vmax": [7, 8, 9, 10], "19": [7, 8, 9, 10], "set_ylim": [7, 8, 9, 10], "set_clim": [7, 8, 9, 10], "22": [7, 8, 9, 10], "sc1_2": [7, 8, 9, 10], "sc2_1": [7, 8, 9, 10], "25": [7, 9, 11], "31": 7, "sc2_2": [7, 8, 9, 10], "sc3_1": [7, 8, 9, 10], "sc3_2": [7, 8, 9, 10], "cbar1_1": [7, 8, 9, 10], "cbar1_2": [7, 8, 9, 10], "cbar2_1": [7, 8, 9, 10], "cbar2_2": [7, 8, 9, 10], "cbar3_1": [7, 8, 9, 10], "cbar3_2": [7, 8, 9, 10], "comparison": [7, 8, 9, 10], "npby1_l3_depthgridded_025": [8, 9, 10], "sea_water_temperature_qc_agg": [8, 9, 10], "sea_water_practical_salinity_qc_agg": [8, 9, 10], "mass_concentration_of_oxygen_in_sea_water_qc_agg": [8, 9, 10], "2012": [8, 9, 10], "str4": [8, 9, 10], "str5": [8, 9, 10], "str6": [8, 9, 10], "var1_sstqc": [8, 9, 10], "var1_sssqc": [8, 9, 10], "var1_oxyqc": [8, 9, 10], "buoy1": [8, 9, 10], "good": [8, 9, 10], "var2_sstqc": [8, 9, 10], "var2_sssqc": [8, 9, 10], "var2_oxyqc": [8, 9, 10], "buoy2": [8, 9, 10], "18": [8, 9, 10], "datetime_as_str": [8, 9, 10], "unit": [8, 9, 10], "20": [8, 9, 10], "full": 8, "visualis": 9, "studi": 9, "servic": 9, "arcgisonlin": 9, "com": 9, "arcgi": 9, "rest": 9, "world_topo_map": 9, "mapserv": 9, "z": 9, "47": 9, "48": 9, "123": 9, "122": 9, "attr": 9, "esri": 9, "907": 9, "627": 9, "popup": 9, "tooltip": 9, "761": 9, "3972": 9, "point": 9, "8034": 9, "8029": 9, "dabob": 9, "bai": 9, "728": 9, "carr": 9, "inlet": 9, "375": 9, "0083": 9, "twanoh": 9, "icon": 9, "color": [9, 11], "red": [9, 11], "4218": 9, "1136": 9, "hoodsport": 9, "black": [9, 11], "dasharrai": 9, "time_seri": 9, "limit": 11, "125": 11, "99": 11, "cartopi": 11, "cr": 11, "ccr": 11, "ticker": 11, "longitudeformatt": 11, "latitudeformatt": 11, "latitudeloc": 11, "plot_moor": 11, "master_mooring_list": 11, "skiprow": 11, "convert": 11, "deg": 11, "decim": 11, "latdeg": 11, "latmin": 11, "dir": 11, "split": 11, "expand": 11, "to_numer": 11, "londeg": 11, "lonmin": 11, "latsig": 11, "lonsig": 11, "eo1lon": 11, "eo1lat": 11, "left_lon": 11, "right_lon": 11, "bot_lat": 11, "top_lat": 11, "120": 11, "57": 11, "project": 11, "platecarre": 11, "set_ext": 11, "coastlin": 11, "add_featur": 11, "featur": 11, "ocean": 11, "land": 11, "edgecolor": 11, "lake": 11, "river": 11, "gl": 11, "gridlin": 11, "linestyl": 11, "draw_label": 11, "top_label": 11, "fals": 11, "left_label": 11, "bottom_label": 11, "right_label": 11, "ylocat": 11, "xformatt": 11, "yformatt": 11, "xlabel_styl": 11, "size": 11, "ylabel_styl": 11, "cax": 11, "transform": 11, "titl": 11, "savefig": 11, "dfo_mooring_loc": 11, "close": 11, "tmp": 11, "ipykernel_16973": 11, "2798140817": 11, "py": 11, "futurewarn": 11, "futur": 11, "version": 11, "argument": 11, "stringmethod": 11, "except": 11, "pat": 11, "keyword": 11, "open_dataset": 11, "ios_ctd_moorings_9614_794f_0026": 11, "nc": 11, "ios_ctd_moorings_all_yr": 11, "ios_ctd_moorings_allyrs2": 11, "psalst01": 11, "doxyzz01": 11, "doxmzz01": 11, "filenam": 11, "keyerror": 11, "traceback": 11, "most": 11, "recent": 11, "call": 11, "opt": 11, "conda": 11, "lib": 11, "python3": 11, "backend": 11, "file_manag": 11, "199": 11, "cachingfilemanag": 11, "_acquire_with_cache_info": 11, "self": 11, "needs_lock": 11, "198": 11, "_cach": 11, "_kei": 11, "200": 11, "lru_cach": 11, "53": 11, "lrucach": 11, "__getitem__": 11, "kei": 11, "52": 11, "_lock": 11, "54": 11, "move_to_end": 11, "class": 11, "_netcdf4": 11, "home": 11, "jovyan": 11, "ohw23_proj_fancymoor": 11, "clobber": 11, "diskless": 11, "persist": 11, "handl": 11, "abov": 11, "occur": 11, "filenotfounderror": 11, "cell": 11, "api": 11, "495": 11, "filename_or_obj": 11, "engin": 11, "chunk": 11, "cach": 11, "decode_cf": 11, "mask_and_scal": 11, "decode_tim": 11, "decode_timedelta": 11, "use_cftim": 11, "concat_charact": 11, "decode_coord": 11, "drop_vari": 11, "backend_kwarg": 11, "arg": 11, "kwarg": 11, "483": 11, "decod": 11, "_resolve_decoders_kwarg": 11, "484": 11, "485": 11, "open_backend_dataset_paramet": 11, "open_dataset_paramet": 11, "491": 11, "492": 11, "494": 11, "overwrite_encoded_chunk": 11, "pop": 11, "backend_d": 11, "496": 11, "497": 11, "498": 11, "499": 11, "500": 11, "501": 11, "_dataset_from_backend_dataset": 11, "502": 11, "503": 11, "510": 11, "511": 11, "512": 11, "netcdf4_": 11, "553": 11, "netcdf4backendentrypoint": 11, "group": 11, "mode": 11, "lock": 11, "autoclos": 11, "532": 11, "533": 11, "534": 11, "549": 11, "550": 11, "552": 11, "_normalize_path": 11, "store": 11, "netcdf4datastor": 11, "open": 11, "554": 11, "555": 11, "556": 11, "557": 11, "558": 11, "559": 11, "560": 11, "561": 11, "562": 11, "563": 11, "565": 11, "store_entrypoint": 11, "storebackendentrypoint": 11, "566": 11, "close_on_error": 11, "382": 11, "cl": 11, "lock_mak": 11, "376": 11, "dict": 11, "377": 11, "378": 11, "379": 11, "manag": 11, "380": 11, "381": 11, "330": 11, "__init__": 11, "328": 11, "_group": 11, "329": 11, "_mode": 11, "data_model": 11, "331": 11, "_filenam": 11, "filepath": 11, "332": 11, "is_remot": 11, "is_remote_uri": 11, "391": 11, "389": 11, "properti": 11, "390": 11, "_acquir": 11, "385": 11, "384": 11, "_manag": 11, "acquire_context": 11, "root": 11, "386": 11, "_nc4_require_group": 11, "387": 11, "contextlib": 11, "119": 11, "_generatorcontextmanag": 11, "__enter__": 11, "117": 11, "del": 11, "kwd": 11, "func": 11, "118": 11, "gen": 11, "stopiter": 11, "121": 11, "rais": 11, "runtimeerror": 11, "gener": [11, 15], "didn": 11, "yield": 11, "187": 11, "184": 11, "contextmanag": 11, "185": 11, "186": 11, "context": 11, "acquir": 11, "188": 11, "189": 11, "205": 11, "203": 11, "204": 11, "_open": 11, "_arg": 11, "206": 11, "w": 11, "207": 11, "ensur": 11, "doesn": 11, "overridden": 11, "when": 11, "208": 11, "src": 11, "pyx": 11, "2464": 11, "2027": 11, "_ensure_nc_success": 11, "errno": 11, "No": 11, "directori": 11, "plot_dfo_moor": 11, "dpth": 11, "mind": 11, "maxd": 11, "fstrt1": 11, "fstrt2": 11, "whole": 11, "must": 11, "know": 11, "sensor": 11, "find": 11, "would": [11, 13], "allow": 11, "isn": 11, "case": 11, "For": 11, "grab": 11, "salt": 11, "temp1": 11, "temp2": 11, "isnul": 11, "to_datetim": 11, "chang": 11, "anyth": 11, "latmx": 11, "latmn": 11, "lonmx": 11, "lonmn": 11, "better": 11, "wai": 11, "captur": 11, "now": 11, "uniq": 11, "uniqu": 11, "drop_fil": 11, "tof1_20150801_20160714_0032m": 11, "cyp1_20160714_20171004_0062m_l1": 11, "fortune1_20171006_20181011_0090m_l2": 11, "millar1_20171006_20181011_0017m_l2": 11, "keep": 11, "fix": 11, "isin": 11, "one": 11, "e01_20150801_20160712_0035m": 11, "file_depth": 11, "astyp": 11, "method": 11, "df_depth": 11, "around": 11, "between": 11, "sort_valu": 11, "ascend": 11, "put": [11, 13], "blank": 11, "tck": 11, "tklbl": 11, "2018": 11, "2021": 11, "38": 11, "plot_dfo_salt": 11, "psalst02": 11, "ssalst01": 11, "same": 11, "isol": 11, "var1": 11, "var2": 11, "var3": 11, "var4": 11, "purpl": 11, "72": 11, "plot_dfo_temp": 11, "saw": 11, "gap": 11, "popul": 11, "merge_temp": 11, "15737": 11, "68": 11, "238": 11, "var5": 11, "var6": 11, "sharei": 11, "green": 11, "Not": 11, "see": 11, "ani": 11, "oxi": 11, "frame": 11, "plot_dfo_oxi": 11, "calcul": 12, "climatologi": [12, 13], "anomali": 12, "togeth": 13, "summari": 13, "histor": 13, "It": 13, "veri": 13, "cool": 13, "more": 13, "automat": 13, "fast": 14, "freq": 14, "floatslid": 14, "frequenc": 14, "ampl": 14, "amplitud": 14, "111": 14, "sin": 14, "sine": 14, "curv": 14, "replac": 15, "ablog": 15, "dynam": 15}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"welcom": 3, "our": 3, "fanci": 3, "moor": [3, 11, 12, 13], "page": 3, "thi": 3, "wa": [3, 11], "stolen": 3, "project": 3, "descript": 3, "collabor": 3, "goal": 3, "particip": 3, "quot": 3, "team": 3, "holoviz": 4, "plot": [4, 7, 8, 9, 11, 12], "shrink": 4, "time": [4, 11, 12], "rang": 4, "load": 4, "data": [4, 11, 12], "from": [4, 12], "erddap": [4, 11, 12], "server": [4, 12], "creat": 4, "slider": 4, "move": 4, "between": 4, "individu": 4, "cast": 4, "function": [4, 12], "an": 4, "interact": [4, 5], "viz": 5, "e01": [6, 11, 12], "puget": [7, 8, 9, 10], "sound": [7, 8, 9, 10], "climatologi": 7, "temperatur": [8, 11, 12], "subplot": 8, "salin": [8, 11, 12], "oxygen": [8, 11], "add": 8, "colorbar": 8, "adjust": 8, "layout": 8, "plotting2": 10, "download": [11, 12], "dfo": [11, 12], "histor": 11, "http": 11, "cioospacif": 11, "ca": 11, "tabledap": 11, "ios_ctd_moor": 11, "htm": 11, "constraint": 11, "pacif": 11, "site": 11, "i": 11, "blue": 11, "combin": 11, "what": 11, "learn": 11, "below": 11, "us": 11, "merg": 11, "variabl": 11, "seri": [11, 12], "do": [11, 12], "have": 11, "look": 11, "variou": 11, "ctd": 12, "visul": 12, "1": 12, "develop": 12, "2": 12, "set": 12, "map": 12, "search": 12, "polygon": 12, "3": 12, "4": 12, "check": 12, "instrument": 12, "depth": 12, "5": 12, "three": 12, "differ": 12, "6": 12, "compar": 12, "7": 12, "To": 12, "list": 12, "post": 15}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"Welcome to our fancy mooring page": [[3, "welcome-to-our-fancy-mooring-page"]], "This was stolen!": [[3, null]], "Project Description": [[3, "project-description"]], "Collaborators": [[3, "collaborators"]], "Goals": [[3, "goals"]], "Participant Quotes": [[3, null]], "Our Team": [[3, "our-team"]], "Holoviz plotting - shrinking the time range": [[4, "holoviz-plotting-shrinking-the-time-range"]], "Load in data from the ERDDAP server": [[4, "load-in-data-from-the-erddap-server"]], "Create a slider to move between individual casts": [[4, "create-a-slider-to-move-between-individual-casts"]], "Create a function to create an interactive plotting time range": [[4, "create-a-function-to-create-an-interactive-plotting-time-range"]], "Interactive Viz": [[5, "interactive-viz"]], "E01": [[6, "e01"]], "Puget Sound Climatology Plot": [[7, "puget-sound-climatology-plot"]], "Puget Sound Plotting": [[8, "puget-sound-plotting"], [9, "puget-sound-plotting"]], "Plot Temperature subplot": [[8, "plot-temperature-subplot"]], "Plot Salinity subplot": [[8, "plot-salinity-subplot"]], "Plot Oxygen subplot": [[8, "plot-oxygen-subplot"]], "Add colorbars": [[8, "add-colorbars"]], "Adjust layout": [[8, "adjust-layout"]], "Puget Sound Plotting2": [[10, "puget-sound-plotting2"]], "Downloading DFO Historical Mooring Data": [[11, "downloading-dfo-historical-mooring-data"]], "https://data.cioospacific.ca/erddap/tabledap/IOS_CTD_Moorings.htm": [[11, "https-data-cioospacific-ca-erddap-tabledap-ios-ctd-moorings-htm"]], "Constraints:": [[11, "constraints"]], "DFO Pacific Mooring Sites (E01 is in blue)": [[11, "dfo-pacific-mooring-sites-e01-is-in-blue"]], "Combine what was learned Below - use a merged Temperature variable for the time series - do not plot Oxygen": [[11, "combine-what-was-learned-below-use-a-merged-temperature-variable-for-the-time-series-do-not-plot-oxygen"]], "Have a look at the various salinity variables.": [[11, "have-a-look-at-the-various-salinity-variables"]], "Have a look at the various temperature variables.": [[11, "have-a-look-at-the-various-temperature-variables"]], "Have a look at the various oxygen variables.": [[11, "have-a-look-at-the-various-oxygen-variables"]], "DFO Moorings": [[12, "dfo-moorings"]], "Mooring CTD time series visulization - E01": [[12, "mooring-ctd-time-series-visulization-e01"]], "1. develop a function to download mooring data from ERDDAP server": [[12, "develop-a-function-to-download-mooring-data-from-erddap-server"]], "2. Set and map the data search polygon for E01": [[12, "set-and-map-the-data-search-polygon-for-e01"]], "3. E01 moored CTD data download": [[12, "e01-moored-ctd-data-download"]], "4. Check and plot the instrument depths @ E01": [[12, "check-and-plot-the-instrument-depths-e01"]], "5. Plot Temperature and Salinity time series at three different depths at E01": [[12, "plot-temperature-and-salinity-time-series-at-three-different-depths-at-e01"]], "6. Compare the temperature and salinity time series from three depths": [[12, "compare-the-temperature-and-salinity-time-series-from-three-depths"]], "7. To do list:": [[12, "to-do-list"]], "Moorings": [[13, "moorings"]], "Posts": [[15, "posts"]]}, "indexentries": {}}) \ No newline at end of file diff --git a/_build/jupyter_execute/3af2551184d80e83370923dc4318d1d221b463b9cbe14c1b381f72e22daa79b9.png b/_build/jupyter_execute/3af2551184d80e83370923dc4318d1d221b463b9cbe14c1b381f72e22daa79b9.png new file mode 100644 index 0000000..c5cf4c5 Binary files /dev/null and b/_build/jupyter_execute/3af2551184d80e83370923dc4318d1d221b463b9cbe14c1b381f72e22daa79b9.png differ diff --git a/_build/jupyter_execute/54554af65baceb3f51bfdfde6d07f8cd72aac8e3dab6871a5d2f48e37dd05ae7.png b/_build/jupyter_execute/54554af65baceb3f51bfdfde6d07f8cd72aac8e3dab6871a5d2f48e37dd05ae7.png new file mode 100644 index 0000000..2bf3b89 Binary files /dev/null and b/_build/jupyter_execute/54554af65baceb3f51bfdfde6d07f8cd72aac8e3dab6871a5d2f48e37dd05ae7.png differ diff --git a/_build/jupyter_execute/73b7ad9b0f4ebae774c341c52f3b209efee985879fd37868633843d042038e55.png b/_build/jupyter_execute/73b7ad9b0f4ebae774c341c52f3b209efee985879fd37868633843d042038e55.png deleted file mode 100644 index 9da8fb4..0000000 Binary files a/_build/jupyter_execute/73b7ad9b0f4ebae774c341c52f3b209efee985879fd37868633843d042038e55.png and /dev/null differ diff --git a/_build/jupyter_execute/8671adbe5b598f22646444a34b9061487c1a82ee63bbdb8c7f60de7a343abd3f.png b/_build/jupyter_execute/8671adbe5b598f22646444a34b9061487c1a82ee63bbdb8c7f60de7a343abd3f.png new file mode 100644 index 0000000..23ae9aa Binary files /dev/null and b/_build/jupyter_execute/8671adbe5b598f22646444a34b9061487c1a82ee63bbdb8c7f60de7a343abd3f.png differ diff --git a/_build/jupyter_execute/c19a585219389411301a12c2ce93db23e89bd21401a1621a8e947723ccaab275.png b/_build/jupyter_execute/c19a585219389411301a12c2ce93db23e89bd21401a1621a8e947723ccaab275.png new file mode 100644 index 0000000..98b4e4b Binary files /dev/null and b/_build/jupyter_execute/c19a585219389411301a12c2ce93db23e89bd21401a1621a8e947723ccaab275.png differ diff --git a/_build/jupyter_execute/dfo_mooring_plots.ipynb b/_build/jupyter_execute/dfo_mooring_plots.ipynb deleted file mode 100644 index 57d1a17..0000000 --- a/_build/jupyter_execute/dfo_mooring_plots.ipynb +++ /dev/null @@ -1,361 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "74707d4e-b34c-4a1d-a378-2e963113dd67", - "metadata": { - "tags": [] - }, - "source": [ - "# Downloading DFO Historical Mooring Data\n", - "### https://data.cioospacific.ca/erddap/tabledap/IOS_CTD_Moorings.htm\n", - "## Constraints:\n", - "Limited the search area to the mooring of interest E01. (49.1 - 49.3 & 126 - 126.7)
\n", - "Limited the time frame to 2018-01-01 to 22-07-21 to minimize download time for this project. \n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "47c2d6d5-b0b4-4ee4-88af-b807b8ba07e5", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import xarray as xr\n", - "\n", - "# have a look at the dataset:\n", - "\n", - "ds = xr.open_dataset(\"IOS_CTD_Moorings_9614_794f_0026.nc\")\n", - "#print(ds)\n", - "#print(ds.PSALST01.data)\n", - "#print(ds.DOXYZZ01)\n", - "#print(ds.DOXMZZ01)\n", - "#print(ds.filename.data)\n", - "print(ds.variables)\n", - "ds\n" - ] - }, - { - "cell_type": "markdown", - "id": "7d875fc9-85bf-446d-9d71-3e722be465e3", - "metadata": {}, - "source": [ - "## Combine what was learned Below - use a merged Temperature variable for the time series - do not plot Oxygen" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "1631164f-997b-4645-8036-e901252ccdce", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAALjCAYAAAAWfmJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3wc5bX/f2a7pF2tqlUs2ZKL3G0MBmxIMNVUQ0IJPRCSG8j95ZuQSxLKhQTuDZeSAkkIJOQ68L1JwMANkFBMxwaCbWyMey9qVq+runV+f5zv0fPM7Oxqd7Wrtuf9euklaXZmdnZ2nuc5z3nO+RxFVVUVGIZhGIZhGIZhGIZhGCYNMY31BTAMwzAMwzAMwzAMwzDMWMHOMYZhGIZhGIZhGIZhGCZtYecYwzAMwzAMwzAMwzAMk7awc4xhGIZhGIZhGIZhGIZJW9g5xjAMwzAMwzAMwzAMw6Qt7BxjGIZhGIZhGIZhGIZh0hZ2jjEMwzAMwzAMwzAMwzBpCzvHGIZhGIZhGIZhGIZhmLSFnWMMwzAMwzAMwzAMwzBM2sLOMYZhGGZc8+yzz4KiKEM/DocDiouL4ayzzoKHHnoIWlpawo65//77NcfIP0888YRm3/b2drj77rth/vz5kJmZCdnZ2bB8+XL43e9+B36/P6ZrPPPMM0FRFJgxYwaoqhr2+kcffTT0/s8++2xC92GkrF+/HhRFgfXr14/J++/btw9uvPFGmDFjBjgcDigoKIATTzwRvvvd74LH4xna77nnnoPHH398RO/15JNPGt7n6urqMfsOoj2TiqJAdXW1Zv+1a9fCCSecAA6HA0pLS+H222+H3t5ezT49PT3w4x//GFatWgWFhYWgKArcf//9Sb/2vXv3wv333x92jfFC9yCV9Pf3w/3332/4nNP7t7W1JXTuioqKiN+fw+GIad/bbrstofdOFclobwzDMAwzGbCM9QUwDMMwTCw888wzMHfuXPD7/dDS0gKffPIJPPLII/CLX/wCXnjhBTj33HPDjnnrrbfA7XZrtlVWVg79vX//fli1ahX09vbCHXfcAaeddhoMDAzA66+/Dt///vfhpZdegjfffBMyMzOHvT6XywXHjh2DDz74AM455xzNa3/6058gOztb4wQabU488UTYuHEjzJ8/f9Tf+4svvoDTTz8d5s2bBz/5yU+goqIC2traYMeOHbB27Vr44Q9/CNnZ2QCAk/Xdu3fD7bffnvD7Pfnkk1BQUAA333yzZntJSQls3LgRZs6cOYJPMzKMnkkAvDbir3/9K9xwww3wrW99Cx577DE4ePAg3HnnnbB371545513hvZrb2+Hp59+GpYsWQJf+cpX4L//+79Tcs179+6FBx54AM4880yoqKhIyXski/7+fnjggQcAAJ3WyeSVV14Br9er2VZbWwtXX301fPWrXw3b//TTT4df/OIXmm1FRUVJvaaRkoz2xjAMwzCTAXaOMQzDMBOChQsXwrJly4b+v+KKK+AHP/gBfOlLX4LLL78cDh06FDbxPOmkk6CgoMDwfMFgEK644grweDzw2WefQVVV1dBrF110EaxcuRKuueYa+Ld/+zf4/e9/P+z1TZs2DVwuF/zpT3/SOMd6enrgpZdeguuvvx7++Mc/xvuxR4zf7wdFUYYi4saCxx9/HEwmE6xfvx5cLtfQ9iuvvBL+8z//0zDaLhXY7fYxuwdEtGcSAJ/LH/3oR7Bq1aqh5+Wss84Cl8sF119/Paxbtw4uvPBCAACYPn06dHZ2DkVDpco5xiBLly4N2/b2228DAMC3vvWtsNdycnLG/HlLJsFgEAKBANjt9rG+FIZhGIZJOpxWyTAMw0xYpk2bBr/85S+hp6cH/vCHP8R17CuvvAJ79+6Fu+66S+MYI66++mpYtWoVrFmzBpqammI65y233AIvv/wydHV1DW1bu3YtAABcc801hsd88skncM4554DL5YLMzEw47bTT4I033gjbb/fu3XDZZZdBbm4uOBwOOOGEE+D//t//q9mHUif//Oc/wx133AFTp04Fu90Ohw8fNkyrvPnmm8HpdMLhw4fhoosuAqfTCeXl5XDHHXeERcjU19fDlVdeCS6XC3JycuD666+HLVu2xJSm2N7eDtnZ2eB0Og1fp1S7M888E9544w2oqanRpKIRDzzwAJx66qmQl5cH2dnZcOKJJ8KaNWs0zrWKigrYs2cPbNiwYeh4inaKlFYZy3dA6b0ffvghfOc734GCggLIz8+Hyy+/HBoaGqJ+/njYtGkTNDY2wje+8Q3N9quuugqcTie88sorQ9v09ydetm7dCtdccw1UVFRARkYGVFRUwLXXXgs1NTVD+zz77LNw1VVXAQA66WJND37jjTfghBNOALvdDpWVlWERVISqqvDkk0/CCSecABkZGZCbmwtXXnklHD16VLPfmWeeCQsXLoSPP/4Yli9fDhkZGTB16lS47777IBgMAgB+v4WFhQCAzwpdqz6CsLm5Ga699lpwu91QVFQEt9xyC3R3d8dz64au/ZlnnoEZM2bA2WefHffxkaC2+txzz8Gdd94JJSUl4HQ6YfXq1dDc3Aw9PT3w7W9/GwoKCqCgoAC+8Y1vhKXcxnJfo7U3aiuPPvoo/OxnP4PKykqw2+3w4YcfAgA+O5deeink5eWBw+GApUuXwosvvqi5hv7+fvjhD38IlZWV4HA4IC8vD5YtWwbPP/980u4VwzAMwyQLdo4xDMMwE5qLLroIzGYzfPTRR2GvUaQD/dAkGgDg3XffBQCAr3zlKxHP/ZWvfAUCgUDMOl3XXHMNmM1mzeRvzZo1cOWVVw6lDcps2LABzj77bOju7oY1a9bA888/Dy6XC1avXg0vvPDC0H4HDhyA0047Dfbs2QO/+c1v4OWXX4b58+fDzTffDI8++mjYee+++26ora2F3//+9/Daa6/BlClTIl6z3++HSy+9FM455xz4+9//Drfccgs89thj8Mgjjwzt09fXB2eddRZ8+OGH8Mgjj8CLL74IRUVFcPXVV8d0X1asWAGNjY1w/fXXw4YNG2BgYMBwvyeffBJOP/10KC4uho0bNw79ENXV1XDrrbfCiy++CC+//DJcfvnl8H/+z/+B//zP/xza55VXXoEZM2bA0qVLh46XHUp6Yv0OiG9961tgtVrhueeeg0cffRTWr18PN9xwQ0z3ASD8mdQ/l7t37wYAgMWLF2uOs1qtMHfu3KHXk0F1dTXMmTMHHn/8cXj77bfhkUcegcbGRjj55JOHdLkuvvhi+K//+i8AAPjd7343dE8vvvjiiOd9//334bLLLgOXywVr166Fn//85/Diiy/CM888E7bvrbfeCrfffjuce+658Oqrr8KTTz4Je/bsgdNOOw2am5s1+zY1NcE111wD119/Pfz973+HK6+8En72s5/B97//fQDA1NS33noLAAC++c1vDl3rfffdpznPFVdcAVVVVfC3v/0N7rrrLnjuuefgBz/4Qdz377333oOamhq45ZZbDJ2UH330EbhcLrBarTB//nz45S9/qfmuh+Oee+6BlpYWePbZZ+GXv/wlrF+/Hq699lq44oorwO12w/PPPw8//vGP4c9//jPcc889mmNjua/DtTcAgN/85jfwwQcfwC9+8QtYt24dzJ07Fz788EM4/fTToaurC37/+9/D3//+dzjhhBPg6quv1jhN/+3f/g2eeuop+N73vgdvvfUW/PnPf4arrroK2tvb47jLDMMwDDNKqAzDMAwzjnnmmWdUAFC3bNkScZ+ioiJ13rx5Q///9Kc/VQEg7Gfq1KlD+1xwwQUqAKiDg4MRz7tu3ToVANRHHnkk6jWuXLlSXbBggaqqqnrTTTepy5YtU1VVVffs2aMCgLp+/Xp1y5YtKgCozzzzzNBxy5cvV6dMmaL29PQMbQsEAurChQvVsrIyNRQKqaqqqtdcc41qt9vV2tpazfteeOGFamZmptrV1aWqqqp++OGHKgCoZ5xxRtg10msffvjh0LabbrpJBQD1xRdf1Ox70UUXqXPmzBn6/3e/+50KAOq6des0+916661hn8mIwcFB9Stf+crQ92A2m9WlS5eq//7v/662tLRo9r344ovV6dOnRz2fqqpqMBhU/X6/+h//8R9qfn7+0L1SVVVdsGCBunLlyrBjjh07lvB3QM/hv/7rv2rO+eijj6oAoDY2Nka93kjPJACoM2fOHNrvwQcfjHi+VatWqVVVVYbnb21tVQFA/elPfxr1OqIRCATU3t5eNSsrS/31r389tP2ll14Ke3aiceqpp6qlpaXqwMDA0DaPx6Pm5eWpsum5ceNGFQDUX/7yl5rj6+rq1IyMDPXHP/7x0LaVK1eqAKD+/e9/1+z7L//yL6rJZFJrampUVY1+H+g7ePTRRzXb//Vf/1V1OByaZygWrr76atVsNqv19fVhr/3rv/6r+qc//UndsGGD+uqrr6rXX3+9CgDqDTfcMOx5qa2uXr1as/32229XAUD93ve+p9n+la98Rc3Lyxv6P577Gqm9UVuZOXOm6vP5NK/NnTtXXbp0qer3+zXbL7nkErWkpEQNBoOqqqrqwoUL1a985SvDfl6GYRiGGQ9w5BjDMAwz4VEjaFa99957sGXLlqGfN998M6HzxpO6dsstt8DWrVth165dsGbNGpg5cyacccYZYfv19fXB5s2b4corr9SkG5rNZrjxxhuhvr4eDhw4AAAwJPJfXl6uOcfNN98M/f39YdEeV1xxRczXqygKrF69WrNt8eLFmtS6DRs2gMvlggsuuECz37XXXhvTe9jt9qE01sceewyuueYaaG1thQcffBDmzZs39DmH44MPPoBzzz0X3G43mM1msFqt8JOf/ATa29sNq5YORzzfAXHppZdq/qcIL/l+RUP/TG7ZsgVeffXVsP0iPXPJrPbY29sLd955J8yaNQssFgtYLBZwOp3Q19cH+/btS+icfX19sGXLFrj88ss1FRwpGk/m9ddfB0VR4IYbbtBE0hUXF8OSJUvCIjZdLlfY/b/uuusgFAoZRo5Gwug7HBwcjOsZ6ujogFdffRUuuOACmDp1atjrv/vd7+Ab3/gGnHHGGXDZZZfBX/7yF/jud78Lf/nLX+CLL76I6T0uueQSzf/z5s0DAAiL2ps3bx50dHQMpVbGe1+jcemll4LVah36//Dhw7B//364/vrrAQA057/ooougsbFxqM2ccsopsG7dOrjrrrtg/fr1ESNGGYZhGGY8wIL8DMMwzISmr68P2tvbYdGiRWGvLVmyJKL4+bRp0wAA4NixYzB37lzDfaqrqwEAwpxS0TjjjDNg9uzZ8Ic//AFefPFFuP322w0dGp2dnaCqqqZKIVFaWgoAMJR+1N7eHtN+hNG+kcjMzNQ4MQDQmTU4ODj0f3t7u2GVvXgr782bN29ogq+qKjz++OPwb//2b3DfffeF6RXp+eyzz2DVqlVw5plnwh//+EcoKysDm80Gr776Kjz44IMJTbzj+Q6I/Px8zf8kTh7r+0d7JuXzG93zjo4OyMvLi+l9YuG6666D999/H+677z44+eSTITs7GxRFgYsuuihhR0ZnZyeEQiEoLi4Oe02/rbm5GVRVjfgczZgxQ/O/0X50znhS9Ub6HQIA/OUvfwGv12soxB+JG264AZ544gnYtGmTobi/Hv13bbPZom4fHBwEp9MZ932Nhr5tUErmD3/4Q/jhD39oeAyl5P7mN7+BsrIyeOGFF+CRRx4Bh8MB559/Pvz85z+H2bNnx3wNDMMwDDMasHOMYRiGmdC88cYbEAwG4cwzz4zruPPOOw+efvppePXVV+Guu+4y3OfVV18Fi8US97m/8Y1vwL333guKosBNN91kuE9ubi6YTCZobGwMe40E3smJkp+fH9N+RDKji+j9P/vss7DtsRYqMEJRFPjBD34A//Ef/xGTjtbatWvBarXC66+/rnHmGUVdxUo838FoQU7eXbt2wfz584e2BwIB2L9/f8zResPR3d0Nr7/+Ovz0pz/VPP9erxc6OjoSPm9ubi4oimL4bOi3FRQUgKIo8PHHHxtWQNRv02uQyefUO7xSzZo1a6CoqCgsuisaFIlqMqU2cSPe+xoNfV9C7eHuu++Gyy+/3PCYOXPmAABAVlYWPPDAA/DAAw9Ac3PzUBTZ6tWrYf/+/TFfA8MwDMOMBpxWyTAMw0xYamtr4Yc//CG43W649dZb4zr2q1/9KsyfPx8efvhhOHjwYNjrL7zwArzzzjvwrW99yzAKJho33XQTrF69Gn70ox8ZplwB4MTx1FNPhZdfflkTsRIKheAvf/kLlJWVDVXRPOecc+CDDz4Iq4r4P//zP5CZmQnLly+P6/riZeXKldDT0wPr1q3TbKdKnMNh5HwCQAeUx+MZitICwIm7UQSPoihgsVjAbDYPbRsYGIA///nPYftGOoeeeL6D0eLUU0+FkpKSsGqQ//u//wu9vb0RHRLxoigKqKoa5ij57//+7zDR+Hgiq7KysuCUU06Bl19+WRN92NPTA6+99ppm30suuQRUVYXjx4/DsmXLwn700aA9PT3wj3/8Q7PtueeeA5PJNJS6nEgUWLxs3boVdu7cCTfddBNYLLGvM//P//wPAEDK22s89zXWtkLMmTMHZs+eDTt27DA897Jly8DlcoUdV1RUBDfffDNce+21cODAAejv70/KZ2UYhmGYZMGRYwzDMMyEYPfu3UPaNi0tLfDxxx/DM888A2azGV555RUoLCyM63xmsxn+9re/wXnnnQcrVqyAO+64A1asWAFerxdee+01ePrpp2HlypXwy1/+Mu5rLS0tjSmi6aGHHoLzzjsPzjrrLPjhD38INpsNnnzySdi9ezc8//zzQ1EbP/3pT+H111+Hs846C37yk59AXl4e/PWvf4U33ngDHn30UXC73XFfYzzcdNNN8Nhjj8ENN9wAP/vZz2DWrFmwbt06ePvttwFg+EiYb3/729DV1QVXXHEFLFy4EMxmM+zfvx8ee+wxMJlMcOeddw7tu2jRInj55ZfhqaeegpNOOglMJhMsW7YMLr74YvjVr34F1113HXz729+G9vZ2+MUvfmEYBbNo0SJYu3YtvPDCCzBjxgxwOByGabcAsX8HyeLzzz83/L7mz58P2dnZYDab4dFHH4Ubb7wRbr31Vrj22mvh0KFD8OMf/xjOO++8MN23devWQV9fH/T09AAAwN69e+F///d/AQAruWZmZhpeR3Z2Npxxxhnw85//HAoKCqCiogI2bNgAa9asgZycHM2+CxcuBACAp59+GlwuFzgcDqisrIwYrfWf//mfcMEFF8B5550Hd9xxBwSDQXjkkUcgKytLE5V2+umnw7e//W34xje+AVu3boUzzjgDsrKyoLGxET755BNYtGgRfOc73xnaPz8/H77zne9AbW0tVFVVwZtvvgl//OMf4Tvf+c5QmrTL5YLp06fD3//+dzjnnHMgLy9v6PMlizVr1gAAVsQ04rnnnoOXX34ZLr74Ypg+fTp0dXXBSy+9BGvXroWbb74ZlixZkrRrMSKe+xqpvUXjD3/4A1x44YVw/vnnw8033wxTp06Fjo4O2LdvH2zbtg1eeuklAEBH7yWXXAKLFy+G3Nxc2LdvH/z5z3+GFStWRHwuGYZhGGbMGKNCAAzDMAwTE1QlkH5sNps6ZcoUdeXKlep//dd/hVU7VFVRla61tXXY87e1tal33XWXOnfuXNXhcKhOp1M95ZRT1CeeeCKsSlsk5GqVkTCqVqmqqvrxxx+rZ599tpqVlaVmZGSoy5cvV1977bWw43ft2qWuXr1adbvdqs1mU5csWRJ2Lqpy99JLL4UdH6laZVZWVti+dP9kamtr1csvv1x1Op2qy+VSr7jiCvXNN980rCCo5+2331ZvueUWdf78+arb7VYtFotaUlKiXn755erGjRs1+3Z0dKhXXnmlmpOToyqKormOP/3pT+qcOXNUu92uzpgxQ33ooYfUNWvWqACgHjt2bGi/6upqddWqVarL5VIBYKgan1G1SlWN7TuIVDXV6L4aEa1aJQCo7777rmb/5557Tl28eLFqs9nU4uJi9Xvf+56moiYxffr0iOeU74kR9fX16hVXXKHm5uaqLpdLveCCC9Tdu3er06dPV2+66SbNvo8//rhaWVmpms3mmCqU/uMf/xi6/mnTpqkPP/yw4XOlqvi9nnrqqUP3f+bMmerXv/51devWrUP7UBtbv369umzZMtVut6slJSXqPffcE1Y18b333lOXLl2q2u12FQCGPkukfoG+2+Hul6qqan9/v+p2uw0rwhIbN25UzznnHLW4uFi1Wq1qZmamevLJJ6tPPvnkUCXHaERqx5GewUifK5b7Gqm9UVv5+c9/bniNO3bsUL/2ta+pU6ZMUa1Wq1pcXKyeffbZ6u9///uhfe666y512bJlam5u7lCb/cEPfqC2tbUNew8YhmEYZrRRVDVCiS+GYRiGYZgo/Nd//Rfce++9UFtbC2VlZWN9Ocwk5swzz4S2traY9OkYhmEYhmHihdMqGYZhGIYZlieeeAIAAObOnQt+vx8++OAD+M1vfgM33HADO8YYhmEYhmGYCQ07xxiGYRiGGZbMzEx47LHHoLq6GrxeL0ybNg3uvPNOuPfee8f60hiGYRiGYRhmRHBaJcMwDMMwDMMwDMMwDJO2RC8vxTAMwzAMwzAMwzAMwzCTGHaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmEYhmEYhmEYJm1h5xjDMAzDMAzDMAzDMAyTtrBzjGEYhmEYhmEYhmEYhklb2DnGMAzDMAzDMAzDMAzDpC3sHGMYhmEYhmEYhmEYhmHSFnaOMQzDMAzDMAzDMAzDMGkLO8cYhmEYhmEYhmEYhmGYtIWdYwzDMAzDMAzDMAzDMEzaws4xhmEYhmGYFLJ582b46le/CtOmTQO73Q5FRUWwYsUKuOOOO+I+1/333w+Komi2nXnmmXDmmWcmdG1G53vyySfh2WefTeh8DMMwDMMwExFFVVV1rC+CYRiGYRhmMvLGG2/ApZdeCmeeeSb8y7/8C5SUlEBjYyNs3boV1q5dC/X19XGd7/7774cHHngAZPNt7969AAAwf/78uK+vvr4e6uvrYfny5UPbFi5cCAUFBbB+/fq4z8cwDMMwDDMRYecYwzAMwzBMili5ciUcP34c9u/fDxaLRfNaKBQCkym+IH4j51iyYecYwzAMwzDpBqdVMgzDMAzDpIj29nYoKCgIc4wBgMYx9sILL8CqVaugpKQEMjIyYN68eXDXXXdBX1/fsO+hT6usrq4GRVHgF7/4BfzqV7+CyspKcDqdsGLFCti0aZPmWH1aZUVFBezZswc2bNgAiqKAoihQUVEBvb29kJOTA7feemvY+1dXV4PZbIaf//znsdwShmEYhmGYcQc7xxiGYRiGYVLEihUrYPPmzfC9730PNm/eDH6/33C/Q4cOwUUXXQRr1qyBt956C26//XZ48cUXYfXq1Qm/9+9+9zt499134fHHH4e//vWv0NfXBxdddBF0d3dHPOaVV16BGTNmwNKlS2Hjxo2wceNGeOWVV8DpdMItt9wCf/3rX8OOf/LJJ8Fms8Ett9yS8LUyDMMwDMOMJeHLmAzDMAzDMExSePjhh2H//v3w29/+Fn7729+C1WqFk08+GVavXg3f/e53wel0AgDAvffeO3SMqqpw+umnw7x582DlypWwc+dOWLx4cdzv7XK54PXXXwez2QwAAKWlpXDKKafAunXr4JprrjE8ZunSpZCRkQHZ2dkaHTIAgO9+97vw61//Gp555hm4/fbbAQBgcHAQ/vSnP8G1114L+fn5cV8jwzAMwzDMeIAjxxiGYRiGYVJEfn4+fPzxx7BlyxZ4+OGH4bLLLoODBw/C3XffDYsWLYK2tjYAADh69Chcd911UFxcDGazGaxWK6xcuRIAAPbt25fQe1988cVDjjEAGHKw1dTUJHS+GTNmwCWXXAJPPvnkkObZc889B+3t7fDd7343oXMyDMMwDMOMB9g5xjAMwzAMk2KWLVsGd955J7z00kvQ0NAAP/jBD6C6uhoeffRR6O3thS9/+cuwefNm+NnPfgbr16+HLVu2wMsvvwwAAAMDAwm9pz6Sy263j+h8AADf//734dChQ/Duu+8CAKZurlixAk488cSEz8kwDMMwDDPWcFolwzAMwzDMKGK1WuGnP/0pPPbYY7B792744IMPoKGhAdavXz8ULQYA0NXVNXYXGYGzzz4bFi5cCE888QQ4nU7Ytm0b/OUvfxnry2IYhmEYhhkR7BxjGIZhGIZJEY2NjVBSUhK2nVIlS0tLh6pFUmQX8Yc//CH1F2iA3W6PGl32ve99D2677Tbo7u6GoqIiuOqqq0bx6hiGYRiGYZIPO8cYhmEYhmFSxPnnnw9lZWWwevVqmDt3LoRCIdi+fTv88pe/BKfTCd///vehtLQUcnNz4bbbboOf/vSnYLVa4a9//Svs2LFjTK550aJFsHbtWnjhhRdgxowZ4HA4YNGiRUOv33DDDXD33XfDRx99BPfeey/YbLYxuU6GYRiGYZhkwZpjDMMwDMMwKeLee++F3NxceOyxx+DSSy+FCy+8EH7zm9/AueeeC5999hksWrQI8vPz4Y033oDMzEy44YYb4JZbbgGn0wkvvPDCmFzzAw88ACtXroR/+Zd/gVNOOQVWr16teT0jIwNWr14NFosFbrvttjG5RoZhGIZhmGSiqFRuiGEYhmEYhmGGwefzQUVFBXzpS1+CF198cawvh2EYhmEYZsRwWiXDMAzDMAwzLK2trXDgwAF45plnoLm5Ge66666xviSGYRiGYZikwM4xhmEYhmEYZljeeOMN+MY3vgElJSXw5JNPwoknnjjWl8QwDMMwDJMUOK2SYRiGYRiGYRiGYRiGSVtYkJ9hGIZhGIZhGIZhGIZJW9g5xjAMwzAMwzAMwzAMw6Qtk0ZzLBQKQUNDA7hcLlAUZawvh2EYhmEYhmEYhmEYhhkjVFWFnp4eKC0tBZMpemzYpHGONTQ0QHl5+VhfBsMwDMMwDMMwDMMwDDNOqKurg7Kysqj7TBrnmMvlAgD80NnZ2WN8NQzDMAzDMAzDMAzDMMxY4fF4oLy8fMhfFI24nGNPPfUUPPXUU1BdXQ0AAAsWLICf/OQncOGFF4bte+utt8LTTz8Njz32GNx+++1Rz/u3v/0N7rvvPjhy5AjMnDkTHnzwQfjqV78az6UNpVJmZ2ezc4xhGIZhGIZhGIZhGIaJSXorLkH+srIyePjhh2Hr1q2wdetWOPvss+Gyyy6DPXv2aPZ79dVXYfPmzVBaWjrsOTdu3AhXX3013HjjjbBjxw648cYb4Wtf+xps3rw5nktjGIZhGIZhGIZhGIZhmLhRVFVVR3KCvLw8+PnPfw7f/OY3AQDg+PHjcOqpp8Lbb78NF198Mdx+++1RI8euvvpq8Hg8sG7duqFtF1xwAeTm5sLzzz8f8Tiv1wter3fofwqX6+7u5sgxhmEYhmEYhmEYhmGYNMbj8YDb7Y7JTxRX5JhMMBiEtWvXQl9fH6xYsQIAsGLkjTfeCD/60Y9gwYIFMZ1n48aNsGrVKs22888/Hz799NOoxz300EPgdruHfliMn2EYhmEYhmEYhmEYhomXuJ1ju3btAqfTCXa7HW677TZ45ZVXYP78+QAA8Mgjj4DFYoHvfe97MZ+vqakJioqKNNuKioqgqakp6nF33303dHd3D/3U1dXF+1EYhmEYhmEYhmEYhmGYNCfuapVz5syB7du3Q1dXF/ztb3+Dm266CTZs2AADAwPw61//GrZt2xaT2JmMfn9VVYc9h91uB7vdHu/lMwzDMAzDMAzDMAzDMMwQcTvHbDYbzJo1CwAAli1bBlu2bIFf//rXMG/ePGhpaYFp06YN7RsMBuGOO+6Axx9/fKjCpZ7i4uKwKLGWlpawaDKGYRiGYRiGYRiGYRiGSTYJa44RqqqC1+uFG2+8EXbu3Anbt28f+iktLYUf/ehH8Pbbb0c8fsWKFfDuu+9qtr3zzjtw2mmnjfTSGIZhGIZhGIZhGIZhGCYqcUWO3XPPPXDhhRdCeXk59PT0wNq1a2H9+vXw1ltvQX5+PuTn52v2t1qtUFxcDHPmzBna9vWvfx2mTp0KDz30EAAAfP/734czzjgDHnnkEbjsssvg73//O7z33nvwySefJOHjMQzDMAzDMAzDMAzDMExk4nKONTc3w4033giNjY3gdrth8eLF8NZbb8F5550X8zlqa2vBZBIBa6eddhqsXbsW7r33Xrjvvvtg5syZ8MILL8Cpp54az6UxDMMwDMMwDMMwzKSitxfA6QRoawNwOPBvhmGSj6KqqjrWF5EMPB4PuN1u6O7uhuzs7LG+HIZhGIZhGIZhGIYZEX/+M8D55wN88glAVxfALbeM9RUxzMQhHj/RiDXHGIZhGIZhGIZhGIZJLj4fwNe/DrB9OzrGItS4g74+gHfeATh2bBQvjmEmGewcYxiGYRiGYZgJSktLcs7T3Z2c8zAMkzyOHAGYNQugpwegsxMdZEasXQvwhz8AHDw4qpfHMJMKdo4xDMMwDDOm7N3LE3OGSZQjRwC8Xu22Q4fiP09ra3Kuh2GY5NHZidFjubkA/f0Ax4/jtr4+7X69vQBz5wJMDsEkhhkb2DnGMAzDMMyYcvvtAFu2jPVVMMzEZHAQo0pkUjlBDoVSd26GmaxUVwMEAvEd09aGbbm2FiAYBLDZcCGprQ3g8GHtvrm5ACeemLTLZZi0hJ1jDMMwDMOMKceOAWzYMNZXwTATE1UF2L9fu81sju3YxkaApqb43u/o0fj2ZxgG2+nmzfEdU18v0ihDIQCTCSOtVRVfkyksRAdaZ6fYpneaMwwTHXaOMQwTFV4hZhgm1SxbBlBRkbzzqWp4mhnDTEbq6jAixePRbo81cszjESnNg4NJvTSGYf4fL7yAjq133glvq9EYGAD44x9xfFRVAEVBh/ZnnwH885/afUMh3KemBqC9HbfF6/gGAOjoiP8YhpkssHOMYZioRKqKQ+zbh7/jGewZhmFkqqoA8vOTd75DhzgSjUkPvF50atEY3Nsb3/G9vWIRTK9hBADg97OGEcMYYdReInH8OLa1zk6M/IqV1lZMl/T7MSXT6cTtb70VnqJJkWVTp2LK5eHDGOVZU4OaZbEynN0fD+SkY5iJAjvHGIaJynAi2ST6u3Ej/u7vT+31MAwz+bDZALKzk3e+ujpe/WbSB6sVfwDir1z5/vvCORYMhr/e0ICC/wRHZTIM0tgY3/4eD8CePRg9FgvBIMCmTej8LioC2LoVwO0W722U2WEyYbXKPXswugwAnXE1NbFfpz5dcyRw9gkz0WDnGMMwUWloiP56IICT0I4ONJgTqZDFMEx6Y7cnlv4Rifx8dtQzk5tQCKNKurrQeSVHd+3dK3SKZIyiyrq7xQQ20kT2k0/E31u3hguBMwwTnfp6jN7q7TV2QhOy47mjA9teMIh6Yh0doqJsfT2Om3oo6qu3F9sqAMCHH8ZXCICizJIRMRpPlBzDjAfYOcYwTFSGW4X2+3FVq7oa4K9/Bdi9e1Qui2GYSURODq54J4vmZoxGY5jJzFtvoRB/SwvA+vViMrt1K6Yz6SO/jTTF+vqEU8zvN34fWeC7ri5c/J9hmOi0tGA7amgwdlwTsuM5GAQoKMC/S0tRf0xVAZYsweiwnJzw481mAJcLICsL4L338P06OuJzaJMDTo4YTZRkpmgyzGjAzjFm3NLXxyv/44FYnGPNzRiy3dEB8PTTo3NdDMNMHjIzAWbMSN75MjIALJbknY9hxhuqCtDWhn/b7ThWqyr+/p//wUmx3oZSVXSEUXRKIKB1jslOMBn5PAMD8aduMky6c8opItXf5Yq83/Hj4u9gENus348OtfZ2gG3bAMrK8HVyYsmRXiYT/qa+YN8+3BZPZHY8UWbDQX0Uw0wU2DnGjFuam5ObZsMkxnB6AbW1uJLs8wFs385loxmGGXtYE2n0iBQFES11iEkOJJZP47SqAuzciQLe77+PdpSMquL3QhFk+/drx+xI35lccCcY5MgxhiGiRYHJ2GyYYlhUBOBwRN5PUcTfDQ2YTnnsGEaOLV2K0Vwkyk9OamqfqgqQl4ev+3wYdZaVhc6uSFGhRgy3bzxFP1iQn5losHOMGbdwhaTxwXCpTn19OAhnZwPMnImh3gzDMPGSn5+8Pn9wkMeP0SKSo+Rvfxvd60g3VBUjJI8cwXE6MxO3eTw4KSZNMtnhFQrhD7WN48fxdXKQRYoYodd7enB/qlLNMOlMS0vsVSCDQYzwzMuLLORfXY229NGj+P+uXfi/1YrpkgDYvsm5Rva2fD6zGZ1Xx45hpFpjI563pCT2z0V9RiTHXzxZPTwOMxMNdo4xCeHzpX5lXl6pZMaGvj5jwU+CDO0jR3CVOjs7vtLWDMMwhN8f34p0NPbtG77SLpMcIkUXf/YZwEcfje61pBu5uag7ZrMJp5ffj06sjg6AykqcJBOUbqXXNaIofZoU6yf8ZO/5fOhAk6NbGCadibUao6piBcmCgsjtp6YGHdbk7KKUZ6dTLFQ7HKKd9vdj+5adY4qCDrKCAvz95pt4jnhkBsihFclZHk9UMDvHmIkGO8eYYTHq2GprsQOvqxvd9x3N4xkceLu7I08yjxxBY3njRozUSOXzwDBM8ok1JSTVkAZLsvptny+yYz+ZeipM5MlhR4exADxA8pyg6Qw5wihNUlFE2uSUKXiP9feZHGgU+UHHULujSW9trTimuRmguFi8544dkb9XhkknaIE4FvLzcd+zzxaaYXra2rTjVnMzBgr4/UKTMxAQY1hBAaZeHjigPY/PhwtEFgu21Z6exMbWSE6weMZQFuRnJhrsHGOGhQQkjUhllJBssCVCtOtmYiMUQvFd2VCW6ejAlamWFoCKCoB3343/PViXhmHGjvHiKCoqSm61SpMJU86MYGM9uRj14XV1GM0QaQwfGEjtNaULlEaZnY1jsariYpbNhhNtI93WUAigvh7/LivDPoAm+V5veNTYgQMi6mRgADXNsrPZwckw8TjHAABmzcJoT7fb+PX+fkyPJtracP9gELXHVBXboPyeb74pRPybmnDsc7txn5wc7B/iFcWnfjvSZ4vHbvf5OFiBmViwc4wZFqNOsKsLf+IpDcxMPEIhgKlTI6fQNjfjPgsXAlx5pdBEiIdI1bEYhhmfNDSk5rwUxZIMrNbknIcZHqMJ1MAAwO7dkReptm9P6SWlBRQlVl+POkZNTaKCJUWT9fRoHeC06BgIYDtWFIBDh3BC3dGBTs3du7Xv09kpxvbeXkzrmjOHq4kzTCCgXWyJFFG5bx/ay9/6Fra/SONTIIAOLUqFHhwUzrScHGyvwSD+ttnwXHV1Ikq3pwdfs1rRmWazof3e1xdfKnQ051hTU3zi/qz/yUw02DnGDEtnZ7gR1NqKnSOtPqYCVR2ZrgV3xiMnGBQry3o8HoCXX8b7nJODId+qKlavI6GvXBMpcoVXpRkm9STST6ai+lRJSXKdY05nasYAHlfCoQmUHEkeDGJEsVH/7vWitg4zco4dQ/ts6lSAs87C74AWL71enJjKk3eKdDl2DB2YNTXoTKO2R9FjMsePi8l8ZydGeRYUjJ+oU4YZK4JBbaRlJJmC7duxfbndmF4ZzTnW3CykTCiaeto0/K0oGH0GgE6z3Fx8/7o64QBTFEzNNJtFxOf06clzjvX3xxeJ1t/P4+ZEI55oyMkIO8eYYQkGwyMF3n0XnSOpjPrhznTsCYXQCWo0qNbVYSUdADSy8/JwQK6qEt+d0Xf4+efa/yMZ2NE0TQIB41VrnnAxTHwk0s+mIp0+Kyu5aZW5uULHTM9IdNY4XT8c6nf1Fdh8PuPo8i++QL1KLpgwMmTpialT8X4ePoy2WVcX6oSpKt5v/TFyW2tvxzE+FMJjjfoEihxraMB0Zbs9vugRhpmMHDumza6J5DTq6QFYtAidYqWl6LSSC2UQwSD2o9nZaOeS/hj9VlXh6MrIQGeb2YwONWq3JhNGd27eLJwciY55keyDWAMjfD5Oq5yIULXUdIWdY8ywGBm3R44IIdhUwZ3p2BMM4ve8Z0/4a11dQjdm2jQM3z7vPIAFC8SAfPBguOaJvgppJOdYtJWLujqMXtTT0hL5GIZhwkmkn03VqmIyI8fq64WIuOxo7+oa2aRer8eUzlCEkZF+GC2cvf12+GtffIGVLFMRgZhuKAo6lq1WnHB7PAAffIDfjd0eHvlN0WEmk1j0mjJFOMeOHAlvg/392JZqa0XbsVrZUcwwPp92PCTtLz379qFTLDsbbWVFEe1Sjuzs7wd48UW0cbu6AGbPxn2nTBH7BIPY1qdNw3ack4PtnZzeDgcuDM2YgU6zlStREziecdvtxmuIdIzRnEBPdTWOw7W1HInETCzYOcYMi9FEoqcHDeJUO8dGMlFi59rIIaHe3btx0JadT8EgOk6bm1Ggt7IS4MtfBrjiCjHp8fnCDehAQAj8qypOXI0GzmiDqZGYaX8/vi9FszEMMzzjyTlmMiVXc4zOJUe6tbaO7D2MVvvTFXKAZWWFv0aLF62t4Q7FTZuwwjFHHo0MVcVJcFkZTrhzcsS9DoWwDVit2vba1SVE+1UVIwTo9VAIo1b0C1qzZ6NIuN8v0jRtNhFdkEp5DYaZCJDNG6lPU1V0MDsc2HZyc4VzWnZe22w4v2poQBs7KwsjxPTFZaZNw5+MDG2lWkXBSDKnE9/LbMao0v7++MZtiwWlTYyOMZuHXyQiPUQAdBjyfIyZSLBzjBmWo0fDNSgsFoBt2zCVLlWMtDPlznjkdHfj4DttGor2yiLKwSC+1tODkQBOJxrnBQVoPNfW4kCvjypobMTnKRjEiVNLi7FBIQ/K+hRKRcHzyBEhtM+f/xz9M7FOCsMI4u0nU7kKPBKNST1Tpxp/tlCIF12SBUUBZ2eHv0ZpPC0t4f13VxdO+jgNfuQUFKADLDMT2w/ZamYzjsehkDYy5cABHAMppTUQwFQwkwn3VRScFMtjK43jbW04Vnd24rZt2/B1jqZk0pW+PlwgpjYQSRqgr0+kJtvtqDsGgH1hT49YaKAIMMrMoWgzco4dOya0fWfNApg5E99zcBDfgxYlzGZsz3Pn4g+9b6x4vdhHGI31dXVCEziSxEIwiNdFaaYcOcZMJOJyjj311FOwePFiyM7OhuzsbFixYgWsW7du6PX7778f5s6dC1lZWZCbmwvnnnsubN68Oeo5n332WVAUJexnMJrgEDOqdHdjZyjT1QWwfj2uTKSKzk4W5B9rGhtxEjM4iL9lZ2gggKvWHR0AJ52E2045BZ+JnTtxNdnvD4+0aGkB2L8fv1+TSUSn6ZG/P1nzjiZaZjNGH9C2Q4fw748/jv7dj0RviGEmE35//P2kPo0kGZCTJZlplSRMDKA950gjktnIF9BCA/XP8njd1oZ9dG8vOmRkfD506hAceZQYlCJpteIE2mIB2LFDvF5SgvvIziuK/KK0Srr3lFZJ2/U6s6EQ7hsK4RiamyvE/dvbhd4cm+5MOnH8uMisAIjsHOvtFa8VFIhx5PhxrUSJouB+bre2PZKA/4knioqUM2ZgH2u1op0dCIgUaasVf+flYd8QS7SXTE0Nvr+RrM7nn4u5X6SKtXpJlmSM6z09Iz8Hw8RCXM6xsrIyePjhh2Hr1q2wdetWOPvss+Gyyy6DPf/v6a+qqoInnngCdu3aBZ988glUVFTAqlWroNVIHEgiOzsbGhsbNT+OVHpdmLjYtSu8Y/N60SBKpWjfMI8NMwp0deHq80kn4SBbWIgDZkcHDn7Hj6NRXFmJ+1ssKMjv9eJAPDiI36M8+TGbAT79FI/v7sbfRhPOSCm73d0AH32Ef9PA6/HgdZBRr3fmyrDTlGGQmprI7UFVjR3J1PaTyaef4u9kplXKjhr5nCOJHGtp4f5DpqUF+3kjJ6SiANx0E/4dCKAOFmGxAKxYgX/39rJzbCSQc4wmwsGgiBijaDD5mae2azKJYjtWK47ZcgEe/cJkVxeOrTNn4n4OB56juRnHeIpYO3hwtD45w4w9PT04jh45En2/mhptm9q7F9ukPuUwKwvt2awsEX0lLxoVFuLcy2LBxWizGSM4S0vRwaYo2EYzM/HYrCy0yWfNim9huKwM2/n+/eFOqZ07RXuPZAsEg2j/k1ZaNJs8Voy0LZnUkc4Fc+Jyjq1evRouuugiqKqqgqqqKnjwwQfB6XTCpk2bAADguuuug3PPPRdmzJgBCxYsgF/96lfg8Xhg586dUc+rKAoUFxdrfpixh8Jm29uxYyYdCq8XO8tAILWaITwJGXsGB3EwzsnBQTw7G1MofT4cNAFwgD7rLHEMRZepKj47PT1arbKiIjSmQyE8T1tbZM0x/TPQ3Y3CphTK/cknwqDv68P9OzqiP5fyOfXFARhmsqNPkZe1QWQOHAivPgiA7WsipFXKE/yuLjGeGa2Exwo58xkkEAifOJFB7fUCzJmDjpdAQJvO3t2NkUdeL44nPNYnBrVd0vAEwDG3qwujSshJ5vGIxcbMTBwrTSac5JpMKJuwaROeq74+PILT48Fj3G7xmsWC70PV+mh/dnQy6URfH7azDz5AuzPS2Gi3Y9sj9JGZNFaRM8xkEgu+tGg0ZYp4feZMbINuN/atViuOcXY7vl5aiuebOROgvBz1zvLywsf/SNjt2K693vDUyZoaYdNHGg/Jfjeb8ZqTodXJY+/oks4BKglrjgWDQVi7di309fXBCloClPD5fPD000+D2+2GJUuWRD1Xb28vTJ8+HcrKyuCSSy6BL+S60xHwer3g8Xg0P0xyIWdYQwOuDtLkoroa/7fbY+9oE4EF+ceeoiLUOujsBPjHP9BIHhzEZ4I6zupqbbqlxSJ0UCh6TB4Yjx5FvYVQCMOzd+40Nig8HrEaR4PiBx/gs0d6DMeOCecYhXf39kbXFZMLBHAKCJNueDza9qaq2Kb0uFzhTmbSRaHfyYT0jiJh5KiLhscjztfaql11HsnYkO4lzonubuxnVVWk/ACI1J3MTEwBmjkTvwu65wMDuM/06aJf51TVxCERbnrWN27EaBFFwTZMGmOBAI6Xubm4wJSZieM4iXdTVInFEh7l0dmJ9uCJJ2KVUQD8zuvqUId0/XqxL1eMZtKFw4dR2/LIEXRQBwLatGYZcnIRdXX4/6FD2vHIZMJFBQBsm7m5orhMdrY4z5QpuC0jA/ez2YTUiaqiTW614narFW15uz282EYkQiHsn9vaxNyPWLJE2AaR+m5ymFOBgHjlTGSHP2FkpzBMKojbObZr1y5wOp1gt9vhtttug1deeQXmz58/9Prrr78OTqcTHA4HPPbYY/Duu+9CgSwuoWPu3Lnw7LPPwj/+8Q94/vnnweFwwOmnnw6HSEAoAg899BC43e6hn/Ly8ng/ChMjHo+2Qw0EcFXC40mtuPlI88vZOTZysrNxEO7pwUkhrRJTJR0AIdovQ+Wkg0Fcsdq7F7c3NQkxfRpUm5rCB18AHAhpHxIhPXQInWDV1ejk+uwz8T3LBn2051J+jcX5mXSB+tMDB7QOYlU1NkQVBUAvGUrH7duX3Gvz+/G6Ium1AMSfUqF3tsmrzryWJoiUOqFfpW9s1DpLW1uFc2z6dLGd+uyMDNS8OuEEkd4HIKqmmc14rPwaEx80bprN4lkfHBST6Lw8fNY7OlAeY98+jCzz+dCB1tWF9z8nRyx09vTgPnLbMZkw+iQYxBRoi0WrYSTbWhzdwaQL9fXC7szIwHF0y5bw/VQ1XJuroEC0od5ebeQYCffn5eGxublibCQ9sspKbIcmE/622UT/TPa4yYTnt9kwTbKxMbJGmJ66OswW6esLrzjvcqGzDSC8vdOCs5z5YTKJap6xYjQukbg/O+CZVBO3c2zOnDmwfft22LRpE3znO9+Bm266CfbSzBcAzjrrLNi+fTt8+umncMEFF8DXvvY1aInyJC9fvhxuuOEGWLJkCXz5y1+GF198EaqqquC3v/1t1Ou4++67obu7e+inLhkJzYwhJhN2koTfj86xUCi1zoWRdoDsHBs5LS0iLaa1VZR5p1UqABz0SHOM6OzE54QG7hdewO0kSkpG++AghmjrnWuEPGk6cABTOd94Q6ROkrCpzycqchUXR38u5eeCnWNMukCrri0t2GbJqA0GjfvaN94IX2X2eFIjitvTg9EryRTkp1Vr+pv6Ekq9TvScRo78iUyk1Al9dGB3d/iEpadHG+Etf3/0fBUUYJ9PfTV9F4GA0NThsToxmprwXhYW4r0fHMTviCR7rVacwLtcGKHd1IST3SNH0DkmtxE5dauzU/udUJU7ktJwu3H/YBDbg3we2o8Z/7DA+cigNtfcjM7l1laAV14J3++998IjpzIysK12dgL8859iu9ksZEIoSwMA7Wh6zy99SWybNQvfu6AA26OcUkl2uM2GfcCmTbFnS3i92La9XvE5icFBAIqJMUq5bGzUplqTky5WenuNq2BSv3LoUGolfRgmbueYzWaDWbNmwbJly+Chhx6CJUuWwK9//euh17OysmDWrFmwfPlyWLNmDVgsFlizZk3sF2Qywcknnzxs5Jjdbh+qmkk/6cRopoPNmIGOB+rovF7saKkTTxVHj7IA41hD4rr5+WJgam7WasjMmydWuojdu3GV2m7HSe+ePWiQ+3z4094O8OabuDoVqRS0262ddDU346pXczOuIPX0ACxYgPt4PGgokMMt2mRLXumKNcScYSYyZKwCYJ/d2Ih9eksLOp31hvvAAMDWrSKFkAzbxkY01pMd6RMK4ZgSzTkWrwNFjhzr69OuZOv7q3gYpgD3pEH/HeurCnd2hkePy05IqjZNjhWHQzjTSAeLnkl2jiWGzYb3kJxjgQCOt3TPp0/H10j35/BhERlWViacWuXluE8gAHDRRXi8/J0cO4bbKOpMVYVzra9PpNgC4OSYFqqY8Q2nqY0MSmmsrAR4910xX9H3Zz4fRn/JqCrOpaxWrU1KEWI+H7ZXWqSwWPB9TCaMxgXA9zabsT/t7w93SgeDeFxODr5/Xp7WIRoKRV7sMZmwbfv9+LN7t3jNZsP2394eHhFmNmMf0NcnooOzsuKbK5IWsR6KVquv5+hvJrUkrDlGqKoK3ijCU8O9brT/9u3boaSkZKSXNqmJ5FBIJrJjqrFR6D95vSI6J5Uh9F7vyCsfcUDhyLDZ8LfbjQZ0S4tYiaLv5pRTwo+bMgUH9vZ2MaANDAB8/DGuarW2ispv8+cbr2AWFmrTvShdxOfD7e3tOOGiyZbLhc/pcNoG8gQvXh0EhpmI9PUJg9Xvx767txcd2A0NKIous3UrtteWFmwjHg86hf75T2yHqXCO6TVZ9MTrQJGjWQYG8D1kDcNEnFzd3aJC7mRHP7ZT9THi00/RadLUJL6b2lrxbIRC2Pfn5ODrPh/e/+5uPI6cbelcEWukTJmCE89TT8X/KWpkyhQxcXc68ffgoGgPlIYZDOLY63DgJLq+XqRMypFgtbU4TtMClcmEC2YA2K/09KC91tiIfUYqtWgZZrygKPisZ2QALFuG/VlJSfhY1dMT7hwjfD6tDqjJhDpmZjOemyK3HA7cNmeO2JfSKk89FWDVqnDnGOlBZmTg37Nna7M0AgGAt94yvi6TCW0ESvnMyhKvnXQSRqq9/nq4g7WnB8fbzk4RkV5ZGW7jR3Og03ihhyJiu7o4FZ9JLXE5x+655x74+OOPobq6Gnbt2gX//u//DuvXr4frr78e+vr64J577oFNmzZBTU0NbNu2Db71rW9BfX09XHXVVUPn+PrXvw5333330P8PPPAAvP3223D06FHYvn07fPOb34Tt27fDbbfdlrxPySQEpVKqqrZjCwRQZDc/P7XOMadz5IL8kVZFYs27T3doMkRG9sAAbrPbxeC1YIHxcdu24YDqcADceCNWluzpQUeb3y++m8FBnHTX1moHxGBQW1nO68VjnU5cAevqAqioEOHb3d1i/1jTKhkmXVBVnLwGAujQaGlBx5jXq02bJ6hyXSCAE+DubnSK9/Qkv98n7alogvzxVrJ0OMRknhzoPh/+bmxMbOHE68WxLx0wihyrqRH/t7UJxyn193R/AfCeu924aDEwgP07TXqoqhs5RfWV25jY6erCSS85lysrcXI9fbpIlXz7bVyQcjqFdhwtblJbJgeaLKRNlJXhOUMhdJx7vbi/1YqLZIqCuqJ9fThpJhkFhpnMqKqQmRkYwPGSik3JdHaGzzko2enNN7FtVVeL/rW0VLRdsondbvxtt2N7BMD3MpkwWGHRonC7t74e2yiNrbNnawvKBIOR0x1NJhwje3vRXpCdYyUl+PrAAGoZynR0iAjTgQFcECku1h4PEF02Z2DA2IaniO/qanaOMaklLudYc3Mz3HjjjTBnzhw455xzYPPmzfDWW2/BeeedB2azGfbv3w9XXHEFVFVVwSWXXAKtra3w8ccfwwJp9lxbWwuNUtmprq4u+Pa3vw3z5s2DVatWwfHjx+Gjjz6CU4zCUZghRnOCr6ra8tw2G3ayqdYcKygYuXNMHxFBRjgb47ExYwb+tlpFKHdLCw5elJJYXBx+XCgkKpwWFABceik+Q52dwlCYMgX3pZWmujptpJjDge9LE/MtW/CY/Hw0/IuK8NjDh/H9BgfFQG802ZevjeAVbiZdoL60oQHbYm8vapAcPRru7FIUbEvTpuFxFEV89Cgem+x0ejkFMlKfH2+fTallAGigU5SMqqLxnsgCCTkN0kGrRx8REAxqtdpoAuT14v3duBEdZtS/UpSe3Y7PDGmTVVejE4XSc48dG51I+MmKqqLDlqrCzZqF2ym6q7AQ/8/JwUWl3l78Lvv6sF2rKo7zRUViwkqpmgR97zU1+J3Nm4dRK8XF+FpLi7ARaVLMjH84anNkUCojzZH6+zFCTD+e+nzhuryLF+MxixeLysp+v4jSIo0xkgOgDAybDX/IGZ6XJ0T86VoIKqQBIKpX7twpXqcFCn1qPAC24RdfxNf6+kQhLCIYxKiz117D/9va0EG+ezfa8aQ53NaG80W5aMvgoBgfjOjpCbcx6uqEc8xs5sIfyURe9JIxSm1NFyzx7BxNO8zhcMDLL7887DnWyzWfAeCxxx6Dxx57LJ7LYEYZCh2m3PL2duzQUy26Siv9iSLrnxDNzUKskhkeGozmzMFB1WJB4zo7O3KYOACmWgYCQv+rqgpg3Tp0qN1wAz4/bW04wNXUoHHw/vsA110nzpGZiQ6ytjYcKOvqMEqtrAxDwzMyxIT688+1FYEyMyNfGw2qvb2jq93HMOMBEtXesAENVKsVo0kIiuicMgWNXaou2NGBx1qt2ohOGX3ESazIkWOdnWIiIHPwIMCXvxz7Ocnh1tMj9EmOHxfaZvGOXzSRcDiE7uZkZu9edIJQGk4opNVozMwUjq3+fly8WLpUjLmBAN7njAy8X8EgPnfkaPF4cDxubxeLMEz85ObifVYUnDRTpUqaPFOEis0G8NJL6CTr6RGR1pWVQj6B0o+DQe3zTZP2/n60CVwutAWoymxLC8Dpp+O+2dn4XHi9Wgc1M/5ItDAJgwwMYPuhtMf+foAzzwyfd/h84ZIBLhf2pytXArzzTvi4SVpiZKNSe8zP1y5ckI1us2Gbkx0aU6bgAhcAnj8/X2sbB4MYeXr4MMDcubitvR3tAZJgcDpFRXnK1sjPx/fdtUukOno8AB9+iNdgMqFo/pQpeB5y9HV2Yn+1b1/08XdwUBvhBiDSSwGwvyGnYSL2BqMl0mJnOsvOjFhzjJn80GowefpJc+LUU7HDSlUUlqqOXDNMH4WQzp7wRKD7Z7GIlWmKwLjsMowKoxBvmcxMfL2oCAdTtxsHzwMHcCUrIwMHwJ4eNNbJ+bV9uzhHby9u374dB9ieHlxpM5lwgC0vF2KlR4+KktX0/gDYuesNQDJcmpq0kWoMM5np6cFnvq4O20VdHRqof/+7NtKjqQnggw9wm9crJsx+v6hsGSniIN5y7QRVsY3mtIq37yaHW0uLmGDQ+6hqbCvPsoHe2IjH5+aOfUrHaPRbPp924qHXB1MUtAm2bRMLE3IxFHJO5uSI8+3bJxxs5Gxpbh77+zmRsVjE+Gy3i3RKfSRmbS1Gg3V3A3z0Ed53+j5zc3Es9fnQUdnTo33GiovxfLRtyhS0BQYGcFJNk96uLmy/x49PzOjKdHsOR6rpm+54PEJeZvZstD8XLgy3OY2cDyRXY7eLcUYWyDebsV05ndqKwhZLeIVg0gEG0I6fFouwhbOz8RjSCqT3GxzUjtuhENrbFBShKFht89gxdIb19Yn06b4+MR8geYb338ftHR3iup1O/L1jh5jXResfurujL1wPDqL2Z6L2RrqTbv1cIrBzbIIymmmV1NmSI4LCdE8+GQ3dVEXfhEIj91zrOwGKkOAywIiqCgcSaQW0t4v/KcrOZELDuq8PB+GuLtQ4cLnEoKw/b1kZivhaLBhtUluLkylKp5kyBZ8fRcEJ7CuvaHUIaJD1+XAS5ffj++Xm4oCflyfSQ3bvFqtdAMLY2LtXOwmWV9Y++IDTa5n0weVCw1tV0bD86CM07p1OraFK0SBHjoiCF+RM6u/HY2gs0JOo0dXQIFbWg0FtJBuRSOodVb8kvRZVxf4qMxPfM1pqB4D2vnR2Cq3EsdYtfOml1J6/oQHvtxztEAxqK4RRxeKGBnR6VVeLyN3qaiHqXlkpNCEpKgkAz+3z4QRqrO9nKlBVtI3k8TXZP7W1uPiUl4fvabfjghRFjdntwl5rbMT7TZXHDx8WjuLCQtQRokj93l6t5ABFD1IFuo4OUYmOov4sFowuDwSwjdF3OpGis9Otyianpo2M/n7RT9bVod3pcgHs36/dz2TSCuETW7fi/nY7ttmjR8WYQ9Ugp05FW5kWGUwm7ThrMuE5srOxXcpzG4tFOKamTMG+OCdHfO8UDa23keX+mLQJd+1C+/zYMWzTFgtmlEybhuNCfT3ABRegg4xshfXr0dYoKMA+pacHz+FyCb1TI/x+MZaQA1/OIrLbMY2fn9/E0EflybDjDIkrrZJJT3Jy0AijVUMKlc/LQ2MoVYZtKBRdtHE4jKIDyFCrqcGUkckOOb/oO5JXm4jsbBH2rGfRIvF3YSFOlu12fCbmz48sTq0oeE4qOmuxoKMKAAfEggI0oB0OHLwbGtAQoE5bVVHL4MwzxffocOBxdjv+bzLhdZCuwbRpYtJO37M+Zae3V0y8t2+PnhrKMJMFub2T4DYZoFVV2gqMtCARDKJBTenpoRAawXZ7ZKdyotpRFOlCFfR27RJ9B0ERbNEqWhqdl66fChJMnYp9yeHD6NSJJrC/ZQvAkiX4t6pi/3LkyNgbkB9/DHDHHak7f309Ttwuvlj0nx6P1jnW3Y19+eAgOhu7usT3HwiICZ/s9KTnyGzG7fv3pyaamyIi9BO90YQiuVwukfqUbLKyUDeQ3q+gQEyUS0sxioy+M0qV9Hhw4YraEi1UdXbiBN9k0qZN9/dje6GUZ5pcm814HE1ei4qEULbNhmMtLahR6tV4J900SNM5bSoZhEIiMis/X2TV6J8jh8M4w6KjQxS7IPx+HJO8XlykIk3BggJ8nRYcjh0T/1ss+LrDoY1ac7u14yX1Q5s3A5x2Gv4tF+UAQJvZahWpogBCn9DtxvZeWornKi3FBe6BAdxeVYXvFwxiZGpNDT5jZDOUl+NiSGsr9g81NXiMHqpIT/cDAP+fPVvcd4pkZ+InWirqtm0scwDAzjEmCi0t2HlRp6yfEJlM6JBIlfiqHDqc6PH6CIT29sklQkrRdUZOL8rHJwdSIsgh2EuWoPGcmYl/79qFIeSRsFrFYJydDXDeeRgdVlmJUSsrVqBx73KJ8GsShgwGcV/ZOWaxCCFSALFyTRXSCgsx2gxATAgCgfCJLIViHzqEhgnrFjCTHepLTSaRgkX9oOwYAxCaZDab2IccY9QOIzmHEu1byTFGzrHPP8fS9PpzHz2KguMdHSJaZrjz0gJBKIQr14ODuLrt92MfEA1arQ4E8G+fDycMY+0cS5WzBQC/50OHsE+WV+uPHdOuOB87JqJ3TzgB4JlntJpkZDfk5OB3EAjgs+PzYYEWiwUnUM3NwoZobEyOTpXJhN+TfnI42aCFqtJSnGzOno12m9UqtMeIYBDTI1tatBHhcpGJYFAsWhENDej4Mpvxu7Pb0XFNkYEFBfh+ubn4/e3ahW2rpwfb6XCRY7IcwlgTqbr5ZGWs+7GJDkUkn3oqtp22NmwDVGwKAB1mhYXGouek4dfbi22JxiW7XUR8AWgjmPW2KjmjAMKj06zWcP3dggKAzz4TzrGjR7XOkGAQx1qzWeioFRairf7ZZ5ilcffd2L/885/ogPf78ScjQyyADA7isV4v9vVHjgAsW4Z9Qn092uGffYaRr/r2Twt4AOIZpYUXst+pejJrSCeXgYHImQHpxCQ2G5iR4vFghzc4iB2wvrqXxQKwfDl2WnI1y2ThcGhXquNFVcXqCkFpHBOFYFCb5qhPfezuRuM4Px9/8vLED/2frMkBCXpmZ+Pvf/5TpGzoyc/XDu4Oh1gJstnwNbcbB77ly/FcADiAVleL1SI5pctsxuPo85hM+D99x9nZYiAl46S9Xbu6pKoiIsXpxBU5Xn1i0gEyzru7cVFjzhzxGhnBXi8anfn5OCEm5wjpTdFEOpIzOdF0dTqn04m/BwdFOj8typCzBWB4IenBQTToafIvp+6FQsLxM1ykCH3O7m4ci44eRWN8rNPyKZotFbS1iaqe8vdss2kn06SzEwxi31tQYOwcdTjEs0eV0TIycH+fT6TpAOCkUB7DEv3JycH3ncyOMYI0PGURfgARjenxYFuW9YwKC4U9R9+zPMmWx9meHlFpr6QEzzd3Li5qmUw4jlutwslJWkl+f7hOnRHjSZtsMqb3RmKki88MPvekM5aZifakPu2+oQHHG73DYWAA+z2zGftRSnsmsX2LBdvj8ePG4xQ5lBRF2y9TAQ4AtIP1hWMWLNA67w4e1I6npCHmcmHfUlKCi0ulpTj+vfuucKJ3daEz3OfDdt7VhfuHQvj5AgHsZ6hiMS2utbXh/fjnP401RgMB0W/QvWxsxPkBjd1796afM3s0KCnRVixNV9LAdJicjMag5vWKKmWUIkEcOyaMr8FBXE1INiUlADEUQI2KfmXM6x1fXnG/Xzi6yOklO796esINf9kRlps7uhOA8nKRFjNzJlbaMYrgMJlwpUmGKtBRNFt9PZ6rvFxMwnt6AF5/XUw+339fG3VAzj6LRUx8AXCwlydntPJ94ID2GZANQkr9SXXVVYYZD1C0UVcXGrZyuw0G0Yjv6UHjkyplkWOqtlakqMkTcD2yVkg8UBukNK9//hP76Z4eYaCZzbFrBNbVYduWr7O1FT97MIj9TbQIOIKOlyPv6upSsxgUD1SBLBX4fDgJogqFRFaWNgqhpAQdI8EgRpr19WEUAAA6UOjeKgpObFwusdCRmakVi+ZJeuLI7Zja5uAgTtxNJkwdnjcPo/o+/RTgjDPwO6DiFAAibZKec3ly2tws2v2KFfidm82YCpaRgU72rCx8vbkZz9vUhM9PLIUvaNI8HphI+mgjhZ1jI2NwEMeUykoca+bNwwiszMzw++rxhDtyOjqEHZuRgeOmqqItKxe/Is0vPZSmSc4xes+TThL7nHhi+HEFBaLfHRzENivbwMEgjrlOJ+57zjl4TaEQ9vlTp+J1Z2VhG8/Lw+P37MGo1MpKPL62Fn+TxtjevZiuPTCAbb6wMNw+J/x+EcRAn2vjRnTkBQJ4vu5ubQEvJjZINzYWIsntpAPsHGMiQmHxHg92hKTNQml8ZEzJ+hTJhDrFkRhO+o63p0doX40GXm9ksfuODhwo9E4v2fmVkzO+Uv6mThX3dNEiNJSNnGNGOjJz5ojPUlKC94LOtWQJGgiHD+N2co4dPYo/pGOSk4ODeUUF7l9ZiYOoyQSweLHo9Om8g4PhkWMeD27PyMBrH+soEIYZDcjQ6e8XE1kA4bTo6BA6j8eOobODUibk1WuPJzz6llId/H5jMf3hqK8XfQOll1RXi4l5ezu21R07Yjvfrl14nN0uxioSK/b78bPY7SgYHA2zGa+FdMtIS2msV6zlqL9k4/Fg/02C+4TFgml5RFUV9tu9vVqNMQBtqlxuLvbBra1Cd4wKtRDjaYybqMiRY/X1Iq3y6FGcJB88iM/zySfj90BOLgAcy81m4RCl1CjSfKXxND8f7UASBydZhOJi4VSbPx+dpbE6x8aTdtBIMhUmGqrK1dsTIRDA+0bSAyUl6FyeMgXbh1GaX26uNuUcAI93OERapczMmbj98GFsx9Hah16gf7i2ZLViGigA9skej3GVeEXBv2khTVFw/D31VOF4P+88PIaqW8pzw4MHcR+6L4qCGpMtLQC33IL9BqVe6qmpERFw9Nl27MBzNjeLKNfxFHU6UaBssEjIRUnkaP10g51jTERUFY0cVcWVaqsVt5MArN2OHX6qKv6RcyxaZY3hjtdHifX1iRS+ZEBlkCOlPvp8xhFf9KPXBRnvyJEYixfHd2xenhg4KypEmlZFBRrzFFnW2Yn3NStLlH0OBtHAUFWAU07B/ZxOfCaPHsXtJNYJoDUQ5LSOUAi/ExLWnjZNTADlaBAasFmTg5ksdHQIIX6TSfSNlL6xY4fQGwuF0HDPyBBl1xsbcVKcmxsuYn/kCPatiVYY1k8OQiFsg729KAzf0YHn1+ujDQc5/uiclGJ58CD2vcMV5DCbsV84eBCPzc9HR8JwaZ2pprAwdecmp1gwiOK8hKqKiIOBAVHQprMT79PSpdpIO9K/oclbS4twThYV4UILOWhZN2bk5OWhTUZC+UR/P46VXi8uJuXn4/d70kkiQhRAVKEEwLYWDIo+QlHQAZaZCbB6tTg3FVYg/c+cHBHRQuP7cJN1OeplNGlqCn/fdIqkCoVEGj0zPORM7OkRhS/y87EvJkF9lwv/l21Or1eb6kgEAiLikl6X5wIZGfielK0RCaokT8eTDhqdwwirVcyPFi9GB5jXKyoPky5pTQ227T170A7IzQX4/vdFhLDdjnbC++/jvjNn4jhw+DDeiz178L2osI/JhJ+7rAzvYX298YLXhx8KvWNZKqWjA8cMpxPtEX52k4vc56c77ByboIzGIG6z4aRgYACNKrnTpQ6dxHYBkr/6N9LPSGLtMr298YlG9/cbO73oJxiMrPeVnx+e7z8ZkB1kerHPaFDUwdSpeFxbGw50Fgs6w2iylZOD/7tc+Jy1tIg0EFXVigUrCg7q+fn4fNpswqgAwN/yKglVmgsEcNC3WERUyOCgWCmnUtxjPQlmmGRAVWFVFfWCgkE0YufOxfbmdIr0ijffxGNKSkS0mN2OBm8ohIatXmtwzx40VnfsSGyxhKJoAXDyEQgArFuH77dvn+hvY10ppkg2fYESOncggH2FXHDECJr079yJY8nx4yKabiwJhYYvJpAoFPWjL2Zy5IhwYh4/Ll7zevGZoFTPnTtF5JFMUxPAffeJSsNyxEBdXWo+SzpB1eXMZtQVkreTA+qSS9AxSQUtaJIMgDZeMIj7T5mCTmS5+mxmJvYTl1+uPbfJhMfSOEri3nV1uG043Zpk2rLxLGZ5POGT6/ESwTYakG00mQpUpYquLhxT8vO1CyrTp+PzTnq8ZjNGacrOsLo6dBzpC41Q9VgAtI17enDspMUlpxPbjtUa/bk0m8V4rCjalHt9xWeisxPt78xMUTmyrg6fB1okLi/Hz5aRgZ/d6cR+nvQHAcSiBmUXUaRRVxdGlZG9QceQbrDDgYV15s41jmLavVu0ZbnYWEEB2gNFRWir8+J18ujpwYwBeVzmtEqGMcDrRSO5tBQdD1OmYKcnV8qiVUiAcPH7ZJGo8WS0akkaX0Rvb2Sx+44O7JCNnF70o9fVSgdk51ikFX8jpxJVtCIDvqtLGN+KAvDd7+LrWVkAW7bgfj4fTqoopYkiz2prxXe7Zw+m+DidWA2npER8L5TKI0NaG2azMFioCAClVRw/LvZlmIlOZqZYyDjjDDR6ioqwzaxahf9TlUJyVBQUYJ/f0oIGqd8vtAJdLu3Cw/r1uH1gAJ0o8SJri/X2YruktnjkCL53ba0Q05cn7UZQWqWiYOTZ4CAe29wsfufnA3z5y9HPQ7qGjY2ifygrw/s0lqmV8iQmmXi92BeGQsIBRp8zPx/grLPEvhSx29+P1zJ7Nu7f2Bg+abFY8NyDgzgpmztXq0vJE/TkYTJpCzbYbPjslpRgSlR+Pm5rbtY6m0mjj575trbwtDuKFCFCIdx2+un43Z55pojgJme6bG/JyJVwkzXOxhP10Nsbvn86Tbbpvg/Xl6Yzvb3YBsjxo8/ycLnEfCg/H51ccvQW2Z7t7SK6jKBIK9re3KyVOyA7mdLSo6HXhB4OVcUxcnAQjyUpBFqMUhR0ilVV4e/TT0dH4Eknae3/k04C+M53sH/5/HNxH1RVOBGXLsXfNhv+ZGbiZ164EItxUcaI7CQbHBTjDlWbJqfh/v24bcECbZVNJjYiPSf03MmO3XTqD/Wwc4yJCIlBLl2KnVhjI0aS0SoJaUzIToVkQkaVPvorkXMQlF7Q3IyvWa2Rxe7z8iKHJacz8gQpEkYFGmhCTqkYlAKSmYmD8Jw5+BMI4MBYWoqTLprY0ooYPX/Nzfjs1dfj9+pyAVx6KU7gaWDt7g7XHOvoEI46co719WknAvpKOQwz0QkGse8rLhaRk0uWoCGvKPj8t7ejSG4gIKJKamowbSIQEFVmzWYxse7rQ4cVFXDRa6vEgjxJ7+pCp1xDg4hMCQTwfSny96OPtMfrI0A6O0Xb/ewzoXVFKX4DA2jYd3REj3SjKFRVReccpYb09yf2OZPFoUOpSX/o6cHzhkL4PJDQPgBGRMhRQKQ5evQo9scUiUMRinLfSTp3ADieT5+OzxBFTqSTEHqqMZmE3hvhdAqBb4oiHRjA74K+J5MJHQADA6LdkwOWnJglJbgfjcVTp6J9aLfj3wsW4DhfWorttKMjsv2mF9yOtYp4tEi0eMZrOROCSKfJIKXYJ6IROdkhJ77ZjG2CJGX0TJ+u1dyldEOKoKIqvcEg7ivjdGI7ysgQhaEGB7HIFQAuwpjNsUmvVFRoC1QRcpSXTGMjjnvr1gF873tol/v9uI1SKimy0GRCW9nl0kakAqBzqqoK2/k55+B9on1MJrTtN2zA/7Ozse8h/TGrFX+oPdOiXFOTNgiD0j+9XvycNKdzuydnZs5oEAxGlivKzRVR8uk8/2Hn2AQl1Q8t6cc0NYnUkh07hPg5GcyUS04i94lEDUSCUnoiDUzDcfx4+Oo+hf6bzdhJ60OdmeHRr4AZYRTOnZODRrvZjAYFlXUuLQV46CEcoM89F58hrxcnYzNnihQdcsiaTCJKgaLJyAg4+WSAE04QE165PD3R2orPlMslVtyoSh9BBn06Dw7M5KOzU6QnFxZi/52bKyKsyOnU14dtq7oanR52O7ajM87AtianLjc24kRYv/JdWxv9WmRB3bw8sQr84YfYLzQ24nuQJlplpRAO3rBB2zb1jqpgEPsVRcFroygJcviRU7ClJXp1zWBQpIb19orqXrNnD//5UsmMGbE7E+KBih94PGLSQo7HwkIRYUiVSxsa0NmalYX3iqKPjh3TOjH6+sQkkvpWmijR+zLJQe8ca23VRmxnZeFYbLXiBJ0m8JmZ+B3t2YP9hM0mvkOSRKiqwvNQus0ZZ6AjoK1N2FIWC+7T2CicY9EWOEMh7AdkIeho0CTaKMU60nNkFOWZkxOempxOzrFQCG0tbnsCEtsPBPC5jmVxnCKpMjPD5yoU9RQKCa1coqJC2MlTp6JziqpEktOnrQ3bk5ytY0RlpZinyURyqh06BPDGG9g3XHABvifpel56KV7z4cPY18+eLYT19VqXM2fiWBQIYACFw4HXTDqEZWUi0jQvD/+miLKMDPxsL7+svdb+fu1iVyiEbT4QwHtMCykZGZGrZjPRef11bV8n3+/aWuwva2rE2JCO8KPFGDIwIFbYAdDr396ORpOiCOdYXp5IPwRI7kA7Uv2HgQGcINHKmN+PTjx9agCTfIwcmjNmoAPM4UDDYPp0YVBPmYIDdGUlPncNDSKCj54D0vlRFFEMwGLB6lg0yTKb8Ycm6BaL1mFLzlFa1XI6cXWcol4IMkbSyVhmJieUIgeAbWnqVGyfixfjBKCgANvdrl0AH3yAWiP9/dhOFQUny6TNZ7HgpJL0AQHQkN62TazokqFF7xntumjS7HSKCbeqYr9NY4/Viob6kiU4/mzZgpGp8vigj1Tt6hLV+3w+UVjG5cLzUjUwWXPJCHKOkW6MzydW0kmfcCzw+1MnnGu3A3z6Kf5N0eEAokLhp58KPalAAPtuRRHfh6ri8yB//4sWaQ1wRcH3kYWkmeSgKNqIiv5+HHuzs9HJVVqKbf+003DiS5PNrCyhIUp6RHppCrtde24aJ81mdKbRgtf55+O+oRBmGxhVRfR4hKO1qUkshg4H2aFGEZ/yeC0724wiExUFo0ojHT/ZoZRpdo6Fi+07nfGfQ67kK9/T9vbwIhkA6NyRNS+bmnAhx2oVqYa02BCL9hNFRcfiMCIt34oKsWjt9eLik9uNbYfar8WC55w6Ndw5RpGknZ34Wm4uOgHJQb5okUjxrqrS9h3l5fhZDx6Mfq0kgUI6oaWlOA53deE4GG1xiwlHVXHOIy+uUZG6AwfwGXQ68ftPR9kggp1jjCGUFkEGS0EBrgZTxS7Sr3G5sDFRJ5/M0tAjrUTi8eC1kSOvpgb/dziSW7GSCUcWBSWcThE5ZrWiMaFfmauowImX14v79vSgwd3WJpxnpHOmqpiGOXWqmEjTqjkZzqS3QlBaZWcnRplVVOD5+vq0RgX9nU7GMjP56OzE5500x44eRae0oqDhSsY3TYr7+rBNmc3YNnNzUR+KIjYpbYJSIwCwvfr96LQi53NXl0gTiYQs2i6vjB85gu9Jzrbt2/G9Z83Cvvutt9CgjrZ44vfj9ctpmV4vfvYDB7DdWyyif4g0blHEGaXJUGra5s2JV1FOFvrUuZFC9zMQ0FYj1UfoFBQI3TfqJykNh1JPt2/XThBnz0YHJ4AwymfNwmcNIL2Ff5ONomgrN5eX4/e0ejW228xM/F1Sgk4zsvEaGkRmAAAWVlBV8b0ZQd9xaSn2DdRHzJyJzwdJcRg5svx+nOTW1gJ88onWuSCjl+yggjpGz4w8UdZHnxixc6f2f1pUSwdCIVGsIZ3p7DQW2x8Jct83MCB0t/TIz3BWFo59s2aJbW43tik5dTMStIAVi3NscBB1Qs8/H/+fNg2dZTt3imuiBSuyD6htG9HVhZ+TNMWysrBPkNv03LlajWKKYo10z8m+oCANKsrl96PN0d2N/Qdr5sVPKKTV+dy0CX9XV+N40N8vvs90hZ1jE5RUr/bQpMDrDa/4BYBGFQ2ubW044QAQookjxe8Xou6JftZAQNtx9vbiBNHn49WGsYA0TYicnPDVtAULcDLm9+NAPDgoHFoUCUKOt8FBoeVA2igmExoiNNnNy9Maf0YVqvr7cVCgCR6A0CPhVVVmIkI6YE6nEBLOzsa2lZ2NK9Pz5uFqL6UbAmBbWb4c/87Lw6hMqkZHacyUCk1G+IYNaOhu3y4M3v37sW1GE41vasJJMwkDEzTumEzCUOvsRCP63HPRkCsoEONDU1N49cieHkzpABBplQcO4DmOH8f7YrWic9DrjZw+QItELpeIlOrqwmi6kWhhJoNkjWE0vpNOGy0wTJ+O94V03qgvzMnB/wcGtPqRU6bgNakqRurJk57Zs8UCRmsrvqfFAnDRRbjNbOYS8snC4dBOYjMz8X7LKZLTpokoDHJMDwxgu6GIUUq5M3rOadJLzw7pjlks+L1PnYqvvf8+OteMJrDyeEti3kboI8qMKqESkaqekn0q094O8PHH2m3p9AzqqwGmGz09aCe6XMZi+8mithbHUr2tC6CNzMnLw7FZtk8PHsT+lbTMomE2YzsbLgUTAD+rXIymoADbAo2LJSVoG3zpS7jvVVeJyPFI7y07wE84ARc+SkrEfZ06Nbw6tMWiLR5CFBVpn0ubDR3uJpNYNGtrw/uVrs9volBUvRw1S/Oy3Fzsy999F5/XWKuDT0bYOcYYQpMCvx87cFXFzpsmIdTRU4plrHoRsSKn3Iyk85ONMtKwMZuTf72MFqMqMoqCOmIy+oF8yhScKHu9OEiT3lAwGC44mpODg6jFIiqsUAg6DcgUEUOQQw1AGPgZGQD/+79oiNDzQivvPPAyEwm/X0TmFBaKSbLJhA4rqqQ1dy62DTJMaT9Ks3S7sd9ftAi3l5Sgw4PSPcxm0cY2bcL/S0rQiA2FMM1xOOdRUxNGmzU0aFcx29vRGef1irQrsxnb+xlnYDstLhZpjZs3ayfX/f0iqqu9XfQfpKOmqkI3KSsrvPKmDAmTt7WJFDNVRcdbNGHw0SDZeiukIUaanBkZ6ARUVRRuJnp7RVqO3Y6TlvJy/H5aWvC+dHaGTwZpMk7PjRxZYLHgs8tVK0eOPiWMiiTIxYlcLrznmZn43QHg5NXhwOq1oRC2u74+/E70jgP9e+Tm4g9FGlBEEj0D//3f4ddJUaa1tUJL0Ai9I4ycY/qxORAQ2/SvGekDyrYAkUyHt95hP94gR3i62TgDA9ifW6041o1G1GpeXnibkRd6AbDPLSzUVgsMBnF7LGmeVA0ylnHB5cK+miK5cnKwz77gAowes9nQNsjLw/OR3q/RvVIUrbYYAO5XXq6NYM3KCrf3rVZR4Evu+wsLtX0ORXmbTJj1o6oYYccF0+Jn3z78buT7TdGK/f2Ycv/OO2iDxaIvPVlh5xhjSCgkJhVf/jJ2RtOno7eZHA4UcRAI4E+08Pt4IcOJ/k4ERdF22D09QiyYjfDUUlUVvk1RsCQ04XCIcHFauSBB78xMHBCtVhy0GxvDB32rFQfbZcvENhLYpxW5/n6tcd3SghNuRRHVgxoaMPqltVWslNhsGJnCEYbMRIA0U3p70bDUa0WYzdiGyJgk7Q+qhLVwIf5PkVElJeggy8/H/6dNQyeIzSaEdYldu3Ai6HLhufbuBfjLX4QTJRIbNwI8/7yIEiXI0ULtMRDAtpqRITRPKL0RQGgXEQ0NYmLa2ooRMHa7iA6lfoQ+x5EjkVM0qWIXjYehkNBNNPpsI5UCiBWq9pUMZIdCbS1G1lEE4I4donIlAI6bx4+LiLKpU/GZoKjeYBCfB6OIo1AIF01ogkSak1Yrfq/BYHh1aWbk+P2iqhxx8snYxurrRXtwOND5THozVOEyloVEiwX7CxrHc3JwcnX8OLbbSBGkqorPjdMZua+I5BwD0LZ7qrIKEF4Yqr4+vGgHyTHI12Yk3J8oycqiSBVy9d50gNLng0F8TlOtO0zV/ihyWY++f6TK7bJDghaFYyEnB23WWPafMQPgm9/URgPv3Ytjr6ri+D9rFi6OKQq25b4+4zGnsBDv7QkniG2KIhbMqL/3eIR2GEHjMoD2frS0iOMURUg3yNtINoGJj2Aw3KlI9k9zMz6rtGCi15hLJ9g5NkFJ9WqPquLEpLtbqyvS0YFRB0RFBa7kk85MslazZedYouidY/39uMIxdy47PcYCfXi4HDlAYs8AuNpkteJKNHXaPT0impEgjRNKDQPAkGBZR0OvmULi3CaTeE+PBw0SciAQLS3JdfgyTCrweNDoz8uLrN9BkVcUVUYLHCYTGkrUT+7eLfbNykIHRn4+pkgsXChEhO124Tjq78f/fT4RXdXcjBPUSJPinh4R+bV3rzbdQlVxslxYiMefdFK4cHtRkegbyEkuC8LL96ahQUSiUb9PosElJRi9Fs05Rp+J+pVFi/BeG1WLHM2IZH2KSjLo6BATLFnzhf6myc327dhXFhVpHY4UWaeq2oIFtC0nR9xLYt48ESHMJA85cq+4WFtEIz8f23JWljYahFIdFQWPz8gQ7doI+bmQJ1Jz52KfUVyM51+/3ri9+Hz4PFF/YoQ+6kt2jm3eLLaT81p/bQDY9vXvPziI/aWc0p1MR9F4f55VVVQDn8yoqtBITFRsP14URaQDNzUZ32M5q6GsDMfMgQHtwlasAvtEW1tsaZXz5wPccINYjCgsFP3+aaeJyPApU0TavM1mfO9cLiHsT9jteA6SJwHA82RlaZ1jCxaIfkNeGPH7tUEYqor3h+5FRwfOH9JJIzBZUJEUoq1Nqy2mqpiG3tmZ3npu7BxjDJHD6mlVWFFwkDl2DPchI6qoCDut3l5ckaDXR8LgIHaOIxHIpFRQYts27IhPPjmyQCaTOhRFO6Ej3Rk9WVloVLvdotOmsF/Z4KWQb4tFnEdRcNCk0tiURksEgzhBltM4KLpM1kygEtxG6RgMMx4YHMT+2GbDfi2aEW0yYZQYGavUDklPjKIoAbCtZWWhYUypJzk56BzLzcUJLVWya2hAR1NuLjrDenvxXNnZOH5ESj3s70cD7Oyz8W85veTSS/H4hQvRcXXWWUK4HSDc6G5oQINbXnmurNS+n9mMbby5Gds1acxQOl+kiSylb5HTB0DIDRjpJCVj7IsVo9T1RJD7VBI7z88Xz5P8uXNy8PXOTu0qPt3LwkL80UdFkNNlyRJ0WMqOEBKMDwa1ixPMyKD0LIoKNYomlRc/5TS7QABfO3JEVKwzgtqZ/nW3Gyf8WVkiCkEfSUX25HBVKg8c0E6CqT22tGB/Q1GN+sqaMqRfKvPJJyKli0hmKuR4d45R+vRkdo5RQRoaw0YT6uNyc43vMbULAGyjNlv4eOl0xibGT0yfHpszLTcX+2mKpnS7sY309+PitNwO6HwVFdqUT5nFi7Vj8vTpQtOT6OvD95Wd9AUFYoGc3rO3F4/Vi8GfcooYq0g2we3mYi7x4vcL4X36m2yZujpsM198gXbVWBcdGkvYOcYYIk8Kysrw74oKNJrlyl6KgkYPVRQESE5UW3c3dtQLF47sfNRh+/1CuLmoSDsZZEYHfQg0hV7roXSuigqR/qXXEiNoVUueKBYW4vE1NTjAyg5WcvrKk9j2dtz+6afiGVYUNJ6HE+jVV9KayOjTTpjxSSiEk0qfD5/1WNJDzGacHJKhLTuTZefyvHnYpgYHhWHrcuF7XHghvjZvHp5n40Z8PScHXw8EsH8lR0hbm0hJ1NPSgoZYQQE64UjLDAD7fEr3GRzEzyi3y2AQJ+UUpdXQgM5wmmRTVWUA4aTJyBARUCRIS/fh6NHI7VweB61WnKyoqhBOrqvTrq6OxoSYUr/Ly42rAI4Eco4pipic0H1TVUwVCgbRYUEpuXl5QsuuvFykbOhTMrKyjKtfLVsmvtex1nGbjKxcib/1KVEZGdgvyBXlTCa09/LysH3RJDpStE0kbc+cHGyPFJnmdGojCQGwD+vvx74jWjrt4KB2vA4GsQ0MDuLzSBM4imQ1oqAg3GF75Aimmu7YIbbJItUjZbw7x1QV+/jJ6ByTxfblysqjBaUCAmB7MnoW9JG/qhreP55xRnzXTgsVsSBnT5A+WEEB9uuyIz2WCOWpU7X9/fTpYu5F19PUhOeWnXdmsxj7KaKsu1tInxC9vdiPkb1dUoK/3W7Wj46Xw4fx3vp8+Fx6PKIwyeAgjsHl5diG9Asq6QQ7xyYoo1Gt8sgRbECy+D5FC8j09KAjI5nXNDiInbXDMbLz0sC/Yweeq6oKU3WMNLGY1GLk2DJaifriCzTcSQgUQCsALpOZifvKkSVUqh4g/Nmh52HrVrGNxFkrK9GAp2p5+fnDG45jXbEumaRzCPVEgVbC9cK9w0HpDGSYkjaQyYRta+ZMTIWaMQO39fVpz68ouDosp2N2d2Pff+KJ2H56ezE61+3G8eCddyIbr1QBsaAAHWqyBgalcmRnY7s2m4WGkNOJBr3bLRxaVNmY2uonn4i/aYJCepOBgHCyKwp+Hrsd4O23I987qr5osYjJRFYW3qOmJm20UyrGZb0DfssW/J2bmxx5ALq3JGXg9+MYSRUoaUWf0tl8PryflH47Zw7ey6lTtZMavXPs1FNFtVTZmTJ/Pn4WVQ13sjAjZ+ZM/K23eZxOjBKVU5YtFtxWXY02WCCA341cZdoII+cZpTG3tOB3//LL2upn1dUi44AiUY3o6NC+Nm0aHlNXJ/SOiNdfx9/yAi4ApnXqJ3omE173r34lttH7JEMvbLw7x6j68GRiLMT2jZDTKvv6jJ9to6wYfcGqq66K731JViRWZMdXIIB9eVaWtp3Gcj69LULawvIii9Einrw4HgiIytFUFZvO0dSE94uuhZxsDgdqXDKxQwt+FCXc2SnkLxQFHconn4z22WhHW44n2DnGGEIVuRobtWkTsv4IpVVSCGxZGW7v6Bj5+7e2AqxeHd8EUI9cKry9HT3mM2agEU8rD8zooTfEqCKaEcGgqCZH++ojx1RVRCNQhBlBhkcwqI0KoUmzLLzr8+EzfMYZOCE4ckREvIxVJafREvZmJgZ9fdgnOp3DT1SNyMzE55kiNKhfzcsT7XDZMkxJVhQ0jghyqsntMT8fDdkXXkAD9ctfxteysvD47GxsQzRx1UdmUZpUbi5Gf8hpkDTGLFyIRnpBgYgICYUAvvY1gCuuEJEoAwPatCtKpwYQv0m7pbYW+376nC5X9PsZCuG99/tFGhKl63d2aiNVenpSE6Ggj4aRHfJ6J0AiyFE77e1ikkK6MU1NIqJLFtq32dCRMnOmKIJCjk0A1JORoWhAm00bxUQRaNHS4pjEkSeUeqhdExTlRX1Be7txxHYsUNujye7GjeGOckrtzMkJ16kj/vlP7XNhtYrqs9SvERRFpk/PJWeuTFERpvmGQtgH1dYKZ3MyFr3G+7NMbXEyVKscbbH94ZDnHm53bO1Hr5EMEDkSMhKnnhrf/vJ1VVSINnLmmWJ7LM+HvjIxUVgYOa0bAO0IshH8flxcqa3F33KEmariWC0vnsgp4MzwkMMzFMI5MN1fuZKxw4HVLHt7tRHF6UhczrGnnnoKFi9eDNnZ2ZCdnQ0rVqyAdVKN7/vvvx/mzp0LWVlZkJubC+eeey5slhUzI/C3v/0N5s+fD3a7HebPnw+vvPJK/J+ESSrkUQbAiYui4KpCXZ1W7NxkEqt+ZjMaFyPVDenpwcZqNuOkK1HkAcrvR8PJ4cCItHjy+JnkoDfOS0qMq98UF+P3lp8vtIjMZlF2WsYoNZOiQQjZWUvPg8sl/ibNoxUrRJQGpXIMZxikKnKMQ8UZAOy3SEi6sHBkFQrLykSqg+yopvSKWbNEipzcpmprjcuw19ZiOP68eXjuWbNwIt3ZiQ6VQABg/36xr9wO29vRoHY6cdVSNtKtVmzDM2eikbZ8uXB+BQL4PiaTNoK5sVGkBYdC2vtE0cekVUZVcmkiUlKCkaRGKdKUqhUM4nuTc2zhQmz7nZ3iuFSJA+ujV2kRCiA5aYjy99LcjPcjFMJngv42mURRFJrMzJ4tvjeKwlFVsfAwe7b2fUhYWZ+mU1yMCxJ+Py9apRKjhSgSySao3TidOCZmZuI+iRRamjMHj2tsxP6moACATPtAQLRJnw9fU9XwNujzhVecDgTw/7IygJ07xWukHwggHNpEQQHarvJ4np0tntk9e7R9bTIcW8nUL0sFodDIMzPGmlAIHaqjKbYfL1YrOoCHw+EIr5aa6jRzeUyXpQ1owUiunJkIOTnivEb6VYqC311zsyioQVGbFMlcXY0/hYVivJHtkQMHRnaN6QL1bRShTfNjVRX6d01NGGHM8gZxOsfKysrg4Ycfhq1bt8LWrVvh7LPPhssuuwz27NkDAABVVVXwxBNPwK5du+CTTz6BiooKWLVqFbQalan5f2zcuBGuvvpquPHGG2HHjh1w4403wte+9rWYnGrpTCoHtP5+HNipUp+ioLPB4cAVZXKa0TVkZQlDp6FheIHV4ThwABtpRweeOxFDhZwWcuRYc7NIpdFHGjGjT06O8Wo2iXk6HMJYJh0EfeQYQPikvbRUvBYMGhtMsgOgv1/o0JFmUmsr/j2c86umZtiPOWHgstjji7Y2NJYLC5Oj/VBcrHUaExRlabXihLOmRus8rqhAR4e+nTU2orOprg7PvXw5blcUPEd5uUjPqqvTThACAWz/ioKTcFmQ32LBa1m2DMcTeWKenY0l4ysrcR+KZFq2DNMpAUTUKYCIgMrJEREwvb2iwuK0aWK1NJKRTemER4+KqDSKoparbqZqMqwf/+QS9slwzsvt3ufD7zQUQgM5J0dE8jU24t+ky3TaaeJY+RybNuFvWaA5P198Dn2f73TisxKpsimTOux24Wyl5xoA2/o554jMgETGBosF2xi142BQpC93dYnMA3qPzs7wCFPSxKHUXwBctAoGsd3W1WkrZtIzNjCgHZvz8zE6TI4yMZvx81ss4vpoYp4M59hHH438HKmEHOAT1TlGlXULC8df+help4dC2N9FmQIPMXPm6Gs8yVGjRhk/kTI79MgLNjKUbg8Q2dGWk4PjKGmMdnbiuEwVNCmwQbYDSkqE1EoydQLTgZoabREWRcH7SYWJHA58LkaStTUZiMs5tnr1arjooougqqoKqqqq4MEHHwSn0wmb/p81dN1118G5554LM2bMgAULFsCvfvUr8Hg8sHPnzojnfPzxx+G8886Du+++G+bOnQt33303nHPOOfD444+P6IMxieH14mpcdbXW2C8tFaLLei0agoQvR+oc6+xEQ6awEKME/p/vNS5olZuulcJGTSat0c6MHdFKTufno6FA3x+lQemPt1qNv88ZM8REWF4Ro3O4XMIwCAYBbr0V/6bJpseD1XH0Zd5Jl8vnG9u0y1QwmT7LRMbjQWM6L29k1Xr1RBJfttuxnU2fDnDSSRjRJYfdm81a5xUxfz62j4wMNOwXL8Z9Tz9d6FZ5PNgX19WhE5omp83NIg1RFnEnHA5s/7Nn43VQmsfUqQCLFuH7UP9hseA5OjpwUkxFNwBwHKHoL+oH5Htgs+F7LVgA8MYb4Z+xokIcEwphxBiJjLtc2sUi0jWT9VpGSqRUQ4p4STZWq4iOo8iSI0fwc9I2cn5Zrfh59SLQJLEg98u5uULzzcjRYrdz/zMWTJ+uHR9pTJw/Hx3eFDWYCORgLyoSWQb19XhOihJRVRTa/tKX0EaTU3w9HlFFWhbNVxTRhimKjLbTte7bp3Ucd3aKaDU6LhjEZzQjA/sm2TGXjFStZOgBphJVRft6orU7jwcXjtxuUXV4vBEIaKMgY3F6WSzhGS2p/myyc4x0whIhWhorpUJGS9NracF23NGB966qSgjGU1QZFQ5yOvE1GntWrEj8utMRr1dEA1PbLy1Fp1ljI36XX/0q2lSTTZMwHhLWHAsGg7B27Vro6+uDFQZPp8/ng6effhrcbjcsWbIk4nk2btwIq1at0mw7//zz4dNPP436/l6vFzwej+aHGTm9vaLByEaRoqDDglb85e30m0I0R+ocC4VwdZC0zBKZbMhGEIBYFZk5k1MqxwuRxFIzM8X3RStSFPEiGwskvG/UgZtMeA59BUY6vqFB6xwjrRwyoINBnCR+/rk2V58M7uZm/Jues1jC5sczkURjmdFjcBCdYjYbLgwkOimNREZGeKobgLZiZEEBTmplx3UkozYnRyxiOBw40Sovx7+p8uCBA9g2DhzAFMsDB4QoOz1zso4lUVoq9EpMJlFdmAoIAOCiiariOLFkCbbdY8dwDJNT/z0egL17cT8jZ2NVFcD/9/+F6x3J1Zdra/FvSkcwm9GR2NsrxhNyoMlRLiNlYCA81UZV8ftKVnuVnQj03OXnY4Sew4ELZQMDYpWZHJmkpUPXQ0Sa0M2ejfeHBOL1TMaqeeMd/WIhjYn0HVEqt1HE6XBkZGB7DATQuR0IAFx5JTq6mpuxv6OUnrw8LHohSyfQM6eqABs2iO2yw7i9XRtxSIV5PB5tJGhJCfYB5LDq78f+R1FEZLnshE5G5Nh410JSVewPJ0q76+/H8dFux3Eq2uLqWFNUJBZSVRUXWoeD0otl5s5N/rXJyPfwiitS8x5kx1RURB4bDhzABTW/H8ecggK0OwIB0U4zM3GbwyE0iAE4wileyDkmy8YUFGA/UFqK86aCAlyIHI9pyqNF3Ob3rl27wOl0gt1uh9tuuw1eeeUVmD9//tDrr7/+OjidTnA4HPDYY4/Bu+++CwVRFG+bmpqgSF66AoCioiJo0s9qdTz00EPgdruHfsopaZYZEdRYvN7wFXbShzAalAYHhb5MMDiydA8KRSbDLRFDRVUxWoEGKKpoQqH0zNgTKSrm5JNF1OLpp+P3tXgx/h/PSlp7e/j+FA0RCmmr4bjd+Lx1deHkNicHnx2HQ5urL69SU1s5eBD3SWaePlXZGy2o8AYz+oRC+Pz4fMLRlAoyMjCiMhIVFSIaiIZkqzVyOoTViu2TojSnTcP3cDrR0dTRgef67DOssHjoEDrKNm9GpzW1v0gpJ263SH+nBRmTSTjDqcoe6RHOno3vqde8XLZMONVIAkBmxgy85/rUnK4u4fAaGMD+hFarSUNp40axv6piKpWRc+z4cePPOByyxpe8TVFw4pAMeQBaV6ypEYZzRwemTQJgP+h2i/el6ykuFilxpBWmKOjI1PeF1F8aaYpRumt39/jXaZpsUEoNQRGixcXY7ufPF+mR8VJZiQ7WmTMBLr8c2xNVNK2uRpuMosNqarB9yaldtFA1bVr4AhiNw/K4GwgIhxtVWu/uFlFqn30mbFQqquFyYT8ij+3vvpsch5G+qvt4RE5FHa/4fLhQoar4XU0E+91m00b3SlPkiMgFbAiKXE4VsmM8UgrlSO1COt5oEYwwmYTupM+HkdxFReLZlKNCLRZ8bp1OHLdTpfU5WfnoI23UmMeDdlF3N/7d12ecKZBuxD3kzZkzB7Zv3w6bNm2C73znO3DTTTfB3r17h14/66yzYPv27fDpp5/CBRdcAF/72tegxagEjYSiazGqqoZt03P33XdDd3f30E/daM8mx5hURXnQSt3Wrdr3KCsTkTW0ki2nLZKgKoXAvvZa4u9PxgylayQiTk5aNLLAOoAQn073ShzjmUWLRMTY/PmiahpAfAN1Z6fW6CUcDjwvRXwUFuLfVivu+8UXQhxanuTpnWM0cJNBf/x48lKqeJKYHnR2Ct2UVK+Aut3RjW0SZyZHFwA6OiI5YAIBnATk56MhS9FjZWW4PRjEtltaigbXvn3Y9x4+jE6lrCzsl12ucJF2Qh9dKke6dHcLAXinE1fnSQeMmDUL97fZ8L0HB8PTsF0ubG+R2i61eXL2KQpO/KmYAIAoIjM4aLwwNBLRYKPJq6Lg+8yalfh5jc7p8Yj0W7MZnRtUmRNA2Ae0PznDZIduZmZ49TLqt40mtlQlze+PHFXGpAZZkH/6dJECRRGC5eWxV9vTQ+m5FRXY/mtrsY2sX4/SHa2tIlPBYsF9SOcWAJ+HnTux7ZaUiGdQnsQrCra5piacXNMYHQyiM763F//u6MD3o3aoqjheU1ScvNjV1pachaLxvthEDsLxGjFOi0YDAzi/GG09rpGQm4vPXjyLjsXFox8NF0va3Ej75FgWcLKy8HseGEAn9rx5aA8Fg2KcMZvxepcuFdHks2YZa6Ux4ejH7Y4OsZCQn49/V1fjWG60IJFuxO0cs9lsMGvWLFi2bBk89NBDsGTJEvj1r3899HpWVhbMmjULli9fDmvWrAGLxQJr1qyJeL7i4uKwKLGWlpawaDI9drt9qGom/TAjh4zfI0dEx0RkZOCERO6MSBQ5Lw8jaEhYcSQVKylNIyMDDZd40jQp/UVV0TgiI13vXEnncNGJgNwxk1Gk17YZDhLqlJ9XSqOYP188E6RvZrUKjTJaOS8vF4OKnDJsMqEhTxpHAGjcjzSleCyJxUieCKvhE4G+PjT8nc7wVIpUkZsb/b3KytCRRVp+RCTjdsYMIeJPZdZJP8xuR8fK7NliwWNwUFQ03r0bjd/6eoAPPoic6q6fLMgRLIEATmRPOAEdX7KQvCzSTdqFFHWgn2RlZOBEOVIEBTkMe3uFCDAAnq+6Go87eBBg+3Z8f6MoMRqX4kVVw6t8UTu12ZIjyC87/Bsa8LyKgs9LVRUueO3fbyy3YBRRlJcXfo/pnpWWGkcMW62i2AEzesjfn9zmabvTiZPjRB09ZjP2DWefjf9bLGgj+nzYXxw7hufOzkbHGaUyA2Ck2dGj2O78fqFHJot/9/Vh+9u1C+DNN0WaYGMj/sgVqcvKxPhMBaQAxGejfeXjRgKlgo9nbLbx2eYoirCwcOJqBNtsAO+/H/v9TXUK5VhBtjxVPjbC4cA+wO/HqPOFC0V0dEsLjts2Gzpt5s0TkWTZ2amrGD9Z8fuxH/Z48NmkPtjrxT7R4cDFBloITFdGrGqiqip4o8wIh3t9xYoV8O6772q2vfPOO3AaxfQzo4qqCo+yxaJNqXE60cjQd0ZuN04S+vuFWGZTU+Lh2oODuMKXlYWdYTznkatUyoLpHo+29DwzPoilVHRWlrHw83BQpRxaXQYQofmytglNBLKzhVCv1YpGvWywqKpYvaaw5Lo6dCR3dOBroZB29XsiQhW7jBjvIsPjHb9fpBGSns94wm4Pd4ZFSqnKycGJK6XFAQjtPZMJJ660eAKA7YJStMrKhCB/tHQL/f2Rr4XS/OWUFZNJ65yyWNDRTdVvA4Fw3TVFQYeO2x2u7wUgnGPZ2bgfXavDgbpjR4+ik+/gQdxuFJWc6Oq2qoanKNL1FBaKSJ+RQBOWzk50eMopFZS+0t2N+xUWYoo7Cezrv7dp0/AZqqzUbjeZ0EaoqDDu8y2W8Z/eNRmJ1O4KC4VTjBzmiTB1KjrkTSac1FKbDQZxstvdjdvKy3GRqr1d9BctLTi2BgKRF1s9HrzGPXvw71mzsF85fBgnfRSt5nLhcyxPzukzFRSgvUr3or8/OQ6j8b5eT/3IeKK7G8fHnJzRWzRKFTYb6tzFykRIFx0J2dmR21UgINqn3y8q5La24jNRUSGcpFlZOL5Q+6VUQCZ2yGFJUhCBgHZen5urLUaWjsTlHLvnnnvg448/hurqati1axf8+7//O6xfvx6uv/566Ovrg3vuuQc2bdoENTU1sG3bNvjWt74F9fX1cNVVVw2d4+tf/zrcfffdQ/9///vfh3feeQceeeQR2L9/PzzyyCPw3nvvwe233560DzkZSWVaJaU1LlminSjRxISyZGlgpeiskhJsUKGQMEoSeX+PRytmKpfkjuc8cl41AMDNN8d/Hia1GOkcmEzhK0z07MWqfdLSgoOo3Y4TvoYGkapIhR7056Z0IL8fJ8EWC04S5JVlWQMhFMLoxKNH8ffgIL4eS9nu4RjL1dzxLiQ8UWlrQ+dLYeH4ThHRO3citTlqJwCijfT2YsTE8uUYgWm1irT46mrhfCouRmHuyspwZ4kc1WuUVklMnQrw1ltarTDqO+TIsenT8TyqihNwimKRsVjwO9m3T5t+QJHU+fkAJ54onFL0GZYuRcP8tdfQUR6p+puR42c4RzO9ru8LaVKbrBQcGl9JK5S0cug9KHWTZBQcDuwrTabwiL9583C7/rNRFIDTaZzaSynt4zGKZTITSWeotzc5jhN5Ujt9uojsovbQ2IjPS26ucJzLmn1tbfi8RXreS0qErmEohO/x+ef4WiiE7bmuTmhA0ft6PNrIsZ4e8X95ubafSXSSON7Tkoxs5GjI1TyTDUVSOxzYv45nsf14iHcxcbJ8biOM7HoiEEBbwOPB/ahfokhSuS+yWLBtkTPR4eDUyngh5yMAfifFxUJywu3Ge5vK9j4RiMs51tzcDDfeeCPMmTMHzjnnHNi8eTO89dZbcN5554HZbIb9+/fDFVdcAVVVVXDJJZdAa2srfPzxx7BgwYKhc9TW1kKjtAx02mmnwdq1a+GZZ56BxYsXw7PPPgsvvPACnHrqqcn7lEzMyJoNN92knSgpighvpX3pd04OdmqdnSI9IpZBV640RASDWidEIqsCpHUh62VEq5bCjB9MJu1kksoOxxM51t0tQq9DIYB//lNs0xtfcnTY7NnoWFMUHHT7+oRunaw5Rkbl55+LqlpyifqR4PeP7XM6UapXTRQ8HjT88/IiF6EYz0RyjnV1odg9gBgTTjgBDa+TT8ZJ5pQpAP/zPzhJ6OjA0H16tqdNw8ltRob2eZfHHL2zSb6WUAhg2zZtkQEqJkCRS2YzivvabBgBU1JiXCWXUvk3bhTPP4lABwLYZ5SViXRDADwPacu89RY64KnEvJ5IzrFoRTzkCpH6a01m/+D1YupkKISOhKwsUfWvqAi/J1oAoz6YqoTqr4P6V73MrKKIcxjdH6tVCLAzo0ekyEMS6e/sHNmzNm8e9gkA+L3TYtOhQ+iUDQbF2D5lSvh7mc3Yvi0WbVvp6MDnta0NIzYpFbKyUmgH1tSgc8zjwT7G5xMRaOSIkaGKePoCBIkW05gIzjHSGYyFVETEe73aSOrJFj1F2k6x7nvWWam9nrHEbo9cbMjvx7bu9eKYWlKCbfHQIXxd7hdyc0URLQDsN8ZTtfhY575jxeAgfg+yY7yjA+93aamIoE9mgbGJiIGZGJlo2mEOhwNefvnlYc+xfv36sG1XXnklXHnllfFcCpMC6uuFSGowiJ2V7ERQFHSC6TUayCB2OABefhngggvQ8I8lTcIoX1xfhSuRjoYmNZSW09MTeZWUGTuMtN/0q2c0GALEb6jLqyNkDC5YoK3QJWuD2GwoyH/DDSLNklavyAEmp4P19OBEUFUxhJ4iKkZCV9fYphQYOcdoQE0mPt/4n0CMhMFBfD5crvGfYiOj13iJ1OaysoSjifprqlRYXIxpWVYrOlyomPTu3dhW7HZ0wDid0YtYyBpfANq2pSgYoazXwDKZxCSLHFjZ2fi3PH7JLFuGkWz19UKMvq8PxzGKSKH3pOOzs9GotFrxnlFBAK9XfO+E3KZaWtCgDwbxPSKNS3SMXpUiFelQ9B3QpGPhQmzvTid+l+S4Ki0VKaaRtICM9ONMJlx4mDZNqytFkN4jM76QheoTQU6LVhQstvOPf6BDhhZB+/qEE0H/XFP1OpsNnw+aBHd0iIrSJOfR3Y19EtkPfj+2595eTL0+dEi8JldOle3Y3FzhsBsp4y1l3giTCe/vwMDw9nEyJ/zBIDperVYRiTvZCAZx3IjHcTOZI8ccDmMbUlUxyyg/X0R4AuBi1Icfasdc+ls+j8USXeuXxtvRgvq08aiVp6o41mdn4zhM2V0WC/YDVVVod5AkRjqThCGAGQtS4ZmWSwnTBEE/GSENJwB8zenE1X1ynLW2CqNEP8nWr6AYDRrk1Fq2TPs+8aKqQjvi2DF0iFgs2igDZuwx0ufRr9yuXCn+j2dSKE8iyTlGz6ysqyMPAtOn42o3IRsr5OylyK6uLhyUKVqsvR0jyZIReTWW2l5G15/siStVGZyMUJUtn08sGkwk9I7ZSG1OVcNTjuizut3oKCajlSZeL76I5ysrE31xtPB9fX8tG5zV1eHPqqKgI4620xhGzkmTyXgCUlqKn/uDD7TRoV4vjkdy/0PnmjtX9CsnnYTRV2VlOFHXl5eXF4ooUmO4KFNagdZrACbbOUbXQDYFpZiWlOD72GwYoVdXh9+pomBkYCRMpnBxaUURkx+j8bywUFv8hBkf5OQYR1omgtmM/cAnn2AaZHs7Pgv0+8iR8GgFrxfH54oKfHYoyogqUVMK1sGDol0dPSqeMdICzc3Fz0Lp7Koq+qpjx7AfUxSA667D9qC3exNhvEcJUz9CE+ZY9k8G7e1iAXA8OhCShdmM/WSsz0+69n1NTUJ6wWLROmkDAVFEiygs1GYTUcRZJGKNjEwW41n/jObgXi+2w1AI5xqUyp6fj/9nZY2uQ3E8ws4xRkMwqNUb0Ud2nHOOdsJSXIypFzNn4v6BADoPSkuNtVJk/H5joVUarKmTTMQ4UVWcnJJOlKLEVlKYGXvsdu2z8tWvigiSWMPu8/Lw+SspEZNM0iJavlxr8MtGrMmkfb4rK8W1HDumDZn2+9HAo6gKu31khSgIVcXzjBVGRhpt8/mS4/ybrIZgZ6eosjWRosWiEWlxIjvbWL9LVdHRMW+ecPKSzlRpqUijmjsXjTR9WmW095Yd2X5/uHOdnGNkbFP0Mz2zxcXGzjGTCRdrVq7UOsdCITQUCwuFk4qugX77/fien3+Onzc3N/z5NmozoVD0tkSON3kfMvST6RyjinU0TlosOFbK0gaDg8IRmp+Pi01G1zBlCt43SWYWAEREH4Dx/TebMX1tsvYLExGSH0hWBIHJhM5Vh0NEjpGDa9YsdL7K4x6JcwNgXyNXrabCObSgGwjggqzJJCpIV1Rgmx4cxMn1kiXaZ4/G/enThSD/okXhE/REGW5RRNZWGwvIHpLvczRG2jZJbD83F/uQyU5mJn7WdI/AGQ6bTURmBwJC45LGIgBtAa28PHyW6DUq8jFeaGgYn+MY9ZsAADt34j3z+bDfPOEEbJOyvTXRC2KMFHaOMRrksu5mszZFgjScioq0x2Rni0lIZyc2wEWLwg1/WVi/rw9f37HD+Bra2sTKdTyRYxSNoqpa3ZOiIm0JcGb8kpERHi1BzrFYhczz8oSANE38yOmrN3xlg9lkwkGBohqLisRAR04w/f+ksUcTyJEK2h84MLLjE4EcfwCRJ/IAIs2M0UKCwk7n5DMqIk0Us7KM06IBcGIwf76YGGRn475bt+I4kJ2Nr/X3aw3feCgvN07R++QTkcZpsYiKiwA4YTVyzrhcaNTK45aiCAeR3Y7Xq3d8HzmC24qK8HdDA94X2XHU1WXcZoaLHKOxTI6wphTuZDJ1Kjp0Ka2NRPjtduHUrKxEzSGKAAMwdo653aIPlaFxXJ8mS5hMuCA2HicV6YrbbbxAmijUnk4/Hf9vahLFLhQFJ2rys+H1AuzahddxxRXYdml8pfHcYsF2cu65Wo1Rux3/7+/HY/Ly0DFuFIFut2OfRJGR1dXaPiJRYerhFkfG+lknx2QoFJvNkuj19vVhP52RgQ7XZKSsTgRIMzLWyMvJnFIZDZMJ2yY9XzR2U5pzV5d4Zmgft1uMTfEUlRgNxtO1yKiq6MvIHtq6FX97vWi3FBcnpwL2ZCBNuqnJR6oaIFXbo1BWuRKYohhXmjKbsUGZzSjiT04D/URCXp3avdt4YiDrP9C5ZU2o4SCHmN45ZreLFQlmfFNSEr6ySAZ0PJDxR6kDlC4R7Tzk/KJnx2oVE/D9+42dY2Sof/EFlpRPVMCX2LPHuFBFqiEDOVrk2EhEOuXzjlcDIl78fq2g8GRcJY7kkN69O7JBb7drjdbycpwk9PcDbN+ObTw3F4//0pcSi4TKytJOXGn1uKdH6AlRFAhdZyQ9IbsdI91ycrTOsVAI23N+PjrQ5BXqkhJ8fdo01OqwWkWKh/webW2JRY5RJJU+RVOuxpkM6Dqo36Px3OkUEzvSbsvMFM6SSNdAi1oy5HSrrIycbkbRfszYQ3aefoF0JJAWYHk5PkfkDJs5E383NWFboWgGWmitqMA2Ro6uL74QtiQdm52Nzx21cxL+P3AAx1OzGZ3M1C7lccxqxTbb3Y22plGGQ6zIx453PU1KWevqSo1zjMT2FQWd5eP9fiSbw4dFFdZYoCIy6cj8+eJvek4qKrDN9/WF30M55S872zhbYyxsaIDxKchPEblyET23G22M2bPx/u3eLSL5GXaOMRItLWiYUCnsjAwsVU8oCk4g9IZvaSl2aGRUBwJoaETTLgoGsYJgpOuYOlX8H8+Kitz49+/XVtdiJgb66MRE02rlY2kCONy5KAqMogzl6JEjR8QkEgCfcYocodz9QGDkId4ffIAaP6OJ2QywaRP+ra80ByA+8549ibclWXMwFaLio01bG/ZnhYWxRzROJgYHjR1Ncgo79eNmMxq45eWYkkep02Zz4umn06drtXJqa7H92e3i+yC9MWrDej0hmYICjKDUR47t2CGinuS2kZWF5/b5cMV1xgy8pkAg3Jg3ajOxpFUCiNRUWd8t2c4xVUXx4/z88PQKAPw/Nzd65eDsbFF8Qv+avCgRaTynSAtm7KHvKJJGXyKYTNhmyKEsbwfAsTcnR6RC0uIWvV5Tg+lAvb2i7cyahX1AQYGowHb0KNquJhOe0+9He0Ieu+WJ85Qp+BqlQdbWJv4Z5VTJeJxqY0F1NbbJ5ubY2l2sbZMW2AcHcWxM10iUkhKhvclEhxbDp08Xf9tsYiyRndnUL9DzmJFhHN2p10MdLcZjZgVVmqVr8/uxnba3i2juUCh87jLR9HKTCTvHmCE8HuxkZC+87NGnVT79IOl0ikizwkL0QButlodCopPr6AhPnQPAc3u92kYZj/6S7AzRe8uZiYNRhGI8ZGaKKB6KGhsYMJ7UyVRX42oKvf/s2eI5bm7WOlozMnDi2tyMbaasDP8eqYDxzJkoMGyUMpYqTCZ0JgMYlx6ne6DXg4sHuYKt7MSeaO3T40HjPy9v/IsupxJyluihgiylpVj1kFLtrFaMEjOZsH8nI7erKzFnD6XzE6Wloo0TFRU44aaKaMFg5LRXipDRR46FQmioz5qF/YFMaanQOqJjgsFwgWsy3vUO4mj6hDSZp5Xc7m7sE5LtWC4owHPu24fnpQg4PdR3RookmjIFj9VXE6Njh4tAGs9CxulKMlO9yLG8ZImxdqjDge2BtHBo8aGxEcdUjwcncxSxHQrhs+t0YjskZ7vfj6mb1CYpNbOgwFicm9L9AIzbVqLjkywjMh6RnQyx9CfD3QdVxe+suxvv52QW24+FnBx8Vi+/fKyvZHyjqmIxTR95b7PhfFAeG6xWrd2lKOHteqwd0+PNpqWobLquoiK8hwMD2BeT/Ix+oTJRyYvJADvHJiipaHwDA2iUUEdEzi7CqIyu/FpGBoYGDwzgz6ZNqOMgXzNNPPbtQyfE7t3a83i9IiWHSCTMMxTC6ydx9XTN558sDOfU0uN2i8poNMmtr8e/o3X4JD5NOflms0iba2vTOsdoUO/qQsfPrFmRJ5bx4HDgeYycx6nCbEaHHED0tMqsrMh9z3CFCPr7xYRBPsd778V3rWPF4CA+CzZbemmnRGLOnMhOlGAQHdQUvUHi3qecgmNEcbFItUt0ZT0rS+uIDoXQCVVVJb4bOrfbLVKtIlVhcrlwvKDoD9LjUVWMdDHSv7TbcR+LBSdDjY34v94RRCuyRgtGkZCd8O+/L5wGyXaO6VNJ8/PDvxM5gic3F+8hXYM+XYoihGTy8oZPG+I2Nf5I5vdRWioK4tAkWNanmzYNx772dhyre3vxOczKQif31q2Ykk0R4IEAwIknYj9EBSIocmzqVDGeffEFviZnI8jMmqW1afWLQ3IbjSeqbCQRaKNBSwu25VgjXaLt19WF9lFeXvLScCc6FGiQrGqvkxXSEjab0UaksYcE+QMBbOOE1apd4CotDY8S6+kZufZvojQ2jn6FzOGQi5IBiGIRra3Y9xUVoV6qLKOU7rApwgzR2orRIz6fEEmUV/jIGNY7F6jzVxQ0UqhTamoKL7FL+inHjuFE+R//EKmWAGj8DAxoxfO/9KXYrr+9XfytqtiB0jVzHvXERV+RLhbIiSWL9NJKabTzkSNN/p8iEPv6tGmF5BxTFDTmGxoAzjpr5BNXqxUHr4YGsU12MieCUTSYjMkk2q1RNBTdk2hO+eGEi0MhEd4t38PxPokIhUTKeWFheoeay1itxpNnam8A+BzLCxUnnACwYgVGRxYUCGH+RMjJwYqX1N5IY2jmTBHhZbWKaoxuNzrnIqXAUiVLWlAxmbDdyCna+mutqEDD0mzGZ6O3F9+HUiGp3crPO3HwYHQjmu6hwwHwxhs4AaBqsclOSSaxXkXB+6q/R5R6Qdc/fbq4BjlFLpLjLpZKwy4XTyTHG8ms8L16tdAcIwd1To6YkLnd+P1/9hk+LzU1+GzRvqEQtgG5qmpVldB1osqAnZ1a5y49q3l5eC6KLpXb9Zw54tnVV5GU7QGjCXekMXE8VdAzoroa+6yRLLT39uK8ITOTndt6FizAZ2cy6pAmE1pcmTIFbd65c/F/RRF2q9yeFUVoigKIqFAZVRVBHsPZvsmmt3dk2rypQG9/yJINdjsWIsrLM5ZUSVe4K2OGaGwUZbFlbREZI8O3slIb2RMMovOrt1drTKiq6KgKCgAOHcKOTY6QodLcS5aIbbGm2MmDfGOj1kEWqaoaM/6htN14JoTk5KLnOBTCZ2K4SZo+rdhk0jp4rVbtAENivocO4XNcWxvuEI4XcjrITuM9e0Z2zuGiumhyAWBcZl0W5I9kTA9nZAeDuKpP+9JEpLEx+nFjSWcn9lmFhYlrY01W8vIiO0LI+CovR2eYomCKvskk+vMTT0SjdzinSSSsVq2TxmxGZ9PChWJCkpGBP7TYMtzkTY6CMpmEoLTPhxN1OZKaPiutei9YgMalyyXGPeoLjNrfjh3RjVFywhYX40RWHk+T6RyjVWVyOhid22rVTqTz8iLfy0SvLZn6VkxySLRtGnHKKeLvc8/F33K6FAlD2+3Ybo4eRacV6Y+63ThW1NaK6ES3G8etGTOwr8nNxbQ+2TFF9qnNhn3D/v04nsrjnMMhUrFmzNBKGhhFTMlFdyJNvkd7Uh4vdH2xpqDJtjxFUZtM2C+km9h+LOTl4fM8UomQyQ5VpywsxHZLznBFwf4hMzN6UbY5c8IjnlRVPNej3Q7l9x4PUMEwrzd84b++Hu95VhbeJ1roSuaiyESFnWMTlFSkVR44IMTFKeVFNoD1hrM+5ZLKZTc04KRSr/9CYZ2qig3y+HGctMid1+7d6M2W31eO/ImVmho8JjcXo9XGmyefiZ94nWMkxg2Az0539/DHyStSAHgOuQqeLAQaCuH5MzKw3dAPXWei1XIsFjTi5aiS4Zxb0RhO+JveM1pEFB1PFfSMiMU5RpNf2vfYsZF9tlTR14fGv9OpjUBlBNGcI/T9kpB7VhauTppM4Sl73d2JjWcWC6ZK0XdjteL3NW2aSOEjI0/v1IqErIFH/Ud5ObYNueolkZsrtI56e/G5URRtX+PxGEdezp4dXU+T0sCOH8fP5fWK60vm80jfF437RpEONpu2YrDLlXzn2MyZ7BybzGRkiGeDHFOy801+rnftwqhLkioAwDaQn4//U7QIbTOZhIPG79f2MTTho30GBgA2bBCLQWTrUttatiy8/eohezIUipy+NVZpXbFC91q2aaJBem+trSKKmsXmI0POXrYdYoMWtygtl9qlyyWeM9K0lHE6I1eDHivGU9RoTQ22bypkItPRgYsFubmiCAqAtiBausLOMWaI7m50AJCRrI8co7+rqvA3TTxkg4e8/A4HGjeHD4t0R9k5Rg4yElwkentxFUA2kp1OPJde5FiPnFMdCKCjgxo7G90TF0XRpu7EekxlJa5C0Xff2Tl8VUFKLZLPc+gQpkDRcyo7xyjaIRTC562hQbweb7UcMqZtNpz4f/KJeG3LlvjOJdPZObzxa7FEFsRuatIen6hzLBRCZ5h8vuPHsTrneMHvFxpzhYWcEpEIeufYJZdgVJXFYqxHlWjhCYtFO6HOzMTozaVLRSo+vRZrara8iEKfo7oa+x+zOXwcmTJFpIPR+KQoIkKSdMJoXJKN076+2DTHTjkFx9r+/sQdidHo68M+jvT09ELaJhM66+XFMUqzNCLRNuN0pneBi3SCnGOUwgyAWmSUVuv34/hptwunl8+HkzaXC5+T3l5sf6edhq+To43GZWrzZK+SnujAgDZ9l2xdGm/17Ut2YOtfO3oUx22jdjyeJshGUPuN1YkwOIjOC46ijo1I2TeMMTYb2uyyZp3Fgs8a2QhGEWT67A4A7VxwtFN9oznMxwK6F1TMR97e3y+0mfPyMECGQdg5xgxx9KjwMlPHLncsVFZXNmgAcFtmpnYlqqQEJwstLUJ0X67OFQyicRMMap0IVisaOfKAkpGBx8qh7EbIE6Vjx8RqA60+MBOXeNM7KAKCDN9gEDv/4bTn9JNfSm80m/H4XbuEs7eiAl8joX96PhOdvNJqdV4eRlHIxvVIKrnJhkIkyNFA+8vIzjWjlEuCBNGjvd7VpU3N3L177Epu66HqaIWFwztRmchQRCUAtotFi/DnK1/ROldGisuFzmg6Z1YWvrecYhHvxESOjqJ+w2QSY5L+ubBY8HmxWPCHFpbIUVZbi888Pe9ffIGOKAC8R7GkYF99NZ6bHG2JfK5oUETawIBIAdKnl1IBBcLtjvwdJlqljpynzOSHniV5IpyTIxZpOjuxzVksYsz57DMcvz0efD4posvtxvNRtIPVipNTeg9ZE/f4cXSoyVHSlHLZ3o56uvJz3d8//HgeCBiPe+PdKWK08B2N7m4W248H0sUb78/BeIGisAm6f4WF2ueOxmD5vurHZTkCXD9fTTXye48mkYJHyP6nrDCZ3l6h8VZUxJpjMmyKTFD0nulklEG324X+l9GqR6SO3mQSIfOqCrB4MTrHMjIwbFNfsZJCPLu6cIXQ7xf7WCyRhZ6HG2Rk51h9vTiHoqCzjJnYxGtkkJGrKLGn7uXlaQdacvQ2N4vnidpeKIQDksWCz7PVGn58PFA0ZVcXGu9y4YvKysS1E2J1jkVa7aqrE8cvXRpdgLi7W5uGImsvUIoBCR5TJMpYhr8D4PW2tuJ3x5ErI0d+dm02ETU2ZYpoQ3Llwry8xDRrMjPDU171TvR4+4wZM7RO4mAQ2zM52Y2cY11d2NfMnInPu5yKDYBtgvoiv1+MRZmZsY1LZjM6CPx+XDlPdlolaZIAGIvsm83ouJDHZP3/yYClD9IHOT1XxukE+PRTHIscDuwbSH/W58Nt1FfoIxTpXFVVYiEXAOD008V7HjiAY7a+0JTVijY0RU5Su2xqGn7CGAgYj4njUS4gErFM5jmqJH6iRdgy4eg1sSh9Wr6H+oJwcko1EYvNmyo6Oka30jwRbaGNqmjL4zzZESSRkJWVuBTMZISdYxMUvVGdDFHrvDwxsc3IQMM/lok+dVw00Z09G8WXKyvR4Ni7V+zb2ytSVQBwoqwXMPR6jQ3vaPosANoBfvp0bfRbMpyHzNgRr4FB6Y6kW0AhxcNNLAsKtClY5MDZswfg5JNFFCMAGr81Nfh6Swsa7suXR4+uiga1g4EBFCufNQu3+3zaYhaJnNfIUNBHbFIb1BvKra3YTun96XWqyEfU1OC1y++1cyf+7ugQZc31k3F9dbDRgkSFbTautJVMMjNF9BYtnBBG1QhPPjmxSLJZs7SRXgDhE9J4Ix3kttvRgRNfcupFEqoncfqMDOxn9M6xt94Sz5ZsoG7fHvsKM903EsVP1YRr//7wbaORHpSdPb5SUZjUQgWS9Bqf5HQNBNBmmztX7DttGr4+a1Z4hBcAjj8A+Jzm5oZXX1YUjDT1+cK1smw2EeG5bJnoR2ghVw9Vko4WJTLWiz7DQX0S3bfhGE8i4xOFRKNo0xGjRWynE7U39ZGeAFobUq8nPFbRWwDYTsYi7Tja5925U1Rdd7nEYl9OjrjW4TRQ0w2eDjBDBINo3LvdQnxY7pQirYLIzjFVBZg3D4X2MzOx4VHIuaoKTSYyiiwWNEyocyNRc6M0OiMjRUafT11RgauIkSpwMROLeAX5KbVCUTAdMpbBMidHWymVDOrycjSq8/O1zjGaNFLRCFkgPF5IF6CyEp3LJMjt9eJ7JaphEkmQXw7DNpuFYaK//kAAB3xZLxBATBDk9/H7tZMWmqB0dAC8/bZY3Ze/i2ipmKkgFNKKCkcrRMAkF31VKQBRSTJeaBIsP68UJWL0HrFO7uh8gQA6gOl9jJynpI9Jq9c2G+4vv1dPj5igh0Jisi8L4MqQ5p1MURG2T33J+mRAn7e01Pj7icc5luj1FRbyGJ1OlJXhWCA//1OniuesvV1EbBLnnCPam6xrCIALWmRTulxo91HEl6w95PHgeLpsmfZ6yN5UVa1Do7Mz3GmrqlhpFiB8oi4zXOQYLRCPFXTtRv2NESQnwcSO3vnLREZRwud4lEkUzUZwuYydY2Ol+RcIpGacHg6Px3iBiRajg0EMopHnLP39IiCG5CMYhJ1jzBBeLxoUgYBxmguVxCb0ud/0OyMDjRiXCz3WcoMlg8BqxUlpKIS/KcIkGMT31nveVXX4ChqqKtIzOzvxvNSp0oSEmXjoCz/ECkULKooQ2ieHUyTOPz98gKCVFq8XnymaQAYCOKBUVgp9M6rIBxB/WkUwiAMVrWrLjiRVTVy43GgVTS8iTM49I2Qhz2jfgZFzTC6Q4feLKrZ0vnfeie+zjJSuLnTUFRSwqPBEh7QuZadVJEcnFbmIBTmtsqZGnN/IOUZaYy4XjjEUZSaPeZT+CYBtnMYxua+Q6ewM1+HLz8f+x2JJfml6igClaHE9cgS2kSCyjJFzLVbKyxM/lplYVFQI+48oLASYM0fo3519tvaYrCx0XGVnYzuTx7SsLGGPOhx4rvJylPig91AUTPGmVGmCqtLSwq3ZLMbgnTu1izc0ltI55WJTMrFolVHRjlQx3GIAXV8suocA47/AwHhkJP1humEyhWdEGaVM6qGibvKYq6po68Xq+E0mRtpeo8HnnxvrjlFEbCiE8wu9PUPziuxs1hSUYedYGhJp0KRJrccTW8UpWhUxmYQgv6qiQ0pV0RFB1UYARDolDcpz5ggHwv792Hh9vnDnRGEh/h5uMquqYlLR2iqqFPl8sU+MmPGHUfnm4VAUTMOgFRKKIhsuSshIS6ekBI8dGNBGUwYCImokI0PoFZEjtr09Pu2BYFDongBoJ+mhUOKaPEaRY52d2m3R0toWLRKrT/KP/J20twvn2K5dYjtFx3R14epedTXqGtDK3miFcff1YZ+QlRWuYcFMXOIRPJZ1zoZDFvQ2maKLxdvt2EdNny4E+eWJ8bRp2kI0dN7MTONxaWAARfvlz0UT9i++SH56E7XH/PzwaFAA4RjLz8frSFWqEFeGTR8UBeDii8OjvyorMYLR50MNP33mQmYmPieyphgha8yaTJiSWVwsxjmnU0Sryc8wpUaTc8xkQgd2Xx+2RXmRi94zGMQxL5Jz7B//GF6SJNVFX4ZLl6TPQn3WcIz3NFFmYqNfVAIIz14CMH5WAwFR+A1ASJToI8pShT4AZLjical4385OYzu+vx/7gtZW3J8icqlqr7zwzXaxgJ1jExT9YBxPfvWbb4Zv6+vTlryO5EyKlFZZWqqdFFgsmJ5WXKwV+fP7cZ9AAI+hSXd5OU6km5pQg0Ym1ggPOUKGtKYARLVBJn0gA5meg6ys2CeV+meFdLT8fm27oIkuaQzR5E4W345V4JLSibu6wqMdqeRyos4xo77B79ca/SZT5D4kK0u0repqdJ6HQlpnQWcntl2/Xztg9/SIdMxAQFT2ohTrVK+s+v1i9bCwkCfgkwlZVJaItsoc6xigKNgOKZrSZMJIl0jOMTLe5eshRxwV7aC2TFGTnZ3YZxhFl3Z0hLfH/n68/vb21Gj/DA4KYXI9brdWOD1RTcXhkLUemcnPhReGb8vLw0gGvx/g0ku16VRms1b8Xt8e5cwFqxXgvPPQMU3PtMOB5wiFtI4pSt3KzMRzWyy439GjYn8ALMoDgG2Wxk+qPGsUmT3c85xIEZJ4GE7DT+43Y5k/JJr+zjCxYJS9kJMTW5GkYDA8EnNwMPVtjJAXwQcGtAvEqUROzSa9Yj0dHRhV1taG94mi7c89F+8PHeN2s30sw86xSUKsotY9Pegs0otpHzwoBn8qqW1ELJpjBQVoVBQWoiEtdxw0yc7O1jbEI0ewwdbVGU9iYhUhpolNZ6eYYCgKhzdPBuJZ1aCBlpxXJlP8mkNEby/A4cPoFCouFsUvyPgkjSFqM7Ra5fcPr5NHbN+OA1d9vRjQp0zB33K0ViLIIuCEPq2SihYYUVsrzlFTg6nXwaC2nba0YLsbGBDtnRxjJAQaDOK9odTK3t7URnS2t+N7FBamfpWeGX2oAIzcXleuHPl5KQqyvx+jwug5jxY5RtdD2mTkHKPFHzqWjNmODpzE6yecqor9jH4M7O3FMbOiIjXOsZ4erEZnlNpotWJ6WqqRtR6ZyY/ZbDymBQLoONZPii0WHIsIfXuk/y+6CCO/Fi/GaE65IIjZDPDBB9r2RYto/f3Y7il6vKYGIzWpfzlwAK/3yBFsg42N+Lps39K+wy2KqSrA1q3R9xkpw2mayXppsUg2sB4Rk0qMdC0tlvAxKVKwhOwcU1VcrB2tCsgk4TIwgP1XXd3oi9v7fMZppJQ2vX8/XtuCBXifCwrQLiZbpbOT7WQZdo6lGc3NOOjr0yeoahsArrbF43GXjRRyjlmtOLm3WIR+A0WPDA6iITxzpjju88/xN61gJwIZWlu3YodAES+KElmomZmc5OVhaDOFCpOgfCzojW6LBZ+nmhpMFaYBNxQSRnZpKb6n2y2ODwRi1x3r6hL7kxFKDu+mpsii+rEQSSxYHzlGEw99++voEAM9Rb5QSilx/Di2tyNHhG4ETTb8fjxHWxv+39CAk/3PPw/XmEgGHg/2Z7m5sa06MhMTk0mbpgiQnAjhQ4fwvFYrPtPUniOtqpJxqSg45nV3C6dvMIgRK7QYFQoJYzUnJ3zC2deHk3D958jMFPvGq2U4HK2ton1XVBjvIzsYRkqkNskpHekHSWYQM2fis97YGP7MTZmitQ8jOcfIdnW7URJBHv/KygA++kgb/UiLqE4ntk+7Hdt0dze2f2qLsjYXFa+iv2UJBIDwxWc9Pp9YjB4rqD8xmWKTf+D2yaQSI+eY2Rw+RhqNw2QLkC6eqmIfMlo6ebQIXlODY7/fP3wfkGx8PmP7h6SGOjvxHs2ahffLbEYbhHTGenq0EeLpDjvH0pBdu3BlSy7bvm6dMPJzcrCsqxFGwvb6yDG3W4SUT52KBkdnJ3YctCo4ZQp2emRM9PbifnpjKR6oMwoGcbJOTjmTCeCUUxI/LzM+iNc4y8sTKcKhEEZ/xYKR0R0M4qRO1ioJBkV7cLmE9hAd7/GIiWws0R7BIK440XNLzzNFoo0kcgxAGPNdXeHOMUURq196CgsB/vlPnESTk5Ecg/v2if3MZhxgSfuhuhrf4/Bh4SRrbRVFPw4cSK4A6OCgcPIXFkaO9GEmBxQ5luzvuaUFncAmE45fZHBGij6mtEqrFSfjclsPBtFxTtGmFBlG6Fdq+/qMJ6ozZ6YuyrKpCfuGaGMv9UmxEq3wSarSMpmJxZQp4ZMxRcHJW29veNvIycH+nRZVIznHyMFL0REyLhe2T9m+NZnEtchRnrQftf9jx0SEmccjCmPoo7pbW8WibKQFLa9X9AljBbXRWJ1jnH3BpBJaXJIZrgAMQW2WFnhVNXEJAn0xnGiQrUDth4p3yOnfo4XXa3zttC0QwHn/KaegjUzVKWmu3tOjDVhJd3j6MM6JNGFNdBWntRXg00+xCs+HH4rtH38McNppGGHV1oahl0YYhVbLzjFZbBhA6De0t2t1laxWNIIo/JxC5vWdI0HigdFoaMDz+f3CsFLV2KvxMOObeJ95sxmfmZwckU8fyzn0RrfVis+UXFgCAJ/lsjI85/z5OEnOyhIrW62twgE1nDgutY1QSLwPDWqycG4iHD2qFQ8mA4Ii0yg9NFI12GAQ76HPh5OC5mbcZjJpUzdaW7ENkqHQ1ITfQXU1/lBkXH8//t3YmJyVKkrb9Plwgj9c0QVm8iBHaiaL/fvxeaIJbqyRWoqCzjE56pqiQ+QKtuSkJn0j/TkirThbrcPrCCVCXx/2Nbm5yYsOSWakGTM5ieRsoeJOevRpmHpNL1lzjP43StPST5ipyMQJJ+D/cludOVPYkrSY29mJbfj4cVEsR76u7m7RZ0SqSOnzAZx6qvFro4VctS4WJwJXk2VSickEsHRp7PsbzQflCM6BAVGlPh5h/lh1ggHQHn7vPWFb0/hMC2DxFORKBNkZ1tdn3I7lBeiPP8bMMFrkz80V7ZrHbC3sHBvn7NyZ/HP29mKj3b4dG/HGjfg3VbLYtAkbUKzIk1G9t7y8HKtS0mtlZSLthBxoNTVo6AwMRNY1sFojp2OQA9HrRaODcr6psRtV4GImP7Iw9vz5sUc/6CfbNhs+Y0uX4mtlZegI6ujAQaa8HAcgErik1S6qlBWLHqCqhqeIyULARmKleoJB4zRFvx/be2OjqOh6+DC2EQCxAh5JrykUAtizB88dDGJ7Jc0xOWw9FMJzUR+wfz9e97p1uN/cuXivPvsMnQ87dow87J30BQsLYy/cwUweUlF6vKtLOJDJmQswvONIUbBirc0m9s3JwXaycCH+L1dUBgjXJaFxsaVFu93nwyjVggLj6O2RkJuLxv3cucafMVKqJcOMFKPoiiuuMHacycWWAML3oXGbJn5GBTtcrnA7gI6z27WpXeTszs7WpkqTM8znC69MG+tCVmvr2BegWLYMf1utkZ14MlzUikklJlN8gvDyuKSqGKEtt0WS8OnpSW2AhKIIOzYQwLnC/v1CzmWkRJMekYNn9DYDQTqoHg/a/eXl2oUD6kdVlReWZeJyjj311FOwePFiyM7OhuzsbFixYgWsW7cOAAD8fj/ceeedsGjRIsjKyoLS0lL4+te/Dg3DeCaeffZZUBQl7GcwntjGSUxPj/H2REM2LRaAM84Qhvzx4wCvvYaTgNNOwwpBZ54Znxc5mrGelSUabWMjThyOHcNOkIwNtxsj1To7IzswjETFiYEBoQmlqthhtLZqV8aY9IQGALcbde5iiYzQp/3YbGg8FhWJAby7G5+zsjIcUEj0X1XFxNrpjC+8Wp8iRscVF8fmHPvwQ0yZ1kee0Gfetk2kh1IFTACx2kX/0/vSdkqXrKvDFfO+PhEFRgKgtII+MCBSVmiiQdfe3o7/Oxx4nqNH0XhIpH1SG8/Kwu+L9VCYZFFRIVaa29txvASIPepUbvOKgmOpXHnW5xPVKumcsvGenY3tiCrhAaDTubQUnWPJnFSrKp6vrQ2dA0bGcSqLZjDpjdHYOG2a8fbeXhxv9U4ygsYROT1Y7zw3qlpNx2VkaMciOv/s2aJIx+CgsEX9fhHNptccy8uLXgF6+/b4U5WTDX2+wcHYImtSsRDBMISihGcSxLMQRNI8AKJNdnVFrgqdLHbuFM6x3l78HBQxHslhFQ/RXCHy54q00KyqaMPQvoqCEbGKgn2l3PbJYc7E6RwrKyuDhx9+GLZu3Qpbt26Fs88+Gy677DLYs2cP9Pf3w7Zt2+C+++6Dbdu2wcsvvwwHDx6ESy+9dNjzZmdnQ2Njo+bHwS7MlLFypQgDvf9+DAsFwIiXefMArrlm5A4lyl2WDZi+PuEAcLuF0Z2Tg/t99lm4gUJE69xUFSfuZIjU1uJ5LJaRVfljxheJpFUqikiLiDWtUk95OU54ZUcPABrHU6bg+Z1OcW5aD5DfOxba2rSrs/JzS58lGh4PRqh88QX+L0el0OoWVdmi1ahAQOynFwimlMkTT0QH1MGDeNysWSKFUp7Uv/EGno+67qwsfP2ss3AAzs0VbZ4cb/GugZBuGQAO7Fx6Or0pKUn+OQcGcAxRVXxuKeor1r5DP96UlQktEgBsh/39+B4UDS0vglGb3LJFbOvoEOmayXQEqyq27e5ubLexarwwzEiJ5DyyWo3171QV4KSTIlePpUUZGmNMpvDJnqJoK14CCFs0Pz88OooWeGjxp7dXu3hEkiH6hSu3OzyqTGb69NgqRI4Gbndskg2cVsmkGn30f6wLQZTuTPNEEqffsye+wlgA8aVVtraiDUsO9w0bcBw9flxcx0iJJskit1ty1hOyw37+fO1chPbLyNDeY9lOSXficoGsXr0aLrroIqiqqoKqqip48MEHwel0wqZNm8DtdsO7774LX/va12DOnDmwfPly+O1vfwuff/451OpHIx2KokBxcbHmh0Ei+QijGcjDdQR5eQDr12Nj6e/HdDCaZE6bFi5iGg9ySDoxdy7+bmjAVXmLBQ39nBxRyr68HCcIxcXGn02fciYjdwK0Up+Tg++lqtrCA0z6YLGI1Ah6diJp+EXD7RbPX1aWmMiSxpXVij82Gz6/5GxSFIw283iMn139aq0+OlIe6FwuUREnEhTB5nYDvPuuGKA9HjEAknPptddwv5YWdHqFQuEVXTs7hYC4zYar3T096Fwjpxj93rIFfxRFTLBVFf/Oz8f7np0t9Nuoj1q0KHYttfZ2vAeFhVxymkFS8RxUVoroUVlYPlanlJHMAC1GUaXX0lL8n9q4Ph2ktVUr3C87rZK52BMMouOttTWy1pOekdgHDENEetasVoBLLjHe/9RThfNLn92gd2xFOv/ZZ4e/n82Gtq98DrtdW4CHxmdZi1BRhCyB/J60CByprVZWxpbKOBoUFMQ2BscjtcIwiZBolDLp5n38Mf7f1YXnIo3PeJxjsc4RampwQXnKFOEcC4XEItZo6F3r7QZ5wUBepDebAb76VfE/Of37+0U/OnWq1uZIdxKODwoGg7B27Vro6+uDFStWGO7T3d0NiqJAzjBlTnp7e2H69OlQVlYGl1xyCXxBoQ9R8Hq94PF4ND+TkUhVn+RGodc0Gs77O3UqTogzMgB++lOcwJ97rnh9JGkURsaAzYaOBJMJz03OgowMMeHPzMQJSSTdoGhplTSwB4PYSVGaJZHKkFpm9JAN1VggpxilENLENF5kzaHMTHTo0mqR2Yw/HR3owFIUrRGpqviMG61G0SA8MCBWpuVuzOEQK2JZWZEF84nly9EpTO2EQtIpqrKuDq95/Xoc1J1OnLQ3N2NEGEV70vE9Pbj/jBkA3/42rsLl5KDzz+dDbUJaGduzB48j3ZYjR7QpZU1N+PPFF9q0MxJBjobHg5P33NzIuoMMkyxOOUVoX8pOqeEcR/RMk+NLbsvy5NNIo0jelpenLXQBkLoUrEAAx+dgUGiRDAdXrWOShZFNl5lpLOsRDIqMAIBwx7h+bIj0LFNUl0xGBsDJJ2uLadhsot3Rgs6xY6Kipbxgq/8cBw+GF9cIBsWC2PHjiRfYiRVyyA/HggWpvxaGiYVEde1o0ZXa24ED2H5DIbQ745kDbtgQvs3oeL9f6JmR8L6i4PhIUazDLWiPFLndylJCANo+ND9fRNmT3phcNI/2T4ZG2mQhbufYrl27wOl0gt1uh9tuuw1eeeUVmD9/fth+g4ODcNddd8F1110H2VGUkufOnQvPPvss/OMf/4Dnn38eHA4HnH766XBIFtww4KGHHgK32z30Uz5JY35jWSXW7zPcQDdtGjZgmw1TpC64QDTiGTOil3SPFxJK9HjQKacoIsLEZMLOkDSVbDYU748UORbtPQAA/vpXdFLY7Wjo22xC44WZ+MTrtJUnew4HplMkkpI0OCii0AhKrzCZwsX+qbsjx9yRI2LCLEMO3G3b8Lffr00TJEeX349tdriA2s5OPKa4WDihAfAcR49ie/D78bWZM/FvctDt3Inp1qGQ2GaxiOizefPwfP8/e3ceJ0dVLv7/6Z59zz6TZbLvQEKQLUEhIqCggCIXucjmdUO/XuXq93sV1At61aD3uqAI8lOveF1YlEVECIsQFiFACIEQtoRsk2Wyz7539++PM2fqVHVVd/Xe0/15v17zmu7q6uqapE/Vqaee85y2NrXO4KDII49YwzMDAfX3dHaqzkhbmzWD5Pbt1nP9f/jQQ+pkXVPjXcukv1+d8MvL1TGJ2oHIhtJSK9t53Dh7ge94zALgBw5YGWh6me6wO7fX3W2dx8rLVTDdfD3RGwN+DQ2pOoUi6twfq40x4QXSqbHRe1jlokXRy3U2lt9+gNsohkBAfeed2xg7Vn2u2c70bMyBgMgbb6g+aF+f6mPqrDAz66q9Xf3o7LJg0J6FcuSI/bkerp0psW6S68LhIurfgkk3kA+SzQR3jkgYHFTnbt1X1aU44gmH3WeL9pp1Uh8T9MR5waA6Jui/w2vm6XQxS6eEQt7Hxhkz7AX3AwF1nRwI2Ns+tXstCV9uLFiwQDZs2CBr166Vz33uc3LFFVfI66+/bltncHBQLr74YgmHw3LzzTfH3N7JJ58sl156qSxdulTe8573yF133SXz58+Xn/3sZzHfd80110h7e/vIT4ueeq2ImFFps+MaL5CkZ9EYP15lu4wda9Vm0MOykuHVsPQFgX69rc2aSXDOHGsWro0bVYfJbTvm+53ReN05WbtWHZTmz1fb1hk8ziKPKA7mMKGSEvt3KBHTpkXXK9PfOR3UNTv59fVWQDYSUd8/Z5F/ESuLTWeEvfOO+u5qtbVWNmRVVfwTrd7evn3WSVtEPR4YUHezDh5UwbOZM9Wd5SNH1P7dfLNq993dVntZvNjKEtH3Hioq1PFicFB1CNavVwGyujor062vT7XxiRPV7y1b1Ho1NSIXXmjt07x56t9v/Hh7Rl84rDoz/f1qG5SfRDY1NamhEtXV6vvpFtj2UlpqdVAPHbIy0Mx2pM/P3d0iL72kHjuLCb/6qn1GKTPzNJ2ZW3v3WjfD4tU1nDQpfZ8L1NV53/x1ud8ulZXq++m3MPz48fZMMC0Ucq9V6QwMBwKqTY4Zo4JeBw+qGzzt7daMtP39ans6K1234XBYtSfzvLZ3r3149Ykn+vs7khXr3ykctvatoiKxYxyQKckGx+rq7DXHhoas7/fgoP8bOzt2uF8vuh2n9MRUuraZiDXhlP470nFDye2crIdkmwFwPXxS09WszBsKM2daiSmTJkVvm2tlS8LBsfLycpk7d64cf/zxsmrVKlm6dKnceOONI68PDg7KRRddJNu2bZNHH300ZtaY6w4Fg3LCCSfEzRyrqKgYmTVT/xQir86qPjGLqAZq1gHxkyJ98KC6U6yHha1cmfKujuyXSc/mo+/6BQIir79uzZRhTidbUeFv5jlnEW/zwNXcbH2mfi2dmXAYnWbM8FfU3o0OgJnv1SdhPXul+R2cM8de9Netgy5iv+Ctr1cdZ7NzoDvnekZHr7tXmhmw27zZyjTr7lZtq7RUfaYeBV9bK/LaaypLprIyuuaQWTMlEFDrn3uuWqYvMPbvVyfoqVNFzjlHrTMwoIaVdHaqbE6dqj1+vMhZZ6ntVlWp9+vsUfNkf/iwOp4V6CEdea6+3morJSVWYDjesWPMGHVTRtc62blTtYG6OlUrSW9D37RpbbWGPgwO2s9Z3d324t+zZ1uf46z5pbM7k3HokHV+9LoxBWRCrO+a2w1aXZ/W79Crqiq1rlu9PrcMC+f+BAKq5IE2OKjOTWPHqv3bvVv1RV9+2X7jSp+3ncGxV16JLpuQycySWDe5w2GrvzBzZu5nzgRSoct36GHLegi0nj3aqw/u5HVMcrum3rtXfU4wqM6hfX3WJBv6BlaiE075ZQbhNR300gYG1A138zikS62UlVkT4WmzZln9FKRQc0yLRCLSPxyl0YGxzZs3y2OPPSbj3dIlfGxvw4YNMjkT01CNcmZKtnnhqiPYWqzMMTOTRncQGhrS1yicEXadsaMb8QsvqNpHmp7qNhCwDiRud8bN7XoNI21sVD/O6XOZrbJ46eyLpiZ1MktGaamVgqzp+iE6OOZ2garbqNf3z+wYT5qktmPWTQkGrfp59fXxT7S6HVRUqL937Fh1gf3WW2qYSmmpdUF+wglq/ZYWdfwYP969gPDQkFXYc+FCFdyaO1ddqMyYoV7buFHkuedEzj9fXcS/8YbKXvvVr9SFg96vsjK1byUl6sQ9ebK6u71smdrHAwesLFIu0pFLdXXqO+kckhWLDlqVl6s229OjOss6M1TXH9TbOflk+8y3kYhqNzNmqDpAbnWX3JgX8IkKh62s8bFjGbqM7PI6N6Yjg0FvwxlMmznTPcDmzJ7Swyrb2tS5SrfVQ4fU+7dsUb97eqKLeEciVpBc0ze6RFTgfMaMzBbA1iUP3Jj9knHjMl84HMgk3Xb1MEOdkFFWlljdr5deUtcJzmBYrD68Ppa88ILK+C4rUyNAOjqia4emi/l3aiUl0dmikYharvsS7e2q/6H7KsGgdb1dUsL535TQP8W1114rTz/9tGzfvl02btwoX//612XNmjXy8Y9/XIaGhuTCCy+UdevWyR/+8AcJhULS2toqra2tMmAUfbr88svlmmuuGXn+rW99Sx5++GHZunWrbNiwQT75yU/Khg0b5KqrrkrfXzmK6ZpDIu4X9+ZwDM1P8cETT7S2V1oav9i3H24HEJ3FpffpnXfsRf90UK+rywoWuGV6mY1WR+f1+uGwOrnPnasurs0pss0aMCg+uu5XTY0KLiXzXZgxw17zSl/46hPNpEneJ2CzE+q8iDVPZD090UM3g0G1z3196rV4d3f151RVqb83GBT5+9/VkMaJE1Vb1BfA9fWq83zSSeok3tDgHhzbvl1lcwUCIpddprYxd64Kbh0+rJ7rWgcLF6pA14QJIqtWqYv/6dNVwKy01Pr3+8hH1N+rs2HmzBH5/e+tmT+BXKusVN/vRIJjmq4VuGCBCnaJqAtyPVxYnwuPOkoFp/VFcySiMs1KS9VEFX7bgq534uSnHxAOW4V6S0tpf8gefW7OFD2k2enEE93bsnM2xkBA3fzRk0EdPKjOYeGwOo/qtqovxE2RiFUHSWtvt4qG6wmqclUAOxJRIzhEVNZ3S0v0xF7AaFFTYw27FlHfb93Xfe01/9s5csR9OLLX5BYtLaoPPDiohmTqTPP3vEed+81r0WS5HavMER3amDH262T9mh5COXGidcNAH+t0jTRES6jE9b59++Syyy6TvXv3SkNDgyxZskRWr14tZ555pmzfvl3uv/9+ERE51jEF2RNPPCErh8ft7dy5U4LG/2BbW5t85jOfkdbWVmloaJBly5bJU089JSdmekD+KNHdrU6qzi9wR4dqIHqmO7OT4WdYZU2NlRGSSXoomy4wrIuO62CCHjql6ySJuB8MzIPeli0qE6arSwUMdI2W8nJ1B2HnTnUBr5E5Vrz0cEA9fM+rwxyPHgIoor6rO3eqQNDYsaptun3HdOdft8fdu+3fS2dBbnMYlYg1I5a+q9vUpNbzqsugP2fiROvx73+vhjt2dam/f/Nma3hKaan6twkEVNvRHf9Dh9TzmhqRZ59VQazKSmvijKlTVaZYc7PIm2+qjn5Vlfq3qKiwCv9fcIH6XH1CHjdO/X2TJ6uOeF2dyDHHqMDB//6v7/8KICv0BazmNzimZ7nr7rayN6qqrNnt9BTv48ap9vLii2ods+2PGWMNNY7HLMpr2r7dmoFWRH1me7u9dlgopD7r1FOtOqBANmQ6OOb1mXqyDT/rTppkZWxv2aIyrg8dUueu3l4ru9ttNtqyMvuIjsceUwHzV15Rfe9gMHeTRelAvYg6zzc10U/G6DZ1qnUubG1V/fK6Ouv86kdbm3uwyCuzcu9e1T/W/fyxY1X/e+xYdbxIJjjW1WUNfxRx7+/rG1p+2qwO3k2caB8BY9Y0RbSEgmO//vWvPV+bOXOmRHz8T61Zs8b2/Mc//rH8+Mc/TmQ3isrevVZDMIdh6btZ+o6WmVXi9d+gx2OLqAOA2QAzRQfHNm1SF9hlZVaGl4i9Mx4rqKf/pnDY+jt0x0NP11tSYhUGTzYIgsJSV6e+c9u32wtlJiIQsIYdiqjhVrpQ74wZavnpp7u/T8ReaNvU0WF/7Y031IyRWjAYPQ313r32AJvJHL6oDQ6KXHut1ZHXw0BF1HbLy1UK+O23Wxcrb75p/VuVl1uTCZjDnd94Q100dHaqzkFjo3peUyNy5pkq6DV2rPq36umxhpmIqIyZbdvUfkydql777/92/5uAXCkvt19I+x3mKKImm/j97626fzrDMhhUweCODnVenz1b3a2uqVHtoL5ePdcdbr8zZLo5csQ+M9/+/dHb27JFtddzz1XPGVaBbEnlwmzvXnvgNxF+Z7sMBtWMks8+q5739Kj37tunzlv6xpKeadbZXsvKrD77wIDK1OrpUccRnY2dq+BYJGIF7mfPVgE7YDQzJ8Q4ckQFg3R5Eb/HGj2rvfOc6pXh2dNj1TULh60bwHqm2t5e1cb91jwTUX1+s4/vd1TXli3uy/VN9hkzrBvjIurfhLq+3ugK5blAwLo4Nu8w6x8964yfCPKBA9Z6DQ2ZaRjOg1BNjQrE9faqC+lJk9zTVnUauts22trshYt1Z0UHxyIRdbFx9NHqvR0dVseJu2HFTX+nSkrURWCy3wedeSZizU41c6Y1k6Lb7Fo62KTrDjhTs+vqrKEMHR3qx7w4LS1VgW8/maAi7n/bxImqvfX0qP2IRFSnfvx41V50cMoMrvf3W51lc0i0rl+g93doSBX31xNr1NaqAFpNjdX+GhrsNQcDAZF3vcvKTJs+XQUJ3vMef38jkE3mOTKR4NjYsSpTVNdC0bU3nY/1JDUiIhs2WFldkyfbZ8FNpuxBY6Nqo93daoioLvRv1keMRNR6kyapfUl2tjAgGcmej501vjIhEFBtY3BQtdeBAXVO7u1V/Qp93jNriZl989JSq4/a0aHe39WlbiI995xqb//4h/V5Zi3edO2/F/O87lZOQcTKLANGg+3brf50IKD6noGAulHr15Yt7kF3Z+aYLpHS2WmN4opErKDW+PHqBvLQkL/yBungPHfrskm6jIo+JunjQl2dlXiDaATH8px5EtMd50OHrJNZKKQadKKdjHHjsjN9c3W1VYPlxRdVQGH+fPtMOnpmP33x4TypHzxozQg4NGQFGcyU9cFBq5C3s1bM1Knp/qsw2uh6W6kMJdZB3fJydRJessSqBeaWcaGDY08+qZ47T5Jmm21rU/W/zAtw3RFfsMA6+caaVMAMoumL6cWL1XaqqtTf3tqqXjvhBBUc0xmWekY+Xffo73+3/gZzv3WdsB07VCfivPNU2+vtVVmgZkp6IKD+fcJhdddK11SbOVNts75e/VvW1jKjLPLPzJn2O62JCoet85y+exuJqG2awbE5c9Rvfec3EFDnLLNoeDJBK33R+8476oK8rk5lXet6iSLq2KCHm+tp6IFsyMWwykRUVFg31/bvVxfI+pw2Y4Z1s6imRp2/dZaYzhwxM9T0SA/df9VZpOYNs2wWxY9E7P1it/8HXSMtV3XRAL90hrbzexwMJjYjbH+/1VZNb75pf65vMOnaZrp2qL7ZpYdbx5qQy0uyGbXOvoreZ12Av7ZW1TLVmpoYVhkLwbE8NjSkLlSdw6V0plgkoi54zSCRiHqP1/Z0Y8hmJzgYVPVT1q2zggj6Yri0VKV3L1pkLXNrsOasXvpC3gwGtLaqixld18wMVpjDSVGc9IVmMlOn6+EP+ntZUaECTNOnq06yrsXlRb/mFhwzh15OnWoNYdT7HA5b64wdG/uOudkedJ2vmTPV7/p61dZmzLAutMvLrQ68efE9dqzVcXae3HXwS18gzJ+vjjdemXP6OLNwocjSpWrZuHGq9pl58eA2exiQK/qGTSrnyaEh+0xQuuaYiDWcSg+3eOcd+3BonXHpZzY7r863Do61ttqPT/v2WZ+vSx0wQyyyLRfft0QyznRJBh3U0hfN5u/KSnVzLBSyskkiEXUzaswY65ysf+/apdrevHmqTeoJO0SyWxA/HFY392Lp7FSZbjpLHMhX1dUq01Gf5/Q5saJC5O23/ZcL6OiwJ59obufYzk61fV1DVAfFdIBs925r1EQi1x36s/wcD8z90jeuNbNPX1am+hrOSb8453sjOJbHDhxQHVvnsCpzGGV7e3Twxzzhanr4pZbN2iL6wre3V3UizOySefNUpld9vTWlvLPB6tT1QEAF0tz+vsOHVebKnj0qODZ2rFoeiYh88IPp/5swuqTyfS8rs76bIiq446zX5wzuDA5a3+OjjlK/Y2WO6eKYZm2C0lJ7UM4MnLlxO4Gbd4cnT46ut6I/d9Eiaxt1dSrwp0/4bmnhZWUq2KVr/F16afQ6waDVDvWddB0AGDOGlG7kr/XrUx9iqDPH9Ey3Ohh+6JA1ZEm3d3NoUySi3rdggb9sEq/MDp2Z88Yb1qzRfX0iDz5o9QX0DalFi+goI/uSrRuWrETa9Jw56vylbxDpSWt27VJte84c1ReYNUudp80bWePHW0GzwUH1u7paXXz39lq1Sh991Pq8dGfRxapn5ufiX/ezBwdVZhyQzxobrX6+zsKuq1PXhDt2+N/OhAnRhfTdbpI995xVT1dEtZG+PmuEiX4tHE5uGHis44FzyPPQUOyZpmfMUL/NGt+BADelYyE4lsd6e1X02DmL49CQOnFt325FpeOdWF9+2d6gSkrca3+lyq2DbXb89++313F597tVodJp06wLd+c2Zs2yDlY9Pe5DsP72N/U3NTbah2lFIvbZuVCc9PCmZDqgJSX2FGS34prO4FtHh3Vx6vei03mhUFamLmTN2WX8nsz0Z5t3k0pLrfRzcx0Ra71wWH3G2Weri3hz5ktTaalqV6Wl6nWdoebch0BAbeOoo9Rv3cYbGuwF/oF8Mm+eyKc+ldo25s9X5y6zhEAgYA1z1BfcehiWedOnokJdlDo76W5D0WIN/Xz6aSs4J6Luoi9caAXHdB/AeUcZyIZ8/87pCaXMttrUpG4e6WGVkYhqV+bkOhUVVs2xHTtUO9ZDpXUh/EDAPeM6GW6z4unZbvXM8LHEqmva3p6dme2BVHR2WiMmzO/zmWdadX81XX/TqaxMjUxqb7efZ91K8+gJtXRQvK9PtXd9nNDnVrM0UqJ/jxdnQsz27e6zbDrt22e/nshEDKBQEBzLY+3taiyzszP89ttWgU+d8u1cx9kYt2+3B6nGj7eyOjJNp5uKqOi6WRB4xgwV0Kqo8M6MCQREnnnGOljoGUVMAwOqw1JRYdVwEfE+CKK4mMOXEqUDUvqk4lZHwBkc0yfM7m7r+2fWDdNFPFta1Pdab8+821tSop7rumA6ZduN27CHcNieKVZaag9I6YtqXQdJRHWyS0vVHfb+fpFly6xtmJ/d0KA6Iroj4BUU18VAFyxQ29Tbqq72P2sYkG1TpsS+E+vHe98b/R2fOVO1y/5+qwOtg2O6w2seC5wZG8Fg9IWsGfDWdOaqfr8OVPf3q+CYvmA2i/Pme6ACSFUys5jPm2cFx3SgqLRUZVvW1lp98FBI9S/0+dCceCMUsm4IDQyoC+lAIP7QRr/cssT0zfC+Pvf3mOfzQ4e82//evaokCpDPxoyxzoXNzer7vWOHyGWXWaOwtOees4ZBm8ybz+a1gvOcG4mobep+/pgx1gy0paWqf79nj3W+9juplojVDt1GSGlTp1qfJxI9mZdzW5rb3wx3BMfyWFubNe5fa2mxF+EPBqNPjE1NquGY5syxp5ZmogC2V/HBQMAKfK1fb2+gNTVWJplb9olWWqoObnqYmfNvnjNHZZXpQJyZLTZ9elJ/DgpQMrUznB3q8vLok44zoysUUt/Rnh7rxPjWW6pdvvaaypaMRNRJXNcjCATsBfl1EW9dY8/sbIuogpv679m40f75usOuL/APH1aPzfRw/XeYUzofOqTamr4brtcTsWehHTli1WRxu2stov7d9Hv1kBQdnJs6lbtWyF/pKDuga3k5l+mZ77q6VHvXxwF9TNGTaRw6JPLqq9H75exo6/6B2U84eFD1FebPt5bpIHh9vZUJov/Oykqmdcfoka6i1X7Mn6/a3KRJ9iFSVVVWcKyvL/qGtHkMCYVUNra+4ZXu4UxuwbGBAfW5XudnMwPe7f36fWvXqvO9GVwA8s3UqVab03W/wmGRs85SgS7z/GjW8ja9+932Wdk1c11dc7C/XyV3HD5s9WV1UHzMGHXNq/vSfjPH/F6fVFXZSy7097sfU5zX47q/r2WzvNJowz9NHmttVRkWra1W4Ek3CN1Yh4bswyq7utQJ29kYQyF748nmWGPzs8aPtzfI8nIr+KBTV91qjulZfdra3Bv0kiXqztyRI+rzzKEs2cqQQ34Lh60hDYnQ3x/9vZw+3f07aj4OhaJPwI2NahbI2lorWywQsE6IkYi9JoBzivVgUGTTJuv59u2qXfT0iKxebd+fQ4fUdnXmypEjqq3pC2+T+RmhkJWtqtutDmjp9fS/Y0mJutj3qnmkZ8ITEVm+XF2Y6ADbiSfGr6EG5Eo6zo9uHd1AQN0c6u9XbXLmTNWuzCw1PTSkrCx6aIUOmJv0TS9zJlt9Aa/vbOvj0+TJ9iGc5rmUTE6MFpme5dJZn7ekRPXFzRu9Zsb0kSP2YZUi9vbU0mJN3FNe7l7qIxxOfmZIt2NNY6PqL+za5f4e86ZfW1v08Eu9LwMD6njilYEG5IOFC1Wb6+xU5XuqqqwJZ/bsiW4HbgGro46yz1Krmcebw4fV81271Lrd3ep83tGhkj3GjVPL6+ut7cQLjulAdCK1/cy6xnoyArON6lIJZrvWM1OLWBlvcEdwLI81Nlp3d/Q0sbrx6C98ZaW94enG4YyKO4NjyaSX++F2R2/WLGsGnxNPtAcApk+PvmPt3EYwaB/zretAmOsff7y6S69n5NQBDZ1eCzgnpUiFmeElYg/06DtW+kcHtMeNE3noIXUCD4VUm9i3T+2TviA2OesLVVVFZ1eGw6rj7Xx/W5s6eeoOelOTOlm6DcEyJxd4+21Vo8Hs+Dv/Vr1d3dE3Z8F1Y9Y40MczsjmRz9JxznB2iA8eVNs9dEgdC8rKVLBKtzXnBX9tbfTFsp710qTP9WYbPHjQGvIsosoQmEGy9nZ1jIhVtBsoRDoTOxazRlFpqWqLenZqHVgOh1V/++BBdf7fvNm6ia1vDOn2t2+fumGrz3/6PG625Y4Of7PTOkUi9lIl2owZavvO4t1dXardm5MTbNyoMttN+tgTClnDQIF8d+iQaqvTplmZolOnRk9u45Y5NnWquj6NdU2qy6FUVak2vmuXuuFVUqKux0tK1Hm+ttbqf8cbVrl/v7/1TL299niAWZpBxDrOmTfYJk+2Ro+Y5Y4QjX+aPFZXp4JYGzaoRjN5stUI9u9XJ69wWJ289Mxv+mTs7EAPDtqL7pqZVekS7wI5HFYz3Dkv8J3P3bJyxo2zppQOBtVdcvNO3WmnqcehkP0ioLSUkzqUUMg6CSXD/B45gzvOVOW+Piv9WgfOamrUHWNz3c5OdVfLLaPL3G5FhXUi09/71lZ1wi8tjS4YOnmyVVxff/aYMdGBLhF7wGzfPvVZzvRrU3+/On6MH69OtMkEHFOdCRDIpHRkjulZarU331RtSt/xray0B8Xcjk3O4JjbsEpdt8y0e7d111oHwcwC4n/5ixrebWabAaNFKn26ZG8MB4PqvK9vuE6bpoZc6hvVoZAqgh+JqOVm5ncoZNXfNEd6mP3wnp7kagL19FglELS+PqttO68FXntNBfLMrJGjj44+/txzj/V+fewC8plOApk5U31f9XWhW9DJLftUZ5uJeGdKhsOqnU6bpq7Ra2rUMaCkxGpDgYCq16tvWseb0ELfpPIqTeTGzObcuVP1A9wyT82goPO6P5lgfLEgOJbnDh9WQ7F0EEzXLBoYUCdis6aPiL0AqGlw0F5jwG3GvUwKBNQBq7IyejiVs8E6Oy/6gqCnxwp+9fRYs/HoGfFErE4I4KSHRyTKbbiRnhrZTSCg2m04rO5imSe7U09Vv/UU8X191snLLatLXzzru0ChkKpXJqIugCsr1R0qZz0QZxDs8GH3gJTzRNzWpvZNZ2e6dYi7u61CwnPmeNc0icXMVgPyTSbLDkyZYs/20kF057CmSCR64hm3STkaG63hk/ou8csvW8Exc0IaXaO0rExkzRoueAEvr71mPQ4GrRkoq6ut4FhVleoL6BpHIup8qLMy/vEPKyC+a5cKjj34oHX+M4dXdncn1x77+9UNKvMiuL1dZYLp2aRNZWVq38z+wIwZ9ptckYjIk0+qY8XQkKpxTBkEjAZlZVZShL7Ora9XfWBTrCytPXuiZ4Q03xcIqPbc0KD6CrNmqc/VnxcI2Gv8vvmm92ft3Gmdt819incsGBy0gmqhkPqbzb64fr/Zrp0jrmIV/S92hBHyWDisLpjHjbOCXfpk1dBgpTqbDSpW5pguDiiSmeK7sSLeulDhuHFqaKXJmfXivHDWwbHBwejglz6A6cLH+sAFODU2ilx5ZeLv01li+nu1e3fs2mW6jpge0mC2zzPOUO1kwgSrbsGMGeqxW8DIeSEcCqmLWhF14t2+XW3f7SLapFPA46moUOvqi3C3Nt3TY2WqilgXA0ChyERwbPJkFUwWsc5bgYC68BSx2po5K66+8625BayrquwBtkhE1SHT602dam27pES9VldnZaEDo02qM8nG09trn7xGzyxZVaUyrnS9Hh0U07NP66FN+vzZ22tNjtPaqvrgLS32ybFE1Drm7HN+tbWpbJVIRF2A69q8O3eqYNvhw9E3yjZuVP9+U6ZYyy691L5OOKxmmN6507op75xcBMg35eXqHHfUUfbhxI2N0ZmRzmGWptZWexaW2Q/WZRAOHFBtaMkSlSmqA+ciVnBcn19jlS/o7LQm5Urk+nVwUF0LbN+uji8lJfbM07Iy9Xc4A2Im2rQ3ukZ5LBhUGSM1NapBbtmiGvj06dZQCt1INbNotqm/P/MdChHvhq3vtOm7bya3oV7O97a3q4OBzhbTBxv93Px8LtThRZ+8UtHeHrvApg7m6lodel09Hby+s6W51REyX3POetXYqC5s+/qsukLOmR9LSux3jA4d8j9jjn6/l54e+x3veIGESZOis+IyMawbSBe3GoDpoDvN+i52IGBlcJh1/vRz5znbrU5Ifb3VtltbVfC+qUnN0KW3qbdbVqaWNTRQcwSjl5+6YanQBa413X7q6tS51mxPpaWqf62DYzpQbZ4Xt29XATQ9KkJniZoX3e3tiffRX35Z7Wtvr8p0e/NNdQzYtUv1D3bvjm7j+ua0mQlWUWGfwT4ctl9jcNMZo0Flpfq+T5xo/37Pm2dvj5FI9LWj1tioAladnVaw2aRHL/X1iZx/vhVELymx1yrs7LTqa8dKHNHXCvqxX4ODqt3qUVXO+uMTJ6qZZs32b05OV13NZHWx0DXKY4sWWQX+IhHVCJ55RgWTjj/eOhmbjd6rcQ0NZSc45iUSETn22OSGUwWDqiHrA4wuRBgIREfkIxHr7jzglGwHz1nMOtasUnq2St02nd/RhgYri/PwYbWeV90unZ6thcOqg75lizqJ6wtj5+xXwaA9AFdW5t7+vU7a5jAR54w2xx5rH5KhL7i91NVFt3uzIw7km0yUHdi9W7XVXbvsM+DqeoNumZrO4dJuAa0xY6zzfkWF6pSPGROdiSYiMneuOiaVl6sONTPQAdHq66MzLkpL1bm7sdF+bmxoUBlWzz2n+gV796qL5LIydUN4YED1WXXAKRCw6hHq7QwMqPf6zVjVmad6SGVfnwoY3nSTqlG8Z4/6bF0DTdu0yZpEx2nvXvvwLj0z9ptvWv1tIJ8dd5w1S7vZ33VO6uY2AY5WV6cCzs89pzImTX191lDpQECdb6dMsYZxmp/ptxavWX7FmaEWK7stFLJmf9+xQ7X/UMg+OceePfb+gnmdUFkZfVMdFoJjeay2Vp0s9V0ynZ5dXq7uDPf0qJOwOTZaNy6zzsjDD6tGk8vie/rEunx5cu8dGFABgW3bVIMfHLTu0ulZg0RUmqiuhwSkixlo0sOWvASDVnBs7NjoO1QzZlh3mzo6rMwxt8C2nhFSMwtwfvCD6nE4HF0PxJlxVlrqnqFpzhxrqq62LhB06rUOOuvgnrZgAR1nIJ7BQVU4W08tL2LvpOuhFdqOHdFBZbfgmD7eBAKqYx8Ou5dN2LtXrVtWpjr1mzZFd/4BqJs/ZtsIBFQ/XF9cmoHspibV5+zoEHnlFdVXDYfVOX7WLLX8yBEVmK6utmee6d/PPad+xyvGrTNOzePH1KkiCxeqbLSeHlWjuLZWZMUKFdQy+wY6E6alJXrb27dbRfzDYSvL7dAh9ZwsU+S76dPVd7601D7JlVeJECcd0KqrU4+d7+nuVrX8AgHrBtfkyVaN3nnzrHXLy1Ub2r8/dkZYJKK2q9uZKdaEOeGwGs6pt6HriT70kPp98KD6bDPg7uynExzzxuEuz5WXWw1bZ481NKgvv65zYI4z1o152zars33vveqOUH9/7i5ig0HVWfCalS+WQECd/EXUgejwYesuWyikDmQ6GNjQkJl6aigMyQ7nKymJP/xXCwTU9zESUZ1h5/vMrKyyMut77Nb5rKiwXyDru0JvvWWdnL0yx/RdJb1Pbp0D551q3SEOBFRHw3yPeexYtMh63N5OcAyIZ9kydQ6+7DJrma5PKCJyzDH2djowEJ21KRKd1aankxexbhi5TRiih1gdPqzOmaWl0QE5AOpCta3Net7QYM/ENM/VxxyjZnusqlLnZV0+RNciE1EZoPqGWG2tNfxJnzcnT7badayMEx3cMjNUJkwQ+fCHRc4+W+3HM8+o4Nfixar/YWauDwyoG2ybN0dv2+yD6KGhItEz3QP5qKFBndcGBqJHK8QaNWEOnXQOi9Tr9Pdb2Z99fSqzbM4c9fqiRaoNBgL2vv7YsSqg3tlp1S02k1ZEVADryBG1/Z4ee3DMLYBtCgbtI1hKStRnbtok8uqrIm+8oW6wuQ0PR3wEx/Lc9u2qM2umWAaD6i7R+PFWVpWz1lhHh3Vi3rRJbUMH0zKloiL2jDYLFiS33ZISkXe/Wz2uqlIdDX2Sf+cd1amg0cOPZIfzlZZad2nifdcCAXUh2ten2oQO7LqtN26c+n573VkaP94+hPGMM9QJdv9+K7Vb3zUyuQ3P8FNHyWy/sf5OMwDNMGYgvjlz1Hmrutrq+AYCKrO0qys6gD17tnu2tzNgpvsDOpt63z5rwgy9zf5+ayarhgY1NHrRougZMgGoC+aZM9XjOXPUzSevG0VTp1o3sY86SmWI6UCXPg9HIqoPUVGhguTmdrZtUwExfWMq3mQ/bs915sr73qfa/uzZKiBQVWVlsomoANjbb6v1nHQdQhG1/tSp6vgzMEAtX+S/iRPV931w0D6Zhohqe7othsPqO63PkW6B4r4+NTpDt/ldu1S/OxxWWZvbt6vz+KFDart6qLVZ4F5nZenhlyLRwbH+ftUeu7rUTWbzfO8MtjkNDKjPO3JE/eis8MpKNfSzp0ftQ6zgWC5LLeU7gmN5ThfgFlHBJR0Z18MJRVTgyJzhSkSlVB84oBp5VZU6ae/aFTtNM1XOIWBOyRY51geXuXPVgUlPW33gQGaDfYBWUmKdcON95/Qwp85O1d7MmR1NegbXWCnfzpNjaam6IxYvHdoZLJs40V8dpWROlmbwDoA7fYFZV2d11AMBVbPkhRei19eZp362G4mofkEwqO4aO1/XnXMRdR6dOVMNB/ObDQsUk0jEnkWtf0ciaqikPr/qWmRlZao/3t+vXtMzWuraojo4Vlambpbpbe7Zo27w7t1r3UTbsEEFuN3o93m9ftJJIj/5ifU3NDSoG2k6O6a/X/Uf3DLozWU6OLZpk5VRRnAM+W7SJCubyuxTl5VZN5W2blV9c51Z5jZRVXe3yIMPWlmcra2qTezbp9rQnj1WbWERK1FFZ4iJWMeLqioVYA+Foj/rscfUdg8eVOfvnh5rv8eNi90fb2tT/Yh9+1T71sG57m51c76sTO1XrGGVbhnmUAiO5bmSEjWOWc9WWVmpGuqsWVYjOuUUa30dMBs3TqWB3nmnOmGOHasOHGZ9smwqKUl9hrqSEpGPfEQdsCZMUI3febDhBA4vtbXRww/9Mu8IdXXFHh4cCIisW6fa5+CgGuqgl5vr6B991zfe55rvnTHDeo+uLWBmnznf57ft6Vom5mfF47eIMFDs5sxRxw4zOFZZaZVGcM5WmchsUlVV6iJW1yXUGedOgYC60dbcHHuKeaBYOWeONWt8medr/by0VF109/TYh13qybSam9VjfZNN1+zs71d92Pp6lc0ZiaihmbowvrZzp/W4tdXqfzj7vzU1qp8zNKT2oalJra8DBq+9pvojbsO1nXVVx44Vef11azIf+tbId/X16juua3Bq5sgPEfuwYbPfrN+jk0heeklldumawJ2d6vnhwyp4rNtfVZW66WTS25owQe3X/v3R7bWjw5rVfnDQ/npNTew2N368OmYMDalZa8eNs27g//3val+7u+03yqkb6B//VHmuvt46aQUCqp5Be7tqOJGIaqBmQzcbfFmZahzTp6v39vaqdEtz1o5sSjXLa9cudaAZHFTRch0xB/xobExutlSR6JNUrLp2gYBKc9Yn1JKS6MLXuvPd0KBOaF53iNxOZsGgFeSORNQJtr8/PRe6yQw7zcTMfkAh0kGxsjLrAndgwJ5NogNlkYhVS8yPjg6r5piIOiaYtUr1BfeMGdakPn5n1AKKyaxZ9mBRf7/qc1dX2y9adXCstlbV+Dr5ZNUO9flZB8dmzbLW1XVG9fsjEWsI14YN1kyWJjN4fvfd1ud7zZrd1KQ+s6ZG9ZnfeUctr6+3B+dMZiA+HLYy3fSFP8ExjAbr1kWXIxg/3p49HQ5bbcIMjulr1K4udU5+5RV7X37rVrUdXQ9Uv3f27Oi+um7bOrhcUREdHNu1S52DBwdVgKy31z5UOtY18+LFKnFmcNAqrTJ3rmq369ertt7SomIG5j7BH4Jjee6EE6zpmLduVQ1Jj5duaVEnrokTrYauG9PGjaoTbKaHn3KKaoy5GErxzjupB8caG9X+Nzdbd/Leeouhlciu/ftjvx4IqBOXvjDVwxqcgVxdGLu83Ds45nYyKy21B9sikdh1yxIxZYr9uZ+2lWzAESg2+tx7wgnW8MqDB+31xvS57cCBxO70Pv+8fTv6wrmqSv3o4Ji+MF66lHMn4Gb6dHsAaWjIKpqv6wuJqHZVXm6NjCgvV+d7/d6KCnVe1jPOV1SoDA89LNLM1N66VfXt3bLSAwEVQKusVBftunSD1wz05nDsujorm7SyUm3L7ZztLHuib8JNnOgeTAPyiW6Tra3Rtb2c/WjdNxdxH1ZZWipy4YWqREE4bAXHBgZUoG36dNX29Xt1uzIFg1adcM35Wf39VomkLVvUjzkhj+Z241tPzmWOBgsEVFBswgR1TNq4kdIJySI4ludmz1YNta9PXRAPDakGUF0t8vjjah23L785g6Uusj17tlXYPtvSkc65bZtKH62pUQUR589XFwBm4I3OPjLNq0NqOvVU66SnZ4RzTlYxNGSN+fcKjrkNh9y2zRpmoYdm6s5yqjiRApmjhzOZmSe9vWpWKU0fJyZO9H+nd3Aw+gJWB8qam9VFux7erYXDzOwM+BEK2Yt86yyrsjKrHldlpQp+7dpl1eFsaLAukEtLVfsvKbEmsZk2TRUE18Eqs5awOVumnoSqslK12YoKtV2vzE9nNrcOuHV2qv1wq2U4a5b9eUmJ6mdUVLgPwwTyif5OT52qbvKa9b+c14VmX9mt33ziiSoYfuiQunm1a5faxtCQlQnmzLTUE95o06bZZ7902w+d1b1ypTqGmJni5s1u58gTEXsw0Nz29Onqp6Qkuk3Tv/cvoZDFLbfcIkuWLJH6+nqpr6+X5cuXy0MPPSQiIoODg/LVr35VjjnmGKmpqZEpU6bI5ZdfLnucRWxc3H333bJ48WKpqKiQxYsXy7333pvcX1Og5s9X0WE97fuCBaoh6LtBbsyGpU+U3d256wzHKjruVyikOhHV1VYh8+3b0xMUAPyaMiX+d7my0rrbVFfnPvxX1wUR8Q6OuQ1z7OmxTnJ6P9KVOXbggP25n4tzZ7YZAHe6PZvtShfS14EycxiEX6GQOs/rY8DBg9bQrWBQPXYG5yMRJtPA6JTt2jnmebi21iq6r+k6oLoAtm7D77wj8uKL6rGe/dIMTuk+fWenemzeUDt82Nq+c3h1ebkKjm3ZEvsc3dSkfut23tXl3ddwZtuUlKi+S1WVurEO5DP9Xa+oUJlTXuU+DhxQtYd1QX2z36yvqU8/XWTJEpGzz1bLhoaszLGZM9X7pk+3J2Vs3Wr/nKoqe4DOTSSi2l0goNqmmYFm7tf+/dHXHPqYtG2b+pv1LLfjxqkYwbHHihxzjP09nO/9S+gUM23aNLnhhhtk3bp1sm7dOjn99NPl/PPPl02bNklPT4+sX79evvnNb8r69evlnnvukbffflvOO++8mNt87rnn5GMf+5hcdtll8sorr8hll10mF110kTz//PMp/WGForTUmqFy3jy1bOZMdYJbudJaz9lZ0A0rELCix52duSueHW/8tB+BgMoc0yfskhLVQdCZdHodIJPGjo3/PTNPcIsXu2eb6bqAept+lZeLHHec/cRs1hpKRTITdviZUQ+A1VbMukJDQ9Z5edcuK4tk/HjvmW6ddA0zPeRb1xzSWaWBQHT2h65ZCow22Q7WmLW99EW4OemNzuDWBfHNLE1ncX2zD66L5uuC9zqTpLpaZZQ5P1O/59AhK5MlVr/aeTFcXm7PgDO1tNifV1SoY1BdXfzZsYF84TYEuKzMyr5qa7PawOHD1rVzT48KNouowNOyZaoNbNqksq91Ox47VgXCqqvtw5OdBfXd+uRmhrjW1mYFxXUu0cCAfVIQHZwz6VElL72kjof69WOOUft/wgm5GylWCBIKjp177rlyzjnnyPz582X+/Pny3e9+V2pra2Xt2rXS0NAgjz76qFx00UWyYMECOfnkk+VnP/uZvPTSS7LTnGrF4Sc/+YmceeaZcs0118jChQvlmmuukfe9733yEz0fcZELBtUJrqvLXvRv5kxrdgw9C46I1Tl2m8Wxry/2LHuZlI6g3Pz5ahaRcePUSb601Eorp5OPbFm5Mro+h9P69arNbdmihlC4dUjNzA2vu1xuQbiJE0Xe+171fj2rTjoyM0Xs2SXcZQLSS3emzfOVrhkYiaiLYL1OQ4PI8uX+thsMqm0+8YSVxVJdbQXORaKPJeFwchNwAMUm3o0nHYSeOdNe+Fufl82bY2bmlu6X6xtu+iI5FLKfz4eGrMwU80b4W28l9nfEGh65aJHKXNV9ihkzVPBg3jx1Mw4YDdwyI2fOtOpyb9liZYGZs1pGIvabwzU16rysJ4Jrb1cTZowfrwJaZoaoZtYYCwRUm9K6utz71FOmWMcXHfDaudOeLdbW5j1C6sgRqzyLiLremDRJXR/r4dtIXNLJyaFQSO644w7p7u6W5R49uPb2dgkEAjImxhH5ueeek7POOsu27P3vf788++yzMT+/v79fOjo6bD+FaPp0dULT45nNE68+CMyda50w9T+Dbki6cZWWWjULRNxrGWVSOjJbjjtOFTJtbFSdCXPGHyCbJk2K/Xpbm3UnOBBQJ2fnzFLmDFRe32HniX5gQGVNTpum2vK4cWq7wWB6ToTmyb6piamfgUzTM9qK2O9EJ5rZVVWlzus6q6a6Wm1bt2Fn8Nx8DYA3P33MhgbVjs3MlTFjVF9840Zr2dixVrvWw6nMC3R9PHDWK6qsVEOwgkFVHqWjwyr077Rnj/vw7FjHk9JSdXEfDKohWuPGqe3rG/TAaGBeI5uWLLGGMYZCIn/9q2prgYBadvBgdGbXwYMir7+usrD7+qwA26RJapkub6KHWpvtxLwxJaJqg4XDVkLH/v0ib7+tAtCTJ6v2V1NjZYQeOWLVFu7t9a4vOGGCulluWro0/r8TYku4a7Rx40apra2ViooKueqqq+Tee++VxYsXR63X19cnX/va1+SSSy6R+hiFrlpbW6XRkc7U2NgorbrKnIdVq1ZJQ0PDyE+z11lilCsvVyfYw4fVCWv2bKuTq1MmZ82yOtd6CKUOjumTbmmpdXdLJPt3jHVHPRU1NWos9cSJ6sDR1RV9wKAgPzLNz3ds6lSrcKeI6mQ6T7y1tapNlpZ6X6Q6g2ORiH2IQ0WFahN66FSqnPXDcjUMGygWDQ3qHO9WrNdvm9Y1x2prrWPGmDGqM28W/3dun+AYEF+8dhgMqvN4ZaU9ODZ+vOr3mvWBjzvOuqgeN84KUpsBMhGrb6uHc02YoIJXg4PqPYcOudcdjkRUu9f1i/SN8PZ2NfrCS2mpyhrbuVNlxkci6mbc1KmqjwGMBl41O8eMUUMndQmT2bOt6+THH1dZYc7A2pw5Kqg1ebJKzHjySfUeXcZAa2pS7dRcpgNvpnDYqut7+LC6ju3oUG3UrDemh1rq9h2JWEM+nUIhtZ7Zf3DkGyEJCXeNFixYIBs2bJC1a9fK5z73Obniiivk9ddft60zODgoF198sYTDYbn55pvjbjPg+AZFIpGoZU7XXHONtLe3j/y0OAfMF5CaGuuOkXmB3dVlPe7sVI1OX8zqQJTu/JaWqs5zroJHzc1W1D1ZNTXq5L58ueok9PSoVHMCYsg3J52kOpSxMsx0xlhJiXfn25nhWV3tfvc3U0EspnAHMmvMGHVuCwSis0v9GhpSx4b6emsol1mQX8Q9OEbWNRDNLVAdi3nTWQ9L1Mud7czsE6xbp25o6+BYOGz/rN271UV5SYnKYAmFVGAtHFbZJF71PnWtwkjEuhHe2xs9KYeprMweiAsERK64Qn2eVxF/IN/ockNOlZUqQNzWptqBrhF25Ij6rt98c3QmZn29Skppa1OlUhYtUm1P1/826ZJGJrdzrh4U19am2r2eAVPf9DaPA3q4ZEeH+7DKQEAFsJ3JJ7pMCze/kpfwP115ebnMnTtXjj/+eFm1apUsXbpUbrzxxpHXBwcH5aKLLpJt27bJo48+GjNrTESkqakpKkts//79UdlkThUVFSOzZuqfQlVSYhXtNWew0UU5RUT+/nfViPVQLbNYt4iKiCdS9Dvd0lETqapKNfq6OhUY3L9f/TbrLtDZRz6orlYnPPMulp5NRtOd5lgBKLNwt4g185yTn5NgMsMuCY4BmdXYqI4DFRX2Kdvd7jx70UW8w2HVZt2CY87jRiLbB+BN92+dwSddTsSrskwwaNU90sMZ9dCrSZNUfz4cVhf1tbVqXb3Njg73i3Q9662mg3G6/IKXsWPtF+CRiJVJQ0F+jBaxJpVat84+0UUopM6LCxeq7K+PfMS+vm63jY0ir75qTYTlp79dWxs9QmvXLnXDu6XFyvaePFl9zsyZqt1GIlbNQd3+Wlu9a47FmpBLz5CLxKUcV4xEItI/XIVOB8Y2b94sjz32mIyPdZti2PLly+XRRx+1LXvkkUdkxYoVqe5aQWlri06JnjnTahDHHqsank6gMy9qIxHV+LyKfmdDOoJjZubb/v3qQFJTY43LFqEAIfKDnprdvLPr7GDqzLFYwyqdSkrsJ0E9jNrP+/1cCDuPEQyrBDJLd8CnTVN3gbVEAlfhsDoXDgyooHwkom4m6Y6zWVJBY1gl4M7Z9uK1EzP725x8JxBQ2Sde59HGRtVnN+sCdnWpIPnYsWq41LPP2ouFmwE1rz61mb2mJw8aHIzdB9fbjUREXnxR7UMopPow9AMwWsSqq/fSS6ptbNignpvtaMWK6JvB48ergNmMGSqI1dio2oPb0E3dFzfpY4K+Mf7OO6qPrbPWZs601qmvt4Yv64k59Gt1de7BsZ4eqy4gN7LTK6Gu0bXXXitPP/20bN++XTZu3Chf//rXZc2aNfLxj39choaG5MILL5R169bJH/7wBwmFQtLa2iqtra0yYPT4Lr/8crnmmmtGnn/pS1+SRx55RL7//e/Lm2++Kd///vflsccek6uvvjptf2QhKCtTDaC83Lrg1unVIqqDvX27NSyjtNS6QNed4PLy3N0BSkcnXHc0RNSwNRGRD34w/syBQLb19qrvvHnnyLyLY3ZSx4/3fyGsO7CaMzskVc60cu4YA5kVCFg1TMxhlbFmlnPSx4SSEutGlD4v6mxTMscAf5zDCOONujCDY+YMdYGAasde7ezss1UAzAxgHzyo2u++feomcFOTVRBcf04kYr+wNpl9C3NSIGffwUnXMOvtFXnuOXVDfmgoug4pkM9iTTbX2KheP3TIutGsz4vz50efI2fMELn2WtWPb21V152zZon88z9HbztWPT/d7vr6rJtXznrZQ0PqcwIBtb45xHrCBDUTtVN7u6pFNnWqNZQa6ZFQrHHfvn1y2WWXyd69e6WhoUGWLFkiq1evljPPPFO2b98u999/v4iIHHvssbb3PfHEE7Jy5UoREdm5c6cEjSu5FStWyB133CHf+MY35Jvf/KbMmTNH7rzzTjlJRz8gIqpBB4Pq4lVHxktKrEbX0qIi4nqmKj1rjp4hIxhUJ/hcTepZUqIaeKr0XTn9d8+a5R6xB3ItGLQPezADTYcOWR3WQMB/Vqczc8z8rEzg4hlIP/NcGAyqIRhVVfayCRMn+s/YMI8JzmPBmDHqRplzW2SOAe7KyuyBajPg5aakxLqQNW+IBQJqGJfXeVQHs2tqVDZLMKiyP8Nh9VtXlxkYUEEr/TmRiHpNz2JvMmuc6XX1Z3nNeCeiLtzLy1U2yuTJatuxgmlAPop3zmxuFnnzTdWmDx1Sy955RwWBnYkW06ap44Cu2T1hggpWe9X6i2f3bnUdcOCAys4cGrLO3aWl6tihh1Wax4x9++zHo74+a+b6KVNU/8HtukBnkCNxCQXHfv3rX3u+NnPmTIn4GDe3Zs2aqGUXXnihXHjhhYnsStFZuFCdDE880VqmG5F+/U9/sk7i+iTa3GwFx8zZ87KttDR2RN8vPWWtPunrmUOAbPEzPDjehefgoD0gVl/vXtDTyau2QC7rCQJIjFkiVRfg1XXHtGQCV5GI2rY+RumOvb4Id64LIFpZmb12UW1t7PXN4JhJn6+92rK+iV1eLrJnj2q7paXWOb6yUrXhQMAqHG465ZT4kweMG6eCABUVsdt8V5c1E+a73y1y332pzzAPZFus4JgOiPX3qyQTPbvsvn0iJ5wQPVuliJV8sWhR7Els/JQO6u5W+9fXp9rztGmqrYnYM7md7e7QIXtgu7PTuqF27LGxs0JjDTOFN+4bjhJdXaqRmtkne/ZYqZR66uVt26yGs2ePanzmyVnPfpFt6RoPrQ9eekz2GWdw9xvZ5SebSs/25DWt9NBQcnd0vE6CtAFgdDIvoM1jQiJZm3rdOXPUXW3dSdezW5eURHf8p0zJbR1SIF9NmKCyufwaO9Zqg3rGRxG1bOLE6Ml4tGDQykLRxcE7OqzagaaysvjDKPVzvZ6eDVtXtol18d7To44/oZC6rohEGHqN0SdWX3jWLJVgsXChaqcHD6rvd2Nj7JlcRVRfPtUZnvWkGgMDItOnq+OGnl3z8GHV3pw3ydvaVF1tZ4mTSEQdo5qaVHtlWGV6cUk1SrgFl+bOtTq3ulj94KC68DZP7HqGm1xKd8PVFxR1de4z9gC5dMIJ6juqhwE77wQNDETPZOOH192peLNeAshPZuaYKZFzts5y0ZN8mLNV6+Hbzszt6mrVQQdgl+j51AxkmZkrJSWqL+6VzTJmjBX0mjxZBbe3blVB7eF5zkbash5iaRo3LnZwTBsYiH9RP2eO2h/dV9E1jxiZgdEkVubYzJkqmHT88apNDA3FntjCNGeOdX5NRFub9Vgnq+jPnTDB2t/du9Vrhw6pQLXeJ12D0Pxcff1bU6MmEtBZZEgfgmOjhG5AZgMpL7dOZNOmWQV89YwzIvaZbXJpxgyV/pkuixZZd9qYoRL5xjmMSdc20DZv9h4iGUuskzgzSgGjjz4OpBIcM9etqlIXACLWBXWub44Bo00ik9GUllrnZnO2ymBQBa69Am3mMOjZs636g+Gwlb2l65K61ex120e34NjBg+p6IdZN6spK6+Ld3H+ySzGaxOsHV1RYE9zpoYrLlsXf7tSpqh0nei29aZOVHaaHNg8OqnO0GTjv7lbXtL29anI906xZan/b2lRmmTnR3qRJtNFMoMs0Sugvv3lyM9Osg0Fr1htz2FUgoBp1rhtPSYnVYU+HKVOs2XuAfDNhgj1TwyymKaIC2W71DZJVW0tbAEYjc0Y553K/zAtn8+62rm3GrLNAYhJpM2bNT+d5uLXV+9xsljyZMkX1C5YsUe1XFwd3uzFuDpt03jDTmaKmjg41tDNWkLy01CrPogNk5n4Ao4FZz9ONnh1ez+Acifi7Nh0/PnZwzGu5OUxS3wjTiR2RiNW+x4xRx4BQSGTtWus9M2ao9aqrVZDbOaleebl3+RYkj+DYKKHHQ5vDJZ13o/bsUanYZqaY35TRTEtX5po5rfThw9wRR27Ea1OBgH04gjM4pme9SVeAbNIkgmPAaKTP6c5jRCLnNq/Osa6pwnkSyCzdHzeHKusgk9e52Zy4p6bGClB1dFh93ZISa1SI7nckGhwbGIg/86Q5LOudd6yAfSK114Bci5cIUl2tMrlOPFEF0vxem5aVqezKRINju3ZZbW/8eHVM2LlT9dl1gX4RdS1QV2dljeptlpWptjh+vFo/EemYBK9Y0WUaJdymjh0zRuStt6znU6eqAJk5HbyuG5Br6eqcV1dbHYLBQQICyL6SksSnOG9ttT/XdQfMdpFqAJm2AIw+usNtzo4nktjxwOscT8kBIDv0+de8aa1v4JaUxJ7lLhBQ9ZAiEZUpYmablJSoC+nZs6PfI+Jdg9TU3x89VMtJZ9yYmae5LscCZMLs2SroVFUVfd71Ul8fO9jk1VbMmmO6pp/OXBs3zkp8qahQ7frIEfvQbK2rK/o6Qm/TSzJ1jaEQHBvFystV4T4tFFINr69PPe/oUCfOfAiOpTM1W6d9DwwQEED2+Q2Ome3OWS9k+nQVyDZPqH7aaayim/Fm2wGQnyIR1fl1FvP2o7/fu2Oup6EHkFlu7TUUUiUPvC5gzUCUnmynulptq61NpKVF9fOdM9nqm2pemWO6L6ADaqGQe0H/WH9HPlw3AJmihzU66wF70e3Si9dkWV1d1vJx49S1a1OTaqfNzVZbbm5WbX3sWJF9++zbiLWfbrUIkTqCY6OEV+e3ttZ63NGhGqK+cO/vtwoA5lo66yuJqOEiQ0MEx5B9yWSOOYc9MmroBQAAsMdJREFURSLJzS45dar3a9zlBUan2lp1PDDPZ35qHoXDInv3er/OnWMgO9z6ouGwmjwq1lAv50V1MChy4IAaGdHbq/rOFRX2i+Bg0D5CxGRmoeo+gS707Zfum8yY4f89wGgSK5vTS6ybTV6jo5Yssdr33r3q2lXE3uanTFHXCLW1KrDtzByLRKzMUmQHwbFRwqtRmA2ypEQFjAYHrYyxfKk5lm4DA+rvdBtuCmRSMsGxSMReSLOryxoinKhYATIAo8+UKckFy4eG3IdgmAiaA5ln1hjVIhF1MezVB9f1wcwhkiUlKrM8FLJnnVRV2Yc7Dg569+9nzrQ/D4XiD6vUmppEXnhB/c71RF5AppSUqGBUonW8vHidZw8csNcK7O6ODmxXV1vn8YkT7bW1RVTb1YkwZrYpMofg2Chn1iE4+mjVCAcG1HNzbHOupTNzLBBQJ/tQKPYwMyAT/AbHzBNYX5+94HZJiQpyJXOS4zsPFJZgUHWQdUkEv4aG7DeInBfohXhjDMhHblmaZrDLjQ6M7d5tLauvVxfKPT3u5Uh27FDvGxpyD45VV4scdVT0fnhlmjlNmaKCYrGKjwOjXW2tGmocK/M6EV5tRSeriKjMs74+kS1bvK/LdV0zc9RXIGAFqrdtI2idDQTHRjnzrrGe+ebIEdWYwmGVoulnmtpMa25O37YiEXWQqa9nvDWyT0/HnMp7mpvVyc9tenYAxUVfQLtln8QyNKRqlOj3JZN9BiB1zmwtEXXeX7zYu+aYrntkzkZZWan6BnpYpUlPRGUGx5yqq6NHVGzdmtisk3pECrPcolDpm8zOLK106++3HpeWqhvrOlN80iTv95mvTZ+uJunQiSGJ9hOQOA59o5zZGS4tVTUCdLQ5GLQK/xWa0lL1U4h/G/JbMt85ncWp6UxKPUMUgOIVDKqL4kSnXg+F1DFE30l2yxzjHAnkRjCoboR5XYDr878OXOkb3CUlVi0yM+N8zx5ru+Xl3hNuOT+vqck+a148dXXRfRagEMUrS+CXV1uZOtXK2mxsVM/HjlXXr14T1R04YB9tFQiommShkGrvXDdkHsGxUcKr4TmDY2PGqJNmW1th3/UpLWV4GXLHnAjDi9lpDYfd2yOZHgD0xW6i52xdf0SfC50ZKgTHgNzRRb+92mB5ucicOVZwWwek9DDrgQE1EkQ7dEhdaAcCKhC+Z4+/odPl5SJvv+1vn8Ph2HXSgEKSrvOj17lbj+YKhVQwrLZWna9ralT2p5uaGtVme3rs+7h9u3pMre3MK+DwSWHxOlGNHWs9Li+30rQPHMiPWmOZEAiov9v824FsOuGExNbnAhWAl2BQnc8SHa6t6YwzZy0SgmNA7uibX5WV3n34sjKr7IjZXhsb1ZAsM3NswgSVUdLQoGolmQX745k/3/9+6+GcHDsAf/S1t1N1tWqzOsitZ6qPNQnPkiVqKKWzTmAgkL4aaYiN4NgoZwbAyspUxFk30HQWwc8nusgps/YhV/y0LbNjyV1YAF50Ye5Eb2jpO8sm87jD0Cggd1assDI73WqSidiXm8GxceNU5phZs2jiRJGlS1Vfv7RUZXj5UVIicswx/tbVQztFOHag8GW6b97UpDK6u7rUc10KoaxMtXEvgYDVvru61HYmTkzf7JqIjeDYKOHnJLVokboDpWfG8RrPXAgiEXWXnJM3Rot4wVwCaEBx0sMkEq1/smVL9DJzeAeZY0DuTJumCmnHyhIxme21qkq9x8wc27/fejw0ZNUli6eszN+QbV3HrKqKYweQDr296vyuA11DQ9Zs9/Hal277dXUqa9RMfkFmERwrIOPHqwakC9V7jWce7fRMnMBoQp0AAG50Qe7x4xN7n9v6Zofb78UzgMyYONF/fVwzIFVZqTJOzL7u5MnW44MH1VAtP+3bb23T6dPV502bRnAMSIRXbcHyctX311neoZCVRRZLMGjVEC0p8R/gRnrwT11A9Mw4egab7dtzvUeZo4uWAqPBxInx10m2I1rIGaJAMUl0ivZ4wbFp05j2HcilHTv8B6jNgFRpqQpUeb1XF/T2s+1g0H9/WRf8j0QSnz0XGE3SOXGdVwBaz06pg9xDQyKTJsXfXjAoMmuWte3SUqv8AjKP8MIo4ecEWFOj7jYVelaV/rfYsSO3+wH4lclOZmNj5rYNIH81NUUvc2aO0ZkGckffrPZD1wicMsW6ARyrP9/cbBXPj6WhwX8QoKfHmkCA2bRRyN54I32Z1fX17stPOkn91kMpQ6H4JVamTFHtVbe/uXPV8WDMGM7n2UJwrIDoYVu6sRf6XZ9jj831HgD++S2eCwB+uBX0JaMayB+JtMdwWK2vaw/GCo5FIqo4t5/Z68aM8Ze9LqImG5o2zd+6wGjW1pb4e6ZM8X4tVuBKt+NgMH5wbMIE67gRiVjZ31VVnN+zhX/mUcJvtFinQ1dU+EvdHM0WL871HgD+xTsRT5iQld0AUMC4swzkj0Syr5x1vpzBMeeFcX29v5EipaUi73qX/30wfwOFqqQk8e+5V+3ggwdj1xbU7XTJktj1h/v6VG1BMzg2dqx6PDDA+T1bCI4VGH0ybW4u3AhzOJz4lPdArun6AV4KPdMTQObReQbyx+TJydUcExFZutQe/HK27QkT/G07HFaFwf0Ih1VfheAYCtmhQ+n9jvf2xk5I0Z8VrwyKLtZvXr/rzLGWFusYMGdOcvsJfxIKn9xyyy2yZMkSqa+vl/r6elm+fLk89NBDI6/fc8898v73v18mTJgggUBANmzYEHebt912mwQCgaifvr6+hP8Y2E+eyUTFR4NQqHD/NhQuAroAMo3gGJA/Jk/2P4pDz3i3fLl63twcO3Ns4UKRAwfibzeRvjI3n1EM2trSO5lVuq5HdW0yM3NMn9PNGqKc5zMroeDYtGnT5IYbbpB169bJunXr5PTTT5fzzz9fNm3aJCIi3d3dcsopp8gNN9yQ0E7U19fL3r17bT+VetA9RMR/wzMbTGlp4QaQSkvjj9sGAKCY0GkG8kdZmf8ZY3V/XV+0BwL24JgzaFVbm1zdpFj05xXqtQMgor7fK1Zk7/PGjPG33tCQ+q0zPc3gmJk5hsxKaC6Sc8891/b8u9/9rtxyyy2ydu1aOeqoo+Syyy4TEZHt27cntBOBQECa3KZdQsKKITgWCKi/Ldb4bgAAik2hllMARqNUaok6L4TN5zNnqt96GFa6FPps94CIVeYkXcEmXRfMS1mZlRUWi15Hl1kxg2NDQ/6HRyM1SXejQqGQ3HHHHdLd3S3LdQ5wkrq6umTGjBkybdo0+dCHPiQvv/xy3Pf09/dLR0eH7aeQJVKQXyvkoYekfQMAYMedZWD0itV+zcC3LvS/bFl6P19fM5xxRnq3C+STdF9DHnVU7NdnzfIXeHYG0Mzg2JgxhXtNn28SDo5t3LhRamtrpaKiQq666iq59957ZXEK0wYuXLhQbrvtNrn//vvl9ttvl8rKSjnllFNk8+bNMd+3atUqaWhoGPlpbm5Oeh8KiXliragozIZUWckFAPJfIbY9APmNzDFgdIo3s6V5Qb9zp/rtpwJNIscEfQHPBEGAf/GCY37boFt2mb7e7exUM1Yi8xLuRi1YsEA2bNgga9eulc997nNyxRVXyOuvv570Dpx88sly6aWXytKlS+U973mP3HXXXTJ//nz52c9+FvN911xzjbS3t4/8tLS0JL0PhSQYtBphoUaZ6+tzvQcAAOQfbhwBo1O84JjZtnU+gJ/+cCJZMjo4Fm9WPaAQpOsaOV7b9ZvU4QyimZlj9fVqeCbn+MxLqOaYiEh5ebnMnTtXRESOP/54efHFF+XGG2+UW2+9NS07FAwG5YQTToibOVZRUSEVFRVp+cxCEghYJ8JAoDCDYwAAIFpNTa73AEAy4mWXmK/rC2Q/M+4lkjnGNQOQfmVl/tqhc/IOMzgWiaii/Mi8lBPwI5GI9Pf3p2NfRra3YcMGmTx5ctq2WSyamqypoEXsjwFkFxNGAMg27hkCo5Nb9omZ9WUGvuNlqpgYag3Y9fRk9/Pq60XGj4+/ng596CC1GRw7ckQNq+S6PvMSyhy79tpr5eyzz5bm5mbp7OyUO+64Q9asWSOrV68WEZHDhw/Lzp07Zc+ePSIi8tZbb4mISFNT08hslJdffrlMnTpVVq1aJSIi3/rWt+Tkk0+WefPmSUdHh/z0pz+VDRs2yM9//vO0/ZGFwM8sF7W1auaaYFDNaEFwDMidqVPtz2mLAADATW1t9DIzsGXWF8tUcIzJrlAM9uwRmTcve59XUeHvGkDPbuu1bijEtUQ2JBQc27dvn1x22WWyd+9eaWhokCVLlsjq1avlzDPPFBGR+++/Xz7xiU+MrH/xxReLiMh1110n119/vYiI7Ny5U4LGkbqtrU0+85nPSGtrqzQ0NMiyZcvkqaeekhNPPDHVv62g6Gln4wkE1Ilw+vTCDo5xAgcAAEAhcMs29+rrJtIHHjPG/7p+CvwDhSASUSOu8sn48SpDTBs71spymz1bpK2tcK/r80lCwbFf//rXMV+/8sor5corr4y5zpo1a2zPf/zjH8uPf/zjRHajKDnHIXsplmGVfoOFAAAAQD5z66+nIziWSJbZpEn+1wVGq9JSkaEh92zNXNK1wvWxoLramiSjpka1z0K9rs8njEQvMDpzTD+mEQEAAACji9eQSD1LZboL6FOfDMWgulplZOXrKCTz2n36dPW7rEyktTU3+1NsOAwWGOdslQTHAAAAgPzl1l/3mo0yU8MfmQsNxaC+XqSzM3+DY25qa0Vef53r+mwgOFZgKiuLY1glMNpMm5brPQAAAPnIrb++eHF298GcERMoVPX1Ih0doys4Nm2aSF8f1/XZQHCswNTWWtPFEhwD8kd5ea73AAAA5CO3/noi9cIA+FNdLdLbm5/BsbIy93Y/Zoz/+uNIDcGxAqRPsMEgM88AAAAAxUjXJwOgBIOqXl8+Bsfq692HU5eVqQAZSS+ZR3CsgAWD7lNDAwAAAMgPmbroZQZKIFp5uUhDQ673IjF65kpkFsExAAAAAMgRMkKA7KmoGH3DFEMhjhPZQHAMAAAAAAAUvFmzsvdZra3p2Q7BsewgOAYAAAAAOcJFL5A9jY3Z+6x0TcgViaRnO4iN4BgAAAAA5AjBMSC7JkzIzueMG5ee7TQ1cZzIBoJjBYjIMgAAADA6cNELZNeYMbneg8Qw82x2EBwrQJxgAQAAAAAoDFzjZx7BsQJUUpLrPQAAAADgBxe9AGLJ1jDQYkdwrAARHAMAAABGB4JjAGI5+miOE9lAcKwAlZbmeg8AAAAApEuQqzagaDhriB99dG72o9hwmC1AZI4BAAAAo4OfjJDZszO/HwByLxCIDo4FAmSOZQPBsQLEnSUAAABgdOCiF4B25Ij6MREcyw7CKAVotE1NCwAAABQrLnoBaJMmiQwO2pdxjMgOgmMFiJpjAAAAAACMLrW1IuXl9mVkjmUHwbEC5RynDAAAAAAA8pszEOYMliEzyDEqQG5F/AAAAADkHzJCAMRSU5PrPSgOZI4VIE6wAAAAwOiQTN+d/j4ApBfBsQJF5hgAAACQ/5IJdM2enf79AJAfuJbPjYSCY7fccossWbJE6uvrpb6+XpYvXy4PPfTQyOv33HOPvP/975cJEyZIIBCQDRs2+Nru3XffLYsXL5aKigpZvHix3HvvvQn9EbBjWCUAAAAwOpA5BgC5l1BwbNq0aXLDDTfIunXrZN26dXL66afL+eefL5s2bRIRke7ubjnllFPkhhtu8L3N5557Tj72sY/JZZddJq+88opcdtllctFFF8nzzz+f2F+CEQTHAAAAgNFh3Lhc7wEAIBCJpBZGGTdunPzXf/2XfPKTnxxZtn37dpk1a5a8/PLLcuyxx8Z8/8c+9jHp6OiwZaB94AMfkLFjx8rtt9/uez86OjqkoaFB2tvbpb6+PuG/o5B0damfpqZc7wkAAAAAAMVnyxaRuXOz9z5ESyROlHTNsVAoJHfccYd0d3fL8uXLk92MPPfcc3LWWWfZlr3//e+XZ599Nub7+vv7paOjw/YDhcwxAAAAAAByh+HPo0vCwbGNGzdKbW2tVFRUyFVXXSX33nuvLF68OOkdaG1tlcbGRtuyxsZGaW1tjfm+VatWSUNDw8hPc3Nz0vtQaAiOAQAAAACQO1yTjy4JB8cWLFggGzZskLVr18rnPvc5ueKKK+T1119PaScCjpBqJBKJWuZ0zTXXSHt7+8hPS0tLSvtQSAiOAQAAAAAA+FOa6BvKy8tl7vAA2OOPP15efPFFufHGG+XWW29NageampqissT2798flU3mVFFRIRUVFUl9ZqEjOAYAAAAAAOBP0jXHtEgkIv39/Um/f/ny5fLoo4/alj3yyCOyYsWKVHetaDG2GQAAAACA0WfnzlzvQXFKKHPs2muvlbPPPluam5uls7NT7rjjDlmzZo2sXr1aREQOHz4sO3fulD179oiIyFtvvSUiKjusaXjqxMsvv1ymTp0qq1atEhGRL33pS3LqqafK97//fTn//PPlL3/5izz22GPyzDPPpO2PLEZkjgEAAAAAMLoMDuZ6D4pTQplj+/btk8suu0wWLFgg73vf++T555+X1atXy5lnnikiIvfff78sW7ZMPvjBD4qIyMUXXyzLli2TX/ziFyPb2Llzp+zdu3fk+YoVK+SOO+6Q3/zmN7JkyRK57bbb5M4775STTjopHX9fUWJYJQAAAAAAuZPsiK5gyuP7kIxAJFIYYZSOjg5paGiQ9vZ2qa+vz/Xu5NTgoMiePSIzZuR6TwAAAAAAKD7vvCMyZ07i79uyRWS4zDtSlEiciJhkASJzDAAAAACA3OGafHQhOFaACI4BAAAAAAD4Q3CsABEcAwAAAABg9Jk2Ldd7UJwIjhUggmMAAAAAAOROsgX5KyvTux/wh+BYAUq2EQIAAAAAABQbgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKQRdcBHF4JjAAAAAAAAabRrV673AIkgOAYAAAAAAJBG/f253gMkguAYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4VqACgVzvAQAAAAAAQP4jOFagZszI9R4AAAAAAFCcSFgZXQiOFaiSklzvAQAAAAAAxSkSyfUeIBEExwAAAAAAAFC0CI4BAAAAAACkUWVlrvcAiSA4BgAAAAAAkEZTp+Z6D5CIhIJjt9xyiyxZskTq6+ulvr5eli9fLg899NDI65FIRK6//nqZMmWKVFVVycqVK2XTpk0xt3nbbbdJIBCI+unr60vuLwIAAAAAAMihceNyvQdIRELBsWnTpskNN9wg69atk3Xr1snpp58u559//kgA7Ac/+IH86Ec/kptuuklefPFFaWpqkjPPPFM6Oztjbre+vl727t1r+6kkBxEAAAAAAIxCBMdGl9JEVj733HNtz7/73e/KLbfcImvXrpXFixfLT37yE/n6178uF1xwgYiI/Pa3v5XGxkb54x//KJ/97Gc9txsIBKSpqSmJ3QcAAAAAAACSl3TNsVAoJHfccYd0d3fL8uXLZdu2bdLa2ipnnXXWyDoVFRVy2mmnybPPPhtzW11dXTJjxgyZNm2afOhDH5KXX3457uf39/dLR0eH7QcAAAAAAABIRMLBsY0bN0ptba1UVFTIVVddJffee68sXrxYWltbRUSksbHRtn5jY+PIa24WLlwot912m9x///1y++23S2VlpZxyyimyefPmmPuxatUqaWhoGPlpbm5O9E8BAAAAAABAkQtEIpFIIm8YGBiQnTt3Sltbm9x9993yq1/9Sp588klpa2uTU045Rfbs2SOTJ08eWf/Tn/60tLS0yOrVq31tPxwOy3HHHSennnqq/PSnP/Vcr7+/X/r7+0eed3R0SHNzs7S3t0t9fX0ifxIAAAAAAAAKSEdHhzQ0NPiKEyVUc0xEpLy8XObOnSsiIscff7y8+OKLcuONN8pXv/pVERFpbW21Bcf2798flU0WSzAYlBNOOCFu5lhFRYVUVFQkuvsAAAAAAADAiKRrjmmRSET6+/tl1qxZ0tTUJI8++ujIawMDA/Lkk0/KihUrEtrehg0bbAE2AAAAAAAAIBMSyhy79tpr5eyzz5bm5mbp7OyUO+64Q9asWSOrV6+WQCAgV199tXzve9+TefPmybx58+R73/ueVFdXyyWXXDKyjcsvv1ymTp0qq1atEhGRb33rW3LyySfLvHnzpKOjQ37605/Khg0b5Oc//3l6/1IAAAAAAADAIaHg2L59++Syyy6TvXv3SkNDgyxZskRWr14tZ555poiI/Pu//7v09vbK5z//eTly5IicdNJJ8sgjj0hdXd3INnbu3CnBoJWw1tbWJp/5zGektbVVGhoaZNmyZfLUU0/JiSeemKY/EQAAAAAAAHCXcEH+fJVIoTUAAAAAAAAUrowW5M9XOsbX0dGR4z0BAAAAAABALun4kJ+csIIJjnV2doqISHNzc473BAAAAAAAAPmgs7NTGhoaYq5TMMMqw+Gw7NmzR+rq6iQQCOR6d9Kio6NDmpubpaWlhaGiRYT/d/AdKE78v4PvQPHi/x58B4oT/+/gO5BZkUhEOjs7ZcqUKbba924KJnMsGAzKtGnTcr0bGVFfX09DKUL8v4PvQHHi/x18B4oX//fgO1Cc+H8H34HMiZcxpsUOnQEAAAAAAAAFjOAYAAAAAAAAihbBsTxWUVEh1113nVRUVOR6V5BF/L+D70Bx4v8dfAeKF//34DtQnPh/B9+B/FEwBfkBAAAAAACARJE5BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAAAAAgKJFcAwAAAAAAABFi+AYAAAAAAAAihbBMQAAAAAAABQtgmMAAAAAAAAoWgTHAAAAAAAAULQIjgEAAAAAAKBoERwDAAAAAABA0SI4BgAAilogEPD1s2bNmlzvas48+OCDcv311+d6NwAAADIiEIlEIrneCQAAgFxZu3at7fl//ud/yhNPPCGPP/64bfnixYulvr4+m7uWN77whS/Iz3/+c6HbCAAAClFprncAAAAgl04++WTb84kTJ0owGIxaXkh6enqkuro617uRN/sBAACKG8MqAQAA4hgYGJDvfOc7snDhQqmoqJCJEyfKJz7xCTlw4IBtvZkzZ8qHPvQheeCBB2TZsmVSVVUlixYtkgceeEBERG677TZZtGiR1NTUyIknnijr1q2zvf/KK6+U2tpa2bRpk7zvfe+TmpoamThxonzhC1+Qnp4e27qRSERuvvlmOfbYY6WqqkrGjh0rF154oWzdutW23sqVK+Xoo4+Wp556SlasWCHV1dXyL//yLyIicuedd8pZZ50lkydPHtnXr33ta9Ld3W3bp5///OciYh+Cun37dtm+fbsEAgG57bbbov7NAoGAbSjm9ddfL4FAQNavXy8XXnihjB07VubMmZPQ3wIAAJAJBMcAAABiCIfDcv7558sNN9wgl1xyifztb3+TG264QR599FFZuXKl9Pb22tZ/5ZVX5JprrpGvfvWrcs8990hDQ4NccMEFct1118mvfvUr+d73vid/+MMfpL29XT70oQ9FvX9wcFDOOecced/73if33XeffOELX5Bbb71VPvaxj9nW++xnPytXX321nHHGGXLffffJzTffLJs2bZIVK1bIvn37bOvu3btXLr30UrnkkkvkwQcflM9//vMiIrJ582Y555xz5Ne//rWsXr1arr76arnrrrvk3HPPHXnvN7/5TbnwwgtFROS5554b+Zk8eXJS/54XXHCBzJ07V/70pz/JL37xi4T/FgAAgHRjWCUAAEAMd911l6xevVruvvtuueCCC0aWL126VE444QS57bbb5HOf+9zI8kOHDsnatWtl6tSpIiIyZcoUOfbYY+WXv/ylbNmyZWQYYSAQkA9/+MPy2GOP2YJRAwMD8pWvfEW++MUviojImWeeKWVlZfL1r39d/vGPf8gpp5wia9eulV/+8pfywx/+UL785S+PvPc973mPzJ8/X370ox/J97///ZHlhw8flj/96U9y+umn2/62b3zjGyOPI5GInHLKKbJo0SI57bTT5NVXX5UlS5bInDlzpLGxUUSih6Am44orrpBvfetbI88T/VsAAADSjcwxAACAGB544AEZM2aMnHvuuTI0NDTyc+yxx0pTU1PULJbHHnvsSGBMRGTRokUiooY3mvW19PIdO3ZEfebHP/5x2/NLLrlERESeeOKJkX0KBAJy6aWX2vapqalJli5dGrVPY8eOjQqMiYhs3bpVLrnkEmlqapKSkhIpKyuT0047TURE3njjDT//PAn76Ec/anue6N8CAACQbmSOAQAAxLBv3z5pa2uT8vJy19cPHjxoez5u3Djbc/0+r+V9fX225aWlpTJ+/HjbsqamJhFRWWl6nyKRyEhGl9Ps2bNtz92GQHZ1dcl73vMeqayslO985zsyf/58qa6ulpaWFrnggguihnumi3NfEv1bAAAA0o3gGAAAQAwTJkyQ8ePHy+rVq11fr6urS+vnDQ0NyaFDh2wBstbWVhGRkWUTJkyQQCAgTz/9tFRUVERtw7ksEAhErfP444/Lnj17ZM2aNSPZYiIibW1tvve1srJSRET6+/tty3UQz41zXxL9WwAAANKN4BgAAEAMH/rQh+SOO+6QUCgkJ510UlY+8w9/+MNIzTERkT/+8Y8iooZm6n264YYbZPfu3XLRRRcl9Rk6SOUMPt16661R6+p1ent7paqqamR5Y2OjVFZWyquvvmpb/y9/+Yvv/UjH3wIAAJAKgmMAAAAxXHzxxfKHP/xBzjnnHPnSl74kJ554opSVlcmuXbvkiSeekPPPP18+8pGPpO3zysvL5Yc//KF0dXXJCSecIM8++6x85zvfkbPPPlve/e53i4jIKaecIp/5zGfkE5/4hKxbt05OPfVUqampkb1798ozzzwjxxxzjG2SADcrVqyQsWPHylVXXSXXXXedlJWVyR/+8Ad55ZVXotY95phjRETk+9//vpx99tlSUlIiS5YskfLycrn00kvlf/7nf2TOnDmydOlSeeGFF0aCeX6k428BAABIBcExAACAGEpKSuT++++XG2+8UX73u9/JqlWrpLS0VKZNmyannXbaSOAoXcrKyuSBBx6QL37xi/Kd73xHqqqq5NOf/rT813/9l229W2+9VU4++WS59dZb5eabb5ZwOCxTpkyRU045RU488cS4nzN+/Hj529/+Jl/5ylfk0ksvlZqaGjn//PPlzjvvlOOOO8627iWXXCL/+Mc/5Oabb5Zvf/vbEolEZNu2bTJz5kz54Q9/KCIiP/jBD6Srq0tOP/10eeCBB2TmzJm+/+ZU/xYAAIBUBCKRSCTXOwEAAACRK6+8Uv785z9LV1dXrncFAACgaARzvQMAAAAAAABArhAcAwAAAAAAQNFiWCUAAAAAAACKFpljAAAAAAAAKFoExwAAAAAAAFC0CI4BAAAAAACgaJXmegfSJRwOy549e6Surk4CgUCudwcAAAAAAAA5EolEpLOzU6ZMmSLBYOzcsIIJju3Zs0eam5tzvRsAAAAAAADIEy0tLTJt2rSY6xRMcKyurk5E1B9dX1+f470BAAAAAABArnR0dEhzc/NIvCiWggmO6aGU9fX1BMcAAAAAAADgq/QWBfkBAAAAAABQtAiOAQAAAAAAoGgRHAMAAAAAAEDRIjgGAAAAAACAokVwDAAAAAAAAEWL4BgAAAAAAACKFsExAAAAAAAAFK2sBMeeeuopOffcc2XKlCkSCATkvvvuG3ltcHBQvvrVr8oxxxwjNTU1MmXKFLn88stlz5492dg1AAAAAABQaMIhkd69ud4LjBJZCY51d3fL0qVL5aabbop6raenR9avXy/f/OY3Zf369XLPPffI22+/Leedd142dg0AAAAAABSavQ+J3Dsl13uBUaI0Gx9y9tlny9lnn+36WkNDgzz66KO2ZT/72c/kxBNPlJ07d8r06dOzsYsAAAAAAKBQRMK53gOMIlkJjiWqvb1dAoGAjBkzxnOd/v5+6e/vH3ne0dGRhT0DAAAAAAB5L9SX6z3AKJJ3Bfn7+vrka1/7mlxyySVSX1/vud6qVaukoaFh5Ke5uTmLewkAAAAAAPLW85/K9R5gFMmr4Njg4KBcfPHFEg6H5eabb4657jXXXCPt7e0jPy0tLVnaSwAAAAAAkNeGOnO9BxhF8mZY5eDgoFx00UWybds2efzxx2NmjYmIVFRUSEVFRZb2DgAAAAAAAIUoL4JjOjC2efNmeeKJJ2T8+PG53iUAAAAAAAAUgawEx7q6umTLli0jz7dt2yYbNmyQcePGyZQpU+TCCy+U9evXywMPPCChUEhaW1tFRGTcuHFSXl6ejV0EAAAAAABAEQpEIpFIpj9kzZo18t73vjdq+RVXXCHXX3+9zJo1y/V9TzzxhKxcudLXZ3R0dEhDQ4O0t7fHHZIJAAAAAAAK2B8D6vclGQ95IE8lEifKSubYypUrJVYMLgvxOQAAAAAAACBKXs1WCQAAAAAAAGQTwTEAAAAAAAAULYJjAAAAAAAAKFoExwAAAAAAAFC0CI4BAAAAAACgaBEcAwAAAAAAhe3gWpG+g7neC+QpgmMAAAAAAKBwHXxe5JHlIjvuyPWeIE8RHAMAAAAAAIWr4031u3e3+h0OiQz1eq/fu1dk558zv1/IGwTHAAAAAABAYQqHRALDoY/D69XvjdeL3FXt/Z53fi3yzD9lfNeQP0pzvQMAAAAAAAAZsel7IrWz1eOurcPLvqN+H1wrMuFka93tt4sMtom89ZNs7iHyAJljAAAAAACgMG38DytzLBCwv/bIcvvzZy8RefHzIv2HsrNvyBsExwAAAAAAQOHSwbHOzbndD+QtgmMAAAAAAKBwRcK53gPkOYJjAAAAAACgsEw913r87CXJbWPDNSLb/5ie/UFeoyA/AAAAAAAoDh0JDK18/QaRsgaRmUkG1zBqkDkGAAAAAACKQ++exNYfbM/MfiCvEBwDAAAAAADFoXuH+/JIJLv7gbxCcAwAAAAAABSHl7/s8UKM4FjP7ozsCvIHwTEAAAAAAFAc+g9FL+tuEdn5J+/33Dctc/uDvEBwDAAAAAAAFK/WR0T+cXHsddpey86+ICcIjgEAAAAAAMTSvTPXe4AMIjgGAAAAAACKS/lY6zHF+IsewTEAAAAAAFBcPrxLpHq6//UDgcztC3KO4BgAAAAAACguJVUiY49VjweO5HRXkHsExwAAAAAAQOE54Rbv18xMsA3/nvl9QV4jOAYAAAAAAAqQj1pifmeh3LcmpT1BfiM4BgAAAAAACo+fQvvhfn/beuMH9udb/zfx/UHeIjgGAAAAAAAKx131It07xVfmmCRZaH/tFcm9D3mJ4BgAAAAAACgcQ50igx3+MscSCY71tia9S8hvBMcAAAAAAEBhiYREJOz+2vSPWY8DCYRF7p2c0i4hfxEcAwAAAAAAhSUSis4cW/Bv6nfjadayRIJjKFhZ+RY89dRTcu6558qUKVMkEAjIfffdZ3v9nnvukfe///0yYcIECQQCsmHDhmzsFgAAAAAAKEQDR8Sz5ligxHySjb1BnstKcKy7u1uWLl0qN910k+frp5xyitxwww3Z2B0AAAAAAFDIQj3iKzjmzByb8+mM7RLyV2k2PuTss8+Ws88+2/P1yy67TEREtm/fno3dAYDM6TsoEiwTKW/I9Z4AAAAAxc05rDIwnCVmyxxzmPExkXd+mbl9Ql4atYNr+/v7paOjw/YDADn3zIUi6/8t13sBAAAAFJfHz3RZ6CNzLOIo2j9mSdp2CaPHqA2OrVq1ShoaGkZ+mpubc71LAKBOruHBXO8FAAAAUFxaH4te5gx8jQh6r0OB/qI0av/Xr7nmGmlvbx/5aWlpyfUuAYC6CxUJ5XovAAAAgMIXDol0vO39+uwrRKZ9JHq5LQBGcAyjODhWUVEh9fX1th8AyLlASYw7VAAAAADS5vCLIg8s8H69cpLI+OONBbrmmJk55qxLFqMe2ch76O8XmlEbHAOAvBQIkjkGAAAAZMVwsOvIK96rOINfIvbgWNcW63HZGJFAWfyP7dzsa+8wemRltsquri7ZssX6wm3btk02bNgg48aNk+nTp8vhw4dl586dsmfPHhEReeutt0REpKmpSZqamrKxiwCQHq2P5noPAAAAgOKgs7x2/SXGSkZwbMbFIm/+UEaCaiIiz1xkPf6nIyLhofif+4+LE9lLjAJZyRxbt26dLFu2TJYtWyYiIl/+8pdl2bJl8h//8R8iInL//ffLsmXL5IMf/KCIiFx88cWybNky+cUvfpGN3QMAAAAAAKNNYDjItfE673XMzDE9xLJunn0d2wyVAUHxyUrm2MqVKyXilso47Morr5Qrr7wyG7sCAAAAAACKWc10+/O2V63HgVjBsYDIA4tEOt5UT5+7UmT5bWneOeQCNccAAAAAAECB8k7UcRcjONb4XiswJiKy7bdJ7RHyD8ExAAAAAAAw+h1+2WWhIzgWLItddD9W5ti+x5PaLeQ/gmMAAAAAAGD0cZZvemR5/HUuHhApq03P5wcIqRQK/icBAAAAAMDoFwll+QMJqRQK/icBAAAAAMDoEeoX6dpmDYGc8c/DL4QT287hF1Pbj0BJ9LK1/5LaNpETBMcAAAAAAMDosf2PIvfPtp7vuF39jrgFx2IU5O/dm9p+hPujl239TWrbRE4QHAOAdKLuAAAAAJBZW/9H/XbWE3OV6GyVKEZcxQEoHn0HRAbaM/sZzRdmdvsAAABAsTvwTK73AAWG4BiA4vH0R0Re/r8Z/hDuTAEAAAAZVVLpf11f2WVpom/Ehwez95lIC4JjAIpHOORRhyCN9Mk31JfZzwEAAACKVUJ9+hSDYxUTEvio4dkyn2Y0yWhDcAxAEcnGXaPhE/WdVSJtG0UOr8/CZwIAAABFRAfH9jzoZ+X4q1Q2ivxTR0q7ZFM1OX3bQlYQHANQXPR0z5lipm0/fobI6ndZz5+9LLOfDQAAABSF4T73xuvirzr+5PjrTDlHpKwutV0KD4rcPV49bjgqtW0h6wiOASgOb94oGckc6zsg0v6mscD4jL791uNQn8j23zPcEgAAAEhZjH69rvtVNkb9nnZuch8x9tjE1g8PGU8yfEMeaUdwDEBxWH/18IM4J6qeXe7L+w+5L3/zxyJrzraeT3yPx/sPqt/rvhD78wEAAADEFqvm2J/HDD/IYl0yEavemIhI7x6Rwy+lvk1kDcExADDd1+y+/O5YhTiNgFugxH0VfbJ859ciQz1J7RoAAAAAn2yZXFnw+ir746c+nN3PR0oIjgEoHpGIpD/F2eddJnM6556WNO8DAAAAAJtIisGx7p0Jrr/D8fnZmAwM6UJwDEARydAJylbk3+MzQr3W4xc+m5n9AAAAAKCUVPtf1y2QVTdXJFjmfxvmzXCMOgTHABS+js3qd6zaBCnxkY02ZATH+g9kaD8AAAAAiIjIUV9L7f3jjhdZ9P/8r09wbFQjOAagsPUfFnlg/vCTsCPLKx2cQzU9MsfCxiyV7a+neR8AAAAA2DQcndr7xx0vsvS7Iu992N/6qQ7jRE4RHANQ2Do3W4/NGWTSxW8tATNzDAAAAEBmTf1gau/XN9XHHedv/d1/tT8f6kzt85FVBMcAFDZz9shIWNJfkN/BK1jmLMLfsTl6ndCAyFC3yzYzNRwUAAAAQEZqEw92iIT6vF9/4XMir3wj/Z+LpBAcA1DYooJjadRyn4hE/A3VfOHT9ucPzBcJOzLZXrlW5OGTome6ub1EAAAAAGRI1dTMbDfW9ceWX4hs+m5mPhcJIzgGoLCZwTFJMnPMGazSnv6I+m0O3UzkrtMdpep3x9vq95s/FGnfJPKXmdHrui0DAAAAkLqlcYJUcz4Z+/XOLdbjaR9JfX+QdQTHABQ2MzjW3eK9XiyJBKb6D7ovLxvjvvz5T4k8sCB6+bOX2Z97BegAACgGkQj1OwG4m/bh1LcRbyRIoDT262/daD3edW/8zwsNxF8HWUVwDEBhCxonslBP+merbHvV/vz1G9zXm/dZ9+Xv/Fr9joRFJqywlm//fer75qVnT+a2DQBAJhx4WuTPDbneCwD5qKQyCx8S5xrC7yRdIiL7nxK5syK13UHaERwDUNgCGajX9fynrfoBe/1O7RwWOfNZkQ++4f767SUiB5+NXt5i3HlK1x2m+zJUUwEAgEwZ7BIJD+Z6LwDko2xMXpX0DXaXoFnHW/bnfx6f5LaRTgTHABQ2MzhWWht7Xb93fN75laoNlohISKRivEjDQv/v2Xm3yLbfWc/bX0vsM90ceM59+aOnpr5tAAAyJgMzyQGAb0kGx/Y9YX9+R2V0Ef6Bw8ltG2lFcAxAYQsYh7mhLol5Ynvrp/63O9iV2H5EwlagbubH/b2n8y2RPQ9Yz4e6vdcd6hZ59brY22t9XOTR4aGbfwyIPHmeykZr26iGqwAAkLcIjgHIgHSMMtn6vyK9u9xfa3Pc3A73U0s4TxEcA1DgErjLs/5q/+tGQontRiRsBepqZ/t7T/cO+xCSsjrvdbu2irz2bev5xv+0v962UeTx99mX7f6ryNorrdRuCoMCAPJVIvV8ABSZFI4PU8+N8WLA47HDWz8W2fUX99d6kpwQDFlHcKxYeXUwqOWAgpemgvx9+xJ8gxEcO+Z6f2854ij2H2uWHP1aqF/N5rXxP9Tz/cMZYQ8ucX/fjttFnvkn9XjgiL/9AgAg6wiOAfCQSvB88TXuy4++TmTc8dbzWDXHYtU883t93bHZ33rIGIJjxSbUr4ZTrT4u+rU/BkTuKFePH1gsEurL7r4Bo0HnFvX7mQvtywfaY78vEpKRQ27A56H3yHrnRtzX69gs8rfF6vHeR0TuqrZee+xU1bYBABjVCI4B8JLC8SHoMaxyyfUiY44yFsQKjjlGlATLjNeGg2P3zYi9Hw/Mj/06Mi4rwbGnnnpKzj33XJkyZYoEAgG57777bK9HIhG5/vrrZcqUKVJVVSUrV66UTZsSLHYNf569RP0+ssFatvPu6IvnjjfIIgPc7FvjvvzPY2K/z6w55seEFSJhxzBHr7tSoR7r8VPnGcv7o9edeEqMD+XCAwCQpxhWCcBTKseHNIREooJj5dbj8KDIQJtIz8742+l4O/V9QdKyEhzr7u6WpUuXyk033eT6+g9+8AP50Y9+JDfddJO8+OKL0tTUJGeeeaZ0dnZmY/eKS8s91uOBI6qj4cyAAYpReMjfesnOJmPWHPNj8deil7398+hlux8QeXK4VkLD0fbX7qyMXn/Jf4qU1bt/5ju/IssMAJCnCI4BBSc8mJ7RSkO9yb/XzPKKKYFhlQFjm+EhkT+P9fcRf3+vz31BJmQlOHb22WfLd77zHbnggguiXotEIvKTn/xEvv71r8sFF1wgRx99tPz2t7+Vnp4e+eMf/5iN3StebZtEtv3O+/Xe1uztC5BrO+7wt15nsvUAXIJjR3/Te/XS6uhl7/wyeln3TqvQ5zQja2zMMe7bbXyvyD+1iyy4Ovq1V2PsDwAAAJBOr35T5KnoGEHCevck/966uf7Wi1VzrPNt+4RbQaNO8M47rcdkwOa1nNcc27Ztm7S2tspZZ501sqyiokJOO+00efbZZz3f19/fLx0dHbYfJOjlr4isvSJ6uW606/8tu/sDZITjJOR1Ygu7DEH0sz0//rrAXnNMm3a+yOmPRq9fOUnk8Ev+tm3+PeawzbaN6vcJv7CW/bNxV+tdP/a3fSAfDXZyAwcoOlxUAgWnb39iE0L17nMPMMUKXMXl971x1qsxaooFK9zXifgcqYKcyHlwrLVVdW4bGxttyxsbG0dec7Nq1SppaGgY+Wlubs7ofhakQy+4L79/lvrdvUNkr8uFO1BMnGnase747HnYfXnn2yrd2iz4ed5WkXHvEmk6Q+T84RoEl0REjvm2iARFhnpcNxXljR9Zj6dfFP36vM+KnPwbkbp50R2HmpkqkwwYbTZ9V+TvK3O9FwCyiYwLoPCEhxIY1igi9zaJHHo+zTuRgZIiQY8Z5p31hJFXch4c0wKOi7ZIJBK1zHTNNddIe3v7yE9LS0umd7EwLPiS+/JzXrMed+9Qv9tfE3nq/MzvE5BVCZ4A73IMb9z6G+913/yR92uRsNgOubWzrMc1RnC/cqJ6rWKcv/3r2mI9HnO0yKzLh58ERGZ/Qj2cfaXIuS4FPs/fFv9iY6hb3dUD8kl4iAtloOjQ5oGCExn0DiR5vifksiwbx4cEriECHn/TXbXp+wykXc6DY01NTSIiUVli+/fvj8omM1VUVEh9fb3tBz64zXb3nrsd09QaEikgDoxqfk9GPk6+8z4XvaztFX/tae5nRM54SqR8vPvrh9ZZj7u2Rb9e1jD8IKJmvEzVo+8Wucf7WAzkRoTzE1B0CI4BBSc8aC9en6zIYPLv9TskMxAQqV8YYx+MY1SiAT/khZz3LGfNmiVNTU3y6KPW8L2BgQF58sknZcWKNFzYwXJ7qbh2LJrOjPEmotcY5f4y07Egg99pfXKd9pHo19o2+ruYDwTVCbXMcWdp0f9Tv/v2Wcuedilgan5GaU38zzOPCW6zWB7Z4GMbQJZFwsL5CSgyZIsChSfR2dw9t+OSTeZbIv0Jx3Foyoc8Nlnivhx5LSvBsa6uLtmwYYNs2LBBRFQR/g0bNsjOnTslEAjI1VdfLd/73vfk3nvvlddee02uvPJKqa6ulksuuSQbu1c8IiH3zLGyOu/3DHVlbn+AvJLGTrc5W40pkRNl4/tUBplWUhm9jlvgatrwUOiznheZ6nHCNg12uD8G8hqZY0DxSeE8/UeC6UBBC2ej0L3LceSY66zH+9cYq/rs85dUOT6CY1UuZSXfb926dfLe91pFn7/85S+LiMgVV1wht912m/z7v/+79Pb2yuc//3k5cuSInHTSSfLII49IXV2MoA2SYwbHFlwtMvn98d/TtlFkzDEZ2yUgpp49qlBn5cTE3vfq9SJLro9entGTzvC26+Z4vB7jYr7pDPvzslqRSe+xno9kgcW5OKiZqX5PODH2etqRl/2tB+STdN1pBjB6kDkGFKgE++Zux4JsZI4FAtGf7dUX8XvD+WM9BO/zSFZ6litXrpRIJBL1c9ttt4mIKsZ//fXXy969e6Wvr0+efPJJOfroo7Oxa4Vrzbn25yMz3xnBsSXfFpnygfjb6tqerr0CEvePj4m8/H8Tf99r3/K3Xqhv+EE6TkxxthHrYv70ODPD6jtL8S4OyupFxiyNvQ4w2jknuABQBAiOAYXH0a533i3y6n8ksRkfwbEznk58uzYBidpfr769nuAOowo9y0K15wH787uGs04iIZFjfyBSNib2cEoTU84iH7RtdB8WnIqBNpE7q1Qx0H1PpHfbblLJdBlJuw6LDHaJPO7I+tSTAFSMFzlnQ/KfA4wKZI4BSNDtFMgG8k/EPqrjwDMiO/9sX2XNB31sxsc1wqR3i1ziEmQPBETq5sd/v4hL5li6a4uRRZZL9CyLgTkGe+CIyKxLRc7fGr3e0ddFLxNRmTWhAf/p7HdWi3RuSXw/AS+RiMiDS0R6WtKwMeOko0+kb/88PcGxeEM2k72Yf98akYmnqMdPfVhkqFOk9RHr9WO/L3LCzcltGxiNKMgPIFEpDbsCkB0uNUX3POjjbSm070BQ5Ny3/KzocxlGK4JjhWzL/6d+h/utZS33iATLRcrHRq/vVp9JRE2Ne/+s+Aemtk0ifztKJNQr8td5jJ9GmmRydsnhQ2DXVknLcI2BI6lvw+nCIyKNp4lUT/NeZ1ESw06BUY2C/EDxYVglUPAiEXHt+6/7kkhHjABWJAsF+QMJDKtMxLE3WI8J4ucUPct817ZR5KmPJPfeFz6rfof6HS8kGGwID4j07olfWPCVa0TaX7cv+2NAJEwjRz4xvv/6hBYIiu9Od90879faNyW9V57Kx6jfAWM4iHNGHoIEKDZkjgHFh4L8QOEZaHckYAwPs+w7aF/v7Z9GX2ea3IJKfodK+uYSHPMKp5z4S/+bnXiq9bh3T6I7hTTiiiqfDbSLvHqdyK77Yq831CMy1Ov9+t3j7c8TvZB+66f+1vPqtNxRKrL7AffXgISk+2I4YP320+nuOyjSudn79XTXRDOZNQ303bHpF2Xms7q2uS/PRl02wJeISF+r/9mgABQAgmNAwel6x/48ElbJIfdMVNfCfrn1wT+YgZvWzuuFoEctw5FawRhNCI7ls7aNIrvujb/e858SefEqkcdOUwUMzUyxP7r8FycaHOtyqU/mxjkJgOnFzyf2mShePXtE/v6+zG3fVhdMn+Acd4Ja7vN4cwaDX/GYmWMtw8eFTJ14vYLZfz89M58HJCoSUTUIN61K/7ZXH5/+bbrZ8iuRv+XpzNyRsMjLX831XgAACp2znvD231uPDz7rfztuwyq9AldJc7lJH/AKjlXE39zUc1PbHaQdwbF8Fhn0t95gp8hgu8j+p0Se+Sf1WESkfoFE3WU7+jqRsvrE9iPUp363PpbY+0xpKaSOotDXKrLvccfCDN8tdhbSf+0/vVaMvZ1MZo4Fjcyxl7+ifp/4iwx9WIy/8+kLM/SZQCKGjwmv3xB7tWQcfin923TzwqfVUOzBzux8XiLCgyJv/CDXewE45HnmWP8haxKroe7c7UfffqvvDow2g0a2WN9+x4sxjgHZqNU17l0i086zL/OajKuk0ns7lZOG38sMuvmG4Fg+6z/sb71ISOz/lcONtGpq9LqlNbG31XSG2weoXy1/dnkNSLMdt9ufx5sBMmHmbJXD322/Ncfinniz3HGPdeJNRax/85a7M/OZQCLyMaCUrNe+nes9AEaHfK85tvp4kbd+JvLQEpG7arP3uU+eL7LNyLZ5cInI5kzdPAOyqPVR/+tmIzg2/aMi7/qJY2ECwbGZH1eBsZN+o56f/D/Dm6CGar4gOJbPnvGZobH3IZH9a6KXR2XfiEj/gdjbOv1RkbNf9ve5QCa03BPjRZ8nj/Y31e+Dz/v8UGfNMY8OeCQk0vxR782EYtT+i1XIPxUf3pWe7ZxyR+zXwz4zWYFs0DdrSqpzux/pwEUs4FMeB8daHxMZ6lRDu2LNqJcJh9aKdO+wnod6Rdb/W3b3AciEREYezf6XzO1HTB7XJsEKkVPvsy+rnStywT6R8Seo53rSLeQNgmOFYuCI8cTRSEtrRWZ/Qj1uWBx/W2OPdV+e6pCxnWScwId0DAX42yL1+5GT46zoFRDzCo6FRYJlie9P7VyRD8aYYScZej+qXTJEk1E+znjicqJniAby0ewrc70HqRvqyu3nD3aJPLLC/bXtt7svB0arRGZQj0RE/nFJ/PX+GBB5/EzVRzAnz0mH9jfV9k29rfbnkYg984SJSlAonNeeIzeyXfrpQR81vjIh1rBKZ5kGXYesrE5k5mWZ3S8kheBYQXIcMMYuE6luVo9TOXCk2oH3mwmH4tbvmLp5/1PWDJHpSDt2K8gfCIoMmMOYPT4nEhIJlif+mf0H018UtGpaerdnBv1c/51J+UYeSqUWJpShTpGDz6l6SU7P+ggMAFmThsyxV7/pf93ubdGlHkz7nxK5w+hXDxxxb0ep0Df7tNCAyL2To9d75evp/VwgH5iTzMUz5ezM7UdMHuGUYEX0qItJp6nfJZUiK/7XWp7vQ8aLCMGx0a7dJRvlnuEif1VT1O/3rhY5+huqEL8tOwTIQ+GB6GWH/A6PTFbAfnfKq25BssGxeLX+kpGuu9Mjw0SNE3OoX53QzZO1n5lzgWzrfDvXe5C4XX/N9R7Y6WPf3RPMhTnZFSCmdFxA9jsLfMfgvLDd+C2Rdf8qsvtv6nn3jug+S6Ymsnjjh6qO2Z3DwbhI2P3fI5HMOCDfHX7R/jzWTXKdCJJtnpljFdHXDBM9srSRNwiOjRZeHYK/HeX9nsEOkaXfEymtVlkhH9krMvmszOwfMBqNtCvHia3tVff1+w+KDPUk80FJvCeOYJqCY8dcJ7JytX1mrfX/JvKXWSJ7HrKWPXd59Ht79lCLDLmV7iFMmXbgOZGnzhMJu0w5nyuZnGUXSKs0nEsT+b47z/cbrxd5+yaR/U8OL8hwRnXPbuvx9t/bz9O3l1g3rXQ94c2/ELmD2e9QJMzzaM3MnO1GzIL8yZRiQU4RHBstzGlt/RrqEtn7sPW8tDq7s2GU1Wfvs4BUDLb5W2/tFSI7/pj49nv3JP6eeJrTNEx5zDEiU95v74SLiPTujj+Bx31TRV7+f+nZDyARMz+ufps1Mv8YSGwIRi688Cn1e9dfRCa/P7H3vvmTxD8vEokfDHDLdMmn4B0wIsvBMd2PHTgiMtBmvBCjLz33qmT2yt2OO63Hbm2yx9G3ePFz6ftsIB+ZySJmsHjyB7K/LyO8CvJX2ssZXZLA8ctZZzAZO/+c/clBCgDBsdEi2Q7/yN2tHDj+ptx9NgpUGk4Wex4S6do+/GT4ROUsbusl1xfe8//Vejzz0vRuu9Rl2nmv2a5e/D8iB9eqx7vzbIgYisP2Pww/cBwT3IZl5xM9sUV4UKTx9MTeu/7fRN7478Te8/oNIi/FmbXubeNc3f6mugj/U11inwMkYv/T6RteHA4ldm5OKFNyuI/w7GUiLxhBr1g3mivSWL7k5a9Yj9tfi3493g3vpDLdgVHC/P6XZLkY/1lGuZcyj/NlSYVI7ezs7I+bZ/5J5IGFufv8UYrg2GjRtSW597ld8KbKb8eiYqLIWWvty9IRCUdh6Hg7NwUo2zeJtPzZvszv0MBcDz86/qfW43R2wEVEysdGLxs4oib0cNryC2voKUVEkUsBRzcm123Uy6vXiXRttS5W+1qTOz8nmqnZ8aZqryIi7/xP/GLhf1sk8o9/ti9zq20KpGLr/6jAbSIiEffg95ZbRR49JYENJXCM0JMBhfrEnrUWFDnyisi+x6Pfs+l7CexLDIOd8dfp2RX79fZN6dkXIJNq5ybxpojYbo7N/Wy69safBmOijNJq93WC5SIlVerxyofc19Eqxkcv60ugPqKI6v94ZX23v+E/EaDIERwbLZI9wY0/Kb37IaLqHJjum+G+nlfRwVe+yQU1RB5YEH/YXqbp7+GeB3y+IYFOdWVjwrvjy5xPD29/Upo3nECbtBUCpi0jh3TNsfY3hxfkaXDstW+LHNmggmIiKguspDLzn6sDCg8dJ/L8J1XR/aeHJ+EYaFPLnZw3D/52lMjj1CtFju1+QOTFz6vHm2+xlg8ciS4LEIvXhDux1t33d5GAUcvr9VUiL/+7yNbf+N9WokK98dd5/YbYN50T+VuBXNE3uXb9Nf6EEmYZAPPmWMOi6HUzykeyR2m1tY9T4gz7rJ8fvaz9DX+7orNwX/++yJPnRr/evVPkb4vdZ7lFFIJjo0WyJ7hlaZ41x+1OVs/O6GXl41SthtpZ0a9t+k7+3t1HcRjJvogT2HF2uBNph3q22HQ78Rcipz+WgQ17/Fscedl9+YtprKuCwheJRJ8/QgMiA0nU0zTpjudgx/Dn5PG5xblvz38yGx+qfpntuOUekcMvi/x5rHf7dmp9NP27hiKX4I0VszaoDpIls61EjhFVU63HwSwXuncLjh39HyLnD/e5F345/jbMPstbP6P+EPKTvsn11HkiQ3EyJg+9oN8kUQGqtN80jsFvDW9ndnsiSqvVLLUDR2Kv99R56nfffvdr8r59ye9DESI4ls/mGSf/1gQvhkuqRY77iSq2nU5/8llkXwcGKieJHPfj9O4DCoczg9A5vDHXMyFu/oX9eSKd6vfcnd590QJBkab3ZWbbQKbsfURlLZne/qnII6lmNw93Y4ZGYXAsHq+sbO1PDfG34dUxX+2SMQZkTSolNhzvTXiiqUQCaUZw6dCL9tfCGa5BqouNm5NblY8RqWlWjwcOR7/ng5tEznrOer7ui9bjl74ocvC56PcAuTbtfOtxIjNQOwPIlROtxxOWp7ZPcfk97qRwrItERF7+vyJ/Hi6jsu33Ik/HmYzLbaj1wycmvw9FiOBYPqswGrlb3R9TqaMYYKhHZOGXkp9Cdv4X/K3nOTzSuAhIJWqOAuf4/ji/T23OArRprFkXHoz+/CiO1xO5+1I7S+QD6xLdq9xJdqgz7Rt+hHqi6wUN9Yp0bhHpd7nI80t//x4/U/0upOCY2x1gk86WiymNx8xN31OF1IF0SPqc4/adztDw/sPGObzDOcQpwyUF/naU+v1uY5iz/jcbs0Rk7Lvs618SEWlYLFJvFOA+st6+zs4/pX8/gVSVjzGeJNCuYtUtbMpwKQC/ZRHGLBE59vvJfYazz/TcZSItsW68B3z2CxALVzX57OivW4/HvWu4dohHob0Pt9jTv1Plt9Oih2S88SP78qVmQVK3rxl1iuDC2emNl16dCl81Sjy+p5NW+vuMccOd12Ou97d+TtEmkWVbfqEyM178XPLbiArO5nFwbP+a7H/mtt9aj0/+rf1CO1Fv3Shy4JnU9wlIRVSQebjfMHBE5J1f+3h/Aue6WMembNXOnbBcBb7Mm+DnvKIm5Rl7nMiFh0VOvc96LVgevQ197VBSKfJwpjNqgASZN8i6d/h/Xy5Hl8S7MXzCcF3EqkaRxf+e3Gc89p7E1g91W4/f/ElynwmCY3nNzPrq2SXy0tUid5RFzyQlIlLeIDL7yjR++PBJ/+wNsVfT09Kb002LiEw0GjSZJfASckwzbnY2e/eKPHaa/fWEh0/EEonfufV6PdHv9DHXJbZ+Tgz/rQ2Lc7sbKB69e4YfpNKuHW0xkcLcsWy+VaTvYHq2pW251f+6PXu8X0um0xsoEZn5cZHpH1UX2sEkp70/vF6ka1ty7wVSEet8HYmIHHlV5PlPxd+OcyhW777ES5eoD03iPX43Pbzt99wtUjY8q231VOuxiMiMfxb5wItqpmlzWJpbcOyhY9XvlntEDq2Nfh3IJbPIvu/+QJ7f0E32HDvptPjreAUFQ8ZQ7/X/ltzng+DYqLHrL6o+i4jIrvvsry35TuY+t7QmzgoeB6eIkeHmGkjI84MasuP+OY4Fxvfi7Zsy/OE+voOvr0r+vaON7oxPPT/2ek6DnSJbb0v77qDQDHd4h7pdXkohOOY8v3S9k/y2TC9eJdL2Snq25ddeo+j9fTEywbt3Jp618s9DIkGjlksydQtDfWomy/tnJ/5ewCadN7oCIhLxfxzZ86D9+e77rWHZichkFmXvXvXbDJJ/4CWR2cYkHoGAe//aWbMpNJD8jPdAXovR5tN6Mz1Lzt3iffP9kDHE+8Gl6veGr1nLIhFmp00TgmP5bt7/Ub/3/M1YGFRT3T45PDvFmKPV78Vfk/TRHe8YB5fnP+N+oSNiH/7p1tDTmY4eGhDpbknf9pBDxvdi0/eiX9762+hlSX9URJIOciXy/f3I3uQ+I+uG/6ZEiqGKiPQfEFn7CcemIrRJKOv+VeSd31jP76r1XjcZzvPLll+KvJXpwHoGPHupyBM+a6REQql3gk97wP68Zmb891DLBLkUtwB+srPHDb8vPJg/NQvbNqrf226zlpVW2wPcXpxBgTtdMlj0qA+gIIzCQJibujni+bc8fIL1uOMNkfVfEXn9+yoeIKIm6DiyQT0OZXiykAJHcCzfnXBT9IyToR6RO0pFdv/VvrysVuQixzC1ZPm5+H/nlyKD7T42luGv2d0TRP4yPbOfgfRKNjiqsyfTYev/iGdwrH5BnDcnsP9VTf7Xzanhv6n5ApEyH7PgxXJkA20SSuvfRdpejbNSKpljjovFIy+LvPSv6vFLV+d/AXldPHv7HxJ4U1hk++/jrDKkZgj1Yl5An/QrNTQrEQeMWe/+Mtv+HPAlwX7AgX+4Lw8MZ475PY44A8t6drcnz1MFvp/+aGL7lQm1M9XvTNUrvbMqM9sFciFXWWK1sbKok00C8fm3vDlc6/uOUvX7wD9E2vUkZgU4uiWLCI6NBoFS/+v6nT3D92fHaaRuhRMvbBOpnmJsI8PDKt2Ktu95SKRvf/o+A2nmNRw33vcizTOveZnyofR9zmgx/kSR5b8XGbcs+VluNefFxx+ZQadodbyhhtn3u9TvmnpeGj7AcX4ZMAr7brnVupOalCx0uJ3Bvfvnuq/36Lutx5FQdLamU89OkSferx5f4nFcPXa4zsucTyaeMXrwHyJv/ljk9f8S6d4m8uiKxN6P4pbMxWy8rK5ktjnYJfLat9Tj3r0inZtVXa5c06Mvqpsz/1lDPfSXkT8SOhflURAoXfW1kw705dG/xShHcGw0WP67OCtkoAMft9bYsMPro5eVO7NOkmiwvUkMRTPTSNecI7L34cS3gezwDIJl+eAebz+mfSRru5Jz1dNEZn1cPU70QtkPr7v+KHxv3yTywqet56E+kYE29Z0TEc9z2O4HvWdo1uJ2SNNwTGnbKPL0hcm/P9aMWs5zXdc79iCALn5vth8/Q7923Bl/HTNb7JQ74q9vGuwUWf9lkQ1JzsIFJGp7BvrCfzJmgAyW5U/9TD1pQE0WMrDf/JHII8xgiTxRMcHfepGIcS7Mg2GVp/89TRtK8m8xr2eyNZNugSI4NhpUxyjMKyIZOSiMOy592973ZPSyO4cz3AY7RA6/bH8tPCRy7xSR1set5350vKkyVHQtBQ4Oo1AWM8di0SfcXfeq31PPda6Qnf3IlUzUXUlnvTiMbq//l5qJdvPNsdd78oMiPS0iLfd6rxMzOJam40XXVpGWu5N//8CRGK8djl5mZlm6/RuZmZkdb7tv95VrfeyYcRyrc06OEsdr305sfSATIhGV/SUiKbf3VDOm0+nFz6nfQ2kqlRJLeIgaRcgjSfSvS6qjl2WjPR/1DetxlfNaPUPDKmvniCx1G/li9tsL/BolwwiOjQbxgkNjjkr/Z449Lv46ItFTYruK0Uhb7hNZ7fisvn3q9+PvUxfpd5TFvvOu6amqRy5E8qSwKlwkO6wyjv7DIgeeTW0/zt3ivryYpNypcPn3G40zByE1b/zIY/n37XXIYn03nv+kyNMX2JeFBqLXW/rdxPfPzaOnWo+fu2z4QYrf3USL55vB6Tf+W+Sx90a/XtmoHj+wgBtBKF4H14ps+o5qA+ZxJDyU+E2ezs3p3TenPpeh5V4OD89MVzExfZ9/4i9Flv+v9VwfN16/QaR3t8gjp6Tvs4BMG6k1KCKL/l/06wu/nPl9mGOUN0hXHzdeNnzdPJFF/zd6eb5MJlIACI6NBpUxUkzLGuIUBExSw0J/6+26z8dKsabadfkKmnfNn/+U+u03e0xEZZ2JqAuS0IC/wBqyzONi7vBLqW225R6RR1Ps4AWC0RebC/8ttW2ONif9OvH3uAUsbLPZcropOi9/xX251yzHbvY9Eb2sa4v1OFiufrudI0K9idccO2xMl967Z/hBip3eWOegGRdbj6dfpH7rv0nbv0b9HjM8fXskJDLnU9brkQTOj0DeSENQ1zaDpdFO15wjcv/sBDOiMhhkHuwSuSfBQNe0j4iUlMdfz6/p/yQy6zLreahX5O9nWP+GB4dvLHZuEenZnb7PBRJx6MXE3+PWTtJdgztRk89O8o3Dx7F5n3N/uXyM+w1sMzi29l+8N881cVxcrYx26SoA6CkNnYV9j3m/NnLxYXj+k9bjrb8Z3o0kOv9tG0WeOEvkjjR2LpAeXpkOf1/pfxvhIZcL4hjf16ihkV7rByQq67DxvS7rFLBEZ64TcZ8uftMq67GepKNtkxomF+oj4wXDUmhPugPslZ2VcP3KDGQ9dm31fq1mhhUMG6n159Eu9EXstt/aA2ixAgATYtUS8vl3zf2MSIOPDPWnLoi/DiAiCbf5Ia9RCno7jtkqu3eonzsr/QfjzRs8fQdUXb1URSKq3IeubfbKN2KvLyLy1vCs3HUek3P4dd479udldfbnm1aJ7HPUSXrsvSLPXS7y6jdT+2wgWU8mMCGW7kP6OT9lynnDdUGdxzRzYrpE6P5GwGMEh3nun/8F67GZ+bozRs3RO8pF7qoXORJvFvHilTfBsc7OTrn66qtlxowZUlVVJStWrJAXX0wielxsEh2ukfD203DxGuviZMNX7c8PPCty0GVK+GT+zlCvyH6XemfIA8b3quU+/28zL1Jf+pK9yPfIdj063afd77IbHhfCbsvnfsbvXo5+zsyVZG0yhrq98d/q9/bfq2Fyd1aJbLwuPZ+D4nLIyO7S7d3zHJHgRbjrOS/F4Fj5uBgvBtSdYPXhjt8OHW9aj827xAf+YdRdEpEHFvv8bJ/n9xNv9Zehrms0AvEMdSeWweB1wWzeIPYKYrsdG+LV8gr1pSc45mxjm3wM/37pS+p305mpfXT1DPtz5810nZHqXBYsFwm7ZIIDeWe4fU01jg9Blxu1mVQ7M73bqxneXo2PmWoXflnk3X9SjxMZVjnUKfLQ0oR3rVjkTXDsU5/6lDz66KPyu9/9TjZu3ChnnXWWnHHGGbJ7N6m9MSUy3HA02P4H9+VunZtwSKTtNe9tmTPuuQ35Qn7oaRF5+d9FtvuYLa3fKF7du1ekt9X+eloykYLietFobjvjGZs5VupS3NRUFeeOWKz/hyOvWI+d/38oUgkEnzZ9T+T1VdHLvbKLQ3EuggfaRPY8ZG7IZaVUa47FCAIEy63t69mf/QxpMov8r/mAyONnWM873rAeJ1J2wbXI7zAKdiOddtwucuTl+Otpffvdl+tz8cARsbXTeNmeO/8c5wMjIn1pOD91bolepieNikdfJCfjkohIsMS9FtPM4aGVB55xfy/BMYwGm1aJ6/k6mbIg6ZCummPH/0xk8Ve9bx6Y/evwkHGtS82xdMmLK7ze3l65++675Qc/+IGceuqpMnfuXLn++utl1qxZcsstt+R69/JbpjPH8qUwudvfeUepyIGnY7zJ+Hr3EmTNL47v1e6/ihz2kSnqvNDdu1rkmY+J7NApxJHobSeyHyLDmWNuJ5nhdYNlUvDDKusXxH69YbH78oNrYwesRVQwVDMD2CheiXQqd/7ZnkG17bciPbuSzxx79lJVn2hEjOPH85/yfi2WWDexGldak9Do487fhtvX9I95v+/tn9qfjz8pep3T/iZy3A9976bUx6g12vqIv2307vP/eUDK/GSOubVpl2VDRqZYJCzy1o0p7ZmIqAkznO6scuxKxNrHgTZruXmcS5aeQa9sjLVsxf+6rjqC4BhGg72r3ZeP9smfAkGRY29wv0k26VSxHbsiIev53oezsXdFIS+CY0NDQxIKhaSy0l48r6qqSp55xv3ORn9/v3R0dNh+ilKuCvF63cXLFPPCx7zrpmfscmNm9/QdENn9N2oc5Qtn8CkQTKIA7PD/5c67RLbcal+WkuHMsVZHrTy9zytul4IPjpnMTrU27l3u6274qsjGb0nM/4d2I3hGcAwiIode8Lfe/qfcl/e2qkxiNwf/EXubI0MahznPES8bQ//fSfKOdMzhY+YMe46MkjFH+/8MZ7CspFpk6jlxZp51HMcmf8D/53nZ80Dq2wCiuAWznLXEAh6PXd7bvT32xwUCItviBJHS4cgGkbWfEHn1P9Tz9eYMe+nIBBn+289Yk9h7dv0lDZ8N+PDspendXmmte791tCsfKzLxPY7+t3GMcCtJhKTkRXCsrq5Oli9fLv/5n/8pe/bskVAoJL///e/l+eefl7173etVrVq1ShoaGkZ+mpt9jM0tRF53y4/6eurbPvUv3hevXp+byHCzv8yyHre9Nlxw1SPoMNRtDeu4s8p6HGtYlm1fwqpmxXqP2dOQZUZntWub+p7FKiAZbxu6tlx3i/uqfrahBQIq2Pb4cL2Pjx60r1taXfjDKk3/dCR62Rxnrbdh+58SaYkzXKVqsvVYFxh/8yciPS6Tc6A4+M2QeOw0cQ+8RrzPSfHqGjnf57zh9MYPRIa6JCWxhlWaf0/PLvtLZfXJf+acGLNVeSmtil523I8T20ay2XWAiOrr9R2Mv56IyNs/d2SJJHDTKl6GczZupL59s8hDy1TfZ2C4ZIRZhD9Qmvpn6Ak5KlxmyjQzxM/fYbxQRDf/kHte5XT8cGunU88V+ciu6OWjjTMD7kNviiz9jsjCq61lkXASkw4hnry5wvvd734nkUhEpk6dKhUVFfLTn/5ULrnkEikpcQ/OXHPNNdLe3j7y09KS6EXxKLT4Gv/rLv1O6p837Tzvmgf3etQcmnCK/+2bd+4ePEZk70Oeq8oLnxVZe6X1XHfA1/0f7/eYgb0n3q9+t2/0v3/IHPOE1rlZzSya0vaG75641SJKmOOEVFpr/wy3dYrF7CvV73izWca6QK6bZz1+51equPr6f1N30IF43L4nkXDyWdQ7hmsd9u33LsD9jxjDG/2IFaBzu2gdMXycWfbfIufvFFnyn/4/8/if+V83Fmc22bE/iF8LaVOM2mVALBu/LfLXOf7WdU7o5DmcShftNmesjpOVteZsf/uQCt1/DfWJbL5Z9YteMW5sx8z69GnC8HDroCPQtuBqkaazrOdmHdF4WXVAuiQyKYcrjxvcpTUpbjdFx/0kDRtxHM/MmstaJGSVZUDa5E1wbM6cOfLkk09KV1eXtLS0yAsvvCCDg4Mya9Ys1/UrKiqkvr7e9lPwJg4Hni50yeTIFN3ZSOUkPfU8n58V4y5Z+yb7UM7tv4+/PXM2osHhYbetj4ncWZ2GAzJSkyfF7V1nq3Tsz8h3X68bcL+jc+wP0r13+eP4n6vfVVNFztsqUhFrBjyxD51s22R/zTk07uET1O9iysYrBG0b48/4li3BstTrbz5+psjG6xN/X//h+FkmzppjOuAuEmfoZEDV/1n0FTVz1dHfiL8/aZ+kx/G3Lf5/Iudvc19Ve8Ujcz0SFune4f4aIKL6ZoOJlEnxkTnm1j7jHS/SUe8rUc46X+m8wHf2r6ua7OdcM3hmZncDmTTQnuIG8qlUjnH8yUQ98BLHLJzNH1WlhWp93kyAb3l3NVJTUyOTJ0+WI0eOyMMPPyznn39+rncpjwwfBJw1UrKh8XR/67ndufM7406g1Lsoe3Vz4pkBW37hvjzUK3JHeWLbQpqlITiWyLCHMcfE348Rju+w3r+Rz4uIdL5jX6ekyrtIfSHQgfmp54nUut+w8PSgcfEfq2YTwbHR5cEl6atLU78otfeXNSTfGdUZxpFQctu4e7x3LTTNee5a4XMYSSAQfcFcPT32e8IJzCrpdr5ebtx4ajgqdpH+RB16QeQvM9O3PRQgr4wuP+f74e+zn75BfR6er3fcbn+uh0SmQ1SJlID3v5POsGOWd2SaM6OxYKSjXqBxfl58jUj1NPvL7/mzCnL3plCSpOPt5N9bwPLmauThhx+W1atXy7Zt2+TRRx+V9773vbJgwQL5xCc+ketdyx+uM+i5mJ1ErZF45l6V/m06vfBp78LMh9fFvwAREalJ8MIduWHrlCU5RHH3/bFfbzrTetz4Pv/b9QzSDO9z1eToWkDV0yS/7mCl2dilIvP/VaQuxTtU22JkfD7zMZGDPguzIz+kWotLm+Yzu9hL55bkh1WWD2dBtm9KPlskPCDy5o0iL/2bx+v9Iif+f8ZnxhmWrLl1XGd+3H1dnaEd6heZdbm/7buZ9XGRKR9Sj2tmpXfmr7RntQHG91N/Vwc7xLNfsXR4yG8iN2PelYZZK53c+vNmzcGVD6X3hpFbcMyrz6Kz5e+sUHVcH1uZvv0ATH4nZdr3pPvyfJ1kze/1ul/Hfs97BJczaObFHEatPZVi36tA5U1wrL29Xf7P//k/snDhQrn88svl3e9+tzzyyCNSVpaGMfcFIyJSNz/2KoGAyMlJzqgV86P93lFPoSMdM/odEGnwMXPXvKtE/jkD6axIM+PEkalpl31lcvkYVmmuO2mlyNhj1cXt9Ivs70n3yTDfHP9TkYrxqW0j1nHkzKdU/ac154rseSh/Oz2wvHR1mjaU5DFg3ufV7zUf8J6tUjv4vPtysx07Z6hNxPqrRd76iftrz39G5KUvWs8nOmpzfuAlkQ+71E3t2hq9bO6nPDrDw+3l8Ev+Z9krrbPXGtJ0dvry2/xtx7cCP0YidSkd9/VxxLkN4/lRw7V7Ezlfx5sYo7Ip8ZleXWeWM46DU9Iwc6xt0y5BiLd91CV860ZrwiMg7Xye+1/8rMcLedpPTMv1gM+/Ld4xUw+pLquLfq3jrcR2qUjkTXDsoosuknfeeUf6+/tl7969ctNNN0lDQ0Oudyu/RCIi5xpf5JoZWfxwvw3d5UCXluBHxF7HyM1HD4ks/neGZ40G5sH8yKuJvfeexuhZ3dxMOtV6XFrtvo5bgctAjIC8/i43LHIJVOfpSTpZK26Pv06iYgXHamaIvOtHIst/qy7wnzhLZNsfyDbJZ6E01RxL9phttuuoWScd56xHTla/+w/Zl2/+ufc20qXxNJEp5xgLHOfEcce5B7zc9idQ5nH8G97mEy53h71Mv1Dk3C3Ry3UphFSD4U6Z+vdF8fLqX5rLDzwT/fq+xxP4jHhDv5I492/9jfV47DL1+1UfNQWTcf7O6Jlo3f7ddG1Rs3/25g8zs0+AiMiLn/e3nmcQJ0/73Vk918X5Nzjr2eEHRTqRWBKIIowqjs7+/H/N4ken0tCz1CDjFQlHHjEO5v0HEntr336Rd/7Hfbmp+QLr8dH/4b4tt4vMoEc9utrZVkDs+J+JLB2eOS44XCRTX4yf9lf39482E1ekf5sHn/V+Td+drxinCo+fer/IYLuaafatn4kMdad/f5AnfJwjnEEtEXs2xI4/+vuouyeIDPVaz2f8s7/3pWLaR0RmXGI993vDyDU4ZnTbzJkuhzqN46LP7QeC0RfNIurftWqqv2349eLnRQba3F8byOIkQ8hzw32DZI73vXvt29Ce+nD0uoc8MkndxJ2QKiIy7nj10M8IBxF7/c10B6GdappdFprDUYeDf7me4Q/FZ/vvUnt/vo4wKHE5r2aKW/a3KW5wH04Ex0YT50EgUCpS4pERk25jjvK3XqaGyGH0+5NRZ8f8Lqcr0y/WzHnOWV60Df8eXaxfd4SdHcUl3xY50THJw6TTRBbqOkN6uvgP+drdvJfrYaKlVSLzPy/y3odFKieJPHWByMZvifQdzO1+If38HAMGO93e6L2+24zEbw9nRpjnqY434n92PINtsV+PhPz9jbOvtD8fivM3mxft+54Qef6T6rE5G2YyyurSP/HP5lu8Syf8mRtb0IbPoy33+VzfaA9eNWtTFSwTmes1rGt4H6qa1I2yKWfbX3r3n+Jvv9oRvPLznpQZ/246ONf80eG6RHkacACi5NN31WhTkxPI4Pbk82+bfKb3a9M+Yj32uj4f7FIlMkZuLoDg2KiSw4tVPdTslDvjrehzWRwllYm/B/ltsE3k8PrhoEuqBfnTNHy3c7NI1zb37Zz7TvT6Tiv/JnLMt9TjXAeT0i6Nf49XNp6v95aKzPiYyHtXi0xYoQIA674o0r0jffuH7DnqWpeFftquW0cxRudx8y3Ry/Y+HP15Rzb4+Ow4nrnI+7WDa9WxwU/h4ZN/Y3/uVpdIB9mO+ZZIv0egePwJ8T8rlgVfFDnLrSZSipwzbwKpetj8rhvHA+f5uG+/yG5HVrffrJNAWfSNMVOpWcvHOLZMOlUNpz4pRh3g5b+PzhCdfqG//UqF2V86d/PwshIVFG/flPnPB9Iin4JjpjzZr5N+ZbR1j37Wwyeo2oJrmQBRIzg2mkRljsWYbSad5n9RpKpRPXYWEhaxZ9g0fzQ9n/mx3vjrJGLlg+ndHpKz+l3DQxlT/N62udUpSzJr0WvGvbhDKUR990t04CdPTobpUjZGZcal6l0/E7koDbWpAgF1h+y0v4jMvkJkw7Uiz12ReM065NYx345e9prLsihu7StGmzeHZb0wPNvyyDk0ixnOjyz3nznmh97OuOO9g01+ZwDzEixzL96bjGcuEnnzx+rxK1/3Xm8ozed8jE6pDJPSAbFIJHrm2a7t0et3bva3XT99AX1MCRpDmAKlqi7inBgzyM/6uH0EyFEx2khaGcdA3dYDAZFQr/uNBYY+I9vm+ahHtvW2jO+Gb2bAOR03y1M5FlZNVjNk+yk3pI+VidRhLHAEx0YVZ0PJUgf/+BuNqecD0Z38c4yL0/kuB7NECxOWxZiIwSvVvvF9sbfpHDqH3LINq0zie9zy5+hlb9+U/P64SXRYUaFljlWMEzljTerbmX6hSDDFi3Wnce8SOeUPIkd/U2TLL9SQy31r8rf+RLEZ7PAe/prsd8Et+7Bmuvf6u+61Hm+5dfhBlr8fT+gZ53xmjvkyfLzsizEEws9FRba0bxLp3qkeh2IEwP5xcXb2B3luuI06+wW+ju3D67gW73Z5v99zthkcm3lp7M8+6lork8ytzc//YvSy435kbCZLhbxdg/WB6Ow6jaHPyDa30gijRTZnq3Qz6wqRuZ8efjJ8LJ0Qp45wzazkP6/AEBwbTVwbWw5qfEXCImOPM3YhTrG/3X9JbPvvutH7tac/4r7ceWfu5N/an7vNBIYciUjqwypdvPFfyb2v2rjAviRi/U4002PCcpUlVSwu8XnizuTssXVzRU64WeSEW0RaHxVZc45Iyz0pTiCClP2pIf13IV1nkY1x7Dj8ksvCiON3Bm29zRrGGQ6J7+7W+TtFms7wfl23Jz0c/Ojrotdp/rDPncwgMzj61k/ir5+pelHIPxuuycx2dR/ZLcCTysWqGZgvqRQZf6Jz49bD0hqRaeerx27nvuNd+rfmpBh7Hkp6NxPjERwD8sWom93YbD9p6GPo7PeZH0/izS6fP+646GWm6mYVkOxuSeLzCgvBsVHF8WWfeq7Iit9ndxf03byxS0QWfkU97m2N/Z5E64wk2om5qEdk5iX2ZTUz4r9v629F+g8n9llI3bbfS0aCY8mKVd/uhJv9b6dmusiCL6S+PwXHx2lm0srUPqKqUWTpd0XefZcKGjxxlsiWX4mE+lPbLuIbaHdf7lpMPgUvpWF25nRnFsbanlm/46V/9Z8xV9MsMnaZeuw2i52+4O5p8V4nE87bmtj690wUCQ2ItL8e/ZrbzKN9cfoRKByv3xDjxVSGVca6mHbpV/rNWrcNqwy4tHvHc92HNW8cL/lPf5/V9oq/9VIVcpkNlAm1kE+Co3iWxXRkjm0bTvI49gdJfH6CZShEVB3f/kMir/k8VhUwgmOjibOx1c4UafbIpMqYgEj9ApHy8SIVE4YXDX+NvKLbJQlODx3usz9vijPrh9tU9BPfHb3MmekSCIq8eJXIk+epWcx6die2n0jOq99IfVhlOsUqFj/vc9nbj0IyYbn12E/m2P416fncsjqRRV8RWfmQ6lit+aDI69/3DuAgdS982n35jruil5nfi0Tt9DGDW2m8OllxMsf83FQx7X4ggZVd2sEF+9xXrZsvagY8lyna9VAtPXtn9dQE9iEFycyMfafHLMHOelBAFGe/wEfQrOVu79eSuVjUzOCYrvU7+f3WMudskzoQZ9ZGPfobIh96277awi9Hf9bir/nbp1S51uokOIYM6XhbpD3BmaHjjUrKO2muOaZVu/QDYqmbZ3/ud1+6tiT2OQWM4NhoYn7Bp2U7KGYIlKlsMJ1xU1qjAgzHft99/dpExzE7TtD/f3v3HSc1nf8P/DWzfdnGwhZ26SAdERHpVUAUpClSlNOzdz3Pu7MenuX0FNvh+bN8FfHsnqioiIouIIqAsCiioiJ9aQK7CyywLJvfH5/JTiaTZJJMpr+ejwePmUk+ST5skpnknc/n/TnNIJfUOToJVc08pW8zQ7Q0GfC6uAn59nag7CxxM139c+DlKQjKL+tItxxLE62Oki0GccnXmauAqXXivfJJVyi7VepJSgXaXgwM/wTI6Qx8OQ0o/xuHqg6F2krt6eqHHIC13I91JgZxUAfbzObI02vxZXUEVK0k1ZKk/TdR5x8qGg6kF2qvt3i4GOFu5DKg29+115PTUbwe3W2+i3MwMoqAaQYtc1pMsrAyxXf++x287/d9Y7laFGfkc/PwZuvLGgZdgwiOKbt0l44D2l0mRk+WDf9UtSnPeaIeNTZHddN66iP+21Kf76FS9b3GRAbHKES+vQ1YoxEMNhJzwTElB4JjdvOU1teqHvrLLVlNXovv/Nj78C1BMTgWUxQn2+B5kavG6c+IhL/yiZbVDph6zOAJtsZFScsp3ven/UdcbMjazPAtq76gUMpuH7i+WQHKJGeKFnj95gJD5ot8ahseBz4fBXx7F7C/nIm+nab8e1rtduuErLbe964kMeBEms6NKunr9zLQ8UZxc97kNG9QunAgcEaZeK/3gzwhDC01XW6g+Thg2ALRDf2bG4AVV+gkbCZb9n7p+1nuTqjVpdXsxW7tAeBNE8Hqxj18PydnGZc/UO55E+T3+da3gC/O008wf7zaf5r6PDjjM/31Z7UF2v0RSMkBTv6Haj2ev6GcXHe7J6enlS7gdin/D+puYoMMWu34r0i8HNnpO2LgFw6Ndk2xQy8/5Le321/nca2WwhbP+dJzvO+VLcdKxwAnXelbVj2aZUO3Shs3t1o9IUJBK51EoFb8Zh5YEGkxcw+lTq/h2CA2YaI8f3I6O7A+m8HBk64BihWD1MnfsU37mtkoULMVKL/F3rbjBINjsSTSo+H1e1nkNynoD+R2Ek++e80WrTSMpGqMcpPVWrwWDBAjXCq/BLVa8EwJIneQVOd93/FGoNlZ+mXdKUCzkeJGY9hCoORsYMtrIofR6j8Be5YmdrLvmgpg9xIHVqT4oVT/aI4NQ5ebfi953x/bB7S7HDh7bei3G2/aXAD0elx7XtFQzxudnxm9VjOhUjgQGPSW+A744V/AsqnA7yvCW4dY8P191sqfUN0wyUOrK793ZWYvdus1ljUlwAX4UU83xuNVwXW1/eX/iS5cmzVyfurlPdq3yrgLt1nyBXPRMPEqd+lqp9O9NVTkVoCBApJaXIrgmNZ0ShzH1KPaOvAg8vev/acprzOyPa0VjY63Ln8TrcQAb/BL3UJzsGqwKXl9cvlYu7kPZMlYcQ1MZEuA7/f2qqBzJHodOCG9GEjNDX499Rbue8crWr13+avi+hsiR/jwRdb+nr8+a75sHIrRIy9BRXrkjjYX+D4hy+tmLgF5/1fE64A3vNMKBgFtLwFGeH5oA11EqANw7S4DRi0PvG25rKzX46LV3WQTTUZdbqCgH9DzIWDYJ2JEzN2LxYh4Ky4HdixIvITf398DfDY0uHW0mGR8LNvJbWOVcvu5XUR+qpSc0G83Eck/yCO+8E5LyojchU9eV6DvC0DPh4EtbwCLzxEjhLF1qPDdXc6sR2sYdjP7/Aed7vmB9LMwOM2KK4AVl9jvOnDQk5vj96/85504qj1IzYkaOHLj704C0gqAFE9QSn74FO7kxfJv9riN6hmBl934vHhVB0Gtdmul2PGqCzj0G3D8kO/0UFzXal5PKh4uNwTFDI7VggHA4HfFe3XLMFnpWN/UHvJviJyr1Giwn0izk4Nt0DvA5ldFC+w6jYT+RLps/PbFXHDMc/5E4iFPo5aAOw0YopEHNSndtyWZET6gAsDgWOxwJUW+5Zhd8kW78uK9dAzQ93nvl5/82u+/+utRNlPt85zJJqIAut3h+zkp3XtjYZbLJZ6Ud/87MPxjoOttIr/FF5OALy8QyacToY/2zo8dWInb91hWfxmH48tZeUHul0yXguKX/8izP5U3CkMXwNRNdCg1agH0elR0p96/WrQO3fSydlCHrNNqOWZ0ySHfrK21mZDayqiN9UfFSIq7Fnmndf+Hfnk/nrpq/SZvfQvY9Yn/9KRMoPf/s7ANA+fu8b5PbezMOi3T2ZenPx140d2fi9dt/3OuOhT91v3Dvyuy3/eEQatys7QCxT7rko/dAOuXr0VcOsExl1s7tUfhYPHaQefhsV5esWEa3xvhFOjaKzVXnN/NxwFLzgF2l4WnXhQfrF7bx2zLywhd2049Ku6tjRSP9L5veb7//HD36IhSDI7FCpcbjiT4iyTDLzrPoWgU3W7U2snaBCerLdD5ZmDohyKp6vFKYPkfRM6UjS8AR9VdBeKEI4EDyTc45TcaaZiDYzmdQr+9RCYHvpXdpYuGRs8TqrR8MZLY4PlA3UGgbDSw4d/x+WT86B7t6V9MDi6fjFaQ6Nh+/2n5PfXXEexgCcrR4wKRb5TlbpbTJfHgw+ryMmVukBWXaLe+S84Eikw+vbUio5nz6zSj4am++uGGiRZsRyrEsfjjw45Xi6KZy/+7wqjl2I737W1m/2qNiRojZBuNbqlk9iZd/Zvm1hmtNber9vTsdua2E2nFI0SX0q1vA6uuSYwHwxQ6cv5MtVhtORbpB79GUgKM6M2R3QEwOBY7XEmxn+sqran+PPlL0OhCXx6da7TWhY+OMxabL2tXRjHQ/gpg8DtAnxdEC5lvrhPdtTb8Gzi8LfR1CBfJgeDYsb2+F8R+T3kd/GE5v8bbNQIARsm5SBRffR2vd2575E8+t/W6pkSL5AzRHWbYx0B6EbB0IvDd3fET6K6pAOYVac/b9r/gbnBeS/LvYn5Uo2uherAVJauJqPs87/vZ5TLf0mS3Jxm+3dxmR1SDSXT+c+BlkjLhSLdKtVZTApcJCZ3v6bSCwIueOKp/LFL82jQX+F2VDsMoOGY3YK85yI9GyzG9VqrqY9jub5fegB0lGnlvW8/Qzs8brVKygd5PAi0nA0vHAzs/DbwMJZatbwE/Peb5YPDbJ98DND5FNSOKg0xGYqXFm9b3DXMKAmBwLHa4khDzLceyDUadNPOEwJ0i1pF/qvlt5jowYogVqblA6+nAwNeBgW+K1m7rZorWKOv/CVT9GN76OM1sy7H32oiuplr2LPV9erz5Fd/5Lrfvk1U5KGpHcgbQfLz3c6OW4lWZrJJCzHNua+WSS3EgaanT3Mki4DDsY5F3ZsWlIsfKoc2Rrllwlnia2+t1z99d5j/ypBV1hwKXMWTxQrjVNPGalOHtxmQ1+KTZ9dMOE3VPzgRS80S+TadMl3y7K6eHMeCk1/Iz5p72k643QpD/c6vqusCvJZneORxkYNkolYMfVZ3s5vPTHDUT2i3K+r8kvh/CxalRMYuGAUPeByo+BFZeyZYn5LXzE2DL64oJeued3LsgTCO1hoqc4iCrbWTrYUT+fp1cDRQM9J9/8Ofw1idK8SomVoxYCrSaHulaBCc5W+SF6fFP/3kdbwq8vCs58oMSWJGcIXIz9H1BJEls0hf45Sng85HA2tvF6GWxlgRcfiJbVwNsnKNf7vBm4MspwKIh/vOSs2D8FCkFOP057+cWk+3UVJvcMtHlBibtdW69pE++Wc4s8e/COrky7NUxzeUSI9cOeQ9oexHw7R3AV38ADnwb6ZrZc2CteK38Tnv+ij8CK6+yv37phPmuqFOOAI0NulhWfR94HfIN6+Qq4Iwybx2ssBMc00tkLQfr9CRliIvnkSF8MtvfwqAEjtHJMUixT6/lUzC2vKaaYPIaqHpDcNtVBscCfU+oe2kk2bxp13sQEQ0pBXK6OLeu5EZisKvWM0Qe3oqPnFs3xTCT57bc0kr92xpr+V+TM8S1zdAFka6JAc/fOCUbqNHo1aR3fZhgGByLFfmnAukG3RJjQVIacMq/gJKz/ec1aqEdxVZq+0fg9BgdXtadDBQPB06bLVqkNJ8AbJsHlJ0pWqXsXmy/i084yT9WNTtEbp1A9iz1z/9RdwhY0F1/GVeyGCW0QYgCiFYHZSB7lDcC4WzZ4qT8XsCAV0Reql+fAZZOEudsrAW3AegGL04cNReU0iPVm7+BTUr3f7p6pML7vma78fJpBd6uTu4UbwDWarDL6Ds3v7f29DKN3GYuFzDgVeNtJenkH3JUGG+6czoDnTS6k7LlGFnh9x2qkRvMiZtkK8Ex9cjVZrpVtr0YOFv1/ak7iFYUBMfMXlcZ9fhQKxwoWpHt+gz4+lKg9oC9qlHsqKkAXjf726Zz3OedrD39WAymtEhKd64FXMivlzW+n5S5gRMYr2IojFxAu0uBxj20Z4/8wnjxnJPMD0cbzVxuoOnpwCkPiEDZSVeJ7kxLxooLih0fiBvVaGTnInXXIv98RFqKhgFN+2kkjAxRACJWR3+NZfIQ90pd7wAyW4a/LnZktwd6PyVGHdy1CFh8tghyx1I+yECBJ7ukE7B2rrpEt1WZ8jtv+R8CLKpzkW31AYPRTbKyu6LSLq3cOhr1UXbnBgC3zvqclF4UXDd0Kxq1AE6d5RvcOOkaBsfImg9VqS+Uecbq64Dt8+FMMEnxe59/un6x0nHA2TZaByc38k+or9tyLIbOke73WCufnCm+F9pdBnxxnmf/UdyqO6iT409F70Fi+yuBPDmNinqgm2gIIkdQSwd7zWjJaO4/7RfFiNof9w3t9qNYDH1DU8yLyBddlH+5ulxAbheg2x3AsIWiZcrBjWL0uC+nAZtfA45XR7qWCp4fr688XXy3vwe8o/EFq/aGiRvDYZ8Ao77yv3AMVescvZGkKLykOvs5XSIlowjocZ/IK3hoM1A2Cvj1OXNB4EirD1EdpRPWz1VlHjpLAVKd73Ur3Sr3LtPuBpqaDwxdaPH3SqNsz1kir4fMnWphfTbldQPG/hT67ejp/R9E/W8uBfaqQ/vwVY3RKQNR3mgf2S6SvTthx4fe911v0y/nTvXN/dX1jiA2GsUtx+TrrFD1xijoJ0Zz//0rYPlFwLF9odkORZbW+X1ok+KD51jfMR/Y97V/WUhoCEWkF/vOcmIk+QkhehgYDqXnOL9OZfqH1gFSQexb4fz2YwSDYxQeoY6Ax4tGrYBONwJD3wd6/Rs4UQN8/UfRjevX54CjeyJdQ2H/N+J16QT/kdvsyO9lECDx3HBPcHjUT3eMjCgTT5rqPImK1UBlSjbQ+WZg6Eei683iMcAP/4rupMRWR0Q7uNFcuaofrd0Iu1wAJJGLEYDlVmda0pqYX8XxSu38Gi4XUHKm/jY0q6NxKZWSJ44PebCAcCbbDid1EDGWWsVQYG8FOWjKGxnWWtbaySvbtH/gMspcZ+pWocrAvPr47XGf9frI9P4vUdEixlOH9peHbhNJ6cApDwIdrgOWTRGtrCnOeH63d3zgnTS/regNc3QPULnOO10rQCrVe885dXdElwMPTTNLg19HxITge6LV+d737hSgSR/ntxEHeBVD4TFQZ+RC0pdeILqhDnob6PeiyIOx+k/A4rFieORYGT3vaLCJ7yWRnygtxnPukQj+TlcFQbre4U2oHquSUkXOmeGfiFxMX04Dyv8q8nFEm7QC0aLjeDVQppH/Ue399ubWu3g0bHWBbnh6aWFZvZvLbJN1lWnlKJMDfEVWuvBr1EfOETpiiWiNktPBWt1ihbq1IINj8SXYluv1tRZHslXmBjMZbHdZfNClDo51vF7xwcGW6kbdzdS/g+HmcuvnenJak96iFdn+cuCrCx24JqSoIZ+jS1StnPZ9A+x4Xzzgl2n9bkv1+uevPD2/V/D1JG395orXzBaRrUeU4VUMUSxIyQFaTRFJwQf9D8juAKy/HygbDay7F6hcH73JwX96xIGVuGK3dVEi62li36dki26K8cDlFiPUDlsgck6tvhFYcXnwI62FQm0VsNPpUcUMvoO63aWa4LlQtpX7z6EnquocZV1v977vrq6vUXVUF/cTd/l+nhoD3W0dEw2tYiggSQIO/hrpWvhTfh986zkfPwnQMsxMSyxlLlO/Ls4u0dLTaVE9srE7vHlXk9KAHvcCnW4WaTm2vBm916wkVP0geqwY0TuG1tzkfd/Q40XrPK3Xf6CiN4ploshsLnIxO+18RToJOUfpUI4wq8TgGFGsSUoHSscAfZ4Dhnwguu1sfE6Molb+N+D3FeFPNn9grfe9rdwSBhe3kiTmR0VXBLKk882RrkHkFAwABr0FdLxJdLVcNlWcm5Emn0dyYKzuiH5ZqwMNGF3EFo9QV8TzPSUFXtaPQ98Fuz/z/dz1duBsC0OZT9otXpXH+Rll8RPsNcVkyzG//a8yJUoHoYlXx6uA9y2MRBiMQxaCcFpdEfevCrCQiVuZbn/3vtfqWj7oLc/2HbwRr93v3LqcltEMaKSR5zH/NGDg//yn53T2n2ZH/qnAkA+B6h9FkOzIbmfWG222vwessziYQbTZ+Qmw+qYAhUycL/tWGiyuyDmmJgfHErXXSG5n4IzPnV9vcmbgMgmOwTGKXlOOAuM3R7oW0c2dDBQNAXo9Lka+bHW+aMpcNhpYda0YUc+JYdAD+ain9/3+NTZWYHSzW++9oT9P52Kz8y02tgkgI5bzEVBMyOsK9H0B6PkwsPVNYPE5wI4FkXsaKqlyhLxpcKG0+b/W1n1MIydis7M821UF7OWcY2YC+eqWHqEKlCc3Ek9rzZLrJQ8s0KQPkF7ofL1iis5l5fBPgfFbgG4ztecneVoGl50l0gdsfw+oPRCaKpL1kV2DsfA082Xt5Bwz05X3G0XXSb/vD+UNuoPfy2ZaTkdKl78CgzVGkhy9Cmh5rv90J0fBTUoFus8EutwKLJ8BbHol/loH7V0GrJsJ7F5irnx9XXSOoB7ot9ZMneXuxVrntmTUcsyz7cHvAs1GB94O2cfGBz4YHKPolZQmchQFJYFOeJdL9M3vcZ/IfdTxBtHvf8k4YPnFwLZ3fYdJDxWtPD5B8+xHvZYsJSZyJ2mZGMMj2VBsadQCOPURoP9LwIFyMcLlppfDE7z2IV/MmvhuPH7Q2qp3LfKfNuhtoMW5/q0UstoBWe3RcDO66SX99Z7+jGpClHyvyxf18oXlmV+L0YcTiuqmtmk//yLd7xavjVoCJ1QtFcf+7G01Nl0Chi4A2l8BHKkAVl3jCZbdDGyfz2CZk0LyO+2AUAXHDEfpdQGNe8gVsL59PeoE49HE5Q48KJEyD9HAt5yvQ+MeIhfZ4c3Al1OAIzud30akSCZ+15TKRgM/Rlsw1cy5YCI4ZjiKt0FwTP6dT84QyeP1tL0kcB1I34TtomWonAfR6G+dIBgco/iWyNHwnI5A11uBYR+JgFnNduDLqWLUoE0vA7WV1tb3VuPAZWorgcU2A1VqGaVAl7+Jiwx5P8oXzspgWKZG14CTgxhhiiiUUhsD3e4QT+3rDoqL4g3/BuoOB17WCT897nlj4sJXPt9WXGZu3cru1bLkDJEnMaut7/Qe9wF9nvU+edYKrMm0umRGWvd/ICrqEW3UN9xjfhCtRGTqfZlzkrfVGCC+63M7AyddDQx4zRMsu1yMisxgmXOstFLZsyx09VCz03omyYEglJWRbhNFXnfve93RxIPkThG/h91mipHZf5sbJ63IPP8Hs4NFHN4MHPs9ZLUJSDnapGz/GgT8jTN1vhrsz82v+AbHlMecz7YN6tFCo6UjmZdZ6r3H6nIrk/ODwTGixJDZHOh4HTBkPtD7KfHUeMXlwNIJwC9PA0d2GS9f+T1wvNK4zOIxwP8MAmhD3tefpxXEdKfCmzTWMz8lB2h/pRhxT6a+6QaAEjbBpiiXnCECAMM+AdKLgaWTgO9mAkdDfIF8zDNS2A6D81EmB+y2v2tu3XZafcgXzvu+1i+iHtI9Gh56SCeisxtMuPklN1eYLolAl1KzkcBUT2vJnrMCr5/BshBRHbt1NUDFQu/nb+/0vv/12fBUCbDXoi0piBw6LrcYPIU0eLq+h0NeV5FD9+huYNl54mFuPDA9kqoU2d819WiTALD5ZTRce39/v+LBmoKZQGagMsq/kfLa3mzQu3i4uXIUWNfbgOEGDyoTBINjFL9OuhZIzop0LaJPWhOg7cUiAW2/l0Wyy/K/iODWj7OAgxv9l9nw78DrrVhgPL9RG6DjjTozA10UKJpXn/6096a0441A6wv8f0SVP7BE0cydJHIFDlsIFA4CVl4m8uMc2uzcNn581Ptezv9hxvb3xOuxfb7r0OuebSePkXwuH682KOQ5/xvyeUVBcMzK3zGepTURCbatkFuhnHSN9e3pBctqtgMrrxYtMVffDGx/33rr6EQi37DK3br3rwEWn+Wdv/7+8NcJsBlgD0KfOUB2e8X246HVkkPCff3sTha50E6+Xzy83fh87O6Pnzy/l2aDY4c2iYF7ZEd/FwNshVvFx8CrGr+v390JrPmTxgKq/VOzw8ZGdUIRraaaXD4KrgfiRUoOkNUm0rWIuBC1kyWKAr2fjHQNol9KFtDyPPHvRC2w+3Pgx4fEjXnTfkDNFqDvnAA3ribldfX9nNtVXJRuf08MGa0nvyf8n156Pvd63PNRAs4/JBJqf32pcReJaWG++CYyw+USXc6KRwD7VwPf3iEurDv/WZEPx6afFd+FOz82v9zh37zvf1/uff/tHdrl7bT6UN8Mu9P88wPJT9TbXgr88ACi4mL4xDEgNTfStYgOpTa60o/7zZmcTHKwLLcz0OEa8VtQ/SOwezGw8ioxKmNuF6BwqAg+p+YFv8244AlKr/+np9urQRAinC1a7ATYzdYvJcd/mjq/TjS0So0WLc+LQE5MALmdRCuyDU8AX0wEej3hQP7hCLHSckxpw2PiWrznv7SLO6mmQrx+3Ne/HlYS8m/6L7D8D/5lLJ1Tiu0HyolHFCJsOUZEQlKq6I54+jPiaXz+qcBvL4p5FRr5COzI6eR9P+Z77w9rnVbib8+PZJsZQK/HVLPqxc2OzOUSgTEA6Pu8970WM8l7iSIpvxcw4BVx0/rrs8DSicDusiCeotvt/qe4qK1VjBR74qh2cTutPo7utVYPAGhzofXt6MkosbccW44FJ1RPp10uEQzrcA0w8HXxW9buUqBmmwiWlZ0FrPlzYrUsk+qB6g3+0wDFoBuq7xafQJLDASOjUcitfIe0mOR5Y7J+ff7Pf5o6eOFUS6XpMdriyU+EgoXuJKDzzcApD4vu0788jZjsxv6ziV4XWvR+Y0NBfqi1bwWwb6X/fK2WZA0U+0QrMAZon1Pb3wM+6iXeK4NntvYxA9rkrKi4S6yrq8Odd96JNm3aICMjA23btsU999yD+voY/CIkigfuJHGDLgv2RnCyp+VZ076+0+UfwoJBFldoNMINUZzIbgf0/o8IWO/6THR72vq2/qiteuze8CnPsd2fe99XfqtdvvI769tIy/e+P3FMZ1Q5z8WvfBF98j3662s5xdr2T30scBktDI7FBgbLgKofgQ86+U6Tf3vloJn6plTZWtxOayq9oPfUWuNWQFZanzY8IDNbP41yhqNYJroI58ECxIAdQ94XLdiWTgAO/RZwkagT06NwBtj/RgPpNNC4/tj0EnBgjXivDMTbCY5xdEVyWFTcXf7rX//C008/jSeffBI//vgjHnroITz88MOYPXt2pKtGlLjkJ6r1x+03rW/iCYalZGvPt/skMK87kH+avWWJYk16oRjdceBbQM1WoOxM4NfnzD9drtlqb7t6XUKUXSxPVeQiy+7gW67XE4G3oQzc/fCgTj1c/mX1DHw9cBklM6Owtb/SfxqDY7FJK1jW9hJxjjQEy24Ro7fFerDsyE5g27s6Mz3nktwq/LNh4nXPUme2Pa9Qe7rejWzdYRH0D2W3Sq0Hail5qgnx0uIrSI1ai5GV05pqjwgeTi430PF6kUbjmxuBDbNjqxVZ5brQb6NmB7D1LZujXmsc82b/vuvuDlzm2D7/aScUv58Fg4BJe8T7wsHmtqsU6QAuxZ2oCI4tX74c48ePx5gxY9C6dWucd955GDVqFL755ptIV40occkXknrJtwNxpwClY4BOf1au1LdMv7nitcc/deqg86PX9fbw5GIgiiYp2UCnP4kbencqsHgssP5BoLYqNNsz1eVIcRmh7hJVPMLERhQX4XoX2qFsJRoo4DZoHtDtTv/pcosTra5aFDtcLpEPs8O1imDZH4HDWzSCZSE6z0KlYqHI2XRC4zdc7+Z30RCNiQ7dfA56W3/eh12Bza/YTMhvsn5VP/pPyyi2sb0EMO438f1dNBwYvynStRGy2gJD3hMPNJaMAw7+GukamXPCRuvEpHRr5Te/Aiw7H/h0oLnyFQtFfl5A+7xo+B5w4Nw/rvG9qUzV4nIB6Z5BtLrd5VuuYTR6Bq3DrscDka5BxERFcGzgwIH47LPP8PPPPwMAvv32Wyxbtgxnn62f5PXYsWOorq72+UdETvJ8PWj9sAXS5HRg1HJxU3nqLMUMzw9to9biVf5BzD7JbiWJEk9SKtD2ImD4J2Jgi6+mA+V/9SbWdYzqEkHuBiE7r9L3ZlZ9wx3sMO895OT7qm6VgXS8yVw5UQHj2U37AZnN/afLNzztLrWwrQSSrtNyKNoZBsuujI1gmSSpWmRqPEiy1PLGoeBY84n6845UACcOi8EUTJP/jybrd3iL/zT1tQe7aAkuxXduNKWwcLnFSLW9/wOU3wL89Jj1NAOhpv5NsxLw3b1YvBYNt7ZNuXfGYZOtxCvXAdvmiffKUWple5eJ1+OV1uqhyUJgKynN9/O4jQ5sn2wptJruJn5ExTfe3/72N0ybNg2dOnVCSkoKevbsiZtuugnTpk3TXeaBBx5Abm5uw78WLVqEscZECUAeKUbrh72j1pDOCulFvjnL1MaoRqfUuukd8gHQ4Qbj7RAlMpcbaH4OMPRDoPl4YM1NwIor/JNvB7N+JXX36tRc1feDja4u7a/Qn9fxeuCcX2D95tzm6FhGzlV1DWGuImOnPBzpGjjDL1j2oQiWHdoMrLwCKDsbKP8LsOPD6AmWVSwAPuzs/Szn8apcrygUgW5pesHt+uMIKgBnNmiuDHylNhav6iBh41Ps14PCp1ErYNA7QHI2sGSsc795TlDnzbOSR68ht6fN37zkLHPFpRPBBz0PmgxcOTLIhcbfQz6HiRwWFcGxN954Ay+//DJeffVVrFmzBnPnzsWsWbMwd+5c3WVuu+02VFVVNfzbtm1bGGtMlAg8Xw/z2/pOzu0KdP+78aI7AoxumZwRePN5XYGMosDliAgoGAAMfBPodBPww0PAsinA718Ht85GGrlm1CNXKZPp+rXMMHFR3MjgwVZyIzEoQTA5RSZrjYRrQVoTz2u+7/RmGk/bSSFOu8G43OK3qeN1wMA3gKEfAG0uAg5t8gTLzop8sOzY755ggWcfyDenW98Ajh8Cvvu7eDXrtxccr6KP11MRnuNFsY3cLiJvqd8NNvMXxQyXC2h/GXD6s8Da24AfHo6OVmTqXKC5Xc0va6tbMYA6z/l8zMzoz4AY1MrzANwv755J77c3WVBx3kmSzX2k8f0wcZf1AXjInIFvAnknR7oWEWMiE23o/eUvf8Gtt96KqVOnAgC6d++OLVu24IEHHsBFF12kuUxaWhrS0tI05xGRA/SScZ+9zsTNqs6FbkazoKpERAHkdgH6Pg/UbBddTr6/z/66zFyot78cWHWVzvJOtU4J4obVnWo83+ip9ogvtLtZTY/TwI+jEuRv5HIDed3Ev47XiWO+6gfRPWrTS2LUx7xuYmTFgoGitWWo+bVq9OyLfSuB/auA7+8FjuwKfT2sstrCRC5vNj+TpLpJz+3qfy1jJZBB0aFRC5HPbtNcYMkYMUhMbpfI1UcdHNO7ltai/s08utebfsRwOc+xfeKI+e3I9bLSdVKyM1K84rx7zbOsK8l+IFCWlGp9AB4yp+XkSNcgoqKi5VhNTQ3cbt+qJCUlob4+hkYjIYo3ej+A8sVkv5esr1PvRz7QDSwRWZPZHDj1EaD/f+2vQz1y3Bblhaick8boMsKpAIlL9RqIYruBAvlG8wtNJjcmksnBsoaWZR/qtCxbIAJnobBSNbrq3i+97ysWiNeNz4Vm20BoW8zJ3ZvTi9FwnjfpY3Jh1feR+txv8wcGx2KVywW0vRjo8wLw3Uxg/T/tjXzqhGC63MsBI/nY1Bv1VW3tX61vx063ytcsBPpkP87yn2Y5MMYWnRQ+UREcO+ecc3D//ffjww8/xObNm/HOO+/g0UcfxcSJBsk7iSi0rDztCsa0E0BqXni2RZRogsnLoc6VsuEJ5UwzK7C/bSX5RsHWMPUGF9Xd7waaT7CxTjLU+2mgIHGT+frQDJb9ATi0EVhxmSdn2V9DGyyr3e+pSzLCcpP5v7zQrVvu3jzuN8VEswN1BMhh2m+u6MZNsSuzRHQJy2wJLD4bOPBd+Ougbjl2xMJAOXLQ6EStd5rZ3F5W1GyzVi+ltbdaK2+2NZuhBGmJTFEhKrpVzp49G3fddReuueYa7NmzByUlJbjyyivx978HyGtERKGjfqpUMAg4+V7vZ7tJNtVPeaNpJCQiAt4pBSbuAOprA5cFgKl1wOsalxOOJOIFGm5+Nzxuf1kt3WfaqQwFctKVgcskKpcbyOsu/nW83tMNc72nG+aLIheY3A2zcKBvTr9g7VkM5HRybn2RZCZvqZqyq11OByCzlXP1oejhcgFtLgSKRwCrbxL7vett4RuJVD3C+2fDzHfFl4NjygdT77d3viv/b/o5vQP64V/AKQ86Vxc73EyrRKETFcGx7OxsPP7443j88ccjXRUikqlbjo1YouqGYPPH+swgk4QTkTU5nYHqH43LNOkDtJgongrLT5Qr15lbv1uvlanDwbGTrgF+ecp8ecD3O2u65D+gAFEkBRss2zBbLFs0NPC26g4DPz3i/P/BjORGAQq4ENbWIX3nhG9bFBkZxcCA14Ctb4pWZKc8BOT3DP12F55mf9kNTwC9HkdIW3ge2WltBM1oUzoOaDYq0rWgOBYVwTEiikaKH+cmff3zczRqHdbaEJFNgQJjgLgpN527J4C8HkDlt/a7Sw/9CEhXjFQrf/f0/o/4F5DyJtuzbItJvkXsPIlv+0fgN95UUwjpBsvKFMEyTzAspxOw+gagw/Ui2b9Uh4jk5ln3D28rzK/+YH655hOA7e8Gv/1gRrOl+OZyAa2mAEXDgTV/Ahq1AbrdCSRFccujmu3WelR8e6f3fV6PwOXX3Gy9TqGS191cuTrF6LpD3gtNXYg82J+JiLQpLzj3abT2KhoCnK+TAyirbWjqRET2JWfpzysda671iRl53cSr3QB6yWjnnvDL32OD3g5+XZktg18HkRVysKzjDSKX0tAPgNYXAAd/AeZ7fmd/ni1axiy/CFh9Y/jruO5u7/str+gUCkUAy+pAHZSw0guA/i8DjU8BFo8B9n0T2fqsuxc45skF+LHqoVT9cRMtLRXW3+99r34IpEU5sE7levHqTgOmmkyjkNPZfN0CMTsY1+4y57ZJFACDY0Rkn17S/o43hbUaRGSGwU1kk96+nwN1P+zxT/15RkG4sAjRzTJzlFGkudxA45NFsKzoDO/0mm3Asb3A0T2hr0PVT/7TDm/zTLdw7pWc7X1vNr+hluKR9pelxNLyXGDA6yKgvPY2/+T54bLu7yLADQD7VqpmSp7BM+yw2CJ665vite8L5nOypTV1LljV5W/OrIfIQQyOEZF9yqbpaU0iVw8iCmz4Iv15VhPcqnN+pOZ735eOE69OJ+SPNJcLaDU90rUgEnxaXbjEDev2d7yTVlwamu1+qNFy5Pt7gK8v8iYUD2RqHdD+ct9pRt8XRgGwzBJz2yQCgPSmYmTSpv1EK7LfI5QHV6o3mmlznRaX+/4e69vY+wVQNtr6clpaTrZWvlMUdQmluMXgGBEFNvSjwGUGzQt9PYjIus5/FV0Cm56uX6ZomMWVqgJWyqfOGcUW16Vcj0Y3C1eyyKlkV0Yz+8uqDdDrNkYUZsqHU7X77a9nocH3gtqml3VmGNyUNxsN/+8LvUE8dAxb6D/N5QKSMv2nD2ZOIjKh+Thg4FvAr88Ca24B6o44t+5uJloZr7zMYGYYB6cAYPkBVDAtPWUTd2lPT8nVXya1cfDbJQqAwTEiCqzExFOi9GZA8/HifemY0NaHiMzL7yVuBBq4gPMOeD92vd1GUmtV+XzFCF0NyYRtXOBrddV2JwEjvzC/juMHfD9PrLBeD6JopzxXju62v579q8yV+/YuYPkMnXWs0ege5lE8wl69lMwmKO9wg+q7zqNUYxpRWr7oUlg0DFgyFtj7pTPrbdo3cJmqH7Rbep2oDdCqzMCRHfaWC0fr7A7X+37OKNIud+4+/XUcWOtYdYj0MDhGRPomV5krN/AtIKs10Ptp8ZkJ+YmiR6vzgdNmez9PrfUdSbLH/X6LBNRYNSpWp5u9T3UzSj0T7QTHHLgsqTG4QUhrAqTkBL8NoogLc3fj9ffpzztQrj+vYCDQ5a8mNmCntYxqmVMfFa/KFmVjNwCnP21j3ZQwSseI3g+/zQVW/wmo0xlsyixlmgEA+Lifdrm9Gg99PuoBLBpsb7sb/8/7vsrEKNVW9XzEf5o66KXntH+LrqyBGLUqTUo3ty2iIDA4RkT6zN5EFp8hulXZTiJKRGExcRfg9pynZxnc0AaiDmIVDfN2k0gvEK+2co45cFmS1lR/XqsLOOokxQfLrT1D4Nu7Apdp2gfodmcINq74//d9UbzKN9ajPC2ARiwFcjo427Wa4lNqLtDnWdENeMk5wO4l9teVlg+kF3o/a434DgCLhvhPc6LLIgB82AWor/OddszTKmu6+rfZxG91Rqn2eZRrYfTKUV+ZL6tlb5DLE5nA4BgRBU9+Spve1Pxw0EQUfsquDI1P0S93xufitcc/vUlwszsAXW7VLu9yAUmp3pvUrPbmW4EVDFCsx2IuIi3ZHYJfBxF5/fp//tMObTZuTRZqUj0aAmRtL9IuUzgobNWhOFFyJjD4XWDrG8A31wPHD1lfR2pjYFIQXZ2dsnSC7+e3dR4cyQNe6D0Qb3wqMHG7b/qEBhaD9DmdrJVXGrnU/rJEJjE4RkTBOfd338TAZoeDJqLoJSfob9zT223inA1A97uBMQbdNeSb1HG/eFuoBaJsYeZEt0qjdTTtC5SeE/w2iCIujC3HDm/ynza/jbPbOGExIXr9Ud/u4T6ioFUdxa6UHKD3U0DzicDSccCuz6wtn5wVmnpZdXiL9331L/rl0j1Bs17/1p7f0BrbkwutmUEe4kl7jOs0/FPgrLXGZfxatnlkNjdejsgBDI4RUXDSmkS6BkRkl1byWzln4KjlQOFgkU9QvlhNSgNyg3jyq0UZzHIkOGbQ+qz1NOCUfwa/DaKIC2MASJ3w/1WT227Sx/w21v7NeL76hrnDdcDo1d7PypY6We3Mb5dIT/FwYPB8YPt7wMqrgePV3nlVP/mWVXZh1Bp1ORiHNILTRhoeOCnOmbV/8S2jlf9LrwWmvB45If7OhUB+b/9ikw+KtApGrdIzm/vnLCWKIgyOEZGx1hdGugZEFCpp+f7Txm0Ur037AsmZ/vOdFs7gGFG8CGfOsY3P21sumJEqC4eK1+53+04/39PNLbkRkFHsna7M8ZSSpd/6hMiKlCyRTL71NGDpRKDiYzH9w87AiWNiAJgfHwFeTwEO/SbmOX1uftLfWnnphHitPSDqePyQCPApWUluL4+eWTDQO00OrinTGKR4Wsw16SNGySaKQQyOEZGx/v+NdA2IKFwicUPpM5CHA5clRk+tieJGiINjpeOCW97lDr4bVOsLgO4zfaclNwpunUR2FA4GhrwP7PwYWHGZmPZGOrDyKqD8FvF5+3zfZTre6My25RQFK68ElijOy82vaZeXg1lHKoDv7hJdQ2UjPUnt9R4iyXlDtSh/q+UHZ8XDRY7SMxYrKwB2baZYxeAYERERRZDiItqJlmMlBvlQiOKFla5bylZVptcfZP7QUx8DCjVG4zOj9YWi9U3/l4OrA5GTkjOBXo8Cbf/onbZXkSRe7nYo6/W4Qxv2/Eb++iyw433x/qsLga+m+xetXO9tOQYAtZW+gwrILcbk4Fij1r7L11b6r3PAq55lFL/VxSOAM8rE+6JhQJHiXN/4PLD/G4P/D1H0YnCMiIiIIke+4E7OBjreENm6EMWKpAzzZdMKgNYzrK2/IMiRHjveAOR2tr7c2J9EN7YBbwS3faJQUY6wrLRprv4ytVXO1mHzK9rT6w76Bsd2vA/sX+X9nJItXuVWYONV+cxKx/qvUw6uyy3SADHoQNFQ7TrkdRevdoPjRBHE4BgRERFFzkFPjrPiM4Ci4ZGtC1GssNLKsuON3htWswr6++YYCpecjkBqY5HYmyjaKQNGxgXtb6NmG7BnaeBygAiMKYNjR3f5zpe7Out1qzQaaVNSDDpwoka/XNP+ImfgKQ+Kz+rWaURRjMExIiIiipzDnifXVT84062SKCFYyOnT/nKRG8gqK0m7S8/xvtcaCc+MrnfYW44oUuoOBS4DeH/bag/Y284Sxfm17Hz9cil5vsExNXW3SjU5KN3+Cv95ypxjboPvhp4PAYPfQcN3VOFg/bJmZJ8U3PJEFvAqlIiIiCLv4M9wLImvXrcXorhhsSWK1dHjGvcUCfHNSG0MNFPk+mt/pbVtydpcZG85omi37R3xemSX9vyRXxovf7za+37rW/rlUnJ8W3jp6fUYcOZK/+lyEO/0Z4CiM7yjxgK+o8MaPchKbgSk5qHh97zjTYHrY2TsBmCa2RZ6RMFJDlyEiIiIKBwcCo6NXObMeogSlTsZyO5grmxaAXDiqHif2Vwk1LdqyIdADluIUIxLbaw9ff8aoO1F0P2NyyhxZvvvtQQmVgQu16iV+KflvP3itddjQH2t77xxm4DfXgByuwTehpxPNL9n4LJm1kMUBgyOERERUXT4/avgL6SJyGvSXvvLFvQ3V6773UBeN6AcwNnrALdOly0jpWdbX4Yo2gTKrxWOQE/9ce3pfZ43t7wc4NPKU5jVGjj5HnPryWwOZLU1V5YoSrBbJREREUWH6p8iXQOiGGGyW2V6U+3p3e4KvgqTdovXouHiRvr0Z4wTequdUeZ5XRx8XYiiQZM+vp+nqfN/6QTHjPKEWaVu7SVr+0fntmFGRjNg3MbwbpMoSAyOERERUXSoMxgBi4i8pCBGvwP8W390uMH6OtILgcnVQEaR+Nz+CtEd06yioZ7XIda3TRRN+r0kXhufopohB8M85+uBtdrLu1Odq8v7Ot2T2T2RKCAGx4iIiChyBr/rfd/5LxGrBlFMqT+mPV15k93uco35KUDBIP/ppz0hXqfqtDrp+Yj29JRs/TqaMWFHcMsTRYM2M8SrOsilDkh9OcX7Xh7FMa1AJLEnoohjcIyIiIgiJzXf+z63U+TqQRRLes4CJmqMfNdYkbNPr6WIUSsVdwowXaNVWscbrdXPrEyHEpETRUrXO73vi4Zpl/l5NrDzE+/nlDygZKwIDp+7B0jL9y3f5HTHq0lEgTEhPxEREUVO3smRrgFR7FHfTANARingUibD1wiO9XgQKD3H+vbUSfaLhltfB1E8qv7R+95lMBhF2Zne9+4kAPX6weH6Omt1SC8Cju62tgwR+WHLMSIiIoqc1Fxg5JfarVWIyLxGLQGpPnCZHE9OotJx1tbfarr3fbPR1pYliidDF3rfb3tbMSPA+Sc7+T6geIT+/ANrrNWn/RXWyhORJgbHiIiIKLIK+ke6BkSxr3iUuOGeatDqxKXoNJJeZG39A15RrMeghQxRvCs503/axF1AZktzy590FZDfS39+bldr9cnrYa08EWlicIyIiIiIKBaN2+R9f/LdQI97/btAyibt8e1SGUweMQbHiHxlFGnn+UvKsL4uq92W83sGLkNEATE4RkREREQUi7JaG8xU3ainF/gGzvIstk4BvC1jWkywvixRPGo1zXj+yC+srS+9EGjaz1zZ4pFAbjdo5hckIssYHCMiIiIiSlQ5nfXnnbsPOK/S+7nHfeK1UauQVoko6qU1Fbm+OlxnXM5sK8spR8Tr+C1A6Vhg2MeBl+l4EzDqKzA4RuQMjlZJRERERJSIWk4BTputP189KqbEgTOIAADn7jVXzmXydjsp3VM+CUhJB5qNCrzMkR1ASjZQu9/cNojIUFS0HGvdujVcLpffv2uvvTbSVSMiIiIiim5dbvWfln1S4OUGvi66W5rVYiJwVrn58kSJrrbSfNkzygB3ivnyld973kTFLT1RzIuKlmOrVq3CiRMnGj5///33GDlyJCZPnhzBWhERERERRblmZwHFZ/hO6/kI0GKS89tKyQYan+L8eoniVX2t+bJFQ62tWw6kaQ0EQESWRUVwrKDA94nVgw8+iHbt2mHIkCERqhERERERUQwYtsB/Wuebra9nyrHg60JEvpIzw7ARBseInBB1bTBra2vx8ssv45JLLoHLIAp+7NgxVFdX+/wjIiIiIiIbklIjXQOi+FNX4/u574vml83tZjy/5Xni1RXglv78Q+a3SZTAoi449u6776KyshIXX3yxYbkHHngAubm5Df9atGgRngoSERERERERBVI0DDhzJZBeLD63vsD8smPWGc9v2tfzxqDlWPe7geRG5rdJlMCiLjj2/PPP46yzzkJJSYlhudtuuw1VVVUN/7Zt2xamGhIREREREREF4HIBTXp7B8hwO5TVKCVHuRH9ct1nOrM9ogQQFTnHZFu2bMGiRYswb968gGXT0tKQlpYWhloRERERERER2TT4XeDtJs6tr5si6KXVrTIlBxj2qXPbI0oAURUcmzNnDgoLCzFmzJhIV4WIiIiIiIgoukzaC6Q3VUxQtRxLbQyctz+sVSKKB1HTrbK+vh5z5szBRRddhOTkqIrZEREREREREdmTlg9MORqadasHsev059BshyjORU1wbNGiRdi6dSsuueSSSFeFiIiIiIiIyDlJTqUEknw/qrtVdrvDoe0QJZaoCY6NGjUKkiShQ4cOka4KERERERERUWQNnm+ikEFCfiIyLWqCY0RERERERETkkZyhMS1TNYHBMSInMDhGREREREREFG0Kh/hPS27k+9mdGp66EMU5BseIiIiIiIiIoo07RbwOX6RfRtm6bOCboa0PURzjsJBEREREREREserc34GUXMDN23siu3j2EBEREREREUWjkcuAxqcCU44BqNcuk9YkrFUiikcMjhERERERERFFo4IBka4BUUJgzjEiIiIiIiIiIkpYDI4REREREREREVHCYnCMiIiIiIiIiIgSFoNjRERERERERESUsBgcIyIiIiIiIiKihMXgGBERERERERERJSwGx4iIiIiIiIiIKGExOEZERERERERERAkrOdIVcIokSQCA6urqCNeEiIiIiIiIiIgiSY4PyfEiI3ETHDt48CAAoEWLFhGuCRERERERERERRYODBw8iNzfXsIxLMhNCiwH19fWoqKhAdnY2XC5XpKvjiOrqarRo0QLbtm1DTk5OpKtDYcL9TjwGEhP3O/EYSFzc98RjIDFxvxOPgdCSJAkHDx5ESUkJ3G7jrGJx03LM7XajefPmka5GSOTk5PBESUDc78RjIDFxvxOPgcTFfU88BhIT9zvxGAidQC3GZEzIT0RERERERERECYvBMSIiIiIiIiIiSlgMjkWxtLQ0zJw5E2lpaZGuCoUR9zvxGEhM3O/EYyBxcd8Tj4HExP1OPAaiR9wk5CciIiIiIiIiIrKKLceIiIiIiIiIiChhMThGREREREREREQJi8ExIiIiIiIiIiJKWAyOERERERERERFRwmJwjIiIiIiIiIiIEhaDYxY98MAD6N27N7Kzs1FYWIgJEyZgw4YNPmUkScLdd9+NkpISZGRkYOjQoVi/fr1PmWeffRZDhw5FTk4OXC4XKisr/bb1888/Y/z48WjatClycnIwYMAAlJWVBazjunXrMGTIEGRkZKC0tBT33HMPlIOS7ty5E9OnT0fHjh3hdrtx00032fpbJJJ42O8XX3wxXC6X37+uXbva+6MkmHAeA2vWrMHIkSORl5eHJk2a4IorrsChQ4cC1pHnvvPiYb/z3A+OE8fA/v37cf3116Njx47IzMxEy5YtccMNN6CqqspnPQcOHMCMGTOQm5uL3NxczJgxQ/NYUeO5HxrxsO95/gcnnMfA/fffj/79+yMzMxN5eXmm68jz33nxsN957gcnXMfA5s2bcemll6JNmzbIyMhAu3btMHPmTNTW1gasI8995zE4ZtGSJUtw7bXX4uuvv8ann36Kuro6jBo1CocPH24o89BDD+HRRx/Fk08+iVWrVqG4uBgjR47EwYMHG8rU1NRg9OjRuP3223W3NWbMGNTV1eHzzz/H6tWrccopp2Ds2LHYtWuX7jLV1dUYOXIkSkpKsGrVKsyePRuzZs3Co48+2lDm2LFjKCgowB133IEePXoE+RdJDPGw35944gns3Lmz4d+2bduQn5+PyZMnB/nXSQzhOgYqKiowYsQItG/fHitWrMDChQuxfv16XHzxxYb147kfGvGw33nuB8eJY6CiogIVFRWYNWsW1q1bhxdffBELFy7EpZde6rOt6dOnY+3atVi4cCEWLlyItWvXYsaMGYb147kfOvGw73n+Byecx0BtbS0mT56Mq6++2nT9eP6HRjzsd577wQnXMfDTTz+hvr4ezzzzDNavX4/HHnsMTz/9tOG9IsBzP2QkCsqePXskANKSJUskSZKk+vp6qbi4WHrwwQcbyhw9elTKzc2Vnn76ab/ly8rKJADSgQMHfKbv3btXAiAtXbq0YVp1dbUEQFq0aJFufZ566ikpNzdXOnr0aMO0Bx54QCopKZHq6+v9yg8ZMkS68cYbzf53ySPW97skSdI777wjuVwuafPmzab+z+QrVMfAM888IxUWFkonTpxomFZeXi4BkH755Rfd+vDcD49Y3++SxHM/WMEeA7I333xTSk1NlY4fPy5JkiT98MMPEgDp66+/biizfPlyCYD0008/6a6H5374xPq+lySe/8EK1TGgNGfOHCk3N9dUfXj+h0es73dJ4rkfrHAcA7KHHnpIatOmjWF9eO6HBluOBUluFpmfnw8A2LRpE3bt2oVRo0Y1lElLS8OQIUPw1VdfmV5vkyZN0LlzZ7z00ks4fPgw6urq8Mwzz6CoqAi9evXSXW758uUYMmQI0tLSGqadeeaZqKiowObNmy3+70hPPOz3559/HiNGjECrVq1M14+8QnUMHDt2DKmpqXC7vV/PGRkZAIBly5bpLsdzPzziYb/z3A+OU8dAVVUVcnJykJycDEDsy9zcXPTp06ehTN++fZGbm2u4Hp774RMP+57nf3BCdQzYxfM/POJhv/PcD044j4GqqqqG7ejhuR8aDI4FQZIk3HzzzRg4cCC6desGAA1d34qKinzKFhUVGXaLU3O5XPj0009RXl6O7OxspKen47HHHsPChQsN+6Pv2rVLc9vKulFw4mG/79y5Ex999BEuu+wy03Ujr1AeA8OHD8euXbvw8MMPo7a2FgcOHGhoWr1z507d5Xjuh1487Hee+8Fx6hjYt28f7r33Xlx55ZUN03bt2oXCwkK/soWFhYbHEs/98IiHfc/zPzihPAbs4vkfevGw33nuByecx8DGjRsxe/ZsXHXVVYZ14rkfGgyOBeG6667Dd999h9dee81vnsvl8vksSZLfNCOSJOGaa65BYWEhvvjiC6xcuRLjx4/H2LFjG26UunbtiqysLGRlZeGss84y3LbWdLInHvb7iy++iLy8PEyYMMF03cgrlMdA165dMXfuXDzyyCPIzMxEcXEx2rZti6KiIiQlJTWU4bkffvGw33nuB8eJY6C6uhpjxoxBly5dMHPmTMN1qNfDcz9y4mHf8/wPTqiPgUB4/kdGPOx3nvvBCdcxUFFRgdGjR2Py5Mk+gUye++ETXJvOBHb99ddj/vz5WLp0KZo3b94wvbi4GICI2DZr1qxh+p49e/yiu0Y+//xzfPDBBzhw4ABycnIAAE899RQ+/fRTzJ07F7feeisWLFiA48ePA/B2vykuLvaLFu/ZsweAf2SbrIuH/S5JEl544QXMmDEDqampputGQqiPAUAkZp4+fTp2796NRo0aweVy4dFHH0WbNm0AgOd+BMTDfue5HxwnjoGDBw9i9OjRyMrKwjvvvIOUlBSf9ezevdtvu3v37m1YD8/9yIiHfc/zPzihPgbM4PkffvGw33nuBydcx0BFRQWGDRuGfv364dlnn/WZx3M/fNhyzCJJknDddddh3rx5+PzzzxtuWmRt2rRBcXExPv3004ZptbW1WLJkCfr37296OzU1NQDgk39G/lxfXw8AaNWqFdq3b4/27dujtLQUANCvXz8sXbrUZ/jXTz75BCUlJWjdurWl/yt5xdN+X7JkCX799Ve/0XLIWLiOAaWioiJkZWXhjTfeQHp6OkaOHAmA5344xdN+57lvj1PHQHV1NUaNGoXU1FTMnz8f6enpPuvp168fqqqqsHLlyoZpK1asQFVVVcN6eO6HVzzte57/9oTrGDCD53/4xNN+57lvTziPgR07dmDo0KE49dRTMWfOHL/7QJ77YRSaPP/x6+qrr5Zyc3OlxYsXSzt37mz4V1NT01DmwQcflHJzc6V58+ZJ69atk6ZNmyY1a9ZMqq6ubiizc+dOqby8XHruuecaRicsLy+X9u3bJ0mSGLWwSZMm0qRJk6S1a9dKGzZskG655RYpJSVFWrt2rW79KisrpaKiImnatGnSunXrpHnz5kk5OTnSrFmzfMqVl5dL5eXlUq9evaTp06dL5eXl0vr16x3+a8WPeNnvkiRJF154odSnTx8H/zqJIVzHgCRJ0uzZs6XVq1dLGzZskJ588kkpIyNDeuKJJwzrx3M/NOJlv0sSz327nDgGqqurpT59+kjdu3eXfv31V5/11NXVNaxn9OjR0sknnywtX75cWr58udS9e3dp7NixhvXjuR868bLvJYnnv13hPAa2bNkilZeXS//4xz+krKyshnP24MGDuvXj+R8a8bLfJYnnvl3hOgZ27NghtW/fXho+fLi0fft2nzJGeO6HBoNjFgHQ/DdnzpyGMvX19dLMmTOl4uJiKS0tTRo8eLC0bt06n/XMnDkz4HpWrVoljRo1SsrPz5eys7Olvn37SgsWLAhYx++++04aNGiQlJaWJhUXF0t3332335CuWttu1apVMH+auBYv+72yslLKyMiQnn322aD+HokonMfAjBkzpPz8fCk1NVU6+eSTpZdeeslUHXnuOy9e9jvPffucOAbKysp017Np06aGcvv27ZMuuOACKTs7W8rOzpYuuOAC6cCBAwHryHM/NOJl3/P8ty+cx8BFF12kWaasrMywjjz/nRcv+53nvn3hOgbmzJmjWyYQnvvOc0mSJ3MbERERERERERFRgmHOMSIiIiIiIiIiSlgMjhERERERERERUcJicIyIiIiIiIiIiBIWg2NERERERERERJSwGBwjIiIiIiIiIqKExeAYERERERERERElLAbHiIiIiIiIiIgoYTE4RkRERERERERECYvBMSIiIiIiIiIiSlgMjhERERERERERUcJicIyIiIiIiIiIiBLW/wdgpc1sWuOYfgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "def plot_dfo_mooring(mooring_depth):\n", - " \n", - "\n", - " df = pd.DataFrame()\n", - " \n", - " df['Salt'] = ds.sea_water_practical_salinity.data\n", - " df['Temp1'] = ds.sea_water_temperature.data\n", - " df['Temp2'] = ds.TEMPST01.data\n", - " # Get a final temp\n", - " df['Temp'] = np.where(df['Temp1'].isnull(), df['Temp2'], df['Temp1'])\n", - " df['depth'] = ds.depth.data\n", - " df['Time'] = ds.time.data\n", - " \n", - " # Need to figure a better way to capture sensor depths - using this from the filename for now\n", - " df['filename'] = ds.filename.data\n", - " df['file_depth'] = df['filename'].str[-10:-8].astype(int)\n", - "\n", - " df_depth = df[df['file_depth'] == mooring_depth]\n", - "\n", - " x = df_depth.Time\n", - " salt = df_depth.Salt\n", - " temp = df_depth.Temp\n", - " \n", - " \n", - " # try to put labels on the blank shared x axis\n", - " #tcks = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - " #tklbls = [\"2018-01\", \"2018-07\", \"2019-01\", \"2019-07\", \"2020-01\", \"2020-07\", \"2021-01\", \"2021-07\", \"2022-01\", \"2022-01\"]\n", - " \n", - " fig, ax = plt.subplots(2, figsize=(15, 8), sharex=True)\n", - " \n", - " ax[0].plot(x, salt, linewidth=0.05, c='blue')\n", - " ax[0].set_title('Salinity')\n", - " \n", - " ax[1].plot(x, temp, linewidth=0.5, c='orange')\n", - " ax[1].set_title(\"Temperature\")\n", - " \n", - " \n", - " fig.subplots_adjust(hspace=0.5)\n", - " plt.suptitle(\"DFO Mooring Station E01 at depth {} metres\".format(str(mooring_depth)))\n", - " plt.show()\n", - " \n", - "plot_dfo_mooring(75)" - ] - }, - { - "cell_type": "markdown", - "id": "bcd637fe-3419-4774-b53b-bf43a3467e6a", - "metadata": {}, - "source": [ - "### Have a look at the various salinity variables." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "94eddde2-007a-4bfd-b05a-99c65a4d31ef", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAALjCAYAAADX+SjhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUZfb/z8xkJpMy6T1AGhB6EykivSgKNrAXbGv7uq6uurZVLGt31XXtimVtKCooFhBUEBSQ3juEEEJ675OZ5/fH5/fkuXdaJgUI5Lxfr3klM3Pnzr137nmec85zikEIIYhhGIZhGIZhGIZhGIZhGJ8YT/QBMAzDMAzDMAzDMAzDMMzJADvSGIZhGIZhGIZhGIZhGMYP2JHGMAzDMAzDMAzDMAzDMH7AjjSGYRiGYRiGYRiGYRiG8QN2pDEMwzAMwzAMwzAMwzCMH7AjjWEYhmEYhmEYhmEYhmH8gB1pDMMwDMMwDMMwDMMwDOMH7EhjGIZhGIZhGIZhGIZhGD9gRxrDMAzDMAzDMAzDMAzD+AE70hiGYU4CPvjgAzIYDE0Pq9VKCQkJNH78eHr66aepoKDA7TOPPvqo7jPax6uvvqrbtri4mB544AHq06cPBQcHU1hYGI0YMYJee+01stvtfh3juHHjyGAwUHp6Ogkh3N7/7bffmr7/gw8+aNV1aCvLli0jg8FAy5YtOyHfv3PnTrr66qspPT2drFYrxcTE0JAhQ+j222+nioqKpu0+/fRTevnll9v0Xa+//rrH65yVlXXCfgNf96TBYKCsrCzd9nPnzqVBgwaR1WqlpKQkuvPOO6mqqkq3TWVlJf3jH/+gKVOmUGxsLBkMBnr00UdbdFyLFy+mKVOmUFJSEgUGBlJSUhKNGzeOnnnmmVad57XXXkupqam611JTU+naa69tt/099dRTtGDBglbtryPQlvtQyvGXX37Z7LbynuuI7Nixgx599FG3+76lHI9zrKmpoUcffdTj2Cm/v6ioqFX7Tk1N9TomWK1Wv7a95ZZbWvXdx4r2GMMZhmGYjkvAiT4AhmEYxn/ef/996tWrF9ntdiooKKCVK1fSs88+Sy+88AJ9/vnnNGnSJLfPLFq0iMLDw3WvpaWlNf2/a9cumjJlClVVVdHdd99NZ5xxBtXW1tJ3331Hf/vb32jevHn0ww8/UHBwcLPHZ7PZ6ODBg/TLL7/QxIkTde+99957FBYWpnMYHW+GDBlCq1atoj59+hz37964cSONGjWKevfuTY888gilpqZSUVERbd68mebOnUv33HMPhYWFERGMsG3bttGdd97Z6u97/fXXKSYmxs15k5iYSKtWraKMjIw2nE3b8HRPEuHYJJ988gldddVVdOONN9JLL71Ee/bsofvuu4927NhBP/30U9N2xcXF9Pbbb9PAgQPpggsuoHfffbdFx/Lmm2/SrbfeSjNmzKBXX32VoqKi6PDhw/THH3/Ql19+Sffff3/rT1TD/Pnzm37flvLwww/T3/72N91rTz31FM2cOZMuuOCCdji6409HuA9PNDt27KDHHnuMxo0b5+Yo7WjU1NTQY489RkRYNGlP5s+fT/X19brXsrOz6dJLL6ULL7zQbftRo0bRCy+8oHstPj6+XY+prbTHGM4wDMN0XNiRxjAMcxLRr18/Gjp0aNPzGTNm0F133UVnnnkmXXTRRbR37143g+K0006jmJgYj/tzOBw0Y8YMqqiooD///JN69uzZ9N4555xDY8eOpcsuu4z+/ve/05tvvtns8XXr1o1sNhu99957OkdaZWUlzZs3j6688kp65513WnrabcZut5PBYGiKtDsRvPzyy2Q0GmnZsmVks9maXp85cyY98cQTHqP4jgWBgYEn7BpIfN2TRLgv7733XpoyZUrT/TJ+/Hiy2Wx05ZVX0o8//khTp04lIqKUlBQqLS1tiohpqSPt6aefpjFjxrhFN1199dXkdDpbeGbeGTx4cKs/eyo5mxwOBzU2NnaI+5DpGHiSjcWLFxMR0Y033uj2XkRExCl172hlgmEYhjk54NROhmGYk5xu3brRv//9b6qsrKS33nqrRZ+dP38+7dixg+6//36dE01y6aWX0pQpU2jOnDmUl5fn1z6vv/56+vrrr6msrKzptblz5xIR0WWXXebxMytXrqSJEyeSzWaj4OBgOuOMM+j77793227btm10/vnnU2RkJFmtVho0aBB9+OGHum1k2tdHH31Ed999NyUnJ1NgYCDt27fPY2rntddeS6GhobRv3z4655xzKDQ0lLp27Up33323W5RETk4OzZw5k2w2G0VERNCVV15Ja9eu9StFrbi4mMLCwig0NNTj+zI1a9y4cfT999/ToUOHdKlLkscee4yGDx9OUVFRFBYWRkOGDKE5c+boHHGpqam0fft2Wr58edPnZcSLt5Q6f34DmWL866+/0q233koxMTEUHR1NF110EeXm5vo8/5awevVqOnr0KF133XW61y+++GIKDQ2l+fPnN73men1aSnFxsS4STovRqFeTXnvtNRozZgzFxcVRSEgI9e/fn5577jm/0p9dUzvlvfjZZ5/RQw89RElJSRQWFkaTJk2i3bt36z7rmtppMBiourqaPvzww6bzHzduHGVlZVFAQAA9/fTTbt8vU6vnzZvn8fgKCwvJYrHQww8/7Pberl27yGAw0CuvvNK07W233UZ9+vSh0NBQiouLowkTJtCKFSt0n5P32nPPPUf/+te/KC0tjQIDA+nXX3/1eB/u27ePrrvuOurRowcFBwdTcnIyTZ8+nbZu3erxmOvq6ujvf/87JSQkUFBQEI0dO5Y2btzocVtXPv/8cxo5ciSFhIRQaGgonXXWWW6fPXDgAF122WVNKb/x8fE0ceJE2rRpk899r1u3ji677DJKTU2loKAgSk1Npcsvv5wOHTrUtM0HH3xAF198MRHBSexv2vv3339PgwYNosDAQEpLS3OLzJIIIej111+nQYMGUVBQEEVGRtLMmTPpwIEDuu3GjRtH/fr1oxUrVtCIESMoKCiIkpOT6eGHHyaHw0FE+B1jY2OJCOOPPFbXaNf8/Hy6/PLLKTw8nOLj4+n666+n8vJyn+fj7djff/99Sk9PpwkTJrT4896QMvfpp5/SfffdR4mJiRQaGkrTp0+n/Px8qqyspJtuuoliYmIoJiaGrrvuOrdUcn+uq68x3JdMEOHeOe+88ygqKoqsVisNHjyYvvjiC90x1NTU0D333ENpaWlktVopKiqKhg4dSp999lm7XSuGYRjGN+xIYxiGOQU455xzyGQy0W+//eb2nlztlg9pHBERLVmyhIjIZ3rYBRdcQI2NjX7XFbvsssvIZDLplPo5c+bQzJkzPaa2LV++nCZMmEDl5eU0Z84c+uyzz8hms9H06dPp888/b9pu9+7ddMYZZ9D27dvplVdeoa+//pr69OlD1157LT333HNu+33ggQcoOzub3nzzTVq4cCHFxcV5PWa73U7nnXceTZw4kb755hu6/vrr6aWXXqJnn322aZvq6moaP348/frrr/Tss8/SF198QfHx8XTppZf6dV1GjhxJR48epSuvvJKWL19OtbW1Hrd7/fXXadSoUZSQkECrVq1qekiysrLo5ptvpi+++IK+/vpruuiii+ivf/0rPfHEE03bzJ8/n9LT02nw4MFNn9c6n1zx9zeQ3HjjjWQ2m+nTTz+l5557jpYtW0ZXXXWVX9eByP2edL0vt23bRkREAwYM0H3ObDZTr169mt5vD0aOHElfffUVPfroo7R582bdcbiyf/9+uuKKK+ijjz6i7777jm644QZ6/vnn6eabb2719z/44IN06NAhevfdd+ntt9+mvXv30vTp030ex6pVqygoKIjOOeecpt/39ddfp9TUVDrvvPPozTffdPv8q6++SklJSR5T5YiIYmNjadq0afThhx+6ReK9//77ZLFY6MorryQiopKSEiIimj17Nn3//fdNTo9x48Z5HCdeeeUV+uWXX+iFF16gH3/8kXr16uXxGHJzcyk6OpqeeeYZWrRoEb322msUEBBAw4cPd3Muymt34MABevfdd+ndd9+l3NxcGjdunJuzyJWnnnqKLr/8curTpw998cUX9NFHH1FlZSWNHj2aduzY0bTdOeecQ+vXr6fnnnuOlixZQm+88QYNHjxYt0jgiaysLMrMzKSXX36ZFi9eTM8++ywdPXqUTj/99KY6Yueeey499dRTRAQHrfwdzz33XK/7/fnnn+n8888nm81Gc+fOpeeff56++OILev/99922vfnmm+nOO++kSZMm0YIFC+j111+n7du30xlnnEH5+fm6bfPy8uiyyy6jK6+8kr755huaOXMm/etf/2pKJ05MTKRFixYREdENN9zQdKyuTtcZM2ZQz5496auvvqL777+fPv30U7rrrrt8XitPLF26lA4dOkTXX3+9Ryf5b7/9RjabjcxmM/Xp04f+/e9/+5QXVx588EEqKCigDz74gP7973/TsmXL6PLLL6cZM2ZQeHg4ffbZZ/SPf/yDPvroI3rwwQd1n/XnujY3hhN5lolff/2VRo0aRWVlZfTmm2/SN998Q4MGDaJLL71U52D9+9//Tm+88QbdcccdtGjRIvroo4/o4osvpuLi4hZcZYZhGKZNCIZhGKbD8/777wsiEmvXrvW6TXx8vOjdu3fT89mzZwsicnskJyc3bXP22WcLIhJ1dXVe9/vjjz8KIhLPPvusz2McO3as6Nu3rxBCiFmzZomhQ4cKIYTYvn27ICKxbNkysXbtWkFE4v3332/63IgRI0RcXJyorKxseq2xsVH069dPdOnSRTidTiGEEJdddpkIDAwU2dnZuu+dOnWqCA4OFmVlZUIIIX799VdBRGLMmDFuxyjf+/XXX5temzVrliAi8cUXX+i2Peecc0RmZmbT89dee00Qkfjxxx912918881u5+SJuro6ccEFFzT9DiaTSQwePFg89NBDoqCgQLftueeeK1JSUnzuTwghHA6HsNvt4vHHHxfR0dFN10oIIfr27SvGjh3r9pmDBw+2+jeQ9+Ftt92m2+dzzz0niEgcPXrU5/F6uyeJSGRkZDRt9+STT3rd35QpU0TPnj097r+wsFAQkZg9e7bP49Cyb98+0a9fv6bjCAoKEhMnThSvvvqqaGho8Po5ee3/97//CZPJJEpKSpremzVrltvvl5KSImbNmtX0XN6L55xzjm67L774QhCRWLVqlc/9hYSE6Pbnut/58+c3vXbkyBEREBAgHnvsMe8XQgjx7bffCiISP/30U9NrjY2NIikpScyYMcPr5xobG4XdbhcTJ04UF154YdPr8l7LyMhwu5ae7kNP+21oaBA9evQQd911l9s5DhkyRHfPZ2VlCbPZLG688cam1+Q9J8nOzhYBAQHir3/9q+67KisrRUJCgrjkkkuEEEIUFRUJIhIvv/yy1+Pzl8bGRlFVVSVCQkLEf/7zn6bX582b5zYe+WL48OEiKSlJ1NbWNr1WUVEhoqKidOe4atUqQUTi3//+t+7zhw8fFkFBQeIf//hH02tjx44VRCS++eYb3bZ/+ctfhNFoFIcOHRJC+JYteY2fe+453eu33XabsFqtut/IHy699FJhMplETk6O23u33XabeO+998Ty5cvFggULxJVXXimISFx11VXN7lfeN9OnT9e9fueddwoiEnfccYfu9QsuuEBERUU1PW/JdfU2hvuSiV69eonBgwcLu92ue33atGkiMTFROBwOIYQQ/fr1ExdccEGz58swDMMcOzgijWEY5hRBeKmxtXTpUlq7dm3T44cffmjVfluSPnf99dfTunXraOvWrTRnzhzKyMigMWPGuG1XXV1Na9asoZkzZ+pSHk0mE1199dWUk5PTFIkiGxh07dpVt49rr72Wampq3Fb8Z8yY4ffxGgwGmj59uu61AQMG6FKxli9fTjabjc4++2zddpdffrlf3xEYGNiUSvvSSy/RZZddRoWFhfTkk09S7969PUbceOKXX36hSZMmUXh4OJlMJjKbzfTII49QcXGxx+6tzdGS30By3nnn6Z7LyDHt9fKF6z25du1ajx0ovd1z7dmhMCMjgzZv3kzLly+nxx57jCZNmkRr166l22+/nUaOHEl1dXVN227cuJHOO+88io6Obrr211xzDTkcDtqzZ0+rvr+t19KVcePG0cCBA+m1115reu3NN98kg8FAN910k8/PTp06lRISEnQRTosXL6bc3Fy6/vrrddu++eabNGTIELJarRQQEEBms5l+/vln2rlzp9t+zzvvPDKbzc0ee2NjIz311FPUp08fslgsFBAQQBaLhfbu3etxv1dccYXuXkhJSaEzzjijKU3OE4sXL6bGxka65pprdBGRVquVxo4d2xRRFxUVRRkZGfT888/Tiy++SBs3bvS7Zl5VVRXdd9991L17dwoICKCAgAAKDQ2l6upqj+fhD9XV1bR27Vq66KKLdJ0sZeSolu+++44MBgNdddVVunNMSEiggQMHukUN2mw2t/vwiiuuIKfT6THK2Rue7uW6uroWjUslJSW0YMECOvvssyk5Odnt/ddee42uu+46GjNmDJ1//vn08ccf0+23304ff/yx32m906ZN0z3v3bs3EZFbNGDv3r2ppKSkKb2zpdfVF64ysW/fPtq1a1dT1Kd2/+eccw4dPXq0aRweNmwY/fjjj3T//ffTsmXLvEY3MwzDMMcOdqQxDMOcAlRXV1NxcTElJSW5vTdw4EAaOnRo00ObLtetWzciIjp48KDXfWdlZRERuTmwfDFmzBjq0aMHvfXWW/TRRx95TdEpLS0lIYTHGlXyXGS6irdaVq7bSbzVvfJEcHCwzjglguNL60QpLi722Bmupd3ievfuTXfeeSd9/PHHlJ2dTS+++CIVFxd7rE3lyp9//klTpkwhIqJ33nmHfv/9d1q7di099NBDREStMqha8htIoqOjdc9lkWx/v9/1nhw6dCj169fPbf+eUpVKSkooKirKr+/xF6PRSGPGjKFHHnmEvv32W8rNzaVLL72U1q9fT++99x4RoYvg6NGj6ciRI/Sf//yHVqxYQWvXrm1yWLXWmG3rtfTEHXfcQT///DPt3r2b7HY7vfPOOzRz5kxKSEjw+bmAgAC6+uqraf78+U3pix988AElJibSWWed1bTdiy++SLfeeisNHz6cvvrqK1q9ejWtXbuWzj77bI/H7a8s/v3vf6eHH36YLrjgAlq4cCGtWbOG1q5dSwMHDvS4X0/nk5CQ4DPFTabfnX766WQ2m3WPzz//vCn10mAw0M8//0xnnXUWPffcczRkyBCKjY2lO+64gyorK32exxVXXEGvvvoq3XjjjbR48WL6888/ae3atRQbG9vq37W0tJScTqfXc3Y9RyEExcfHu53j6tWrm85R4mkMk/tsSbpge9zLH3/8MdXX13tsMuANmVa+evVqv7Z3HT8sFovP1+U80NLr6gtXmZD35T333OO279tuu42IqGn/r7zyCt133320YMECGj9+PEVFRdEFF1xAe/fu9fv7GYZhmLbBXTsZhmFOAb7//ntyOBw0bty4Fn1u8uTJ9Pbbb9OCBQvo/vvv97jNggULKCAgoMX7vu666+if//wnGQwGmjVrlsdtIiMjyWg00tGjR93ek8XrZXfH6Ohov7aTtGfUkvz+P//80+11f5sweMJgMNBdd91Fjz/+uF91v+bOnUtms5m+++47nePPUzSXv7TkNzhe9O/fn4iItm7dSn369Gl6vbGxkXbt2uV3FGBrCQkJoQceeIA+//zzpt9lwYIFVF1dTV9//TWlpKQ0bdtc4fkTwRVXXEH33XcfvfbaazRixAjKy8uj//u///Prs9dddx09//zzNHfuXLr00kvp22+/pTvvvJNMJlPTNh9//DGNGzeO3njjDd1nvTmY/JXFjz/+mK655pqm2mGSoqIiioiIcNvek+zl5eW5OXS0yHv5yy+/1P2OnkhJSaE5c+YQEdGePXvoiy++oEcffZQaGhq8djEuLy+n7777jmbPnq0bU+vr65tqy7WGyMhIMhgMXs9ZS0xMDBkMBlqxYoXHTpCur7nWTNPu09e1PBbMmTOH4uPj3aLGfCGjpl2bg7Q3Lb2uvnCVCXlfPvDAA3TRRRd5/ExmZiYRYXx67LHH6LHHHqP8/Pym6LTp06fTrl27/D4GhmEYpvVwRBrDMMxJTnZ2Nt1zzz0UHh7e4qLnF154IfXp04eeeeYZj6lpn3/+Of3000904403NhvN4sqsWbNo+vTpdO+993pM0SGCQTB8+HD6+uuvdVELTqeTPv74Y+rSpUtTN9GJEyfSL7/84tYd8n//+x8FBwfTiBEjWnR8LWXs2LFUWVlJP/74o+512ZG0OTw5qojgrKqoqNBFEwYGBnqM4jAYDBQQEKBzatTW1tJHH33ktq23fbjSkt/geDF8+HBKTEx062D45ZdfUlVVlVdDszV4+11kCp78XaThqzWWhRD0zjvvtNuxtARfv6/VaqWbbrqJPvzwQ3rxxRdp0KBBNGrUKL/227t3bxo+fDi9//779Omnn1J9fb1b91SDweDmNNiyZYtbenVL8bTf77//no4cOeJx+88++0yX0n7o0CH6448/fDr9zzrrLAoICKD9+/e7RUXKhyd69uxJ//znP6l///60YcMGn+cghHA7j3fffdetIH5LIrZCQkJo2LBh9PXXX+siZSsrK2nhwoW6badNm0ZCCDpy5IjH85OOau0+vv32W91rn376aVOkZkuPtbWsW7eOtmzZQrNmzaKAAP/X+v/3v/8RER3zOaAl19Xf8VeSmZlJPXr0oM2bN3u9L202m9vn4uPj6dprr6XLL7+cdu/eTTU1Ne1yrgzDMIxvOCKNYRjmJGLbtm1NdVMKCgpoxYoV9P7775PJZKL58+dTbGxsi/ZnMpnoq6++osmTJ9PIkSPp7rvvppEjR1J9fT0tXLiQ3n77bRo7diz9+9//bvGxJiUl+RUp9fTTT9PkyZNp/PjxdM8995DFYqHXX3+dtm3bRp999lmTA2P27Nn03Xff0fjx4+mRRx6hqKgo+uSTT+j777+n5557jsLDw1t8jC1h1qxZ9NJLL9FVV11F//rXv6h79+70448/0uLFi4mo+WiIm266icrKymjGjBnUr18/MplMtGvXLnrppZfIaDTSfffd17Rt//796euvv6Y33niDTjvtNDIajTR06FA699xz6cUXX6QrrriCbrrpJiouLqYXXnjBYyRE//79ae7cufT5559Teno6Wa1WNwNa4u9v0F6sX7/e4+/Vp08fCgsLI5PJRM899xxdffXVdPPNN9Pll19Oe/fupX/84x80efJktzp1P/74I1VXVzdFRO3YsYO+/PJLIkLnxeDgYK/H0rdvX5o4cSJNnTqVMjIyqK6ujtasWUP//ve/KT4+nm644QYiQvSmxWKhyy+/nP7xj39QXV0dvfHGG1RaWtpel6VF9O/fn5YtW0YLFy6kxMREstlsTRErRES33XYbPffcc7R+/Xp69913W7Tv66+/nm6++WbKzc2lM844Q7dfIjgUnnjiCZo9ezaNHTuWdu/eTY8//jilpaVRY2Njq89p2rRp9MEHH1CvXr1owIABtH79enr++eepS5cuHrcvKCigCy+8kP7yl79QeXk5zZ49m6xWKz3wwANevyM1NZUef/xxeuihh+jAgQN09tlnU2RkJOXn59Off/7ZFO2zZcsWuv322+niiy+mHj16kMVioV9++YW2bNniNXqXiCgsLIzGjBlDzz//PMXExFBqaiotX76c5syZ4xZVJ9OZ3377bbLZbGS1WiktLc1rFNgTTzxBZ599Nk2ePJnuvvtucjgc9Oyzz1JISIgu2m3UqFF000030XXXXUfr1q2jMWPGUEhICB09epRWrlxJ/fv3p1tvvbVp++joaLr11lspOzubevbsST/88AO98847dOuttzal/9tsNkpJSaFvvvmGJk6cSFFRUU3n117I6D8pc658+umn9PXXX9O5555LKSkpVFZWRvPmzaO5c+fStddeSwMHDmy3Y/FES66rtzHcF2+99RZNnTqVzjrrLLr22mspOTmZSkpKaOfOnbRhwwaaN28eEWGhYdq0aTRgwACKjIyknTt30kcffUQjR470OdYxDMMw7ciJ6XHAMAzDtATZLVE+LBaLiIuLE2PHjhVPPfWUW9dHIVQntcLCwmb3X1RUJO6//37Rq1cvYbVaRWhoqBg2bFiznQu1aLt2esNT104hhFixYoWYMGGCCAkJEUFBQWLEiBFi4cKFbp/funWrmD59uggPDxcWi0UMHDjQbV+yM9u8efPcPu+ta2dISIjbtq7d/oRAx7+LLrpIhIaGCpvNJmbMmCF++OEHj13vXFm8eLG4/vrrRZ8+fUR4eLgICAgQiYmJ4qKLLtJ1aBRCiJKSEjFz5kwREREhDAaD7jjee+89kZmZKQIDA0V6erp4+umnxZw5cwQRiYMHDzZtl5WVJaZMmSJsNpsgoqYOct66JfrzG3jrHuvpunrCV9dOIhJLlizRbf/pp5+KAQMGCIvFIhISEsQdd9yh6ywqSUlJ8bpP7TXxxFtvvSUuuugikZ6eLoKDg4XFYhEZGRnilltuEYcPH9Ztu3DhQjFw4EBhtVpFcnKyuPfee5u62rreU/527XS9Tz39Pp72t2nTJjFq1CgRHBwsiMhjh9Zx48aJqKgoUVNT4/MauFJeXi6CgoIEEYl33nnH7f36+npxzz33iOTkZGG1WsWQIUPEggUL3I5Tnsvzzz/vtg9P51laWipuuOEGERcXJ4KDg8WZZ54pVqxYIcaOHas7P3ntPvroI3HHHXeI2NhYERgYKEaPHi3WrVun+x5PciyEEAsWLBDjx48XYWFhIjAwUKSkpIiZM2eKpUuXCiGEyM/PF9dee63o1auXCAkJEaGhoWLAgAHipZdeEo2NjT6vX05OjpgxY4aIjIwUNptNnH322WLbtm1u94AQQrz88ssiLS1NmEwmv7r/fvvtt00y0a1bN/HMM894Pcf33ntPDB8+vEmmMzIyxDXXXKO7RnLcXrZsmRg6dKgIDAwUiYmJ4sEHH3TrHrl06VIxePBgERgYKIio6Vy8zTVyvGhOBoUQoqamRoSHh3vstixZtWqVmDhxokhISBBms1kEBweL008/Xbz++utNHS194U3mvI1r3s7Ln+vqbQz3JRNCCLF582ZxySWXiLi4OGE2m0VCQoKYMGGCePPNN5u2uf/++8XQoUNFZGRk0zxw1113iaKiomavAcMwDNM+GITw0uaNYRiGYZhmeeqpp+if//wnZWdne42cYZjjTUFBAaWkpNBf//pXeu6550704TAdlHHjxlFRUZFfNRoZhmEYhgGc2skwDMMwfvLqq68SEVGvXr3IbrfTL7/8Qq+88gpdddVV7ERjOgQ5OTl04MABev7558loNNLf/va3E31IDMMwDMMwpxTsSGMYhmEYPwkODqaXXnqJsrKyqL6+nrp160b33Xcf/fOf/zzRh8YwRISi9o8//jilpqbSJ5984rXRB8MwDMMwDNM6OLWTYRiGYRiGYRiGYRiGYfzAd4sxhmEYhmEYhmEYhmEYhmGIiB1pDMMwDMMwDMMwDMMwDOMX7EhjGIZhGIZhGIZhGIZhGD9gRxrDMAzDMAzDMAzDMAzD+AE70hiGYRiGYRiGYRiGYRjGD9iRxjAMwzAMwzAMwzAMwzB+wI40hmEYhmEYhmEYhmEYhvEDdqQxDMMwDMMwDMMwDMMwjB+wI41hGIZhGIZhGIZhGIZh/IAdaQzDMAzDMAzDMAzDMAzjB+xIYxiGYRiGYRiGYRiGYRg/YEcawzAMwzAMwzAMwzAMw/gBO9IYhmEYhmEYhmEYhmEYxg/YkcYwDMMwDMMwDMMwDMMwfsCONIZhGIZhGIZhGIZhGIbxA3akMQzDMAzDMAzDMAzDMIwfsCONYRiGYRiGYRiGYRiGYfyAHWkMwzAMwzAMwzAMwzAM4wfsSGMYhmEYhmEYhmEYhmEYP2BHGsMwDMMwDMMwDMMwDMP4ATvSGIZhGIZhGIZhGIZhGMYP2JHGMAzDMAzDMAzDMAzDMH7AjjSGYRiGYRiGYRiGYRiG8QN2pDEMwzAMwzAMwzAMwzCMH7AjjWEYhmEYhmEYhmEYhmH8gB1pDMMwDMMwDMMwDMMwDOMH7EhjGIZhGIZhGIZhGIZhGD9gRxrDMAzDMAzDMAzDMAzD+AE70hiGYRiGYRiGYRiGYRjGD9iRxjAMwzAMwzAMwzAMwzB+wI40hmEYhmEYhmEYhmEYhvEDdqQxDMMwDMMwDMMwDMMwjB+wI41hGIZhGIZhGIZhGIZh/IAdaQzDMAzDMAzDMAzDMAzjB+xIYxiGYRiGYRiGYRiGYRg/YEcawzAMwzAMwzAMwzAMw/gBO9IYhmEYhmEYhmEYhmEYxg/YkcYwDMMwDMMwDMMwDMMwfsCONIZhGIZhGIZhGIZhGIbxA3akMQzDMAzDMAzDMAzDMIwfsCONYRiGYRiGYRiGYRiGYfyAHWkMwzAMwzAMwzAMwzAM4wfsSGMYhmEYhmEYhmEYhmEYP2BHGsMwDMMwDMMwDMMwDMP4ATvSGIZhGIZh/OCpp56iBQsWnOjD6FB4uybLli0jg8FAy5YtOybfm5WVRQaDgT744INjsn9/MBgM9OijjzY9b+s5u+5vx44d9Oijj1JWVlabjpNhGIZhmPaFHWkMwzAMwzB+wI40d7xdkyFDhtCqVatoyJAhx/+gThBtPedVq1bRjTfe2PR8x44d9Nhjj7EjjWEYhmE6GAEn+gAYhmEYhmE6Kw6HgxobGykwMPCYfo/dbieDwUABAcdH9QsLC6MRI0Ycl+/qKLT1nDvb9WIYhmGYkxWOSGMYhmEYpsUUFhbSTTfdRF27dqXAwECKjY2lUaNG0dKlS5u2Wbp0KU2cOJHCwsIoODiYRo0aRT///LNuP/v27aPrrruOevToQcHBwZScnEzTp0+nrVu3tuh47r33XgoPDyeHw9H02l//+lcyGAz0/PPPN71WXFxMRqOR/vvf/xIRUV1dHd199900aNAgCg8Pp6ioKBo5ciR98803uv0bDAaqrq6mDz/8kAwGAxkMBho3blzT+3l5eXTzzTdTly5dyGKxUFpaGj322GPU2NjYtI1MR3zuuefoX//6F6WlpVFgYCD9+uuvfp1jamoqTZs2jebPn08DBgwgq9VK6enp9Morr+i2kymGH330Ed19992UnJxMgYGBtG/fPiosLKTbbruN+vTpQ6GhoRQXF0cTJkygFStWuH1ffX09Pf7449S7d2+yWq0UHR1N48ePpz/++KPZa+ItzXHNmjU0ffp0io6OJqvVShkZGXTnnXc2vd9e94M33njjDRo4cCCFhoaSzWajXr160YMPPtj0fkuujyuezvnaa6+l0NBQ2rdvH51zzjkUGhpKXbt2pbvvvpvq6+t1n9emdn7wwQd08cUXExHR+PHjm67vBx98QE888QQFBATQ4cOH3Y7h+uuvp+joaKqrq2vF1WEYhmEYxh84Io1hGIZhmBZz9dVX04YNG+jJJ5+knj17UllZGW3YsIGKi4uJiOjjjz+ma665hs4//3z68MMPyWw201tvvUVnnXUWLV68mCZOnEhERLm5uRQdHU3PPPMMxcbGUklJCX344Yc0fPhw2rhxI2VmZvp1PJMmTaIXXniB/vzzTxo5ciQRwZEXFBRES5YsoXvvvZeIiH7++WcSQtCkSZOICM6ikpISuueeeyg5OZkaGhpo6dKldNFFF9H7779P11xzDREh7W7ChAk0fvx4evjhh4kIEUhEcKINGzaMjEYjPfLII5SRkUGrVq2if/3rX5SVlUXvv/++7lhfeeUV6tmzJ73wwgsUFhZGPXr08Pu6b9q0ie6880569NFHKSEhgT755BP629/+Rg0NDXTPPffotn3ggQdo5MiR9Oabb5LRaKS4uDgqLCwkIqLZs2dTQkICVVVV0fz582ncuHH0888/NznCGhsbaerUqbRixQq68847acKECdTY2EirV6+m7OxsOuOMM3xeE08sXryYpk+fTr1796YXX3yRunXrRllZWfTTTz81bdNe94Mn5s6dS7fddhv99a9/pRdeeIGMRiPt27ePduzY0bRNSUmJX9enJdjtdjrvvPPohhtuoLvvvpt+++03euKJJyg8PJweeeQRj58599xz6amnnqIHH3yQXnvttaZ00YyMDBJC0JNPPklvvfUW/etf/9Id+9y5c+n2228nq9Xa4uNkGIZhGMZPBMMwDMMwTAsJDQ0Vd955p8f3qqurRVRUlJg+fbrudYfDIQYOHCiGDRvmdb+NjY2ioaFB9OjRQ9x1111+H091dbWwWCzi8ccfF0IIkZOTI4hI3HfffSIoKEjU1dUJIYT4y1/+IpKSknx+v91uFzfccIMYPHiw7r2QkBAxa9Yst8/cfPPNIjQ0VBw6dEj3+gsvvCCISGzfvl0IIcTBgwcFEYmMjAzR0NDg97lJUlJShMFgEJs2bdK9PnnyZBEWFiaqq6uFEEL8+uuvgojEmDFjmt2nPN+JEyeKCy+8sOn1//3vf4KIxDvvvOPz896uiTyGX3/9tem1jIwMkZGRIWpra5s9Lu3xebof5LV8//33/d7X7bffLiIiIvzeXn6/p+sjhBBEJGbPnt303NM5z5o1SxCR+OKLL3SfPeecc0RmZqbP/c2bN89tf9r9xsXFifr6+qbXnn32WWE0GsXBgwdbdI4MwzAMw7QMTu1kGIZhGKbFDBs2jD744AP617/+RatXrya73d703h9//EElJSU0a9YsamxsbHo4nU46++yzae3atVRdXU1EiHx66qmnqE+fPmSxWCggIIAsFgvt3buXdu7c6ffxBAcH08iRI5tSS5csWUIRERF07733UkNDA61cuZKIEKUmo9Ek8+bNo1GjRlFoaCgFBASQ2WymOXPm+P393333HY0fP56SkpJ05zt16lQiIlq+fLlu+/POO4/MZrPf56alb9++NHDgQN1rV1xxBVVUVNCGDRt0r8+YMcPjPt58800aMmQIWa3WpvP9+eefdef7448/ktVqpeuvv75Vx+nKnj17aP/+/XTDDTf4jJZqr/vBE8OGDaOysjK6/PLL6ZtvvqGioiKP2/lzfVqCwWCg6dOn614bMGAAHTp0qFX7IyL629/+RgUFBTRv3jwiInI6nfTGG2/QueeeS6mpqa3eL8MwDMMwzcOONIZhGIZhWsznn39Os2bNonfffZdGjhxJUVFRdM0111BeXh7l5+cTEdHMmTPJbDbrHs8++ywJIZpS6P7+97/Tww8/TBdccAEtXLiQ1qxZQ2vXrqWBAwdSbW1ti45p0qRJtHr1aqqurqalS5fShAkTKDo6mk477TRaunQpHTx4kA4ePKhzpH399dd0ySWXUHJyMn388ce0atUqWrt2LV1//fV+15nKz8+nhQsXup1r3759iYjcHDaJiYktOi8tCQkJXl+TabW+vufFF1+kW2+9lYYPH05fffUVrV69mtauXUtnn3227noXFhZSUlISGY3toyrKlNIuXbr43K497wdXrr76anrvvffo0KFDNGPGDIqLi6Phw4fTkiVLmrbx9/q0hODgYDfnYWBgYJvqmA0ePJhGjx5Nr732GhHBmZuVlUW33357q/fJMAzDMIx/cI00hmEYhmFaTExMDL388sv08ssvU3Z2Nn377bd0//33U0FBAd11111ERPTf//7XayfC+Ph4IlK11J566ind+0VFRRQREdGiY5o4cSI9/PDD9Ntvv9HPP/9Ms2fPbnr9p59+orS0tKbnko8//pjS0tLo888/J4PB0PS6ayF4X8TExNCAAQPoySef9Ph+UlKS7rn2e1pKXl6e19eio6Ob/Z6PP/6Yxo0bR2+88Ybu9crKSt3z2NhYWrlyJTmdznZxpsXGxhIRUU5Ojs/t2vN+8MR1111H1113HVVXV9Nvv/1Gs2fPpmnTptGePXsoJSXF7+vTEbjjjjvo4osvpg0bNtCrr75KPXv2pMmTJ5/ow2IYhmGYUx6OSGMYhmEYpk1069aNbr/9dpo8eTJt2LCBRo0aRREREbRjxw4aOnSox4fFYiEiOHsCAwN1+/v+++/pyJEjLT6OYcOGUVhYGL388suUl5fX5FSYNGkSbdy4kb744gvq06ePzrFlMBjIYrHonE55eXluXTuJEEXkKSpp2rRptG3bNsrIyPB4rq6OtLawfft22rx5s+61Tz/9lGw2W1NBel94ut5btmyhVatW6V6bOnUq1dXV0QcffOBzf96uiSs9e/akjIwMeu+993w6KdvzfvBFSEgITZ06lR566CFqaGig7du3e/1+T9fneCCPw9v1vfDCC6lbt250991309KlS+m2225rk5OWYRiGYRj/4Ig0hmEYhmFaRHl5OY0fP56uuOIK6tWrF9lsNlq7di0tWrSILrroIgoNDaX//ve/NGvWLCopKaGZM2c2dYzcvHkzFRYWNkX8TJs2jT744APq1asXDRgwgNavX0/PP/98symAnjCZTDR27FhauHAhpaWlUUZGBhERjRo1igIDA+nnn3+mO+64Q/eZadOm0ddff0233XYbzZw5kw4fPkxPPPEEJSYm0t69e3Xb9u/fn5YtW0YLFy6kxMREstlslJmZSY8//jgtWbKEzjjjDLrjjjsoMzOT6urqKCsri3744Qd68803W3U+nkhKSqLzzjuPHn30UUpMTKSPP/6YlixZQs8++ywFBwc3+/lp06bRE088QbNnz6axY8fS7t276fHHH6e0tDRqbGxs2u7yyy+n999/n2655RbavXs3jR8/npxOJ61Zs4Z69+5Nl112mc9r4onXXnuNpk+fTiNGjKC77rqLunXrRtnZ2bR48WL65JNPmo6vve4HV/7yl79QUFAQjRo1ihITEykvL4+efvppCg8Pp9NPP71F1+d40K9fPyIievvtt8lms5HVaqW0tLSmyEOTyUT/93//R/fddx+FhITQtddee1yPj2EYhmE6LSe62wHDMAzDMCcXdXV14pZbbhEDBgwQYWFhIigoSGRmZorZs2c3dY4UQojly5eLc889V0RFRQmz2SySk5PFueeeK+bNm9e0TWlpqbjhhhtEXFycCA4OFmeeeaZYsWKFGDt2rBg7dmyLj+0///mPICLxl7/8Rff65MmTBRGJb7/91u0zzzzzjEhNTRWBgYGid+/e4p133hGzZ88WrmrSpk2bxKhRo0RwcLAgIt3xFRYWijvuuEOkpaUJs9ksoqKixGmnnSYeeughUVVVJYRQnSaff/75Fp+XEOjaee6554ovv/xS9O3bV1gsFpGamipefPFF3Xaye6T2Okvq6+vFPffcI5KTk4XVahVDhgwRCxYsELNmzRIpKSm6bWtra8UjjzwievToISwWi4iOjhYTJkwQf/zxR7PXxFMHSyGEWLVqlZg6daoIDw8XgYGBIiMjQ9eN09/7oTVdOz/88EMxfvx4ER8fLywWi0hKShKXXHKJ2LJlS6uuD/nZtTMkJMTtWDzdX677E0KIl19+WaSlpQmTyeTxfLOysgQRiVtuucXv68AwDMMwTNswCCHECfDfMQzDMAzDMC0gNTWV+vXrR999992JPhSmg/Df//6X7rjjDtq2bVtTcwuGYRiGYY4tnNrJMAzDMAzDMCcRGzdupIMHD9Ljjz9O559/PjvRGIZhGOY4wo40hmEYhmE6NA6Hg3wF0BsMBjKZTMfxiNqXU/38jgfN1S8zGo3t0n20o3DhhRdSXl4ejR49mt58880TfTgMwzAM06ng1E6GYRiGYTo0qampdOjQIa/vjx07lpYtW3b8DqidOdXP71iTlZVFaWlpPreZPXs2Pfroo8fngBiGYRiGOaXhiDSGYRiGYTo0CxcupPr6eq/v22y243g07c+pfn7HmqSkJFq7dm2z2zAMwzAMw7QHHJHGMAzDMAzDMAzDMAzDMH7Q4SLS3njjDXrjjTcoKyuLiIj69u1LjzzyCE2dOtVt25tvvpnefvtteumll+jOO+/0+zucTifl5uaSzWYjg8HQTkfOMAzDMAzDMAzDMAzDnIwIIaiyspKSkpJ81lbtcI60Ll260DPPPEPdu3cnIqIPP/yQzj//fNq4caOuI9GCBQtozZo1rQrVz83Npa5du7bbMTMMwzAMwzAMwzAMwzAnP4cPH6YuXbp4fb/DOdKmT5+ue/7kk0/SG2+8QatXr25ypB05coRuv/12Wrx4MZ177rkt/g5Za+Tw4cMUFhbW9oNmGIZhGIZhGIZhGIZhTloqKiqoa9euzdan7XCONC0Oh4PmzZtH1dXVNHLkSCJCWubVV19N9957ry5CzRf19fW6Ir6VlZVERBQWFsaONIZhGIZhGIZhGIZhGIaIqNkSYN6TPk8gW7dupdDQUAoMDKRbbrmF5s+fT3369CEiomeffZYCAgLojjvu8Ht/Tz/9NIWHhzc9OK2TYRiGYRiGYRiGYRiGaSkdMiItMzOTNm3aRGVlZfTVV1/RrFmzaPny5VRbW0v/+c9/aMOGDS1qEvDAAw/Q3//+96bnMlyPYRiGYRiGYRiGYRiGYfzFIIQQJ/ogmmPSpEmUkZFBvXv3pr///e+67gkOh4OMRiN17dq1qdNnc1RUVFB4eDiVl5dzaifDMAzDMAzDMAxz0lNfT5SbS9StG9GKFUT9+hHFxJzoo2KYkwd/fUUdMrXTFSEE1dfX09VXX01btmyhTZs2NT2SkpLo3nvvpcWLF5/ow2QYhmEYhmGYDk1VVdv3IQRRXV3b98MwTPvy9ttEF19MVFBA9M47RL//7r6Nw0G0cCHR3XdDlhmGaTkdLrXzwQcfpKlTp1LXrl2psrKS5s6dS8uWLaNFixZRdHQ0RUdH67Y3m82UkJBAmZmZJ+iIGYZhGIY5XmzaRLR4MdH11xPFxp7oo2GYk49164gGDyYKD1ev7d5N5I8qLQSRrK6Sk0PUvbvv7RsaiCyW1h8rw3RW8vMxxxlbEPZSUQEnWUEBUXEx0d69RIcPQ+aHDlXblZYSZWdDNisriThBi2FaToeLSMvPz6err76aMjMzaeLEibRmzRpatGgRTZ48+UQfGsMwzWC3EzU2en9fCCKn8/gdD8Mwpx5CEJWUEM2f3377zM3lVXmmc7BmDdGWLUS1tfrXTSb/Pv/DD/grBJxkzZGd3bLjY5jOTm4u0bZtRAsWEO3ZQ1Re7v9nN2yAjNpskPHqasyVP/1EtHGj2s7pJOrRg6hXL6Jvv8Vre/cS1dT41uM9UVrasu290dLvZZgTTYdzpM2ZM4eysrKovr6eCgoKaOnSpT6daFlZWXTnnXcevwNkGMYr+/f7TvWoriZatgyKwcGD7Tf5MgzTebDZiE47jSg5uf32+frrcM4xzKmKdHr9+itqJ9ntRLK0sLdUT4dD/3zFCkSvEMHoralx/8xvv+mddBUVeDBMZ8fPUt504ACcZ1u3Ej3/PNG+fc1/RureX3wBGZ8wgWjlSsyTv/wCvfvIEbW9wwG5DwsjWrKEaPt2ok8/RWTq//7n/6J3dTXR5s3+bdscZWWcLs6cXHQ4RxrDtBZ/VkaZY8u2bb4nQSGghM+bh9/rxhsxeTMMw/hLQwNRezbebmggCg52dxowzKlEURHRu+8SFRYi8mTRItzzR44QPfAAHGtlZfrPlJbq5SI7WznF5Hzuyo4dWCiTvPQSUssYprPjb8TV7t1Iuy4tJVq6FM0DvLFhA/5K2d23D6nXaWlEX35JdP75eP3774lCQ5WDTAiivDw47MLD4VT7z3+QTvr44/7bVEVFynF+6JB/n/GGw4GyDQxzssCONOaU4ZdfTvQRMA0NnleoJTk5UNp37YLT7aefiNauPX7HxzDMyY/djqi09nKmVVZin2Zz++yP8U5eHiIYPLF16/E9ls5GVRWuv8OBuks7dsAI37YNC1rr1uE1LQ4HDGXJH39gHm9shCHuKeWstFT9xnV1+N6FC4/deTHMyYK/DuX+/aFLl5bCKeat7EBZGWS6vh4OtPJyPGJjUfusthYyHBwMB9offyhnl9xnYyNRYCDkOioKTrziYv+dfvX1yunmybHu6pz3RWMjO92Zkwt2pDHtjqdV/bw8op07j20NmramCXI0QtspLfWewlFQgEl9wwZM8I8/TtSzJyvYDHMy4ctRfryw27GC7muVviXs3AlDIyfH/b32+g4GVFV5Nrb270dUlGvdLgmn+7SdmhqigACir74iio/HaxUVKGReWgpjuKBA/xmHAylh8ncpL4dhXFKir5GWl6c+Y7erVNGyMkSn5eYeyzNjmJOD4mL/t928mWjAAKLevb03G1ixArJ1+DBkbf16bDtwIBxw5eVYdDKZ4CQrKEBHTym/BgO2r62Fg62ykujHH6Gj2+3+HafdruoretL/vS2ceMLh4BILzMkFO9KYdsdVESOCInbgwLFVptpaxL4lqyaMZxISUJPBE/v3496oqsLEm5CAGg6+QsGFcHe+eiu6yoXCGebY0xKlmEgfzdKedOnSsk5mvnA6iZKSPDvNeHW8/fFkoH32GYwwb+P7unXH9pg6A3Y75NFiwd/QUDjCcnJg4FdXIxpFu6jocEA3OnoUn4mJwTze0IDfasMGvK+tsbZrF5x2JSWIMDl4EA48hunsVFcjtVribeFgzx4s7tx2G7rrBgZ63q6gADKZmwsZW7cO0WzDh0MnrqggCglR+nFsLNEzz0Amd+zAHBoWhm3k2CuzRPzVqbXR3J6i2FqS7ulwYKxhmJMFdqQx7U5urntBzf/+FwOszOU/FrTVkcaOmLaTkaEUclc++AAFTaOiiCZOxEpbcDAcahLXlaiKCn2XISLP0QxEvg12bw5cbeFVhmGap6XjrD9FkltKejpW0g2G9tlfbS1Rnz7quXYuaEm3NFcaG72PV50NeU3z85UjTVtHa80aGFD79+s/V1CADnSrVx+f4zyVMRhwfSMjEQ0eG4vmP7t3Y46MjESjAK2j0+GAPmcyQRa2b8ffhgZ85uhR91pKjY2IcNu5E/s680yO7GQYItVEQLJ7t/s2tbWoYZicjAWjvn2JrFbIm2tE+IYN2KfTCUdaXR2iTXv1grzHx6OxiMEAZ9zw4fjc+vX4noAAONICAjBXh4RA7x4zxv9zkqmhdXWeF0kOHMDDF/K8Dh9u+WIdc+LxFM3fWWBHGtOuVFVB6dIOpg0NUIKLi/1vr94a2JF2YnE48LsHBUE5d3WAVVSgPsPGjZi0Z80iuvhiPOQku3Sp/ncoKVHdgGQ9Fm+h8XIV3VOKbnk5HG3yHpHG7ZIlzTt3+b5gGEVL5eFYduZtL0daXR1RYqI6N61Dvy11u/bv97/OzKnO0aMYmwMDlX6gHat/+gnvLVyov8cKCohuugmGH3d5bjvR0XAah4fjsX8/IlACAzF322wqPauhAY7PvDxEnBw6hPs5KAh/f/9d1VzT6l8jR6Ipgew6aLFgn7t24X1ewGI6I3Y75haHQ+mxnhZ5KyrgTDrzTESMxcdDVmtqoCtro9gOHiT67jvs12rFQnVoKFH37ni/thZ218iRRGecAblMTlbOPLsdY0Lv3tjH2LFw3iUl+X9eTifGB1k70ZXGRuj9vuZCeR0WLPD/e5mOQ2cuvcCONKZd2bpV1cSQbNuGATYn59gWc25r2mhbHXGdnbw8/PZ9+mBVSU6aDgcmc7sdDtW6OqLTTiPq1w+rZnV1cGjJbbVNIwoL0eHT6cQ+i4q8R4h4inIoK8OjpgZ/v/4arx8+jJX1DRtQL8IXxyo1jWFONoqKvNeSrKvzPIbu2dP+xyELordXamdUlH6RR+vIaUs36LIydsRLSkpUUWpPdXSsVqK4OCyc/PGHMharq2HoJSfD+DxwgKP82kJkJOQmLg4LWtnZeD0jA/LrdCpdqqQEzssNG6C71dUhUsZqxf/y95RRa5KgIMzdBw5A/7NYEHmelYUInL17sd3hwywfTOehrAy67pEjSk/1NIc1NGDhQaZDp6RA783Lg0xpo3bLyhBxVleHz0VEQP4iIvB+ZiYWI4YPJxo/nmjTJjTp2bcPfwsL1WdMJqLp0+FE69LF/2hsmw1jRFaWGk8k5eUYA3bt8l37TM4Jssabt1rL/sKLLscXdqQxTDtw5AgUXNkFSiKVprq6Yxv+2daBlxW6tmG1QqGOikJNh9xcKNpr12Iy/eorbHfJJXCgEUFRGDxYGeAFBaixlp+P5wYD7pnaWijgRUX6e0tLRYWqPdHQgN9z8WKiX3+Fwr54sfqsXGXPymre0Je1X7wZgAxzquJw6BXSsjLIqifn8qpV+jpJ8v9Dh9pfbmS6qDdHWkvrXdbUYF9GI8YtbQ0bOX+1hiNH1FjW2XB1uMpunSUlMNyEUIZVYyPmhWuuwX2za5dyllVXE6WlwZm2bx/SBdvi3OzMyPSvgwcxt5aVobzCgQNEU6ZgLnQ6cf2PHsX78fGYP48exfW3WrFY9sMP+N1278ZfGR0qdby8PKSkbdmCzwQHE/35J/QAGZEmMxgYpjOwezfGrrw8lDrZvh0OLFfq6iAvEoOBaPlyyK3d7r7Q07cvtsnPR2qmxYL3UlKgjzc2ItIsORnyFh0N51d1NdI6u3bFe0IQjRgBh9vMmUi394eYGBxzdTUWQbRUVuK4qqp8p3fL8T4kBOfS0pqYrpkq2uYnzLGHUzsZph2QK8ibNulD96XRVVNzbHPf21qLhyPS2obs/mM0wnGWm4twbtcJcfBg/XO7HZO6jB6LiUGKJxFW3uLjkfZTWIhoBW+pVocPqxW07Gyib74hmjOH6Pvv8ZmDB9X9V14OB59WWfGGdAjY7WzAMZ0DuVre0ED07beQPadTFSt3dT7v3w/F9Ztv1Gv5+ZCzykoYDO2JrCvjzZHWks5oRJBxkwn7q6nRr64ajS0rlqyltPTUamLj7Tp4ilxwTZk/eBDXOTVVzbUyarmujuj004l69MD8YLEoR1xREeYWOVYLwXN1a8nORmRZTAzu9717cV0jIhDVkp+vCn0//zwWngoKcB/X1UGuoqLgGKupwW8RGAjjXBr3dXUwzhMTsc3PP8NwN5ngBC0pUUbz/v2YtztCJ2DGN7yI2Ha+/Rb67NatcDy88QYcza78+qv7wr7DgXExLw8OaUlDA5xgZWWQu/JyfIcQSPFMT4fjOzUVz0NDER1qNGL8TUnBfqVj3WRCCqjNRvTll/7JpsMBWd61C0557ZyXlQUnfVoajtU1cmnzZhyHdLLJxbuWlESorHSvral17Lg69ximPWFHWifheLQTlsq0yYTBVA5kTifSCQICjq0jYv36tnVYO3qUo9LayoEDmNQdDtwHmzbh99emTQ0Zov+MyYRJ8KWX0IAgJgbpnbt2YdK3WIheeAGTc14eVqyKitzvJW0EhMEAJ15tLf7u3w9lXobKl5eroq/NpQnJCX3fPu9pbQxzKrFunYrwLC3FyvSyZTCK8/JU3ULJ++/DuSZXsDdvxmLKokVwvrS340Ou4ntzpLV0HG9sxL6kki+dCbIcwY4drVvh/v33U6selKdC0kSeja3SUr2D7Z138FpeHvZTV6fm6/JyjNnp6TDgHA4YVjk5cO4UF2P8Ly/H6+xIax0JCZCdMWPUolefPtDPwsPxut2O652Xh98nOxsGuhCYc0tKUE/JZMLvc911+jlUCBj6/fphziwqgrMtLg7zcFUV5mQh8Lm8PM/OBKZjUVBwoo/g5CcyEimTBw9CloKDPS+0rFihsjYk0slVVQXdtaoK+m14OBzhlZWQ10OHIK9ESOfs3h0LFETYLjOTaNAgvN7QAKe4pLYWY0JmJr5r2DD9vLdhg+cSOhYLvre8HHKtzRqJjMR+CgpQ2sU1AnXPHuyzoABjfUwM9qON1MvN9a17Hzni7qDr2hV/HQ6iH3/0/lmGaSvsSOskHA/FU6bDlJZiUJUDm81GNHkyBuhj6UhLSmrb/isr9QXyhcB5HIuuc6cqUlE3mYguvxwr0AkJavLt1w8OLS2pqZhEP/sMIerTp2NCX7UKE2RICJSFI0eg5O/aBQP9l1/0k2t1Ne657duhqOzapVbex43D/bF2LQyxsjI4C+rrm4+WkcZjWVn7FTdnmI5MQwPmjKNHlVN740YUgt+yRV+HsLERyrhM3xACjrTiYqRTV1e3rfNlc8fpCZPJczc0bxgMMD7y83E+MuJu3z4YO2vWuK94+0N4OMaPUz2a4/Bh9wWJ/fv1KbJr1+I65OcTvfoqIoVltLrDAadMYiJey8vD71BbC+Nr9Wr8LxfL2JHWOrp1w1w8cSL0sbAwovPPx3tdumCujY8n+vxz/E6RkXAiOxwYCwoK8L7sBnjgAPZjt+M5EXQmWehczp3dukEPyM7G4+238V5wMO6DvXv5Nz0Z4HqxbaOsDA0EfvoJ9752cVfL7t36LtIJCahhKGsS1tZCPo8cweKD0Yj9GI0Yh202pYv366f2060bHj16oGOvdl4yGjH+Sh03MhJRZNpuyXl5GKe1KZp1dXCur1uHiHTpTCsowFidmIjj2LQJEXk//IDPHTyImsVLl2IhpqgItuP+/URTp+L45Pds2qTXOTxdL9e00cJCjFuVlXzftjeeAlY6cyotO9I6Cccr0qqgAANefr5e2P7v/6CItbUhgDeEwKDZlg5rRPpuOA6HCjtmoOhWVsJA1j5KSvBXuzoWH49oMlkP5/BhrBCdfbZ759aEBNRkeOghKAUy1WTOHKzMXXkl9rNtGwZradh++qn6vQ8cQOTIypVQLtauxT2Rng7FJTISTrXDh7Htr7/C6Hc6YUzIOlDakHkiKBp2OxSguXN913hgmFOF+nrIz5EjcGjv3YtuWj/9hBpH2q6LK1ci8koWSHY68dnSUnyuosK7U6u1Cq500MiIUtf5LTQUEXT+Isd4oxGGvkwNPXQIY5ksst4c2vPcvBkGQkyMfl453giBhYf2wNNCgt0O40pG8UmOHHGPtli1CsbUvn1It5HKd1GR+g3T03FfVVTgvlqzBoZYfb1+3D7ZEQL3nawtVF6Oee5YPux2zLfh4ZiHbTZ08zMaMX+azXCoBQXht6quRnpXVhYM6v374SSrqMA+yssxt8qUbyLc68nJkAX5OyUmIiVURqoTQVdsaMB9UlqqZO5k0reOR6ZHR6KldasYPdnZiOYsLYUzq18/OK9dC+OXlekXnENDMc81NOBzMm1eu8gfFASZCgzEwlZoKF4PD8dfgwHOtshIyKXDoZ9/DQai/v0xJshGJF27QnYltbVYVNPadiUlWHiqrcU8sG8f5r5586Cf//knnHfdu2PsLinBdrt3E33yCZ4fPYox5sMPoftHRmI/R4/i2qxcibHG29iwerUaa2QAR309xqX9+3FsK1Z4j6hmvNPY6L4QKu0gOYcR6evjdjY8+MIZpuWUl0MRstuxkpCVpYQtJgZ1T+rrMTg2NkKZas/oHlk3pS0FD+UqisThwITR0OAeZn0yIYSq+6O95tJwMRj0/3t732DA5Gyzef8uOfmnpKhGASEh+O5//9t7owCbDXUZ5OrcddcRzZqF63/55cq4IoIh8M03uN/OPBNh6m++CUWje3fcWw0N+BsfD2MtMBDHERuLiBq7HfdhYSGUlqwsTN7r1yMMXbJzJ96vqoIS9PXXRH/7W/PXnGFOZgICIPNZWVCk8/NVtO6RI+r/wkLI9sGDWDGXDUeEwGcOHIDi72kBxenEeBsT0/Ljk8qyw4F9/PknomzkOGUyqXSRoCDfYxaRGvdMJqUcZmWpc8nKgmPu2mt97+eXX5AWY7dj3Fm/nujii0+sc6CoiGj+fCxiHAvy8uBcDQ3FfZOejtd37YKBNXSo2vbwYYynERGIMujSRe1DRjSlpMBpKQ3HgQMRFbVtG17btAnbOZ34nDY16WQjIAD3XEAA5qj21otciYhALTqrFd/XuzfkNjAQf2trMYdu24b/IyMxh2dk4FobjYhSGTaM6IsvoNPV10PWIiLw12iE4bx0qfpNQ0MRES6/q2tXVSeqrg5zq8MBx11Fhd54d8VuP7bd31tCdjYchJ2FltaeZPTIsapvX+ij5eXKgR4ZifdqaiAj2og0ImxXWko0YYJ6b+NGyBoRSqYsXAhnWFKS+pwcjyVRUZCx+Hh9IxyTCZ8LDMSDCPr899/DfouIgKzv36+PcjtyBLLbtSvkob4ex3XaaRgD+vfHdrGxkOuDB7FAJQTsqs2b8byqCo61zEyca0AA5s3ly3G8a9bg2owe7X5dt25FMwUizBFWK2zN4cPVMZWUQB9ITvbrp2L+P3JRSzpktdTW4veZOvX4H1dHgh1pnYRjHZFWWAgl2WbDgJqVpdJujh6FcjhgABTikhKsRngaEFuLjIJYtYro9ttbv4+dO4kuvBDPGxsxSZzIAvN1de1TiDc4GBPosU5NlIqCbL09ezYcX7ImzvTpnj8XFaWUbiIo+7174z7KzMQK2Y4dcLY1NqrGFXPmEJ1zDibnpUuJbrsNhrPBgHuxe3flgAsIwLGsX68m8IAAfLc0zNesIbr1VnUcDgf2U1QEZeJUT9FiGCIVKSQjqjIyEEkko0mqq+GQttmg3IeHQ6mSTqgjR2B0VVZiXNVGEElnl6yRVFWlVs/9QQi1shwain19+inmk+3bIaeNjVDcd+6EceDLkVZXp45PHpd0oNvtmK927oSDQDqBvCE/X1GBbbduxb5PpCPNZCI666xjs2+HA4bK2rVEF12k1zNMJn0EwOjRuCahoRjr//xT1bEpL4dhSYT38/PhlJEpg+XlmMOEQFSM0YjrGhqq6gExzWM0osyBnMfi4nDP1tTgOlZW4nn37ogCWbQIsj9gAPQ4oxHza2Cg6h5YV4c51OlUUQlWKxyo27djoatLF2yTnIyugA0NMMBsNlXk3OHAGFJc7NuRtnevu5PhRNGZ9AFZt5BpObLsiFw4uPpq1QRg5079OHnkCBzZrnNWfj7kr6gIeiwR/pfzUUgIfqMtW5DhIZE6v5SpgABlLxkMcHgRQTZdG4HJ5i9yfiwtxULGkCGq1nFxMeS+WzeM59HROI6sLNUdmAgO+HnzcB3WrMFxp6fjfPfvV9HltbXY3/79GPPl/PnDD7AzXe1GhwPXS+omDge2f/NNHOP+/divvM4zZzb/ezEKX1G3stkMUeeO9uPUzk7CsXakyRX4DRug+GZmKmPshx8wAUREQLHKyWn/7p1C4PsWL279PmQan8ThgLKnrRHgL3Y7Jp22pmLIRg1RUW17WK0npr5Xly74bWTRU210gpbSUveUz759EZ0QFARlfMcOXNfJk6FA9OkDY6y+Hl2BZDHqVaugLISEYOVcOu9iYrCflStxj8pVtfh45WxzrYcnV85yctRqPZG6t+X9IldqWdFkTgWkY3n7dhjRR44gCsThwNi+cSMMWqnEOhxYHLFaIQv79+P1vn2hXGvnnwMH4CQ5dAhy3NIGMfX1qmCxdNytXw8Hy5o1kNU//sCYsn178+NeVZWqiSajS0pK4FwoLMRcdfAgxpvm5gKLBSkkWVlQ3ocMUU1STiTaKNu24KpHSOMnNxdjsasjLTwcc1hFBaL5IiPhkLFYsFASEoLrXFGhDMKICHxm6VLcS+HhWPEuKMA+g4NVwwGuWdlyLBYVXSD/yjTPrCzIpHS8JiTg2g8ciHnYasVvlpysImcsFvw2tbWQ+7o66HvDhsF4fuABzMdmM+TrtNNwn1RXY9yIjYW8NjYqZ5ovTlQ6pTZ6R3IqdeRtDtn8g2me6mp9+ROTCQ6m9HTMpwMHwkEVHo7/tePmypWeF34MBoyNMmpayopsJGCxQHa7dvVcmF8W75fzscMBeY6NxesyIs2VsWOVg3zXLpxPbi7G/iVL1EJ/VBTmy7g4/N28GTr2zTfj/eHDcf55eZhvt26Fbi67fYaG4h5LTcV5lpcjCtxoJPrPfyBrK1a4Bxb88Yfquk2E83I6oWfMnYvxok8fRIufyBILJyuexlt5v2o7uCcmdl5nGjvSmHbh8GEMoCUliCbq2lWtcMqVj+BgDJYOR/sX8K+thbLWltDz2lq9g+/oUayc5uVhwGiJA6yuDpNkWx1gwcEnt7EgI8OCgrCy7Q1PhURDQ6F8Jycrwz47GxNqjx4oWCw5dAh/y8tVR0FZEyImBr+f7Ay3ahXC4y+9FIr+uHG4J2tq3BVFmdpbUYFzkMbe6tWqGYXTCeWHqHOtUDOnLiNGQGZGj0YUaH09ZGbwYNQsdDigRBcWEn3wAZRx6ZD+/XfIUXk5ZC8hAUq+ZO9edP/8+GMoYS3tBnfwoKopI9PHzWYsouzdC4dedjacarJm24ED6vOuzqAjR9R8VFYGh1BAAGT54EGce2UllH7XWjauBAbimixfjkWlyZNxTVatatk5tidlZTjHnTvbf99bt8L5YrfDuVpersbAESNUmv2WLTDadu3CODt8OPSFggIYZY2Nap6TKT3vvafuj7FjMfbKotSyw7a3rq2Mb2RqpIwCvOgi9Z6M9ktOJjr3XOhEycm45larkp/4eDhGk5Kgd82fj99Npl7GxCAypndvbC8dAT16EE2ahPevvJJo1CjI7d69qs6SJ2RdRBnd7i/euv01J8uu7Njh/trJVM+trTidcCZ2trpw/lBTo68XbDTCcSYfMlNjzBjMhz16qDrCkycrmSovRx3IESPcv6OiAo6pPn0gSxs2YPxNTIQchoRg/omO9l1DsmtXyJ7DoU9zDAz0Hgn6zTc4t4oK3PM2G+Rx40Y1r4wahWNLSYGcn38+5LxnT7xvNmMx5cIL8X9WFo4jMREL1DI6+eabcS4REeq9wECiyy7DPmtq9PdgYaHq6kyk7MvwcBzrypXQ82trocswLUPa71rbRjZeKinBe04nfpfOOh930tPufBzriLTSUig4hYUqn/6nn+BwiIhQCkdyMga57Gy9cdNWSkrUpNVaDhxQRl1jI5wo2kKdLXGA2Wydd1DRkpGhUjZb6hDs0UPdt2PHwqDNyMBvImuZDR8OYzc3Fw6xqioM6MnJmHxlDZoJE2CAybppiYlE11yDybtrV9y/9fX4/bWyYrfjXjUYcDzSANm+Xa/YyxU7Xy26GeZkoLpapTHa7XB4VFRgJf3KK+HcJyJ66y04wwoL4WQOCsIKsuyMS0R0wQWYD+RniLAyvH8/DNOKChjOlZXNR6Zpoz6HD1evL1qE4y0thcNOGvM2G+agujqiZ59V28saWxLZ5YwI88ivv2KcqK3FGFJXB+W+f384yLzhdGK8qavDuR09qtLQjUY4kU4EJSUYt1rqsPQHWS8vOBi/fWGhUrinTFEdXGVR69WrlZFYVIR7iwiNLOS4Gx6uxtOiIlzPhATcf1FRKsLD6eQ5tq3ImqQyKoUIRnlxMeQ2MRHv9e6Na6+dG1NS8DscOqQaTFVVYQ7MyMD2ffqoiBmDgeiOOyBr0lGXkYHvGz0azlbZcdsTBQW4F+rqINf+sm6deyMMIvfoCWmIe+swbLG4N7PqTBEYmzfjd+tMUXjekI4z+TAYYHtEReGvjP5yRS4mx8ZCDiIiMN5JuSoowL3qKf1w2DBEr/XtCzmT9UWTkyFnBQUYh2Nimrf3Ro5UkW2S0FD9PK3lhx+I/vEPjOmPP45xPjcXunNSkmrsI519PXrgPZk2SoRzHT0adY3LyjAWGI3YNiBApegHB2NeSEvDtUlLw+sDB2JhZdEivSNNLlLJc3E44GSMjsY1LivDX7v95K6neaLIycEipdQfyspwz8sGOVVVeO377zvvfNxJT7vzcawdaXV1GKhk1E9QEAyH/HwMnHLQzsiAIRUaqtJz2oOiorZP8hs2KEdIVhYeFgvRb7+1wwEyPklJcX9tyBCl4MfFYTUpOhqrVTYbjMOzz1ZRC0lJmGBLS6Ho9OyJyVmumtfXQ+EYOlQVdu7ZE/flxo2qboRWVioqcG/V12N1rV8/3OsFBcrYs9tVwXR2pDEnG/X1+g68JhMM6O3bcT8PGQLnx7nnIjVDKx9GI6JZzGY4mtLTVQRpSAhSu4cMUcY0EZSyLVtQcy0wEDK2c6fv+aCiAg6vkhJ8VjrnKyog70Lg+6xWOLsKCtCsZMsWOPu2blVGuGtkSU2Nisyprladz3buVOlukydjLJGr3Z4iUWS6TEMDPicVz6wsfP+J6ngna1e1d4H2ykrs0+nEvG63wwisr8f3SYfJvn1wkgqBeysqCvNqcDCikDZvRhqndGampan6O7I7ndUKI27aNOgXBgO+42SO1u4ISMNy4ED8dThg/NbXI2K7Z0808YiPx8JTZKSqiVNYiHvcZsO9XVSE1woL8bvI+81qhUFsNOIRGorvk4ueZ52F+2flShhtH37ouS5tVRXuubVrYbR5wzUrwVspEYdD72CTzt66Os+p2OvWuZcOac/F4I6Op+7InQVZu08+iPQRZ94cZ95wresor6ucVzxFpIWHq8/ZbCpSOiEBz2VKY3y83jHuCaNRLTr5Q2Eh5tkZM+DIKy4meuUVzPcBAcohmJmJ8WHyZDzX1j61WHCdiorw/TIVc8wYON0mTMC5JCTAHjjtNIw/cozv2lWVViFSUXdyHNE60urqoJNXVKh6bYWFWPhh/Ec24Fu6VL22fTuu49GjKjhhxw5Vb7Mzwo40pl1wOKBI19ejDtXpp0PJKCqC8yE4WBWo/flnlQLZXhQVYf9tcWSUlSnFsroaypRcsc3ObvMhMj4YM8b9tYAAhHNLevTQp1cSwbm2fTv+14a05+djgLdY1G8YFYXP9uqlHF+9esFpIFdZEhP1dRR274YCn5EBpcBiIXrkEXzPZ5/hPrHb4ZzLy+MaDEzHx+HQGwUNDcogkPUUw8KwyiyLuZ9xBpTaoUP1yrHTibF9yBCkPnbrBkeaxYLtY2OhXEnFXjpaDh6Ek62gANFpL78MRddbSspPP6Ej2erViF6S+wsPh7LcvTuO1+nE+fXrhzmof38Y6JGRKvpt+XJV14MIqahSqV+zBotBViteDw+HAdGli0pDOXTIe9TK3r0YL6ThHhyM8UEWYHb9HVqSotZaDAZ8j7dog9ZSU4M02KIiZUh+9x3G2w8+UGm32dnKkTlgAAylpCS8bzSq6CKZ2mO1qv2lpan0/BEjYKjJCI5t2zrvCnh7IQ1zef8fOoR7PToa15oIkWkJCfgNLBbVJbBbN3SwDgqCQV5ejvnSkxMsNlZFEZpMmMtlvdTkZMzD5eV4f/9+dAT15LSRtfMqKrw7dVxrKGnnZBlFTgT9U+p5WhobMca4yqvZDJ1Wu4/2jPLs6JFejY0tdxidrLg6zoTQO87aeywlUo7oqCjPHRJDQlRnz4gIzDNjxijnRWMj7qG4OP8ir0wm/xdXLroIi9ZWK8YCWfMtIgJOlKlTMd+OGwddefBg79GaTicyTOS5hIcrvWHSJLwWFwfZ1HYxDg7Ga+ecg+dS9uQCjNwuLw+/V0wMHGg7duCzsps24z8NDbjmsvSF7LQqKS/H771kCdEVV5yYY+wIdDg15I033qABAwZQWFgYhYWF0ciRI+nHH39sev/RRx+lXr16UUhICEVGRtKkSZNozZo1J/CITw6O9UqSwwElQ0bnhIZCCH//XeXIJyVhgqqrwwq1VOJyc9v23bII6rBh7q2eW4LsbEmEASIvD4bYyJEq+og5NnhSTAICEM1IhPv3tNNgOEknGBF+m6NHMXF366aU35AQ9+YFMTHYp4x2IEKEWkYGFIKCAvyV9daI4JD7+WfcD1K5WbsWhvuKFSoaJicHRqX2s544VWqq2O2+63AwHQch9I1PKitVCopMf3BFrh5Lp1mXLsox3auXqnu0cSOcS/37Y5/nn4/PXH45HB/JydiPxQLnWU0Nvm/LFhjTVVWYN+rqkKLhbZw9cAARYkJg7pAy3LUrnHwpKdhfQQEilyZNgpGQng7joksXpWgLoY8kKS9XEW67d2PcDwvDuLJ1K8admBich9EIpdJTLU4hIBN2O5RPWchZFsWXKWtyLpa1w44HGRnt393S4VANYOSYvGePWriQ0YalpXCCCoHfQRp5TicKS8vrIaMCidRrkZEq4iAkBM6XIUNwPfft67wr4O2NTDnr3h33SXq6krHYWMh0UZG+hpLBALlJSoIDID3dd52cgADlALdaleOUCNGjffrgnkpMhAzu3q3/vEzZkveMt/ln7lz98/p6zLtFRUSffKJel85wOebIe8nhwJjhutAbHo4xRb5eUtK+hnl7N+BqbxobMc6eilFpdXV6x5nTeewdZ1qMRtWpODHRc0CA1ra59FJlb2nHTenc8oeQEP/HzwceUCmWJhNk1WLB2N6rFyJMZT3UsDBcr3HjPO9r2DCkeMrGBnLskU1MiFR30tNOU3p3XJxqHEakHNrFxRhbZKRsTQ0W188/H7qO3NZsxvVydbQz3qmogJ1jMGB8amjAc1kjTdZF/f57zzUkOwsdzpHWpUsXeuaZZ2jdunW0bt06mjBhAp1//vm0/f+HnfTs2ZNeffVV2rp1K61cuZJSU1NpypQpVKhdJmLcONaTX2MjBnbZljwgAJFpS5aobZxOTFhxcUrZEkINdq2lthaC3rMnVrxbi8mkJqWVK2H4jBhBdPHF7k4Z5tgTEKAmeqcTyrd0dEoaGhDxcPrp+tDi6Ghl0ElkAWS5oiUZOhQKwOHDUGK0nTfr6pDS8eef6jVZB6i4GH8rKhAdIcPIfXEsVp1PhGJbUMCrex2ZykplFJSWQrmV9RsjIppXoKXRKB2/XbtCOTYaMUaefTacVaNG4bnFAqM6Olp157v2Wnxvt244hrw8pPFddBHkuWtXOKCjorDf3FzcV9nZ7lEt+/erIubBwSpV1OEgOu88OLnkgk1hIb7XYICSnpkJB05REZTB2Fg4wyVff61W5nftwvEKocaWwEDlUExIwOuffur5ujU2qtTPlBTsVxaAXrRInQsRrkF7G8+eIuWWL8d1aK+0Frk6Leu/1dfj9w0KglFVVaUKFOflqd+eCL/bmWdibE5MhAEmG1FIZ6Zk2jR3543JRHTDDfhf26mNaR/GjcM8mpnp7hA77TTV6ZoIv2GXLsogDgrC/e6tQ6zRqJyorqlnMTGQlx9/hBO+pobonXf0zrJNm+BsT0lRxa098dVX+ueJiRh3ysr0DvRNm+Ccb2zUR6XJVDDt/CbrRe7fr+okrl2L19prTvcUydeRMJlOHXlzdZw5HHrHmdY5dTwwGFRjK7n44oqMECWCrDkcWECWWCxE993nf5RZ795wSvt7fNptIyPx+cGDMaZHREC26+vdo1xdkamncoEkNha6RGioinY1GjE3RkfrdRXtwktNDeaAr75S3UyJEBXetSuul9UKOzQgQHUTbc+SQqcqUu/LzYV9bbOpyN5165QuU1ODxRft794Z6XCOtOnTp9M555xDPXv2pJ49e9KTTz5JoaGhtPr/952/4ooraNKkSZSenk59+/alF198kSoqKmjL8VraPUk5Vsa23Y7BPz8fjiepVAUG4v/ycvXdTicGM1nwXXY9bMvAVloK48fpRJizdrJpCbL1umTfPqyuh4aiYHZnHiROFNrGEREReLg2k5CdUY1GhIvLFNy0NM8rc+Hh+tfl/RgRgckgJER/PwqBe1yudhFh8sjIUA7W3FxM1GvWNO9IOxb+fmmYH09OxVXpk5m6OtUxrLgYSrU2XbOlBpDVqrqBEWEfISHKWB48GNGgAwZAwerRQynbGzYop5aM4tq5E8fwwgtEt92GfZ11FmSnogLb1NZChvbvh8GrjfrKzYURL2ttSmNBGh4DB0Kx79YN+5FdIJOSUBx54ECsnhYU4JrIZgfyGKUDqqFBdZw2GnFsMiKNSK28v/SS+zUTQtVPLCiAMzM4GI6FgABV7ysvD8eXnd3+cuTJuSAL+nuq+9Qa5HjT2IjrI8dGec+Ul+Mhf4ctW3BfREWpIvQREbjGAQFwcsTF6Rc+goJUBJM2naxLF/zG+/fjXuDUzvZFOjUTEtyd7UFB+lqmZjPm0/p6/L6ZmdCXWhupPGAAZDI8HPrkmjVEH32E92QTg5wc3BPp6e5NQ4hwj+/Yoe/IKTuouyau5OUpJ3BpqaqRJlOutU7pujqcX79+SPskgn7orf5aa9Cmm3dEgoPxm5+MUaDaOqDFxRiXTqTjzBWHA9fVbofsNTdWWyxqYVhSUOC+0OyLgAA1T/uD1kEXFobvDgxERLjBoM/o8YVssuB6LESowWazYWzXdonUflZ29m1owG+5ZQtk02DA/JedjWsRFoY5qaZG1Xb87bdTJyvkWCLtKKcTeqVcXCTCvZqZiefFxUrH7OgLAceSDq2GOBwOmjt3LlVXV9PIkSPd3m9oaKC3336bwsPDaaCsluqB+vp6qqio0D2Y9mHrVhgIdjseUthkxxUivbEgVyTj49WqUFtCbYuLsTJYW6vy91vjmCspwQBhs0FpW7kSA25CAhRI7vZyYrFYoKS7/g7SmEpJwT0li7T26OG+razzokU6SGU32fR0vSEgW31ro9ROOw3FVM1mfL9sdGAw6NNRtKkhsqhxaWn7pwmfCKdWbS07004kjY2qOYAcu7TpmlrHb2ux25GCoUXWTDvrLJVKHxWlDGyjUV8sXtKzJwxTmdr55JP43MyZeD0sDN0yDx9GDaStW1VXz/Jy1WzAYIADTxr8RDjXAQMglykpqNcSGopjOfNMpJ3K1eigIHxvZiaU8awsvCbls6ICK649e6qGJETqr+wmFhjoXjezvBzvySLsQUE4JqsVirzJhPMvKlIRLloDXktrZctT3VEZSdBeBoSM1KmvV+ny3brBkGpogBEoa++VliKaV0YmGgzY3mbD/4GBWAi78kr9dyQnY0w1GpUjkAjXMi4O16c9a6wyzSPLIsiUzIAAPJKSMB4MGIDfubUGlZSr6GjMo1u34vcuLkY0pcOBCFjZhGj3bv3CVWEhXqusVBETRJBpaRBWVqraSvHxOH6HA1EtMrKspATfq12bz8tTEZeyFMmhQ5Dp9nKkbd7cPvs5VvTv797psaPS0KDmRtc6oNHR+jqfHQEZxWu34z5rLiDAYlGNgCQyiOFYodWnhw3TR6cSYaz2JxrONfLYdR8ysl3bWEBLba2KJJVz8E03Ya7Ztk01nYuLw5wUEoJxyWyGfdDWDKjORG0txr7AQPw1GJDBs38/rrHZDNl68kl9Q6nORod0pG3dupVCQ0MpMDCQbrnlFpo/fz71kTmDRPTdd99RaGgoWa1Weumll2jJkiUU42oha3j66acpPDy86dFVW5yhk3CsJj+5ordnj34Q7doVk25QkD70XRo4gYFEf/yhBsO9e1t/DIGBMFAiItRqvz9oQ/f37MFxSkNg3z4ohjKyoyUrPcyxQUbHaDEY0O2na1dM9A8/jNddIxyIcO95i8yRv7/ZrHeaEcGo7tJFPT/9dFVEPDcXq1yy+6e2C5i2yHF1NZ47nUTffIPXDh9uHyVc1l46nhw96t+Ywl1M2wfpOJAr6lVValyS0WLtzcyZnqM6pTPjtNMwPmqV+ZQUld6vJTkZjqtp0zD+n3UWjnnkSDh6cnKU/G3YQPTWW6ivWV4OJe3IEXzX4cOQYekodDjwPC0Nn+3SRRVD1jY5iImB4RsWBkX6mmugqK9eDUNbzhnJyYiaCg7Ga+np+oiojAwc0//9H6JmtBQU4Hfauxf/19ZiDAoKwlwSFYWufxYLzvWLL7CtJ0faqlX+/UauuB4TkTr+9jK0ZKSOHL9yc3H9zzsP57l9O34fg0GNt7ImVpcuuA7SmIqJwbjuWqfPYMA429jofg8mJuq7QjLHB/lbSvnu00c5UlNTia66CsZ1ayPSevTAPkeMQJRLTAwM5t9/RyORzZvx2+/ZAznbvFmlGRNBB9y1C/eYNvI7LAzHlJ+PxdvcXDjJzGa81tiI9G5Z3zQnB+PrZ5+p1w4cUJGv8joIgX1py5e0BU/jQEfCbD7xkVvekNFJ8lFfr+ZGb3VAOxLx8ZiHCgvRFbO5rptyEULrEGxLWRt/0C5oGI2e5/mEhLZ9h/Z8vNV6Ky3FHF5aioCHUaPwvWlpqsyP2Qy5j4vDnB0UBOef09l+kdmdgexsjIdWKxYdt23DfC0bBe3ahbE/Pb3jjg3Hgw7pSMvMzKRNmzbR6tWr6dZbb6VZs2bRDk0lu/Hjx9OmTZvojz/+oLPPPpsuueQSKvDRPueBBx6g8vLypsfhw4ePx2l0KI6VI622FoP/gQNYrZORArJeVW2tPvVMhtomJUFBys7G819/dXdg+IvNBoUrKgoDsb+d0LSF4Q8ehOImnWvJyZjQiFTNH+bE42k1KzRUTbrBwWqQb0k6W10dnENhYZigpRPMbIajQHYVdTpVtEpSEu6bkBAc18UX6yeT+np91MTy5SoKpqEBcrF1a0vOvmMhhOfwey0nwsl3qlBRoVbVS0tV4fWWFBRuC3L880ZiIpRUrYPGW3pHt24wWGWEW0yMqofSvTtkWDYTMZsxJ8jU+iNHoDgLAaO1a1flRBFCpfeZzXrnisGgVtFtNjh+DAbVBCEigmj9en26eJ8+eC6dO/36qWLIkpoanKOnOoGytpqcC2WDhowMNEHYvBnOu2XLEHHnbdHHkyPNl4NCvrd7t/tcL597W+FvKTKitrwcTpSuXXFd+/TBOPjjj7iGQsDAiY5GnRqTCddV/l6yhlxior4TGJGK9B061N1AlDX52JF2fJELUzK1T45BISH4LQ0G/M7+1l3yxKRJ+J6LLsL+DxzAnFlZCbkqLMT7w4fjvaws3I8HD+KxeTO21y5oJSfj2IqKcN9UVhK9/TbGFbMZKZ8bN2J+LinB3B8YqCIsiaAfyBq6FgvuzcOHkXXRXg4w2cCloyKdN/4gxLGNXLPb3R1n2oizju44cyUsDHPRunX+p6ufdtqxPSZX/EnpbWukn3bRylvjOCGUE2/9ejgd09KgIzU0QP7798f7p5+O/WRkYO4JD8f7jG+0aZyytmVBAdLpN2yAjFVX473gYOhE2sCBzkaHdKRZLBbq3r07DR06lJ5++mkaOHAg/ec//2l6PyQkhLp3704jRoygOXPmUEBAAM2ZM8fr/gIDA5u6gMoH03aqq1UL8SlTEGUgjRKjUYX+y3oVcnJNTVXFpletgrAePty8UU7kuWByaakSaqOxdQNlYyOUeTmA9Ouncv+ZjoHJ5J+CJJ1prhFpvpDpHF26YJVl3TrcU1FRuF/l9xqNMOwCAnC/lJQo5bJXL/2953Tq0zi/+gr376ZNMEJzcuAAbisnonumwYDv9TR5HosotM7QIbSmRjnOSkpUGqJ8dMSxKCDAPV3akwM7MhKO48mT8TwkBK/17IkotREjkM6yfTsM27Iyovffh/wkJuKvzaYag0i0Tq7ISH3UqjYiKj6e6MsvMcdoq0DI45dB6jJtVdY2mzjR3XhMSsL+Cgr0Dq+8PESYjRwJ5f2MMzBepKdjv6NHqyLpH37ou+mD1oCX+OoILB32RqP3BSmtkdIWZK2phgZcgwED4KRLSMC5d++uxoeEBPwmMTG4plrVKzUVY67Z7D5mmEz4bHKy5yiHY22oM+54W0y02dTvKp2rreX66+Fg794dcp+cjH3+8gscVjLSNDxcOXDz8nCvSUf5qFFq8dZuV0606mrchx9/jMiKsDDI8caN2PaPP+AELinBuLJ3r7rHcnMxZkkds6IC++zf393gb+3iUUd3/kgHj7b+nDdKStp3Ec3VcVZbe3I7zjxRW4v72986urKj/amKt6i82lrIrewc37MnZNxgwOJUYKBaZJF6k0w7lI50X/gbiNFeHO/vawlOJ+b5qCjItMwKsFoxlk6ciPFApuB3VjqkI80VIQTV+whXau595tgonUePQomprcVKRGqqPo2zRw8YSNqV40mTYEDExmLSWL8e4fUOh/vqvOuEXVLieZKpq4PyRNR6Y9PhUMbL1q0wtuLi2ra6yrQvsv22K1oDMSkJXb9k+rC/hIRg0ggLwwQta4AlJhKNH6/ackdFqRD38HA8ZMHWuDj9JF1a6l4wvawM95rDgXt//nz/j9EbsnX68cRgwPXx5DTTRuG1V2dPf5T3kw1X44BI7zg7GSJuwsLcU649OdKsVhjI0hiTTQtkdFn//nBcrV6t6osRYSw2m9HwJSUF+9HOAdrx3mzW1+mQdRW1OJ36cUF295SdIUNDsZ/UVMi2Np1FMnw4xoOsLFUviQiGen4+HD9ax7uM3Bk+HLKRmIhxIiTEvYOoRMqN1jHvqzuglMPAQPWZY6WgyxR1WSA7LQ3XY9AgjL91dTBoDh3CnH755Spd1hWbDc5VbWdOIlWPS467rsg0XqZjIB1pkZH6+oUtxWrF5y0WyE1aGtGDD2JMkE1JKirw+//xhxoLZOHr+nrM13LslM7n7Gw45CIj4SBbvhz3aWioqtFbXQ0Hm9kMp762TpWMUDUYMBcVFqKuX0aGey3W1ujaMnrTG5WVJ75Iupzz/VmobuvCV2OjvpSBq+PsVIuFCA7GWDdwoP86k6fx9FRC1th2paQE96DTiflTztFRUZDLwEClk0h9IzoaeonZrKLbvXG8I9ZORLOw5pB6VUEB7OKAAGSNCYGFh4gIlZUTFYWxtBNWzGqiwznSHnzwQVqxYgVlZWXR1q1b6aGHHqJly5bRlVdeSdXV1fTggw/S6tWr6dChQ7Rhwwa68cYbKScnhy6++OITfegdmmO1eutwYPAyGtUqoSQiAoWftatFvXrBgJCKc7duWF1ISdEb5QcOqOelpTBQGhqgPGmRxrw0jmJj/Q+N1hpBO3eqwaOiAiHBffpwV7CTAW26Z3AwDDC5au0vXbrgXuraFUqcbJyRmOi+MiaNc5sN96TWcOjVC9EzdjvSrKR/X6agVVVBAaivxz3322+tO2fJwYOIEDne/VN278Z5eFLutUp0W+pRaMeDUyEizenUNwhwNQ5OFcXYW9qprwLKKSnouiube5x+OpTe11/HdUpLU4sasqGIJ7ROPG1EGpG+cyaR6syXlaWM2KgolSYknZmeFmdSUxG1rE3lFgJzVXKyWvk2mVSETlwcol3j4zGmyO6qrivkOTnuDmoZyeYNWXQ5Lk7NkdIgaO9Ixi5dMD8fPoyxUNa600YHyvQ4s9l7ZLccb7t3d0/fNJlgLHtzLtTVdfwuh50JmUplsbhHqLYGsxn3j4xgLSzEXOd0wuFeWwv9TaZwHj6MaNa9e+HguvZayPbRo6rDHxHutfx8RPPIjsIhIarkyLp1GL9ce5fJ+1cuAH/xBcaA+Hi9Hknkf6qn1mEioze9UVFx4rviSZ3In0U7IVo2Z8vmOXJ+lNkAp6rjzBWrFdc1JMT/WlOeFnk6A926qa6RISGw06KiIL8BARiDpM1pMCibNC0N85UQzQdtHE98LZCdKOTCrsyYkZ249+xRNVGPHMHcLuloDTyOJx3OTZCfn09XX301ZWZm0sSJE2nNmjW0aNEimjx5MplMJtq1axfNmDGDevbsSdOmTaPCwkJasWIF9W2uoAvTrkjPtN1OtGIFBrDwcBSolnTr5rkA5oABGOgsFtSe2rMHirmroeB0QilpaCB65x0VyaPlwAF8twyvj472X5HRrtjn5kKJCgzEIBsS0rkHhpOJsWP1z2U0S0sMyPBwVQ9ACExuQuAe9eZMNRphmEsjggjKcG0tPv/nn0pZlhEcmzapFe2qKlW4u7XU1UE2PEW1HEuys+HA82TMamV0167Wf8fRoyp1VC4EdESlwxfl5cpxVl6ujzg7VY0Db5F03uSxoADOmd694VCTDqqMDKILL4Rs2mwYm1NTW1b7UMuwYapjn/xemZYmnV3Dh0Pmg4LU8XpyyEdHEw0erO+053RiHqmrw3nIjsKS2FjcxykpiMwmwnm7pkdXVyvnmvzrKWJbi3Skx8TAqdDYeGxWug0GXLPsbBRol901rVZ1vSwWXIvERNUYwNNv1q0brmN8vHvaaWwsHMva+nVaDh5sWwoh075I57nZ3D4LAgYD5s60NKQP2WyQK6cT0SZCYP6sqcFD1lHLzsb9WFyMueKHH6AjOp3KqetwwBlvsynn96BBkLulSyE/suu81CVlSZGwMKSXl5Xh80aje8q1Vk59Ob+0n6uv953SJ7uLnkiys3G9/Ckx3ZwjzeHQR2PL5jlyAaMli6CnAgYDbJi0NP9r5Z2q+kNzREYq59jQofgbFQVHZGws7i3t4rY2clnO9VlZ+n16Khl0PHA42i9ro72oqVElK6qqcC2rq5Wzu29fzOdHjuizEY5119iOTIdTRXzVOrNarfT1118fx6M5dWjviLS6OigoW7diMDCbsdqnjUgzGqFsyIghqWjbbHBSTZmC/ezbBwfDqFEqTY5IdViJjib6+Wd8/tdfif76V7XN0qVE48Ypge7bF8fVHPX1yoBxOlXOd2oqjF5uLnDy4LqC53q/+UNiokpVMhgwSTQ0QKHzVvTUaIRBp51M5GQTHg5H0MGDqI1kMODeXr4c3/Pbb/g7YYLqPNgahEAUXH4+ZEWuau/f714k3V8qKppX0oxGrP6ffrr7e1pDwtvqqiye39xxbNtGdPbZSin/9lvU1Oqo8lldrXfQh4ezwS8ZPNjz65WVatEiNhb/p6UhGuWSSxD9WFOjam21JGVby4AB+miZP//EnLN2rVICMzJwPMHBkNuuXT1/n9WKuUI2TCDCfFJain3JhSLXz3bvDqdDdDTui/p6nLOMbJX1nuSikoxoLSpCxM3o0Z4d+9LINhjgVPj8c+Wkl3O/TM1qa4SaXKyqr8eY5hqBZLHgfEwmvJeRoeRXe70sFuVkc120kim63hznsskB07FoTwfI1Vfj70MPEd17L5y2ZWVqXrNY4HxavRqv19cjUiUsDPK7Zw/0yiFDoJ+efTbmjSlT4FArL8dYLSPTJNXVuCeHDsW9npenn5/791e6Y3GxvrEBkd6BlJOD45bjgGsEu0Qbve4Jk+nEp3Zu2ICFDW1Ury+018Hh0MuyyeTdSd5ZkRG4fF18Y7OpbJDMTCW7RiPuMW0WiRD6pgxpabjGrnNgdTX0TZsNMt1ejXmaIyur43URdTgwFkk9xGJRNsrBg1jYSEyEjaGNSHNNce9MdLiINObY0N6OtPp6dN0sKoKQBQe7KwiyDbEMs5WhyAkJGPS6d4cSs3cvnFfbtumVCacTipLdDoVn+3YMeJLqahSHzchQtVS6d8d3NheqKyOEiLDCVl6Oa5SWhpXCzrYidioh74WWGIwmE4y8gAB8rrIS94GvIrahoVix0X6PTNkrKsIkpF2RjonB5JOejnt9yxYY47IhQUtXxWTBbelIk7XJystb3w3Ubtc3SPD13V26eHZoaT/vLf2qoaH5MamuDoaQ/D6Hg+ibb/xzlB8vZGdW+ZAGgnywE03RnOOUCGlZp5+OqK2+fVXnzKQkXM+2pDfFxSHiTGI0QoZvvlk50rp1Uw6/4GDfTruAAH0kVXU19ie7BPbs6e6Q7tEDzuV+/TBHZWdj3pTG+JEj+pRpaYyWlOB/b/e+THuNicF+6+vdtzUa26d2UUUFHk6nqhulJS4O56nt8igXIzw5EVpTPqFnT/9ToJjjR3saUzKt87TTVO012WxAdggtL0dk6f79kKGzz8Zn0tMhMwYD7tnYWGwfGoo05P791YJuSYl+nJb1dtPSMOa8+qr+Hg8NVR0CGxr0WRdS9iSuEVzeCvA3V6hbRsqfSKQjzB+9qqgIOpSMOKuo0KdqHo+u0ycbp5/uXiuScUfakbL5mIzgMxggJwaDei083L2T95lnutcPlY2znM7mmxG0N8e7LEtzHDqEsVRek7g4XNeaGnQbl/Wkg4PVdWztov2pAjvSOgn+hpv7y549cGyVlqpUSNeomogIKDTSsSFXnU0mDHAREarD19Sp6GSWna3SwWQuu6yHUVenBLe8HBN7SooqhkikarXJzmLe0Hb9krWLJHl57VPngzkxSKO4JY40OfnKdKzAQNwfvhQ+q1VN3JLKSijSGzeqbrQSGe2Sm4somJ498R1SHlvaPrq4GPsbPx4r39IgLSrCvnzVVPJGfb1/n/O1Qi67oEknnyeEgAHkqrRo01dqaxFtUFqK7Q8ehPP+eDdWcD0+bZ0zu12frtmZV+Vaizb1YvBgottuQ9TIxIl4zWpVDtuKitan3Dc26tPORo6Ew3nqVDXem0z+Ofwk2qioxkYo7UFB3mtF9e+Pe9lqxcPhUPMbERzsBQVKlv/3PyXLsbHeyxbI7cPDie68Ew686mq946w9HGllZTi+I0cgB4MGuZ/nqFG4Dlp9wFf0WGsiMGJjO2YXW6b9kfeyyaQvo3DGGXAgf/QR5CgoCKVCiLDtokWQQ9nkRI4hp5+O7bt3h7w0NKhIbtnJkwifXb0auoB2QS08HPP67t3KYSzloqzMt2Gcne3ZaVZf3/EXXaS8+ePQ274dNoF0nEVGsrw2h8Vy6tRJPR7ExuK+kotVRiMyPLT2rWuda1kzzVUGZWCF03l8nUIGw4nRZ51O7+NUdbWKjHc4VN1xpxP2d58+GDstFpUC2tllmx1pnQTtSpgsTNwWysqwYpeVBYFKTHQ3QKSjwRWTSa1MDxgAZWTWLHx+1SoVmdPYiP8rK2FI7NihjPzsbKSEZmZCCXE1YF1z4D0hjXYhYAxIJe3oUR4YTmbkb9eSSIfGRhVdUlLiXkDYGzfeqL9XZETjkiVEl16qPwZpWDqdMJgHDULqWmsVaFljrW9foptuUkpYWRkmP39kwBWtY0+La4pVQACumSel+ptv8Fd2KCRyv55CwBBxrQuzfj3+Hj4MZ2N4OJQe6fh2OJDOfbyQNXRcV9blg+soth1tedOEBCjGgYF654s0gkeP9l2U2xdTpuh/r/h494hTbbSEPzWJtF1CDxzAopHRiHNwrftFpJqaWK1432RSaRREkIk//1TnW1SE8SUkBLVIPUVauyrEQUH4/OmnQ5blvtvDkUakjj8wEEq362JDaCjGB5NJjXneOna2loEDT1xdG+b4c9ZZuK+1qcEJCXjs2YMFjR49kMZJhAWcyEhEoMbH6zt+R0RAjmSTgehoJbejR6t7NTAQC7KVlfoFodBQyHd2Nr6zSxcVfSU792qpqoJjiUgZ667U1fnWVyoqWrcw1p6YTJD9bdua39Zubx87ozNhs7k3tmK8U1enX8wNCICDZ9Ag9Zrsyi2RUWyu6dhCqBqMx9uhfSJsTWlTe2LPHizMZ2VhPEtIwHWLiFC1KtPSoN+f6HTzjgI70hifVFd7NqwrKzHgFBRAIMPC3CPSUlL0yoE0jLTpLmYzFP4BA7CSvXIl9ikEwvWzs7HNuHEQXBnW+/33+N7gYCXkkshIvcLlCbl/Iig3OTlEM2bg9eDgEx9Gz7QeaYS2ZIIqKVH3jNOpCus2tzp11136e/yMM5Cq7HBASfdUa6GsDMr9RRdBKZeKdWlpy5oPyDSSuDhE4UknQW0tJjh/nYFavDnSXPclix97usZah6GMsnOdtIuKVH1ELTIttKAAYeTZ2bgmjY1wpBcVwdlwLKmqUhFnpaVw5vHK+vHHU1plW9L5XIvhxsR4doTK8cNfh52Ul/37VRpJVJRnw1imqKWnY/8REfp5s74er8tUyLg4yGR8PAx2T7UUf/lF/zwwEOeVkQFZkWNKezjSDAaVjuqaNiOxWNT7KSneHWbabsstJSiI00k6E/fei/tJe/9efLHeQXbjjep/g0FFTQwejO3kuB0To/TIgADoo337wul23nlqH2FhiL6wWvV1UmNiVH1UItzHwcHQXWVpByLliLfZIId79mBucdUty8qQheHLkVZQ0PKI9ZbSnGNaHp8/qWhOp74MC9M8cXGtr5XbGcnJ0Rfql43BfEU/m0yQ59JS6OkSpxPN5pzO1pUaaAl2uxrHZGaGq2PvWCH18EOHvDvEd+5UNZeLijAORkdDX6+uxuK3bATEEZSAHWmdBO3knZPj/+cWL0Z0iGtESmGh2k9KiufVdyK90SkNI5nqKUlPh7D+7W8Q1qws1fWntBR/e/ZU6RzV1Xh9xw4YF66KujcjxhU5mK1aBeXIZoPyk55+YtshM22jNY4OGR1CBKeN7OjVHAEB+nstPBwOoPx8TOgy4kq7r7IyKE1xcTCapUJeVqbaTfuiogIysm0bZCoiAoaCdHo3NMDR3ZpuQDLqyxVZf00inegmk/v2MhpOCKKFCz2vfC1YgONcu1ZFm1VVqdS1/ftxPYqLEaFz8KCSyWPROEVb58xs1kedHWvFijk+eBoXRozwvr2/XdF27MDfigploHfp4vm+CQlR9UStVsjuwIEqQjs3F//L/ezfr2qjJSW5n0N5ubtj2WaDvERHY39SPtvDkeZw4DyXLoWzTtscSBIdjbpW8pzaEmXhS/ZGj279fpmTi+BgonPO0d8PycnKEX7GGejKqyU3V+ml2uhIIuUADghAVPiUKaidpK2haLNhPjh4UO/Aj4nB6zIDQ5YnWbBAH2H955+qRlpWFlJNZTdRLfv3u+sRrqxZ413Hbi/8XaCStYt90bUrz5vMsUUIvUxHRUEOMzP123layKmuRuMvicOh6gwfa2dmdbVa3CothR69dGnzMtUeyAVxh8N7/eItW3BtP/4YuvHppyMid8gQpNLLiPvy8paVwTiV4aHuFMLf9tiuhRZ9sWQJwtL/+19lEK9eDeXiggsweMXHe1+99zSIuQ5U48bhb7duqn3xzp2YsPPz4RC48koIb10dDO4tW/Dc2ypdc9dCCBjtVVXoBKo1miZP5tXuU4GWKHJpaWoiCwlR0YrNIWuqaamsxL2rNYglQUHYf+/e7tFqeXmISGnOiWu3q25hMqXZZIIifOiQSudqjUNRKslVVap+WV6evoiyEFD8DxyAQeLqsHM6kd5ZWQmjW7syvXkz/gYGIrJl3jxc6337sN22bZDxjRtxHjk5SPfcuhXdwtojGqyxUTnNiosxVmgdZ63tCsl0fFyL3be16HVRkVLIIyJUKrO2JpOW8HBVU6xnT5UGKZ3DsqmATC8pK1OpYr17u89rubnuBcyDguBkCAtTqaHymNrqSNuxA06BigrM+d5W/10Xy3zhGimoxVvHZKJj71hgOhbx8aqphkRGpHlqDuVwqNTrwEB9ypbUQQMC0J0zLAzGYkiIkheTCXObwaB3BgcF4TNGIx4ykl2mikrn3u7d+KxMlZI6havOunUr5lFf0ei5ud472LYXzdVOltc6IKD5tE2zmdMUmWNL9+56XS0iAnLsanN60uccDsi2bMizcSPu66NHW5auKOv3+suePYiEk7K+fj3GkNpa6MvtUb/cF1J/aGz0Xm91/36MtdnZGOtkp/HwcKTNSp1JdiZn2JF2SvH77+2/z6Qk1GZ5/32srP30Ewza334juvxyKA+DB3svGOxJ0FxX+rWrfUOHYkDLzYXSHx2NwS4yEkp7bS2cbAMH+h50PBkxkvJyDKK7dsFIWbJEKfNCQOnh9K2Tn5b8hhYLts/IgMEqV7eb24ergh4QAIfzyJG4l1JS8PrOnZi8Bg7Evq+4Qk1I8l6VKSDNdfAyGCAbdrs+taqhAc4oIVRnM198+aVeeZeRYRs34hxWrMDrf/yBSVWmfuTnQy5HjMB1k440aaRHRhJ99x1W0Q8cwIqb04nvOnQI29jtUChMJrxeVITn338PI/3AARjRtbVImdm+nejnn6Gc+zK8PSGEPuKsulo5zaKjuftfZ6K5lP+WEhCASBSZxpySgvtXGtm+GDYMcqBV/ENCsA85JpSWwrFcWQkDXSr+Utk3m/HIytLLssEAORwyRC1ytYcjTXbxKirCvO9pjHF1djQHp4cw/uApDTshAXqoJ+O3rk7ppV27us/TRJA3KR9ms77Wbng49uEalWw2Q66k7En698fzXr2w+GQwYO45cgRyU1iI+c5Vby0pgU7sKyKlsrLl8157I3Uiu735yHmzWd9EhmHaG9fOzd5qcku0wRG1tZB7OR/W1+O+Pny4ZbX9ysr8D2Ahgi598KAKZpHRqH/+ieetKcfiimu5FC0ys8Th8B4sMGIE9OxDh2ALy4YOISFEY8eqhT2zmQNOJOxI64RolQ6Hw7dHfcoUZSB88w06JC1ciEmyb1+izz5DIdiW4LpC4DrAya4qpaUQaNm+PCQEoffFxXBIbNjgvc6Kr7S2+noYHjLyp6hI7UeIE9sVkGk/WuJIk9ENBgNWXmU32ObCvC0WvTJtNkPhDQpSRbmJcM86nXAUBwerNK2YGDiKiLBtTIyqE+aKNkVS1i7QplzK/dXWQlaaS+202aDk79qFSDHZYTQkBN+1axeM8+3b8f7Ro1AA1qyBzOblQQmQ3yMjY0aPxgT85Zd4X9ZVWLdORbV9+SUcdf37q667gYFEV1+N76moUIZMTAye79iB9Bt/isFWVKgGAaWlUAak88xT9AJz6tNSB48/ZGRgvqivhyz17Qsj259oWKPRc13RwkJ1j9vt2LesvyZTKbTRKQEBRG++qTfEhYB8azsOtlezAYsFcpmc7DniXCufbWkowDBaPM3nAQHIIPAU/XTeefqOstoIRmkEyohQIsz7WuePvM9dF2WjozH39u6tXyiOjITcxcVhzpNGsayJJJ3r0tCV52O3e8/okLp5errqhn0icDqVnhMe3vz4lpzcsqhUhmkpVqtel2tukUw7fpSXQz7z8qAr1tdD7zxypGX2ny+HlBa5OC67XEpH2o8/Ygzau1fVS2srvhxp0vZ3OpUuTqRfhEtLQ/fT1FSMmTExGCOTkmAXyCwbm81zjdTOCDvSTiGam7jkpKzt5ldR4TuU1WhE5Ex6OgT+o49Qj2LsWLw/YEDr86Q9KUYhIRDYqioIcU6OSiWLjMSxmM0418REhO572o/WieDqKJTnu2aNKjIfFqaaDByvwo/MscVblKQnAgOJ+vXD/4MGwclTUtLyDj5BQXDcWK24l9LSVESJ0wmlXN7HUrZkOpjszidrLrkiDeXdu3EPh4bq79WYGHx/XR0M9IEDvR9nZSVqH/TsiXP//Xe1urdjB5SJujqib7+F0d6rF1bq8vMRNVZbSzRmDI5ZTsgrV+Kchw4luvlmovnzMSHv3Ikx5513VETNpk34bLduRB9+iOtcVoZj+u03OO9+/RXbbtwImY+OJpo0ybODsKZGn64ZFKQaBMjaGUzn5lh14/rHPyADqamqPou/aeXSoX74MGRHOo8lslOeTDmT977W2W63q66ARJAFbdq4vPdlhExb2bJF1Xnzhow6b0tDAYbR4k3PnDzZ833WpYs+YkWbCeGpaYw0CrWvy9IlWoxG6J+jR+uPKTER86PZjDlv2zbMaY2NGHsCAmB8ymL9cj53ODA/ukail5XB0CeC08+1Tml745oi7noscvw888zmo0iDgtjIZo4t/tYw9YTZDHnLy4MufOAA5LyiAqnW/rJ3r2d93bUhhwzayMqC7ixLnAih7zbsLd2yJbiOa1qHmXTUGY36EjIOhz5SduRILOrJsU82WLHb1WKDXLRn2JF2yuKqMBsMaqKWhjsRjPvmcsItFgjMqFF4PmOGCvO22VrmsGiO6GgItBTs/Hw1sA0aBMNbGhXdumF7T0ayduXdVUFxONQ5l5TAOLdYVOh8e6f/MB0fmQpFBCVw8GDVMbYlhIXBGNamiDgcMIirqlS3G+2k1a8fvksaujId1BUZcm4y4Xvsdv1qeXCwqs2Wm+s7ZVFOgAEBmNzlKpNcnQsLwz5iY2GoJCRgu/378f2bNqn6SDLCdMAAGPEmExR/Wa+id28oHD//jDTqtWuJ/vIXjENBQYgsLSsjevxx/P3mGzgWBgwguvNO/BZ1dZDLuDj8n5OjT9c0GPTpmqzEM8eL6dORBhEZCXnp1s0/R1pUFGQoKAjz3O+/Q26Sk1U9ooQEKLO5uRhTZEqVVIgbGjCuSAc1Eb5bG/WtjcSrrGxbN72sLMyT8fG+Zcy1NiTDtBVvjrQuXTx3x05JaZluKhtnaKPDQkI8O4yDgjDnSBmQi71HjkBODxzAPLV6NeY5sxkyXlODhaHqahVV6nR6Tvn83/9UFHpUlO96gW2lvt73Qrx0pKWkYF7mhSnmRNOWaOcuXSCDxcWQU9mJur6+ZaUGDh/2XGJI67ySyJTOoiKMBU4n9NioKIwRQrSsfrk3XGVTGzEno+2MRvcao9ryLeHh0GkuvBDPQ0KgmxgM+gYvJzrdvKPAjrRTCCFUgXCtYm23Q3CEgKGsXc321qXPleHDlbe8Tx/3DkmtPV5XAgNVAcd162Aky+4icgUvLw+PuDgMfp7ytOW+s7MxYGlXCI4cwb7OOw//2+1qcBCCuw11VrRFhnv3xr3RmmKamZm4N2Xn2UOH4FTKy4PhbLWqNEoi3PMNDeqelU5eX7XS8vOhDGjrxgiB7zAaVaqLN9nWRnXFx0OGhCD697+x0tTYiNfliviwYdjXwYNwbIWHq2sjjXmbDVFnAQEwRubPx8pWZSX2mZCA/S1divHkiivglN+/H3WmZLRpUhL2FRMDA2nCBBgUF16IyLi6OqSGahsEcOFx5kQRHY1VaTmvynqLzREVhbEgNlbVHSspgSzKlM99+3Bvn3YaDN2CAjykMyw7Gwb2tGmqLqJMK5do00cbG1V6iSuuq+ieuu1GRWHhadQofdocw5xIPNVPa+ncLR11WkO6SxdEYLkSHa3XO6Ujbds2pEmVl0PWhICs1tXBGWU0Ioq8pkaNETJt0tUgX71aRVrv2XNsm+CUlfmuObxuHcYR2fBh9epjdywMc6xJTcWcW1gI+QsMhDzu3NmyOmWbN7uXYqmo8OwQk1Fo9fXQ/w8cwGdHjiQaPx6NB1qaDeUpCMbVftUunEm9wGh0X7A3GNQCu9RBEhOxqBcaqkpRyHHPZuP6phJ2GZxiSGHdt08VD5cFyGUrbldvubeItKNH8ZngYAhdS4oqtpaYGFXkMC4Oq18yhNdqRRhsWRkcAZ46JhJhMJBh6IsWuTvS9uxBetygQfiOrl3VyqXDwattnRVZbyE1FavTsbG+m1Z4IyhIrdRUVyNFMSoK+xw0CPeb7FTriaIiKNCu3Tu19RNWrdIr40SQ1a1bMcFJw8JbuoZW5iMjIUf792N/zzwDGbPZIIvBwZC1pCQ40adM0Yemf/YZHHsGA7Y3m+GIDAyEMVNcDJmLi4NRkp+PaxEXh7/bthG98ALRE0/ASSedgHFxSPUcNgzHO2oUalDdd59aKWOYjoAQqPcnaclqucWC+3rtWsxxWqewjEyTynCPHojgPHIE3xkfjzlSKrdCQP58ORG81WGRY4WMlNm5E4q+du40GonOPpvommu8R84yTEdCu2jVGmTnT19IR9rQoXBI7dmD+dDhgPwEBEDHNBoxH7qWHjGb1ZwsF8PnzsWcXFCAaFXX2ke+uny2FJl+6o2jR1VJmN693euMtiXKlWGON7Ijb3Ex7nsZYZqc3DKHtWutMSLIkqtzTXagdzohK9LJPmQIdOCqKjxcdf7m0JZpkrjWgtVG8mrLPOTkqNflmEMEHcRggD7Tp49aiEtJOXblMU522JF2CmG3q8lVTuL5+coB5nTCANcKvtGoFyItUoGWrW/bu0OHJ4dV7944zuJiKBLdu8NQIFIr/UeOwFHgqc4FEd6XxsiePXCsac+5vh5Gw3nnYbUvNFSlghYV6Q0ipvOgnSQSE3HPt0ZZlQWHiaAgm0y4r84/H060gQP1qZ+ufPed5/psWmVVRmJpiyzLe7hbN+zfV80TbZMRhwNRLbt2Ef3znzheGdodG4taaGlpcGQ5HJC7lBT1+aVLsbInnfayHozsUmq3YxyaNInooYewbUoKIs2IVOpLWBiUmJgYXKfu3eFEGzAA6TC9emH7YcM4/ZrpWMTE6B1LLY2GCQiAEj14sH5xqEcPOMyl4R0YCLn4/nvIu80G5b9/f8hebS3mM08ROkS+a6SFhmJu/OUXPI+IQATp8uVqm8REROkEBamuwwxzPGitEecpzcpfmmvYI3E6MVfGxMDpJKO7ZFRHcDDmOCk3u3erzwYGQvakbMpIUCHQzU8IzKVbtuj1EW+1VFuDw+E7E6OxUWWhmEzuTUsOHcK1khE1/l43hjkRpKXBwS7tP3m/9u6NeqP+1hLdvNl9sV0Ifc1SIujWMTEYFyorYZc6HKo8SnY2xqnaWn12SnNo7V9fXX+1x0aEcah3b/X6H3+o6DKZQj56tD7irG9fdqR5gx1ppxCrVmFCI4Ii73Bg4nU6oaTn56tOJVpcw0ntdijP0hMtDePj1e3OaIRRsH49HBCydsXppyMqprYWSkvPnp4n/4AApYw4HBiktBP74cMY6Pr2xf9xccowt1hg8DOdm/BwFcnZUs49V6VSy9oH8fEwem02z3JUVqZqJJx2Gu5xs1kfBVpfD1mWk2dGhn6ikxFpJhPkw9exGwxKGXY44HgbOFDvAAwOVk1FiDD5NjbivfHj1XfecYdK+5ZFSU0mbGu1qojW4cNhhF9zjVIgtISEwJnWrRucdnKbkBCs3MlJXKawMUxHoaam5d2rtcTHI1o1OVmND7Lr7y+/KMM8OFjNb9KoFoLonHPgOHddFPM0BniLshWC6Kef9GNOcTHSriV9+qCmY2Agl0Bgji/Houtuc/hba1MI6KMJCZj3wsIgpwcOwHEWFYWFoNhYyHR5uXLwuZZokDWB4+IQcZKXh8WkXr30stjaiDRPn5MND4g8p3QLoa8355rFUloK3SU3F/+3NQqQYY4lVivmr8hI6Kqy2U9kJORuyRL99jU1nuWiSxfIjTaV02DQ1yEnghN8507o0PX10JcPHVLRrnl5eE+WSWmNI9qbzBUXY59y8TwnR3Ue1iIj8aQtXFrq3rSIO957hlWhU4hNm+D5Li3F4JCTA+Xa6cTkXFYGgdcKvcOBgUMbUqpVxg0G7Kt79+NXEyU8XCkwe/aoAWLQIBgSvXrBiRAV5VmZ37ULE/2BAxgctEoCEQbRiAj8ravDSpssMBsXx0Y6g/ts587WOdK0kZKyOKf2PvW0qlNXh0jKykrl5DpyBLVJvvsO29jtKi1LCHennNOJfcvv1sr5rl14v7YWq+Glpcpgrq+HjGvT0UpKYNxro066dcNnAgMhiwYDUk+EwKTc0IB6D0RqJZ4ICoLNppqEVFd7ljF5LtHRRFddpYofm0xICfUVxccwJ5JBg9rWoTIsDBGa2vlHCDgP8vJUvcSEBCz2JCSoLn6xsYgeX77cXQH3JGfBwe4pJJs2Kce61pEXHY39y+2lsh0T4z3qjWFOFTwt+HjC6cQcP348ZC4uDvNecTH016gozI0mEyJHKipUapVsMiR1hMJCzN3XXIN97N0LOUxP1zdCaC2e0scaGrDgnJ3tOU3TtQap6+J7cTGOv76e6NNPiZYta/txMsyxQggEUmjtPqMR8/Ds2Sg1omXlSvd0TSK1eKZNkyTSR6TLDKiICNUIq7ERgS1SZ3A6od+azTg2X440rRNbq+N7K9nQpQvOrbBQ6exms/ouIr3OISkv19sq2kYDjB52pJ1C1NYiZDU7G8pwQQGEweFQ9c4MBr1RX1qKwcO1ja020iU09PiGdKan41inTsVxaFNK09JU9z6t00BLZCTOua5OdQDVnt+ZZ8JQJ4KDLSNDGQ+DBh2rs2JONnbtap0jTTqk5L0ZG6tfzfUUEVJbi4m6pEStFmVnI31j5UrIaVCQCjuX+9Mq1k6nUnhdJ72yMowH69cjTTIgQBnOskGB9lxDQhD67dr1LCJCjR9C4Br17Ak5q6lRioHRqFcmysrU8XhLJZeOMoMB6aQyxDwsDDXl2tLunGGOJe3RJVYq0kQYCwoLIUeHDilZ6t8f/1ssStkOD8ejqMi/leyiIhjyMsqtqAhjgCx6TgTjXxr4R4+iRlNBgYpSNxiObfFzhmkv2rIwKmsUNsf+/ZBVWQstNhYLviEheB4UBHkxmeCoqqlRkWdhYXhdyrjdjjl66FDovw0N+F87ZxPp00Nbwp497sXQ5TGuWKGPSJUOAm3DEiLUc5RNwIigR1dV4fhyc93ruTFMRyM1VTmEu3ZVWRBdukCeXdOXPc2tZ51FNGKEXmZcx5vycjjSbDbI2fbtmEtLS1V6pUyblvq7Nx2ZCLLlWk/RFyaTahQmBJzeMqVVdvGUUWjabLXERL2t4qnTJwPYkXYK0asX0bx5ENTkZETU7NuHFS2DAf9rO/oRqQFA27FHKtBE+CsjStobbwqOyQTHwtSpGNz69NG/N2SIeu7puNLSoKwUFqpw1t9/V8qD1YqC6UR4X6skcNQLI+nfv3VKuHQ+SYeTxaIv+OnJKZ2Tg4n6wAFMXjLq67TTcI/LSV3WXvBUx08WPBZCOZ/Xr8dkaTJBSY6PVwWP5T5lYwStMiBrvrjKQ0SEuibSQZ+SgnNsbPSe7nXmmUppyM72vI03jEaVcsowHZHWdPd1pUsX9b/s7BsdDSeZVGBlmYaqKtUUQOJwuDcE8jTWdO8OA7+6GuPAunX429io0s3q6uBUKytD+smSJUQffuhuUDNMR6ct96y/huOmTWruMxohsykpSlcdOhSGu8mEuayuThmtDoeKEJH1CHfsgDymphI98gj+pqerOVsWL28ptbU4tkWL9HWcli3Dc9dyEhUVcJK5RqLceKO+u+Hu3UQLF+KzlZWc2sl0fLTO6zPPxJzap49aJNIGX8iyK64EB2OMWLlSv62Wxkbsb+tW1B3LyMBcv2ePcmBJ3Tg6Gt+/YoXnY87JwcKXnKe1zj1vtoqsV7x3L2zi/HzoEMHBqq5acLBKOZX7cV24Nhi8R711dtiRdgoxcSJSLmTXjU2bMKkVF6PWkRB4rg3dlpOmFEinUz20HE8Hk8MBI37AAPx1rY2hTaHxtCoeEIBVgLo6OA9ra6EQyBVAgwGGBJF7LjvDSKZObZ0jTTqb5Gf9SXOoqcFkp52oDAbIgEwXEUI1APEkj7KNt3ZlOzoa+9y1C4p9RQWi2GTNBCLPToDCQs9h3FpHWWOj6ugZGIjv16aaSiM+PR1yrI1k88Xo0e6vyTRPhumItKa7ry/i4rCCHBsLg1VbMD0oSNUg1I5PY8a4FyD3ND/KNBYiVRumtBSGfXi4cjwEBWGcGDQIBnZuLjvSmJOP49FdtrJSP78FBmLOkg11bDbITkgIFq42b8Ycvm8fFqOKi2Fc19VBrr/6CnIaFQXZDAnB/qVefvRoy+ooybS0336D/r9uHdHPP8OhtmoV0eLF0JkrKvSONIcDxy6jwyUTJuhTRE87Dfupq4PuwF08mY5OUBBsS6cTkWXahakxY/RzrhBwRHkiJQW25fbtyoEsBJzd1dWIKDcYoCtfeSVqjMbGYn6XOrbZDCeWlDNvsl1fD1tBlmbRpnl6a6ois01yczG/79qFfQwejMhSIjj09u4lWrNGjWOu42ZYGFFmpufv6OywI+0Uom9fCIiMMKmpwSBRVARluKICgqI1nOWkuXEj/h4+TPT66/h7rDvveFPKZTvwrl2JLrig5fuVzRGIcM7btmFAk2Gw2pWF669v+f6ZzkFEROtSO4lUJy4iKMvNOeRKSjCBVVToI0aJiM44Qx2HdKR5Qiq9MvqtvBzKgt2OlaxhwzAe9OqlV8plOpfWWSWEZ+eANtWlsVGdY//+OAdtVI10gPfsqU/PdlXKXdGmlUs4pJzpyBwLB1NxMcaN0aNV9EdNjZIP2ciECNtpo0wlcsFIi8UCnUAIyG94OORWrsAHBCAKpaICCntqKpTodeu4Gx/DeCI3V83xVqtqmiPnPTk+WCxY8B48GAtcixZhzq6pweuHDqk6qdHRmMtllIo0iBsaYAxLJ7mvrqSyc7dMYRMCUTcXX0x0yy1En3yCLJbMTKKzz1ZpX5Jdu/BwbVCwa5c+Ii49HTZEXZ1KC2eYjkz37tB56+ogZ1q91JPuazRiW6mD19Wp2oBOJ7JJtBHd+fmoc7xpE+RHNscbNQpzd2ioikiLjMS8Kz8fHY19uEaY5+RgX2VlKotFsmmT7/OtroYtYTJh7ImOhqzOmYPj/OwzfL+UXVfdISCgfWo0noqwI+0UwmzGapCcYENDYfhaLFCMQ0KQ0qg1xqVH22SCEG3ahIl00yb37p7tja+VwrQ0rMi1xkBJSYFSIutVyNbcf/yB97WORK7zwngjLq71tY9CQ+HYJmpeqXQ4iFavhjJ+zjnKEaZ14smItMRE7/tzOqG4y3TnIUMgP3a73uAWAt8pjW45YWoj0GJimo+yaWxUxxoc7DtiRRv52ZwjjWEYKN7dukHG5Cqxw6HqGEnZk+OBTLHW4q2uoOyyl5eH+bFrVxVFYjJh7szJQcpJv36YjydM8G20M0xnxWxWc19cHB5yzk1M1DvSMjMxvzqdmHP794cz22hUkewBAVg86t1bpZvJBmIbNsDxNmIEvmPOHH0amlZGXWsfy2MYOBB/77uP6KabMHbI71m3DtsJAXvCbFa6jKRLF70eIseeFSvUeTBMR0UIOIW6doW9KyM+JdIBfviwWtBKT4f8ye6d9fWQ4cZGOJHffRf73bYNjq6SEmy/fTtek4vBkZFY1NaWLAoIwOtyEb1HD1XjW5KXh4jSI0dwXLJeskQG0HjDaMR4U1KCSDSrFePLd99B5mXDE3kdPOny/jZf6Wx0OEfaG2+8QQMGDKCwsDAKCwujkSNH0o8//khERHa7ne677z7q378/hYSEUFJSEl1zzTWUq03W7+T06qU67R06hAmzvh6rXE4nHEzaiA+HAwNFYiJWrXbswMqUbGGdnd28gLY35eVqtby1dO2KcNvzzsOAkJeHFQLZuYRhmiM9vfUTh7bbZXMtow8exMRbXo5VMqnAapVgWbMoKQmTrsnkHi3ndLo3BzAYIPtShmWIt0zpIvJsbGuP3xsOh347h8O/piTHot4iw5xqmM1I7TabVROc4GAowl27qg64dXX4v6bGd8SqltJSjC+1tSolXEawy9IH+fnK6X3++TA8tKkkDMOAfv3U/0YjIj5kCZJu3dR8bbPh/WHDoN/W12PObGhQDmyDQZVzsNnU/Gw0woguKUFEaUoKDPigIH0qZXk5tqmqgrF94IBaEHRNuezXD2NA//5K39m5U+2nvl4dq5aqKjgEpQ4RHg4dpqxMNVpgmI6KtAHDw4leesn9/TPPxN/6esimwaBSNGUUmN0OubLbIQ+lpXCcbdmCz9TWqnTPwEC1mJyeDnlzdVQJoWoBy2wYrSOtqgqyXFWlaqXJLKvycn1GiWtkOhHRjBmwA44cQT3D8HCksK5eTbR0KcaXvXtVVomnescceOKZDudI69KlCz3zzDO0bt06WrduHU2YMIHOP/982r59O9XU1NCGDRvo4Ycfpg0bNtDXX39Ne/bsofPOO+9EH3aH4aqrVDefLVswMYeHQ/BkTrYsKCq7eO7dixUys1mFlJ93ngo/9ZRqdSwpLm6f/Xz+OQS/SxcMOAUFGAz371fbsFON8UZ73RuuaRGuZGQoQ1mmeObl6dMZi4qwgjRgAFZ+Pa36Op16p7fJhNdWrFCraDIarT3Orbpan8opV7SawzV1lWEYd2Tb+oAAtXptMmEsOHIEz0NClPNL1in0hTR8S0rwMJlUZ2uZ1tGjB+b8AQOU4hwWBiObFWnmZON46HhaI9ZsRnSJXDCKi8PzoCAYyI2NcEqnpcEwDgjAvG0yKYM9IgI6eVISIlOJ1FiwejVksagIukV8vGr8Q4SFspoa6BCDB8PAl46wQ4fcj72wEN9hNuM75WLcnj2qJpJrdHpCAuwKraEfGIiF99hYLAgyTEdF6qBCYL4j0mdIaZ1c5eWQH7sd86t0pNXUQBcPDye67Taiyy6D06ywEHJQWwtbtnt3pFTKRWajEbLm2tnWZtPLk9PpntpZXY1t0tKUPUuExTSt7p2V5X7OMjU8K0sdS3w8nGkDBqCEg9Wqxgpv0eyMOx3OkTZ9+nQ655xzqGfPntSzZ0968sknKTQ0lFavXk3h4eG0ZMkSuuSSSygzM5NGjBhB//3vf2n9+vWU7aMVXH19PVVUVOgepyq9eqlVp+HD8XfoUNQakykiUVEq2qWiApO3XBGLilLF0i2WE1MTRSoUbaWxEd57iwWrgvX1GHw4z5s5nrhGgbqSlYUJrLiYaORITKiuzuSKCsimxQL59BR2LYQ++k0WJO/fXxXwl9GeRP5Fj/ni6FF9dJnsPNQcLH8M0zwyfSo5WdUbNBgwd2tTPePi8Hq3bmolvTl69YLSX1amuvxKR7jTqaJotKSnc1dr5uRDW5/zeKEtCdGtG+RKLjo1NECO+vXDXB4VpWoXFRZiIby8XDmvZAq3rNGUlqb0Y2ncm0xI+ZTfl5cHRxsRdAk55+/Y4XkBTr6WmqqM96Ii73N6erpqlECEz6Sn4xy7dPHcMIhhOgrSSWQwKH1UK7NxccrRtWqV0t9LStRi1YoV0K8jIoiuuw5RpPv3Q5/v2RNyfPgwPpuYqC/U73CoxTBJQoK+kV5Ojt6xRqQ6a1dVQT6l/n3kCGwEpxNjhKfumklJCK6pqFCR5gYD0T/+gfduv11FwhK1TyfyzkKHc6RpcTgcNHfuXKqurqaRI0d63Ka8vJwMBgNF+MhFevrppyk8PLzp0fUUTvTt0UPVSEhOVg6z8HAY6SYTDPv6eve6SVoPuHSkmc2qIOLxwmRqn+LNEydiALNaoUzJTp7aMPXWFpNnGH9JTvbdHTY7G5OoyYRV67Aw99RKs1nJI5Hn1M7AQP2qVEAA5H/QIDjTiLDf2Fi859oNV4s/ctG1q37i53QOhmk/pKxr5yuDATIn34uNVZHkZjNKOfhC1mAKDoaB7nBgbpT1VAsKoAfIFDMtFgt37WSYtiIdXykpqus1Ef7KKNSVK5X8XXkl/hoMMILDw5X8NzZif0YjotsaG5VBLZsG2GyIYpMp3K5s2oR9Z2Tgr3QypKd7L0sho+hkR/KSEpxP796op+ZaU41hOiIyY8mVsDC1uFRXh/raQUGYL+vqiH78EV1v8/OxfUAA7v/du4mWL4fT7KefUHssOZno9NMR7SlJTnbX8SMj9XNudjbkPCcHDrrDhyHfUq8fOxZOO4cD2x4+jOOprFRNRlwpLYWtMXGieq17d6R9Bgdj3/5klTB6OuQl27p1K4WGhlJgYCDdcsstNH/+fOqjrcz3/6mrq6P777+frrjiCgrzEYf4wAMPUHl5edPjsOxRe4piMMBRZrNhBYoIQhYfj8k6Lo7ojTfgcdcWOdXWP+nbV4W/Hm/PdEBA+0TCpaerVT8Zev/mm/omCp66mjFMe9KcUyokBKnUffpAZgMC3FerZFcwWdTYYnFP4xo8WD8RS4e0Ns1CdhRrLhrNk3Lhimt0Slsj3BiG8Y3JBGdZZKR+1VkuhvmDrL3SowfmfGnIh4dDb5CvsTwzTMtpThal45tI1UQiUvN1WJg+SkzbnGfbNszN0pF26JAq2xAXB8N69268LrvTG42IXrHbsXjmemzaxXMilUbe0OC74VBsrEotk93BL7wQ0TjHuxwMw7QGbe0yVyoqiN56C//bbMpGzslRZY+00a7BwXBiBQVBBlNTIXspKe5pkgaDe9qmLMsi5bmxEXb7kiWQ2fx87CspCU65hASVNSbLrMjyDjI61RWZ7aWNvgsPV/KakMCOtNbQIS9ZZmYmbdq0iVavXk233norzZo1i3ZIj9D/x26302WXXUZOp5Nef/11n/sLDAxsal4gH6cysbEQup49YexGRaluf0YjBMdmI/riC7VCHRKCiK3aWpVOEh2tn+iPFyZT+9RiiY/HANTYCMeg1YrCqVrHoK9IIYY5HuTnY/Lt3l1NaK4rujLd2miEfAcGuk/E2ppqRDCEXYuDS4dyc85x1315wjWiTaagMAzTfmjnwoAAzNWjRmF1WWIw+D9XCwHlOzhY70iT44rsEOg6RrTEWccwnQmtjAYF+ZZFrVzJ8itEypGlrbfmypgx+Cvn/gMHYPDn5uI7ZZMis1k5wg0GOLi8LU7LFFCJjEKTjjhvHDmCFDMios8+QxSMEP6XeGCYE01srPemdmFhWKzat49ozRrV3KeiAllakye7R5U99xzRl18inXrQIHS6HjcOzXq0dOnirj9LnVv2TnQ40DAvNFR1C5WOcHnMw4dDrmVpJiI40vbu1e9byv7GjbCLR4zwfM5WK9cNbw0d0pFmsVioe/fuNHToUHr66adp4MCB9J///KfpfbvdTpdccgkdPHiQlixZcso7xlrK2LEwzidOJBoyBI60khJ9DaXaWtQ32LsXAhgSAm96YqJSliMjke5xvLFY2qfNbs+e8OBLB4TZTDRzZtv3yzDtSWAg7nltDYWwMP2EFh2NbaSRGxfXfAc9X4avNsy8tbimeXEEC8O0P1rDWtY9jI/HYlhZmXrPtWOvN7TRLtHRygEuI9llZIxrxGloKMs4w3hCu/BktfrWm7X1mUJD9QtiQsBo1kaMaImLwzYlJdDhy8ogq9XV+ExcnCrpom0qFB4OY1qWeNDiqiPIc2nOoM7JUVHxl12mFuE5ooU5WZAljDwRHQ0HdFISnMrR0ZChggI4kCdMcJ8P+/ZFRGdICGqTp6VBnjwtcjcnXw4HHOMREUR//gk7ISMDTjCjEQ492TXU4VD6eG4uUkG19oEsId+zJxx72qZkWtLSWH5bw0lxyYQQVP//C39JJ9revXtp6dKlFO2v9tiJ0NZPkamLNhsGDBmBNXo0BO7QIRVOLguaaweHExFlMnCgvoNKa5GrckIox9ygQagVxzAdhYkTca9q643JttaSw4dVeDkRZNY1Iq0lcNFwhjn5kI40oxEyLA3ZlhiwDodKH4mOdo/KllFprmld8fG+6yoyTGelJXIh5cpggJGs7X0m0669ZWR07w75TUmBbt/YCGPbalW6rtEIvV2aRkKoVDJPx6k16GUzk6oqfSMhTwwapMq/2GwYizilkznZ8Oa0JkLk9w03QN6qq+G4TkqCY9pbWSCDAQ6pjAzfmR/eFrll6SGnE+UXhMDCd3q6SkU1GIg2b4ZT788/8VzK/9atcOjJhmXaBmOXXgr7WmtrMG2nwznSHnzwQVqxYgVlZWXR1q1b6aGHHqJly5bRlVdeSY2NjTRz5kxat24dffLJJ+RwOCgvL4/y8vKowbW9RSdHhpbLHO6QENWEgAgCWViojHGtUX6ileXISFWnoS1oFYnevVXxVQ5gZDoS0dHuRqu20xYR0i+Sk/WOtOYi0nxxIjqZMQzTNkJCVBt7u12NBzJS1R+cTsyvFguMdhmlXl0NBZvXJhmmZbSkE7W2C6fFok8DratDNok3R5rZDF09MxNOrDFjIL+NjWrx2WqF4S2jYOS44HDA0eUaCaN1JAiBz+/f77nzn5bu3dW+ZA1XNtCZkw3pDPZETAzkq39/yHhICNIyvTXhkCQnQ4Z9bedp4ctsJlq/Hv83NECeGhuVQ66mBjIcFIT63zL9s6xMOdKsVqIpU1BPUQjY+bIhicmEqDRvsG3cOjqcIy0/P5+uvvpqyszMpIkTJ9KaNWto0aJFNHnyZMrJyaFvv/2WcnJyaNCgQZSYmNj0+OOPP070oXco5GqSnOhiY/V50zYbcr8bGxH94nDgb3sU+W8rza2E+YtUWGTnUrkKzzAdDVfl1lUO+/bFBConX2lMN4e3iZwVXoY5+ZBd/oRAuoY0kgMC/GsKVFGBuT4kBAq3tg7SgAHNGwgMw7QP0lmm1XdLSuBYc629JDGbVdfPLl1g6EdHo0xLQQGc4WFhSCuTETMyw0Smf7nqDdoaUUlJeC5rrflCNi1qaFAGPHf1ZU42fKVYykZ8Q4dCLkJDvXfE1CL1a1/1Dj2VSQgIgCwTIfAlNhbynp4OOevfH3ZteDgc5716YcyQkenyb2IiOv/KxXZtLVRt8xJXTkRN9FOBDlfxYs6cOV7fS01NJcHVbluN1ngOClKeahn2XVPTMTzS/hQ6bwnaFsUMczIQHq6PEg0KUo1BWsLAgZ5fP96deBmGaR8yM9EVjEgZ42az7xQVSWEhol9lV07tGGMwcDQawxwvPC0YFxbC0PXWLdNsxoK31AWsVpR9mDgRNctsNuVAS0xEmpg268TTGKHN/pCpmZs3+5cV0qsX0bx5RFOnopEXw5yKBAerFGl/XBBST/cVqepJl5d6PhHSq4uK4NCur8fiulxI79YNf6OjIYMyelQIzO2hodAN6uuxH4tF2b9cA6394Ut6iuJJSLV1x7p1g9CGhKjJ1un03s3jeOPLa/7/2Lvz+Cjq+4/j781BwpGEI1whUS65BUVUDhUUUTkEvKn+qNpWxdYDr1qPetRatLbaWo9qi0frgYrihaB4gFgBQQGRS1EuSTgFEsKZZH9/zE52dndmd3azmw3Z1/PxyGN35/wmm92Z+cz3+/nEui2qCSEZYqmCs3t34N3drl2NA6B1yIeb7QbnLPF4/HetABx+MjKMnyOPjL73dnZ2YEU/ciUCydG7d+g0j8eoxNe3r/06jRsbF8tmQMys5m0mLz940H9eUFlpXGCbPcuslf2szjgj8HWTJsboFTejU1q29H+HxPsGOFBXmIHtdu3iV7naqfdmebmxj86djWXMIgfZ2aE93MxgutlJpqrK+C5o29ZfzXPzZgoFJRqBtHrK7sMe3F28Y0cjCf/q1cYHMDOz7gztiGcJXvP3Dk6qDNSGWPL9Bf//myfKNU3mW9MiBQCSKz3dOKZlZAQOy3LDHA5mcqreBSCx7M5xc3ONYJlT6oUWLYy8aMFDNM2L7e3b/dNycoxhX3v2GK9nzLDvjRI8CqVVK+NGnnXYdzhbt8b3fB2oq5xyF8bCKZCWkWFcj+fkGJ/Fli2NaYWFocHqtDTjc9+pk/GdUVJiXMd7vUZA7uBBI39aTg7DrhOJQFoKCb4IP+kkI3CWm2tcXCejQmdtML98unZNbjuQmsyKsdHIz0/MyanbrukA6qa0NCOQFm0QTZIWLgy8GAge6sV3A5A8p59uHPvteqtJxkgS83OfluZPzWJ+H+zb5/8MZ2UZhcM6dzZer1nj/pyiqMhdQSIzZ2NmJsE0IBpOQyx79zY+wz/8YFyXb95sfO7tRmmZaZlatTKCZRs2GMM509KkMWOMQNr27f5iA0gM/rT1lJuDWt++xofTDKQVFye+XclgnlhQ2BWHC/PkN94yM2O7AAdQdzRpEl2lQNOxxwa+Dj65pocakDzl5c6FBoJlZgZW9GvdOjQQbh36vXmz+0B5ixbuzpcLCoxtZmVxXoH6bfdu4zo5XgFjp6HQQ4cagS+zMNDBg/68h8E8Hn8QOzPTqMjZrJnxmWzbNnCoNxKHQFoKKyw07ialpRkf2LpQaCCR3NxhA+qCpk2NE99wYikYkJ3NCS+QqoJ7ZQcP96jp0HEAsYvmwjcjwwikWfMmhQuU5ee7qzgoGdUBW7aMvFzz5kZAwMzbCNRXO3dKq1ZFt064G1NO5+99+hiBtMpKIxDevr1zWqK0NKlnT+N5RobxWezc2fgOKSgIrNaJxCGQlsLS0owDb6dOxofWmjulPjHvurdvn9RmAFGJ9HmMZcgoAJg4yQbqjo4d3RcQycgw8iMVFhqv27UznluDadbgVq9e/txJkWRlue8VX1REygjUfyUl/mIfboW7MRUu35rXa/y0bOkPlNnxeIxgmWT0SKuq8l8XZGYaRUPS0uJbvA+hCKSlsLQ044No5lqIpYfL4cD8wiKQhros+ADNHV4AiUQgDag7Cgrc9QSTjM9uRYX/QrthQyMIZy0mZM2BeNxxxrwtWyJvO5pggdmDrr5ePwCSMXS6b9/4DZUMF2SrqnIuOGLl8Rg50SQj37nX6w9qezxGD9T0dI7ziUYgLYUFf7jq65Av8w4fgQnUZeQyAFCbSEAM1B1OeZPseDyh57TmcE/ra1N6unHR3bdv5G1H871gBu5GjXK/DnC4MXMXxqvn5TnnOM+rqpI6dIi8jbQ04zNt5im0m4/EI7SQwrKzAw+09TVHWn39vVC/MDQCQG2qrzfPgFQQfPGckeHcIy0317ip7ObiOriabzhm4M5NDxrgcJaeHvj5qom8POd5VVXuigmlpdn3BDVvyu/Y4b54CWJHvLKecpM0uGNHfyCtWTN6bAHJRB4DALUpOzvZLQAQq2bNAl9nZAQGypo39z/PznbfQ8WpSqCdaIJuwOHq+++NQFpt/L+bucsjSU+XevcOHM2SlRUYSIumlytiQyCtnnKq8mGVlmYceD0eo9x1fQ2kUa0Th4Pgk1yGegIAADvBF8nmOb2dnBz3vd6jGcVhrRoK1Gfp6e6urWuqqsr9+X9wcZKiIn8A/YgjpFat4ts2hCKQlsKysgK7hdbXQBoBCRyO6JINAADsBN98a9vWebh2uKFkNcGNaqSKjIzaS9xfk+tW89ohM1MqLo5LcxAGgbQUlptrRK7Nu1TRdOcGkFjWYRkAAACm4EBa48bxOY+Ppkdafb0BD1ilpdXe0M5oFRbaT+/bV9q/v3bbkooIpKEaiYcBAACAui1Roy0YDgYEatbMCKbVxg3ugwejW94p12l2dvTbQvQIpIGhjwAAAMBhwm3xAAA106+f8WhXJTPe4tWLLCvLyLeGxOJrGAAAAAAOE9wEB2rXEUckfh/RDK0O54gj+I6oDQTSUCfHfAMAAAAIxUUyACfZ2dLRRye7FfUfgTQoKyvZLQAAAADghpuhnW3aJL4dAJLvwIHA19nZ0vHHJ6ctqYRAGqpL5QIAAACo29z0SKOIGJAa9u4NnZaeXvvtSDV1LpD25JNPqnfv3srNzVVubq4GDBigGTNmVM9/4403dOaZZyo/P18ej0dLlixJXmPrCXqkAQAAAIcHig0AMDVrFjqNQHri1bmv4cLCQj3wwANatGiRFi1apNNOO01jxozR8uXLJUnl5eUaNGiQHnjggSS3FAAAAABqV7Q50uwutAHUX9nZyW5B/ZeR7AYEO/vsswNe33///XryySc1f/589ezZU+PHj5ckrVu3LgmtAwAAAIDkiba3SYsWiWkHAKSqOhdIs6qsrNRrr72m8vJyDRgwIObtHDhwQAcsWfhKS0vj0TwAAAAAqFX0NgHqn1ir8VLFNznq3NBOSVq2bJmaNGmirKwsTZgwQdOmTVOPHj1i3t6kSZOUl5dX/VNUVBTH1gIAAAAAAMTG6012CxCNOhlI69q1q5YsWaL58+fr6quv1qWXXqoVK1bEvL3bbrtNu3fvrv7ZuHFjHFsLAAAAAABQu378MdktSE11cmhngwYN1LlzZ0lSv379tHDhQv3973/XU089FdP2srKylEVpSgAAAAAAUMfEOkSzUaP4tgPu1MkeacG8Xm9AjjMAAAAAAID6INahnVTlTY461yPt9ttv1/Dhw1VUVKSysjJNmTJFs2fP1syZMyVJP/30kzZs2KDi4mJJ0urVqyVJbdq0UZs2bZLWbgAAAAAAgNrSqVOyW5Ca6lyPtC1btmj8+PHq2rWrhg4dqgULFmjmzJkaNmyYJOntt9/Wscceq5EjR0qSxo0bp2OPPVb//Oc/k9lsAAAAAACAqFG18/Di8XpTrz5EaWmp8vLytHv3buXm5ia7OUn3/fdEsgEAAAAASIalS6U+fZLdCriNFdW5HmkAAAAAAACpoqQk2S1ANAikAQAAAAAAJAlDNA8vBNIAAAAAAAAAFwikQQ0bJrsFAAAAAAAAdR+BNKigINktAAAAAAAgNTG08/BCIA0AAAAAACBJWrRIdgsQDQJpAAAAAAAASdKzZ7JbgGgQSAMAAAAAAEiS7OxktwDRIJAGAAAAAAAAuEAgDQAAAAAAAHAhI9kNSAav1ytJKi0tTXJLAAAAAAAAkGxmjMiMGTlJyUBaWVmZJKmoqCjJLQEAAAAAAEBdUVZWpry8PMf5Hm+kUFs9VFVVpeLiYuXk5Mjj8SS7OXFRWlqqoqIibdy4Ubm5ucluDmoR731q4/1PXbz3qY33P7Xx/qc23v/UxXuf2nj/E8/r9aqsrEwFBQVKS3POhJaSPdLS0tJUWFiY7GYkRG5uLh+qFMV7n9p4/1MX731q4/1Pbbz/qY33P3Xx3qc23v/ECtcTzUSxAQAAAAAAAMAFAmkAAAAAAACACwTS6omsrCzdfffdysrKSnZTUMt471Mb73/q4r1Pbbz/qY33P7Xx/qcu3vvUxvtfd6RksQEAAAAAAAAgWvRIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAABLoueeek8fjqf7JyMhQYWGhLr/8cm3atKl6uZUrV2r8+PHq2LGjsrOzlZ+fr759++qaa65RaWmp7bYfffRReTwe9erVy3H/Ho9H11xzTdg2Hjp0SE899ZSOP/54NW/eXI0aNdKRRx6pMWPGaNq0aZKkIUOGBPweTj/33HNP9XY//PBDDRgwQI0aNVJ+fr4uu+wybd26NWT/d955p0aNGqV27drJ4/HosssuC9teAACAZMlIdgMAAABSwbPPPqtu3bpp3759+vTTTzVp0iTNmTNHy5Yt07fffqtBgwape/fuuuuuu9S+fXtt375dS5cu1ZQpU3TzzTcrNzc3ZJvPPPOMJGn58uVasGCBTjzxxJjaNn78eL3xxhuaOHGi7r33XmVlZemHH37QzJkz9f777+ucc87RE088ERDQmz59uv74xz9W/16mwsJCSdKcOXM0fPhwjRw5Um+99Za2bt2qW2+9VUOHDtWiRYuUlZVVvc4jjzyi3r17a/To0dW/EwAAQF1EIA0AAKAW9OrVS/369ZMknXrqqaqsrNR9992nN998Ux988IHS0tI0e/Zs5eTkVK9z/vnn67777pPX6w3Z3qJFi7R06VKNHDlS06dP1+TJk2MKpK1du1avvPKK7rrrLt17773V04cOHaorrrhCVVVVkqQePXoErLdq1aqQ38vqlltuUZcuXTR16lRlZBinnB06dNCgQYP0zDPP6Oqrr65etqysTGlpxkCJ//73v1H/DgAAALWFoZ0AAABJ0L9/f0nS+vXrtWPHDuXm5qpJkya2y3o8npBpkydPliQ98MADGjhwoKZMmaK9e/dG3Y4dO3ZIktq2bWs73wxwRWPTpk1auHChxo8fXx1Ek6SBAweqS5cu1cNFa7IPAACAZOCsBQAAIAnWrFkjSWrZsqUGDBigkpISXXLJJZozZ4727dsXdt19+/bp5Zdf1vHHH69evXrpF7/4hcrKyvTaa69F3Y7u3buradOmuvfee/X0009r3bp1sfw6Ab755htJUu/evUPm9e7du3o+AADA4YZAGgAAQC2orKxURUWF9uzZU51fLCcnR6NHj9bNN9+ssWPH6uWXX9aQIUOUk5Ojvn376s4779S2bdtCtjV16lTt3r1bv/zlLyVJF110kZo0aVLdSy0ajRs31osvvqiKigpdddVV6tChg/Lz83XhhRfqnXfeiel3NXu5NW/ePGRe8+bNq+cDAAAcbgikAQAA1IL+/fsrMzNTOTk5GjVqlNq0aaMZM2aodevWysrK0rRp07RixQo98sgjGjdunLZt26b7779f3bt31+rVqwO2NXnyZDVs2FDjxo2TJDVp0kQXXHCB5s6dq++++y7qto0YMUIbNmzQtGnTdPPNN6tnz5568803NXr06IgVP8OxG5IabjoAAEBdRyANAACgFvznP//RwoULtXjxYhUXF+vrr7/WoEGDApbp3r27Jk6cqBdeeEEbNmzQww8/rB07duj3v/999TJr1qzRp59+qpEjR8rr9WrXrl3atWuXzj//fEmKueplw4YNNXbsWD300EOaM2eO1qxZox49eujxxx/X8uXLo9pWixYtJMm259lPP/1k21MNAADgcEAgDQAAoBZ0795d/fr10zHHHOOY2N/K4/HohhtuUNOmTQNyij3zzDPyer2aOnWqmjVrVv0zcuRISdLzzz+vysrKGrf3iCOO0JVXXilJUQfSevXqJUlatmxZyLxly5ZVzwcAADjcEEgDAABIspKSEtvpxcXFKi0tVUFBgSQjz9rzzz+vTp066ZNPPgn5uemmm1RSUqIZM2a43ndZWZn27NljO2/lypWSVL1/t9q1a6cTTjhBL7zwQkBQb/78+Vq9erXOPffcqLYHAABQV2REXgQAAACJdOWVV2rXrl0677zz1KtXL6Wnp2vVqlV65JFHlJaWpltvvVWSNGPGDBUXF+vBBx/UkCFDQrbTq1cvPfbYY5o8ebJGjRpVPf3777/X1KlTQ5bv0aOH9u7dqzPPPFPjxo3T4MGD1bZtW+3cuVPTp0/X008/rSFDhmjgwIFR/04PPvighg0bpgsuuEC//vWvtXXrVv3ud79Tr169dPnllwcsO2fOnOqiCpWVlVq/fn11ewcPHqyWLVtGvX8AAIBEIJAGAACQZNdee61eeeUV/etf/9KmTZtUXl6uli1basCAAfrPf/6j/v37SzKKDDRo0CAkEGXKz8/XOeeco6lTp2rLli1q3bq1JGnmzJmaOXNmyPJ33323Jk6cqBtvvFEff/yx3nrrLW3btk2ZmZk66qij9Mc//lE33nij0tKiH8QwZMgQvffee7rrrrt09tlnq1GjRho1apQeeughZWVlhbRjzpw51a9nz56t2bNnS5I++eQT26AhAABAMni8Xq832Y0AAAAAAAAA6jpypAEAAAAAAAAuEEgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4EJGshsQ7Mknn9STTz6pdevWSZJ69uypu+66S8OHDw9Z9qqrrtLTTz+tRx55RBMnTnS9j6qqKhUXFysnJ0cejydOLQcAAAAAAMDhyOv1qqysTAUFBUpLc+53VucCaYWFhXrggQfUuXNnSdLzzz+vMWPGaPHixerZs2f1cm+++aYWLFiggoKCqPdRXFysoqKiuLUZAAAAAAAAh7+NGzeqsLDQcX6dC6SdffbZAa/vv/9+Pfnkk5o/f351IG3Tpk265ppr9P7772vkyJFR7yMnJ0eS8cfJzc2teaMBAAAAAABw2CotLVVRUVF1zMhJnQukWVVWVuq1115TeXm5BgwYIMkYljl+/HjdcsstAT3Uwjlw4IAOHDhQ/bqsrEySlJubSyANAAAAAAAAkhQxBVidLDawbNkyNWnSRFlZWZowYYKmTZumHj16SJIefPBBZWRk6LrrrnO9vUmTJikvL6/6h2GdAAAAAAAAiFad7JHWtWtXLVmyRLt27dLrr7+uSy+9VHPmzNG+ffv097//XV999VVURQJuu+023XjjjdWvze56AAAAAAAAgFser9frTXYjIjn99NPVqVMnde/eXTfeeGNA9YTKykqlpaWpqKioutJnJKWlpcrLy9Pu3bsZ2gkAAAAAOPwtul769lHp9E+lD08xpl3scLm/f6uU3ar22gYcBtzGiupkj7RgXq9XBw4c0Pjx43X66acHzDvzzDM1fvx4XX755UlqHQAAqDWV+6W0LCmKnukALGadJA2dI6Wl+6ft2yI1bO1+Gz99KR3aI7UeHP/2AYhNyQdGEE3yB9EkqapCSrNc9i/5nbTiQeN5o0Jp7MbaayNQT9S5QNrtt9+u4cOHq6ioSGVlZZoyZYpmz56tmTNnqkWLFmrRokXA8pmZmWrTpo26du2apBYDAIBa80pD/3Onu+wAnG37nzQlI/DzM61N5M9T5UFp41SpcKz07WNS6bfSGf8Lv86P7xjBtkxGgABReckjjfpWyj3K/TqfnGk/fUqmdN4OKau58doMoknS3h+Nx4pyKb2h5KmTKdSBOqfOfVK2bNmi8ePHq2vXrho6dKgWLFigmTNnatiwYcluGoBIts6Vtn7mPL98o7T6Ucnr9R+4ASDZXvJIG6YmuxVAYm180/hfN+0tjm799S9Jn18irXzI2Nb2z0OXOVQW+PrT0UbvNSDV7dvibrmXPP7P6btdpNX/iM/+X2/hPG/LHOnVJtLbnaVt84yguRsr/xL4nVITP74j7VkXn20BtaDO9UibPHlyVMu7zYsGoBZ8eIrUuL00Zq39/LeOMB6/vN54zGgsdf+tdPRdtdI8AAhxqNR4/OwCerih/vrqZql8XeC0N9tJo1Ybw7wkyVsV2Btlw1TpiPP9r+df7l/u0C77/bzm63l2sdfo+SZJn46VLthdw18AOIxV7HXX69POl9dJXa8NnW7elG5cJH19t5TVMvb2fTTEeCxfK80aKPW4VTrmgcjrLb7F15Yq41jaoGnsbfh0tJRzlHT2t7FvA6hFda5HGhCz5X+SKvYluxUIPlEPp6JcWnZ3wpoCABFNK0h2C4DEW/VXaeProdPf7Sr9OM14bs2pJBnB5fWv2mzMZQ+U9VOMRzNYDaQs32fGbU8vN4rf89+g/uYP0oo/RV5n62dGvrRIVj8aXVtK3pemNg+dXnUouu2UfRfd8kASEUhD/bH0DmlbmGGFAAAEqyhPdgtSx9Tm9sOAVj9mTN+/tfbbBL9t/5MO/BQ47X8XhQbCflrobnvfPhafdgGHu70bjMcVk+K3zTmjjMfv/mk87iuJvM6HJ0vrX468nCc98jJWu76RZNPb7tXG0o5F0W0LOEwQSEP8bZwWOs0c7z/3vNpvjxtVldL6V5LdivrD7u7z6/nx2XZVZXy2AyA661+Rlv4+2a2oXd8/6+7uPdw5uNN++pe+YUtv2FSNLF1tDEtE7fjh2dBpcy8IfF38nv/5ltnS9J7Gc6/lQnr/9rg3DThsla42HoNzCMbDwqujW37ezyMv0/aM6LZZusJ+etUheqSi3iKQhvibe27gCdT2Bf7nG99I7L49MSa8rCiV/jcuvm1JZcEJjKsqpAM7ot/OgR2B61XsMyqN2flpcfTbB+Dets/9Q8Dceq+3tP2L+LelcGz8t2lnwS+kij2xrVtVSRDOScVedxeUezdJWz81hiWidmydEzpt8wfOCcU/OlXa7buItvbufCMoX9P+bfFpH3BY8n1+rN9lc8a4X91bFd/mxFu4IZzRDu/E4aXyQLJbkDQE0hBfZtDDegK1fV4tNiDWyjFxqjiTyqx3opf+LnCe27xpr+UF9jh7PT+wJ5s3TG+0mX2d573kCWyfZATl7KYDsOfxyHboRji7lknr/hvfdhSOlY77W3y3aTqwI7SisFMvqkjmjfcnZ091e9ZKlfv9rxff4q6H+puF0hdXGs83f5SYtiHQpndiX7d8vfO8XUuNx3jmiAIOF9Yb/YfKjM/BprdDl7P2+u50hf/5y+lGpdydSxLVwkDRnhuve9F53uyzwq+77N66HyiEs1eyk92CpCGQhvj66qbQaStcVH2JGwJiSVO2xv/8x7eMIJWZryHSAfklj1S+0ej+vfT20PnFM40T9E9cdDXf+pn/gOz1+vc9a5AxT5JmneLv2v5ymK/BQ3sCfy8gpcX4/VoV5wvnjBwpMze+2zQtvV369JzAabH2Klv/cnTFV+qztztKHw31v67c6++9FHx82POD/TY+Pp2h/bVp2X3Rr7PtU+d5Hw8zPkuvZMXeJuBw9f2//c9fbyEddBilsfyPxmOfP0n9ghL+zz1HmnGs8fxQjD2lXYtDYMs6omTDVOccbsvuie9N7coDHCtQKwikIX68VdLa50On79+S+H1/96TxGOvQTtTcF78KnVa+3giurno4dN6526TB7/pfL73DeFz559ChobOHS2+1d9e78cOT/Qmr54zyB8q2zzPmSdK2udLGqf51nIacrP2P9G5343lFeS2cuAB1iLfKH5Su2Cut/pvzye6KP0vb5wdOM4f1xzuQtu6/0SdCdquqQjq4K/AkPM1hOLkrHJOqbf888PX+LcaQn+Cexm93kj5x6MEwJUOa/4vEtA+Blt0V/TqRhnBNyTQevV7prY7SF1HmdgIOVz++5X9edUiq3Bd++Z63SelhevrEu6d3MGt7Y2UdUfLZBeF7FVdahoUvvrVm+/14qLT6kZptA9FxugFWzxFIQ3xsnSu90SZw2t5Ntbf/su99TxjamTR2F7af/58RRFvzz8Dp3W+RsvOldiP90xrk+Z+/2S78vpwu5j86zXhc+x+jSpA1IXI4B3+yn77+Jcnr642y6BpjqBZQ35m5q768wRhOsm9zYDDMLlfSklulDwb4Xy+63t8b+YfnEtZUW6v+Jm14LbZ1f3hG2rPG+OybapIoedvc2Netaw7usv/uteux9/0zEXoEeKQ93xvDgb66MXR2yfuBQ0Gtdi9301rUhFM+tEi+vN7dct4qqXxt6LkBkCre7hT7ul5v7QyFdNNLLPjcf2uYY561zV5vYODdmmdr5Z/dtU+S1k2RFv4mcNq2//nbEW64OeInHoHXwxCBtFRQuT/xSV4P/iQdCNqHtxaTLJvJO6kMkzx2yf73fB86TZI62FQM+vaxoHXD3N2ockhsueUT43HJrdL7xzuvH8LhosFaKKN0dcrecUGKeS3XOPn81jesZFpbf1CsdGXgspUHAy+6K/YZ38PfPir9+Gbi2hjuBH/dC9Lmj2u2/UNl/pP8GccwTESSpjazDwxOyZT2rAuctuCX7noEVB2Svv2H/TyS09djlgvqTe86L4a64fPxxnc7EsvtNYy3KnzO4Gictch53rJ7/M9LV9vnNwxux4enOB+f51/qf776b9KUBtL/LvZtJ8bA4Oc/k757InT6zq+Mx7faS6XfxrZtuJei+aYJpKWC1Y9KM/sldh92Ef/PLkzsPu18GkUFHCtzSOj8XwZOr6o0kiSTBDOyQ7uMx2bHRF62aa/Iy4S7W/dKQ+nHd+I41NLhAGC907Z9nrTr6zjtD6jjFlwR+HrFg/bLfX1H4OsvrjKKhiRaekPj0baH1KEaDseUVFFmnOSbnKoFO9liqXxYn44fTkP37CqbLr7FeNwwNXTeD88aj+H+Nm8dYT/9gEMPYhw+rEH2OWcnrRlwad0LRl5DJJbbfJxfTZS++UP4ZQb6elX3iDBMsvlxzvOs+3i3m31+w1an2KzoNdJBOPFWSbu+MZ6vf9l4nNbGftmXPM5DQu2O/+a05v386wWnFUDsnHqKpygCaanAzVj8mir7LnRa6Wr7ZRNRsclTw4sm0w/P+J9vmWNcPL3dUdrGl7Br7Wp6UuxySMmno/1DLaNJBj7zhNBpW30XvXvWBR4kzEAaVcaQavZvdrfc+imBrw9sd7+PeAy52GeTQmDX16E9XKO17qXIy1hVVfpzM0rS9v/5n7+coHxubkXKWxUVh+/n9452XmXzrDDbs1wIDZ3trgl7KABz2Au+0VpblQgRO2u+K8RPQE8/m8DQkeNCp337WGAi/2Dtx0vtf2Y8P/oe4/H0MIVAgrU+1XmetQfp7LOlrTbbfTlderWxdNSvQ+dV7jfmW6+37Cy63h8U+/h0+2XMG/hWJTONx+bHGXmSJSNox4il+Hilof30bx+1n17PxSn6gDrN45Fjj5tEOrTbfvrXd0rHRjH+3Y30hkYPgpjZXBxYK+w4DSWsryoPGAedQ6XG+xjwGPT84O7A3gi9/yB9E6ba19H3Br4+7UP/QbLtcGnQy9LUpu7aad7VNhMYu/HTwtBpyx+Qstsawbmed0p9fO0378BSZQypZvfKyMtsnCbt/TFoosveV1UVxpCLi6M8Nq0OCpB9fonU/beB+RbjwS6QuGm6835KZhg9ay72Gr/b0jvsl6ttS39vVIGL9u/sljUvSvlGqXGRzUJhbo6Ub/A/b9g2bs2KCzMPkbfCGL5kPlbF8trlsjXaR4TXddknw6URS6XNH0rtL052a9x5+yhptM1NZCBYuJsZr7eQLvKda9r10O12U+gNq0iOf9z/3Oxo0OrkyOu1v0TKaCx1uEyaNdCYtneT1MiSt3j+ZdJ5vhtmxRGGZX/3hHTcP6Qvr/VPcwrEBPv20cDgzOp/SF2vdV6+5AMj/UqD5v5p5o3xVX81bnQN/I+7fcOw5mnjOq/7zaHz9qw13l8zUJvRpFabVlcQSEsJtZBIP9Ld/xYnSjt8+abWvyx1/IWU1y1++49XrgCrLZauxGVrpDZD47+PeKs6ZOT2cRP8OlQqVZTaH7jTGkiZeVJmru/H8rxJZ+OxgWVaRhMjIbmZo6z1qcbr4HxKktQkaMhmuuWgesqbUnoDRSVc93G3ytf6e03Eu8IgcDiKlOPywA5p7rk267kMpC35XfRtkqTdy4xHczj+1k+Nn4u9Uul3UpOO/mVfaSR1+qXUZ5KUGeVJnrV3menru5wDaXvWGo8Hd0e+016blv8xsdv/dKz/+VtHGO/DwZ2By6x5ynl9ax7Nxg5DOe1s+cRIMJ3bNfzx3+zREGtFb0+67yfDeEzLqMHrDCnNMi9gmaw47cPmtSdD8qRJS34rrfyL8Xud8LT0xZVS/sD4DXuKtUCBZASu32htPHcKpFUeNC6Ie94W+37iiZ6RcCtcINs6YmjZ3aHzw1XutJPeSMrMMZ6P+ja6NAcnPC1lNAqc9mZh4I2YcD3h7LRx6E0WrS+vCx9I2zRd2vKxcTNfMoLyVuv+SyAtWls+Mc6F7AJpc0ZJu1dIR/h6F1emWIcTHwJpKSNJSQDNk9gdlqTte3+UpneP7x3yghHSxqn+fcZ60my1z9ojIcF/v6pKo0edbW+voOCXOd/uQteTERr4apAnZeRKjY60BL98jxk5xol9PDQqkDpcYjwf+rG0fX5gFT9TTufA1019Q4KG/c8fRLMGXiN5tXFs7Q226W3jMR7/O0B95zTMJ1JBjj0/SFmtpIO+k/H5l0v9n3W/X6ekwRtelz473+jhaqrcZ9zk6XKdlHmU/XqrfXe88wcYeRDDMZMX2zF7La96OHLumtoUz0CJpIBj4cY37ReJ5kLr4C7/82guGA/skLrdIHW83Bcs4ns7oq7XSw3bSV/dILUbLelKKbuVMa9Bc+fq1XXFwZ+kpbfXnUAaEMmetdKW2ZF7bpm+ezJ0WrSBNGsuu1zfcS94JIgTaxDtglKj8FCTTvZ5Kd1+z2c1j7xMrLZ/4X/uSTNuqpgFEsyULYjd+ilSqyH288xrZDNIXNePHwlCIC0leJJXTaOsliqlNGnvf75jgZTfP8oN2P19LNOcell4q6SKcvfBr0OllmGiliG3nnQjqBXc0yszT2pYIOV2swTH8oy7TWlRDGdMBut7MOAFad7/SWcskPKDcpSZJwktB/qnZdZCsvIQvguxQ74hwnY9UiSjq/hruUa+iapDRpf3d7pKp31g5HzqeFmttBaok5wq9ZqCi4j88Fx0gbSts43H4GPaZ+cbj3a5VML1WDJ7U/f4XezFaiT/0J26FESTpKLzjEDagR1SVos4bNDyd597jv0i1mFMdoUGrDZ/EGMzqoxjR02LSqSSRoVSt4nG+9OgmTHNTMEx8CVp9lnuttPlmuhzEGa1DK3snkwHdxm94dNdpm14yRN48zdFK9Rp03tSuxHJbkXdVb7eCJxtnW0EGhq3N0ZoHPUbaeMb4dfd9j/76dEG0uwcfZf99FPe9O2jUWgxicwc6eQ3jJ7na/4ZOO/1lu7zoTaIYyBt6Z1SH0sva+t3liddUhVFweLO5vp3/1ZL4Mz3XZiio3k4A0kFybxTu/rvzvP2/GAcZDxxqHnxw3P+54mo6LXoN74Elta/pddoe0YT+yGQWS2NOznB092euNUnHS6Rmh8r5XSxmWn3/ltOUrvdaPTySLTydcaj2c2+zCEgsPxPxoXIZxcYJxJNOhm9AzdOM7pBE0gD7FWFCWhV7A0dUmJ1aE/g8MxohvNbe0Dv+kbK6+k/LpqFctwOK6yqsA/eRCro8/0zUqdfuNtHPC2+yXh8PT9xedKs/ndx4IVOpEBazLyiXlaMetzif25+jqI5TywYFX0grabpN15pLI32DaXcMsfo5WL2Zg9n7YtGsnaPJ/Bcc9ZJUvv/k3oGDTGvOuQbCmvz9yj7Xsrx3QioT5V4ozFnZO18jxwuyjcaQbMtn0j7SqTGRxo9ePpMkhpaqlDu9wWdhsw0gj8tTpB2WHpT7V5h/E/aSYvjNcNZX0kz+/pft/UFonr8Vrbfp7ldjcfgnJ9ug2g/q6z5NV6Xa6Vv/2E8X/13aV+xcV3QtFfgcp60up8L8nC0fZ702UXSSa/4p1lziJvPm3So3XbVEQTSUkaSDnx23ZRNb3eShrwnFQyv+X6sX+oZMQz1s95dPFRmPzzplLcYPhKt0Wv9F6h5PeyXsTvIWt/DghH2gbS0BjW7A2Ke0ASLdGGxe4XxuPdH4472Xl/VQPNuGHC4Kt8YmlcknuwqbErS9J7G5yrcBdprOcZJuSnWu/TvHS0Nfjc015nbys8Hd0oNmob2CF77Qvj1FvwyOYG0eIvUE2fnYqN3g2nDK87L1qgdVfG5CZfqYqlkF3wBG6z9eKl5X+OYv+Q2Y0h061Olja8HLnfeDiPRejC7oHPlXmnlX43nHw0xevBfaNP2fVukhq39r+f9n/HT50+BQ0IPlfl74Oz82kiqffxj0szjjYv0jj8P3fY7nf3fUYnIy4u6b+8mI2i2dba0t9jo5dl6iNT7j0Z6EyfZlhsZHX8h9X3Y6PG16R0jz+SubwKXP/4J/3PrsW70WuntoIBFh0ultc+7a3/T3kagz+zZbR7HjrbJzSbVLIF827P839EdfxGaO7TvI8Yw83COvNgY3WIG0ir2SD88a2zbLpAWqUc8old1SNrwqqRX/Hkwlz/gn/+Db0TBrmW13rS6gLOQlJDEoZ2m1g6J+tc8Hf991TTYdWC79P7x8d9uKmrSPvLFjt3ftZnljlmboVJWUD6mAf+VRq6IvP8etxq5Iewu0K1DSa3MO80bp9nPD74YMIfIeNJS9y41Dk8Hdxr/5wt/I31yllFtN1yvsJra+qn9dDM47VTZzLwb/rIln2O038c/vuUfWrPSpmp0Zq677bzRSppmc8F0aFd07TncOSWWL11lBEYT7fOLCWbEQ//nnOed5ZAT0FrBz052S2MIadszjGHb+QONC/bWpwUu53RusOCX9tNX/dX/vMP/hc73VknT2oROt9uXt9JfXXzXMuk7X5XDXUul+Zfab8PK2puoprxVRiEF1D17i6V1L0kLrjQqyy67W5LHqFR46nvSiU8bxTHCBdGC9Z9spHDxpAUWx7Fqd7b/ubVHmjWNjWT0bBvwXOC09pc47zst3UgVY4p0fm4NpLm92WTqa7kB3n+ydOxfAud3mxh5G5k59sVHbPN+EtKIq5++dJ5XURY6LcchD209x39dSqgDAaDTHPKgHNxZB7viesKXqkb8hTvwS/7u5ZJ0xAXGyUdOJ+flTT1+Z58bov0lzicF63w9S8wKpFYFowJfV+7zdYmX0WuudFXkNgHJUrlf2vyxEZj6ZIS08NdG3qLuN0mnzjQuCo68KHCdTlfEZ98V5dK88eGXsSskcHCnMZw6WtbvDEn67p/S3POM52ZAz5oHMZrhM3bDWqINom/9VCp+P7p16gQXN+VqknT4uEdDp532oXTsQ6HTv3sidBrc+1mV1KyP8dzugrr5sVLR+dFv13psbdZbOuN/qj4P7XKNP2id3si5F2pwD52QfdgUSQo3vHr/tsDgr9k7dmpz+14sP75lv53XfDfOVkwK375orHlK+vDk+G0Psdu3WVo3RfriKiNw9vWdRtC1153SqTOkE/9tpCppVBif/WW3NR7/F3TctW7f7DV2gU3wooNN0HdghN7R0fSMtgbSzpwvHWNzEypY4yONx+CbU+Z3TTScCuXYpQ2y+05A7L4KqtQZKW2Sbeqe+q/OBdKefPJJ9e7dW7m5ucrNzdWAAQM0Y8aM6vn33HOPunXrpsaNG6tZs2Y6/fTTtWCBy+p+Ka0We6T1/Vt0y791ZM329208Tqatfx96FdU6uwN/dmtphJk01HICfNKrzr3JQjgEkZsfL2U0DL9qcC67YZ85nKhHEaj+7in3y9ZlOxYZw2FQt3mrpJ++klb8WZozRvrfOOmnRUYC+iHvSoNeljpf6XxXXDKWlYx8ljXxqoshIh+f7s8lY1oWptpYw7bO81oGXZjuXBz42uuV9m/xv47Uwy1SARQ3gbRdy6XyDcbzD4e4T+7ultcbvvd5LMP4Yt1Gm2Ex7sCm/W2GSt1vDp0eqcoqwjP/58esl1qdar/Mya9Jwxfbz3OSbnNs7Xqd1NPXszTXl7PQrNJt5z1L/rOACuo+dv/nK309XuwC1GZvtuDvl4M7jeFiwT4d63++Zbb/udnztPg94zEeN10P7oxc7RiJsW+LtP5V6YurjV7ZS28zCoL1vN0InPV/Ruow3n0OzWiZIxqsggNC5uc00+YY2uXXga/7PhJ5ny1sRtw4SW/gL0iw6xvjc2ynwJIqYcw66ZgHQ3uutrEUAuoU1Ou02TH22zUDd8f9I3ReRXngazdD/Vfb3KiBPXP4r2nhhPDLF09PWFPqsjoXSCssLNQDDzygRYsWadGiRTrttNM0ZswYLV++XJLUpUsXPfbYY1q2bJk+++wztW/fXmeccYa2batD1YDqGo+lOmRtsH5ZRrLneyNxZE2sCw7C1LAHXiy9HxBfaZlGXojqZMIx/v86XRxbCwI4VRQK6aGSZhQVCBbp4BLrsm6Vflf7Q0qX3hbfO/KInz0/GEPm//czac7ZxlDkFscbiWJPedPoQdm8r/v8UuaQlUjf6yNXBr4+Y4HU5gzp2L/aL29n/2bpjZZSySyjB4kUGgCzcsrfktst9ALXGjSTjIvngIIiEf4e+ZGC9y4+g+/1Mm4c7StRQo7JH/Q3hiEFG/iy8RiP/HefXeBuubwoh3emhQmqILEaH2EM+Ro8XTp/pzGtyzX++U17R7e94It7ychz1OY0I1fZ4HcD541yqO6+wtcL8XOboV3fPR5avGS3cZ2gH31DuO2Oi3Z5Glfa9Ha0+jgoKGwNek1pIJWuDr9+JJ500kLUlv3bpA2v+dMZLPmtEZDp8VujV3b/Z6WOl/p7VSVamk0vKrv/hXNcXie5GS4p2ffwdVLoq2ad3z/wBrM1aGfmcTOD7uZIjWBm/uMTfQnqx6yXBk2xD9aPOygV+G42tRwo5fUKHD4YfHPOzTnNl9dHXibVbf/Cf/5lFWn0WPAogBRR54oNnH322QGv77//fj355JOaP3++evbsqYsvDjygPvzww5o8ebK+/vprDR3qkIcr5SVwaOfGN6RtQV1vc226dzrdJd/7Y832/9HQ0LvSpSulVlF2k7dW/WR4XvJ1vT7wjlWP26Q5o5yXdxT0v9/oCOPuYgNf75Iu1xq9cewSngZf2KVnRXeyu3+7kWA20d7tIo1YFjkBdDwlO+ci/PZvk7Z8bARJ9m40qsi2Od1IVmx3t9uNoR9LH/nyGTU9Whp3yKhUuesbacd8+3XyugW+zj9BOs3XM8SsHOnWJ2cYjxdH6GFVud9+eukqo9dpOK/lGifwbpzyliSvVOLvHa/NHxuBAVM0n4lZp/ifH/jJqEAYD6Xf2t+YMv8PgoOJibT6b9Etf6ZvZEFWS+dlOl0hff8v/+sjx0XdLITRboTxeOHewOOfJ80Ipu1y2Qs5u5XzvMwc48fKqdrbkt8a+ZHs0ixIUkWp8b/t9RrDtDe8Zkxf87R0wlP2OfRi6ZUZfANtblAwufJA9NsMkFaz4dBwtn+7tHWO0bum7Dspq5XUerCRzqBxhzqa+9jmWBLQ+9qhc0SbM9zvovvN9r18wzYr6PPUbaIRcPekGecGG1+PfBxsd3ZgipTGR4Tp7WcJjDXvK41c5pybU5KW3RN+33Dno1OlYx6IvFwwu57IKaDO9Uizqqys1JQpU1ReXq4BAwaEzD948KCefvpp5eXlqU8f57HXBw4cUGlpacBPyknEhW/FXiPnzKqgHgfB1cyMBsR//5JxARnsi6ui3441kLLtf6Hzo727jprJaGgkLDa1Gmw8BudcsFaHi6TTFdIp06SjrvZP6/eo1KjIfvngYSdpDeSq18l2XxLiN1r6P3fWg//8y6Wtc52DALGI57bc2PJR7e4PfhV7jaFLi28xcrh8daMxrdfvjTvqxz8uFZ0TexBNkhoG5X9J891zO3OefeGYwrGBr8/fFfu+rT46Tdo2N3S6Ody0UWHoviWpw89V/Vk9+Q3n7f/PEoipCvMZKhztvytv+jjo72BWAHRjzxr/8+CqhVWHQm9OuXVol30lY3PYTGYN/icSzWxjuOBY8HtAL7bEyGho01PGIxWek5j9pYW5p/9mmFxUm33nf+Vr7YsM2AXSZkdRJd4pJ9DOoCIMNc3NdHBnzdaH34GfjAI6i673HR8nGkHKrtdLQ2ZIA/9j3KRt0rGOBtEUOY2C003T5sfFvSkBzF7ejS2B77QMI5DWzOy1GuEcedDLRo45JxfulcZuNJ5TlTk5POn2o2+Ch9IGC3cTrB6rk/+ly5YtU5MmTZSVlaUJEyZo2rRp6tGjR/X8d999V02aNFF2drYeeeQRzZo1S/n5zj0/Jk2apLy8vOqfoiKHC+d6K0FDO+0+aM4Lh58d7i5DomyablyARnLEBcYPksfMDREcMDrbMqRi5PLw2zjxaeOuVqSKY9WCvh4btfP3SAt34rze0stlvyW3y/eTjccfnpPWvyy90lBaeqfLtkRQFwNbFfukbeQwqrGqCmn7Aumb+6XZZxsJ+0tXGkmGh7wnDfyv1Ony+OZwMSt3nvhM6LyhH4YmCO9zf+Brs8dnTTn1RGk5yHj0VhpDs63tGXfIaLcZxG51Suj6dtxcDI9Z725bNfF+f2nWoNjXt+vZYvYQChewSLQmnY3Hxh3C51ENd3Hb7FhfkNSnbRRBEdRco3b+42zjDu4qZ7vVPkIhEjuf+Qoh2AW8Kg/YB9Iqyp3PN4OHLgUHuZ3U9IL/AKlpYnZwp1EY4ssbjMDZomuN3oldfuM7Pr4gdb5CyulcdwNnwcasDT/f7End2ZIqZNyh0ONwPI1cYQytlKQxP9gXCen1+5rlUm1+vHGMMgst1OT96u4wtBSRedLtvzs3OxQNNDn1LK7n6mQgrWvXrlqyZInmz5+vq6++WpdeeqlWrPAfsE899VQtWbJEn3/+uc466yxdeOGF2rp1q+P2brvtNu3evbv6Z+PGjbXxa9QdtZ0jTQr9QnfTI255hJxLXm/4EuE9b4+8D6s5o9wNVTjpVenou6PbNhKjx62Br80Dbq+7pbweocu7YXewfqN16BCQBs38d+ROeDpwXv/n/M+tB6BplpLoC37lf/7dk8bj8vulnUujbnKdMb2nVOJwcN02V5rltigEqnm90u5V0urHpLnnS5+OkYpnGL0yT37d+Ok20bgrnagLg0btjBPlTpc7L3Ox139ibX72ut1k5CcL5+h7pIbt/IGVWHSz9CAOvohNyzB603grpdanSVk2F8PjKkJ7N7k5HQoOVi67z1Vz1bAg8jKm4N4ukpFTbffK0OmmLbP9N4Xsemmb/yd2vdVqje8coMetsQceGhUEvvctQ0cqIEHSG0qeTP9nfcwPUl53/3xrTrVYVPdoidLCX/uHggezuxgMZ4rNaAo3N1vNILy3SiqPIdjulKf1cLVvs7RjYWK2fXCX9OM70pc3GoGzhb8xvh87X2UEzga9KB11lZFi5nAJnHVxSODvxPwMmnnJJF/PsAT+vnnd7fO5WfX+g/3x1q2zvnAY0RSDtmGK3az5d3z2UV95PO5HsXWOYQRYPVMnA2kNGjRQ586d1a9fP02aNEl9+vTR3//uL3XbuHFjde7cWf3799fkyZOVkZGhyZMnO24vKyurugqo+ZNaEvDleuAn6ZswFxGNg6vAufhQLg0KhO0Lyuey7iXp7TDV5VqcGHkfIerkRwBOnE7W4132ev9W+15eZpf64PLh1gp1m94OnBfpgFT2XfTtC5ZtM6ylNuxeEZqUtPh9X2+AOCZP3vxR/c7Ltq9EWvuCNO8yafYIac0/pSbtjYphQ6ZLve+RWp0UvspdMjQ7RjryZ5YJLt6jFidK7S+R+kZRhMDJKW/7kyYHB7dV5f9eaHasf/Jxj/oCbXH4/1x2l7vlxmwIP9+pLcUzjKDqij9L03sYQ5bsfHSq/8J15xLLdi3vR01y5gVbE/y3dqHovNgCaE2D03ZYzmfi/b0PZ0OmS31szvnMVAkeX29HM5l4tMzhdoNeiW6I2ndP2g852vujUY2xpjb6hoaHS+9h/l/v+EJ6q30MOznMjm2R8sy93VF6/4T47OvgbmP0yFc3G4GzLyYYuUA7/8oXOHtJOmqCkaPzcAmcBWsc4yipbjfGtx11SdsaVrRuECagt8imGIpknM863RhOlOBCJnVCFJ1vyO14eEQRvF6vDhxwTuYZaT4U/4vQPd/7S43b77Bm29+7yZ/zwjxoz/s/+4pLppAqiy5EOvCewdC0OuOcYuckxuYw43aBxUpcXbi5+Wyc6+vx2v/ZwLuA1v2M87WhfF1QdbwI24+UdyAcM7fK/Mti30aszL9b8Gdo9lnG0MN4Xhx8fHr9qmp2qNS4q77oeqNy2NLbJXmkYyZJp86Qjvub1G5UaE7AuuaEp/zVt8IxS9cf9w+jCtexDxp5x+yGh0SjYWupQVPjeadfGUUSTD1v9/eMtlb+7HyF8RjrMXHAf6Nb/oSnI9/JP7Tb16ag//GFVxtVqc2eNXvCDPkJ7n2z4bWgwgNp8fsMbXrXfnpXm6ItpmMfjG1fIb2KCKQlRVZz+yCZecGa379m22/QTBr9vXTkhZGrwwWz+7/2VkhfXFGzNhkbMh4GPB9mEd8ywZWC3WrSKfz8bx+Xfgiz/9q244vw86PtCWh1qEza9J60+LfSJyOkL640vvc6XmYEzk6aYlSFzetx+AbOgsUafI41AHc4OHVG5GXCsf5vBKfmcfqc/vCstKiGPWujseG1+FTSjjePR6rc527ZovMT25bDQJ2r2nn77bdr+PDhKioqUllZmaZMmaLZs2dr5syZKi8v1/3336/Ro0erbdu22rFjh5544gn9+OOPuuACclg5S8DQzognDMH7873u/6yRbD2Sd31ldMs3Sm+5zP3TNoqKNaZtn0stHKq7Zbeq+ckh4iegalGQH9+Set8r9b5P2vSO0VNm5xKXJyguPhvWwgcX2RxgDu6SGlp6hS39vWXzES5ei6cb5dZjMTWJQ0LMISx2Fcu83tiqo1ltnGYkzTcdzifNlQelHQuMk6afFhlFMloPMS4Icg6jISjBzFxqpg6X2hcj6Phz6ctrpa4JPEn1eKTWp/pfm8nrJWPoVPWdU19wvdghGBRJuyirB3d2cTFv9ub54dngGcb3R3VuxjA3BsyKhZIRiPjswsCgnyeegbR3Al836SwN/cho7+pH4rMPk7U3YTACacnXcqCRWqGhL/dox1+EX96NaIcg2+XrfTfCEHPX2/YFhRq0MIYxrXnKZiHf52pvmBu9wTZNl9oMNW7MRRoO9+ObRqAx1vOEeItY3CiK641De6RtnxlVNXd+beTDbXmSUV09r2dqJJwvXR15mWB2RXZSVatTpK2fBk20/N90/23g8THY5/8n9bxTCRm9Fc7eH41Hr7funAPu3SQd2CH99KW75c10Fy3i1AP1MFTnvqG2bNmi8ePHq2vXrho6dKgWLFigmTNnatiwYUpPT9eqVat03nnnqUuXLho1apS2bdumuXPnqmdPqio6SsQHdNm90S1fffc/wr+ceSJinki5DaJJ0f2e5gVFuGpJ525xnoe6o//zRvd+q+CeaYnWpH3g6x3z/c8jXbw6JVSP1rqX47Mdb5W73jrm72jmewtQJZXMdF63cn/4YLzXK80918gTVs1jDO0oW+O4Wp3h9Uq7lkmrHpE+Pdeobrz1U6lghHTKW9LJrxnJkHO71p0TqHho1ltqNyJ0enqEgPaxf5WOchhuEQ8dLBegThdmmTn20xsFHYMaNJWO86eaUIXLO7cdw9xAMnuOBQefy9dJ8vov5sNdVO63HK9mnWw8rrN8L3rS5KrqcCyOmWScUJu9AyMxq66aFy6ZYdYLvkFm/bzEK58OYlcw3Bh6bgZP+j1a822W+vIBDrOpXuuphfv/1f+f8t8oqjoo9bzDfnnzGG8N6B3aY9zgczJnlDGUTJI2TA3fHqfk37Ul+HwgUo/BcOcPFeXG8Lklt0uzRxq96UtXGSkChrxr5CTuep3U9OjUCKJJ9jcjIznFYZh/Kjp9Tug063GiUZiee6XfSutelMpWy7hxVYvDrM20LlEV7kuw6Q4VYSPp86eUzZdW53qkhct1lp2drTfeCFPKHmHE+cvBqXrHSb4TgpDggW//kU58N0yVul0f/sts9yojH8Kub1w11dYiM7mnV9pi8yWMw0dHSxU38654VENDInw2znJxZ8ZuuGf15iOcAB/YbjxWVdSsqt7nF0vtffmqXvLEPmzukzONu51dfuNu+aZHh07zVkm53UOnm+aebySvNfNbhazv+5sF92IqmSm9c1TNhwQmQvkGo8fZ5o+M3k9Nj5banG6cXAT33Eo1kYY2dvm18Rn67gnnZTJzY+/l2G2iv6eUUy8mu/fomAdCC5xIxoVe+Xpp1cPGe53hohJwuKTl39xnVJf7yi7njdfImScZPTe6OiWmthxzzSD3Xmvi8zj2SAuW3tB4jHThO/g943PRyFd8Iecoqezb0BshF5YblQzfah9+aGdamO9d1K4mHYzh1fHQ+jSjaIZdMYnR30tvHRmf/ThpOUja+LrxfKGvMqK3wvm7Y4+v8IL1f3XnYunTscbw946/NL4D1/xbyh8gNTVv/PuOYxteCd8eT5xyOsYqOO9rpIC8NTBQsVfa/rlxw3DnEuO7ouUgY7hd7/siHxtSgbWIzbHhUuZAGY2lDpdJ3z0eYUHLcSIr33hserRxg9NqxwLj8dOxRq/PcJ0r4s28Cb2vWGqc4O80N6oqpEO7jOfRft+0sRmJkCJSJNyf6moxym5WUXQKpJkn3E6+mugrZR4ukOb7Ivz49NB5Zo6W15qG/533mV1qK6WPhoRvEw4f2b4DZrhhoNFq3td+egu3w35dHpDsKoaF85NNdT/J6KYeq++fMYJB+6Pojdnq5NBpXq8/75OdA9uMQIRTbx673mq76lh104M7jUTUC39t5Dn75o9SRhMjv9mpM6Rj/2z0pkn1IJppXIQeiHZO+JdRmECSLgjz/xSJ9ULFrgdgcC8XM9m5XRDNZBZZCBc8OskynKRBnvNy614MnWZWqLZ+FsINTyk813meFN+hnaEb9z1EuCguONMfRJMsNw6C3pOMRv4Li3BtTqtjxTdSWaNC6cR/xWdbp82SLvAFzU8IGkrZ+Ahp8Duh67iR77bKq81nOre78//3yj8bj1/fGTrvi6ukSl8Q/YsrjItn8/vO7Xl5snuk7V4e+Nrt98jskdK88UZl8qJzjeIwJ081Ku82P5Ygmqnr9f7n3W9KXjsOBxfuCRwB0t7mfHfUt4HDpc3/s9we4bddm0E0q1h6JNZEVYX9Ofb6Kf7ne35wt63mx0tnHwajRBKIQFpK8EpVlg/q2v9Gn8w1WtZcNReWWxKT+/7lwlUPe71F+AO112tcuNpd7Gf4AnWHdkfoveA7ca9PCczh5yYvkSnWIPMQlzmWEvU/NtOhspl5Ub4ihuTe5l344ENDVYXz72GXlHT/FinDYaicZATLN7wmvRoUZDKHjFs/uzN8v+eMMLmSakPlfqO32ZLbjCTIC39t5JLofrN06kzpxKeNRNnWfHrwC9fb0hoQad7PyJEjGceJgS8E5juLt3EHpZ8FnVS2Gx15PTN3V7h8Ttb8m5FuIgWb5+tpu+phd8tnNJIKRgZOsx5nEzW0s+PlRs8ySY6nlE7V5bq5uWgMF0jjQrxe8qT5h1p3vjJ0frg8hdX/izaG/c/dcGDbYLvHOWi+9VPpvd7+nEeSAm4GW49n3z1uWe4wCaRVBe3b7TnNKW9JJ79uBIeaH8fn1Qk326JjTQMx0Kb4T3oD42b68cFpR2w+b9bz/yMuDH/emig/Lard/S3+rf/8wsoaJ6jY425baelSToRiKfUcgbRUsH9b4Ot5P09M5P2UN6WmvvHV1ovJgIOE7wTlGN9FvuOQuDAnGFUHpZL3HWZa/qXDRtR97TCH1aGeqYW8U+Ydr5aDwi8X6aQzUV26l/wuhpXMniWWv5+3Svp4qLTaKfeN5TNnnnB/Olpaept/+kuewLtuexzuYC27x3icZincsNOh512iVVUaCVdXPCjNGS39b5zRC/CIC40g6qCXjYBtk47JaV998bMq/wXWxV7prIXSsLnS0X8wei1I0nBf1c0jL/b3VIkX64X16LVGrxU3F9tp6VKXa/09x+xYP9vN+0XXLjfDWA/skD63nBAHX+gHVANMUI+0/s9Iub7ghVOPnb5/DZ2WP0DK6exbL8ypaHAAoXH7qJuIeiJcLj1J6vuwNHKl83yPRyo8x3m+f0GHyWECQcFDxqzeLDQKElnbYQr3/WH68U2p+L3Iy9VEcLAsgEPxsEhqkqoi1aQ3lAb8J9mtODxECjyalYSPmhA4PX+gf5in3Q30rJbGEPXaVvZ97e5v9SOBvc/s7N1YO22pBwikpYQaDOtc9Yg03SYHkp3CMf4qienZ0vm7/PPSGxpd9M0TCHPo3dFRFi2QpGV3h04b5zsZaWG5WGkUJm+N2Y7v4zQUAXXHqG+jXKGGw56zW0dYIMLF64Ed/h6i7/WOvL+qysCqWebJvV0X96h5gh4lff9v4467XQ9QT4YC/342f8tDZYHtDLb9i8DXFeUu2xpnXq9RyOC7p6TPxklzzjaGbrY4wUiAfMqbUo9bjOBOqiRBrg1OxRaO/n1okHLQi85FAaJ1nE1guEl76YzPjYvtnjbDtIJlNDaGau38OvKyHf7PGPor+YeFWjn1jM1obFQls7N3o7TO5o68aa3lwiyhQzst+zAdEaGS+hmfW36vMIGL4DZnNvH/HZFawg2PlowKyGnpUqdfOi9zUoR8ZJJ93k/JfZXYqkrph+cDp021jsKwjIh4JcvdNhNp7yZpShRBL0ZyxN9Fe41Kpai5TIfjQ7frjcJGkvSyzTlcZbkSfhP+x7eNkQ1Wy+5K7D5NS38f+DrWz3GkY3uK4WogFdh1Cd9X4m7dr26Udn8jfTzMP+2gy1w11pOetHRfF33fl5TZNT/fl2cqXLL2YHY9zcweBIVjLMNywn0h1qNKeQiUG2Zoh53sNpGXcdL2rMhDQ0u/Cz+/Yo+qA1Dh7mqbXm8hvWIZJnb+Tun4f0rrXpC2zo28fjhmUMN6QWz22rQ76HrSA4eJr3kqdJmFV/uXrdhrBA6tVv9NWnqH9OVE43W4ap7xtn+rtG6KtOBX0uzh0qq/GYHRE/4pnfqe1Od+Y5h6NN9PODy0O9s5Z1JeN6nPfZG3sflD4+5u9ZDoCJr1MR6Dk+tLocfpUl9Fv4pyI5BtJ2C4c4TvoVoJpFmOq0eOM4bZdb8luvWsMhrL9lh95hdS37/F0kIcjs5caDxah12dFnQxeuFeqZ1vaHO4Kn12rFU6Jan1EPvl3N5A+eFZ6YdnIi9XVwJSa56OsEDQZ/DzixPWFCBmzfpKHX8ROK1D0BBGa2XpvZsC5/3wXOJvki6+xT6/90u1cE26/I+Br4PPK9ymuTFzkUMSgbT6ZfsCX6L+IHaBtKookxtu/tD4oO/bLE1t6n69o4Iq/wV/SeUP9D0Oks63aXtNOJ2kVB2SiqeHX3fM+vDzUcdFcVBqPTix+3GTuN96APvw1PAV/oKT+Gc0lgqG+9Z16Lliu51SmwOn7/f5+vfSp77k5UvvMB7NhMo/LbYsHpS7Zfu80P2YOdsO7pRebRyae2H9y9LyP0mr/268fj2BOcYqyqXimdJXNxt5Fr+6SaraL/W628hzdvxjUtHYwJMt1E9m77OaMHOblNscL+wCSMM+k87dFjpdCj1exZrH1Jqf1CpROdKceKvcnZgf96jUtI/9vFHfSh0vC52e193oXYDUYA63shYZaHNa4DIZlptLTjn5gpk9zE6eGn65Yeb3hM3xfsjM0GkRj/lmj7Sgc/OaVKKviUj5kJwC3UBd0vdhqf/kwGkDgnqGWvOGvlkYuo2di0PTITlZ+RfphyiG477kMapUO/l+svM8N6oqjZvDrsU4GifFc6IFI5BWn3zQ36iQE8wuoBRrgvVpDtUQL3bY3vGPBb5uerTU8w7LBI/U4kQpt2sChms4tGlKg8ChcXasVd4AJwXDpbbDwi/jVG0yIKG55X916+zw/5/BQ0k9af4h1W4d3CW9lie9c5S0e6Ux/HL/1sAT5h+nBeZ1kYzvkpmWKqZpGf6LgS1zpLQww1TeiZBHqXofcSyEUlUhbZtnVNScPUr6fLxUusq4OB8yw0hU2/EyqXGUPRhweBqzLjHbXft86DSz8mcws7JwsOCL6nB3xlf/I3TavMt8T5zWq4UeaZI/2OGtkuSNfIe/67XOBToatpbS68DQNySXmY80eGhn/2ftlw8e/u00FKnNGVLhWPt5Xa7xPzeHetoWIbD5/7ar3hmwjkMgLbg6Zm2J9BnN6VI77QCikds98HVeT+dlR/iC1G5ukpaucrf/H54zzpPdCD722t18W/Ard9tysvZ56Q2HVDNOI0pikd0qtvXqKQJp9Y1dgMz25Nk3bfsCozR1LIbFcDe/UaHUJ6h76eB3pWMmhf9Qu0n+HKyudJtH7Yv1DmqjKAOoXa+Vjrra/9ru/3TLbPt1c7s4FxoI7jF6qMyoFCkFlvU2pUdZ9WmNLzfgnu+l6T2k13KNUvXlGwKXC8jrIundoBMXT7o/8PXRkPB34g/6epzGGsR3w+s1AoOr/yHNPV/6dKy0+QOjl84p06RT3pC6TTSKonCXPbUMmSk1tLkDXRP9bQJo1aL8/woOIIc7Hn55Xei0yr3GPs2L4uCbW4kY2hk8bEayVFT0+goKcBGOeAm6ZLHrrWincYfQwPap7xvD90+xXAiPXmvZtmWImHlcT28kDf0kcDsxDQUzvxuCP49BRQgipYWIl0jpFGI5VloDkUAiDLUM776gzPkmlSQ19QXZMnMDp8+/NHRZt5/p3cuNQiDBgo+zM/v5z7lNNQ2a2VkfJv+jbQ933++5+LfOveGa0PssEgJp9c2RF4VOM+96lVuqcJgXs0tvM6rSuWXmqpCklgOM3mRtz4y+nSaPx/jyy8wN/+XlJvFzCN/v+NOX7haPJViHuiktUxodRSWc6qIXNbzQDD5Y9bpb2vKR/bJ9HvAXRggerrn3x8DXFXulkhlGdZ/dK0K3FW0Or+//ZQTk+tzvn/bTIqNbezjB3dIP7gys/tNuVORhNYt+E35+tPYWS2v/K8271MhztuZpI0l9/2eN6ppH321UVuXzndoKzvRXB42XjjaBJFO0F59L7wh8nRkhsbotr7R5lkN7EjC0M/iixNTqFKlhO6PHZ6df2C8DRCvW/EUFw6WzFvlfn/+T1PaM0OWc6M/1WgAAYYZJREFUej+mNfDt3xOYP+2YB2oWSAvukbbhNf/zV7Kkd7sk9saT6bsnws//7MLottfxF1KvWkqgjtSU1TJwFJNTgYFg6Q0jL+P2mtHJy0HnGT99aTOkMxHhF5vvik3vGdf+Wz4JnWdq2FbaPj++o0FSCIG0+sa8i73nB/9FvXmwnmtJqNqowPckyrvU1qqYknTmfCO3UKJFmzxW8v9eM/uFX840zkUZchw+giv+hXP0XcaFa017bPT9a+DrcMGbtHQp3XeCHtwdu0FQTzDzZN3p4jzai/ay74yk/z1u808LTrjsRsOCwKEx3/zBueKZadM74ee78ZJHWnS9kefs6zskpRkXNafOlI57xEg6Ha/qjkA0BpmB5QifydxuxsWA6dug4Zq5MfbkSssM/O7rZ6ZXSJOW/M7IDxgvTr3mTp8jtTopfvsBJPug1cnT7G/eDH7Xknc36AIz+Phqnd7LV9nOekx1Or72uDW24VEf+IqcVAXnL7Y5/yhd6X8efIMtXho0j/MGq0RBLyTUeVtjO8dzM3ojp2vkZSod8oxXOlxHrno48PXmDyLvI2o2gbQ5I6WVD/nzuVqZ36flG6Xv/+0vDOZGVr50Yg1zutUTBNLqm3njjWTgb3fyl9j98Q3fTK+lMoh5YR7DXeqxG6Xzd9W8rUYD3C22P0yV0ROcKg5V+X/fmSfUvKIh6jmvcefZabilG22HB77+7snI67Q7O3Ta+lekJbdbmuYLioeceEewZU74+dYLBLeVB03tRhu53L65T5r/S2PavhL3+SVqqsuvjTxn/Z+VOlxi3FUDattJrwa+tusVbmfUSum0WYGVCE253RVybGzuuyH0sU1PmmoeqWBkYO6YVr4CJJ40owLvqr/ar/pq0B39z8ZFHvLVKM5DZYFw7IJWRWNDb2BJxs0UM2DmplfXeduNnt29/xB52VGrpXPNNAYxXEaVm0NIg9vl29bySf5J0y15n6JKJB4FNwWRJGmkpTd8uO8Gr4vciEAyuOmR5iYJ/z6Ha9L5l0XTmprZsci4IW7yZNgvt3Oxfd5lc3m7goSmwW8HFnkx88yet43e5j5809VH5h2sZXcZ+c9sP/C+LwqnvCnbPpfecbgj3qgwNOlrolXsc57XsCDw9aa3jUfr7/XTQmn/5vi3C/XHoFeNvCln1aBbd1bQnd19m+yXKxwTfjtf3ymtsJxMmwe6kih6f2bkGHnLEsWTZuQ981ZIPzzjnx7NXfNTfXflzOq+LU4Mv7w1WXxuV/KcIfmyLIl3zd5fxz0qtTgh8rrN+kgjgxKMF4yUcjob/99W5t13c+jmNpsKufJKTXtLzY71TzILgES6sK0oN3IxvuQxjp0bXpHmjJZmney8Tv6g8NsE4irG7/sdX0Rexi73qCT1vD10Wm4Xf8LtmgSMgs+90zKMkSNLbfYp+XutHiqV/ndJ7PuNVV53f+4za9tX/iUodUwVgTTUTW7SO7gZmWKXG00KHcIZKYjf+77I+3Iya1BgahW7USVZLaW2Z0lVNj3lzBv03z4aOP2Ut/zPc7oGFjirSUeDeopvuvrC+mE1h3Tm9ZRmHOOfHtC105I/zK4nyt4fjeFfiRZ8IXyRQ7XCsHf5Hb6oQqLsXHQjjIIzjRNkpxNqN8IN5Wx+nP8Ct99jzsvZMf+Xo+ntVVHmfllrnsMhQcG6MeulE4ISpUrOQ1oO/OR/Hi5f2ui1RsXTi73+6r7Bw3GDcyM2PlIau0k6h6A46gjrMazTFcZj12vdV34OqRjr217wEOngE/Jv7lWITe9Ive+V+lhOzqvzPrk43XvNl/PMrNZbMlPa9plzT9iWAyJvE4ibGM/hKsqjX8fswWGbpNuiRoG04Eq9GdLWML3If3jOeCzfKK1/Kfb91oTZ694abFh8izF07SWP8T217r/ifBuHrV0uCvDZ5SqWQvOrRerVHTyset0UI6+ZK5bP2NQW9ufkFXuMwLv5fWY9j3DKiWY9D+dmdUQE0uqLA9v8z80Ph1MiYMn/YTqw3Xi0nmh8Pl76n03gKrt16LR4c0r22rRX9NsK7onn9oSn1eDo94X6Jdb/9eADWdH5/udnLZKGf2U8d5tAeMsc46TZ7JG5caq79UIuwqv8+wy+KM5q6R/+ddZXUpMOgfMbHyE1ahe6D6du5ActXc2Dh9yY5clHfC01aR+67oCgKoh2n9lGBVLDWvguAtzYbclhZOY8jJY1V9rxTxgB+eAL+ODvlpL3/c/D5YOsTpTucPyrOuQPnFmnBby23OAaFZw0GagF526L/fMVU5EN3+cl0oWw0ozjbbQ3x6TQ6txbPw0cquWkJsG7d7tLO5fYz6s8IL3X235eZlPjsfo9CDqH+f7fxuPL1rQxwGFo6e2BN4TfLJIWXBm4jPWzu/YFoxCYFJhWQYqcwP+IoEIea56S1r3gvq3mef3Bn2TbqaRyn7Tyz/5tTrHc7He6SRBwvU0gLRK+6eoLa9BoyW+Nx9V/D7OC1//Bl6SpluSrTgfyc5PcC+ScYv/zwrFSfoS74R+eEvg6+MK/3+P+500tJw/db4mpeahHhru4I2UnLehEv9Up9su5PbH/aIj01hHGHV8pMEdK2BPVoIPfy+lGYv4ZfaUpQZ+DA9v8n/lmx4RWEJWMHmsDXzSeHznOyCfjlFehYq/U+jT7eeZdbLuCBIVjQnv0xRJAB2qTOeTy4hpU1zPzLZ3wlNFDLa1B6HG4eqiozYntnh+ct+3xfaY8aVLOUcbzFQ9JG6cZz9f8K/D4LwUGzqTA/Gk5naWhs2OspA3EKDs/9nVjKSLU1HfTJ9KFsCdN2rvJyMcW3Js7EvNGtungT/bLBYu2SrdV6arQ/ZpeyZZ2LbOfV7HHeDS/T4J7+Znzgfpg0TX+53t/NCrdW1lzjs0bLxVPN55b0ypI0uf/F34/GUE52zxp4b9zNr1rpF7a9U1oIN4ukJbVQuo60f/dYj1vd1Od1OMRwbTwCKTVF9ZhJG7uaMkrrXrE/9J61y2vR9yaFVcN2xp36yXplGnSGZ8bz9327gm+o2/NX2XmxTru70aSWqS2WO+mBp/gWodMmvo/L2W38b+uDJP/z1T8bug0r9f54t0aND7oC4xt/sBIOmrHLEzi8QR2Ne/0K9/0NKNKjyQVnmMcnJ16x3W91ujVZpcjKlw38VPe9D/vM8kY5n3EBf5k7jUJVAB1mfm56Oy7671+ivTltYHLdDBPyIM+B4XnhM+5mOb7LvCk+e9Ab3hVKp5h9EBZ9JvQdd5qHzptanN/W1sPDhw+CtRpMRw7MhpLQ96TOl4WfjkzV6g8RnqIaGyaHvjabTDK47a3nIOPh7lb7iWPUelXMvKjSf6L9zda2a9jqmkFdKA2NA3qgdnSlxPUmnvMTuvTAgsX7PN1NAk+x/1xWvjtZDQOfF22Rtrwmv2yFfukOWcbudHMVE3W/dl95jJynQPvZqcbJx0vDz8fkgik1R9O5bydeKssH8CgD75dNLyuJBgsGCllWgod9LzTvneLncU3G71lJN8Fi+/fv80w/8VG1+vi1lQcxmIpaW9q0d+yHZuv2I4/DxzCvPnD0GXc3HEOVzHv1Bn+51ObRt5Ou1H+1w0tQb4TLXfhzL/JkUFd0Yd+EvjaWynJExrgPuVN6ZgHw7elWpX/b3TEBS7XAZIhTndrIwWK0xzSHqjKvvKnqTqoniZ5fRfe6Q2NAP4rUfRsObjT/bJAnRLjpU7BcKl53/DLmMf4Q7ui377dDTI3vrzBeLRLIO7E65UWWoLmL3mMHu6RgnErfMfsHr4CCG1cBuFcVUcEkqxBU//zi71St4m+FxGOx7ldAgNN3z5mFOup6fnA3g3O8+aMCp0WcJ5t02ZPeviqnOG0G+3bBj3SwiGQlqq8XlV/4NMsvVf2rA3MvWI6yWVupkSwXmA0PkK6YJf/dZ/77HMt2SldJW3xXfQf86B/GFlO53i0EvVJTQJpZ1qq6R0qjW0bZs+R83xDMDKaOC9rJzvC3eIAaQo4+AffIatezCE/Teshga8zmxkX9plBF/eFY0ITq9rper3U4bLAaX3+FHk9IBkKzpJOD5MgPBan2QTXnXp4VFWG/57xWHIWmRfN6dnuesIC9UHzYyMvE7Ma9g5zI7eb/3n5Bn8vl0gXyPu3GsPSFl1vfH9890Tg/DdaS1Nc5p0zC35ZL6qt6WGCxZzPDqhFZWsCX5sjKZr2Cb+e1xs4EqyizFesx/f5WHaf9FFQihPHVC8uWXOhb7Tp6VaxVyGBvPQG4b+bvvunc3Dc7KCT2006/smomppKCKTVJ1FdbFrKU5sX6d4q6e2O9pUBk9VNO7i3S02ZX5reKunInxnPj7apfobUVpNAWoAYhyOaJ8hZLaRjHjDykoVwuEvkFHQ7Y4HTzoyHLtc6zPdpOUg6p8R+XuuhxmOrIVL7cdIxf/KX0L7IksfBzdCV4/5mFBSw6nlb5PWAZGjQrOYnyMGsQ79NjhfNVdKmt523ZX6XmYG09EbS5lnOeZIAuGd+vr6+O3ReuCIgwY59yHmedRTGMsv56s6vpUVhjttvtDbOeb99VNV5WWPtKWbXK2Xr7Ni2BdQV+4qDJvj+z/N6GnnQ9lrmr3jQ6MkpGSOczGHPVuXrjMdld/k7bpiKzrNvg92oqtX/kL5/xv/6+8mB+Qvtjvn7t4R+TtMaBOZzC7bwauN8wI7Z2SSjsXTUBOdtpDgCafVJ27PcL1tVoeovDHMY2ewR4VaItVXOzATL4QT3dnG13W3O83580//cjLZnt7RdFCnMDDIX1CBf3vm7Yu+RZg3AtTjB12U8iFOw70Lfsj1vD5xuvXtmbMB4aHq0Ma/fo4GzBwRVDvKkBQ77tOp+k/G47TPjMT1byvQF9NIb+HuV5nSxXx+An5noPIDDMdhbJR15sf28i72WYeRpgXemt7rsRXfCvyIvA9RlbvPoxsI8V+htc0PW7TBIyZ+DNNw+JOkHy8X1hycbQ8pW/Nk/beMb0vYv/K/NIdlmIL7nHcb3wnlhAul7i6WSD/yvnVLHOPVSB+q6E572Pz/q15ZgtWWk1quNpTctFeutgbOy7+y3u22u8z5bnxr42jzHHjrbP838rG96Ryp+zz99wa+ct1vl+2xXHVLIDXZPprT7G+d1wwralvVvhmp1LpD25JNPqnfv3srNzVVubq4GDBigGTOMfD+HDh3SrbfeqqOPPlqNGzdWQUGBfv7zn6u4ODiinKKsB7tId8JK3lf1h8Ss+Gk3pNMU6xjrcCINPzv2LzFuN995KKp5B83jkdLi1esI9U56Q2nE1/5E99H6WaXUIE8q31jztmQ0kTa8YjMjQnC7QYvA1+lBOZbMQNyQ6VLnK0LXdwqa2XJZ8t46jBxAeE06+Z83bGe/TMlMqezbyNvy+HKkRfMZ7P+c1P5nkYe5AHVaLQTSgqvCd/i51P6SKLYT5nzUTCzuZPOH/pttc8+TFk6QvrrZ9/pc49E8FzF7rGS1cM7LuHWO9ImvcELv+5xzJFNQAIerhpZRD5X7VH09bF6XNmwX/v87lqHcaQ2kUZYRX2bwPKORf1r78cajJ93dPjweaYrvu8fsebb1U//89AbSziXG81ZD/NNHr3W3bSu76wTUvUBaYWGhHnjgAS1atEiLFi3SaaedpjFjxmj58uXau3evvvrqK/3+97/XV199pTfeeEPffvutRo8enexm1w3WXGF7fgi/7LoXo0sgmIhAWiSxVk6UIieIlUd18N8fdYXHY/TUsh7golrf/N+Kw4mm01DNaO+yBycrj/T5iuYzn2YZPhZORhPuYgNuWQuKNMhzXq5hgfM8kyfNSE4ezeev46XGsI4RS9yvA9Q1NTmXjMQc/hRcpGvA81IrXwXAfo8Zj9Y0B8GCj7eZudLJbxjPI/WM3zzLl5/JZ+diadVfA5fZu973xOa8P39g4OvG7f3Pe/xOGvaZ/X4TmRcOSJRuNxpDN62vB79jPDdvNB3cEX4bZvXaXr93v19PhpTb1TLBdw5vPTf3Vhk38ktXhi88YMd7yPge+XCwf1paA39KFetQ7MzcwKCeqev1xmOvu6Qm5A93o85FEs4++2yNGDFCXbp0UZcuXXT//ferSZMmmj9/vvLy8jRr1ixdeOGF6tq1q/r3769//OMf+vLLL7Vhg/M/3IEDB1RaWhrwk/Iq9hgHW7eSceepJnmqIl7QN07syRUghZ6gxsJaVSiATSAtXE/U4EBacDGAYFU21XsjLRupXHaDptK4MBcTAAynfuCvcnvcP5yXG/xOYA4lJ5404zjuJjdaTYa0A3XJ2E1S4djEbd88rjrdeLpwj9TlN9JF+50T8J+7VaoMOi72+J0/HUNezzBVe4M4nTdv+9x5neC8aZmWoFxaRmgBIrO4yhdXJHbYLJAIff8a2PGkaS+p1Un+161OkdaEGcZ4cLf/ee8/SIOnu9tv8HHa/M4wO7U0KjSmVe6TytcbPcmqKoyCIU5WPOB/bteBxpMpZbf2n0tU77sisMd7cJt632uM7kJEdTqSUFlZqSlTpqi8vFwDBgywXWb37t3yeDxq2rSp43YmTZqkvLy86p+ioqIEtbgOGLMudJrdgbXs29Cu6E4GvyM1P65GzYpJTQ7QTl3RTWmZqnGZYiCSXF9OsGP+HH45q+A8BBlBAa/mxxuPdsHtg7vst3ne9tChzIPshotaBN9ht9PtRuOx4Cyp0RHOuVQARKftMCn/ROO5bc40SZ1+JbUbpeqg+riDYTYY5nQvuKgPvUZRXzQq8PcaSwTzs2LeTAo+XptBqODUCtU8vjy9wcdzr79nWI9b/dUEw9n4pnNAb5lZDMHmvHfLR1L/5wP3HU7Lk/3PD+0KnV90fvj1gbps6Gwpr5fz/KlNA1+3C5df3Gfk8tDAVLOgasJdrg39/E7JlN4ME7OwBtk2W6p9m8M80xoYgbngOIAn3QiSF4ySis71dyyJ5gY6JNXRQNqyZcvUpEkTZWVlacKECZo2bZp69OgRstz+/fv1u9/9ThdffLFyc3NttmS47bbbtHv37uqfjRvjkLeorrINIDkcFJ0qdQRrNypy75VEqEpwz5W4VWYEIoimUlbbMwNfh1wEmCfcQZ/rPvdLQ95TiGH/M/KhmMzn4e5wn/AvqcXxkdsacLLhdR+cB+Ce002lYt+dcDOoHi5gEK4HdsiNMnIfAa6kB/VIy3S+FrHn+2wH3xjzVvnzmGXmSDk2vUeCzT0n8jJOKV3stu9UkMC6jT02uZaOjeLGIVDXeDzRJ+g//snw8/NCYxgBo036/Mk4f7bNh+ySNdi+31d0Ly3TF0gLOjc3zweGvCOd/LrUyZf/LBlpnA5zdTKQ1rVrVy1ZskTz58/X1VdfrUsvvVQrVqwIWObQoUMaN26cqqqq9MQTT4TdXlZWVnXxAvMnpRz1aynbkjj8/J2R1/lZHTiRTnTwLqOhc7JVIJ4c70YH6ftwaIDXenGc3Ubq5/u+Cz7x7nm7vweLFNhd3HTEBf7n4Q6YnX8lNWwbvq1nLTLuZJkG/FfqeFn4dQBEx5Pur6wdzCwU5CbwFRxIa3OG/3lwHkaSiAPumD3SKsqNx+BeJm4FH4+Dg+d9H45tuyFcjMQwb2JnNo287KJrA1+f8LTUpEPUrQJqXZ/7nedZ8wQ6MUdkSKE3wK2s592S1GeS74nls9jztpr3nLVeO7zjC4ynNTByGQYXGQruOZvbLXQbcKVOBtIaNGigzp07q1+/fpo0aZL69Omjv//979XzDx06pAsvvFBr167VrFmzUi8wFknzoJ4k/f4h7d/sf+2Yc8nC4zGGiVi7cNe2dmfXfBuU60Vd4HQhHKzzBOc7R5IxVDT/BKnzlYp48WxuJ+ACOk3VB283QzfDaX5cYAL01oM5gQbi7YIyKd8+tUU1b5XU5vQIGwo63ctu6X9u7WHSvJ9IewC4ZAbSfvrSeDzpVenCcnfrWnt0hwSvg17XJG1C379JrU/zvXDx2V7zL9+iLi4Ry9cFvo70XQXUFeGCZaO/D79upysCU7Y06WB0zBgR1JNt6MfGd4KVWegguHdoPIegm4VAzG2GDO0M+myb3z/0Jo1anQykBfN6vTpwwLhDYgbRvvvuO3344Ydq0aJFhLVTkNkrpOsN/iizyawC5EZapjTs08jLJYpTtcJoNO8X+HpchdS0d823C0Qj3NBOa4GAjIbu7gg1PjJyDkHzDlTAcl5VDyUhFwJQ92U0jFxh21uliKdzwSfO2a0d9tfY+H4J7rn+syojKToAP0+a0ePE7J2d0TB8te/m/fyV+6y910J6pMWxV2hahuWC2k0g7Sn3y3rSpC7X+F/HWukcqG3hzrU9ac55CbNaSic+HZp3WArNZxpNru9l90Zexq5AgJOyNdK6F/yvzaIr4ypsguRVxrD0ZKRxOszVuUDa7bffrrlz52rdunVatmyZ7rjjDs2ePVuXXHKJKioqdP7552vRokV68cUXVVlZqc2bN2vz5s06eDBckt0UY374j75bOs2XBy27lfFol88g2PCliWlXtNz0nAun3WipYUHgtLR0aUQd+f2QOsLlIxu+WDr6HpcbMk9s0+S6R1rACbpXyulqMx1Anec4bKwqcu8R6/yG7fw9aU74V+Byp7wlHfNA6PHX4wnsxQbAcNKrRjoEN4bNlbrfajw/aoK/mp7Zg8QU10Bapj/5eLzt/VH69jHjeWau1KgeF3ND/VI4Vjp7jfP8Af+VTnotdPp5EW4oNW4vdb/Z98ImkFYdoA4KVFtHjjkJvqYN2G7QOcCSW/3PvZXSKdOM53YBwCadpTbDIu8fIepcIG3Lli0aP368unbtqqFDh2rBggWaOXOmhg0bph9//FFvv/22fvzxRx1zzDFq27Zt9c/nn4cp7ZxqzMTBDfL8+ZHM7qZr/hl5/ZoGsGqq9dD4bGfwW1JDh7vuQG0KN7QzM1dqdoz/tdNd4MJzApeJdKcrp7PxaA2Yeb1Gj5N+j0vNY8zlAiA5hn9lPz23u9Q0TJUxSdWne5m5Rg8aM5Bmft+c5dt2gzx6lQCJkp7t7/XRcqDU47fG84o9QQuGOb53+pXx4+TYvwa+9mRYAmk25xc5XYzvkOMeDdfyQHbJ1dudndgKqUA8pWeFL+KR20U64vzoi2gN+0zqeaeLBWNIoXDaB87zgkeZbLSMQDOvA878wn7dorHSyVOjbw9U50qsTZ482XFe+/bt5Y2mm2SqsrsQN+8ktzgxdF6wcL1nasMJ/5TeOSq5bQDiKWKONMs9jSyH4eoBn+u0yHesW59q9CxpaCk0Iq8kj9Tl1xHaA6BOan2atOXjwGl9/hh5veq71R7jpDp4CAeBdaB22A2rDq5SH+74vvVT5+Tm3X8rdb1WOrhDWv4nY5onw6jcZ7wIXafoPCmrubHel9dFbL6xGZteLQ2au1sXOJw0KgzNBRh2+XaWF2FiFsHX6j3vkJaHKYAgGdcSF5Qan78Nr0rzL7fsKky6FjPI1uJ452UQkzrXIw0J1sVXYcepul7rU/3DQJOlSafw3W2Bw02kO1qRcpGc9JrUor//IOjxKOwB2tTjVqMHGoD6wTp0qvWp7tczcyY2aC7JE1q1C0DtaDlIGrkycFrFvqCFwhzfs1vKsTfLge1Gr7DNH/mnpWVKu742ngefa3S9Xmp/iZtWBwoYRmZuk44OqIdGLHNRzMeBbUDcYWhnToQOJD1vNx4zc3y9xoPWP1Qaph3kRE6UOtcjDQnU9iypYVvjeZVDfqSBL7lLMJpIHk/47rbA4abxkREWiPCZO+L8oAkueqQBqH+sF7ADX3S/XrpvuGaf+41gXF4PaeEEUaETqGWeNCkvqBBYVVAOM6dE6G2HGzfIfpxmP3/T28bjod3+aQE9xYI+78f9LfB1u9H+bYRl+R5q0FQ6uDO6xOrA4SIzDoXvAjgE0loNDnyd1VI6sM3/utfdQZsJ6gtV9p3D7jLIiZxABNJSyakz/M/NgFowN+WuD0cNmksHf0p2K5CKLnZzchnlxazHRbEBW97kB8oBxK7ZsVK35tKqv0bX29TMe9b+Z0Ez+D4Akq7X3dL3vtQ2Y9YZF9HBLig1qtl7PNKPb9lvp8pXeG3gS9LMvsbzgPQOET7vbqv2WUeuZDQ2AmkxnZMAh4FYA1HhgsvB5+JN2ge+Tm/of37uNim9QfAG3LUhvWFo/jTEDYG0VOVYfaueBtIIoqEuCz6gejLCd8X2pMV297flyaHVwQAcPrr60jN0v8koHOCWm6CbqwTJAOKusWXItlMPdmuQy+mGmHleYP28WwsAVJaHb4fbId8FI/zPW5xgVO8sOs/dusDhZssnMa4YLrgcIRBmza2cnR86321wLy2ToZ0JVE+jJoioyzX20+3K4tYHhWOT3QIgjKCv4qEf2y9matjWRZU+G90mSj1uiX49AHWLU6/ycMZsCD+/z32xtQVA8nSe4H9uBtisQ0M9lkDa6r+H35bbHmkej9TyJOP5sQ8Zj22GulsXSAUn/tvoQR6sosx4tAuGW0ewFAw3Hs8psd/+3o3u2pGWydDOBCKQlqocqwjW03+JIy5KdgsAZ8EH1Eg9TQrPlYbOTlRrANRH1l4vAA5jlnOG5n2Nap0Bsy2BNOsN8v1bw2/W7JHmJiVF/gDjsXGHyMsCqabTL4OGVfuUuSym12eSdO4W+21I0vf/tp+e2z3wRttps4yiIkgIhnbC4Ek3Itb1NUda7lHS6Z8muxWAveDPnVOiYVNaupTWMPwyABAJOROBuqHv39wX2jI/t9aA18o/+3ueBJxDRHFe77ZHmuTvbcN3COCe25QMHk9gLsJgZj5ESep2o7TqYXNGYH613O7+qt2Iu3oaNUHUzAv5+hpIS8uSWp2c7FYADoI/d5yYAgCQMrpdL7Ub5XJhh3N120CaJU9TzlHhNxtN3sVmx7hfFoCh6Dyp9WnO86tzGka4DrDmOz7mz4Hz9vzgf15fr+vrCP66MFTnUKin/xJ8kaAu4/8TQG3rdhMXw8DhyKkXmFmdL81S4S/ggvvB8NuNJpDWxDKk01V1cgBqVCAN/ajm27FeNwR8H3iktmcFvkbCcPUGQ7uRxmOkIWWHLb5IUIe1HCSN+Nr/mqESABKt718IpAGHo4ALZQuzOl92vnTC08ZzayAtu3X47TZo5r4NjrmWAcTM65X63C+lZ4VfbuCLUtM+vhdB1wyN2/ufcz2RUATS6qto7w4d/QfjsT72jBnxjZTbNdmtAJylZUpNj7ZM4MAHAABstB4SeRkzaJbe0P25fVZ+zE0CEA9edwHtNqdLI5YYz81g2VFXS+3/jxtktageRk0Qk+qS2fXwX6Jpz/r5e6H+ymrhLy0PAAAQTm5Xqcs1lgm+8/qcTtLPKgOnOUmPsojRkPeiWx6ACzHeTG83Rup1R3ybgrCILqSyn1VJo1b7XnikzDzREwaoA7JbScPmJrsVAADgcDBqldTvH+GXiTTMq0Hz8JUCgxUMd78sABeiHFHW9xH/c7PTSMdL49cchEU91FQWUFrXI12wK5mtAQAAAJAQEQJp2fnSuVtqpynA4SSvp3RgW+L3460KrLoZSbeJ/udmII38hbWGHmmpzvzQkYwQAAAAOPxxXg/Ex8iV0hEXSrk9amd/ezfFuCKf+dpGIC3VmSWyySEGAAAA1FNcaANRy+sm9bxdOnVG7eyvzdDY1uNavtYxtDPVeTLNJ0ltBgAAAAAAdUpahup+2IRr+dpG6DLVpaX7nvDhAwAAAA57zY6VjnkgcBrDPYHDQJQFB0zWHmnjKuLTFIRFIA0GDq4AAADA4a9RO6nHrUETOdcH6jxvjIE0b5X/eXVHGSRSnQukPfnkk+rdu7dyc3OVm5urAQMGaMYM/5jkN954Q2eeeaby8/Pl8Xi0ZMmS5DW2XuHgCgAAAADAYcV7KPB1y0HJaUcKqXOBtMLCQj3wwANatGiRFi1apNNOO01jxozR8uXLJUnl5eUaNGiQHnjggQhbQnQIpAEAAAD1TutTpezWyW4FgIhi7JFWVRn4ethnNW8KwqpzWfPOPvvsgNf333+/nnzySc2fP189e/bU+PHjJUnr1q1LQuvqMSp9AAAAAHVf2+HRLT/048S0A0Dd4K2MvAziqs4F0qwqKyv12muvqby8XAMGDIh5OwcOHNCBAweqX5eWlsajefUMPdIAAACAOu/U95LdAgBx51HMPdIIpNW6OtkNadmyZWrSpImysrI0YcIETZs2TT169Ih5e5MmTVJeXl71T1FRURxbW09QbAAAAAAAgNrn8dSg2ACBtNpWJwNpXbt21ZIlSzR//nxdffXVuvTSS7VixYqYt3fbbbdp9+7d1T8bN26MY2vrCwJpAAAAAAAcVrZ8kuwWpJw6ObSzQYMG6ty5sySpX79+Wrhwof7+97/rqaeeiml7WVlZysrKimcT6yECaQAAAAAA1L4aDO3MzI1rSxBZneyRFszr9QbkOEMCMLQTAAAAAIAkqEEgLbdLXFuCyOpcj7Tbb79dw4cPV1FRkcrKyjRlyhTNnj1bM2fOlCT99NNP2rBhg4qLiyVJq1evliS1adNGbdq0SVq7D38E0gAAAAAAOGyM2SBlt0p2K1JOnQukbdmyRePHj1dJSYny8vLUu3dvzZw5U8OGDZMkvf3227r88surlx83bpwk6e6779Y999yTjCYDAAAAAADEJtZiA40ppJgMdS6QNnny5LDzL7vsMl122WW105iUEmM3UgAAAAAAELuqQ9Lu2AssonYdFjnSUAtiLbULAAAAAABqZsuHyW4BXCKQBh8CaQAAAAAAJAWdWw4bBNIAAAAAAAAAFwikwZCWmewWAAAAAACQouiRdrioc8UGkATjKqS09GS3AgAAAACA1OStSnYL4BI90kAQDQAAAACAZGp5UrJbAJfokQYAAAAAAJAsJ78htTgh2a2ASwTSAAAAAAAAkqXonGS3AFFgaCcAAAAAAADgAoE0AAAAAAAAwIWUHNrp9RplZUtLS5PcEgAAAAAAACSbGSMyY0ZOUjKQVlZWJkkqKipKcksAAAAAAABQV5SVlSkvL89xvscbKdRWD1VVVam4uFg5OTnyeDzJbk5clJaWqqioSBs3blRubm6ym4NaxHuf2nj/UxfvfWrj/U9tvP+pjfc/dfHepzbe/8Tzer0qKytTQUGB0tKcM6GlZI+0tLQ0FRYWJrsZCZGbm8uHKkXx3qc23v/UxXuf2nj/Uxvvf2rj/U9dvPepjfc/scL1RDNRbAAAAAAAAABwgUAaAAAAAAAA4AKBtHoiKytLd999t7KyspLdFNQy3vvUxvufunjvUxvvf2rj/U9tvP+pi/c+tfH+1x0pWWwAAAAAAAAAiBY90gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAIAEeu655+TxeKp/MjIyVFhYqMsvv1ybNm2qXm7lypUaP368OnbsqOzsbOXn56tv37665pprVFpaarvtRx99VB6PR7169XLcv8fj0TXXXBO2jYcOHdJTTz2l448/Xs2bN1ejRo105JFHasyYMZo2bZokaciQIQG/h9PPPffcU73dDz/8UAMGDFCjRo2Un5+vyy67TFu3bg3Y95dffqnf/OY3Ovroo5WTk6PWrVvr9NNP18cffxzpTwsAAFDrMpLdAAAAgFTw7LPPqlu3btq3b58+/fRTTZo0SXPmzNGyZcv07bffatCgQerevbvuuusutW/fXtu3b9fSpUs1ZcoU3XzzzcrNzQ3Z5jPPPCNJWr58uRYsWKATTzwxpraNHz9eb7zxhiZOnKh7771XWVlZ+uGHHzRz5ky9//77Ouecc/TEE08EBPSmT5+uP/7xj9W/l6mwsFCSNGfOHA0fPlwjR47UW2+9pa1bt+rWW2/V0KFDtWjRImVlZUmSXn75ZX3xxRf6xS9+oT59+qi8vFz//Oc/NXToUD3//PP6+c9/HtPvBAAAkAger9frTXYjAAAA6qvnnntOl19+uRYuXKh+/fpVT7/rrrt033336YUXXtAHH3yg119/XSUlJcrJyQnZhtfrlcfjCZi2aNEiHX/88Ro5cqSmT5+uK664Qk8//XTIuh6PR7/5zW/02GOP2bZv7dq16tixo+666y7de++9IfOrqqqUlhY6iMHp9zKdcMIJKi8v19KlS5WRYdy7/fzzzzVo0CA98cQTuvrqqyVJW7duVatWrQLWraysVN++fVVeXq41a9bYthsAACAZGNoJAACQBP3795ckrV+/Xjt27FBubq6aNGliu2xwEE2SJk+eLEl64IEHNHDgQE2ZMkV79+6Nuh07duyQJLVt29Z2vl0QLZJNmzZp4cKFGj9+fHUQTZIGDhyoLl26VA8XlRQSRJOk9PR0HXfccdq4cWPU+wYAAEgkAmkAAABJYPa0atmypQYMGKCSkhJdcsklmjNnjvbt2xd23X379unll1/W8ccfr169eukXv/iFysrK9Nprr0Xdju7du6tp06a699579fTTT2vdunWx/DoBvvnmG0lS7969Q+b17t27er6TiooKzZ07Vz179qxxWwAAAOKJQBoAAEAtqKysVEVFhfbs2VOdXywnJ0ejR4/WzTffrLFjx+rll1/WkCFDlJOTo759++rOO+/Utm3bQrY1depU7d69W7/85S8lSRdddJGaNGlS3UstGo0bN9aLL76oiooKXXXVVerQoYPy8/N14YUX6p133onpdzV7uTVv3jxkXvPmzavnO7nnnnu0Zs0a3X333THtHwAAIFEIpAEAANSC/v37KzMzUzk5ORo1apTatGmjGTNmqHXr1srKytK0adO0YsUKPfLIIxo3bpy2bdum+++/X927d9fq1asDtjV58mQ1bNhQ48aNkyQ1adJEF1xwgebOnavvvvsu6raNGDFCGzZs0LRp03TzzTerZ8+eevPNNzV69OiIFT/DsRuSGm66JP373//W/fffr5tuukljxoyJed8AAACJQCANAACgFvznP//RwoULtXjxYhUXF+vrr7/WoEGDApbp3r27Jk6cqBdeeEEbNmzQww8/rB07duj3v/999TJr1qzRp59+qpEjR8rr9WrXrl3atWuXzj//fEn+Sp7RatiwocaOHauHHnpIc+bM0Zo1a9SjRw89/vjjWr58eVTbatGihSTZ9jz76aefbHuqSUZl06uuukpXXnmlHnrooeh/CQAAgAQjkAYAAFALunfvrn79+umYY45xTOxv5fF4dMMNN6hp06YBOcWeeeYZeb1eTZ06Vc2aNav+GTlypCTp+eefV2VlZY3be8QRR+jKK6+UpKgDab169ZIkLVu2LGTesmXLqudbPfvss/rVr36lSy+9VP/85z/D9loDAABIFgJpAAAASVZSUmI7vbi4WKWlpSooKJBk5Fl7/vnn1alTJ33yySchPzfddJNKSko0Y8YM1/suKyvTnj17bOetXLlSkqr371a7du10wgkn6IUXXggI6s2fP1+rV6/WueeeG7D8c889p1/96lf6v//7P/373/8miAYAAOqsjMiLAAAAIJGuvPJK7dq1S+edd5569eql9PR0rVq1So888ojS0tJ06623SpJmzJih4uJiPfjggxoyZEjIdnr16qXHHntMkydP1qhRo6qnf//995o6dWrI8j169NDevXt15plnaty4cRo8eLDatm2rnTt3avr06Xr66ac1ZMgQDRw4MOrf6cEHH9SwYcN0wQUX6Ne//rW2bt2q3/3ud+rVq5cuv/zy6uVee+01/fKXv9Qxxxyjq666Sl988UXAdo499lhlZWVFvX8AAIBEIJAGAACQZNdee61eeeUV/etf/9KmTZtUXl6uli1basCAAfrPf/6j/v37SzKKDDRo0CAgEGWVn5+vc845R1OnTtWWLVvUunVrSdLMmTM1c+bMkOXvvvtuTZw4UTfeeKM+/vhjvfXWW9q2bZsyMzN11FFH6Y9//KNuvPFGpaVFP4hhyJAheu+993TXXXfp7LPPVqNGjTRq1Cg99NBDAYGx6dOnq6qqSl999VVIzjhJWrt2rdq3bx/1/gEAABLB4/V6vcluBAAAAAAAAFDXkSMNAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXMpLdgGSoqqpScXGxcnJy5PF4kt0cAAAAAAAAJJHX61VZWZkKCgqUlubc7ywlA2nFxcUqKipKdjMAAAAAAABQh2zcuFGFhYWO81MykJaTkyPJ+OPk5uYmuTUAAAAAAABIptLSUhUVFVXHjJzUSiDtiSee0EMPPaSSkhL17NlTf/vb33TyySc7Lj9nzhzdeOONWr58uQoKCvTb3/5WEyZMqJ7/3HPP6fLLLw9Zb9++fcrOzo7YHnM4Z25uLoE0AAAAAAAASFLEFGAJLzbwyiuvaOLEibrjjju0ePFinXzyyRo+fLg2bNhgu/zatWs1YsQInXzyyVq8eLFuv/12XXfddXr99dcDlsvNzVVJSUnAj5sgGgAAAAAAABALj9fr9SZyByeeeKL69u2rJ598snpa9+7dNXbsWE2aNClk+VtvvVVvv/22Vq5cWT1twoQJWrp0qebNmyfJ6JE2ceJE7dq1y1UbDhw4oAMHDlS/Nrvr7d69mx5pAAAAAAAAKa60tFR5eXkRY0UJ7ZF28OBBffnllzrjjDMCpp9xxhn6/PPPbdeZN29eyPJnnnmmFi1apEOHDlVP27Nnj4488kgVFhZq1KhRWrx4sWM7Jk2apLy8vOofCg0AAAAAAAAgWgkNpG3fvl2VlZVq3bp1wPTWrVtr8+bNtuts3rzZdvmKigpt375dktStWzc999xzevvtt/Xyyy8rOztbgwYN0nfffWe7zdtuu027d++u/tm4cWMcfjsAAAAAAACkklopNhCcqM3r9YZN3ma3vHV6//791b9//+r5gwYNUt++ffWPf/xDjz76aMj2srKylJWVFXP7AQAAAAAAgIT2SMvPz1d6enpI77OtW7eG9DoztWnTxnb5jIwMtWjRwnadtLQ0HX/88Y490gAAAAAAAICaSmggrUGDBjruuOM0a9asgOmzZs3SwIEDbdcZMGBAyPIffPCB+vXrp8zMTNt1vF6vlixZorZt28an4QAAAAAAAECQhAbSJOnGG2/Uv//9bz3zzDNauXKlbrjhBm3YsEETJkyQZOQv+/nPf169/IQJE7R+/XrdeOONWrlypZ555hlNnjxZN998c/Uy9957r95//3398MMPWrJkiX75y19qyZIl1dsEAAAAAAAA4i3hOdIuuugi7dixQ3/4wx9UUlKiXr166b333tORRx4pSSopKdGGDRuql+/QoYPee+893XDDDXr88cdVUFCgRx99VOedd171Mrt27dKVV16pzZs3Ky8vT8cee6w+/fRTnXDCCYn+dQAAAAAAAJCiPF4zk38KKS0tVV5ennbv3q3c3NxkNwcAAAAAAABJ5DZWlPChnQAAAAAAAEB9QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFyolUDaE088oQ4dOig7O1vHHXec5s6dG3b5OXPm6LjjjlN2drY6duyof/7znyHLvP766+rRo4eysrLUo0cPTZs2LVHNBwAAAAAAABIfSHvllVc0ceJE3XHHHVq8eLFOPvlkDR8+XBs2bLBdfu3atRoxYoROPvlkLV68WLfffruuu+46vf7669XLzJs3TxdddJHGjx+vpUuXavz48brwwgu1YMGCRP86AAAAAAAASFEer9frTeQOTjzxRPXt21dPPvlk9bTu3btr7NixmjRpUsjyt956q95++22tXLmyetqECRO0dOlSzZs3T5J00UUXqbS0VDNmzKhe5qyzzlKzZs308ssvh2zzwIEDOnDgQPXr0tJSFRUVaffu3crNzY3L7wkAAAAAAIDDU2lpqfLy8iLGihLaI+3gwYP68ssvdcYZZwRMP+OMM/T555/brjNv3ryQ5c8880wtWrRIhw4dCruM0zYnTZqkvLy86p+ioqJYfyUAAAAAAACkqIQG0rZv367Kykq1bt06YHrr1q21efNm23U2b95su3xFRYW2b98edhmnbd52223avXt39c/GjRtj/ZUAAAAAAACQojJqYycejyfgtdfrDZkWafng6dFsMysrS1lZWVG1GQAAAAAAALBKaI+0/Px8paenh/QU27p1a0iPMlObNm1sl8/IyFCLFi3CLuO0TQAAAAAAAKCmEhpIa9CggY477jjNmjUrYPqsWbM0cOBA23UGDBgQsvwHH3ygfv36KTMzM+wyTtsEAAAAAAAAairhQztvvPFGjR8/Xv369dOAAQP09NNPa8OGDZowYYIkI3/Zpk2b9J///EeSUaHzscce04033qgrrrhC8+bN0+TJkwOqcV5//fU65ZRT9OCDD2rMmDF666239OGHH+qzzz5L9K8DAAAAAACAFJXwQNpFF12kHTt26A9/+INKSkrUq1cvvffeezryyCMlSSUlJdqwYUP18h06dNB7772nG264QY8//rgKCgr06KOP6rzzzqteZuDAgZoyZYruvPNO/f73v1enTp30yiuv6MQTT0z0rwMAAAAAAIAU5fGamfxTSGlpqfLy8rR7927l5uYmuzkAAAAAAABIIrexooTmSAMAAAAAAADqCwJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcIFAGgAAAAAAAOACgTQAAAAAAADABQJpAAAAAAAAgAsE0gAAAAAAAAAXCKQBAAAAAAAALhBIAwAAAAAAAFwgkAYAAAAAAAC4QCANAAAAAAAAcCGhgbSdO3dq/PjxysvLU15ensaPH69du3aFXcfr9eqee+5RQUGBGjZsqCFDhmj58uUBywwZMkQejyfgZ9y4cQn8TQAAAAAAAJDqEhpIu/jii7VkyRLNnDlTM2fO1JIlSzR+/Piw6/z5z3/Www8/rMcee0wLFy5UmzZtNGzYMJWVlQUsd8UVV6ikpKT656mnnkrkrwIAAAAAAIAUl5GoDa9cuVIzZ87U/PnzdeKJJ0qS/vWvf2nAgAFavXq1unbtGrKO1+vV3/72N91xxx0699xzJUnPP/+8WrdurZdeeklXXXVV9bKNGjVSmzZtEtV8AAAAAAAAIEDCeqTNmzdPeXl51UE0Serfv7/y8vL0+eef266zdu1abd68WWeccUb1tKysLA0ePDhknRdffFH5+fnq2bOnbr755pAea1YHDhxQaWlpwA8AAAAAAAAQjYT1SNu8ebNatWoVMr1Vq1bavHmz4zqS1Lp164DprVu31vr166tfX3LJJerQoYPatGmjb775RrfddpuWLl2qWbNm2W530qRJuvfee2P9VQAAAAAAAIDoe6Tdc889IYn+g38WLVokSfJ4PCHre71e2+lWwfOD17niiit0+umnq1evXho3bpymTp2qDz/8UF999ZXt9m677Tbt3r27+mfjxo3R/toAAAAAAABIcVH3SLvmmmsiVshs3769vv76a23ZsiVk3rZt20J6nJnMnGebN29W27Ztq6dv3brVcR1J6tu3rzIzM/Xdd9+pb9++IfOzsrKUlZUVts0AAAAAAABAOFEH0vLz85Wfnx9xuQEDBmj37t364osvdMIJJ0iSFixYoN27d2vgwIG265jDNWfNmqVjjz1WknTw4EHNmTNHDz74oOO+li9frkOHDgUE3wAAAAAAAIB4SliOtO7du+uss87SFVdcoaeeekqSdOWVV2rUqFEBFTu7deumSZMm6ZxzzpHH49HEiRP1pz/9SUcddZSOOuoo/elPf1KjRo108cUXS5K+//57vfjiixoxYoTy8/O1YsUK3XTTTTr22GM1aNAgV23zer2SRNEBAAAAAAAAVMeIzJiRk4QF0iSjsuZ1111XXYVz9OjReuyxxwKWWb16tXbv3l39+re//a327dunX//619q5c6dOPPFEffDBB8rJyZEkNWjQQB999JH+/ve/a8+ePSoqKtLIkSN19913Kz093VW7zAqfRUVF8fg1AQAAAAAAUA+UlZUpLy/Pcb7HGynUVg9VVVWpuLhYOTk5EQsfHC5KS0tVVFSkjRs3Kjc3N9nNQS3ivU9tvP+pi/c+tfH+pzbe/9TG+5+6eO9TG+9/4nm9XpWVlamgoEBpac61ORPaI62uSktLU2FhYbKbkRC5ubl8qFIU731q4/1PXbz3qY33P7Xx/qc23v/UxXuf2nj/EytcTzSTc4gNAAAAAAAAQDUCaQAAAAAAAIALBNLqiaysLN19993KyspKdlNQy3jvUxvvf+rivU9tvP+pjfc/tfH+py7e+9TG+193pGSxAQAAAAAAACBa9EgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4AKBNAAAAAAAAMAFAmkAAAAAAACACwTSAAAAAAAAABcIpAEAAAAAAAAuEEgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4AKBNAAAAAAAAMAFAmkAAAAAAACACwTSAAAAAAAAABcIpAEAAAAAAAAuEEgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4AKBNAAAAAAAAMAFAmkAAAAAAACACwTSAAAAAAAAABcIpAEAAAAAAAAuEEgDAAAAAAAAXCCQBgAAAAAAALhAIA0AAAAAAABwgUAaAAAAAAAA4AKBNAAAAAAAAMAFAmkAAAAAAACACwTSAAAAEmzBggU655xzdMQRRygrK0utW7fWgAEDdNNNN1Uvc+jQIT311FM6/vjj1bx5czVq1EhHHnmkxowZo2nTptlu99ChQ2rTpo08Ho+mTp1qu8w999wjj8ej7du3h23jypUrNX78eHXs2FHZ2dnKz89X3759dc0116i0tFSzZ8+Wx+Nx9WPas2ePJk6cqIKCAmVnZ+uYY47RlClTQvb92Wef6Ve/+pWOO+44ZWVlyePxaN26dS7+sgAAALUrI9kNAAAAqM+mT5+u0aNHa8iQIfrzn/+stm3bqqSkRIsWLdKUKVP017/+VZI0fvx4vfHGG5o4caLuvfdeZWVl6YcfftDMmTP1/vvv65xzzgnZ9rvvvqstW7ZIkiZPnqzzzz8/pjYuXrxYgwYNUvfu3XXXXXepffv22r59u5YuXaopU6bo5ptvVt++fTVv3ryA9c455xx16tRJf/nLX2y3e+6552rhwoV64IEH1KVLF7300kv62c9+pqqqKl188cXVy3300Uf68MMPdeyxxyo3N1ezZ8+O6fcAAABINI/X6/UmuxEAAAD11eDBg7Vp0yatWrVKGRmB9zCrqqqUlpamtWvXqmPHjrrrrrt07733hmzDXC7YqFGjNGvWLA0ePFgfffSR1q9fr8LCwoBl7rnnHt17773atm2b8vPzbdt46aWX6vXXX1dJSYlycnJC5nu93oCeZqb27durV69eevfdd0Pmvffeexo5cmR18Mx0xhlnaPny5dqwYYPS09NDfr+//OUvuuWWW7R27Vq1b9/etr0AAADJwtBOAACABNqxY4fy8/NDgmiSqoNHO3bskCS1bdvWdht2QbTi4mLNnDlTZ599tm655RZVVVXpueeei7mNubm5atKkie18uyBaJNOmTVOTJk10wQUXBEy//PLLVVxcrAULFlRPs/v9AAAA6iLOWgAAABJowIABWrBgga677jotWLBAhw4dClmme/fuatq0qe699149/fTTrvKDPffcc6qsrNQvfvELnX766TryyCP1zDPPKJbBBgMGDFBJSYkuueQSzZkzR/v27Yt6G8G++eYbde/ePSSA2Lt37+r5AAAAhxsCaQAAAAn0wAMP6KSTTtI//vEP9e/fX40bN9agQYP0wAMPaM+ePZKkxo0b68UXX1RFRYWuuuoqdejQQfn5+brwwgv1zjvvhGzT6/Xq2WefVbt27XTmmWfK4/Hosssu09q1a/XJJ59E3cabb75ZY8eO1csvv6whQ4YoJydHffv21Z133qlt27bF9Hvv2LFDzZs3D5luTjN74QEAABxOCKQBAAAkUIsWLTR37tzqpPtjxozRt99+q9tuu01HH310dTXNESNGaMOGDZo2bZpuvvlm9ezZU2+++aZGjx6ta665JmCbc+bM0Zo1a3TppZdW5xm7/PLL5fF49Mwzz0TdxqysLE2bNk0rVqzQI488onHjxmnbtm26//771b17d61evTqm3z3ckNBYhosCAAAkG4E0AACAWtCvXz/deuuteu2111RcXKwbbrhB69at05///OfqZRo2bKixY8fqoYceqg6W9ejRQ48//riWL19evdzkyZMlGVUzd+3apV27dikvL08nnXSSXn/9de3atSumNnbv3l0TJ07UCy+8oA0bNujhhx/Wjh079Pvf/z7qbbVo0cK219lPP/0kSba91QAAAOo6AmkAAAC1LDMzU3fffbek8LnCjjjiCF155ZWSVB1I2717t15//XVJ0vHHH69mzZpV/8ydO1f79+/XSy+9VOM2ejwe3XDDDWratGlM+cyOPvporVy5UhUVFQHTly1bJknq1atXjdsIAABQ2wikAQAAJFBJSYnt9JUrV0qSCgoKVFZWVp0vLdxykvTSSy9p3759uu+++/TJJ5+E/OTn50c9vNOpjcXFxSotLa3edzTOOecc7dmzpzroZ3r++edVUFCgE088MeptAgAAJFtoHXYAAADEzZlnnqnCwkKdffbZ6tatm6qqqrRkyRL99a9/VZMmTXT99ddr9erVOvPMMzVu3DgNHjxYbdu21c6dOzV9+nQ9/fTTGjJkiAYOHCjJGNbZrFkz3XzzzcrOzg7Z389//nM9/PDDWrp0qfr06VM9/Z133lFOTk7I8ueff76uvPJK7dq1S+edd5569eql9PR0rVq1So888ojS0tJ06623Rv17Dx8+XMOGDdPVV1+t0tJSde7cWS+//LJmzpypF154oTq3myRt27ZNc+bMkeTvsTZjxgy1bNlSLVu21ODBg6PePwAAQCJ4vLHUSAcAAIArr776qt566y0tXLhQJSUlOnDggNq2bavBgwfrtttuU/fu3bVr1y49/vjj+vjjj7V69Wpt27ZNmZmZOuqoo3T++efrxhtvVMOGDfX111+rT58+mjhxoh555BHb/a1evVrdunXTtddeq0cffVT33HOP7r33Xsf2eb1effDBB3rllVc0f/58bdq0SeXl5WrZsqUGDBigW265Rf3797ddt3379urVq5feffdd2/l79uzRHXfcoVdffVU//fSTunXrpttuu03jxo0LWG727Nk69dRTbbcxePBgzZ4927H9AAAAtYlAGgAAAAAAAOACOdIAAAAAAAAAFwikAQAAAAAAAC4QSAMAAAAAAABcIJAGAAAAAAAAuEAgDQAAAAAAAHAhI9kNSIaqqioVFxcrJydHHo8n2c0BAAAAAABAEnm9XpWVlamgoEBpac79zlIykFZcXKyioqJkNwMAAAAAAAB1yMaNG1VYWOg4PyUDaTk5OZKMP05ubm6SWwMAAAAAAIBkKi0tVVFRUXXMyEmtBNKeeOIJPfTQQyopKVHPnj31t7/9TSeffLLj8nPmzNGNN96o5cuXq6CgQL/97W81YcKE6vnPPfecLr/88pD19u3bp+zs7IjtMYdz5ubmEkgDAAAAAACAJEVMAZbwYgOvvPKKJk6cqDvuuEOLFy/WySefrOHDh2vDhg22y69du1YjRozQySefrMWLF+v222/Xddddp9dffz1gudzcXJWUlAT8uAmiAQAAAAAAALHweL1ebyJ3cOKJJ6pv37568sknq6d1795dY8eO1aRJk0KWv/XWW/X2229r5cqV1dMmTJigpUuXat68eZKMHmkTJ07Url27XLXh/9u79+CoyvuP45/lkk0oyVJIs0uExigOctEWgoaEItSBEIUpVIeiods6Q0G0iECZtkg7ATo1ihTLRQpYrjOW0qkwZToxJRQadAhXE6ARKVpuJVkCNOwGqQkhz+8PfmxZNgmHJbvU3fdr5vyxzz7n7HP2y5eZfObsOXV1daqrq/O/vn65ntfr5Yo0AAAAAACAGOfz+eRwOG6ZFYX1irT6+nodOHBAOTk5AeM5OTnatWtXk/uUlpYGzR8xYoT279+vK1eu+McuXbqktLQ0devWTaNGjVJZWVmz6ygoKJDD4fBvPGgAAAAAAAAAtyusQdr58+d19epVOZ3OgHGn0ymPx9PkPh6Pp8n5DQ0NOn/+vCTpwQcf1Nq1a7VlyxZt2LBB8fHxGjRokI4dO9bkMWfNmiWv1+vfTp8+3QpnBwAAAAAAgFgSkYcN3HyjNmNMizdva2r+jeMDBw7UwIED/e8PGjRI/fv315IlS7R48eKg49ntdtnt9pDXDwAAAAAAAIT1irTk5GS1bds26Oqz6urqoKvOrnO5XE3Ob9eunbp06dLkPm3atNEjjzzS7BVpAAAAAAAAwJ0Ka5AWFxenjIwMFRcXB4wXFxcrOzu7yX2ysrKC5m/dulUDBgxQ+/btm9zHGKPy8nJ17dq1dRYOAAAAAAAA3CSsQZokzZgxQ7/97W+1evVqHTlyRNOnT9epU6c0efJkSdfuX/a9733PP3/y5Mk6efKkZsyYoSNHjmj16tVatWqVZs6c6Z8zd+5c/eUvf9E///lPlZeXa8KECSovL/cfEwAAAAAAAGhtYb9H2rhx43ThwgXNmzdPVVVV6tu3rwoLC5WWliZJqqqq0qlTp/zz09PTVVhYqOnTp+utt95SamqqFi9erKeffto/5+LFi5o0aZI8Ho8cDof69eunnTt36tFHHw336QAAAAAAACBG2cz1O/nHEJ/PJ4fDIa/Xq6SkpLu9HAAAAAAAANxFVrOisP+0EwAAAAAAAIgGBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFEQnSli1bpvT0dMXHxysjI0Pvv/9+i/NLSkqUkZGh+Ph43XfffVq+fHnQnHfffVe9e/eW3W5X7969tXnz5nAtHwAAAAAAAAh/kLZx40ZNmzZNs2fPVllZmQYPHqwnnnhCp06danL+8ePH9eSTT2rw4MEqKyvTK6+8oqlTp+rdd9/1zyktLdW4cePkdrt18OBBud1ufec739GePXvCfToAAAAAAACIUTZjjAnnB2RmZqp///76zW9+4x/r1auXxowZo4KCgqD5P/nJT7RlyxYdOXLEPzZ58mQdPHhQpaWlkqRx48bJ5/Ppvffe88/Jzc3Vl7/8ZW3YsCHomHV1daqrq/O/9vl86t69u7xer5KSklrlPAEAAAAAAPDF5PP55HA4bpkVhfWKtPr6eh04cEA5OTkB4zk5Odq1a1eT+5SWlgbNHzFihPbv368rV660OKe5YxYUFMjhcPi37t27h3pKAAAAAAAAiFFhDdLOnz+vq1evyul0Bow7nU55PJ4m9/F4PE3Ob2ho0Pnz51uc09wxZ82aJa/X699Onz4d6ikBAAAAAAAgRrWLxIfYbLaA18aYoLFbzb95/HaOabfbZbfbb2vNAAAAAAAAwI3CekVacnKy2rZtG3SlWHV1ddAVZde5XK4m57dr105dunRpcU5zxwQAAAAAAADuVFiDtLi4OGVkZKi4uDhgvLi4WNnZ2U3uk5WVFTR/69atGjBggNq3b9/inOaOCQAAAAAAANypsP+0c8aMGXK73RowYICysrK0cuVKnTp1SpMnT5Z07f5lZ86c0fr16yVde0Ln0qVLNWPGDE2cOFGlpaVatWpVwNM4X375ZT322GN6/fXXNXr0aP3pT3/Stm3b9MEHH4T7dAAAAAAAABCjwh6kjRs3ThcuXNC8efNUVVWlvn37qrCwUGlpaZKkqqoqnTp1yj8/PT1dhYWFmj59ut566y2lpqZq8eLFevrpp/1zsrOz9fvf/14/+9nP9POf/1z333+/Nm7cqMzMzHCfDgAAAAAAAGKUzVy/k38M8fl8cjgc8nq9SkpKutvLAQAAAAAAwF1kNSsK6z3SAAAAAAAAgGhBkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWECQBgAAAAAAAFhAkAYAAAAAAABYQJAGAAAAAAAAWBDWIK2mpkZut1sOh0MOh0Nut1sXL15scR9jjObMmaPU1FQlJCRo6NChqqioCJgzdOhQ2Wy2gO2ZZ54J45kAAAAAAAAg1oU1SMvLy1N5ebmKiopUVFSk8vJyud3uFveZP3++Fi5cqKVLl2rfvn1yuVwaPny4amtrA+ZNnDhRVVVV/m3FihXhPBUAAAAAAADEuHbhOvCRI0dUVFSk3bt3KzMzU5L09ttvKysrS0ePHlXPnj2D9jHG6Ne//rVmz56tp556SpK0bt06OZ1O/e53v9Pzzz/vn9uhQwe5XK5wLR8AAAAAAAAIELYr0kpLS+VwOPwhmiQNHDhQDodDu3btanKf48ePy+PxKCcnxz9mt9s1ZMiQoH3eeecdJScnq0+fPpo5c2bQFWs3qqurk8/nC9gAAAAAAACA2xG2K9I8Ho9SUlKCxlNSUuTxeJrdR5KcTmfAuNPp1MmTJ/2vx48fr/T0dLlcLv3973/XrFmzdPDgQRUXFzd53IKCAs2dOzfUUwEAAAAAAABu/4q0OXPmBN3o/+Zt//79kiSbzRa0vzGmyfEb3fz+zftMnDhRw4YNU9++ffXMM8/oj3/8o7Zt26YPP/ywyePNmjVLXq/Xv50+ffp2TxsAAAAAAAAx7ravSJsyZcotn5B577336tChQzp79mzQe+fOnQu64uy66/c883g86tq1q3+8urq62X0kqX///mrfvr2OHTum/v37B71vt9tlt9tbXDMAAAAAAADQktsO0pKTk5WcnHzLeVlZWfJ6vdq7d68effRRSdKePXvk9XqVnZ3d5D7Xf65ZXFysfv36SZLq6+tVUlKi119/vdnPqqio0JUrVwLCNwAAAAAAAKA1he0eab169VJubq4mTpyoFStWSJImTZqkUaNGBTyx88EHH1RBQYG+/e1vy2azadq0aXr11Vf1wAMP6IEHHtCrr76qDh06KC8vT5L06aef6p133tGTTz6p5ORkffTRR/rRj36kfv36adCgQZbWZoyRJB46AAAAAAAAAH9GdD0zak7YgjTp2pM1p06d6n8K57e+9S0tXbo0YM7Ro0fl9Xr9r3/84x/rP//5j1588UXV1NQoMzNTW7duVWJioiQpLi5Of/3rX7Vo0SJdunRJ3bt318iRI5Wfn6+2bdtaWtf1J3x27969NU4TAAAAAAAAUaC2tlYOh6PZ923mVlFbFGpsbFRlZaUSExNv+eCDLwqfz6fu3bvr9OnTSkpKutvLQQRR+9hG/WMXtY9t1D+2Uf/YRv1jF7WPbdQ//Iwxqq2tVWpqqtq0af7ZnGG9Iu1/VZs2bdStW7e7vYywSEpKoqliFLWPbdQ/dlH72Eb9Yxv1j23UP3ZR+9hG/cOrpSvRrms+YgMAAAAAAADgR5AGAAAAAAAAWECQFiXsdrvy8/Nlt9vv9lIQYdQ+tlH/2EXtYxv1j23UP7ZR/9hF7WMb9f/fEZMPGwAAAAAAAABuF1ekAQAAAAAAABYQpAEAAAAAAAAWEKQBAAAAAAAAFhCkAQAAAAAAABYQpAEAAAAAAAAWEKSFUUFBgR555BElJiYqJSVFY8aM0dGjRwPmGGM0Z84cpaamKiEhQUOHDlVFRUXAnJUrV2ro0KFKSkqSzWbTxYsXgz7rH//4h0aPHq3k5GQlJSVp0KBB2rFjxy3XePjwYQ0ZMkQJCQm65557NG/ePN34INeqqirl5eWpZ8+eatOmjaZNmxbSdxFroqH2zz33nGw2W9DWp0+f0L6UGBLJ+n/44YcaPny4OnXqpC5dumjSpEm6dOnSLddI74dHNNSe3g9da9T/3//+t1566SX17NlTHTp00Fe/+lVNnTpVXq834Dg1NTVyu91yOBxyOBxyu91N/ju5Gb0fPtFQf/o/dJGs/y9/+UtlZ2erQ4cO6tSpk+U10v/hEQ21p/dDF6n6nzhxQhMmTFB6eroSEhJ0//33Kz8/X/X19bdcI73f+gjSwqikpEQ//OEPtXv3bhUXF6uhoUE5OTn67LPP/HPmz5+vhQsXaunSpdq3b59cLpeGDx+u2tpa/5zLly8rNzdXr7zySrOfNXLkSDU0NGj79u06cOCAvv71r2vUqFHyeDzN7uPz+TR8+HClpqZq3759WrJkiRYsWKCFCxf659TV1ekrX/mKZs+era997Wt3+I3Ejmio/aJFi1RVVeXfTp8+rc6dO2vs2LF3+O1Ev0jVv7KyUsOGDVOPHj20Z88eFRUVqaKiQs8991yL66P3wycaak/vh6416l9ZWanKykotWLBAhw8f1tq1a1VUVKQJEyYEfFZeXp7Ky8tVVFSkoqIilZeXy+12t7g+ej+8oqH+9H/oIln/+vp6jR07Vi+88ILl9dH/4RMNtaf3Qxep+n/88cdqbGzUihUrVFFRoTfffFPLly9v8e9Eid4PG4OIqa6uNpJMSUmJMcaYxsZG43K5zGuvveaf8/nnnxuHw2GWL18etP+OHTuMJFNTUxMwfu7cOSPJ7Ny50z/m8/mMJLNt27Zm17Ns2TLjcDjM559/7h8rKCgwqampprGxMWj+kCFDzMsvv2z1dHGDL3rtjTFm8+bNxmazmRMnTlg6Z/xXuOq/YsUKk5KSYq5eveofKysrM5LMsWPHml0PvR85X/TaG0Pv34k7rf91f/jDH0xcXJy5cuWKMcaYjz76yEgyu3fv9s8pLS01kszHH3/c7HHo/cj6otffGPr/ToSr/jdas2aNcTgcltZD/0fOF732xtD7dyIS9b9u/vz5Jj09vcX10PvhwRVpEXT90szOnTtLko4fPy6Px6OcnBz/HLvdriFDhmjXrl2Wj9ulSxf16tVL69ev12effaaGhgatWLFCTqdTGRkZze5XWlqqIUOGyG63+8dGjBihyspKnThx4jbPDi2JhtqvWrVKw4YNU1pamuX14Zpw1b+urk5xcXFq0+a//5UnJCRIkj744INm96P3Iycaak/vh6616u/1epWUlKR27dpJulZHh8OhzMxM/5yBAwfK4XC0eBx6P7Kiof70f+jCVf9Q0f+REw21p/dDF8n6e71e/+c0h94PD4K0CDHGaMaMGfrGN76hvn37SpL/p3dOpzNgrtPpbPFneTez2WwqLi5WWVmZEhMTFR8frzfffFNFRUUt/nbe4/E0+dk3rg13LhpqX1VVpffee08/+MEPLK8N14Sz/o8//rg8Ho/eeOMN1dfXq6amxn95d1VVVbP70fuREQ21p/dD11r1v3Dhgn7xi1/o+eef9495PB6lpKQEzU1JSWnx3xG9HznRUH/6P3ThrH+o6P/IiIba0/uhi2T9P/30Uy1ZskSTJ09ucU30fngQpEXIlClTdOjQIW3YsCHoPZvNFvDaGBM01hJjjF588UWlpKTo/fff1969ezV69GiNGjXK/wdVnz591LFjR3Xs2FFPPPFEi5/d1DhCFw21X7t2rTp16qQxY8ZYXhuuCWf9+/Tpo3Xr1ulXv/qVOnToIJfLpfvuu09Op1Nt27b1z6H3745oqD29H7rWqL/P59PIkSPVu3dv5efnt3iMm49D799d0VB/+j904a7/rdD/d0801J7eD12k6l9ZWanc3FyNHTs2IPCk9yPnzq4ThSUvvfSStmzZop07d6pbt27+cZfLJelaEty1a1f/eHV1dVBq3JLt27frz3/+s2pqapSUlCRJWrZsmYqLi7Vu3Tr99Kc/VWFhoa5cuSLpvz//cblcQSl0dXW1pODEHKGJhtobY7R69Wq53W7FxcVZXhvCX3/p2g2n8/LydPbsWX3pS1+SzWbTwoULlZ6eLkn0/l0SDbWn90PXGvWvra1Vbm6uOnbsqM2bN6t9+/YBxzl79mzQ5547d85/HHr/7omG+tP/oQt3/a2g/++OaKg9vR+6SNW/srJS3/zmN5WVlaWVK1cGvEfvRw5XpIWRMUZTpkzRpk2btH37dv8fN9elp6fL5XKpuLjYP1ZfX6+SkhJlZ2db/pzLly9LUsC9cq6/bmxslCSlpaWpR48e6tGjh+655x5JUlZWlnbu3BnwyNytW7cqNTVV9957722dKwJFU+1LSkr0ySefBD01CM2LVP1v5HQ61bFjR23cuFHx8fEaPny4JHo/0qKp9vT+7Wut+vt8PuXk5CguLk5btmxRfHx8wHGysrLk9Xq1d+9e/9iePXvk9Xr9x6H3Iy+a6k//375I1d8K+j+yoqn29P7ti2T9z5w5o6FDh6p///5as2ZN0N+A9H4EhecZBjDGmBdeeME4HA7zt7/9zVRVVfm3y5cv++e89tprxuFwmE2bNpnDhw+bZ5991nTt2tX4fD7/nKqqKlNWVmbefvtt/xMay8rKzIULF4wx157c2KVLF/PUU0+Z8vJyc/ToUTNz5kzTvn17U15e3uz6Ll68aJxOp3n22WfN4cOHzaZNm0xSUpJZsGBBwLyysjJTVlZmMjIyTF5enikrKzMVFRWt/G1Fl2ipvTHGfPe73zWZmZmt+O1Ev0jV3xhjlixZYg4cOGCOHj1qli5dahISEsyiRYtaXB+9Hz7RUntj6P1QtEb9fT6fyczMNA899JD55JNPAo7T0NDgP05ubq55+OGHTWlpqSktLTUPPfSQGTVqVIvro/fDK1rqbwz9H4pI1v/kyZOmrKzMzJ0713Ts2NHfs7W1tc2uj/4Pn2ipvTH0figiVf8zZ86YHj16mMcff9z861//CpjTEno/PAjSwkhSk9uaNWv8cxobG01+fr5xuVzGbrebxx57zBw+fDjgOPn5+bc8zr59+0xOTo7p3LmzSUxMNAMHDjSFhYW3XOOhQ4fM4MGDjd1uNy6Xy8yZMyfoMbhNfXZaWtqdfDVRL1pqf/HiRZOQkGBWrlx5R99HrIlk/d1ut+ncubOJi4szDz/8sFm/fr2lNdL74REttaf3Q9Ma9d+xY0ezxzl+/Lh/3oULF8z48eNNYmKiSUxMNOPHjzc1NTW3XCO9Hz7RUn/6PzSRrP/3v//9Jufs2LGjxTXS/+ERLbWn90MTqfqvWbOm2Tm3Qu+3Ppsx/3+nOQAAAAAAAADN4h5pAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAFBGkAAAAAAACABQRpAAAAAAAAgAUEaQAAAAAAAIAF/wfvq3dqYovrTwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "def plot_dfo_salt(mooring_depth):\n", - " \n", - "\n", - " df = pd.DataFrame()\n", - " \n", - " df['sea_water_practical_salinity'] = ds.sea_water_practical_salinity.data\n", - " df['PSALST01'] = ds.PSALST01.data\n", - " df['PSALST02'] = ds.PSALST02.data\n", - " df['SSALST01'] = ds.SSALST01.data\n", - " df['Time'] = ds.time.data\n", - " \n", - " # Need to figure a better way to capture sensor depths - using this from the filename for now\n", - " df['filename'] = ds.filename.data\n", - " df['file_depth'] = df['filename'].str[-10:-8].astype(int)\n", - "\n", - " # isolate the sensor depth\n", - " df_depth = df[df['file_depth'] == mooring_depth]\n", - "\n", - " x = df_depth.Time\n", - " var1 = df_depth.sea_water_practical_salinity\n", - " var2 = df_depth.PSALST01\n", - " var3 = df_depth.PSALST02\n", - " var4 = df_depth.SSALST01\n", - " \n", - " fig, ax = plt.subplots(4, figsize=(15, 8), sharex=True)\n", - " \n", - " ax[0].plot(x, var1, linewidth=0.05, c='blue')\n", - " ax[0].set_title('sea_water_practical_salinity')\n", - " ax[1].plot(x, var2, linewidth=0.5, c='orange')\n", - " ax[1].set_title(\"PSALST01\")\n", - " ax[2].plot(x, var3, linewidth=0.5, c='purple')\n", - " ax[2].set_title(\"PSALST02\")\n", - " ax[3].plot(x, var3, linewidth=0.5, c='purple')\n", - " ax[3].set_title(\"SSALST01\")\n", - " fig.subplots_adjust(hspace=0.5)\n", - " plt.suptitle(\"DFO Mooring Station E01 Salinity variables at depth {} metres\".format(str(mooring_depth)))\n", - " plt.show()\n", - " \n", - "plot_dfo_salt(75)" - ] - }, - { - "cell_type": "markdown", - "id": "c2fdcfb3-214f-43d2-a619-7d94017ca82d", - "metadata": {}, - "source": [ - "### Have a look at the various temperature variables." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "127f964c-4196-479a-8537-ec90f1f818a7", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAALjCAYAAAAWfmJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsG8Hs3vYeEQCoktFBDrypFitIEEQSx0FTsIiiIDVSKKL6iIvrJS1EBAaUoTQGlKSDw0ntNA0IgIb0n8/3xODu72d1kExICyf27rlybnZ1yZndmds6zzzlHpyiKAiIiIiIiIiIioipIX9EFICIiIiIiIiIiqigMjhERERERERERUZXF4BgREREREREREVVZDI4REREREREREVGVxeAYERERERERERFVWQyOERERERERERFRlcXgGBERERERERERVVkMjhERERERERERUZXF4BgREREREREREVVZDI4RERVj8eLF0Ol0hj9nZ2f4+/ujW7dumDlzJuLj482WmTp1qskyxn9z5841mTchIQGTJ09G48aN4erqCk9PT3To0AFfffUVcnNzbSpj165dodPpUKdOHSiKYvb6zp07DdtfvHhxqd6HW7V9+3bodDps3769QrZ/6tQpPPnkk6hTpw6cnZ1RvXp1tGrVCi+99BJSUlIM8y1btgxz5sy5pW3NmzfP4vscGRlZYZ9BUcekTqdDZGSkyfzLly9HixYt4OzsjMDAQIwbNw5paWkm86SmpmLixIno1asX/Pz8oNPpMHXq1GLLor4PtvwVLldVUhbHYmWgHrulMXLkSLi7u9s0b2hoKEaOHFmq7ZS3sjoWbsc+7t69G1OnTkVSUpLF7ffr169U61W/Q6z9PffcczbNu3fv3tLuWpnLyMjA1KlTK+x7kYiINPYVXQAiorvFokWL0LBhQ+Tm5iI+Ph5//fUXZs2ahdmzZ2PFihXo0aOH2TK//fYbvLy8TKaFhYUZ/j99+jR69eqFtLQ0TJgwAZ06dUJmZibWr1+PV199FT/99BM2btwIV1fXYsvn4eGBS5cu4c8//0T37t1NXlu4cCE8PT1NgkC3W6tWrbBnzx40btz4tm/70KFDuOeee9CoUSO89957CA0NxY0bN3DkyBEsX74cr7/+Ojw9PQFIJfT48eMYN25cqbc3b948VK9e3awSGhAQgD179qBu3bq3sDe3xtIxCUjZVEuXLsUTTzyBp59+Gp999hnOnj2LSZMm4eTJk9i8ebNhvoSEBHz77bdo3rw5Bg4ciP/+9782lUF9H4y98MILSE5OxtKlS62Wq6opi2OxMnj66afx4IMPVnQxKtTddCzs3r0b77//PkaOHAlvb+8yW6/6HVLY119/je+//x4PP/yw2WszZsxAt27dTKY1bdq0zMp0qzIyMvD+++8DkB+5iIio4jA4RkRko6ZNm6JNmzaG54888ghee+013HvvvRg0aBDOnTuHmjVrmizTunVrVK9e3eL68vPz8cgjjyAlJQX79u1DgwYNDK/16dMHXbp0wbBhwzB+/Hh88803xZavVq1a8PDwwMKFC02CY6mpqfjpp5/w+OOPY/78+SXd7VuWm5sLnU5nyIirCHPmzIFer8f27dvh4eFhmD548GB8+OGHFrPtyoOTk1OFvQeqoo5JQI7LN954A7169TIcL926dYOHhwcef/xxbNq0Cb179wYA1K5dGzdv3oROp8ONGzdsDo5Zeh88PT2Rk5NT4e9PecrMzISLi0tFFwMZGRk2BdwrmlrO4OBgBAcHV3RxqIJZ+g5RFAWPP/44ateujZ49e5otU79+/Up1Tblbzl0iorsRm1USEd2CWrVq4dNPP0Vqair+7//+r0TLrlmzBidPnsSbb75pEhhTDR06FL169cKCBQsQFxdn0zpHjx6N1atXmzRnWb58OQBg2LBhFpf566+/0L17d3h4eMDV1RWdOnXChg0bzOY7fvw4BgwYgGrVqsHZ2RktWrTAd999ZzKP2pTlhx9+wIQJExAUFAQnJyecP3/eYrNKtcnT+fPn0adPH7i7uyMkJAQTJkxAdna2ybpjY2MxePBgeHh4wNvbG48//jj2799vUzPFhIQEeHp6Wm1epTbZ6tq1KzZs2ICoqCiTZjiq999/H+3bt4ePjw88PT3RqlUrLFiwwCS4FhoaihMnTmDHjh2G5UNDQwFYb1Zpy2egNu/dtm0bnn/+eVSvXh2+vr4YNGgQrly5UuT+l8TevXtx9epVjBo1ymT6kCFD4O7ujjVr1himFX5/ylpKSgpef/11hIWFwdHREUFBQRg3bhzS09NN5tPpdHjppZewaNEihIeHw8XFBW3atMHevXuhKAo++eQThIWFwd3dHffffz/Onz9vsnzXrl3RtGlT7Nq1Cx06dICLiwuCgoLw7rvvIj8/32TenJwcTJs2DQ0bNoSTkxP8/PwwatQoXL9+3WQ+tfnY6tWr0bJlSzg7OxsyRL766it07twZNWrUgJubG5o1a4aPP/7YpBl1UceitSbKlo4v9Rw7duwYevXqBQ8PD0Pw3NZ9KWzOnDnQ6XRm7yMATJo0CY6Ojrhx4wYAYMuWLRgwYACCg4Ph7OyMevXqYezYsYbXVWrTyYMHD2Lw4MGoVq2aIcPSUrPKFStWoFevXggICICLiwsaNWqEN9980+zYUJ04cQLdu3eHm5sb/Pz88NJLLyEjI6PI/QRsPwZ/+ukntG/fHl5eXnB1dUWdOnUwevToYtd/q8eCNbm5uZg4cSL8/f3h6uqKe++9F/v27bM4b1xcHMaOHYvg4GA4OjoiLCwM77//PvLy8gzzqMfWxx9/jOnTp6NWrVpwdnZGmzZt8Mcffxjmmzp1Kt544w0AkiWtlrXwsfrbb7+hVatWcHFxQcOGDbFw4cJi3ytLtm3bhosXL2LUqFHQ68uuWqOeN6dPn8YDDzwANzc3BAQE4KOPPgIg18l7770Xbm5uaNCggdl3IVD8+xoZGQk/Pz8A8t2ivldqxnFR54SiKJg3bx5atGgBFxcXVKtWDYMHD8bFixdNynDo0CH069cPNWrUgJOTEwIDA9G3b1/ExsaW2XtFRFRZMHOMiOgW9enTB3Z2dti5c6fZa/n5+SYVDJ1OBzs7OwBSaQSAgQMHWl33wIEDsXnzZmzfvt1qcMvYsGHD8Nprr+HHH3/E888/DwBYsGABBg8ebGg2aGzHjh3o2bMnIiIisGDBAjg5OWHevHno378/fvzxRwwdOhQAcObMGXTq1Ak1atTAF198AV9fXyxZsgQjR47EtWvXMHHiRJP1Tp48GR07dsQ333wDvV6PGjVqWA3w5ebm4qGHHsKYMWMwYcIE7Ny5Ex9++CG8vLzw3nvvAQDS09PRrVs3JCYmYtasWahXrx5+++03Q/mK07FjR2zYsAGPP/44xo4di3bt2lnM4Jk3bx6effZZXLhwwSQIpIqMjMTYsWNRq1YtAFJBevnll3H58mVDWdesWYPBgwfDy8sL8+bNAyCZUtbY+hmonn76afTt2xfLli1DTEwM3njjDTzxxBP4888/bXovCh+TgOlxefz4cQBARESEyTwODg5o2LCh4fXylpGRgS5duiA2NhZvvfUWIiIicOLECbz33ns4duwYtm7dahIgWL9+PQ4dOoSPPvoIOp0OkyZNQt++fTFixAhcvHgRc+fORXJyMsaPH49HHnkEhw8fNlk+Li4Ow4YNw5tvvokPPvgAGzZswLRp03Dz5k1DP4EFBQUYMGAAdu3ahYkTJ6JTp06IiorClClT0LVrVxw4cMDkuDp48CBOnTqFd955B2FhYXBzcwMAXLhwAcOHDzcEXI4cOYLp06fj9OnThiBBccdiSeTk5OChhx7C2LFj8eabbyIvL6/E+2LsiSeewKRJk7B48WJMmzbNMD0/Px9LlixB//79DdmJFy5cQMeOHfH000/Dy8sLkZGR+M9//oN7770Xx44dg4ODg8m6Bw0ahGHDhuG5556zGugCgHPnzqFPnz4YN24c3NzccPr0acyaNQv79u0zOxdyc3PRp08fw/7v3r0b06ZNQ1RUFNatW2d1G7Yeg3v27MHQoUMxdOhQTJ06Fc7OzoiKirLpnCyvY+GZZ57B999/j9dffx09e/bE8ePHMWjQIKSmpprMFxcXh3bt2kGv1+O9995D3bp1sWfPHkybNg2RkZFYtGiRyfxz585F7dq1MWfOHBQUFODjjz9G7969sWPHDsPnnJiYiC+//BKrV682NIs2bk5/5MgRTJgwAW+++SZq1qyJ//73vxgzZgzq1auHzp0727R/qgULFkCv15sF81Uvvvgihg0bBldXV3Ts2BHvvvsu7r33XpvWnZubi0GDBuG5557DG2+8gWXLlmHy5MlISUnBqlWrMGnSJAQHB+PLL7/EyJEj0bRpU7Ru3drm9zUgIAC//fYbHnzwQYwZMwZPP/00ABgCZipL58TYsWOxePFivPLKK5g1axYSExPxwQcfoFOnTjhy5Ahq1qyJ9PR09OzZE2FhYfjqq69Qs2ZNxMXFYdu2bWbHARERAVCIiKhIixYtUgAo+/fvtzpPzZo1lUaNGhmeT5kyRQFg9hcUFGSY58EHH1QAKFlZWVbXu2nTJgWAMmvWrCLL2KVLF6VJkyaKoijKiBEjlDZt2iiKoignTpxQACjbt29X9u/frwBQFi1aZFiuQ4cOSo0aNZTU1FTDtLy8PKVp06ZKcHCwUlBQoCiKogwbNkxxcnJSoqOjTbbbu3dvxdXVVUlKSlIURVG2bdumAFA6d+5sVkb1tW3bthmmjRgxQgGgrFy50mTePn36KOHh4YbnX331lQJA2bRpk8l8Y8eONdsnS7KyspSBAwcaPgc7OzulZcuWyttvv63Ex8ebzNu3b1+ldu3aRa5PURQlPz9fyc3NVT744APF19fX8F4piqI0adJE6dKli9kyly5dKvVnoB6HL7zwgsk6P/74YwWAcvXq1SLLa+2YBKDUrVvXMN/06dOtrq9Xr15KgwYNLK7/+vXrCgBlypQpRZbDGuNjWFEUZebMmYperzc7737++WcFgLJx40bDNACKv7+/kpaWZpi2du1aBYDSokULk89mzpw5CgDl6NGjJtsGoPzyyy8m23rmmWcUvV6vREVFKYqiKD/++KMCQFm1apXJfOq5NW/ePMO02rVrK3Z2dsqZM2eK3G/1OPr+++8VOzs7JTEx0fCatWPR0rmkKJaPL/UcW7hwocm8JdkXSwYNGqQEBwcr+fn5hmkbN25UACjr1q2zuExBQYGSm5urREVFmb3f6vH53nvvmS2nvmaNut4dO3YoAJQjR46Y7f/nn39usox6nP/111+GabVr11ZGjBhheG7rMTh79mwFgOE6WFqlORYsOXXqlAJAee2110ymL126VAFgso9jx45V3N3dDce4St2nEydOKIqiHVuBgYFKZmamYb6UlBTFx8dH6dGjh2HaJ598ogBQLl26ZFa22rVrK87Ozibby8zMVHx8fJSxY8fatH+qmzdvKs7OzsoDDzxg9trBgweVV199VVmzZo2yc+dOZeHChUqjRo0UOzs75bfffit23epxY3x+5ObmKn5+fgoA5eDBg4bpCQkJip2dnTJ+/HjDNFvf16Kum9bOiT179igAlE8//dRkekxMjOLi4qJMnDhRURRFOXDggAJAWbt2bbH7S0REisJmlUREZUCx0mfV1q1bsX//fsPfxo0bS7XekjRdGz16NA4cOIBjx45hwYIFqFu3rsVf49PT0/HPP/9g8ODBJs0N7ezs8OSTTyI2NhZnzpwBAEMn/yEhISbrGDlyJDIyMsw6SX7kkUdsLq9Op0P//v1NpkVERCAqKsrwfMeOHfDw8DDrlPuxxx6zaRtOTk6GZqyfffYZhg0bhuvXr2P69Olo1KiRYT+L8+eff6JHjx7w8vKCnZ0dHBwc8N577yEhIcHiqKXFKclnoHrooYdMnqsZXsbvV1EKH5P79+/H2rVrzeazdsyVZzNKY+vXr0fTpk3RokUL5OXlGf4eeOABi820unXrZsjMAoBGjRoBAHr37m1SZnV64ffLw8PD7L0dPnw4CgoKDFmh69evh7e3N/r3729SphYtWsDf39+sTBERERabTB86dAgPPfQQfH19DcfRU089hfz8fJw9e7Zkb5SNCp+TJd2XwkaNGoXY2Fhs3brVMG3RokXw9/c39EkHAPHx8XjuuecQEhICe3t7ODg4oHbt2gBkBNniymnNxYsXMXz4cPj7+xvewy5dulhd7+OPP27yfPjw4QCkWZ41th6Dbdu2BQA8+uijWLlyJS5fvmzTPgDlcyyo+1R4nx999FHY25s2Glm/fj26deuGwMBAk31UP8MdO3aYzD9o0CA4Ozsbnnt4eKB///7YuXOnWRNka1q0aGHIvgUAZ2dnNGjQwOZrmGrp0qXIysoyZFwZa9myJebMmYOBAwfivvvuw6hRo7B7924EBASYZTpbo9Pp0KdPH8Nze3t71KtXDwEBAWjZsqVhuo+PD2rUqGFS/pK+r0WxdO7qdDo88cQTJuv29/dH8+bNDcdlvXr1UK1aNUyaNAnffPMNTp48afM2iYiqIjarJCK6Renp6UhISECzZs3MXmvevLnVzs/VysGlS5fQsGFDi/NERkYCgFlQqiidO3dG/fr18X//939YuXIlxo0bZzGgcfPmTSiKYnE0wMDAQADSV5f6aMt8qpKMMOjq6mpS2QIkmJWVlWV4npCQYDbYAQCL04rSqFEjQ3BEURTMmTMH48ePx7vvvouVK1cWuey+ffvQq1cvdO3aFfPnzzf0I7N27VpMnz4dmZmZJSoLULLPQOXr62vyXG2yaev2izomjddv6T1PTEyEj4+PTdu5VdeuXcP58+fNmt2pCvdZVbhcjo6ORU43Pr4Ay8eSv78/AO0zuHbtGpKSkgzrKK5Mlj7X6Oho3HfffQgPD8fnn3+O0NBQODs7Y9++fXjxxRdLdRwVx9XV1axZdUn3pbDevXsjICAAixYtQq9evXDz5k38+uuvePXVVw1NdAsKCtCrVy9cuXIF7777Lpo1awY3NzcUFBSgQ4cOFvfVlmtHWloa7rvvPjg7O2PatGlo0KABXF1dERMTg0GDBpmt197e3uy8KfzZWmLrMdi5c2esXbsWX3zxBZ566ilkZ2ejSZMmePvtt4sM4JfXsaDuk7qPKkvvw7Vr17Bu3Tqbz7PC61Sn5eTkIC0tzeJIuIUVLgMg17GS7u+CBQvg5+eHAQMG2DS/t7c3+vXrh2+++camwTEsfTc5OjpavAY6OjqaXFNK+r4WpfA5ce3aNSiKYvX7r06dOgAALy8v7NixA9OnT8dbb72FmzdvIiAgAM888wzeeecdq2UjIqqqGBwjIrpFGzZsQH5+fomHYe/Zsye+/fZbrF27Fm+++abFedauXQt7e/sSr3vUqFF45513oNPpMGLECIvzVKtWDXq9HlevXjV7Te3gXQ2i+Pr62jSfqqyzi3x9fS12Jm3rQAWW6HQ6vPbaa/jggw9s6kdr+fLlcHBwwPr1600qTJayrmxVks/gdlGDvMeOHTPpJygvLw+nT5+2OVvvVlWvXh0uLi5WO+ou6/fl2rVrZtPU40utzKuDIPz2228W12E8Eipg+TxYu3Yt0tPTsXr1akMGFQAcPnzY5rKqx1/hQSusVbgtlaOk+1KYmt34xRdfICkpCcuWLUN2drZJ30/Hjx/HkSNHsHjxYpPrkKWO/Isqa2F//vknrly5gu3btxuyxQCYDERiLC8vDwkJCSZBmcKfrSUlOQYHDBiAAQMGIDs7G3v37sXMmTMxfPhwhIaGomPHjhaXL4tjwRJ1n+Li4hAUFGSYrr4PhfchIiIC06dPt7guNUivsnTNjYuLg6Ojo9UBT8rDoUOHcOjQIUyYMKFEQZ7SZGOXRknf16IULmv16tWh0+mwa9cui/1ZGk9r1qwZli9fDkVRcPToUSxevBgffPABXFxcrN53EBFVVQyOERHdgujoaLz++uvw8vLC2LFjS7Tsww8/jMaNG+Ojjz7CoEGDzJpfrVixAps3b8Zzzz1n8df6oowYMQL//PMPGjVqZFI5Mubm5ob27dtj9erVmD17tuFX9IKCAixZsgTBwcGGMnXv3h1r1qzBlStXTG7qv//+e7i6uqJDhw4lKl9JdenSBStXrsSmTZtMmmypI3EW5+rVqxYzUq5cuYKUlBRDJ8qA9QwGnU4He3t7Q1YMINlaP/zwg9m8tmZBlOQzuF3at2+PgIAALF682GQwgJ9//hlpaWkYNGjQbSlHv379MGPGDPj6+iIsLKzct5eamopff/3VpGnlsmXLoNfrDc2S+/Xrh+XLlyM/Px/t27cv1XbUiq5xBVZRFMyfP99sXmvHkTr66dGjR/HAAw8Ypv/66682l6Ms9mXUqFH4+OOP8eOPP2Lx4sXo2LGjSRaspX0FUOKRfQsrzXqXLl2KV155xfB82bJlAFDkDw+lOQadnJzQpUsXeHt74/fff8ehQ4esBsfK4liwRN2npUuXmlzbVq5caTYYR79+/bBx40bUrVsX1apVK3bdq1evxieffGII0KampmLdunW47777DNfGkmazlsaCBQsAAGPGjLF5mZs3b2L9+vVo0aKFWUZYWbP1fS3Ne9WvXz989NFHuHz5Mh599FGbltHpdGjevDk+++wzLF68GAcPHrR5e0REVQWDY0RENjp+/Lihb4/4+Hjs2rULixYtgp2dHdasWWM2wlRx7OzssGrVKvTs2RMdO3bEhAkT0LFjR2RnZ2PdunX49ttv0aVLF3z66aclLmtgYKBNGU0zZ85Ez5490a1bN7z++utwdHTEvHnzcPz4cfz444+GytuUKVMMfai899578PHxwdKlS7FhwwZ8/PHHNjWluRUjRozAZ599hieeeALTpk1DvXr1sGnTJvz+++8AAL2+6C40n332WSQlJeGRRx5B06ZNYWdnh9OnT+Ozzz6DXq/HpEmTDPM2a9YMq1evxtdff43WrVtDr9ejTZs26Nu3L/7zn/9g+PDhePbZZ5GQkIDZs2db/OVe/bV+xYoVqFOnDpydnS02uwVs/wzKyv/+9z+Ln1fjxo3h6ekJOzs7fPzxx3jyyScxduxYPPbYYzh37hwmTpyInj17mvX7tmnTJqSnpxtGPzt58iR+/vlnADKSq6ura6nKOW7cOKxatQqdO3fGa6+9hoiICBQUFCA6OhqbN2/GhAkTSh3UscTX1xfPP/88oqOj0aBBA2zcuBHz58/H888/b2gCPWzYMCxduhR9+vTBq6++inbt2sHBwQGxsbHYtm0bBgwYgIcffrjI7fTs2ROOjo547LHHMHHiRGRlZeHrr7/GzZs3zea1diz6+/ujR48emDlzJqpVq4batWvjjz/+wOrVq23e37LYl4YNG6Jjx46YOXMmYmJi8O2335q9XrduXbz55ptQFAU+Pj5Yt26dYaTe0urUqROqVauG5557DlOmTIGDgwOWLl2KI0eOWJzf0dERn376KdLS0tC2bVvDaJW9e/cucuRCW4/B9957D7GxsejevTuCg4ORlJSEzz//3KQfNEvK4liwpFGjRnjiiScwZ84cODg4oEePHjh+/Dhmz55t1rz2gw8+wJYtW9CpUye88sorCA8PR1ZWFiIjI7Fx40Z88803CA4ONsxvZ2eHnj17Yvz48SgoKMCsWbOQkpKC999/36SsAPD5559jxIgRcHBwQHh4eLHZiLbKysrCsmXL0KlTJ0Mz+cKGDx+OWrVqoU2bNqhevTrOnTuHTz/9FNeuXcPixYvLpBxFsfV99fDwQO3atfHLL7+ge/fu8PHxQfXq1Q0BcEvuuecePPvssxg1ahQOHDiAzp07w83NDVevXsVff/2FZs2a4fnnn8f69esxb948DBw4EHXq1IGiKFi9ejWSkpLQs2fPcn8PiIjuOhUzDgAR0d1DHSVQ/XN0dFRq1KihdOnSRZkxY4bZaIeKoo0ydf369WLXf+PGDeXNN99UGjZsqDg7Oyvu7u5Ku3btlLlz5yo5OTk2lbHwSH+WWBqtUlEUZdeuXcr999+vuLm5KS4uLkqHDh0sjjZ37NgxpX///oqXl5fi6OioNG/e3Gxd6ih6P/30k9ny1kardHNzM5vX0uh00dHRyqBBgxR3d3fFw8NDeeSRRwyj4xUeZbCw33//XRk9erTSuHFjxcvLS7G3t1cCAgKUQYMGKXv27DGZNzExURk8eLDi7e2t6HQ6k3IsXLhQCQ8PV5ycnJQ6deooM2fOVBYsWGA2MltkZKTSq1cvxcPDQwFgGGXO0miCimLbZ2Bt1FRrIxcWVtRolQCULVu2mMy/bNkyJSIiQnF0dFT8/f2VV155xWRETVXt2rWtrtPSaHXWWDqG09LSlHfeeUcJDw9XHB0dFS8vL6VZs2bKa6+9psTFxRnmA6C8+OKLJsuq7/Unn3xiMt3SMapue/v27UqbNm0UJycnJSAgQHnrrbeU3Nxck+Vzc3OV2bNnK82bNzecrw0bNlTGjh2rnDt3zuR96du3r8V9XbdunWH5oKAg5Y033jCMTGv8ORZ1LF69elUZPHiw4uPjo3h5eSlPPPGEYXS6wqNVWjrHSrIvRfn2228VAIqLi4uSnJxs9vrJkyeVnj17Kh4eHkq1atWUIUOGKNHR0WYj9BV1zbR0Pdi9e7fSsWNHxdXVVfHz81Oefvpp5eDBg1b3/+jRo0rXrl0VFxcXxcfHR3n++edNRjdVFPPRKhXFtmNw/fr1Su/evZWgoCDD90OfPn2UXbt2Ffv+lcWxYEl2drYyYcIEpUaNGoqzs7PSoUMHZc+ePRb38fr168orr7yihIWFKQ4ODoqPj4/SunVr5e233za8R+r5NGvWLOX9999XgoODFUdHR6Vly5bK77//brb9yZMnK4GBgYperzfZF2vnRZcuXSyO8GuJOupm4RFYjc2cOVNp0aKF4uXlpdjZ2Sl+fn7Kww8/rOzbt8+mbVg7b6x911raL1veV0VRlK1btyotW7ZUnJycTEYTLe4+YuHChUr79u0N3xt169ZVnnrqKeXAgQOKoijK6dOnlccee0ypW7eu4uLionh5eSnt2rVTFi9ebNN7QERU1egUxcoQa0RERHe4GTNm4J133kF0dLRJdgNRSXTt2hU3btywqe85oqooMjISYWFh+OSTT/D6669XdHGIiIjKHJtVEhHRXWHu3LkApKlWbm4u/vzzT3zxxRd44oknGBgjIiIiIqJSY3CMiIjuCq6urvjss88QGRmJ7Oxs1KpVC5MmTcI777xT0UUjIiIiIqK7GJtVEhERERERERFRlVX08F5ERERERERERESVGINjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkRERHSLZsyYgbVr11bY9ufNm4fFixdX2PbvZMuWLcOcOXMquhhERER0B9MpiqJUdCGIiIiI7mbu7u4YPHhwhQWomjZtiurVq2P79u0Vsv07Wb9+/XD8+HFERkZWdFGIiIjoDsXMMSIiIqI7UH5+PrKzsyu6GHeczMzMii4CACAjI6Oii0BERERlhMExIiIiKlPXr1/Hs88+i5CQEDg5OcHPzw/33HMPtm7daphn69at6N69Ozw9PeHq6op77rkHf/zxh8l6zp8/j1GjRqF+/fpwdXVFUFAQ+vfvj2PHjpWoPG+88Qa8vLyQn59vmPbyyy9Dp9Phk08+MUxLSEiAXq/Hl19+CQDIysrChAkT0KJFC3h5ecHHxwcdO3bEL7/8YrJ+nU6H9PR0fPfdd9DpdNDpdOjatavh9bi4OIwdOxbBwcFwdHREWFgY3n//feTl5RnmiYyMhE6nw8cff4xp06YhLCwMTk5O2LZtW7H7FxoaihMnTmDHjh2G7YeGhhpeT0lJweuvv46wsDA4OjoiKCgI48aNQ3p6utl+vPTSS1i0aBHCw8Ph4uKCNm3aYO/evVAUBZ988gnCwsLg7u6O+++/H+fPnzdZvmvXrmjatCl27dqFDh06wMXFBUFBQXj33XdN3nsAyMnJwbRp09CwYUPDMTJq1Chcv37dbN/69euH1atXo2XLlnB2dsb7778PAPjqq6/QuXNn1KhRA25ubmjWrBk+/vhj5ObmmpRpw4YNiIqKMrw3Op0OALB9+3bodDqzbDv1szDOAhw5ciTc3d1x7Ngx9OrVCx4eHujevXuJ9oWIiIjuXPYVXQAiIiKqXJ588kkcPHgQ06dPR4MGDZCUlISDBw8iISEBALBkyRI89dRTGDBgAL777js4ODjg//7v//DAAw/g999/NwQdrly5Al9fX3z00Ufw8/NDYmIivvvuO7Rv3x6HDh1CeHi4TeXp0aMHZs+ejX379qFjx44AJDjn4uKCLVu24I033gAA/PHHH1AUBT169AAAZGdnIzExEa+//jqCgoKQk5ODrVu3YtCgQVi0aBGeeuopAMCePXtw//33o1u3bnj33XcBAJ6engAkMNauXTvo9Xq89957qFu3Lvbs2YNp06YhMjISixYtMinrF198gQYNGmD27Nnw9PRE/fr1i92/NWvWYPDgwfDy8sK8efMAAE5OTgAku6lLly6IjY3FW2+9hYiICJw4cQLvvfcejh07hq1btxqCRQCwfv16HDp0CB999BF0Oh0mTZqEvn37YsSIEbh48SLmzp2L5ORkjB8/Ho888ggOHz5ssnxcXByGDRuGN998Ex988AE2bNiAadOm4ebNm5g7dy4AoKCgAAMGDMCuXbswceJEdOrUCVFRUZgyZQq6du2KAwcOwMXFxbDOgwcP4tSpU3jnnXcQFhYGNzc3AMCFCxcwfPhwQ9DvyJEjmD59Ok6fPo2FCxcCkL7Ynn32WVy4cAFr1qwp/mApQk5ODh566CGMHTsWb775JvLy8kq8L0RERHSHUoiIiIjKkLu7uzJu3DiLr6Wnpys+Pj5K//79Tabn5+crzZs3V9q1a2d1vXl5eUpOTo5Sv3595bXXXrO5POnp6Yqjo6PywQcfKIqiKLGxsQoAZdKkSYqLi4uSlZWlKIqiPPPMM0pgYGCR28/NzVXGjBmjtGzZ0uQ1Nzc3ZcSIEWbLjB07VnF3d1eioqJMps+ePVsBoJw4cUJRFEW5dOmSAkCpW7eukpOTY/O+qZo0aaJ06dLFbPrMmTMVvV6v7N+/32T6zz//rABQNm7caJgGQPH391fS0tIM09auXasAUFq0aKEUFBQYps+ZM0cBoBw9etQwrUuXLgoA5ZdffjHZ1jPPPKPo9XrDe/Djjz8qAJRVq1aZzLd//34FgDJv3jzDtNq1ayt2dnbKmTNnitz//Px8JTc3V/n+++8VOzs7JTEx0fBa3759ldq1a5sts23bNgWAsm3bNpPp6mexaNEiw7QRI0YoAJSFCxeazFuSfSEiIqI7F5tVEhERUZlq164dFi9ejGnTpmHv3r0mzdx2796NxMREjBgxAnl5eYa/goICPPjgg9i/f7+huV9eXh5mzJiBxo0bw9HREfb29nB0dMS5c+dw6tQpm8vj6uqKjh07Gpp1btmyBd7e3njjjTeQk5ODv/76C4Bkk6lZY6qffvoJ99xzD9zd3WFvbw8HBwcsWLDA5u2vX78e3bp1Q2BgoMn+9u7dGwCwY8cOk/kfeughODg42Lxvtmy/adOmaNGihcn2H3jgAYtNCrt162bIzAKARo0aAQB69+5tkiGmTo+KijJZ3sPDAw899JDJtOHDh6OgoAA7d+40lMnb2xv9+/c3KVOLFi3g7+9vVqaIiAg0aNDAbN8OHTqEhx56CL6+vrCzs4ODgwOeeuop5Ofn4+zZsyV7o2z0yCOPmDwv6b4QERHRnYnBMSIiIipTK1aswIgRI/Df//4XHTt2hI+PD5566inExcXh2rVrAIDBgwfDwcHB5G/WrFlQFAWJiYkAgPHjx+Pdd9/FwIEDsW7dOvzzzz/Yv38/mjdvXuJO2Xv06IG9e/ciPT0dW7duxf333w9fX1+0bt0aW7duxaVLl3Dp0iWT4Njq1avx6KOPIigoCEuWLMGePXuwf/9+jB49GllZWTZt99q1a1i3bp3ZvjZp0gQAcOPGDZP5AwICSrRftmz/6NGjZtv38PCAoihm2/fx8TF57ujoWOT0wu9DzZo1zcrg7+8PAIZmtdeuXUNSUhIcHR3NyhUXF2fTexIdHY377rsPly9fxueff45du3Zh//79+OqrrwCUT6f9rq6uhuayqpLuCxEREd2Z2OcYERERlanq1atjzpw5mDNnDqKjo/Hrr7/izTffRHx8PF577TUAwJdffokOHTpYXF4NsKh9k82YMcPk9Rs3bsDb27tEZerevTveffdd7Ny5E3/88QemTJlimL5582aEhYUZnquWLFmCsLAwrFixwiRrqiQjSFavXh0RERGYPn26xdcDAwNNnhtvpyxUr14dLi4uhj64LL1eltTgp7G4uDgAgK+vr2Gbvr6++O233yyuw8PDw+S5pfdk7dq1SE9Px+rVq1G7dm3D9MOHD9tcVmdnZwDmn6e1gJalcpR0X4iIiOjOxOAYERERlZtatWrhpZdewh9//IG///4b99xzD7y9vXHy5Em89NJLRS6r0+kMHcurNmzYgMuXL6NevXolKke7du3g6emJOXPmIC4uDj179gQgGWWzZs3CypUr0bhxY5NglU6ng6Ojo1mH84VHqwSkA3xL2Ur9+vXDxo0bUbduXVSrVq1EZS6JorY/Y8YM+Pr6GgKA5Sk1NRW//vqrSdPKZcuWQa/Xo3PnzoYyLV++HPn5+Wjfvn2ptqN+JsbHh6IomD9/vtm81t4bdUTPo0eP4oEHHjBM//XXX20uR1nsCxEREVU8BseIiIiozCQnJ6Nbt24YPnw4GjZsCA8PD+zfvx+//fYbBg0aBHd3d3z55ZcYMWIEEhMTMXjwYNSoUQPXr1/HkSNHcP36dXz99dcAJPCwePFiNGzYEBEREfjf//6HTz75BMHBwSUul52dHbp06YJ169YhLCwMdevWBQDcc889cHJywh9//IFXXnnFZJl+/fph9erVeOGFFzB48GDExMTgww8/REBAAM6dO2cyb7NmzbB9+3asW7cOAQEB8PDwQHh4OD744ANs2bIFnTp1wiuvvILw8HBkZWUhMjISGzduxDfffFOq/SmsWbNmWL58OVasWIE6derA2dkZzZo1w7hx47Bq1Sp07twZr732GiIiIlBQUIDo6Ghs3rwZEyZMKNOgjq+vL55//nlER0ejQYMG2LhxI+bPn4/nn38etWrVAgAMGzYMS5cuRZ8+ffDqq6+iXbt2cHBwQGxsLLZt24YBAwbg4YcfLnI7PXv2hKOjIx577DFMnDgRWVlZ+Prrr3Hz5k2L783q1avx9ddfo3Xr1tDr9WjTpg38/f3Ro0cPzJw5E9WqVUPt2rXxxx9/YPXq1Tbvb1nsCxEREd0BKnhAACIiIqpEsrKylOeee06JiIhQPD09FRcXFyU8PFyZMmWKkp6ebphvx44dSt++fRUfHx/FwcFBCQoKUvr27av89NNPhnlu3rypjBkzRqlRo4bi6uqq3HvvvcquXbuULl26WByZsTiff/65AkB55plnTKb37NlTAaD8+uuvZst89NFHSmhoqOLk5KQ0atRImT9/vjJlyhSl8C3U4cOHlXvuuUdxdXVVAJiU7/r168orr7yihIWFKQ4ODoqPj4/SunVr5e233zaMDKmOkPjJJ5+UeL8URVEiIyOVXr16KR4eHgoAk9EZ09LSlHfeeUcJDw9XHB0dFS8vL6VZs2bKa6+9psTFxRnmA6C8+OKLJuu1Vi51pEfjz6tLly5KkyZNlO3btytt2rRRnJyclICAAOWtt95ScnNzTZbPzc1VZs+erTRv3lxxdnZW3N3dlYYNGypjx45Vzp07Z5ivdu3aSt++fS3u87p16wzLBwUFKW+88YayadMmsxEoExMTlcGDByve3t6KTqcz+eyuXr2qDB48WPHx8VG8vLyUJ554Qjlw4IDF0Srd3NwslsPWfSEiIqI7l05RFKViwnJEREREVFl07doVN27cwPHjxyu6KEREREQlwtEqiYiIiIiIiIioymKfY0RERHTXys/PR1FJ8DqdDnZ2drexRGWrsu8fERER0Z2AzSqJiIjorhUaGoqoqCirr3fp0gXbt2+/fQUqY5V9/4iIiIjuBMwcIyIiorvWunXrkJ2dbfV1Dw+P21iaslfZ94+IiIjoTsDMMSIiIiIiIiIiqrIqTeZYQUEBrly5Ag8PD+h0uoouDhERERERERERVRBFUZCamorAwEDo9UWPR1lpgmNXrlxBSEhIRReDiIiIiIiIiIjuEDExMQgODi5ynkoTHFP73IiJiYGnp2cFl4aIiIiIiIiIiCpKSkoKQkJCbOqjtdIEx9SmlJ6engyOERERERERERGRTV1vFd3okoiIiIiIiIjoLpSRUdEloLsFg2NEREREREREVKmkpQHR0RVdCrpbMDhGRERERERERJXK0aNAdnZFl4LuFgyOEREREREREVGlotMBqakVXQq6WzA4RkRERERERESVip0dcOVKRZeC7hYMjhERERERERFRpaLTAd7e2vP9+01fL67JZW5umReJ7mAMjhERERERERFRpeLoKM0q4+Lk+aZNQEGB/B8dDbz4ovkyV64Ae/bI/wcO3J5y0p2BwTEiIiIiIiIiqlT8/YHAQBm1MioKyMgAVq6U186dA4KCgPPnTZc5cAAYMkSCZ5mZwKVLt7/cVDEYHCMiIiIiIiKiSsXBAUhMlGyxP/4AGjUCkpKA/HzA1xdo316yyVSKAvz2G+DsDFy+LMvt3SujXmZlVdhu0G3C4BgRERERERERVToNGwLbtkkWWHQ0cOMG8PffQGwscO+9QM2a2rzXr0vQrFMnySALCgI8PWX+b76puH2g24PBMSIiIiIiIiKqdGrWlOyw+vWB0FAgIkKCYOfOSeCrZ0+ZLy4OOH0aOHUKePBB4MwZwMMDCA+XQNqRIxW6G3Qb2Fd0AYiIiIiIiIiIykpiojy6u0vH+4oio1eGhgKvvab1PaaaNEmaUj76qPRV5uQkWWb29sCxY4CfH5CQIJllqrQ0WT9VDswcIyIiIiIiIqJK49o17f9GjaT/MFdXoF49oG1b0yAXIFlinTrJ67VqybT4eMkoS0gAbt4Etm8Hdu/WlsnIKPfdoNuIwTEiIiIiIiIiuqulpmr/37gBZGfL/46Okjnm6gq4uAC1a2vzKYo81qghfYyFh0uATJ3H2RmIiZE+y3bv1uYHJGBGlQeDY0RERERERER0Vzp1Sh6Ns8UyM4HFi+V/4ywxnQ5wczNdXlGkuWWzZhI8A6Qj/+vXgZwcrWP+vDwZAROQES8vXiyPvaGKwj7HiIiIiIiIiOiutHmzNJt0ctKm5eVJYAsA7OzkLz9fnrdsqc2n08kolj16SEDNx0emq5lmWVnS31j37pKZ5uEhfY1FRUnmGPsdqzyYOUZEREREREREd6XTp2VUSkXRmlbm5UlQS3X1qgTCACAszHT5I0ckkKZmhQESbHN2luyxwYOBgABpVlmzpmSopaVJsC0urnz3jW4fBseIiIiIiIiI6K4SGyuP/fsD6ekSGEtKkmnJyUBwsDZvQQFQt678b5zpdeqUZIzl55sGxwDJHHN1lWCaTgecOSN/mZmAXg9Ury59mxW2Z0+Z7SLdRgyOEREREREREdFd5fJlefTzkwyumBgtWBUfL/2EqRwctGaVxk6ckKaTbm4SCFPZ2cmoldeuSRDM1xdo3VqacN68Kc0q9+wBjh41X+exY2W3j3T7MDhGRERERERERHeVjAxg717J4oqNBRISJDCVkwOcPy/BLJWPDxAZab6OmBgJolWvDnh5adP1egmONWokgbVq1SRAduiQNOO8dAnYv1+CaMaOHNGabVoKxtGdi8ExIiIiIiIiIrprJCbKaJGHDwM1akggKidH/g4fBlq1ks7zVcad9RvLzZUMNLU/MlVsrAS+QkLkuV4v88THS5PNrCxtNEtjf/4pwbQLFySARncPBseIiIiIiIiI6K6RnQ04OgIbNwIpKRK8ys+Xjvh/+QVo1850fr0eqFPHfD116kiArHBwTO2frEEDCZBVry7P09NlO7m50o9ZfLy2zPXr0uQyNFSe5+YWvQ8FBcwuu5OUODi2c+dO9O/fH4GBgdDpdFi7dq3J64qiYOrUqQgMDISLiwu6du2KEydOFLveVatWoXHjxnByckLjxo2xZs2akhaNiIiIiIgqKUWp6BIQ0Z0iK0syvpKTJXNMp5PAlb09cOWK6UiVgATH7O3N11NQIBlihYNjbm7a/05O0izT318CcjEx0jF/eLiWWQYAP/wAHDggo1x6ehY9kmVBgQTTmF125yhxcCw9PR3NmzfH3LlzLb7+8ccf4z//+Q/mzp2L/fv3w9/fHz179kSqOqaqBXv27MHQoUPx5JNP4siRI3jyySfx6KOP4p9//ilp8YiIiIiIqBKyNCocEVVNWVkSrNLpJBCmBr/S06WpY16e6fx2dub9gwHSp5jaZNKYcdBL5esrQbLr14Ft24C2bSVorwbudTpg0ya5VtnbA1OmmK8jJUVG1Fy+HJgxQ0bLTEws1VtAZazEwbHevXtj2rRpGDRokNlriqJgzpw5ePvttzFo0CA0bdoU3333HTIyMrBs2TKr65wzZw569uyJyZMno2HDhpg8eTK6d++OOXPmlLR4RERERERUCbH5ERGpMjOl2WJKijyPi5Mglb29ZGUVDo45OloOjrVrJ68VZpw5prKzA1JTJQB3/Trg7i79i8XHy/aiomQQgMBAKYtxk0u1ieXRo8CqVRJku3wZ2LkTOH5cmolSxSrTPscuXbqEuLg49OrVyzDNyckJXbp0we7du60ut2fPHpNlAOCBBx4ocpns7GykpKSY/BERERERUeXE4BhR5aIoEuQqjexsCYipQazsbC0g5uIiATJj1oJjzs5AzZrm011dzafp9bIeNZjm6CgZbFlZsi9qFhsg/7dqJVlsV64A0dEy/cwZ4MQJ4No1oGtXYP16CbIlJkoTUao4ZRoci/u3UW3NQkdXzZo1Da9ZW66ky8ycORNeXl6GvxBLeY9ERERUKVkajp2IKrfCmSBEdHfLyJBMLFslJWn/5+RIAEptkpifLyNEZmdLf1+FVatmOTgGSLaXLerVA/r0kT7O7r1XglqXLsm2FUWmh4VpgwO0aCFlPndOmlrGxAB79shrLi4yGMB//iPzZ2Uxe6yilctolbpCDXYVRTGbdqvLTJ48GcnJyYa/mJiY0heYiIiI7iqsJBNVPaU9742bNhHRnSM723In+dYYXwNycqRJozoqZUGBNF28eVP6CyucaeruLkEoSxwcbNu+n5+MROnlJesaOBD45x/Z1uXLsg13d9mn5GQJpmVnS3Ds2DFg/35Z3t9fgmjt2wMREbK8OtImVZwyDY75+/sDgFnGV3x8vFlmWOHlSrqMk5MTPD09Tf6IiIiIiKhyKu1olSkp0qyJiO58Fy6YPr92zbyJJCDBMV9faboISNPIggKZ1qaNNJc0pnamb4m3t+3l8/WVwFdWlgTB1CaWGzZIM89jxyRwtmOHZKqlpQF//w3UqiUBtHr1pE+yrCxZl6ur7AvA4FhFK9PgWFhYGPz9/bFlyxbDtJycHOzYsQOdOnWyulzHjh1NlgGAzZs3F7kMERERVU0FBdIZbnm4XTemiiLNSe5UasfBRJXFnXy+EVVlR4+aPo+P1/rnAqTZ5c2b8r9xgFxtVtmsmTz39ZUmlnXqyPn+b96OCWuZY05OtpfX21sCb9WqyfMmTaQZ54ULwNWrMoKlq6tktHl7A//7nzS9jI0FunSR1xs3Bho0kOWrVZOMsgMHgIsXbS8Hlb0SB8fS0tJw+PBhHD58GIB0wn/48GFER0dDp9Nh3LhxmDFjBtasWYPjx49j5MiRcHV1xfDhww3reOqppzB58mTD81dffRWbN2/GrFmzcPr0acyaNQtbt27FuHHjbnkHiYiIqHJRFGDv3vJZt3oDXt7y82UY9zuhwm4pGycq6vaXg6g8ZWWVz3rz86XZ1OXL2rTNm8tu/cVly127Zvo8IaH8fjwgKg+Fz5eTJyVYZOz6dXksHBzT67WsL2dnLZNMpytZwMtWtWtLhlpyshYcCw6W60BmpjzWrSvTQ0OlHBs2AAEBwGOPSeAuJESyyKpX19a7fz+wZcudcU9QlZU4OHbgwAG0bNkSLVu2BACMHz8eLVu2xHvvvQcAmDhxIsaNG4cXXngBbdq0weXLl7F582Z4eHgY1hEdHY2rV68annfq1AnLly/HokWLEBERgcWLF2PFihVo3779re4fERERVTIFBVIhLG0Tq6KUd8aUWmnNy5OOeX/8sXy3Z4vz580HOEhPlxt6ospi5cqSXzO2btX+z8oyH1UvKkqC3Dt3SnMqRZFzu6wGDDl8WPozSk+XZqGnTkkl2rgcqakyn6JI1szp08Cff5bN9oluh3PntP8VRb7fs7Ml0KuylDmWlydNpuvXl+d6vczn7l5+ZXVwkCBcbq7W6b+7u2SNnTwpzSVdXLTpDg7AgAHAfffJdHd3aYZZs6bp4AB79sg9wYED5Vd2Kl4Jur8TXbt2hVLEN4tOp8PUqVMxdepUq/Ns377dbNrgwYMxePDgkhaHiIiIqpizZ6U5Qn6+1pHvzp1A5863vu7yCI5lZcnNtKIAr78OfPmlbMfNzfaRqaKi5FdwS81ErMnNlYqDr69sx9FRfsU2duMGcPCgVKb/7/+kop2aKpWVrCx5j62N7kVUWhkZ0uyoJKxVP9LSbKsMX7ggx7RacbXF4cNAy5ay/nXrZHQ6Fxc5L/R6qchu3SqZKqGh0peQnV3ZBO5jY+Va16EDsG2bdADu5yeBsscfB376Scpw8iSwfr28FhYm5++/OQxEdwW1zzBAfvxKTpbj2sMD6N9fvrfUPseMz62EBGDYMPkuBeR86NZNvutq1y6/8np4AJ06SUAckGaVFy5IUM/V1fR65OEBPPhg8X2atW4t9zCHD0szTFtHzzSmKNp3/O7dMnJmvXpyL6DX87vcFiUOjhERERGV1M2bWhMEVWKi9c5xi7J+vdx85uVJcCwvTyqpd2pw7PJlaWaxbp3c4P/zj0yvX18bgr6wwu/X/v3Apk3AggXy3JbgQmoq8MsvUpEPDZV9y8uTIFt+vnQQvHOn9JFSs6Zkpvz2m7y3W7bI9mNipBnIkCHW+2ohKqnSBMcSEqTiFxkpx7MqPr744JiiSLApM7NkwbHsbMmsbNtWAsht20rfQT4+EvD+7TephDs7S4X+n3+kUmuc8VIaeXnAd98BTzwhwT97e6BjR7l+uLoCS5cCK1bIOZ6WJtvs21fO7c8/l/29fl0CZoC8RzVq3FqZiMpLaKicM76+cuzHx8sxb9zNgaKYn1eZmfLdpQoIkAC4o6Pto0+WhpOTlFVtqp2bK2VRy6OOngnItcmWzv5HjpRAmre3FnQ7eBBo2lT2JzdXrpteXqbLRUdLE01AvsODguT/3btlXQEBwMaNQMOGWt9sZB1vc4iIiKjcJSSYZ1Ps2KGN0FQS3t5y86x2nn/9etn1QXbjhlRyy1J8vFSo7e0l68PODvjjD6lQqwEn45G4srJM+y8CpPNe476FjHqnsOrsWak0t2kD9Owpf61by812YqLs65AhwLx5UnF+7TVp2nH1qmSq5OcD+/bJvJcuyaO1YB6RrRTF8shzxcnNlWUvXTJfHyBZkkUtaxxQM2atL7LISFnu6lWtqWJWlmRs5efLufD333J+paQAERHSzCoz07wCW1Jz5wJjxkjgrXFjyVJRR8WrVUsCfA8/DDzzDDBuHDB2rPR75Ocn2755U2tamZICzJ4tmThHjtxauYjK2rlzcs6sWSPP1fPc1dU007mgQF4zvmcw7rQfkGPf01PLKC9PTZtqZcnJketEXp4E5Xx9tfmsXXcKq11by/y8dk2yxePigKQk2fetW4EfftCud+oPecY/6H37rTzGxckyx44B778PrF5t2nSVrGNwjIiIiMrF2bNys5iTIxkYhSu1pW1+lJOjrRuQdb/2mlT+Tp6UaWlppSuzk5P5DfetNpEKCAB+/10qAN27SwU7Pl4y3dq2lV94Z87UmljOni03xKrsbClD9+7ymJmp7ac1V6/KexAWpjWxcnCQX5WDgrSK9ejRQIsWQPPmwKFDwK5dcmOelCSVbR8faTKSnQ1MmiSBNLVMgGTslXUwkSo3RSn5OZWfD5w4If9ba4pcuD8wY/HxUnE2vgbl50smRnKyBJPy86Viqrp6VSqYq1bJ62fPyjl08aIEjWfPBu6/XwLLTk5yPcvMlAD4rQbHcnJMm1CrfRsZc3Gx3FQqIkLLOl25UirPdetKJfncOQnoGbtdI/QSWfLPP5LVefq0PM/NlcCYnZ1ph/qKIpnMxtlkZ8+arkuvlwDy7eDsLN/fgHSwv327nEs1aph3X2CLxo1ln93dgUaN5H0ID5frzbffSlZYTg7w6afyvfvzz8B//qMFvRITtYENDh2S69fWrXLtW7789g02dLdjcIyIiIjKXHq6BH3OngXOnJHg0BdfyA3fsWOSteTkZD2DRL1RVkeoMpaUJNPVZdUb4p9+0oZBL01wLCNDbnKXLDENThUO6pXUzZtyk+vuLjfOx49L8wkXF6lMp6VJnyRqUO7bb4Fnn5X/09Pl/XN3l4p4To4s4+8v76Mlf/0l77WHh+VKNSB9tHh7a2Vq1UoqHx4ewNq10gQjJkYq1Q0bShZNzZrAxx/L+3P6tJR72TJpuklUEiUNjl26JH+KYhocS0vTKqLGmRSFryvx8RLkNc6cSkiQ6Vu2yDkVG2uanWlnJ02ft22ToLE6zcVFrjdnzkh5nJ0lO8TOTppBZWaaNyEvSXPtxESgRw/b5y/MzU3O65MnZf8uXpQstKlTJTtl1SqZr6BArsOHDlnu7JzodkhOlnNHzfbKydGOQ2dnbb78fOmPS/0xpqDAvOmkXm9+7pWXwECtW4iGDSVDs6Dg1vs68/CQfVCvI4mJ8h199aqcx6+/rt3nfP21dq904YJ83+flScBMvQZ27Sr3H2fO3Fq5qgoGx4iIiKjMRUZKpfPiRakwXrokN48//ii/gGZmFp05Fhsrj6dOadPUzJDz56WJoMrdXW4EY2LkBlGdxxbGTaqSkuTmOixMq0ACt15hzM6WCqiXl/TfdfWqvAeAVKq9vWWbycmyrTffBGbMkH0YP17KpWbf/e9/sq916wLff2/e/PL8eakUN20qGSS2attWsseSkiQg99JLEoybOFHek6goucHu1k2aaPzxh5QlOVnew6ioW3uPqOpITS1Zs0o10B0YKMe32h8PIAGu/Hz5X82ASk6W645xpkRenlS01fMOkOtJVJQ0P7Szk2VWrNBej42VwFudOnKeubnJ9cjBQcqwZYucN66ucg7Y2ckIr5mZsn/5+XKO/POPXJf27Cn+WnLqFPDVV6YdlJdUnTrS1PPZZyWbRe2/qVEjuY6omWZTpsh19ORJ4JNPJGh/40bRGXhEZU1tZq1+5588qf1QY5zVeO2aHKOHD0uwOT8f6NLFdF1qYPh2cHGRrGvV9etyblWvXvp1enjId3eNGtp3qru7fJcHBGjBwpo1gccekwzWlStlWm6uXN+mTpXv8TfekPLVqSODFhw+LO/t33+bXkPJFINjREREVOZ0OrnZzcsDjh6VgEvDhhIkUyuoe/ZYryTn5WmdaANSabtyRSqh6enA8OGmgTNFkSCT2hdXVJRkghVnyxbtf/UX6dBQqZCnppr2a1ZadnbyFxMjGSeOjtqv24mJ8v7cuCH/79ghN8GdO8uNb5cu8uv0jRtSEb92TbLwAKnoJiWZ9iVy/LgMG//44yXreDwgQPotqllTbsCbN5cOwO3t5Wba01P6K/vwQ8lai4+XjLHq1aUMr74q00rTlxRVLfHx1oNElvr/UoM1cXFyTkZFacunpcm5AWjnqnoMGlesW7SQiqdx0DwvT87533+XAPDGjVqw7cwZeS0kRM6Dxo2lMnr1qvT5de6cXCfCw+W6U1Ag1zx3dy0D7eOPgUcekednzsg1a/162XZ2tlzPLl7UMuGys2W50jYJVwUGSlmCgmSkv759tdfuuQfo00f+v35dKtRDhsg1IyNDrlOHD9/a9olspZ5jrVrJ9zogx2TbtvJjkvodrijyA9OZM9qIyvn5QO/eputzdpbz/HYxbj5pby8/WpV0oBFjbm6yDkC7bly4IN/LTzyhZcqpne5Xqyb3UUeOyPuWkABMny7XOb1e3tfEROCBB+Rx1y5pXm38IwGZYnCMiIiISsSWTtnj42UkxOhoySKzs5Og0P79Emxxc5MbuKKCKWlp2o1mUpLc0F24IDe/wcHSbNO4c9q8PK35UlqaafDMktRUqdiq8x08KMvl5spjSopWgbRUaY+Pl0dFsd5sSlHkxtbJSSr3tWrJTb+a1XXjhoxslZQk865fL++ZTieV8uHD5Zfkjh1lmo+P9qtvcLDcPBv3OdSihenoXSXRrp30Kfboo1JGtVPhqCgZla9xYxntas8eKe9330kZCgrks123ToJz1hg3WaOqq6gO+Y8eNZ+Wny/H/tmz8njqlJyrgASX1E6x1SCTum41owyQgG6bNqaV2ZwcuQbl52t9d4WEyDUqOVmCy40aSeC4TRvJpExIkIy0rCwJIAcFSYVVrbS6ucm5oV63mjSRrLPLl+WcUvsK/OYb6XR/3z45nwDpN/HUKWDUqBK9nUUKDzef1ry5PHbrBkyeLGX19dUGB/n7b+09LY/Re4lU27fLDyx2dkD79nJuxcRIc2Zvb9PO97OypCuBjAw5j9XRqgsryY9CZUmvL7org5JycZGAYJcusl4nJ+0cDQ7W5mvQQK5Xfn7AwIFyHVGvfR06yPSgILl3io6WvhszM02vj6RhcIyIiIhK5MwZ6yO8qdQb1KQkqYAGBkqldc8eqeSqfWZYyyBJS5PgU4MG8jw/X4JVBw5IBpNOJ5W4U6e0frsSEyUQB8gNtBrEUwNPhTuOz8qSG/D586XfjkuXZP3qIAJZWbLuxETLo2qqo+Pt2WP9l9ibN+XXXUWRirODg/yaq/7y27GjBMocHaXiffWq1meJpRE4AwOBhx6S/3v2lBteJyfZ3337TPtoKY7xDTagBe2GDJHtqJo2BerVk/91OmnysX69BBxSUyXA5+AgfZGpzVqNqe+dcWfnKla+q55z56x3qm8p21MdGVJtjpmRoQWU9u7Vji81+KpeUwp31l2rlgR41W1kZ8s14bHHJADs5SWZKDk5sp2kJDnW27SRc7huXTnXfH3l+hURIZV6Ly8Jqnl6ShOmvDyZt18/Ob+PHpXnAwdKsC09XZpvVq8uGVvVqklAIDhY5mnY8Bbe3ELUQFhhhw5JYEEN0oeGaoMInDghHX0fOyZBcaLyEB8v5/TmzRL0qV5dvj/S0+VHIHt7CYKroyVnZcn3kpopbS04prrdA004Osq1oqwUFMj+1qlj/prx93ynTnLPcO2avI/Dhslyvr5SHn9/ufYlJcl7HBgo/bP+8EPZlbUyYXCMiIiISiQ5WWu+aI2aSZGRITfBbdsCr7wi2UleXlKBrVvX+ghK169Lc6fdu+X5xYsScHvnHa1JYpMmwJw50geWvb3cIBpnlBw9qjXFTEw0H8r85k1g0yZ5/PVXqaiqw6a7u0vQJy9Pym9tRMboaKlYx8SYTs/L05piqr/6BgTI85AQ8/7AWrSQivOUKVLJVhTLgYKEBLnRVTvlv3FD61coMbFkwTFr8zZubD7fI49oz3v1kk5+J0yQMiQkSHOtF180/TzV8p8+rY2yWVhUFANkVc3hw5YzxBRFC24by8+XQFdOjgRng4Nl0IkrV6RvQLUSrAbcCwqkMm0cHFMD2SEh2v/Xr0twrVo1rSLq7S0Br5s3tfnuvVe227ChvN6wIXDffTK/Wjn395dAWq9esh/t2kmW5YQJUrl1dpbmjDduyDVmzBg5Xxwd5drw66/SNFm9RpQVa1k0SUmyn40ayXN7ewlI/P23XJv27JEfHiIjTQcnISorKSnyV6uWBGezs6UvSzs7ee7nJ+dNerqcn1FR8l1avbqc6xcvaplUlli6lpQnR0fpO7Ss5ORIBl1xHnxQfoD873/lR7dGjaS/MScn09E+fX3l3sLJSfpB/PRTuVZ99JF2rSMGx4iIiKiEFEVGcLOUTaVWek+elMpifr40A6xXTypg9erJDa9OJzfA//xjeRv29tIfmKOj/CL6558S5IqN1YI3Dz0k6/f2lspptWraDbG/v1R8V6yQynN+vmnzQ0DLenJ3l4wRd3fZhl4vN+RxcXIDfuqU5X5MkpOlj7ADB0w7xk9JAWbPlhtWNVjn4SHBPEAqrJbW16KFvD+BgVLWDh3M59m8WW5us7JkHx96SN6Po0dlvd7elt/Pkij8a3zbtqaV9gEDpMLfsaOW/XL//TLf6dPyGWVnS+Bw82bplHzlSsujZSUlaQFQqvxOnwa2brV87cjPtx4cc3TUssdatZLz8sIFrS9CQOtPrKBAG7hCpVb+6tbV+ig7fVrOsZo15fWcHDnvg4IkC7Nw30EeHlqWRtOmspyjo7ymXlu6dJHrldp808UFeOYZqei3ayeV3aVLpf8gJydZLipKrjlubiV+O0tFr5eBA1xcTM/1ggIJNjo4SDlPnZJr8KZNt6dcVDkVFFjO4srKAlq2lONQr5fg7IED8qOYu7scgyEh2kA16oiWahbznTb6YseOWtnKQmio+Q9VlqiZq23bStDew0PuvQp78km5hrZuLe+n+sPU5ctaf2+WsrurGgbHiIiICIB2g1ScOnVkFMPCvzZeu6ZVVE+ckOyiyEipBKpNhZo2lV82jxyRzA3jZpXq/2pwpU0buXnbtUuCTWrlUf01tVo1uRHs0kUCT8a/Ivv4SOZIdrasIz1dsrvy87Ub9fR0qWg3bixBGi8vuTnU6+UX1oMHJUNOr5dMFJUa0Pv7by2wtmGD9voXX0jW1G+/SfAMkOZNajZdzZqWR9TS6WRb4eFSFjWYZky9+VbLc889kukRFKQ11SxrDg5a/2OABAdat5b32NFRmoI5O8vn4+Ym73NSkgQ033pLbr5jY6XiY/x5b9smgYJjx7T+26jyMQ5SnTkjgavoaPP58vO1UWcLT79yRc6ZtDQt6/TECQk4qeejmrVYUCABMOM+ddRmnMHB2iAfOTkSkG7QAPi//5N5FEUqpX37SoVT5ecn52fduvLXtq0sq2axGgfeC/c55OenVXIDAuS6Y5zRkZho3rF4eXJwkKwRtRmlSs3uzM+Xc/zqVZl27pxkhyYkWG8OS2SN2uVBYbm5cg7Z28sPQi1byrGnZhIrikxXg83Xrsm5dPWqHIeWmvAbu5VRI0ujd2/LTSBLy8nJtI9Ea8LDZd527Sw361SvUT16yLWnXTsZqKN7d7nHcXHRrol//237fWBlxeAYERFRFWCtUmPc1K24ppIqd3cJIm3aZHojde6c3MCqw6z36SMBtO7dtXm6dpVfN//5x7xTbrXPoMuXJfjj4CA3w+o2XFwkyKYGydzdpRJbq5bp8oBUQo8elQr0zZtSWT5yRG7S1SaSCQlStjFjJMMsP19+zfbxkQysS5ckgHPzpha8yciQTuvffFNuXPv1k/n8/KS5WHS0BADuv1+2rWaU1a2rZWkUd8Nb1OvDh8ujesMLaP0e3S4ODhJkMO7439FRKiNNmkhH47t3y8iWsbFSyfnmGwmWpaTI+x8dDSxYIBk6N29yhLzKbMMGLSC9YYNcOwo3cQZkHp1O67RepdfL6K0FBVqQ1tdXgutNmpg2eVYH0Th4UGuOBWhBWTc3Ofays+V616SJXD9WrtT6MgSkkmnc95ca8FJfd3MzDUYbB+bV0SAtqVfPPCO0fXutn8HbQb0ONWtmOl3t083ZWa6XzZtrGbm+vvKXk6MFyhIS5Hpqqbk0kXrPoSiWv9PS0+VY8/aWLE0HBwnyqFmlOp2cF7Vry3F58KBkRCUkSFb33LlFf1eWRRZ1SXh4lN33cHa2FrAqTliYvEedOlnuKsHHRx47dZLrnYeH/Gjl7y/ZocHB2jX33Dnb7wMrKwbHiIiIKrnz500zm4wlJUl6vdpEyRbx8VKxWr8emDTJdPqhQ3ITm5wsAZOCAmDwYG2eunWl0jVihKwjLU17Tc1UGDNGsoyuXJEKs6urZJwBEmRRb4hr1DANvKkV8JgY2Ub9+lKOTZtkvd7ephlKwcES1HJ0lF9VU1JkWvXqcqOelyc3i2lp0owrKUn2+dQpYNYsWdbBARg6VH4BX7MG+PxzCf7VqycZbX5+si07O+0mtSy0bm36PCzs1oaQLym1bxU1KKA2L1MUaTY3caJUYBo0kEyh8+e1JjJz5gAzZkglp2lTCXreriZlZJuy7K/n5EkJWJ0+LX+qwsHx/Hw5fgoHSlNS5FysXVteT0zUBrEYPFjWmZEh149Dh+R4O3ZM9kG9JqgVTQcH+T8qSgLXdnba9aRjR+04Bko26pxx317FXUcL9yNUp45tGSJlxcFB3rfC51xMjAS6PDzkuvr001LZf/RRbR4PDy1Q5usr1zRFMQ2WJSSYXtep8ipqYB41A9RacKxaNZmu/rilrs/4/MnLk+NVvVb4+krg6MoVCSrfSTp0sJwRXhr29iXrP9QWjo5yD/TQQ/K+q91QBAVpmegeHvLjprWBkqoCBseIiIgqubNnpcNnQKssqk2OMjIkmHHokHmn85b6BQLkZjYgQEY82rdPy+xKS5OK0f79EhTx8AAef9y0qYG9vQRx6tSR9H7jgM7+/VIRdnOTG9+AALkpdnOTpgOA+bqMMzb8/SUwdfGiLKfTSZPMdevkRn3fPlm/2q+G8Q1g8+ayrscek/W4ukol9p9/pGlHYiLw+utSGWzbVjoEV38Z9/SUG8yICAkAPfusLDNsmGS8qAr3eVaW7OzKvjPvoqiBPvUGXm3Ccu2avPfXrklzy3fekQDY/PnSnHbaNMnoy8mR6a1aSUVdbXJKFUvtfD0//9aa15w5I9cCQAIsFy5Ilqe3t2QcXr5s3t9gXp5kdakDWagVtshICbQGB0sQKjtbsg3VpteNG8uyKSnA8eNyzgMSZMvNleNRbd6sNv/99Ve5XqnZJV26yKNxU8qSNMsyDjQV14eepf4Gbye9XvpBK8zTU87FvDwJFDo4yPXW2veAytXVNFjm6yvXZjVYpgbMrA1qQnevGzdMs9LVILSiaMdNTIzljvPV7yvjH43++EPLvrKzk/PVyUm7X/H0lGPpzBn5ni7q2Lyd2ZiAXJvK6jvez888s/NWOTtLk3HV22/LjwRt2shncPQo8OOPcv4fOlS2276bFDEAKhEREVUGycnajeKFCxJoSkiQG7l9+ySLJzBQsn2MRUVZHi1Jp5Mb08GDgZ07JWOjXj2pTB84IL+edu4s21SDRsYcHKTSGhBgetOcni7lunxZRmDKyZGK1tWrkmkGFH3z2aqVVKR9fSXo17at9Gl1+bLcXKelSeXZ3V3r10wVGirbc3KSyp6Xl5T76aflptfBQSrAqala1tvevdry9evLe6I2WdLr5Qa3b9+iPpmydTuzT1SFs0+uXZNME3d3CTi0aCGfAyA33UuXAsuWAQ8/LMEynU6OvRs35LPX6aRi5ego66iIfaoKYmJMA0Gq9HQJGOXmSkCqbt3Srf+vv6Q/PFdXOWdPntQGvfDwkHPSUrAkIUFej46WczYhQbJe771XglXu7nJN8faWa5mdnWwjI0OOo1WrJCPCz0+uSTk5ci6qffHodLKP587JCKy+vrK8cR9gqtIGbP39i37duDlyRWnVynxa3bpyTqqj/wJyDbQ24mVRnJ3NM19yc7W+p9QfJvR6+Swr23l+7Zrtn7O1zKqKlpRUfNPEmBg5n9Qfry5elO8ELy95Dxo3lmD1sGHW12E8KERqqvadYm8vP8Sp782YMZL5nZMjP/gFBBR9bN7tP7gYB7LKgp2d6f2cmxswdarcpzk4SAbugAGSPWprK4LKiMExIiKiSqygQG6+1UDQiRPyK2FiomRmpKdrw6IXvoGNipIKqXH/VqohQ2Tdv/yiNXn480+5wapXT27CmjWT1wr/auzoKBVZQMqRni43aiEhko0WFydNJs+fl8DK/PkSLLtyxXwkRWO+vpJdUq2a7E/nznKT5+QkTa1ycuTR31+CeMYjOul0phXknBz5lXroUJm+c6e2j3PmyI2m8Y25pUBDVWDcUT8g762/vwS/AgPNK35Dh8r72qePacZA4Y6Es7PNO3FWA2eFGU/39Lz7K0W3w9WrpsdsRoYEibKzpYJ6+bIEM8PCLGd9FMfXV0Y69PKSc3DzZgkUt24NfP890K2b5c/y5k0513/6SfrzS0yUCrGiSNBMr5frR5062oAg6enAnj2yPxcuyLlrby+V+8xMmc84C2P4cBkt8osv5LmLi+WOrEvrnnvKbl3lxVJWnJqx4+urnbP+/mXXsbmDg3nT8oIC+czVY0Hdrrd36Y67O0FBgQRv/Pxs24fr1+U9Np73dgbMLl/W+s9TR3VOT5dzx9tbzh9nZ9Mmxyp1EB41OJaVJYHnxo3l/gGQc9NScOzCBdPjIThYHtXsVXt7eV8SE+W9CQqSdfr6yvZq1Cj7ANKdxFLAvqyp79/zz8tnnpsr1+vCTd6rkrv0skNERES2uHFDgkV5edJXVlqadD6/erVkc+zbJ/N5e5tXVvfuBZYv125WAZln507JMggJkRtUtRnUzz/L47lzWoXKUuVAp9OCXDk5Wj9E998vIzyOHy/BMnWekBApX15e0X161KghleabN+Umr317Wc/o0VLhd3aWG/ndu6WMlrInVGpTIbUvL7Wfk6AgLXttwADry1cVhSsndnYyTQ1+Fq7gBQRI5l1x/a85OZn2bWTcZMvadB8fqdAZ93+kNukq/Gc8PTm5cvexYqlfoAsXTEdzVEeZVRT5/+ZNmUcdOa4kFEUCTuvXS1Ppc+ekmfVjj0lwrGZNyUjav9982cxMqYTv3CnNvf/5R8py8KC8fvOmfNaNGmnnYXi4BMMVRTIVk5MlEFOtmqwvK8s0Y0Kvl2NU7Q8Q0Po0LAvqsX+3Mm66Xt4BGr3e9Lz28ZHPLTlZO3/VP7VLgDvdli1yDBceddWanBz5scbY1q1lXy5rVq2Sc/HGDcnsBeQ7X80eTU3Vrg/GCgqkU/yoKPm8Ll+WzOzDh2WacVNI4yzRnBx5b44dk+fqPYKTk2SXqoEZ9fzW6eSvfXs5x2vXlkxSdeRmKhtublqm4O0e6fNOwuAYERFRJaZmQIWHS+ApOVkqvatXS3aGmi3w3nvar7+qffukkqr21wNIBeXwYanANGkiwY49e7Qb2k6dpOJq6y+6at8kGRlSic7NlQwT4z43zpyRym5OTtGdzvv7A716aRU6e3sJbjVuLEG1iAi5AfzpJ5m3qD661D6x6tSR96hNG6kg3H+/No9x5ZpERATQsmXR85RX32s6nRzrxhXt4gJqarO6mzeLDqhZml5UZ9QVSa2UHj0qj4VHfwQkG0Tt0yshQYJLkZESQI+KksyynJzSBSS2b5dglpubVLzbtgWmT5fAsqenBLu9vLTgtzo6mhqADgmR60lmpjy/cUMLjsXGSoDNeHkvLwnM63RS3urVZVpAgATXIiNNrxt2dtIptTFL2bGldTsHxigPxn01qdk8t5PaWbh6/qp/6emmwbKEBOujMFeky5fl++ybb2ybXx0IwVhJBoMAtD5FbaVmXV6/Llluf/8tWeC7d2vXtqQkGVE4K8vyiKRxcZLVefGiXDf+/FPO5dhYufao1534eLm+qlJTpS9SNXPVOBg7cqR2L6G+B2oWnaurBG+GDJF7j7LM9iRTt7P/0jsNm1USERFVYtHRUkFs0wYYN06CQgkJ0rwQkH7D6teXX2KNO+BWmzF5eEgwraBAbpavXpXmTmrmz8svSyVA7dC6WzepHNjK01MqtJmZcrOdna2NGqdmifn4aP2UFUft/LtaNaBhQ6noubgAPXvKzfXffwNdu8pfUdTR8ADJkktNleyXxo21eSw1M6nqatS4+zJnLDX3Ko6iaH3kqcHYwtlnlqbr9XLMl1eAMDdXgkH168tjRIQ0Y1SzJP/5RwbCuHJF6xg+L08CYqmpcp5fvCiVe3d3qbg3bFiyMsTHSzbopUtS2a1b1zQTISBAAvF6vVSg1eZDKSly7Kh9Bh44IOdcRIRcH2rWlEq22pxZzThRg1F16sj1KTxcAvudO8tItb6+wAMPaNvX6cybeamjr5Jpc67b0bTLVuoPOcbS0rTvLfU8c3UtXT9pZcXZWUYutnVAi6tXJQCsfocC8j2YmWnbfuTnA0uWAP37257pl5go1yG178/sbAlmqyNDnjwp328pKfIDWVaWnF/q8RATI522q/1CZmRIoK2gQNZ57Jj8aKYo8hkdOSL3Hqmpci1ISbEc2AwI0LI8jfusU8vm66tlfRpnvlLZCQm5s877243BMSIiokqsRg25eXVxkYysDRvkptbJSaucbt0qFeXjx+Wm1dNTbuyrV5dlU1Ikc+PcOZn322+19Q8bJoGoLVvk5rlVq5L1+XTunCynVtA/+sg86NSihQQT1H5RihMfL2W3s5OgoKOjZKEdPy4VrIEDi29GVbhTbR8fadZRVkO1V1aVuQ8YYzqdHAslPR7y8+V8UivytgTUAKkourqaVn6zssw7Pb90SQsaHT8uFe7jxyWw7eoqWZ9hYTIq2SOPSMApL0/698vPl/NF7e8tJ0emlyQ4du6clL1ePaks33+/efaRg4OUxdVVAgBqRSw/X65Trq4S2Fq5UirdL78sI862bCllUzM21QBjw4aSEVu/vnT+/eCDEhRr2lSyYdT+AlVeXubXmMJZs3R3sHT+ZWSY91do/GNLeVKbaPfrJwHZwYOlqWBR3NwkOJaYqAXpz5zROpwvLnsvLk7OHXVAmeLcvCnf+6Ghci3q2FGuCQsXSmAkJkYCWw0ayPUlJkaaSCcnS399tWrJ/cGiRZKBefiwnLMnT0rw6soVCY7v2yflcneXLM8//5Trw8CBck5bCkgriukPUMbvkYeH9FWp9kd3t/ZJd6eryoExoByCY6GhoYhSe+Az8sILL+Crr74ym759+3Z069bNbPqpU6fQsKQ/VREREZGJGjXkZicgQG4uBw6UvrIuXpSKsbe33OwCchO8e7f0CZWUJBkfNWpIv2Nbt2rZJMY3pQ4OUgHu3x/4+mtg0CD5ddhWDz8sN/W5uXJT3L27+Tzq6FVNmti2TuPmbvXrS4VDr5dfsF99VbLkSqpWLfMKF5krasAEkoBOaZrwZWZqTZMURc7P48elyaKbm5xDjo7SdPq++ySDo1o14KuvJJi0erWcBwUFktmZmCjNnyIitJFc1cwcFxc515s0Mc/Wyc01DX5HRmojvcbGSmV7xQrglVekct2tm9YnoaphQ+09SE3VKmNq5lp+vnRqv2GDVPxbt9aaaBlnoKmBBGdnyQwNDJTlfH2l3A4OEijv3990+4UHkaDKRQ28GrM0wIedneVstFtx7JiWYfXgg1rTZWPx8dpgMJcuaf0e/vwz8OyzMl1RpLN7b++ig2NXrsi1QaeT773iAhvffw/897/AU0/Jubx7tzRxdHCQwPj585J5rXZzEBSkjdLctq2Wvb1uncwzaJBMi4mR+QMCJOh15Iic/2oA399f3puMDAnCPfyw5R+7dDrz7/kjR2Q5NeOUqDyV+S3M/v37kW+U53j8+HH07NkTQ4YMKXK5M2fOwNOogbUfO/IgIiK6ZR4ewKOPSqWyZUupmKq/VEdFmY7i5uIiFdutW+UG9eGHJahUvbpUTl95RSqrhZtuuLpKlofaLKQkIzc6OMg28vPl5tuSkjbTi43VOpb18tKCeS4ut1YZatGi9MsS3QoXF9MmVtevSyU2L0+CvdnZwNq12oATzs5Swf75Zzkfr1wBfv9dMrq+/loqu7GxWsfZGRlSOdbp5HypW1e2d/asBNsSE2UbBQWmldrjx+X5pUsSGPvhB9mug4MEu+3szLPb1GZTKSnS7Pn33yXL6+ZN7XxVB7548EEJgqkBAuPAfIMG8ujhIfvo5yeDb2RmyjacnaXi36dPmX8cdJdxcjIPHOXlWR4R19u79AMRqEGm69elSbEavDI+dxMTJaAUFCRB7tRUyXi0s5NRVB0dgXnzgI8/Ns9gLiw9Xcp67Zp2/gDWR7usWxd46SXpI+yjjyTra/Roea1aNS3Q7uMj60pNlXuGzz6T68DZs/L6jz/K+xQaKplnx4/LfYaLi3yP79wJdOggGWfVqsl7kpsrTboLCuSaZSnzq1UryWw3tny5lKFvX5s+AqJbUubBscJBrY8++gh169ZFF+OG1BbUqFED3uqdLBEREZUJnU7LtujZU5terZrcyBrffAcEAC+8IDfoZ85IRVqnk1+558yRyqbaeXZhQ4bITTMgmR62atoU+OsvyWKz1g9T4cp1cRIStJHCjLNcgoLKf/Q1otuhVi2puK5YIZXTjAyp8F64oA1gkZ0tFc0nnjDtz+uvv6QCHh0NzJ8vTRgdHKRynZgozaGGDJFgk9oY5PBhyXhxdJTs04wMeT5vnmQLnj2rNWccO9Y0KGbt9l5tDgZo/Q56eWnL6nTSPA2QDDfANCNIXX+jRvJeqBlhTk7AqFGyrkGDyugNp0rH3t68r8GCAtPO4wEJNFWrZlszPp1Ojl8/P/n+3L9fzjfj795t2+Tcee45OQfs7SUjys1NzlcfH8kksyUDW/0+CwjQsjgBCXx7epr+GBQbK9t99FH5seu556SrAFXduvK9mZ8v15F69eRcatpUzi07O7mOpKYCX3yh9Uvm6SnXC3t7uQfw8JAgWNeu0vfac8/J+9enjwTzUlKsv5dububNuHNzyz7Dj8iacm2tm5OTgyVLlmD06NHQFXM32rJlSwQEBKB79+7Ytm1bsevOzs5GSkqKyR8RERHZRqczz/Bq0gR4+mmpdDZvLjeqrq5y4672G1JUVpjaj09JbmQdHbUKeFl1Uh4aar15393WWTyRJXq9BJP+9z+p0O7dC/ToIefSX38BH3wgldGOHSUzpHlzOS///ltGkmvWTALeW7cCS5fKfJs2SeXZ318yO2rXloyWuDhZ/6VLkhGye7dklR4/LsscPSoV5OPHpSx6vTStUjPErElPl+aeSUkyIu7161LJ9vKS9X36qRZoV9elNkcDTLPJOnQwXTezTKg09HrzUTLVYJXxSJlHjkhWWH6+nB+nTmmDdADyXRYSIn+FO47v00eO+eho+SGnZk05H+vVk0EooqOlKbD6XRUdLY+ZmZLxDUgwOS1N/r96Vc4L46Deli3a9+qNG3LufvGFlt0dFCTlMB6YIihIzpvkZOkqIT1dmojq9dp38++/S5PKe++VJtOA3B94eMh+hITIfcPTT0vA7tIl0+C4m1vxIyEaN50GZDvMn6HbpVyDY2vXrkVSUhJGjhxpdZ6AgAB8++23WLVqFVavXo3w8HB0794dOwv3nlnIzJkz4eXlZfgLKUkbDiIiIjKjjl53u50/LwG5kmaIWVO/vm0jWxLdrfR6CQC3by/NjrKzpXIbFiZZHpcvy1+HDlpfg/XqAdOmSROnV16Rx3/+kYp6eLgEt1xdpfLq7y8V3chI6Vzb11cqxufOASdOSFBt+XLJEGnfXjof//13yeJ68snim4MBkskSHS3ZNT/9JMH5QYNk+z4+ErCztN+2YIYolRWdTjKfjINlCQnAsmWSBbVunfSPd+SI6UAPNWrIOXr0qOn6HB3lPFm9WjI2q1eX87ROHfneunZNsrXs7CRYfeWKnN+nTsm5mJkp5+W2bRKs/u9/JQAWH69tY8cOKc/ly5IJumGDBJ3VTDknJwmYF87yVpuUdu8uZQgNNQ1WOTvLNQPQAtZqMFtlby9BsMaNJZvU1oF0rOnXTxuEg6i8lWu3qQsWLEDv3r0RWMTPtOHh4Qg36l2vY8eOiImJwezZs9G5c2ery02ePBnjx483PE9JSWGAjIiI6C50+rRktDz8cNmsr1Mn80wSospEr5cKo7u7VJJr1JDgV5s2UjlNS5PMk/HjtayPe+6Riu7AgRJ4SkuTSvR992kdiPv5yToAWS4iQrLTmjSRrK5lyyTD6+mngeeflwp4s2ZS6b7vPuDdd22vyDZtKttt3VqadqoDbxDd6XJzgZkzpZP51FTgxRflnNi1y3S+Tp2AVatMp61YId9Pjo7SlDE/X/rPi4uT7K/jx4FnnpFg1+7dksUVEyPPN2+W70t/fzl3T50CNm4EliyRdV29KsHl+HgJYAcEaE2vR43SyuDsbH0UzWeflbINH26e9fbqqxJML4pOp2WH9ehx64O0VKsm1xai26HcgmNRUVHYunUrVq9eXeJlO3TogCVLlhQ5j5OTE5yq+lijRERElUBmptZEpKxwmHeqzPR6qdxGR0tF+OhRqfAOGSJZXq1ba02cVE5OUunt31/6LOvZU7I7mjaVLJKhQyUwVlCgLdO6tay/WzfJENm+XTr+37hRAnItWmjn2hNPlGwfhg6VQBuzQuhu07SpZHq1by9ZVnXryrln3PE+IIPgLFsmffQ5O8vxXr26NlBOVpY2unJGhjRpvHFDOqZftUqaLbu6SgbXsWOSobVunWSO1a0rGZ8ZGdIJ/vnzsi61v7HISOnUPy0NGDzY9i4F1Ow3vd78e9TSSKDFvU9Ed5NyC44tWrQINWrUQN9SNPo/dOgQAoprkExERESVwrJl5pUKIrJOr5dsE1dXye44f16m+fsDI0ZIEKtwJpaLiwTI1IYWgYHy5+Ym2R21apn39+PpKZVttWPuRo1km2rfX7cahGZgjO5GAQGSLaY2i7S3N83MMjZ0qIwQ6+Mj546zswS2nJ1NA02OjtJM2ddXztWAAAl6ff+9ZE5lZkofXjqdBMMTEyV7s0kTaeK4caOcn0uWyLxZWdLskqMsE9muXIJjBQUFWLRoEUaMGAH7QrmUkydPxuXLl/H9998DAObMmYPQ0FA0adLE0IH/qlWrsKpwDioRERFVSuxsl6h0goOlIty0qVSa1b5/LA1uUa2aPKr9cTk4AJMnSz9lgDbao7Hu3bURIz08ZP5r18p2H4juNnq9nBs5Odo5ZzxYhLE2bSR7a9cuCWTZ21vuX1MNYqkjrLZsKSPP/vkn8Ouvsp3wcGDBAnk9JESyP7Oy5JzOy5O/0FAJev/0k5Sxdm3ro0wTkalyCY5t3boV0dHRGD16tNlrV69eRbQ67AZkRMvXX38dly9fhouLC5o0aYINGzagT58+5VE0IiIiIqJKw99f+h4z1qqVbcvef7/2f+F1AFLRNubiIhlmRFVdSbq6PnhQgmRXrph3gq/y8QG6dtWyMX18JHOsZUvp28/fXzLLsrOB//xH1gVogbZ69aSJZVyc1qH/fffJ/xERpd5NoipFpyiKUtGFKAspKSnw8vJCcnIyPI2HzCAiIiIiIiKqAImJEtS6etX2wDUgmWBffikjW44eLZ3/Z2XJ4DVJSRI8U/3yi/RZFhsrTTJr1ZK/2rVNR9EkqmpKEicq19EqiYiIiIiIiKoqHx95VJs228reHujSBTh0SJo1Z2ZKc+h69bTm0arYWOn/rGFDWcZSM2kiKhrHciIiIiIiIiIqR5b6GitOq1ZAr14yOma9ehJoKxwYA2RgjhMngI4dGRgjKi1mjhERERERERHdgfr2layz1FTAWodIzz0nWWWWAmdEZBsGx4iIiIiIiIjuQGpzTA8P6/OwXzGiW8dmlUREREREREREVGVVmswxddDNlJSUCi4JERERERERERFVJDU+pFhrk2yk0gTHUlNTAQAhISEVXBIiIiIiIiIiIroTpKamwsvLq8h5dIotIbS7QEFBAa5cuQIPDw/oKklPhCkpKQgJCUFMTAw8PT0rujh0m/BzJx4DVRM/d+IxUHXxsyceA1UTP3fiMVC+FEVBamoqAgMDodcX3atYpckc0+v1CA4OruhilAtPT0+eKFUQP3fiMVA18XMnHgNVFz974jFQNfFzJx4D5ae4jDEVO+QnIiIiIiIiIqIqi8ExIiIiIiIiIiKqshgcu4M5OTlhypQpcHJyquii0G3Ez514DFRN/NyJx0DVxc+eeAxUTfzcicfAnaPSdMhPRERERERERERUUswcIyIiIiIiIiKiKovBMSIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiIiIiIiIqqyGBwjIiIiIiIiIqIqi8ExIiIiIiIiIiKqshgcIyIiIiIiIiKiKovBMSIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiKiYuh0Opv+tm/fjsjIyCLnmTp1qmG9I0eOhE6ng4eHB9LS0sy2GxUVBb1eb7bc9u3bTdZpZ2eHmjVrYsiQITh16pTJOmJiYvDCCy+gQYMGcHFxgY+PD5o1a4ZnnnkGMTExxZbX+C8yMhIAkJubi/fffx+hoaFwcnJCw4YN8eWXX5qV/8SJE3jhhRfQsWNHuLm5Gd4jIiIiojuJfUUXgIiIiOhOt2fPHpPnH374IbZt24Y///zTZHrjxo2RmJgIAHj55ZcxfPhws3UFBwebPHdwcEBeXh5WrFiBMWPGmLy2aNEieHh4ICUlxWK5ZsyYgW7duiEnJwcHDhzABx98gD/++APHjh1DUFAQYmNj0apVK3h7e2PChAkIDw9HcnIyTp48iZUrV+LixYvo0KGD2f698MILSE5OxtKlS02mBwQEGF7/4Ycf8OGHH6Jt27b4/fff8eqrryI1NRVvvfWWYf4DBw5g7dq1aNmyJbp3745169ZZ3A8iIiKiisTgGBEREVExOnToYPLcz88Per3ebDoAQ3CsVq1aFl8vzNHREf3798fChQtNgmOKomDx4sUYOnQo5s+fb3HZ+vXrG7bRuXNneHt7Y8yYMVi8eDHefvttzJ8/Hzdu3MC+ffsQFhZmWG7gwIF46623UFBQYHE/PD09kZOTY7H8J06cwIIFCzB9+nS88cYbAICuXbsiISEB06ZNw3PPPQcfHx8AwJNPPokRI0YAAH7++WcGx4iIiOiOxGaVRERERBVs9OjR2L17N86cOWOYtnXrVkRFRWHUqFE2r0cNZkVFRQEAEhISoNfrUaNGDYvz6/UlvxVcu3YtFEUxK9eoUaOQmZmJ33777ZbWT0RERHS78Y6FiIiIqBwUFBQgLy/P7M+SHj16oHbt2li4cKFh2oIFC9C5c2fUr1/f5m2eP38egGS2AUDHjh1RUFCAQYMG4ffff7faPLMkjh8/Dj8/P/j7+5tMj4iIMLxOREREdDdhcIyIiIioHEyaNAkODg5mf3/99ZfZvDqdDiNHjsT333+PvLw8JCYmYu3atRg9enSR21ADcJmZmdi1axcmTJgAOzs7DB06FAAwfPhwjB07Flu3bsWDDz4Ib29vNG7cGOPHjzd0rl9SCQkJhmaTxtzc3ODo6IiEhIRSrZeIiIioojA4RkRERFQOXn31Vezfv9/sr0WLFhbnHzVqFK5du4ZNmzZh6dKlcHR0xJAhQ4rcxtChQ+Hg4ABXV1d07twZ+fn5+Pnnnw1ZXDqdDt988w0uXryIefPmYdSoUcjNzcVnn32GJk2aYMeOHaXaN51OV6rXiIiIiO5E7JCfiIiIqBwEBwejTZs2Ns9fu3ZtdO/eHQsXLkRkZCSGDRsGV1dXZGRkWF1m1qxZuP/++2FnZ4fq1asjJCTE6rqff/55w/OVK1fisccewxtvvIF9+/bZvlMAfH19cfjwYbPp6enpyMnJsZhVRkRERHQnY+YYERER0R1i9OjR+PXXX3H48OFim1QCQJ06ddCmTRu0bNnSamDMkkcffRQRERGl6h+sWbNmuH79OuLi4kymHzt2DADQtGnTEq+TiIiIqCIxOEZERER0h3j44Yfx8MMPY/To0YaRJ2/F1atXLU5PS0tDTEwMAgMDS7zOAQMGQKfT4bvvvjOZvnjxYri4uODBBx8sVVmJiIiIKgqbVRIRERGVg+joaOzdu9dsup+fH+rWrWtxGWdnZ/z8889lVobp06fj77//xtChQ9GiRQu4uLjg0qVLmDt3LhISEvDJJ5+UeJ1NmjTBmDFjMGXKFNjZ2aFt27bYvHkzvv32W0ybNs2kWWVGRgY2btwIAIb3YseOHbhx4wbc3NzQu3fvstlRIiIiolvA4BgRERFROfjyyy/x5Zdfmk1//PHHsWTJkttShieffBIAsHz5cnzyySdITk6Gj48PWrdujY0bN5Y6ODVv3jwEBQXhyy+/RFxcHEJDQ/H555/j5ZdfNpkvPj7ebFCBqVOnApB+0Eo7YiYRERFRWdIpiqJUdCGIiIiIiIiIiIgqAvscIyIiIiIiIiKiKovBMSIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiIiIiIiIqqyGBwjIiIiIiIiIqIqi8ExIiIiIiIiIiKqsuwrugBlpaCgAFeuXIGHhwd0Ol1FF4eIiIiIiIiIiCqIoihITU1FYGAg9Pqic8MqTXDsypUrCAkJqehiEBERERERERHRHSImJgbBwcFFzlNpgmMeHh4AZKc9PT0ruDRERERERERERFRRUlJSEBISYogXFaXSBMfUppSenp4MjhERERERERERkU1db7FDfiIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiIiIiIiIqqyGBwjIiIiIiIiIqIqi8ExIiIiIiIiIiKqshgcIyIiIiIiIiKiKovBMSIiIiIiIiIiqrIYHCMiIiIiIiIioiqLwTEiIiIiIiIiIqqyGBwjIiIiIiIiIqIqi8ExIiIiIiIiIiKqshgcIyIiIiIiIiKiKovBMSKispSfAxTkVXQpiIiIiIiIyEYMjhERlaU9TwCH3qjoUhAREREREZGNGBwjIipL8TuAM3MquhRERERERERkIwbHiIjKUlZ8RZeAiIiIiIiISoDBMSIiIiIiIiIiqrIYHCOiqiP5FJAWWb7bsHMu3/UTERERERFRmWJwjIiqjr2jgOMflu82AvvI4zIdEP0TELlMe+3KpvLdNhEREREREZUYg2NEVDUs0wFQAF0xl719z1uefuBVy9MvLAB2DdGeu9fV/v/rUWD34/J/VjywvQ+w2h8oyLW52ERERERERFS+GBwjospNKQBi1/37fz4AXdHzn//G8vSzX1iennoeuHlQe+4SaPp6rUflMfOKPGZdA7Z2LboMREREREREdNswOEZEldvNw8DOh+T//OziM8dKIumYBN+ML6VKgek89q7yeHy6Nu3Gbslky7phOu/13cD5+UDKWdPpe0YCuallVWoiIiIiIiIyUuJa4s6dO9G/f38EBgZCp9Nh7dq1Jq8rioKpU6ciMDAQLi4u6Nq1K06cOFHseletWoXGjRvDyckJjRs3xpo1a0paNCIic8Yd5KeeRbGZY5asrmn6POOyPG6MABL2AWnntdeOTTWdV2cvj1c2WlivH7A2RAJlif8DttwD7HsWWB/+bzNQSFDs0nfAT56AopS87JZc21E26yEiIiIiIqoEShwcS09PR/PmzTF37lyLr3/88cf4z3/+g7lz52L//v3w9/dHz549kZpqPethz549GDp0KJ588kkcOXIETz75JB599FH8888/JS0eEZEpO1ft/4KcojPH/uxpeXpWvOnztcHAzaPyf/x209fyCl3r1O3VGwv0PgQMiDR9PSNWHn9rY77d8/+VoJi1dRvLSQb+fkx7nnrB9PXkU8BP1STo9kdXefzRAbjxD5B0XJ6XVfCNiIiIiIjoLqJTlNLXhnQ6HdasWYOBAwcCkKyxwMBAjBs3DpMmTQIAZGdno2bNmpg1axbGjh1rcT1Dhw5FSkoKNm3SRnJ78MEHUa1aNfz44482lSUlJQVeXl5ITk6Gp6dn8QtUVVErgL+HAX73AD12ATodcO7/gP3PafMMV4BNrYFeuwE7p4orK1FZSI8GfqmtPa//ItDWQnBfUYAf/w1kDS90WVSzuIYrQPxfwNb7zJdvOB5o9ak2r7HhCrD/BaDxZMAtRAJZP3uXfF8e/B/g08p0Wn4OkHwC+K2VhfkPWA66WTMgGsi8ClRvV/KyERERERER3UFKEicq0z7HLl26hLi4OPTq1cswzcnJCV26dMHu3butLrdnzx6TZQDggQceKHKZ7OxspKSkmPyRDf4eJo/X/5ZAwDKdaWAMABIPSQfjZ78y7xOJ6K5TKNCls9Ks8vKvlqfnZ5s+3/6g5flO/wfISbL82oFXZD1qE09HL3n072F5fgBo9635tN9am0+78F8tMBY+rtD8hQJjOnvg4StA0/eAmt3M17U+HNjc3nqZiIiIiIiIKqEyDY7FxcUBAGrWNO2fp2bNmobXrC1X0mVmzpwJLy8vw19ISMgtlLyKiF4F1Blt+bUWs7T/1Yr2oQnAxiblXy6i8nSu8OiTVoJj2VYCwSucTZ/npVvf1u4nLU8/+yVwcaFpJubgJOD+LZJVNvTfANzQTKDnbqDVHOvNP1ON+jc7+xVwarb2vMVM4N6ftOf2brL+wTeBPkeBx3IBlwAg4n2g+59A35OAn1EWXH6m+fa29QHWBFvfZyIiIiIiortcuYxWqSuUmaEoitm0W11m8uTJSE5ONvzFxMSUvsCV0alPTZ8feBn4azDgUCiV0L0e8FgB0Hii5fVkxctof0QV5fx/gZjVQG5ayZZb7iiPJz8ynW4cdFIU6XNLKQDys26tnACg5Mnj4CTLr+uNAm1q9hgA2DkCNTpLZplfR6Dhq0Dt4dIsUqUGsJP/HeAk6zpw4CUg/ZLRepwB338zv/qfAx75N+Dn6A14NzMvj1cj4Pquovfp6iYg83LR8xAREREREd3FyjQ45u/vDwBmGV/x8fFmmWGFlyvpMk5OTvD09DT5q5Ty0oEb+0q+3KHXga1d5f+kE8DZf/tYOjNHMka6bpKMkofOac3MGr9peV2JB6W/pJtHit7mtW3STNP47+QnQHqUBB+ISuPSd0DMWuAnDyDjiu3LFeRaecEo6J6bBGzuIE0ijTOwSis7QR6NA1/G9A7Wl+1RaARJexfApzUQ2BdoPh0I6ifTdw4EMuOA1TW0eZu+Czz0bwf8biHA0CzAo57pSJ1ERERERERkUZkGx8LCwuDv748tW7YYpuXk5GDHjh3o1KmT1eU6duxosgwAbN68uchlqoSbR4CV7sX3AXR8GnB8ugSjljsDeRkyPX6HTNvY1HR+ryZAoIV+k1rMtLz+/c8B574GYtcWXY4/7jefdngi8Eso8KNd0csSqdIuAluMO7zXwdBvmJqZdSuMM8d09vKYcdm0SeGZLy0vm51Y9LpTThaz7aIzaC3quh5o8hbg0UCbtibAdJ6IDwD3OtrzWx1II/ony9OX6YBLP9zauomIiIiIiO4wJQ6OpaWl4fDhwzh8+DAA6YT/8OHDiI6Ohk6nw7hx4zBjxgysWbMGx48fx8iRI+Hq6orhw4cb1vHUU09h8uTJhuevvvoqNm/ejFmzZuH06dOYNWsWtm7dinHjxt3yDt7VNrWwbb6j7wJH35H/C7KtdwoOAG2/BpxrWH+98y9A8EDTaWoGzrGptpXHms1VPNhJttn2IHD9L+15drwc1wCs9hdW2G//jrZoaeRI43WoGY16e0DJ16ZfXGR5vfkZ0vzRmqL6I6v/ovXXbKG3N582XAHaWBh581ZlXTefpjY73fNU2W+PiIiIiIioApU4OHbgwAG0bNkSLVu2BACMHz8eLVu2xHvvvQcAmDhxIsaNG4cXXngBbdq0weXLl7F582Z4eHgY1hEdHY2rV68annfq1AnLly/HokWLEBERgcWLF2PFihVo356jphlYayJmqfK/Nsj0ed8TwMDL0mzSv2fR2wl+COi8pnRlLM6NPeWzXqpcUs+ZPk85o2Uy2Zp5lbjf+mtKgfQ1BgD4NzimKKYd8t88ZHnZy+uLDj4XpW0ZB7F8/h2JssEtBt2aTpHHzmu1aQdeBLb3B65t16atcNH+z02T9/HAq6Vr9k1ERERERHQH0SmKoZZ4V0tJSYGXlxeSk5MrT/9jxoGvbpuBAAuBLYuZMYUML8VHbG29w3Ilc+SeZdq0o1Nk9LvCy3TdCMT+CpwvNFpgu/8D6j5TuiZmVHls7wfcuxKwdzWdrh5H6nFrfFwNjAVcCwV/LSnuvGg+A2gyWfoIW1Xd8jzDFQlKqx37l8RwxbwMpTkPC4taAfw9TP4fGAO4luEokjFrgF2DbJ+/6RTg+PuAWygw4FKxsxMREREREd1OJYkTlctolVRGQgZr/8f+ItktuWm2j6rn0wYYkly2ZVruAET9qD3PTQOOfwCkFMr28W0PBPaWJl/1nzd9bd9Y0yZsVDVd2QDkpppOKyjUp1hi4QyuMgqoHnkLyMssfqCI0/8p/Tbu31r6Za2pPVRGl+19uGwDY4DW/5qtjr9fttsnIiIiIiKqIAyO3cnuXan9f+4r4Ee9jNi3oSmQfBI4P197fVge0PoL0+Uf3A84lDKLrv4L8nhfEU0so1YAif+T/9c3MH3tnuXyqLcDvJtZWLgMExazE2VQArr7rPE3fW4cNF2mA35rZfp64oGy23bqueKDY0fesjy9Zrfi1+/fXcsWeyShZGUrik4HVGtedutTlTZgnR4J7B1tOq0gT0bJJSIiIiIiugswOHYn0+mARzOAOqNMp6ddADY0AfY9K887r5UgVPjLZVcJt/u3f6FqEdbn+XsYcPU38+lt5wEuRqPp5WebzxO/Ux4L8sxHAFQUYM8ILasoLxNFWuUrgxLkpgFXt8jyu59kX0h3MmtBqeKCVfufL/r1ktjUHIY+xwoLfth6eXR2xZfT2HAFcPIpcfFuO5+WQMMJwCM3AMdqJVu28AAGNw+ZjpK7TAfE77r1MhIREREREZUDBsfudPYuEmwqim877f+SVmqtCX/VtvlOfmQ+rf7zgJ2T9vzyevN5/uwhj6c/leCWqiAfOP9/wKXvgZ88geVOwEpX25qS/uQBbOslGXaRS4Abu4Grm4Hj023bF7p9jLOUjAebsHQ8mTBqVpmbCuSmmL4ctxX4s1cJymEhyNVlPeAaYjrNZERIHco08/FO4VYbaDUbcPIFwkaUfHnjTFb1fY03GnX07JfymJ0A3DwC3DwM5GWUurhERERERERlhcGxu4GdcxGvuZpmaZUVt3+DA9bGayhJ5sy1P6y/dvhN0+cnpplmBxXkyGNeutG0f/ul2v8CcP1v6+tOOQNsewA4+o5kp2XG2V5mKl/GwbGLi4D/jQcuLpb+64qSeVn7f99Y4Ccv4NBE7ThIvQDEbbG87OCbFsph4Tj2jpDjzjjw1uBFrQ9ABw9U+ktnw/ElX2bfs0DSMTnv1M93633a6+qIo38NATa1ADa1BA5PvuWiEhERERER3apKXsOrAvKtZF7UGXnr624+w3om2o92t75+49H8dgyQTJKs65bnPTUbOPtvBt1yB2lWeu5rYMu91tefYxQMWeULrAmQbR5+C8hJutXS060w7nj/xj/Amc+AvaOsz2+Jeuyf+kQ7DvY/Z31+R29LBTGfpHeQEVZ/8pLnHZfIo4OHPN6zHNCXsPP6u42bUebc/RaC270LD5Twr40RwPqGwJZ7tGlpRiNZFuQD17Zpz89+IefkMp2FwReIiIiIiIhuDwbH7iadf5HHYblFz1etBdBhUdHz2KLJZK2vpIYTbFumRmfzaWrn/kW5/Ktkkpz7yvLrJz8CDryoPU8+Wfw6o1dYWddM4Ocyan5KpWOcOZZ9o2TLZsRKxlfsL7YvE9i3+HKoCo/aGDpcHtWAnlsYkHnFdJ7BSaYDaFQm/vcDD/+7vw9dAoZmyjXGVr/W0f4vKgCacqZUxSMiIiIiIrpVDI7dTZQ8YEiKlrUSPMB8Hp3OelbHrQh44N/1F5Mxo7OQUaZ3LPvyWPJwHDA0SxshkO4s/zwLZP0bCFOMM8eKaBprydoQ4KyFIGpWvOnzgTHa/81nWF7XX8PMpzl6mT7X/ZvhGNBLRoT1rA90/AHoc1Sm+7SRZdRzo9WcYnfhrnDfau1/lwA5r9xDi27mXZzIH6y/Vmtw6ddLRERERER0Cxgcu5sU5GpNuwCg5v3aqJLlqdV/gOod5f8+R8xft3fX/m/0hvnrhbNsbNFrr+XpB162PN2nNeBS03QgAGPN3jefxs7Ab68L84HVfkB6jGmzytL43yvm07Y9aPrcNVj739qoq4n7zafpHeTx0XTT6WFPyIiwAODTCvBuJsHYXnv+Xc4JsPcAGto4mMWdLqAX0HTKra/H3gN48H/Fz1fZm6oSEREREdEdi7WRu0lBoeaUoU8AfvdZnrcsNXxN+9/RR7LD6oyWwNzZL4Cef0kH2+51gMDe5sunnCrZ9tr/F6jeXnvu4A3kJsn/Z+eaz995LRDYz3Taw1eANYHa82bvAemR0vm7au8o0wCZvQvg7A+4+Mujyf9+WtCEbs0vtYCBRh3rW8o2LI2bpcyY9GoKJB+X/9WsQ/XRUn9bxoyDsYG9gUFXS1eGO5G9GxAx1frrwxXTfgOtGRCpNc8mIiIiIiK6AzE4djcpyNb+fywf0Olvb6Wz0evSQf/DcRIUyIiVgJF3BPBomlSmLQl/DfhntOm0tl/LqJQNx0ufZCema4GrOoX6JRpyE4hZDex6xHR6zfuB7laCF8YjeIY+Lo8dFgIOnsDNI5IxdG+hPsnyMoCsazKqZVYckBEFJOyT/7PiTYOTjt6Wg2gu/v8GEG0IGtyNTn8GHBx/601X1VFIASA/x/S1pu8Cxz+8tfUXp+08Ge0UkMBntxjLfV7532/7OnU66+dAZfXwVSAnUQLjanPLZTo5PjJipQms2qzaJQDINAoeDooHVte4/WUmIiIiIiIqhMGxu4W9G5CfpT3XVUCL2JafyKOaLePVCGg1W/4vKihQd5QEx3ruBrZ0kmn1n5M/lYO3PA66ZnnfQgaZPrc1OBPwANBpifa89Rzr89q7Au5h8lcURQFyk7UgWmYckHQMyNoiwbXsRACKzKfTS/DFUhDN2R9wcC96W3eakx9p/+dnW2/GuncMUPdpeS9d/E1fc/AyPZbVrEBVvedkdNL8zDIpMtyNOoSv9yxw/lutmTAANP9ImmAaN8Mk27j4m3++6rmpvp/qMdLzL+DXuvL/oxmSqUlERERERHQHYHDsbtH3FODkW9GluDW+7YAWH0tQrbCIqcD1vwDnIjJJeu4Gkk8A9Z62fZsdvy9xMYul00nmmKM34NWw6HkL8mU0RjWIlhUnHdCr/+emaVlmekfAuablIJpzTcDuNg1sUJTsRHmM+wP4swcwMBbIuAxUb2c638WF8gcAnX81zaTLTQY2WDgGVI5eMirimn+DLk3eAk5Y6VC/OIWDqO3+T4Jj1VoAA6KliWfhslPZUgcqcAsDAvsAVzZqgbEhKcBPnhVXNiIiIiIiIjA4dvdwC6noEtya0CcAvR3Q2EKH/YA0d3xwX9Hr8OsofyVSwc0b9XYyUIBLTaBa86Lnzc+S5ptq4CzrqvSjlRUnGWn5ORJkUhQZmMFSEM3FH3CqXn6Zheook3/2kMe1/2YHPVZgvSnpqU+A67uKX7dxIMs4E1EpkMeWnwKHJpSsvEW528+pu4V6XOh0QPuFwOYO2msOHkDXTZJ5SUREREREVEEYHKPbo9MPJV8m4kMgN+UWN3wX9f1l5wy41ZK/oigKkJdmFESLk/6y4nfItOwbWkBJp5eMQ2sZaQ6etvePlnre+ms/6iW4VZAvgzQYsyUw5tPG+mtKPuBeD2g0HriyHri2zXwe/55A3Jbit1NYtRYlX4ZsNzTb9LlLTWDAJdNpgQ/KHxERERERUQVhcIzuXE3fubXlnXyt94l1N9PpJOPGwQPwrF/0vEqBNIVUg2iZcTIYgRpYy0nW5tU7/BtEq6kFzxy9gZpdgbPzgAMvFr2t4kYubDYVODbV8ms5SebTnPy0wRnUZnhdNwGHJwFpl4DLv8q0+s8DdccAW/4G8v8dfbS7hQCaJb1LOcIl2eZOaApMRERERERUDJ2iKLc47NydISUlBV5eXkhOToanJ/uwISqx/Bwg+7oWREs5DRx6HRiWByy/xTi6bzvggX9kvWv+HUl0YAxw4CUg9hfA3gN4tFCW4C9hQO3HpM+x/CzAubr22r7ngaQjQK/d2rSCfGnGmnlNMpSsUZTKO5ooERERERERAShZnIiZY0Qk7BwB1yD5AwDf9hIcUzvWLwmn6tJHmE8rIPMqENBTpqsjGwY8IKMZtl8IxPpK4Kww/56Ad1MZ0bPwqJ6tP9Oajqr0dv9uo4jAGMDAGBEREREREZlgcIyILFObMu571nT6g/8DqrWUbLLCASpV9g2gzlPyv3dT89e7/SaPTj6Azg5wCTSfp/231stm51x02YmIiIiIiIhsVE5D2hHRXU9fKADVfDpw78+SDabTAfeuKt16m71v+vyxPMDRq3TrIiIiIiIiIrpFZR4cCw0NhU6nM/t78UXLnXlv377d4vynT58u66IRUUmozRRVTd4Caj2iPQ8eAAy6bnnZRhOtr7fZe7deNiIiIiIiIqIyUubBsf379+Pq1auGvy1btgAAhgwZUuRyZ86cMVmufv1iRuEjovKnjhY5NNv8NZ1O6yTfv4cEyhq9Ls/DX7095SMiIiIiIiK6RWXe55ifn5/J848++gh169ZFly5dilyuRo0a8Pb2LuviENGt6LAQuLhIOuu3xiUA6PY7oNMDLT8BGr0BONe4fWUkIiIiIiIiugXl2udYTk4OlixZgtGjR0NXzAhxLVu2REBAALp3745t27YVu+7s7GykpKSY/BFROXjoUtGvP3xFAmMqBsaIiIiIiIjoLlKuwbG1a9ciKSkJI0eOtDpPQEAAvv32W6xatQqrV69GeHg4unfvjp07dxa57pkzZ8LLy8vwFxISUsalJyIAgHtoRZeAiIiIiIiIqNzoFEVRymvlDzzwABwdHbFu3boSLde/f3/odDr8+uuvVufJzs5GdrbWD1JKSgpCQkKQnJwMT0/PUpeZiIiIiIiIiIjubikpKfDy8rIpTlTmfY6poqKisHXrVqxevbrEy3bo0AFLliwpch4nJyc4OTmVtnhERERERERERETl16xy0aJFqFGjBvr27VviZQ8dOoSAgIByKBUREREREREREZGmXDLHCgoKsGjRIowYMQL29qabmDx5Mi5fvozvv/8eADBnzhyEhoaiSZMmhg78V61ahVWrVpVH0YiIiIiIiIiIiAzKJTi2detWREdHY/To0WavXb16FdHR0YbnOTk5eP3113H58mW4uLigSZMm2LBhA/r06VMeRSMiIiIiIiIiIjIo1w75b6eSdLRGRERERERERESVV0niROXW5xgREREREREREdGdjsExIiIiIiIiIiKqshgcIyIiIiIiIiKiKovBMSIiIiIiIiIiqrLKZbTKiqCOK5CSklLBJSEiIiIiIiIiooqkxodsGYey0gTHUlNTAQAhISEVXBIiIiIiIiIiIroTpKamwsvLq8h5dIotIbS7QEFBAa5cuQIPDw/odLqKLk6ZSElJQUhICGJiYooddpQqD37uxGOgauLnTjwGqi5+9sRjoGri5048BsqXoihITU1FYGAg9PqiexWrNJljer0ewcHBFV2McuHp6ckTpQri5048Bqomfu7EY6Dq4mdPPAaqJn7uxGOg/BSXMaZih/xERERERERERFRlMThGRERERERERERVFoNjdzAnJydMmTIFTk5OFV0Uuo34uROPgaqJnzvxGKi6+NkTj4GqiZ878Ri4c1SaDvmJiIiIiIiIiIhKipljRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERERERERFRlMThGRERERERERERVFoNjRERERERERERUZTE4RkREREREREREVRaDY0REREREREREVGUxOEZERERERERERFUWg2NERERExdDpdDb9bd++HZGRkUXOM3XqVMN6R44cCZ1OBw8PD6SlpZltNyoqCnq93my57du3m6zTzs4ONWvWxJAhQ3Dq1CmTdcTExOCFF15AgwYN4OLiAh8fHzRr1gzPPPMMYmJizLb5yy+/oEuXLvD09ISbmxuaNGmCb7/91my+rVu3omPHjnB1dUX16tUxcuRIxMfHm833zjvvoF+/fggKCoJOp8PIkSNtf+OJiIiIbgP7ii4AERER0Z1uz549Js8//PBDbNu2DX/++afJ9MaNGyMxMREA8PLLL2P48OFm6woODjZ57uDggLy8PKxYsQJjxowxeW3RokXw8PBASkqKxXLNmDED3bp1Q05ODg4cOIAPPvgAf/zxB44dO4agoCDExsaiVatW8Pb2xoQJExAeHo7k5GScPHkSK1euxMWLFxESEmJY30cffYS3334bzz33HCZPngwHBwecPn0aOTk5JtvdsWMHevfujb59++KXX35BfHw8Jk2ahO7du+PAgQNwcnIyzPvZZ58hIiICDz30EBYuXGjtLSYiIiKqMAyOERERERWjQ4cOJs/9/Pyg1+vNpgMwBMdq1apl8fXCHB0d0b9/fyxcuNAkOKYoChYvXoyhQ4di/vz5FpetX7++YRudO3eGt7c3xowZg8WLF+Ptt9/G/PnzcePGDezbtw9hYWGG5QYOHIi33noLBQUFhmn/+9//8Pbbb2PmzJmYOHGiYXr37t3NtvvGG2+gQYMG+Pnnn2FvL7eTYWFhuOeee7Bw4UI8//zzhnlTU1Oh10tjhR9++KHY94OIiIjodmOzSiIiIqIKNnr0aOzevRtnzpwxTNu6dSuioqIwatQom9ejBsqioqIAAAkJCdDr9ahRo4bF+dWgFQDMnTsXTk5OePnll4vcxuXLl7F//348+eSThsAYAHTq1AkNGjTAmjVrrG6DiIiI6E7EuxUiIiKiclBQUIC8vDyzP0t69OiB2rVrmzQ7XLBgATp37oz69evbvM3z588D+H/27js8inLt4/hvQwlBSZBOIAIiooAUu3gUBBERUMQDKAoCHo+KDRHFqEfBAiIWVPSgngOoqOABwYZKkWJBAREFCzZKpIgUk1ADyb5/PO9kZnZnWwop+/1c1167Ozsz+2yZ3Zl77ud+TGabJJ199tnKy8tT79699dFHH4XsnilJS5cu1UknnaRZs2apefPmqlChgho2bKi7777b1a1y7dq1kqTWrVsHraN169b5jwMAAJQVBMcAAACKwciRI1WpUqWgy6effho0r1Wo/pVXXtHhw4e1a9cuzZkzR0OGDAn7HFYAbv/+/frkk090xx13qEKFCurXr58kqX///rr++uu1YMECXXTRRapevbpatGih4cOHa8OGDa51bd68WT///LNuvfVW3XrrrVqwYIEGDRqkxx9/3JW9tnPnTklSjRo1gtpTo0aN/McBAADKCmqOAQAAFIPbbrtNV199ddD0E0880XP+wYMH68EHH9QHH3ygDRs2qHLlyurTp4/27dsX8jmsIJilSZMmmjlzZn5Wl8/n06RJk5Senq65c+dq5cqVWrp0qZ566im98MILmjt3rjp06CDJBNqys7P1xhtv6IorrpAknX/++dq7d68mTJig0aNH6/jjj89/Lp/P59mmUNMBAABKK4JjAAAAxaBhw4Y67bTTop6/UaNG6ty5syZPnqwNGzboiiuuUNWqVcMGx8aNG6dOnTqpQoUKqlWrlmvkycB1O4vkv/nmm7ryyit15513avny5ZKkmjVratu2beratatr2W7dumnChAlatWqVjj/+eNWsWVOSPDPEdu3a5ZlRBgAAUJrRrRIAAKCUGDJkiN555x2tXr06YpdKSTruuON02mmnqV27diEDY1769u0bVB/Mq4aYZEbNlOzC+q1atZIkrVmzJmjeNWvW5D8OAABQVhAcAwAAKCUuu+wyXXbZZRoyZEj+yJOFsXXrVs/pe/bsUUZGhlJTU/OnXX755ZKkDz74wDXv3LlzlZCQoNNPP12S1KBBA51xxhmaNm2acnNz8+f74osvtG7dOvXu3bvQ7QYAADiS6FYJAABQDDZt2qQvvvgiaHrt2rXVtGlTz2WqVKmimTNnFlkbHnnkEX322Wfq16+f2rZtq6SkJK1fv14TJ07Uzp07NX78+Px5Bw8erBdeeEFDhw7Vjh071KJFCy1YsEDPPfechg4dqkaNGuXPO27cOHXp0kV9+vTR0KFDtX37dt19991q1aqVq3i/JC1ZskR//vmnJCk3N1cbN27Mf40dOnTIH1kTAACgpBAcAwAAKAbPPvusnn322aDpV111laZNm3ZE2jBgwABJ0vTp0zV+/HhlZmaqRo0aOvXUUzV37lx169Ytf95KlSpp/vz5uueeezRmzBjt2rVLTZo00aOPPqrhw4e71tuxY0fNnTtX999/v3r27KmqVauqR48eGj9+vBITE13zPvDAA1qyZEn+/cWLF2vx4sWSpEWLFqljx47F8+IBAACi5PNbhSQAAAAAAACAOEPNMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhVsaQbUFTy8vK0ZcsWVatWTT6fr6SbAwAAAAAAgBLi9/uVnZ2t1NRUJSSEzw0rN8GxLVu2KC0traSbAQAAAAAAgFIiIyNDDRs2DDtPuQmOVatWTZJ50cnJySXcGgAAAAAAAJSUrKwspaWl5ceLwik3wTGrK2VycjLBMQAAAAAAAERVeouC/AAAAAAAAIhbBMcAAAAAAAAQtwiOAQAAAAAAIG4RHAMAAAAAAEDcIjgGAAAAAACAuEVwDAAAAAAAAHGL4BgAAAAAAADiFsExAAAAAAAAxC2CYwAAAAAAAIhbBMcAAAAAAAAQtwiOAQAAAAAAIG4RHAMAAAAAAEDcIjgGAAAAAACAuEVwDAAAAAAAAHGL4BgAAAAAAADiFsExAAAAAAAAxC2CYwAAAAAAAIhbBMcAAAAAAAAQtwiOAQAAAAAAIG4RHAMAAAAAAEDcIjgGAAAAAACAuEVwDAAAAAAAAHEr5uDY0qVL1bNnT6Wmpsrn82nOnDmux/1+v0aNGqXU1FQlJSWpY8eO+u677yKud9asWWrRooUSExPVokULzZ49O9amAQAAAAAAADGJOTi2d+9etWnTRhMnTvR8/LHHHtOTTz6piRMnasWKFapXr566dOmi7OzskOtctmyZ+vXrpwEDBuibb77RgAED1LdvX3355ZexNg8AAAAAAACIms/v9/sLvLDPp9mzZ6tXr16STNZYamqqhg0bppEjR0qSDh48qLp162rcuHG6/vrrPdfTr18/ZWVl6YMPPsifdtFFF+mYY47RG2+84bnMwYMHdfDgwfz7WVlZSktLU2ZmppKTkwv6kgAAAAAAAFDGZWVlKSUlJao4UZHWHFu/fr22bdumCy+8MH9aYmKiOnTooM8//zzkcsuWLXMtI0ldu3YNu8zYsWOVkpKSf0lLSyv8CwAAAAAAAEBcKdLg2LZt2yRJdevWdU2vW7du/mOhlot1mfT0dGVmZuZfMjIyCtFyAAAAAAAAxKOKxbFSn8/nuu/3+4OmFXaZxMREJSYmFryRAAAAAAAAiHtFmjlWr149SQrK+Nq+fXtQZljgcrEuAwAAAAAAABRWkQbHmjRponr16mn+/Pn503JycrRkyRK1b98+5HJnn322axlJmjdvXthlAAAAAAAAgMKKuVvlnj179Msvv+TfX79+vVavXq0aNWro2GOP1bBhwzRmzBg1a9ZMzZo105gxY1S1alX1798/f5mBAweqQYMGGjt2rCTptttu03nnnadx48bp0ksv1dtvv60FCxbo008/LYKXCAAAAAAAAHiLOTi2cuVKnX/++fn3hw8fLkm65pprNHXqVN11113av3+/hg4dqt27d+vMM8/UvHnzVK1atfxlNm3apIQEO2mtffv2mj59uu677z7961//UtOmTTVjxgydeeaZhXltAAAAAAAAQFg+v9/vL+lGFIWsrCylpKQoMzNTycnJJd0cAAAAAAAAlJBY4kRFWnMMAAAAAAAAKEsIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhV5MGxxo0by+fzBV1uuukmz/kXL17sOf+PP/5Y1E0DAAAAAAAAXCoW9QpXrFih3Nzc/Ptr165Vly5d1KdPn7DLrVu3TsnJyfn3a9euXdRNAwAAAAAAAFyKPDgWGNR69NFH1bRpU3Xo0CHscnXq1FH16tWjfp6DBw/q4MGD+fezsrJiaicAAAAAAABQrDXHcnJyNG3aNA0ZMkQ+ny/svO3atVP9+vXVuXNnLVq0KOK6x44dq5SUlPxLWlpaUTUbAAAAAAAAcaJYg2Nz5szRX3/9pUGDBoWcp379+nrxxRc1a9YsvfXWW2revLk6d+6spUuXhl13enq6MjMz8y8ZGRlF3HoAAAAAAACUdz6/3+8vrpV37dpVlStX1rvvvhvTcj179pTP59M777wT9TJZWVlKSUlRZmamq3YZAAAAAAAA4ksscaJiyxzbuHGjFixYoH/84x8xL3vWWWfp559/LoZWAQAAAAAAALZiC45NmTJFderUUffu3WNe9uuvv1b9+vWLoVUAAAAAAACArchHq5SkvLw8TZkyRddcc40qVnQ/RXp6ujZv3qxXXnlFkjRhwgQ1btxYLVu2zC/gP2vWLM2aNas4mgYAAAAAAADkK5bg2IIFC7Rp0yYNGTIk6LGtW7dq06ZN+fdzcnI0YsQIbd68WUlJSWrZsqXef/99XXzxxcXRNAAAAAAAACBfsRbkP5IoyA8AAAAAAACplBTkBwAAAAAAAEo7gmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuFctolSXBGlcgKyurhFsCAAAAAACAkmTFh6IZh7LcBMeys7MlSWlpaSXcEgAAAAAAAJQG2dnZSklJCTuPzx9NCK0MyMvL05YtW1StWjX5fL6Sbk6RyMrKUlpamjIyMiIOO4ryg88dfAfiE587+A7ELz578B2IT3zu4DtQvPx+v7Kzs5WamqqEhPBVxcpN5lhCQoIaNmxY0s0oFsnJyWwocYjPHXwH4hOfO/gOxC8+e/AdiE987uA7UHwiZYxZKMgPAAAAAACAuEVwDAAAAAAAAHGL4FgplpiYqAceeECJiYkl3RQcQXzu4DsQn/jcwXcgfvHZg+9AfOJzB9+B0qPcFOQHAAAAAAAAYkXmGAAAAAAAAOIWwTEAAAAAAADELYJjAAAAAAAAiFsExwAAAAAAABC3CI4BAAAAAAAgbhEcAwAAAAAAQNwiOAYAAAAAAIC4RXAMAAAAAAAAcYvgGAAAAAAAAOIWwTEAAAAAAADELYJjAAAAEfh8vqguixcv1oYNG8LOM2rUqPz1Dho0SD6fT9WqVdOePXuCnnfjxo1KSEgIWm7x4sWudVaoUEF169ZVnz599MMPP7jWkZGRoaFDh+qEE05QUlKSatSooZNPPlnXXXedMjIygp7z7bffVocOHZScnKyjjjpKLVu21Isvvhg034IFC3T22WeratWqqlWrlgYNGqTt27cHzXffffepR48eatCggXw+nwYNGhT9Gw8AAHAEVCzpBgAAAJR2y5Ytc91/6KGHtGjRIn388ceu6S1atNCuXbskSbfccov69+8ftK6GDRu67leqVEmHDx/WjBkzdO2117oemzJliqpVq6asrCzPdo0ZM0bnn3++cnJytHLlSj344INauHCh1qxZowYNGuj333/XKaecourVq+uOO+5Q8+bNlZmZqe+//15vvvmmfvvtN6WlpeWv79FHH9W9996rG264Qenp6apUqZJ+/PFH5eTkuJ53yZIl6tatm7p37663335b27dv18iRI9W5c2etXLlSiYmJ+fM+9dRTat26tS655BJNnjw51FsMAABQYgiOAQAARHDWWWe57teuXVsJCQlB0yXlB8eOPfZYz8cDVa5cWT179tTkyZNdwTG/36+pU6eqX79+eumllzyXbdasWf5znHfeeapevbquvfZaTZ06Vffee69eeukl7dixQ8uXL1eTJk3yl+vVq5fuuece5eXl5U/76quvdO+992rs2LG666678qd37tw56HnvvPNOnXDCCZo5c6YqVjS7k02aNNE555yjyZMn68Ybb8yfNzs7WwkJprPCq6++GvH9AAAAONLoVgkAAFDChgwZos8//1zr1q3Ln7ZgwQJt3LhRgwcPjno9VqBs48aNkqSdO3cqISFBderU8ZzfClpJ0sSJE5WYmKhbbrkl7HNs3rxZK1as0IABA/IDY5LUvn17nXDCCZo9e3bI5wAAACiN2FsBAAAoBnl5eTp8+HDQxcsFF1ygRo0aubod/ve//9V5552nZs2aRf2cv/zyiyST2SZJZ599tvLy8tS7d2999NFHIbtnStLSpUt10kknadasWWrevLkqVKighg0b6u6773Z1q1y7dq0kqXXr1kHraN26df7jAAAAZQXBMQAAgGIwcuRIVapUKejy6aefBs1rFap/5ZVXdPjwYe3atUtz5szRkCFDwj6HFYDbv3+/PvnkE91xxx2qUKGC+vXrJ0nq37+/rr/+ei1YsEAXXXSRqlevrhYtWmj48OHasGGDa12bN2/Wzz//rFtvvVW33nqrFixYoEGDBunxxx93Za/t3LlTklSjRo2g9tSoUSP/cQAAgLKCmmMAAADF4LbbbtPVV18dNP3EE0/0nH/w4MF68MEH9cEHH2jDhg2qXLmy+vTpo3379oV8DisIZmnSpIlmzpyZn9Xl8/k0adIkpaena+7cuVq5cqWWLl2qp556Si+88ILmzp2rDh06SDKBtuzsbL3xxhu64oorJEnnn3++9u7dqwkTJmj06NE6/vjj85/L5/N5tinUdAAAgNKK4BgAAEAxaNiwoU477bSo52/UqJE6d+6syZMna8OGDbriiitUtWrVsMGxcePGqVOnTqpQoYJq1arlGnkycN3OIvlvvvmmrrzySt15551avny5JKlmzZratm2bunbt6lq2W7dumjBhglatWqXjjz9eNWvWlCTPDLFdu3Z5ZpQBAACUZnSrBAAAKCWGDBmid955R6tXr47YpVKSjjvuOJ122mlq165dyMCYl759+wbVB/OqISaZUTMlu7B+q1atJElr1qwJmnfNmjX5jwMAAJQVBMcAAABKicsuu0yXXXaZhgwZkj/yZGFs3brVc/qePXuUkZGh1NTU/GmXX365JOmDDz5wzTt37lwlJCTo9NNPlyQ1aNBAZ5xxhqZNm6bc3Nz8+b744gutW7dOvXv3LnS7AQAAjiS6VQIAABSDTZs26YsvvgiaXrt2bTVt2tRzmSpVqmjmzJlF1oZHHnlEn332mfr166e2bdsqKSlJ69ev18SJE7Vz506NHz8+f97BgwfrhRde0NChQ7Vjxw61aNFCCxYs0HPPPaehQ4eqUaNG+fOOGzdOXbp0UZ8+fTR06FBt375dd999t1q1auUq3i9JS5Ys0Z9//ilJys3N1caNG/NfY4cOHfJH1gQAACgpBMcAAACKwbPPPqtnn302aPpVV12ladOmHZE2DBgwQJI0ffp0jR8/XpmZmapRo4ZOPfVUzZ07V926dcuft1KlSpo/f77uuecejRkzRrt27VKTJk306KOPavjw4a71duzYUXPnztX999+vnj17qmrVqurRo4fGjx+vxMRE17wPPPCAlixZkn9/8eLFWrx4sSRp0aJF6tixY/G8eAAAgCj5/FYhCQAAAAAAACDOUHMMAAAAAAAAcYvgGAAAAAAAAOIWwTEAAAAAAADELYJjAAAAAAAAiFsExwAAAAAAABC3KpZ0A4pKXl6etmzZomrVqsnn85V0cwAAAAAAAFBC/H6/srOzlZqaqoSE8Llh5SY4tmXLFqWlpZV0MwAAAAAAAFBKZGRkqGHDhmHnKTfBsWrVqkkyLzo5ObmEWwMAAAAAAICSkpWVpbS0tPx4UTjlJjhmdaVMTk4mOAYAAAAAAICoSm9RkB8AAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuxRwcW7p0qXr27KnU1FT5fD7NmTPH9bjf79eoUaOUmpqqpKQkdezYUd99913E9c6aNUstWrRQYmKiWrRoodmzZ8faNAAAAAAAACAmMQfH9u7dqzZt2mjixImejz/22GN68sknNXHiRK1YsUL16tVTly5dlJ2dHXKdy5YtU79+/TRgwAB98803GjBggPr27asvv/wy1uYBAAAAAAAAUfP5/X5/gRf2+TR79mz16tVLkskaS01N1bBhwzRy5EhJ0sGDB1W3bl2NGzdO119/ved6+vXrp6ysLH3wwQf50y666CIdc8wxeuONN6JqS1ZWllJSUpSZmank5OSCviQAAAAAAACUcbHEiYq05tj69eu1bds2XXjhhfnTEhMT1aFDB33++echl1u2bJlrGUnq2rVr2GUOHjyorKws1wUAAAAAAACIRZEGx7Zt2yZJqlu3rmt63bp18x8LtVysy4wdO1YpKSn5l7S0tEK0HAAAAAAAAPGoWEar9Pl8rvt+vz9oWmGXSU9PV2ZmZv4lIyOj4A0GAAAAAABAXKpYlCurV6+eJJMJVr9+/fzp27dvD8oMC1wuMEss0jKJiYlKTEwsZIsBAAAAAAAQz4o0c6xJkyaqV6+e5s+fnz8tJydHS5YsUfv27UMud/bZZ7uWkaR58+aFXQYAAAAAAAAorJgzx/bs2aNffvkl//769eu1evVq1ahRQ8cee6yGDRumMWPGqFmzZmrWrJnGjBmjqlWrqn///vnLDBw4UA0aNNDYsWMlSbfddpvOO+88jRs3TpdeeqnefvttLViwQJ9++mkRvEQAAAAAAADAW8zBsZUrV+r888/Pvz98+HBJ0jXXXKOpU6fqrrvu0v79+zV06FDt3r1bZ555pubNm6dq1arlL7Np0yYlJNhJa+3bt9f06dN133336V//+peaNm2qGTNm6MwzzyzMawMAAAAAAADC8vn9fn9JN6IoZGVlKSUlRZmZmUpOTi7p5gAAAAAAAKCExBInKpbRKgEAAAAAAICygOAYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIW0UeHGvcuLF8Pl/Q5aabbvKcf/HixZ7z//jjj0XdNAAAAAAAAMClYlGvcMWKFcrNzc2/v3btWnXp0kV9+vQJu9y6deuUnJycf7927dpF3TQAAAAAAADApciDY4FBrUcffVRNmzZVhw4dwi5Xp04dVa9evaibAwAAAAAAAIRUrDXHcnJyNG3aNA0ZMkQ+ny/svO3atVP9+vXVuXNnLVq0KOK6Dx48qKysLNcFAAAAAAAAiEWxBsfmzJmjv/76S4MGDQo5T/369fXiiy9q1qxZeuutt9S8eXN17txZS5cuDbvusWPHKiUlJf+SlpZWxK0HAAAAAABAeefz+/3+4lp5165dVblyZb377rsxLdezZ0/5fD698847Iec5ePCgDh48mH8/KytLaWlpyszMdNUuAwAAAAAAQHzJyspSSkpKVHGiIq85Ztm4caMWLFigt956K+ZlzzrrLE2bNi3sPImJiUpMTCxo8wAAAAAAAIDi61Y5ZcoU1alTR927d4952a+//lr169cvhlYBAAAAAAAAtmLJHMvLy9OUKVN0zTXXqGJF91Okp6dr8+bNeuWVVyRJEyZMUOPGjdWyZcv8Av6zZs3SrFmziqNpAAAAAAAAQL5iCY4tWLBAmzZt0pAhQ4Ie27p1qzZt2pR/PycnRyNGjNDmzZuVlJSkli1b6v3339fFF19cHE0DAAAAAAAA8hVrQf4jKZZCawAAAAAAACi/YokTFVvNMQAAAAAAAKC0IzgGAAAAAACAuEVwDAAAAAAAAHGL4BgAAAAAAADiFsExAAAAAAAAxK2KJd2AomINupmVlVXCLQEAAAAAAEBJsuJDVrwonHITHMvOzpYkpaWllXBLAAAAAAAAUBpkZ2crJSUl7Dw+fzQhtDIgLy9PW7ZsUbVq1eTz+Uq6OUUiKytLaWlpysjIUHJyckk3B0cInzv4DsQnPnfwHYhffPbgOxCf+NzBd6B4+f1+ZWdnKzU1VQkJ4auKlZvMsYSEBDVs2LCkm1EskpOT2VDiEJ87+A7EJz538B2IX3z24DsQn/jcwXeg+ETKGLNQkB8AAAAAAABxi+AYAAAAAAAA4hbBsVIsMTFRDzzwgBITE0u6KTiC+NzBdyA+8bmD70D84rMH34H4xOcOvgOlR7kpyA8AAAAAAADEiswxAAAAAAAAxC2CYwAAAAAAAIhbBMcAAAAAAAAQtwiOAQAAAAAAIG4RHAMAAAAAAEDcIjgGAAAAAACAuEVwDAAAAAAAAHGL4BgAAAAAAADiFsExAAAAAAAAxC2CYwAAABH4fL6oLosXL9aGDRvCzjNq1Kj89Q4aNEg+n0/VqlXTnj17gp5348aNSkhICFpu8eLFrnVWqFBBdevWVZ8+ffTDDz+41pGRkaGhQ4fqhBNOUFJSkmrUqKGTTz5Z1113nTIyMlzzfvTRRzrnnHOUlJSklJQU9ezZU999953ne7JgwQKdffbZqlq1qmrVqqVBgwZp+/btQfPdd9996tGjhxo0aCCfz6dBgwZF/8YDAAAcARVLugEAAACl3bJly1z3H3roIS1atEgff/yxa3qLFi20a9cuSdItt9yi/v37B62rYcOGrvuVKlXS4cOHNWPGDF177bWux6ZMmaJq1aopKyvLs11jxozR+eefr5ycHK1cuVIPPvigFi5cqDVr1qhBgwb6/fffdcopp6h69eq644471Lx5c2VmZur777/Xm2++qd9++01paWmSpLfffluXXXaZLr30Us2aNUuZmZkaPXq0zj33XK1YsUJNmzbNf94lS5aoW7du6t69u95++21t375dI0eOVOfOnbVy5UolJibmz/vUU0+pdevWuuSSSzR58uRIbzUAAMARR3AMAAAggrPOOst1v3bt2kpISAiaLik/OHbsscd6Ph6ocuXK6tmzpyZPnuwKjvn9fk2dOlX9+vXTSy+95Llss2bN8p/jvPPOU/Xq1XXttddq6tSpuvfee/XSSy9px44dWr58uZo0aZK/XK9evXTPPfcoLy8vf9rIkSN18skn66233pLP55MktW/fXieccILuv/9+vfbaa/nz3nnnnTrhhBM0c+ZMVaxodiebNGmic845R5MnT9aNN96YP292drYSEkxnhVdffTXi+wEAAHCk0a0SAACghA0ZMkSff/651q1blz9twYIF2rhxowYPHhz1eqxA2caNGyVJO3fuVEJCgurUqeM5vxW02rlzp9atW6du3brlB8YkqVGjRmrVqpXmzJmj3NxcSdLmzZu1YsUKDRgwID8wJtmBtNmzZ3s+BwAAQGnF3goAAEAxyMvL0+HDh4MuXi644AI1atTI1e3wv//9r8477zw1a9Ys6uf85ZdfJJnMNkk6++yzlZeXp969e+ujjz4K2T0zJydHklzdIS2JiYnat2+ffv31V0nS2rVrJUmtW7cOmrd169b5jwMAAJQVBMcAAACKwciRI1WpUqWgy6effho0r1Wo/pVXXtHhw4e1a9cuzZkzR0OGDAn7HFYAbv/+/frkk090xx13qEKFCurXr58kqX///rr++uu1YMECXXTRRapevbpatGih4cOHa8OGDfnrqVu3rmrUqKHPPvvMtf6//vorP9i1c+dO13WNGjWC2lOjRo38xwEAAMoKgmMAAADF4LbbbtOKFSuCLm3btvWcf/Dgwfrjjz/0wQcf6LXXXlPlypXVp0+fsM/Rr18/VapUSVWrVtV5552n3NxczZw5Mz+ry+fzadKkSfrtt9/0/PPPa/DgwTp06JCeeuoptWzZUkuWLJFkuj7edNNNWrhwoR566CFt375dv/zyi66++mrt27cvfx4nZ/fLaKYDAACUVhTkBwAAKAYNGzbUaaedFvX8jRo1UufOnTV58mRt2LBBV1xxhapWrZofnPIybtw4derUSRUqVFCtWrXyR570WrezSP6bb76pK6+8UnfeeaeWL18uSbr//vu1Z88ePfzww7r//vslSd27d9fgwYP1n//8Rw0aNJAk1axZU5I8M8R27drlmVEGAABQmpE5BgAAUEoMGTJE77zzjlavXh2xS6UkHXfccTrttNPUrl27kIExL3379g2qD1axYkU9+eST2rlzp7799ltt2bJF7733njZt2qQmTZqoYcOGkqRWrVpJktasWRO03jVr1uQ/DgAAUFYQHAMAACglLrvsMl122WUaMmRI/siThbF161bP6Xv27FFGRoZSU1ODHjv66KN18sknq379+lq1apUWLlyo2267Lf/xBg0a6IwzztC0adPyR7CUpC+++ELr1q1T7969C91uAACAI4lulQAAAMVg06ZN+uKLL4Km165dW02bNvVcpkqVKpo5c2aRteGRRx7RZ599pn79+qlt27ZKSkrS+vXrNXHiRO3cuVPjx4/Pn3fx4sVasWKFWrduLb/fr+XLl2vcuHG66KKLdPPNN7vWO27cOHXp0kV9+vTR0KFDtX37dt19991q1aqVBg8e7Jp3yZIl+vPPPyVJubm52rhxY/5r7NChQ/7ImgAAACWF4BgAAEAxePbZZ/Xss88GTb/qqqs0bdq0I9KGAQMGSJKmT5+u8ePHKzMzUzVq1NCpp56quXPnqlu3bvnzVq5cWbNmzdLDDz+sgwcPqlmzZnrwwQd16623qkKFCq71duzYUXPnztX999+vnj17qmrVqurRo4fGjx+vxMRE17wPPPBAfuF/yQThFi9eLElatGiROnbsWDwvHgAAIEo+v9/vL+lGAAAAAAAAACWBmmMAAAAAAACIWwTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAABA3CI4BgAAAAAAgLhFcAwAAAAAAABxq2JJN6Co5OXlacuWLapWrZp8Pl9JNwcAAAAAAAAlxO/3Kzs7W6mpqUpICJ8bVm6CY1u2bFFaWlpJNwMAAAAAAAClREZGhho2bBh2nnITHKtWrZok86KTk5NLuDUAAAAAAAAoKVlZWUpLS8uPF4VTboJjVlfK5ORkgmMAAAAAAACIqvQWBfkBAAAAAED5smKFdPrpJd0KlBHlJnMMAAAAAABAknTGGSXdApQhZI4BAAAAAAAgbhEcAwAAAAAAQNwiOAYAAAAAAMovv1/6/Xfp0KGSbglKKYJjAAAAAACgfMrOlt5+W0pLk+6800xbtEjy+YKDZfv3S3v2SJ9+KvXoceTbihJDcAwAAAAAAJRPycnSrl3m9tNPm+tOncx15crueatWlapVk849V3r//SPXRpQ4gmMAAAAAAKB8qVfPvn3ttfbtTZuiX4fPJ1WqVHRtQqlFcAwAAAAAAJQvp5/uPb1Ro+Bp27aFzhQ7fFi68kpzjXKL4BgAAAAAAIhf770XvsbY9OnS/PlHrj044giOAQAAAACA8sXnM0X4Q8nLM7XHdu+Wrrsu8vo++8x9f9++wrUPpQrBMQAAAAAAUH4cc4y0caM0cmToeXw+6eijpfXro1vnI49Ir75q3z/qqMK1EaUKwTEAAAAAAFB+/PWXCXoF1gnr29dcP/WUPS2WgvsDBxa6aSidCI4BAAAAAICyac8ec92kiXt6VpbJDnNq2NBc16gRen3fflt0bUOZQXAMAAAAAACUPd9+K1WrJn39tbRhQ/Dj//yndOut9v1q1cx1YqI97bHH3Mscd1zk5507N+amonQjOAYAAAAAAMqeQ4fM9SmnmOucHPfjVapItWrZ99PTzfXpp9vTpk2zb/v9UlJS+Oc86iipe3dz+9prY28zSiWCYwAAAAAAoOzw++3ulE4nnxw8LS/Pvp2YKL3+utSokbm/fXvw/AkRwiTOUSonTw5+/Isvwi+PUongGAAAAAAAKDv+/nfTRdLvd0//6afgeZ3BMUm68kqpQgVzuzgCWWefXfTrRLEjOAYAAAAAAMqO994z16+/Hnne3Nzo1tmmTcHbY1m50lw/8kjh14UjiuAYAAAAAAAoO6zaYk89FfxYYObW7bdHXt+gQdLq1e5pNWuaa2fNsnDWrLFrmc2bJ82cGd1yKBUIjgEAAAAAgPLB6irZsqW5toJc4QR2z5TsUSsj1SCzOLPFli6Vhg2LbjmUCgTHAAAAAABA+TJ/fvTzegXHbrhB2r9f+uqr6NYxY4b7/ubN0uHDoecfPZrul6VIzMGxpUuXqmfPnkpNTZXP59OcOXNcj/v9fo0aNUqpqalKSkpSx44d9d1330Vc76xZs9SiRQslJiaqRYsWmj17dqxNAwAAAFAe7dghTZ1a0q0AUJbUrx/9vGPGBE9LSJCqVJEaNpQuvjj88v/+t/d0q/un0+7d0mmnSaNGSffdJ2VlRd9OFJuYg2N79+5VmzZtNHHiRM/HH3vsMT355JOaOHGiVqxYoXr16qlLly7Kzs4Ouc5ly5apX79+GjBggL755hsNGDBAffv21Zdffhlr8wAAAACUN19+KQ0eXNKtAFAa9e1b+HU0aBD+8caNQz+2aJEUkDSU78MP3fd9PqlGDXc2WkpKNC1EMYs5ONatWzc9/PDD6t27d9Bjfr9fEyZM0L333qvevXurVatWevnll7Vv3z69HmYUiQkTJqhLly5KT0/XiSeeqPT0dHXu3FkTJkyItXkAAAAAyptoR5sDEH/y8gq+bKii+U89JZ1zjn0/XN2xW281BfgtFSrYt99/X/rzT+maa8K3o2FDMx9KTJHWHFu/fr22bdumCy+8MH9aYmKiOnTooM8//zzkcsuWLXMtI0ldu3YNu8zBgweVlZXlugAAgDiwc6f0228l3QoARxLBMaD8+fe/pbvuin7+H3/0ruH1++8Fb8O553pPHzZMatbMvh8uOBZYRuqYY+zbkydLdepIr7wS/nds82bprLMiNhfFp0iDY9u2bZMk1a1b1zW9bt26+Y+FWi7WZcaOHauUlJT8S1paWiFaDgAAyowxYyLX/gBQvhQmOHbgQNG1A0DRWbIk+mL3knTSSaaLdaA9ewreBmcgKxxnNlggv1/q2NG+X72693wVK4Z/joMHo2sLikWxjFbp8/lc9/1+f9C0wi6Tnp6uzMzM/EtGRkbBGwwAAMqOQ4ekSpVKuhUAjqTCBMeSkkxBfwClS06OlJho39+wQVq50j3P3r3u+16jSgbO4yUgGSdfhDhFvgoVpBNOcE9zdslcvNi+vXNndOvs1q1gbUGxKNLgWL169SQpKONr+/btQZlhgcvFukxiYqKSk5NdFwAAEAdycqTKlUu6FQCOpMJ2q6xdu2jaAaDo5OW5yyQ89ZQ0aJA7g+roo02XxDC9yqIKjm3aJG3ZEjy9QgXpP/+JvHxCQvDvUPPm3vPu3h15fZI0d677fmG6h6LQijQ41qRJE9WrV0/z58/Pn5aTk6MlS5aoffv2IZc7++yzXctI0rx588IuAwAA4tShQ9KqVdL48UW/7quvLvp1ennuOalVK/NaSpu8PFNrBShNClNw+0jYtcsc0O/bd2RrIu7b567BtHOnOYEAlAVvvy2tW2ffX7TI1O+qUsWdQXbNNVKYeuTavz942pIl7vuVK0v16wfP5/NJ114bua2JicHdIqtU8Z73lVcir88S7nXhiIo5OLZnzx6tXr1aq1evlmSK8K9evVqbNm2Sz+fTsGHDNGbMGM2ePVtr167VoEGDVLVqVfXv3z9/HQMHDlR6enr+/dtuu03z5s3TuHHj9OOPP2rcuHFasGCBhrFjBgAAAlk7nQ8+WPTrfu21ol+nl5tvNgcAJZ0Bd+iQ9N//ugMPhw5JTz8tvftuybULCFQUwbHMzNieb9y40I8fPmwKaN96q9S1q9S2rTRxoslyadq00E2VZLqYTZzonrZ2rft++/aS47hK9eq5u6kBZcmaNfbtf/3L/ZjVndKrW2W7dsHTzjuv6NolSXffLX3yiXtaqG2tcWPpqKPc0xo1kq6/XvriC3N//XpzTVfKUiPm4NjKlSvVrl07tfv/L+Dw4cPVrl073X///ZKku+66S8OGDdPQoUN12mmnafPmzZo3b56qVauWv45NmzZp69at+ffbt2+v6dOna8qUKWrdurWmTp2qGTNm6Mwzzyzs6wMAAOWNlSXhLMD7+uveO8ylyZIlZid4167Yly1IV4u8vMhd0VaulP7xD3eh4X37zPUll8T+nEBxKYrRKkeMiH7eX381B8P795uC/j6fdM45dnB+5kypYUPp2WelefOkjAzp8ceL7nfo11+lJk2kW26Rhg83z+/zSSefbK4XLTLzffONeV7rca+R/ICy6MMPQz8W+D1//PHibYskVa0a3D07VIH9+vWlO+90T1uxQpo0STrzTPO70rix97LO2mUFtX27dzYdwoo5ONaxY0f5/f6gy9SpUyWZwvqjRo3S1q1bdeDAAS1ZskStWrVyrWPx4sX581v+/ve/68cff1ROTo5++OEH9e7du8AvCgAAxIEzzjDX2dnSVVeZ69Lo7ruln3+2R7K68MLgM+KRpKXFfnZ51Ciz4/7UU2bkrH79zEG8328O5Dt1MlknFp/PZJ3UqGFPS06OrhYLEK1HH5VuuCG2ZbZskaZPN7edXa3mzjWZW9GK5WDRGuHyvPPs5/j8c2nyZGnOHOnVV4OXCVcTKRaZmdLxx9v3n3oqeJ5Ondyj4wX65Rf79sGDpf/kAeKTlT29enXk7+jXX9u3ndvyjBkmcHWkvPWWfdv5f+lUv74JZEvS6aebrs7OwJqzO2bNmu5lzz/f/EdHky1rZZKuXSs5y1TVrWvek337zHs8YEDkdaF4RqsEAADIt2yZ1Lq1e9rzz5suB7/+WvD1Wt0ZBg0y16V1CPRx49w1Rb76SnroofDLhAqEWQcPgTvTXubMMdfDh5uD7TffNN2/EhKkY4+1M0+c/vjDfT87W7ruOlMX5qefIj8nEMlPP0nffhvbMgsXmsCuZA40LatXm++13x/d6HCx1OK6/HJzvXKl9NJL9vQlS6RnngkupF2Ujj02eNodd9jboBXUdtZUSkqSBg607zdrZq7z8syB+MyZpiA5UJr8/e/mul27yFnVjzxi3/70U/t2377SccfZ9088seja5+Xii+3bobpVHnWUyQyrVUtavjz8CNvWtuo0b57J6Lb2BU4/3Xu/wArA/ec/5sSb5B6Z96ijTKmEadNCPz/yERwDAADFY80a0x3wjz/MbWfW+E03mTOa995b8PVbO6XWWdy33jJdjCRzEFzQGkWnnGLqgRUlK4Dn5dtv3Tu94TLEnnjCdC+Lpmums3bLn3+a7LV+/aRjjom8bKCrrjKjcvl87rP72dlkpCA2gd+haITqUpmQYLbzL780B6GRrFjhvr94sdS7t+minZPj7qr188+h1+MVWC4q27ZJWVnmdm6uuaSnS5deag6ic3JMPcDly81B8MaN5v3ct8/9GytJXbpILVqY2337mppHpTXDFvHp9dft214jSXrx+6WPPnJPS0qyb19xReHbFU6kmn5Wpucpp5j/3mg5u1n+4x/27RtusDNmfT5Ti/Css0x2mWSCX9b/fV4eI/MWAsExAABQPFq3Nt0BL7vM3B882GQwZWSYWj2SObj1snSpOSgM1w0qcJSoG24wRbElcxa6oMX1v/7azqDascNkphRUNHWS2rQx1y1buoMGVgDMmSnz6692ECDUum+91Q6wPfigWWetWqab1vTp7gybGTOiG6Fz71779n33SQ0amOyV5OTQnyEQSqzBscGDvaf7fOZgMNpA+IYN9u1HHjHdl2bPNoGnxMTw2R1HitUd8tlnzbaVkCCNGSOde66ZXqmS6cp1+ukmg9SZZRYYWF+wwD0SoGS2WcuKFWZADqA0cAa4wnH+fjjrZR5J9eqFfsy5jUXL73d3pXZ64QX3/SZNzAkBa9ufO1f6+GNzm5FqC4W9GQAAUPRCZT9Vr2526KwC86ECKx06mKBRYB2R7dvt21ZwrFu34OW//z72rludOwff/vxzk21VUOG6MQV2nfr+e/doejVrmvfHWWPpyy/NjrFk6okFFiX2+81BtcWrtpnPJ734orndt6937aRwxowxZ/iXLbOnBY6gB4QSa+aYVfsr0OrVpp6f3+8+QJ44UerRw3RLChc0u+8++/aPP9q3c3OLLhty4UIzMl2PHibDK5Lff7eDYEVZI+iWW9z3t283n8MZZ5gMFZ/P/F4uW+bOOAWOpFWrop/XOjnUv3/wY336FE17wnEWzQ/MMvXqFh2NUMX9La1be2e0Ogcn+tvfQi+/cKEJov31V4GaFw8IjgEAgNLJ2bXRCvo4d4Q/+cRkllmZV4GcQSUv8+e7g3jOGiaSqWFmHXQXdPQoZ+2PQDfdZN8+6yxzHTgcfeBB+tdfu9+XSpWk/x8xXJI72JieHn07Q2XMfPVVdMuffDIjYyE6//2v6RIYrR49vKdbB4S7dgUHx95/39TXcx40WpYuDZ7m7M71++8Fzzp18vmkCy6Qzj7btKdx4+DC+vv22cG/fftMpq0kvfeelJJS8Od2ZnpK0tNPu39L6tYNXqZNGxNMDxxhDygu1sjIlmhPRD3/vB34fv55e7rVhdi6Lk7Nm9tBpsCTgRdcULB1Wl0pQ5WbaNPGzi5btszOKrfqi0rh/7MvuMCc+CtIaYU4QXAMAADEZs+eosusiLbLYkKC6S64cKE97Y8/TI2xwANBS6SA1j//aa7XrjUHxIHdEapUsbOqzj8/ePloBgDwOji3dOhg3/7iC3Ntdft67LHQywW20yrub30mXbuas+rO4sWBAnfmrRpHTmecYWqmRKtqVel//wv9eOCBEOC0YIHUq1fwdK8RIGvVcmdZOINjzu+2V+ZYpG6EkyYV38huw4eba5/PXI46ynQl8/vNbUusI9M6+f1mW/zsM3PfWdPQ+o1wdkl3Hojn5gbXcgKKw+HD7u98LN58084cO/poe/oHHwR3QSxOVgC7MNur0+WXm23UmUEuSaNHm+3Z+v2QzHtn1TKdObNonh8ExwAAQIyqVZPuuqto1tWpU+GWf+WV0MExi1W0NpCVLXLyyd4H5ZKpyRVKcrI5e/vEE6GDWZ984r7vPMt9xhmh121lnPn95pKXZ4Je4ViDEXz4oQkmxrLDXqWKNH68e1pg0XG/P3ywTzLdNL2sWlXwAyHEh/ffN6OiBvIKxO/c6c6StAJlgdmL1gF0z572tGrVwrfj0Uft2+EG0iio3buDpwUe0IfrGhUta0RLZ5FvyYy06eyq+vDD9m2rO7nPZ37bYgmOA7GItmtfqMCPV+D72GPtk14lJdyJrWgF/nffeafZnq2aqqtXSyedVLTPAUkExwAAQEE8/njRrOe00yLP4zUy44gR5vrf/5YmT3Y/Fjga27HHmsLTPp8768p5O9rug045OWa5ESOkkSO9H9+xwx1IvOEG+7bPZ7KpvAroOjPkrHn/85/QbTnxxOAumeH07y/99JN72ogRdhbaoUPB9d6kggW4Lr3UDCTg5Y47Yl8fyicrkBVYQD6UrVvt29b368AB90Ff+/YmuLZrlx1ke+656Ns0dmz4x+vWDa7nFUmNGvbtk0821zfeaE/z+wtW0NvLJ5+4M2sk7y7UVnDO+bzt25tu3EBxiHZExVD1w6IZ7OZIcf7m1KxZ+PU5Twj4/cEDFbRpY04IWL8focyeba7//nfvx3/5xew3sJ3nIzgGAACKzrx5oYcuf++94Gnhuv5ZvLr8Va8eev6BA+3b1k7r6NGRn6cgvA6Md+40dUESE831eecFt8eSlGQOVgMDZF7BusqVzfWTTwY/ZgUUhg2Lrt1Vq0rNmgVPHzHCBPQiFQYOx8qMufpqU0PlnXdCZ5Q9+WTRnGlH2RAqSCrZmSCRagVanNmeVtbkTz9JP/xgT//pJ5NlYXUxtIQbKMOpYsXwtfSqVTO1hxITzUiwltNPN93GrBHkvPz0k+kqbmnZ0gSli9Lf/hb8m+Pctq1Rea3fzNtuC14HGSY40iJld0rBJ8VKkjOLtSiyLaP9HbAG7wh09dUmo97KGg01QECzZub38ZRTzO+Vs/ZinCI4BgAACiYwq2L/ftP17557vOfv3j269W7e7L5vjc7oFG40KGdxWos1qmO40euiceiQeZ0rVgQ/5vebx2vVsoMAt93mru9jueYa9/1KlUw3E+s99epumphorq1ROJ9+OniewILfsapSJfjM9wcfxLaOGjVMwOC114LrOzkDF1a2ysiRobu+onyxikl7sbZNZ0aYFF19w/nzzbVXt0yvWnehRsAMVKmSvf2OGCFdeKH78TZt7OBRv37SFVfYba5QwdQqdE6zNG9uDkytAtySCY4VJigdLau+oSTVqWOunTXbgKL04YfSu+/GtsxVVxVPW4qLMzjmlQkeK2s06YKMHDtypKmVWrWq/Ztz2WWRl9uxw+x3xHltUIJjAADAOPXU2OYPDIJZ3fC8UvRvvjny+qZMMTtoDRtGnjdw+PZIXbGsItMzZphLpNpZoVx+uXmdXvXCdu50jyRp+eUX9/1du6SpU4PnS0kxXTD37jXdKgML/lvdo/71L3O9YoXZ+bWyZorLRRe5D+yfeMJcN2hgrr1qKAV22bRYgbZly9xdTMMFO1G2XXaZ+T4EHjTu3Om+bwXH7rwzuFtRJFZmmNcomF5ZGAlhDoFeecW+bQWrJkwwWa6zZ5v2XH21CQLPnOluX9Om5rpVK3vaG28Ev4Yffwx+3nD1DYtS4Ki8UuTgWI8e5rdv9GiTCfr770U3KAvKtxdfNOUPwrnuOvf9slaf0pld2bp14ddnbVvO35FQnNvu559LQ4fa9xs2NKULrNGww/H5zH5UWXvvixjBMQAAyrsFC0z2ldfBjM9nDlz//NMUTY+VzxccxPHqEhhuiHYruDJkSHQHXJ06uXcId+2KPiNs0CBp2jT7APj222OrtxHuDHjt2t51vypVcmeahRtGPSHBDjJa3SgtFSqY9/q448z9668310WxMx6LFi3MtfV9sbq4vvFG5GXvuMN8Z6xi4SidYs0WDGfOHHOQN2uWe3pgQW7ntv/hh97TIwms1Se5g2MtW5pr50ixgQYMCB7V8bbbzPZobZuvvuoO7lkHx1bNvlBFwZcu9Z4eGEAvToE1yKTwwULJdIl/7TXp4otNZt9DD5lBDnr1ktLTzSi1v/5KwAzGvHn2f6zfH7prrnVSJPBkV+B/X2lnBdHT0rwzxYvT4cMm28vvl84+232iqXZtUx+2YkWpY0d7upXN6nQkf4NKMYJjAACUd126SBs2SF9+6f148+Z295qC2LVL+vnn8PNYo6998410wgnux5wHmdGMNDVvnrlev94cqB1zTPTdpCQTYLKK9j/5pD0CVCReO/jp6ZELfKelmay8oug6aB005OW5R7R7553CrztaTZuane7AA+FwQT+UDb//bq4vvrhw69mwwX3/0KHgA2DnKInWPJbdu6XFi03R7WgL9IfiHKAjJcVch6qtE9j1O5ruhmefLd17r7lt/UZkZoaeN5Dfb2ecHQnRDILipUoVU0vt+utNl+j33jNBsSuvNNmuzzwjXXKJCZoNH25OQnz/fekqnI6is317cH0tq3zBm2/a/4sZGaGDptb2Fjiiaqjtp7SqV8906V62rGSeP7BgvxfrJFZenvc+j3N/4vbbi6JVZRLBMQAA4sWhQ6Y70P790n33RZ7fubMUTufO3l3rvLRuber0XHCBPc05QppXvTCnevXsA9bGjc19Kbbg3vz53jXDjjnGHJAPGRL9uipWdHdjkKRt28zBt3XA26KFOWiOprtotAIDdT16eI/qWRyaNTMHRs4DnoMHvUfBQ+kU6ruSlmbfLkwh9iZNzPLhgtaBXYudvyEffWTqdTlr1BWU80BvyhT3Y1bXYMmM6OYcNMTrN8LLKacE/56Gen8rVDAnK0qSFWAP1fXZEk0maKVK5jd90CBTA/Hdd02Q4PrrzW/j1KmmW2337tJNN5kahKtWBWcblyd+f9nPoDtwwPyPhfPnnybr2jliYqVK5nvw0Uemi3Nurskkt2oCOl17rd3dL7BbvddgMbHauLHw64jFJZe4f08Koygzdy1WPVKfzwSvwwX+J0wo+ucvI45A1UcAAFAqVK1qusYcc4w0cWL4kSI//tjU8cnOjjxy1A8/hD+IDSySXbWqqfn1+OOmyPVPP0Uf3ApVsDo1NbrlLYFdvH77zWTNnHuuGV0y0khY775rMiSsWinnnCPdeKN06aV2t6VffgnfpaQo+XxHPnPLeQBYuXLoIexvuUVau1ZatMj78cWLTZePSy4xn2+NGmZd1sXrflnrdlOa7N5t3sdoDuBzcwtXrD2ajAaLc1RIq0uW88DbS6dO4UeElNwjUwZmaA0bJtWvb04aBCpohpUUejRdn8/OfC0pvXqZ9zUwAPHEE6Z7ZWDWiNfgIOEkJJhs5ObN3YMRbNxogimzZ5tumTk55r1v184EGFu3Lh/1jp5+2ryHc+dK3bpFnv+jj0xQ2uqufqTl5QV3q33pJemBB8KfcLFqCK5d657uHDH5/ffNtZVR5rRli/07Hvj81u/Giy+aeqUFKXJflutYXnBB5OB1rBo3tovtV6pkPhOfz+z7WKUaQHAMAIBybe5c+/bw4eZ64sTIy02bZq6Tk01XAesMb+BIkpZJk4Kn+f1m5zowaPPss+ag21rm3HNDH6hv2uTeyS2uUdWaNLFHxYwUzLriCrtmkZVp41XkOpp1lWWBB7Jt2ti3u3Y1Xa9q1LCDqxs2mAPA/fulRo1Mt1jr/bE+/0OHzHdm1y7T3da6/PKLubYeCzxYOuqo8AG1mjVNl7ry/HlEa+9ec719uwlKZ2SY7sHWNt+jhz1verr02GNHpl3O4Fi0Yg0IB/5+nHuuGVzj6qsLP5KtU2G7pRanTp28A17W/8Ptt5tsL2ub9KrjFiufzxycN27sHjlv61YTMFu40HRx37fPbLtWwKxt29CBxtLqzjvN9TvvRBcc697d/B9a7/e2bebE0eOPF18bLXl5Zpv44QdzIuyMM0w7br3VPslz2mnmscDuzc7f4N27pZUrg9cfbuCbDz5wl1Fo3Njujm2VXrjuOpPNGapsQFEHkEqLihWLJnsuUODJirw8s21aJ/HuuMMecCdOERwDAKA8c2ZEhCoG7cU64yuZOjnWjrtXIVcpdD2zGjWCp1nBEmc3qsCzzxZrZ27kSGncOLu2T0lKSYmcTRcPkpNDBzWdBdUt1pnrP/6Q6tb1Xq5SJfNYqMe9+P1mvc5g2s6dJvi2cqUdaMvMdLc3IcEEV0IF06zpsWQ/lRYHDphuT5UqmQPNrCz7MeugtkMHc1D873+bjNKxY81057a/fXvszx3q4KpqVRMAcY5SKpnC/EcfbQftotG6tfTtt1JiYnTzP/hg8LTXX5fOPNO+X1TBsZLODCsK4QZQKUr165uLM5i4a5cJmK1YYTKHMjPN96NtWxMwa9eucDUyi5uVJTVpknT//eb1hRNYk+2xx0wXuGiDYwcPmsEQmjaNbnvIyzMnIRIT7ZNdJ51kP24FqRMSwp9MGDXKvu31Py95jxT74IMmK00ytSutNp9wgh0cO/98e/5wGa7WCS0UjPPztd5ngmMAAKDcirYWWKDAEZd++cV0gbAypG64QTr+eNMtUjJnOp07wl4jVgZy7tgGdp/629/Mc1ndKK2Mj8Ah351i7cL4v/+Ff3zOHHMQHtjlwAoYvPlm9M8FWyyBr2j4fCZz7KijYutKk5trAjOBQbWMDPf9wLpZVaqED6bVrGmCbsWV5RjOpk2m+6rfLw0ebLJYsrPtgGRmpl3v6ccfzbUVFPN675xBtWhZvwlO/fpJ06eb287g2G+/mS7JjzwS3W+G5dprzQiS0b7HXr+DZ5zhvl9U3ZJLuqZYYf32m+mm7vOZoMuRVqOGqWPZubM9LTvbDOayapWphfbnnyao0rq1HTBr2LDkM0MDA6xffmm6sUbjo49Mxm2sow9PmWK69J9xRuiTVE7//a/JHv/mG+9t3hqRNdy2/9NP3idAAgUOzCHZgTHJbPvWgBlvvOHumj9mTOT1hyqzgMJxfkZxhm8UAACwWTWGGjRw1+r517/sg1vJZJv89pt9IBx4hjiandbrrzc79V4++cRcWzvO0Y54NmyYXUz299/DF8EPd5a9c2dTUywhwR10GzPGzqro0ye6NsWTypXNwVdZUKGCHdSKxf79wd0+t2yR1qyx7+/e7T5Q9vlMpl24gFrNmibAV5gD/EaNzPV//mOun3zSXN9wg/m+XnWVydaI1uzZsT3/Cy94T3f+djg1bWqy22LpUlm1qv3eFqSuUPv25nclMOh95ZWxr6s8cp60KC21iKpVMydMnIPEHDhgtrlVq0z5gIwM87/TooXdLfO444LrWRWnwEzLWrWiX3bRIhMcs7rqX3CBOQETKivLYv2HRptN9/vvJusyVvXqSZ9/bt7T5s2jW8Y5AEao3zVrIJfA15meHnq927eHzjZH4fzwgznxGacIjgEAAFMv6ptvzMGF3x88JLnXwe1xx5kz1c6uSZZoin2H2ll2dmOzMkO2bo28vkDO7izNm7trpvz2mx1I8LJggff0cDvsMAHVSAdzZV1SkgkexzIyWV6eycRwBtR27ZK+/949LbBrYaVKoQckuOkm6Z57zCiLPp93EMAKKs+ZY48E++efBXnV3pYtM92uJXNwH9hlMhrRBgOtIPXOnXa9wmgP4pyDj9x0k3kPvboUoeyoUkU6/XRzsRw6ZA7uV60ytS2tzLdmzUyw7JRTzH9BcWUcBXah9KqneeCAnZntzM4aN85k7FiZnQsXRh444/PP7dtWXdBwxo61uxjH+p3/4w8TzI5luaIYMTKwzukJJ5gAv7PrJYrOiSeWdAtKVJH/MjRu3FgbPTaEoUOH6rnnnguavnjxYp3v8eX+4YcfdGKcfzgAABSZrl1Ntw0vr75qsqGskaMiHaw6izkHdk26/36z892qVcHaefCgu6uUdcD/8svmEgtr2Z073QfDBTkQXr48+LUiWFF3mSwvEhJMYfHq1YNHTAwnJ8edpWbd/sc/zOP//Kf03HMmk8IZQB45Mrr1r18ffVt275YGDjQjtVratzfZZZs3m1HlvFiFvZ2mTpUGDTK3c3Ji2yarVLG3ZWdgJBxnwL1//+ifC2VLpUqmW2Lr1vb3Ky9P+vlnU8fs5ZdNd+LcXHNyxAqYtWwZff26wkpKMv/FF15o6lc6bd1qMkyjdc459u1osqvvuce+bf0/Xn65CTZHm1HqHI2yMJ5/Prr5Vq2ybxPERjEr8uDYihUrlOvYONeuXasuXbqoT4SuB+vWrVOy48egdiwp3wAAwNu8eaaWz913mwPKo482O8NWoCk93XS1iqUr1yuvuO/fe6+dmTFkiAmOWaNgxaJCBTtAZ0lM9B4FK5TADLOlS4smk+n006Pv2gkUlcqVTXemevXc063gmGQyPgPt3Bnd+qPpNnf4sMkmCKw/9cMP5to5+mCgyZOlt992T7MOcK3ghXOal0OH7K5XTgkJJqhheewxqXfv4GwyK7MN8SkhwWSLNW9uDyjj95ss11WrTHD3oYdMkLZePbuGWZs2wSPyRmP6dPfANZ06SR9/7J6na1czCEag4cODt5doPfCAOTklmf/jYcPc7bdKFATq3Tu27p9PPx17284/32SWWnbs8O7OvnChu9acU/v2sT8vECOf31+8Idhhw4bpvffe088//yyfx463lTm2e/duVS/EUL1ZWVlKSUlRZmamK8gGAAD+X06OHXzat8/sODt3A6z/6WeflW65xQTUatSQ7rrLFL9u185M9yrUm5cnvfWW6eL16KNmmWhqvaSlmRooknmuaA/qQxk1Sho92twO3MV57TVTo+bRRwv3HEBJGzBAmjbtyDzXTTeZ7DRLjx7Se+9Ft2y4w4xYu1M6r996y9S2e/99M8hA9er2c/3yi+lGd/BgcLAdCGfrVpNhtmqVCTrv3Wv+l6waZu3ame/aZ5+ZrC2/3wSd/vzTrm+2Z48J/jRubK/X6382Wr/9FnpUxsB1+f3mkpBg6rNZI1S/9JKp8WnN41xu1y4zGMV119m1Cp1q1zaZ01u2uDPVJFN7NFTd0MB2SSZgt21b6BqEksk6d9YTs9r6/ffuUTWBKMUSJyrW4FhOTo5SU1M1fPhw3eNM43SwgmONGzfWgQMH1KJFC913332eXS2dDh48qINWn2yZF52WlkZwDACAgpo61RSlPlLdSyRzVt06o9y4cWzdvLysXGl3taILBsqra64JzuAsbWbMkPr2Df14uCCB1Q182TJ3LaWtW+26TuFGp921q/zXvsORsWuXHTD7+msTjJ071zx24YUmO1uyR1i2/nf+9S/p4YfN7cOH7UzqWINjDRqYwQaOPtoMXJGXJ913nzRrlj3irOWPP0xXTaum2W23may1NWvM/V69TKbchRdK8+ebac7/yeOPD84Qffhhkx2+ZYtdZ9E6gfbHH2bQj7w8k7kpmS6t1vNZCvNfXJhyCIBKUXDszTffVP/+/bVp0yalpqZ6zrNu3TotXbpUp556qg4ePKhXX31VkyZN0uLFi3XeeeeFXPeoUaM02joz7EBwDACAMqRiRbu74scfF02RXXamUd7dcEPokSEDffSRqUk2YED061++3NQtc3aFCqdBA3fh7IIOyJGZaYLzeXnuOmFAaRIuwOWVJfbNNyZotHt3wYK2VsZkJO++a7ofhhqBNzvbBNluuUWaODF4nXv3BtcItObZudPufvnpp8FZZJbXXzeF+Js1MyPkXnCBHYgriGOOkf76i/9zFFipCY517dpVlStX1rvOwp1R6Nmzp3w+n955552Q85A5BgBAOeA8yHjmGbPTXlh795oz2tHUUwLKoiFDpClTIs/Xvr3pAibFlrHi95vuT4Gj73kZN07q0sV0O2vd2mRvetUIC+Rsz7JlZtTbWLNqgJIQ6ntat67ZbgLnu/VWU6tr1Srp1FODl/v119gG6gjnzTe9MzZTUkyQSbJPSHnVBZ03z2SW/f67KcXg/B/98kuTSfa//9nZaaFs3SqlpprniqbEAlBMYgmOFds3dePGjVqwYIH+4SwYGqWzzjpLP//8c9h5EhMTlZyc7LoAAIAy5pln7NuhzkTH6qijCIyhfDv33Mjz1KhhB8YsxxxjrvPy3NOt4vpPPGFPcw4CcN11wev3+02Xs7vuMrWY/H6TIRNNYMxa/tZbzfVZZxEYQ9m1ZYu5DuzqbG1nzzxjBr9xBsaaNDGZWMcfL9WpU3RtCdWV2QqMSSYoFmrAnAsvNNcNGwb/j555pslOixQYk0xg3ap/BpQRxfZtnTJliurUqaPu3bvHvOzXX3+t+tGcqQIAAGXbLbeY4eV//dVkngCIbPDg4G5GDz5oRqwbOtTcDxwpvl07U6fowAETiHKOFnniieZ6+HDv7ksvvmiKelusWkpWsK2gCjLyHVDSAoPO9eub7S1wREVnwNc5EMz8+aaMwJ9/Sj//HNyV0VnMPxpPPhnb/AA8FUu3yry8PDVp0kRXXnmlHg0YESo9PV2bN2/WK/8fWZ8wYYIaN26sli1bKicnR9OmTdOjjz6qWbNmqXfv3lE/J6NVAgAAIO541djz+cwocs8/H/2yXnWNevWS3n7bnn7TTWadVu0iIF75fCY4PH26nW3l5YsvpLPPdk/zOvweO9acKJo61dTenD7d1P0L5847zUmlNm2kFi3Cz0vNLsSpWOJEFYujAQsWLNCmTZs0ZMiQoMe2bt2qTZs25d/PycnRiBEjtHnzZiUlJally5Z6//33dfHFFxdH0wAAAIDy4+mngw++H3rInRkWivOAuV+/4MfnzHHff+YZ6ZFHCIwB0Qab9u+Pbr70dBPQrl7d3L/rrsjBsZQU6YorTJ1NAIVWrAX5jyQyxwAAAAAApUZurgl8/fab3a05MTG6Zf/4w137z2vdCQneo0xa3ntPKkCZI6C8KPHMMQAAAAAA4lqFCtJjj0mHD0vvvx99YEwyo196Wb9eSkuzi90H5ro8/bQZRCMpqWBtBuIUmWMAAAAAAJQ2mzZJjRq5px08KFWu7L7vHEGyfBzeA0WCzDEAAAAAAMqyY4+Vxo+XBgyQJk+WatVyB8Ykk4323Xcmk+yEE0qmnUA5QOYYAAAAAAAAypVY4kQJR6hNAAAAAAAAQKlTbrpVWglwWVlZJdwSAAAAAAAAlCQrPhRNh8lyExzLzs6WJKWlpZVwSwAAAAAAAFAaZGdnKyUlJew85abmWF5enrZs2aJq1arJ5/OVdHOKRFZWltLS0pSRkUEdtTjC5w6+A/GJzx18B+IXnz34DsQnPnfwHShefr9f2dnZSk1NVUJC+Kpi5SZzLCEhQQ0bNizpZhSL5ORkNpQ4xOcOvgPxic8dfAfiF589+A7EJz538B0oPpEyxiwU5AcAAAAAAEDcIjgGAAAAAACAuEVwrBRLTEzUAw88oMTExJJuCo4gPnfwHYhPfO7gOxC/+OzBdyA+8bmD70DpUW4K8gMAAAAAAACxInMMAAAAAAAAcYvgGAAAAAAAAOIWwTEAAAAAAADELYJjAAAAAAAAiFsExwAAAAAAABC3CI4BAAAAAAAgbhEcAwAAAAAAQNwiOAYAAAAAAIC4RXAMAAAAAAAAcYvgGAAAQBzasmWLRo0apdWrV5d0UwAAAEoUwTEAAIA4tGXLFo0ePZrgGAAAiHsExwAAAEqI3+/X/v37S7oZAAAAcY3gGAAAiHujRo2Sz+fTt99+qz59+iglJUU1atTQ8OHDdfjwYa1bt04XXXSRqlWrpsaNG+uxxx5zLZ+VlaURI0aoSZMmqly5sho0aKBhw4Zp7969rvl8Pp9uvvlmTZo0SSeddJISExP18ssvS5I+/fRTnX322apSpYoaNGigf/3rX/rPf/4jn8+nDRs2uNYzY8YMnX322TrqqKN09NFHq2vXrvr666+jfr2LFy/W6aefLkkaPHiwfD6ffD6fRo0alT/PypUrdckll6hGjRqqUqWK2rVrpzfffNO1nqlTp8rn8+njjz/Wddddp5o1ayo5OVkDBw7U3r17tW3bNvXt21fVq1dX/fr1NWLECB06dCh/+Q0bNsjn8+mxxx7TI488omOPPVZVqlTRaaedpoULF0b9egAAAAqD4BgAAMD/69u3r9q0aaNZs2bpuuuu01NPPaXbb79dvXr1Uvfu3TV79mx16tRJI0eO1FtvvSVJ2rdvnzp06KCXX35Zt956qz744AONHDlSU6dO1SWXXCK/3+96jjlz5ujf//637r//fn300Uc699xz9e2336pLly7at2+fXn75ZU2aNEmrVq3SI488EtTGMWPG6Morr1SLFi305ptv6tVXX1V2drbOPfdcff/991G9zlNOOUVTpkyRJN13331atmyZli1bpn/84x+SpEWLFumcc87RX3/9pUmTJuntt99W27Zt1a9fP02dOjVoff/4xz+UkpKi6dOn67777tPrr7+u6667Tt27d1ebNm00c+ZMXXPNNXriiSf07LPPBi0/ceJEffjhh5owYYKmTZumhIQEdevWTcuWLYvq9QAAABSKHwAAIM498MADfkn+J554wjW9bdu2fkn+t956K3/aoUOH/LVr1/b37t3b7/f7/WPHjvUnJCT4V6xY4Vp25syZfkn+uXPn5k+T5E9JSfHv2rXLNW+fPn38Rx11lP/PP//Mn5abm+tv0aKFX5J//fr1fr/f79+0aZO/YsWK/ltuucW1fHZ2tr9evXr+vn37Rv2aV6xY4ZfknzJlStBjJ554or9du3b+Q4cOuab36NHDX79+fX9ubq7f7/f7p0yZ4pcU1J5evXr5JfmffPJJ1/S2bdv6TznllPz769ev90vyp6am+vfv358/PSsry1+jRg3/BRdcEPXrAQAAKCgyxwAAAP5fjx49XPdPOukk+Xw+devWLX9axYoVdfzxx2vjxo2SpPfee0+tWrVS27Ztdfjw4fxL165d5fP5tHjxYtc6O3XqpGOOOcY1bcmSJerUqZNq1aqVPy0hIUF9+/Z1zffRRx/p8OHDGjhwoOu5qlSpog4dOgQ9V0H88ssv+vHHH3XVVVdJkut5Lr74Ym3dulXr1q1zLeP1vklS9+7dg6Zb75tT7969VaVKlfz71apVU8+ePbV06VLl5uYW+jUBAACEU7GkGwAAAFBa1KhRw3W/cuXKqlq1qitwY03PysqSJP3xxx/65ZdfVKlSJc917tixw3W/fv36QfPs3LlTdevWDZoeOO2PP/6QpPx6YYESEgp/3tN6jhEjRmjEiBGe8wS+Jq/3LdT0AwcOBK2vXr16ntNycnK0Z88epaSkRP8CAAAAYkRwDAAAoBBq1aqlpKQkTZ48OeTjTj6fL2iemjVr5gelnLZt2+a5rpkzZ6pRo0YFbXJY1nOkp6erd+/envM0b968SJ8z8HVa0ypXrqyjjz66SJ8LAAAgEMExAACAQujRo4fGjBmjmjVrqkmTJgVaR4cOHTR37lzt2LEjPziVl5en//3vf675unbtqooVK+rXX3/V5ZdfXqh2JyYmSpL279/vmt68eXM1a9ZM33zzjcaMGVOo54jWW2+9pfHjx+dn6GVnZ+vdd9/VueeeqwoVKhyRNgAAgPhFcAwAAKAQhg0bplmzZum8887T7bffrtatWysvL0+bNm3SvHnzdMcdd+jMM88Mu457771X7777rjp37qx7771XSUlJmjRpkvbu3SvJ7i7ZuHFjPfjgg7r33nv122+/6aKLLtIxxxyjP/74Q8uXL9dRRx2l0aNHR9Xupk2bKikpSa+99ppOOukkHX300UpNTVVqaqpeeOEFdevWTV27dtWgQYPUoEED7dq1Sz/88INWrVoVFLQrrAoVKqhLly4aPny48vLyNG7cOGVlZUX9WgAAAAqDgvwAAACFcNRRR+mTTz7RoEGD9OKLL6p79+7q27evnnnmGTVs2FCNGzeOuI42bdpo/vz5SkpK0sCBA/XPf/5TLVu21NChQyXJVXMrPT1dM2fO1E8//aRrrrlGXbt21V133aWNGzfqvPPOi7rdVatW1eTJk7Vz505deOGFOv300/Xiiy9Kks4//3wtX75c1atX17Bhw3TBBRfoxhtv1IIFC3TBBRfE9gZF4eabb1aXLl106623qn///jp8+LDef/99nXPOOUX+XAAAAIF8fr/fX9KNAAAAQLALL7xQGzZs0E8//VTSTSkWGzZsUJMmTTR+/PiQxf8BAACKG90qAQAASoHhw4erXbt2SktL065du/Taa69p/vz5+u9//1vSTQMAACjXCI4BAACUArm5ubr//vu1bds2+Xw+tWjRQq+++qquvvrqmNbj9/uVm5sbdp4KFSp4jpoJAAAQj+hWCQAAUI4sXrxY559/fth5pkyZokGDBh2ZBgEAAJRyBMcAAADKkezsbK1bty7sPE2aNFHNmjWPUIsAAABKN4JjAAAAAAAAiFsJJd0AAAAAAAAAoKSUm4L8eXl52rJli6pVq0aBWQAAAAAAgDjm9/uVnZ2t1NRUJSSEzw0rN8GxLVu2KC0traSbAQAAAAAAgFIiIyNDDRs2DDtPuQmOVatWTZJ50cnJySXcGgAAAAAAAJSUrKwspaWl5ceLwik3wTGrK2VycjLBMQAAAAAA4llurrRzp1SnTkm3BCUsmtJbFOQHAAAAAADly+uvS3XrlnQrUEYQHAMAAAAAAOXLwIEl3QKUIQTHAAAAAAAAELcIjgEAAAAAACBuERwDAAAAAADlV1aWNGKEtH59SbcEpRTBMQAAAAAAUD7NmWMuTzwh3Xyzmdanj+TzSWvXuuf98EPphRekO+80jyNu+Px+v7+kG1EUsrKylJKSoszMTCUnJ5d0cwAAAAAAQElxBrcuuUR65x1z2+93P+YMiQQGxH76SapRQ6pZs/jaiWITS5yIzDEAAAAAAFC+XHSRfdsKjEnSwoXRr+OEE6RatYquTSi1CI4BAAAAAIDypXJl7+kXXBA8bcUK6YorQq/L55O2bSuadqFUIjgGAAAAAADKl0gVpK691r79/vvSjBnh51+1qvBtQqlFcAwAAAAAAJQfGRkmOHbnnaHn+c9/TC2yDRuk0aMjr3PIEPf9efMK1USULgTHAAAAAABA+XHssWYkyrS0yPP+9Vd06/zjD+m44+z7XbsWqGkonQiOAUBR+vPP6P9gAQAAABSNPXvc9zMypNxc97TbbzfXL71kT6tUKfrnWL++YG1DqUdwDACK0pVXSrfdVtKtAAAAAMq/Awekt982t6tVcz+WmxucOebzmeukJPd8Tn/8Efl5I9UzQ5lDcAwAitLChdIrr5R0KwAAAIDy79tvpV69pJtu8n788sulhx+277dta66dwbE2bezbvXtLycnhnzMnR7rjDnP74MFYW4xSiuAYAAAAAAAoeypUMNfPP2+uv/02eB5nZtiAAeb6/PO91zdrllS5cvjnTEyUnnrK3D7hhOjbilKN4BgAAAAAACg7duyQFi0K7t546qnB8+blue/v2iUdc4y5/c47wfMnxBAm2bQpeFpiYvTLo9QgOAYgfrz3nvTZZ8X7HI0bF+/6AQAAgHjXrp3UqVPw9MOHg6cFBseswFhxOHzYdLvcv7/4ngPFguAYgPiwc6epNzB5ctGu9/Bhad8++/4pp5hrn88U5r/xRvuxLl2CC34CAAAAiM22beb69NODH8vJcd+vWTO6dY4b5z09sNB/KLm5Uo8e5vZdd0W3DEoNgmMA4kOtWibtOlKadIsW3tPbtfOe/sQT7rNWrVvbt595Rpo0ydz+/XdpwQKpYkVp9+7o2w0AAADAzStDzBLYrfGWWyKv75prggNazZt7ry+U6dOljz4ytydOdJ8kR6lHcAxA+bZ/v3Tzzeb24cP28M2h/PCD9/TVq72n795tah5YUlLcj199tbneutWeVqNG+DYAAAAAKJyBA811LDXEnM44w4yE2bJldPNPmOC+/+67BXtelAiCYwDKt++/l557ztw+eLBgf46hMr0mTjTZaM7HA2saVKpkrq+4wj3d55OWLTO3N2821y+8YEbO+e9/3cVFfT5p7drY2w0AAADEq//+N/p569QJntapkzR7trR4ceTl9++XVq50T9u82Rx/hFK/vtSgQfRtRLGK+Shx6dKl6tmzp1JTU+Xz+TRnzhzX436/X6NGjVJqaqqSkpLUsWNHfffddxHXO2vWLLVo0UKJiYlq0aKFZs+eHWvTACDYUUfZt7/7LnLmmJfATK/XXzfBq1tuMd0qd+2yH7vjDve81vDSXrUK2rc37WnYUHrgAemGG8yf7z/+YYJ4hw5J69ebeU8+OXg0noLIy5NGjw6enp1d+HUDAFBcvv9e6tmzpFsBoDRyljVxqlgx+nWMHRv+8X/+M/zj99/vPf3QIff9nTtNEM3nM3XTtmyRXn01+nai2MQcHNu7d6/atGmjiRMnej7+2GOP6cknn9TEiRO1YsUK1atXT126dFF2mAOvZcuWqV+/fhowYIC++eYbDRgwQH379tWXX34Za/MQDb8/9EF2uL7bQFmUlOS+Hy5zLNrA2VVXSUuXmtuRCuxbwbHzz5d+/tkEpzp0CJ7vwQeDpz30kHTccfb9zMzQz7N9u3mtfr8pQjp9upmelWWmPfeceX0VKkijRpnbPp+Unm7OqiUnB/95AwBQWvz2mxl1GgACWbXBCsPaZ3dyHhtYvUG8jB4tvfKK92PPPmuurePvWrWCBxEYOFDauzf6tqJYxBwc69atmx5++GH17t076DG/368JEybo3nvvVe/evdWqVSu9/PLL2rdvn15//fWQ65wwYYK6dOmi9PR0nXjiiUpPT1fnzp01IbDPLgqvf38THEhIMIEwv98+SPb57I3e53OPwAeUVYEBr1ABsGgDw1OmmOuOHd3TTz3Ve/4XXjDXBw5IVaqY51+4MLrneugh9/0lS4Ln+fNP6Y03pLp1zXMkJJiioVdeKfXrZ2qgJSTYddcCPfqoyVSTTGYdI+sAAEojRnsGyp8DB6Q9ewq/nsL8Pixf7j39l1+kvn3t++FOsM+YYU5UW5wn59euNb1OIpV2Ofpo04UTJaZIa46tX79e27Zt04UXXpg/LTExUR06dNDnn38ecrlly5a5lpGkrl27hl3m4MGDysrKcl0QhTfesG9XquS9kd59t7m++ebgftNAWROYJRkqOGZlWgXatMl9f8gQ7/lWrTLBJS+tW9vBMck+M/Xcc9Ipp3gv45Wd26tX8LSXXzZBb0l66in3Y2++6b5/9dWm7sEPP0gvvRS8rnbtpPHj3dP8fg5IUPp89pk0eXJJtwLAkcR/EVD+jBwp/f3v0c8/apQ7CGX59deCtyHUSPVNm7qDXF6ZZZYffpAaN7bvV69u3379ddPrRPI+0e0U6mQ2jogiDY5t27ZNklS3bl3X9Lp16+Y/Fmq5WJcZO3asUlJS8i9paWmFaHmcuOUW6c47g6f3728i45Zx48z1lCnSOeccmbYBxeXKK933QwXHQhXLbNQo+uey6o2ddZZ7+po10tSpdnBMMkGnoUOlr76yA3h+v9kWP/rIZIJ5+fpr+3a7du5t+rbbpHnzzO0aNaR//csObmVlmXoGlStLJ55ossWysqTTTgv/mhISYqvXABwJs2ZJjz9e0q0AcCQVJjgWTTFtAEfe5s3Bg1mFM3q0KVMSKFzR+0gqV45uvkiZX87yJIGj11sCe54EKkhtZBSZYhmt0hfwofr9/qBphV0mPT1dmZmZ+ZeMjIyCN7g8uuQS+7bVdXLixOAfjqefll57zUTGveTkRI5wBwo1sh9QEOnp5nv688+xFaS3fj+sESEtzj+2Q4dMAGn/fmnr1sK31Vr3J594P56YGHpZq4hn06bShRdKvXtLO3bYj1tZYR9/bA4QFi2SVq92r8Pns4NdGzbYhfcTErwHBKhWjexQlE05OeFrfwAof2I5gA50/vnmJBWA0iU31/1/PneuGezK6f333fe9jgf274/8XIMHe08PlxHmlJAgNWvmnrZqlX3bGn1ekn78Mbp1BnbpjBSAQ7Eq0ne/Xr16khSU8bV9+/agzLDA5WJdJjExUcnJya5LueP3m25aVs2iUA4fDq6X9O67dnDA+QPzzDMm7XTjRrP+W2+1H5s713v9q1dLf/ubXYA8lClTzHPWqOGuY3bHHdH9YAFePv3UZFedcEJwF8eCcAbd9+6VHn7YFMP/978jLxspOGcF6UNlWoXLwAocQTIhQapZ07Rv+XK75sGIEWZkm06d7HkXLrRHmzzmGNPOatUKfvYpVP01uq+jtDh0yOxQM4gMED8K260y1IExgJKzZ4/7GPTDD80+8aef2gHxHj2kyy6zTwp77Y97FbOvU8d9f/Jk72UTEkwN30gqVAgO0oc78R2N00+XTjrJvk/CT4kq0uBYkyZNVK9ePc2fPz9/Wk5OjpYsWaL27duHXO7ss892LSNJ8+bNC7tMXJg/X2rVSrrhhvDzXX21CXJZwSjnAazPF9yVsnp16dhjg9fTrZv3+ocNM/VdXnstfDtC1WJ68kmpatXwywKWTz5xB3V8PvuPrChSjZ1nZKzbBw+6d7qdQWOnSH+cGzaEf7wg7b/3XvPH+f8nHyRJDRua6zFjzHWnTqaIZ1EJdXY9JUW67rqiex6goPbsMSePInVPKIgj1aWha1fzXF7dQ0ra4cPBI/0CJa201xz74ANzAnrJEpMBfqQsXy5t2WLff+89ad26I/f8QGEsWOC+/8IL5oTvueeaciCWOXPMiLWheAXHYqlDVqtW5HmOP96UNHEKdYwbrrD+iSea6/PPN9fUUC01Yg6O7dmzR6tXr9bq/4/crl+/XqtXr9amTZvk8/k0bNgwjRkzRrNnz9batWs1aNAgVa1aVf2tgtGSBg4cqPT09Pz7t912m+bNm6dx48bpxx9/1Lhx47RgwQINGzas0C+wTOvaNfI8hw6Z0TGcWS/O+mGBpkwxmV2h/P576I35xRcjtycc+lAjGoE7lF98If3xh7kd7XfIms9rfuc06+xPxYru7MZPP/Ve74EDdkFNL+FG2yns9uOVZp2eHnqEnVjdcot9Oycn+PHMTHP9n/8UzfMBhWGNgL1+fcm2oyAOHDDXVn3AE04oubZI5nerdWv3715urmlnLDUXgeJWmG6VljCDfQXZu9e9z5CZaU5AWyVKNm82J6Ctk9MXXyw9/7wJ2gec9C+wRx8169671wTAMjKkyy93z9Ozp9Sggfu+dfANlDXOfdCHH45+uX/+7JFISAAAO+dJREFUM3haUZ44lky93v/9zz0tVImH1FTpmmvc0554wvSC+eILM8q9tR+AUiPm4NjKlSvVrl07tfv/qOnw4cPVrl073f//9XLuuusuDRs2TEOHDtVpp52mzZs3a968earmqHezadMmbXXU92nfvr2mT5+uKVOmqHXr1po6dapmzJihM888s7Cvr/ywdqYDeRUQPPVU9/3MTPNHPn261L17+Odp0MB7RLyiEkvNKMSnwO/6oUP2TmZRBFh37rR3bK0d7f373RmXzqL3Ts8/b87IFkRRZ1z17GmuTz+9cOt55x1TP+Fvf7On3XSTea+ff96e5hx1Z8MG857Vr+8+qwccabt22bd9vtLfzXL0aJORtXZt7Ms+/rg5gRWL7dtNGYVw0tPNoCHnnivt22cOTKzf3KLoyg4Eys52b7vR8socy82NrXSH10jNoVjf/2++Mdts9eomg3rsWDP944+DBwYJPHAujIceMtunZA7yGzQwPT/eesv83j30kHnMGrnPCtJZ2OdGWReY8OH8TjuPF1JTTeCqJISqV1a/vtSypXvasGFSWpr5HVm5MnS5lUsvLXy77r/fJMUgNv5yIjMz0y/Jn5mZWdJNKTrmJ8Bcpk+PPI/X5eSTC//czsvGjebaqUMH72W++cbvf+214OlXX+335+YWrF0oPyS/PyvLe7rzO+b87vz+e/TrDnfp3dvM9+efoefx+/3+zMzI6wq1rNe0wvrtN3t9Xu9dYbz7bmyv8dRTzXWTJkXbDpRPhw75/Zs3u6ft2+f3b9tWsPVZ38OzzjL3MzLM/d27C9XM/HUXtRNP9PuXLHFvQ+3ahf99CHwtgfPu3Bn5eYcM8d5+R470+y+6KPbfNaAoXHedve8YrS+/tL+LQ4bY0ydONNtSJNayV14Z/XMuXGgv16+fe3u45x6/v3r14ttmfv+9YPsfzsvixfb6vvrK7//rr8K1CSgOTZva++YHD4bfp/7b38z10qV+f3a2PX3tWr9/3boj97+1dav9HHl53ttfTo7f/8EH5vbkyeHXt3178PLffuv3T5ni9//xh5nn4EHvbfjmm831jBl+/7332tOt9fz0U9z/j8cSJ2I4hNLs6aft28uXm3pHn3ziHgnD4jVc7OzZoTNgIrFqGgUK7GKxfbuprfDGG+7pf/+76aZx5ZX2mS3LtGlFkxqPss/qqmdxDoF8+LAZYdWpqLrmvvWWee5I38Nx4wr+HBs2mJqBRalJE/P3dviw9+iTheH3xzb/V1+Za7pLIxpz57q7/Uimi3K9eoXLtLAK4aalmetQWdax2rEj9m0inB9/tEectYT7f96/3wyu4eWvv8x1zZqRnzdUHZNx40zR41jccov05psMsIPCO3zYu/t+OM4aWs7vdVaW2S/OypJmzoy8Hud+hmQyz0INNtO5s317xgz3Y59+am+LxcHaD//nP83o1ZLpkpWXJ511lvsYwbJmjfT99/Z9qybjli2mV8kdd0hXXFF8bQYKwuoF9dZbkWv7Wt3//X53mY+WLd2jSDrKORULZ32yUPvBlSpJLVqY2uGRBgOpXTt42tChZjlrgMLERJO9GrhvYh0rffKJ9Mgj5va0afbjJV26oYwhOFaaOYuCP/mkGXHjvPPMH+bYsdI555jHunUzf9DvvONevlev6IemDWR12VqxIvQ8t9wiffutuR34I/Tss+ba5/Pe4IvyoGPpUg7Qyxrr87cOaC3OYFWlSu46WJLpGlxUVq6M/D20Ct4HsgpohtOokdlRbdcueGe8sAq6XYdjdVe58srYlvvtN+m449zTsrPdqdxFFbBA2TNxoqmpYW3bp51mP2bVt3zrrYKvP3CUqOHDpQsuMLfXrJF27y7YemvXNjuaRWnOnNCP9e1r/sesbSWwwK8zkDBqVOQh4v1+e1QvyZzAysszl337gruCRWPiRKlfP9O2v/4y6/L7zee3Y0fs60P8cg60E61Q3zGfz3wXv/lG6tMn8noCA2hPP23+w7780nThWrUquvZEGsG9MH76yVw3bmyKk8+aJS1ebLY/n09atszsH+3f7841adXKPeqdZOa3Tkz8978myOc8cAZK2g8/2Ldj+c8OLBngPBZ0BsqKQ7jR5yWzrUmmG7SzLng4113nHoneWQfU+doSEqTrrzfTrMDZli12kOzwYWnAgOieE0EIjpV2fr80fnzw9HvusYuKWqNZ9uxZdPVWrIBWuOL9Eyd6H9R8/bV76FyvHZp77zXX2dnuHXjJvAafzwQvpPAjk0hShw7m+ttvzTC/hw+brLWPPgq/HEpOqIytSCNRPfFE+Mf9frueWCQXXBC6HV5FPS0VKsQ2YtaqVZH/REuDDh1MgH3q1OhG7HEKLIr+44/u0WuTkuwC6ogfe/aYA7iuXc1vs2QyDhctMtvyUUeZaV6DTUhmG928WXr//dDPUaWK+/4bb0gLF5rbZ5wRe028bdvs29ZAIN99F3vQ2ClcppWVAWplzyUluQNhb79t2uQMAu7fbx8AB2ZtWxIS7BG11q832SJWPaKkJJNBMnSoefyvv2IfMOSYY8xvYUKCKQ7udRIMCKUgwbHhw4OnHT5s9hH9/oKdNGrRwmwLO3dKN95oDqgD6/YWlVher7VdOw+qO3RwZ9/6fMG/f9FyHjhPmmSCipEydoAjITk5+nmtffjAk2TSkdnvdp4ot47FLQVJAnnxxeh/x6z/bKve4Jdf2o8V9Qn5OENwrCxwZpB5caZ9hzrIiNWIEdHN5xUNb9vW3Q6vnXcr4Ne/v3tI3D17pKuvNrdPP938+Tdt6j08b6A2bcyZ+UqVTMbAqlXmDHtRj1SCwnMGpZwZCF26hF/Oeebk11/ts6uWmTOl5s0L1g7L6tXBf7QFLcJflhxzjAmwV64s/etfsS/vzB61gofPPGNPmzTJXH/3ncmEfeABM+oWyq9QXX87dTL/Mdbveqj/rYULTaZ0jx72NL/f3W3IyrC6887g5Q8ciD4LxOLMuujb11z/9lvhslbDneA566zgac5My169TFFfpxdftA9u+/c33c2cv2WBGd+NG3s/d9u25jolpWgGDOFMNaK1f39sJ3O/+cZ7+mefmQL7fr/7YPjvfzf7C717e3fftP6jnBkrzpM8e/YUTcaz329+U5o1M79z0Qx4de21Zt9VCh69uzDWrTPZZ5ZZs8x7dOONZt+pTh0TRH/ySQbaQcn5/wH+IvL77e14woTgx++4o8iaFJIzCSPwuNk5yFUsrN+xY4/1frx3b+/gl3UyTwrOPHe66iqz3ccyMEmcIThWFniNSGmpUsU++16UrIOaUJk10WbnSOZg2Mtff9lBByvCft99wXUdJNMNxGIFRFq2lD74IPTz/v67GRls715z+9lnY2s3io8z8+rVV80O4wMPRB5i3Vlv7847TSDs2GOlV14x03buDD0ym9dZHK/vd82aph6Zc6e5e3d7FJxmzYqnW2NpEqlWw8knB0974w2z7b7yiv353nab/bjVRe3SS81Oy4MP2t1WDx4s2q7WKFt27oxuvh9/NAdvzhMq06dLjtGvgzi7JXh57DF30D2whtAnn9jbu/P7HItwJ3ec25qVselVQzSQ8+D1xBOl44+3759xhn07lsB+qIOSaLfNadPC/ycDltdft+tWRuOqq4Kn7dtnToZKZuRL5/+yNRrs7NnemZtTpwZPc277O3a4t6mCSkgwv1vWiHtvv23/3hw6ZIL3X35p72/8+KNdT23RooKf8H7/fbN/4wyunXCCyT6zahX+/e/By82YYbrBDxxYsOcFYmWNjGx5+eXolhswwN6Hv/56e7pVKzgpqfBti6RSJfv/MbC8Tywn6p0mTTLbX6jagLVq2QG0H36QXnvN3L7xxujWb/XiCNdDJs4RHCvrQp3ZmjWr8Ov+7LPgM9aWUKnc1asHTwv1A+UsNtyokTkIyc72nvemm+yofPPm5kfo+++liy/2nl9yR/TT0kwGXpUqZtnC1LhB4TnPGH/6qfTuu8EDN0Ri/SlmZEjXXGNuR/vnELgOp4oVTYCnRQtz36rtY7X5xRfLfyDH2a3y99/tg45atUwWSqguy1dcYT4L5xkz59mpzEyT8WeZNMnuGlLU9Z1QvJYuLXg9r0DRFoY/6SRTED4wE+T330MHoJzfNy9WF//nnzcHhYHOO88OjDszIS0rVkQuUB+uaLdzWwksQeB8Puv3KBQr68UKTC9dan6nuncPvUzgzryVreIUGEQ4+mi7JqmXiy+2s78DHThgBvABQnnmmehryB51lDsg5rztXIfX//zcueHX3aSJ9+BXRalyZdOF86yzzPadnR1cL6ygLr7YvAfW9uvMKrF+Z6xi/ZL7pKK1r2O9b+V9fwclZ//+gmdHZmTY/3fO7X3YMGnTpkI3LWbONoTK1o7GsceaAKEzKUQypYayskxmp6VChfAnByOh+6UngmNliVXMN9If1W232SPbFEb79nZWmtdBgZc2bYKnRROdzsgwByGhRtb63/8i15uS3Gfcwx0UXX555HWh+DiDY7GO9vTuu+ZP4+23w8/nrM0xaJD3PF6ZhIGZmtbZH+tP+LjjgoO4+/cHD4hRXjRoYP6Q27UzWZvr14cOmntxbv/hfpf+8Q9z0N2nj3TXXSZwNn++6ZJWVLUUUXQ6dDBd34tCQbv0Wd/DM85w1wqTgv8nx44114F1daz/jJtuMrXRvITb+TzjDBPg9/nctTad/vMf9++Rszu4lZ3ilQFudQn1+00Gtt/v3X1EMpnUubn2wfW554Zus6VWLffZbZ/P3bVs1KjgDJLs7Mi/ddaZbKfcXDPqtvOAHAgUqgtyqP1eZ2aVFRzLynIfqFqBoZ49TdBLiq3HRai6foWxYEHwNGdQ+Y477Hq6hWH9RgZ2cX/2WXcXS2cXLut/ukIF8z4WVbkWIJBVWzqSM8/0nu4V+K5cOXiwryMtsP5YQTh/w1aulE45xWzH1m/XoUOmJ0s0meahhOuZFsf4xStLDh927yB41QXy+ULvPBeG1Y2ladPw83n9iR6pkSTz8kyghbNcpVPz5tIXX5iDJGe3yuXLY1vPJZeYrlCBAs/yOg9Avea32hQo1B/NkCGmi1KDBibTZedOs/P4j3+YzCfrDMzHH0d+DWWBs1tp1armQN2Z7VkQ4d6bdetM4POVV0wws0EDExB46inT/aNnT/PZDx1qAuVz5pjagtHUI0TxiJSVFa1oCud6ZXFYGaNScDawc6CXvXvNIDb//rcJYDkzrqPt0hnOsGHm2qug9WefmUCVFZyTgkfR8vtNjaPAHXqvrl/WaHyBGdnffWfex59/jr7O5qWXBpc9aNzYdI/s2dN0dS/s//eOHea1VaxoBuvxEq4+CuKLdbAb7f/oCy/Yt60u1Lm57qyLk04yvwHvvmsH3159NXTZkECRRqdu0EB6+GFz++yzo1uns76qFYyygs7HH29Gky2qfecDB4J/L6zuqJLpbinZ22dRjgoOhHPeedHNF+o4wVmEvqQ5t9eWLQu/Puex7KmnBv8eWPtNzrrjgc44wz7JFmok36efNusuaNmIcojgWFkSmP7YoEHoM9VF6bPP7KLBXl0i7rnHvu1VoN95kB2N1FRz5s+L14gkkjm7HS6ldc2a4GWWLzep5EVRdBWR/fST2XH87jt3JlBB6neNHh08rWFD933nAVe0I6mde67dnsCsso4d7S5KtWqZkVwPH7a7DdapY87sRNqRLiuaNo2+u1s4L71kDo4jsbbfpCTTxaRnTxN0ePZZEwh7911TP+buu837vGOHqZ0wZIiZt0cPEywZPdoc3C9bZkbxIVhevLy6FF52WehC+F7Zms8/H/l5AkdElcL//zlHl7SCRdaol0V10Gl9t5wDBFhmzDDP87e/SbffHt0IsNF0BbHO9Ibrhh4qAzuQz+f9+3vVVYXPhJ082QQorLPdkh1EDAxK7N9/5E6ioeSlp4d+zPpuRMoEtfz3v/ZtK0Psww+Da4967QMGDugTirOuUKtWwY9XqWJOHCUmuveBu3Qxyzn3d6x6X5a8PPOfZjnrLBPgLkqRRvJbt85cW1mnXiUO2D5xpHnVxAvktV2XFGdySGpq4dcXqn5yICsb1unii82JgC+/tNsVaoAA63/5mWfMSYRQZVPiyBEY5xRFxllnpXZtafDgI9M9sH17+3aFCqYrTffu5g83Pd0ckI4ZYw4AvDJxYj0z//TT7hTw22832SOS96hDmZnBQ/+uWeNeR6tW5qyi88dh3jyzA7Ztm33A5veb5erVC77UrWve9/JejD0cv9/szBXmPWjTxtQIspR0yn7btnaWydKl5traEY6lL//f/hZbgeHSrlKl0N3MJPMeOXeYL7jA7irSqpVdEPnyy727sKSkmG03FhUqmO4fxx4bHIT0+01R5l9/NZeFC019OKu+SpUqZieiaVP7kpZ2ZIb7LktycmJLte/SxV30fsECE8wMrJchmW09mnUfOhQcMPPqJugszC9J55xjTuZI9gGfk1U/MNqMkVDWrzev0avrhpUF5iymm5sbXKfzqKO8a1/6/eYk1IgRJsAXOOKWtR4rEJCebgLIzgB0qDPEhbF7t/sgPpJrrzUXL8uXmyBAYEbL1Kmhu8Cj/Hj0Uft24P+ItW0+/rh7sIpoTnI895y59vof9uqaH+1+jPM/4rbbzEFnbq6dkX777Xb72rQxo9y++aZdfqFCBVM6JD3dZKxZr/f5581tZ/f0I5W9MW1a8LRI78c335gTV86sMyAajzxifu9jqS1cr17xtac4OH/HiuI48d13zXWkmqaBjjvOHI9YQTPrty+aE/fZ2dJFF5l9k8sui+15yxGOCsoS5xn37dvNdTRno4vKkiUmOPTZZ+YgZ+dO0w/8hBPC77g89pjUqZO5WKny779vAmzvvGMOqkeMsA+GAs8WPPmk2WEIzAa7+253VxUnZ7eSBx801+ecY+pU7dhhzvTfd5/3snv22EGzP/4wowx9+qm5/+ef7i6BNWt6B9Lq1TMH/+XtbNsNNxRNQXpnkDPwQHXx4uKvS/Puu3ZR6QYNzCiZXkHcsvbnfKTt329+l5xdUU86yQSnDx0ygRDrrPXVV9s75MceawIMRRlo9vnM9lizpnu0Pmdb1683gbO1a81vQUaG2XFISDCZh87A2XHHFc9IwCXpwAHvwVR+/91sBz6f+bxi2b6tYJTF6i7kFVi+5ZbQ68nLM5/DGWeY/wfrbGY4zt+JTp3Mf8iJJ4ae3+oGOmKECcoMHhz5ObxcdFHorJOXXvJ+/1auNCdYrKBWuGzKDh1MoX9JGj7c/Zj1nRw9Who/3vwfZWeb7TDUQDlFoXp1UwfQMnu22Xl+5BEzqEFgkCOcCRNMwWFnkEQynwfBsfLJ5zPZlIGDKG3Z4q7HZ+0PfP21yWKI5TfYOhFiHVQ6OXteHH+82a8Ltw1u3Ggy0K6/3g4GbdnirrfZq5cptXDTTXZgTpL69TPBsYsusqc1bOgeYVbyHkAo1Ah1Rc06hnCK9H88Y4ad+d+ggckKPeUUM3r1kRgZEGXXypXeWeNOU6a4/5PL2nfK+v+rXt27/nZBRfO/Pm+eee82bzZBbGe2aOvW5v33GmU+kHUioHfvuO51QXCsrDj++JIvnGf1Dbf+QOvUia5bpxWtfvppe+O8+GL3hle3rrn2ygyTzGiW1aqZg4ARI8xBQTTGjnWf7b7kksjLHH20eb8jDeOdl2fOpluBtG3bTFci67ZzJLcKFcxrDJWRVlZqrlijoPr90oYN3um8kvmTuOcek3l07rnug6ajjnIHogKDUiecYAIssXbH9TJokP3dkswB2TXXuA+gJ00yf8KB3TIRWZUqwX/c1udmHVBYv1uPPmoHx6JNFy9KVndNr1H/cnNNgMjKOvviC5MdYGU/1azpDpw1bWpOTJSl4He7diZDMjs7uCZVWprJ1ChoVwCfz3SFdx7IenV38KqTadm1y7ynK1Z4Z50FCuzCP3++nRkWyfPPm264Cxea+9Z7Es3nmZcXHBj7+9+lmTPNbeeQ8k4NGpj3JNRvZrR8Pvu/MznZDiKGKjlQXKwDl+uus0f8lExGXa9e4ZedMcNcULpdcknRDjTTr5/UrZt7WuC27twvfPddO1jk1a06FK/AtTM4Zm0rp5zivXzVquYEzj//abZn6z8ucCCas8921xizfj+sGmKdOnmv//ffg/c3hg2LfcTuwqhXL7g7eKTfvzFjzLXfbw7Cv/5a+uADadw4c+KlVi07YNa2bfAgACifsrKCe+9IZp/i559NXUC/P3Qvkb/9zSQgBGaCl7UMRWu/KtTgAcWpSxd3jxynSpVMzTLJnNCaPdvcdvbKsngNphOHCI6VFYGR4LKoZUtzAOMVdLrnHhOxDvdj+O23Juhk1T+LxpAhsbczWgkJdqZKpOKLhw6ZrDNnIO2HH0wWwbZtJqvF2ilMSgqdjVa7dsn+YezaZa4fecQc6L71ljmbetNNwfOOGWMukye7u13t3Rt+lLsaNUy3CCtgeM899k5ZrKZMcd8fONAEx44/3s6iIShWvKwzUQ0aSHfe6Q5sW9lCJa1CBROAb9Qo+IAmsLvmggVmZ2/HDvNYlSomy6y0d9e0ug5/8YXJ1g00YoT3cocPR/dadu6MXCvHqreTm2u6/jm7Fe7ebWdCRzMMujUaVG6uOajz+aILqlmWLbN3GL0K2NerF1z3SPLOrmje3MwbLtO0YUPz+x1N/b1oBXZL/uEHM0DIkXDGGaYbZGDR4LJ2th/BHnvMjBj87rvm/72gQfPbbzfdgp3/sR984J4nsOeBcxves8dkQ7z0UuSsk0i+/da+fc45wQNRWI47LrhrYzRB8yuuCD4oDhzV2uL1OxF4kFrcTjrJ9OSIlJl37bXuum6SeT8aNjQXKwNfMvu4X39tsomfe868/uRkE/Q45RRzHVhzDWXb+vVmm9m/3w4iL1pkAl7ff2/vd7z9tvd+f/XqJmD+6afByRZF+V95JFSv7u5ZVFjnn2/ey6JkJQv4/d4Dbzgz9p0n4uKMz+8vH688KytLKSkpyszMVLJXBBsl6+23zchYsbB2SAr6FfX5TOp4tMXYS4t9++ygWeDlzz/do5ZWrx46kFajRtFntoRan/N9LkhNshNPDM4Us55r5EgzOuHq1d7FcEMJ9b1x/uDH8Y//EWFle1oOHDAZP7ffbk/75huThRjr70NpsW+f3V3TumRkmJ2kChW8u2uWRKaotT2tWmUOVNavNzuw69YFB4esbcLalr22Ea/fgmXLwo/W5lxPv34moHb88SbY+McfZuc4mt+s+vXNQXugffti64bVoIHJgHD+HjRvbjLQXnrJZI5EY/x4E1x0tj0nx5zI+PBDs/O/Z0/566Yrmf+l+vXt93Dx4sINSpKZaX43ylJWZlmUm2sGNBkwIPgx63+xKPbBJPP7Hi7g7Vz/pZfa2Wq1a5t9nltuMXX1Qjn9dLsbcihNmpjfPL/frNN5IH7NNSYrfs8eE7R/8037sUOHCnZC0uczJUGc/3VOVrfkknLbbaYA96FD7pMfgdvdG2/Yg5sU5HuQmWn23VatMpddu0wAvXVrO8usfv3yt71nZprvk7PLcFnz889mu3LW/gu0Zo35LCX3/2j16tJff5n7f/xhgjI+X3AZlWuvNf8XAwYEd81/9tnwpRicyuN+/IoV0oUXunshFdbhw+Y4ysqyj7SfU47e11jiRKXs1DbKrYIc+C5dav+4FlRZ/MOtWtXsyEXqfuP3mz9gZ/BszRqTnbdtm9kJsf5sfD6zoxkqkOaVOeGUlxdcL8OpTh2zI7B5c+QuNV7CPf/hwyag0LKl2YH1GoTi7rvd9Wuirb3D0MXFK/DMeZUqwQcLbdoUbX2GI61qVfPd9MoeDeyuuWyZ3V3T7zeZUke6u6ZVd+vaa832Gm7be/llc710aXRDrs+ZEzwtPd10bw/swtO6tcm+sw4e3ngj9PbYooV7+VCZbLEGHTdvdt8/dMgufnvddZGDY9ZOv3W29emnze+T84DooovK1Q5mkMDX1rRp8DwXXGCC4j/8YLqfvvJK8Dz795uD5htucP9u+Hzm865Rw1ysbG3nxZpe0qUnypIdO0wmtTM45szkdWZwbd5cuIP8aDJBLc7n/fNPcx0uMCaZA/FInN0yA0+YtmplTsK1aBF88F6YTP1wo+2VdLHr9HRp6NDg39IffjDvT2A94xdeKNjzpKSYGoodOtjT9u0zmXyrVpkT51u2mPe5ZUs7YNa4cdncf7c8/LDpVvjoo+a7FUl6ugnyWl1yj7Tly4NrtT75pNnv79/fnNi0apI6hSqF4zx2W7zYXHv9D06eHNzV2mI91/ffmxGUv/460qsoX04/3e6tU1QqVnSXn7juOpOd9swzZS+RpBiROYby69JLTdoo3TzMQfqOHd7ZaNu2udOXExPt+mg//2wOZG69NfIOaiTz55uDSK/uDFWrmu6WTscdZ7oqVKtmfrznzTOBsvffNwdY06ZJp51mus526mQO9q3i4D/9JDVr5t2OY4+VNm0q3GsBCsvvN5lTzoyzX3+1i0onJQV312zYsGDdNe+80+yox9I2ydQLtLpEP/20+R2QzFDfzmLTltNOM4VfvdYVygMP2IOmhCrqbgWh6tc3hf4bNw5dg6ggB1ThskxDGTnStL1q1fId/IrEGgjA+R5Y79v69aarcmBG3YYNJkNv/nzvLr6BDh0yBwk7d5qL87bzcuiQO9vp6KNDB9SsoFpKSuno2l3cAovbb9pkPpvFi03g4ttvzcHYwYPB3/sBA7wDmpFEuy06vzvnnGMGyInFFVd4dxEK91xW2y691GRP1K5tpvXubddWLYyynpXu85nf+7POMsGR4n4tOTlm3/Drr03QbP1604YTT7QDZs2alZ3R4p3fL6+TRqHmD8zAPRLfISvjetAgE5B+/337vzg52QTOrDq9ge354gs7W/yNN0z34OXL3fNMm2YGZHIuv2ePea7jjrN7Fvn9Zl/e6kr488/mM/f7Tf1Dr4E2rHWVx6zskrBhgzmB27mzuV+Wf8MCkDkGSOYHF4Y1IEDdupGzdA4cMN0kv/tOuv9+U2+isIGxl182B0ErVtjZHTk5Jktg8mTvNll/znfdZddDqljR/Il+9ZVZ1lmU2zqIj1THisAYSgOfz5ydr1XLu4Crs7vmt9+abjhWd82EBFPXLNrumrEExpycNcRuu810cfD5Qo/yGBgYi2a0V2eNjlADrVgHRIMGmSy0+fNDr69Xr+gORiz33BP9vE7bt3PiRQo/uqlXxlDlypFHuA5UqZL9/xUtv98EhAIDauvXm++pNT0ry92WhATpmGMiZ6mVhc/+t99Mja8OHcxgSM7XaWV8dOxopl9+uZnmHJHUUpCARKjA2DvvmN+7wM/yo49MBpfXKIqhjBxpisFHG9ycOjV42tVXuzMmiupgMPBkX1nTpIkdsCjsICLRqFzZ1CRr186uFZyba050rlplApg//WT27447zq5h1qJF6c4YffttUzoi2ux4a/81VCAolF9+MSeIX3rJ/L5GsnOn2Z9o29YewMK5fXzyibk+eDD8CNDOMgpW99tAXj2AevWyB8Rp0cKUWZDM75QVHHPWpw4XaC8Lv8VlRePGsWX6llMExwC4Valisqus7lbOdPho1a9vhjhv0sT82VtFWK0/sSefNAc8kyaZ4JizxoflllvMH3eFCsE751amiZd4yAJA+Repu2ZGhp1t9vnn5kDY6hLo7K553HEFb0P16iZry7JypSnivHWruf/VVyZb08ooCxQuiGXp1MkM8CGZQLjTzJlmJz0wWy7cSMKzZ0t9+0r/+1/k55bMb0w4mzaZ37Pzz3cPLGLtrBe26395dfHFJfv8Pp/5Dzv6aJMhFa3cXFPjJTA7bdMmd6DtwAH3clWqRM5SO+aYI5P58vnn5j/24oulm28224NkBhP529+kiRODu0n/8ou5vvHG4PXNmRM8uE1B7Npl3oNAd95pMlOfftpuRzSsgQKifU+XLTP1xSTzmezcaWr6OBXVgWFZGYE8lN9+s29bXfGPtAoVzMABJ51kutVJJli3fr0JmL35pjmJe+iQyaq2Cv+3bl2yAZPAwSO2bYs+OPbcc2bf94ILzDYcKps60Ny5pvzBWWdF1xXvP/8xA2/s3Bk8SqRk/z4EvhZne6IdXdUZ8M7IMN20rcCYZP7PrczPCRNMFz+LNbK5V9DaqjXIPn/RS0ws+sEAyhCCYwC8WTsXy5a5p+/bZx674gppxgzvZbduDT1MumTXnapUyXTd8tphHj489jYD8aBCBfsMn5X+bgnsrhlNgCrQt9+aA4zA2n2BNUlOOcVke4QKjkUzclPg6KBOl19uLla378AaYaE4R8fLyQmfWRDuYPj7702GnmSCdNZBwR9/2AH/lJTo2hRP/va30IXIS7sKFeyMzljs3x8cUNu82WxLVkBt9+7gmlYpKeEDajVrmi5DsXQXPuccc23V8rFOPt11l+k2+K9/xfbaYg0Ah+ri5PU/L5nM1kqVosva6t7ddPsaONCev23b8DVRLVbhcMl06z3hBNNtzLnum2+OvJ54U5pqf/l85oTPccfZNd38flO3bNUqMwDK+PFme6xZ0+6S2bat+7MuToFd/u+7T+raNbplrUCkdUIoIcEEjqzMqlCsep0DB0b3PGvXFqyeVUKC+b9/+mnTsyQazpPZxx4bft7A71q4+ZcvDz5JgaKxb19cBx0JjgHwFlh4c+1aU5TXCprdcEPo4Fg4a9e67y9dWrD2AQjm1V0zmp3Y00833SWHDjVnuXftMt1BIqlc2dQC9KqFVq1abG13smqUSHZmSMeOoQsAh2K169RTzai3HTvaj0U6GD/pJO/pgUPOw83qkhNPkpLM/2Mshevz8ky3zsDaad995w60BXbRq1TJBM42bTK1OCXTLbFy5fCD0Xz9dfEUtR440B6846673EX1oxVtja733jPzvvyyyTKRzHsRjaFD7duvvRa8j/Pee9GtB6WLz2dvez172tP//NN835ctk55/3mxrycl2hlm7drEHwaMR+L8RWG5AMm065ZTgDJ2nnzbBa+e2cMUV4YNjzkE1onk9zgBUZmbk+QM984y97R0pzm6mQ4faPVqiHXwLsYnjwJhUDMGxxo0ba6OVBukwdOhQPffcc0HTFy9erPM9hv3+4YcfdGK4fs4Ailfgj2Ng966OHUMfFD/2WOj1enUTA1B8Klc2QaWnngqd0TNpktlZtw4gIx1wOuuTBHZreuUVc8AcS3c2p8CDZGv9gweHrncWannrQCDWgQK8ZGcXrJs54CUhwXRdrl7de5TPUHJyTPCsfn172iWXBHeB+sc/olvfU09FN9+OHab71jXXuLefV181mTxr1khvvRW8XPXqZl/BqX9/U++vVStzPycn/DZ51FHBQUJr277ssuh+F5yoq1P+1a5tus06u85mZpqTPqtWme/tzp0mwNKmjR00S00t+my5wO6R7dubbWDatODs6V27YiswP22afds5uFY0rJFe//1v6frrow+KhCttEItvv419GY9YAlCUijw4tmLFCuU6ulKsXbtWXbp0UZ8+fcIut27dOtfoAbUZUhQoeR9+aEalC7XTah20jh5tiuZ/843506drAlB6ZGSYHe4TTzTBsfffN5lU555riu7//HPsO7uXX+6+v2iR6Za0b5/Uo4eZlpsbe40lq9ahU+XKpq5MtJx10iR314sKFaLr7hmqbV99VbBlgaJSuXLwYBeBgbFYRFPC4Pff7S7Glq1bpRdeMLdHjw697JIl9kjSltdei62Ne/YEByx8PpOxl5JiAiF//in9+KPpMnnqqSYAUreuyaZxDt6D+JWSYuppOWvu7dtnArurVpkBI7ZsMdmZLVrY3TKbNIktYBZYhD8hIXg/+vXXves6RVNQP5Rx46RHHzW3fT4zmqRzwB8r0zRQ/frRvb677jInv5016fr3N68lkm++MRnqVvZ3qOOKPXu89wMkU/sTKGY+v794x+kcNmyY3nvvPf3888/yeWx4VubY7t27Vd2KYEfh4MGDOujYGcjKylJaWlpUQ3QCiEGk7g7/+Y/7DHW0BUQBlLwhQ8ygGBZr283Olu64Qxo2zJzFHjjQZIulpJiD3V69vNeXmWnm2bQpcn0Ry7nn2sXua9UyB7mFMWaMdO+95nbgb9fq1ebgp6QLxgOFNWCAO2ukONWrZwqLF0S4/Ydo9xX8flPr6Jln7H2SVavM4APWyTjnvsr27SYwVryHOCivcnJMzclVq8xl/Xrz/Wre3A6YXXaZ3Z35q69M179HHzVZ14cOmV4Vzu+3V0ZztKZMMaM1//WXycK0uk/u3x88+IPfb7psWyemdu828518ssmUs+ZxtsEaBXvhQjMYQKALLjD1S1euNAEuJytTXDIZnAMHmpErA38vrNf/00+mi+tpp4V+vVbdU4vVVut9BWKUlZWllJSUqOJExRocy8nJUWpqqoYPH657QgyXbgXHGjdurAMHDqhFixa67777PLtaOo0aNUqjPc5UERwDitjBg8G1OQCUTzt32sXmj5QOHezagxddJH3wQeHWt3OnffDAwTHKqyFDoh9FMjEx9uyynj3dtX5idf/9pmj6ySeHnidUkGDwYNP1sXZt6Z//PDKjfALh5OaawM6qVaaW2RNPmOnVqpmTSU7W/86KFfZANgcO2PvSBTmB7Myoys0124ZXUf3vv3ePOB/o449NBla3bqZ3iLO9kqnnN2iQe5n5802AbNs2uzv3//5n6iPed5854ZSTY3cPb9YseOTZwvwXW+8X/+cooFITHHvzzTfVv39/bdq0SanWkMsB1q1bp6VLl+rUU0/VwYMH9eqrr2rSpElavHixzgscatqBzDEAAMoB54HCihXhzyjHuk52plFe/fOf0ksvRTfvzp0mIzOWWr6bN0vPPmt304qkb197ZMzzzjMZppEEBgluuIEukCgbwgW4vLLEZs405QgyMryzqi+8MHS3x1gMHSo98IDJnAzXtilTTIA98D/y8GHTrfSRR4IzsPfssQfaWb3a3XXU6bffzLwHDphunRMnSjfdVPDXdPfd5rfOynwDYlRqgmNdu3ZV5cqV9W6MZ5569uwpn8+nd955J+plYnnRAACglHDWFEtPN90iAYQ3eLB7YIxQvvrKdAOT3Af0V1whTZ8eejm/32SoRNONaflyky1yzDEmuyTUgXkgZ3ucmTVAaRcqOHbVVe7uzt27m4Esbr3VjEZpBaUCrV9vapsVhfr1TU3AQB995B6gIBJrIA3nb4Dfb+q0Va0aOQNu3z4zsmWI3mPAkVIqgmMbN27Ucccdp7feekuXXnppTMs+8sgjmjZtmn744YeolyE4BgBAGbRmjV1fZN8+U2QbQHhffy3NmmUyPJxOPNEUppdM7R9nsWyfz3SPOuMMs5zz4DYvz9Qd2rHDjOQ3bJi9jCStW2dqLjkVxSHEtm3BAwwApZ1z26lZ02w3Pp93RpVXEKl6dbON1a9vRna+4ILir6dFJjXiVCxxomLbCqdMmaI6deqoe/fuMS/79ddfq75ziGoAAFA+nXyy6YIRy/D1QLxr185cPv5YWrbMTFu40GR7HHusdNJJUuBBwOjRJrPFqg00e7YpLC7ZB/A1a9qBMacTTjC1hawyKa++WjSvg8AYyqIDB6QqVcxtq7vf8uVSq1bRLb9+vcm+qlzZ+/Err5TeeCP69nzwgakjBqBQiiU4lpeXpylTpuiaa65RxYAoeHp6ujZv3qxXXnlFkjRhwgQ1btxYLVu2VE5OjqZNm6ZZs2Zp1qxZxdE0AABQ2hAYAwrm88/twFanTu7H6tRx37//fvd9a9TZZ58Nvf4NG+xuz/Xrm2DcY4+ZIBsQrxITTX28pk3tERwDR3K0fPmlqb3lVL168Hxbt5ptLDPTZFA/+KDprhzO6NGmzti+fTG/BADBiiU4tmDBAm3atElDPPpUb926VZs2bcq/n5OToxEjRmjz5s1KSkpSy5Yt9f777+tihlkHAAAAwvvlF3sUOcuWLWZEu0icXa0WLQp+vFEj9/3zzzcXIN7dcEN084XKDgtUr557ezz++MjLtGhhRmfeuzf8fFbpAgBhFWtB/iOJmmMAAAAAgFLF7zfdJK+6KvbaX6EK3990kxkJUjLBsaOPDp6ne3dpxgyysxHXSkXNMQAAAAAA4prPJ/Xvb4JVReHPP03GmCUw4Pbrr9JxxxXNcwFxJKGkGwAAAAAAQLmWkhL7Ml5dJp2BMckeHEAyg9wQGAMKhMwxAAAAAABKm6pVTV3BRo2kHTukChWC56lYMfbumgCCEBwDAAAAAKA0atrUXNerV7LtAMq5chMcs8YVyMrKKuGWAAAAAAAAoCRZ8aFoxqEsN8Gx7OxsSVJaWloJtwQAAAAAAAClQXZ2tlIi1P3z+aMJoZUBeXl52rJli6pVqyZfqCFvy5isrCylpaUpIyMj4rCjKD/43MF3ID7xuYPvQPziswffgfjE5w6+A8XL7/crOztbqampSkgIPx5luckcS0hIUMOGDUu6GcUiOTmZDSUO8bmD70B84nMH34H4xWcPvgPxic8dfAeKT6SMMUv40BkAAAAAAABQjhEcAwAAAAAAQNwiOFaKJSYm6oEHHlBiYmJJNwVHEJ87+A7EJz538B2IX3z24DsQn/jcwXeg9Cg3BfkBAAAAAACAWJE5BgAAAAAAgLhFcAwAAAAAAABxi+AYAAAAAAAA4hbBMQAAAAAAAMQtgmMAAAAAAACIWwTHYjR27FidfvrpqlatmurUqaNevXpp3bp1rnn8fr9GjRql1NRUJSUlqWPHjvruu+9c87z44ovq2LGjkpOT5fP59NdffwU9108//aRLL71UtWrVUnJyss455xwtWrQoYhvXrFmjDh06KCkpSQ0aNNCDDz4o56CkW7duVf/+/dW8eXMlJCRo2LBhBXov4kl5+NwHDRokn88XdGnZsmXB3pQ4cyS/A6tWrVKXLl1UvXp11axZU//85z+1Z8+eiG1k2y965eFzZ9svnKL4DuzatUu33HKLmjdvrqpVq+rYY4/VrbfeqszMTNd6du/erQEDBiglJUUpKSkaMGCA53clENt+8SgPnz3bf+Ecye/AI488ovbt26tq1aqqXr161G1k+y965eFzZ9svnCP1HdiwYYOuvfZaNWnSRElJSWratKkeeOAB5eTkRGwj237RIzgWoyVLluimm27SF198ofnz5+vw4cO68MILtXfv3vx5HnvsMT355JOaOHGiVqxYoXr16qlLly7Kzs7On2ffvn266KKLdM8994R8ru7du+vw4cP6+OOP9dVXX6lt27bq0aOHtm3bFnKZrKwsdenSRampqVqxYoWeffZZPf7443ryySfz5zl48KBq166te++9V23atCnkOxIfysPn/vTTT2vr1q35l4yMDNWoUUN9+vQp5LsTH47Ud2DLli264IILdPzxx+vLL7/Uhx9+qO+++06DBg0K2z62/eJRHj53tv3CKYrvwJYtW7RlyxY9/vjjWrNmjaZOnaoPP/xQ1157reu5+vfvr9WrV+vDDz/Uhx9+qNWrV2vAgAFh28e2X3zKw2fP9l84R/I7kJOToz59+ujGG2+Mun1s/8WjPHzubPuFc6S+Az/++KPy8vL0wgsv6LvvvtNTTz2lSZMmhT1WlNj2i40fhbJ9+3a/JP+SJUv8fr/fn5eX569X7//au7uQJtswDuD/veWmtblQcNMCMzwp04M8UKOypMxIKIIO1KSToA+MIDrozKKDpE/CkDRq6UnUgYKERYamRSsjJkqRZGiQuhSZmySm5vUe9PbYXtuyfTzRs/8PPPD23v3c23X9hd3swyoVFRXKnMnJSTGbzXLt2rV5t29tbRUA4nK5vMZHRkYEgLS3tytjHo9HAMijR4987qeqqkrMZrNMTk4qY2fPnpWkpCSZnZ2dNz83N1eOHTu20LtL//nb6y4i0tDQIDqdTvr7+xd0n8lbuHqgurpaEhIS5OvXr8qYw+EQAPLu3Tuf+2H21fG3112E2Q9WsD3w3d27d0Wv18v09LSIiLx580YAyPPnz5U5drtdAMjbt299rsPsq+dvr70I8x+scPXAj2w2m5jN5gXth/lXx99edxFmP1hq9MB3586dk5SUFL/7YfbDg68cC9L3l0XGxcUBAPr6+uB0OpGfn6/MMRgMyM3NxbNnzxa8bnx8PFavXo26ujp8/vwZMzMzqK6uhsViQWZmps/b2e125ObmwmAwKGPbt2/H4OAg+vv7f/PekS9aqPuNGzewdetWJCcnL3h/NCdcPfDlyxfo9Xr888/cv+eYmBgAwNOnT33ejtlXhxbqzuwHJ1Q94Ha7ERsbi8WLFwP4Vkuz2YysrCxlTnZ2Nsxms991mH31aKH2zH9wwtUDgWL+1aGFujP7wVGzB9xut3IdX5j98ODhWBBEBMePH8eGDRuwdu1aAFDe+maxWLzmWiwWv2+L+z+dTofm5mY4HA6YTCZER0fj8uXLePDggd/3ozudzp9e+8e9UXC0UPehoSHcv38fBw4cWPDeaE44eyAvLw9OpxPnz5/H1NQUXC6X8tLqoaEhn7dj9sNPC3Vn9oMTqh4YHR3FmTNncPDgQWXM6XQiISFh3tyEhAS/vcTsq0MLtWf+gxPOHggU8x9+Wqg7sx8cNXvg/fv3qKysxKFDh/zuidkPDx6OBaGsrAxdXV24ffv2vL/pdDqv30Vk3pg/IoIjR44gISEBT548QUdHB3bt2oXCwkLliVJaWhqMRiOMRiN27Njh99o/G6fAaKHut27dwrJly7B79+4F743mhLMH0tLSUFtbi4sXL2LJkiWwWq1YtWoVLBYLFi1apMxh9tWnhboz+8EJRQ94PB7s3LkTa9asQXl5ud81/r8Os//naKH2zH9wwt0Dv8L8/xlaqDuzHxy1emBwcBAFBQXYu3ev10Ems6+e4F7TGcGOHj2KxsZGtLe3Y8WKFcq41WoF8O3ENjExURkfHh6ed7rrT0tLC+7duweXy4XY2FgAQFVVFZqbm1FbW4uTJ0+iqakJ09PTAObefmO1WuedFg8PDwOYf7JNv08LdRcR3Lx5E6WlpdDr9QveG30T7h4Avn0wc3FxMT59+oSlS5dCp9Ph0qVLSElJAQBm/w/QQt2Z/eCEogfGx8dRUFAAo9GIhoYGREVFea3z6dOnedcdGRlR1mH2/wwt1J75D064e2AhmH/1aaHuzH5w1OqBwcFBbNmyBTk5OaipqfH6G7OvHr5y7DeJCMrKylBfX4+WlhblSct3KSkpsFqtaG5uVsampqbQ1taG9evXL/g6ExMTAOD1+TPff5+dnQUAJCcnIzU1FampqVi+fDkAICcnB+3t7V5f//rw4UMkJSVh5cqVv3VfaY6W6t7W1obe3t5535ZD/qnVAz+yWCwwGo24c+cOoqOjsW3bNgDMvpq0VHdmPzCh6gGPx4P8/Hzo9Xo0NjYiOjraa52cnBy43W50dHQoYy9evIDb7VbWYfbVpaXaM/+BUasHFoL5V4+W6s7sB0bNHhgYGMDmzZuxbt062Gy2ec8DmX0Vhedz/rXr8OHDYjab5fHjxzI0NKT8TExMKHMqKirEbDZLfX29dHd3S1FRkSQmJorH41HmDA0NicPhkOvXryvfTuhwOGR0dFREvn1rYXx8vOzZs0c6Ozulp6dHTpw4IVFRUdLZ2elzf2NjY2KxWKSoqEi6u7ulvr5eYmNj5cKFC17zHA6HOBwOyczMlOLiYnE4HPL69esQP1raoZW6i4js27dPsrKyQvjoRAa1ekBEpLKyUl69eiU9PT1y9epViYmJkStXrvjdH7MfHlqpuwizH6hQ9IDH45GsrCxJT0+X3t5er3VmZmaUdQoKCiQjI0PsdrvY7XZJT0+XwsJCv/tj9sNHK7UXYf4DpWYPfPjwQRwOh5w+fVqMRqOS2fHxcZ/7Y/7DQyt1F2H2A6VWDwwMDEhqaqrk5eXJx48fveb4w+yHBw/HfhOAn/7YbDZlzuzsrJSXl4vVahWDwSCbNm2S7u5ur3XKy8t/uc7Lly8lPz9f4uLixGQySXZ2tjQ1Nf1yj11dXbJx40YxGAxitVrl1KlT877S9WfXTk5ODuah0TSt1H1sbExiYmKkpqYmqMcjEqnZA6WlpRIXFyd6vV4yMjKkrq5uQXtk9kNPK3Vn9gMXih5obW31uU5fX58yb3R0VEpKSsRkMonJZJKSkhJxuVy/3COzHx5aqT3zHzg1e2D//v0/ndPa2up3j8x/6Gml7sx+4NTqAZvN5nPOrzD7oacT+e+T24iIiIiIiIiIiCIMP3OMiIiIiIiIiIgiFg/HiIiIiIiIiIgoYvFwjIiIiIiIiIiIIhYPx4iIiIiIiIiIKGLxcIyIiIiIiIiIiCIWD8eIiIiIiIiIiChi8XCMiIiIiIiIiIgiFg/HiIiIiIiIiIgoYvFwjIiIiIiIiIiIIhYPx4iIiIiIiIiIKGLxcIyIiIiIiIiIiCLWv37GwT63Cj6dAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def plot_dfo_temp(mooring_depth):\n", - " \n", - " df = pd.DataFrame()\n", - " \n", - " df['sea_water_temperature'] = ds.sea_water_temperature.data\n", - " df['TEMPST01'] = ds.TEMPST01.data\n", - " df['TEMPS601'] = ds.TEMPS601.data\n", - " df['TEMPS602'] = ds.TEMPS602.data\n", - " #df['TEMPS902'] = ds.TEMPS902.data - ? doesn't exist\n", - " df['TEMPS901'] = ds.TEMPS901.data\n", - " df['Time'] = ds.time.data\n", - " df['filename'] = ds.filename.data\n", - " \n", - " # Need to figure a better way to capture sensor depths - using this from the filename for now\n", - " df['file_depth'] = df['filename'].str[-10:-8].astype(int)\n", - " df['depth'] = ds.depth.data\n", - " \n", - " # Saw some data gaps - populated the nans with TEMPST01\n", - " # Merge the two temp columns\n", - " df['merge_temp'] = np.where(df['sea_water_temperature'].isnull(), df['TEMPST01'], df['sea_water_temperature'])\n", - " \n", - " # isolate the sensor depth\n", - " df_depth = df[df['file_depth'] == mooring_depth]\n", - " \n", - " # look at the depth range for 75m sensors - can we use this in the erddap option?\n", - " # print(df_depth['depth'].max()) # 80.15737 \n", - " # print(df_depth['depth'].min()) # 68.238\n", - "\n", - " x = df_depth.Time\n", - " var1 = df_depth.sea_water_temperature\n", - " var2 = df_depth.TEMPST01\n", - " var3 = df_depth.TEMPS601\n", - " var4 = df_depth.TEMPS602\n", - " var5 = df_depth.TEMPS901\n", - " var6 = df_depth.merge_temp\n", - " \n", - " \n", - " fig, ax = plt.subplots(6, figsize=(15, 8), sharex=True, sharey=True)\n", - " \n", - " ax[0].plot(x, var1, linewidth=0.05, c='blue')\n", - " ax[0].set_title('sea_water_temperature')\n", - " ax[1].plot(x, var2, linewidth=0.5, c='orange')\n", - " ax[1].set_title(\"TEMPST01\")\n", - " ax[2].plot(x, var3, linewidth=0.5, c='purple')\n", - " ax[2].set_title(\"TEMPS601\")\n", - " ax[3].plot(x, var4, linewidth=0.5, c='green')\n", - " ax[3].set_title(\"TEMPS601\")\n", - " ax[4].plot(x, var5, linewidth=0.5, c='red')\n", - " ax[4].set_title(\"TEMPS901\")\n", - " ax[5].plot(x, var6, linewidth=0.5, c='red')\n", - " ax[5].set_title(\"merge_temp\")\n", - " fig.subplots_adjust(hspace=0.5)\n", - " plt.suptitle(\"DFO Mooring Station E01 Temperature variables at depth {} metres\".format(str(mooring_depth)))\n", - " plt.show()\n", - " \n", - "plot_dfo_temp(75)" - ] - }, - { - "cell_type": "markdown", - "id": "afcf6bbb-30de-434a-b208-bf767bc2b26a", - "metadata": {}, - "source": [ - "### Have a look at the various oxygen variables." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d3eceb45-5c63-4ffe-b927-5c52840a2e60", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Not seeing any oxy in this time frame at any depth.\n", - "\n", - "def plot_dfo_oxy(mooring_depth):\n", - " \n", - " df = pd.DataFrame()\n", - " \n", - " df['DOXYZZ01'] = ds.DOXYZZ01.data\n", - " df['DOXMZZ01'] = ds.DOXMZZ01.data\n", - " df['Time'] = ds.time.data\n", - " df['filename'] = ds.filename.data\n", - " \n", - " # Need to figure a better way to capture sensor depths - using this from the filename for now\n", - " df['file_depth'] = df['filename'].str[-10:-8].astype(int)\n", - " df['depth'] = ds.depth.data\n", - "\n", - " # isolate the sensor depth\n", - " df_depth = df[df['file_depth'] == mooring_depth]\n", - " \n", - "\n", - " x = df_depth.Time\n", - " var1 = df_depth.DOXYZZ01\n", - " var2 = df_depth.DOXMZZ01\n", - " \n", - " \n", - " fig, ax = plt.subplots(2, figsize=(15, 8), sharex=True, sharey=True)\n", - " \n", - " ax[0].plot(x, var1, linewidth=0.05, c='blue')\n", - " ax[0].set_title('DOXYZZ01')\n", - " ax[1].plot(x, var2, linewidth=0.5, c='orange')\n", - " ax[1].set_title(\"DOXMZZ01\")\n", - "\n", - " fig.subplots_adjust(hspace=0.5)\n", - " plt.suptitle(\"DFO Mooring Station E01 Oxygen variables at depth {} metres\".format(str(mooring_depth)))\n", - " plt.show()\n", - " \n", - "plot_dfo_oxy(90)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fb659d01-4804-4e95-8120-bff0ef9bbac0", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:root] *", - "language": "python", - "name": "conda-root-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/_build/jupyter_execute/f2959306183b478c67bdbcfe7948459677e513bd3491c5bfa9268e5d660ebd63.png b/_build/jupyter_execute/f2959306183b478c67bdbcfe7948459677e513bd3491c5bfa9268e5d660ebd63.png deleted file mode 100644 index d1901ab..0000000 Binary files a/_build/jupyter_execute/f2959306183b478c67bdbcfe7948459677e513bd3491c5bfa9268e5d660ebd63.png and /dev/null differ diff --git a/_build/jupyter_execute/f6c08ae391f1d10f13a8378e6d52545e23a2e4da1a90b63e4b6985fe18600000.png b/_build/jupyter_execute/f6c08ae391f1d10f13a8378e6d52545e23a2e4da1a90b63e4b6985fe18600000.png deleted file mode 100644 index dd6a09b..0000000 Binary files a/_build/jupyter_execute/f6c08ae391f1d10f13a8378e6d52545e23a2e4da1a90b63e4b6985fe18600000.png and /dev/null differ diff --git a/_build/jupyter_execute/fa37bf67d758decdf58fb20a3355e3f685036fda991325dd70753184c2db7510.png b/_build/jupyter_execute/fa37bf67d758decdf58fb20a3355e3f685036fda991325dd70753184c2db7510.png new file mode 100644 index 0000000..c1ae0ef Binary files /dev/null and b/_build/jupyter_execute/fa37bf67d758decdf58fb20a3355e3f685036fda991325dd70753184c2db7510.png differ diff --git a/_build/jupyter_execute/interactive/holoviz_plotting_tests.ipynb b/_build/jupyter_execute/interactive/holoviz_plotting_tests.ipynb index 2694d5c..170f599 100644 --- a/_build/jupyter_execute/interactive/holoviz_plotting_tests.ipynb +++ b/_build/jupyter_execute/interactive/holoviz_plotting_tests.ipynb @@ -5,7 +5,17 @@ "id": "ab23ab7d-347c-4968-9168-5a3c8a901533", "metadata": {}, "source": [ - "holoviz plotting - shrinking the time range" + "# Holoviz plotting - shrinking the time range" + ] + }, + { + "cell_type": "markdown", + "id": "62867e5f-8d1f-488d-98dd-1b8792b0be20", + "metadata": {}, + "source": [ + "We've attempted to use the Holoviz package to make some interactive figures. The figures need an active python kernel to function, and so can't be inserted directly into a static webpage.\n", + "\n", + "In this notebook, we show some examples of creating interactive figures to highlight what can be done. At the end of the script, we build a plotting function, and bind it in a Holoviz Panel, which can then be launched as an app. This requires a separately running server to host the python functionality, and highlights the sort of possibilities that these tools can have." ] }, { @@ -1135,10 +1145,7 @@ "import numpy as np\n", "import pandas as pd\n", "import xarray as xr\n", - "import cf_xarray as cfxr\n", "import datetime\n", - "import netCDF4\n", - "from netCDF4 import Dataset\n", "\n", "import matplotlib\n", "from matplotlib import pyplot as plt\n", @@ -1151,7 +1158,7 @@ "import panel as pn\n", "\n", "\n", - "pn.extension(template='fast')" + "pn.extension(template='material')" ] }, { @@ -1257,56 +1264,28 @@ ] }, { - "cell_type": "code", - "execution_count": 3, - "id": "84294870-a539-4905-8634-b8d71877b617", + "cell_type": "markdown", + "id": "7758cdee-61f2-4880-9a9f-fae4f8c6041f", "metadata": { "tags": [] }, - "outputs": [], "source": [ - "def datetime_to_ordinal_withseconds(x):\n", - " \"\"\"\n", - " Converts a datetime object to an ordinal number, \n", - " taking into account both the date and time parts of the input.\n", - " The resulting ordinal number represents the number of days \n", - " since January 1, 1 AD, at 12:00 AM, \n", - " plus a fractional portion representing the time part of the input.\n", - " \"\"\"\n", - " # Import libraries\n", - " import numpy as np\n", - " import pandas as pd\n", - " import datetime\n", - "\n", - " # Extract year, month, day, hour, minute, \n", - " # and second components from input datetime object\n", - " year = x.year\n", - " month = x.month\n", - " day = x.day\n", - " hour = x.hour\n", - " minute = x.minute\n", - " second = x.second\n", - "\n", - " # Create a new datetime object using the \n", - " # extracted year, month, and day components\n", - " date_obj = datetime.datetime(year, month, day)\n", - "\n", - " # Get the ordinal number of the date\n", - " date_ordinal = datetime.datetime.toordinal(date_obj)\n", - "\n", - " # Calculate the partial ordinal number for the time part of the input\n", - " date_partial = (hour + (minute + (second / 60)) / 60) / 24\n", - "\n", - " # Combine the date and time ordinal numbers\n", - " x_ordinal = date_ordinal + date_partial\n", - "\n", - " # Return the final ordinal number\n", - " return x_ordinal" + "# Load in data from the ERDDAP server" + ] + }, + { + "cell_type": "markdown", + "id": "af82699a-160f-4350-902d-024d0fd61f32", + "metadata": { + "tags": [] + }, + "source": [ + "First, we need to get some data. To do this, we can download data from the NANOOS buoy near Hansville, WA. The data is a gridded product of individual CTD casts taken for the last 10+ years on a near-daily basis." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "2da6d7e2-c858-4636-bd8b-1bfe5a704b29", "metadata": { "tags": [] @@ -1321,7 +1300,7 @@ " \"sea_water_practical_salinity\",\n", " \"mass_concentration_of_oxygen_in_sea_water\"]\n", "\n", - "constraints = {\"cast_start_time>=\":datetime.datetime(2010,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}\n", + "constraints = {\"cast_start_time>=\":datetime.datetime(2016,1,1).strftime('%Y-%m-%dT%H:%M:%SZ')}\n", "#constraints = {\"cast_start_time>=\": \"max(cast_start_time)-365\"}\n", "\n", "nwem_grid = get_erddap_data(nwem_url, nwem_dataset, \n", @@ -1331,35 +1310,24 @@ ] }, { - "cell_type": "code", - "execution_count": 5, - "id": "544da9c4-d24c-4fe0-bf5f-f4d3f3246fe0", - "metadata": { - "tags": [] - }, - "outputs": [], + "cell_type": "markdown", + "id": "a97901d1-35f9-43af-b741-1234e450040e", + "metadata": {}, "source": [ - "date_slider = pn.widgets.DateRangeSlider(name='Earliest Date', \n", - " start=datetime.datetime(2010,1,1), \n", - " end=datetime.datetime(2023,1,1), \n", - " value=(datetime.datetime(2015,1,1),datetime.datetime(2020,1,1))).servable(target='sidebar')" + "# Create a slider to move between individual casts" ] }, { - "cell_type": "code", - "execution_count": 6, - "id": "9fe66dfc-5245-4395-96cd-51ff3ae44e5d", - "metadata": { - "tags": [] - }, - "outputs": [], + "cell_type": "markdown", + "id": "d30ff148-3978-41dc-b386-abbfcf98e8a7", + "metadata": {}, "source": [ - "nwem_interactive = nwem_grid.interactive()" + "Next, we can create an interactive plot, where we can show the sea surface temperature for individual casts." ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "id": "9b5f047a-dcd0-42f8-80f0-72b3f6f258c3", "metadata": { "tags": [] @@ -1379,12 +1347,12 @@ "data": { "application/vnd.holoviews_exec.v0+json": "", "text/html": [ - "
\n", - "
\n", + "
\n", + "
\n", "
\n", "" ], "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 4, "metadata": { "application/vnd.holoviews_exec.v0+json": { - "id": "87f28aa0-b1d8-4526-ba63-2c479c76d72e" + "id": "5773be60-3981-4309-9ad5-a55cc5722b0a" } }, "output_type": "execute_result" } ], "source": [ - "slider = pn.widgets.IntSlider(name='Dates', start=100, end=7000)\n", + "slider = pn.widgets.IntSlider(name='Dates', start=100, end=nwem_grid.dims['cast_start_time'])\n", "nwem_grid.interactive().isel(cast_start_time=slider).sea_water_temperature.hvplot()" ] }, + { + "cell_type": "markdown", + "id": "6f824797-a582-4b02-b73f-18391317022e", + "metadata": { + "tags": [] + }, + "source": [ + "# Create a function to create an interactive plotting time range" + ] + }, + { + "cell_type": "markdown", + "id": "e1538702-c28e-4f82-bfb7-9cd1d79aece3", + "metadata": {}, + "source": [ + "Finally, we can try to create a Holoviz Panel app, which can be embedded into a webpage, if there is an active server running." + ] + }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "id": "7638d325-878c-4c68-a6af-fb4ce5e62760", "metadata": { "tags": [] @@ -1484,123 +1470,31 @@ " dates_to_plot = nwem_to_plot.cast_start_time.values\n", " depths_to_plot = nwem_to_plot.depth.values\n", " sst_to_plot = nwem_to_plot.sea_water_temperature.values\n", + " sss_to_plot = nwem_to_plot.sea_water_practical_salinity.values\n", + " \n", + " fig = plt.Figure(figsize=(6,4))\n", + " \n", + " ax1 = fig.add_subplot(211)\n", + " cb = ax1.pcolor(dates_to_plot, depths_to_plot, sst_to_plot.T)\n", + " ax1.invert_yaxis()\n", + " fig.colorbar(cb,ax=ax1,label='Temperature')\n", + " ax1.set_title('Hansville - NANOOS Buoy')\n", + " ax1.set_ylabel('Depth (m)')\n", " \n", - " fig = plt.Figure()\n", - " ax = fig.add_subplot(111)\n", - " cb = ax.pcolor(dates_to_plot, depths_to_plot, sst_to_plot.T)\n", - " ax.invert_yaxis()\n", - " fig.colorbar(cb,ax=ax)\n", + " ax2 = fig.add_subplot(212)\n", + " cb = ax2.pcolor(dates_to_plot, depths_to_plot, sss_to_plot.T)\n", + " ax2.invert_yaxis()\n", + " fig.colorbar(cb,ax=ax2,label='Salinity')\n", + " ax2.set_ylabel('Depth (m)')\n", " \n", - " #(nwem_interactive.where(nwem_interactive.cast_dates > date_slider,drop=True).\n", - " # sea_water_temperature.plot(x='cast_start_time'))\n", + " fig.tight_layout()\n", " \n", " return fig " ] }, { "cell_type": "code", - "execution_count": 9, - "id": "bfc919a9-d3b8-4a13-b78c-2069cea2f68e", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": {}, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ], - "text/plain": [ - "DateRangeSlider(end=datetime.datetime(2023, ..., name='Earliest Date', start=datetime.datetime(2010, ..., value=(datetime.datetime(2015, ..., value_end=datetime.datetime(2020, ..., value_start=datetime.datetime(2015, ...)" - ] - }, - "execution_count": 9, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "664fb834-7814-4088-a537-ca25aeb359c9" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "date_slider" - ] - }, - { - "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "id": "3a8018ec-41d7-49c3-9ff5-c55bdfd904af", "metadata": { "tags": [] @@ -1615,12 +1509,12 @@ "data": { "application/vnd.holoviews_exec.v0+json": "", "text/html": [ - "
\n", - "
\n", + "
\n", + "
\n", "
\n", " +
+ + \ No newline at end of file diff --git a/interactive/interactive.md b/interactive/interactive.md index a9b1a99..bf7c483 100644 --- a/interactive/interactive.md +++ b/interactive/interactive.md @@ -1,7 +1,20 @@ # Interactive Viz -Adding some links in here! +Different python libraries that we have interactivity options: +Holoviz: +https://holoviz.org/ - Main holoviz plotting tools +https://panel.holoviz.org/getting_started/index.html - Panel, a tool to build interactive web apps + +Streamlit: +https://streamlit.io/ - Main streamlit interactive web app page + +Shiny: +We were only briefly able to test the use of Shiny, another commonly used interactive web app. +Shiny has options for both Python and R interactivity. +https://shiny.posit.co/ + + ```{toctree} :maxdepth: 2 diff --git a/moorings/.ipynb_checkpoints/index-checkpoint.md b/moorings/.ipynb_checkpoints/index-checkpoint.md index 6c46326..2dbbcd6 100644 --- a/moorings/.ipynb_checkpoints/index-checkpoint.md +++ b/moorings/.ipynb_checkpoints/index-checkpoint.md @@ -2,10 +2,10 @@ We put together python notebooks for the following moorings: -* DFO Mooring E01 Summary -* Historical Data from DFO Moorings -* NANOOS Puget Sound Mooring ORCA3 -* NANOOS Puget Sound Mooring NPBY1 +* [DFO Mooring E01 Summary](erddap_DFO_moorings_E01.ipynb) +* [Historical Data from DFO Moorings](dfo_mooring_plots_copy.ipynb) +* [Puget Sound Mooring Data Plots](Puget_Sound1.ipynb) +* [Puget Sound Mooring Climatologies](Puget_Climatology.ipynb) It would be very cool to be able to add more mooring pages automatically. @@ -16,5 +16,6 @@ It would be very cool to be able to add more mooring pages automatically. erddap_DFO_moorings_E01.ipynb dfo_mooring_plots_copy.ipynb -Puget_Sound.ipynb +Puget_Sound1.ipynb +Puget_Climatology.ipynb ``` diff --git a/moorings/Puget_Climatology.ipynb b/moorings/Puget_Climatology.ipynb index 4743697..370eff4 100644 --- a/moorings/Puget_Climatology.ipynb +++ b/moorings/Puget_Climatology.ipynb @@ -5,7 +5,7 @@ "id": "6a15191c-e72b-4002-abcd-4d27a9562842", "metadata": {}, "source": [ - "Puget Sound Climatology Plot" + "# Puget Sound Climatology Plot" ] }, { diff --git a/moorings/Puget_Sound.ipynb b/moorings/Puget_Sound.ipynb index 2210520..0b80b85 100644 --- a/moorings/Puget_Sound.ipynb +++ b/moorings/Puget_Sound.ipynb @@ -5,7 +5,7 @@ "id": "4cab5295-3984-4db5-8383-df5e256d7475", "metadata": {}, "source": [ - "Puget Sound Plotting" + "# Puget Sound Plotting" ] }, { diff --git a/moorings/Puget_Sound1.ipynb b/moorings/Puget_Sound1.ipynb index bb5ced9..1c74985 100644 --- a/moorings/Puget_Sound1.ipynb +++ b/moorings/Puget_Sound1.ipynb @@ -5,7 +5,7 @@ "id": "4cab5295-3984-4db5-8383-df5e256d7475", "metadata": {}, "source": [ - "Puget Sound Plotting" + "# Puget Sound Plotting" ] }, { @@ -779,11 +779,106 @@ ] }, { - "cell_type": "markdown", - "id": "0dfa2b7d-0072-4583-a8fa-b9ae6533b013", - "metadata": {}, + "cell_type": "code", + "execution_count": 11, + "id": "c8568fb3-37d7-4e3c-86a6-6eb90c1129d6", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABU4AAATNCAYAAACTls46AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5zU1NrHf0mm7mxjWVhY2tKk9xVEkMUCViyIvYDtKorYruW+XgUURb3qtXLtoAJ2RUUsqIAgKKKAgiiodOmwfaclz/tHNtlkJpnJtJ0BztfPfGRTT05OznnOc57CERGBwWAwGAwGg8FgMBgMBoPBYDAYKny6C8BgMBgMBoPBYDAYDAaDwWAwGJkGU5wyGAwGg8FgMBgMBoPBYDAYDEYITHHKYDAYDAaDwWAwGAwGg8FgMBghMMUpg8FgMBgMBoPBYDAYDAaDwWCEwBSnDAaDwWAwGAwGg8FgMBgMBoMRAlOcMhgMBoPBYDAYDAaDwWAwGAxGCExxymAwGAwGg8FgMBgMBoPBYDAYITDFKYPBYDAYDAaDwWAwGAwGg8FghMAUpwwGg8FgMBgMBoPBYDAYDAaDEQJTnDIYjMOKmTNnguM4jBs3Lt1FYViEvTM97733Ho455hh4PB5wHAeO49JdJEaclJSUgOM4bN68Wbd93Lhx4DgOM2fOTMp92DcUH5MnTwbHcZg8eXK6i8KIwv79+3HNNdegVatWEASBvbc4YW2ekQmYjY2ZRLLHaQaDcWjDFKcMxhGMIrgoP57nkZubizZt2mDEiBH497//jV9//TXdxdQxefLktAr8kiThzTffxHnnnYd27dohKysLHo8HnTt3xqWXXop58+aBiNJWPsahzYIFCzBmzBh8//33aNu2LYYMGYIhQ4aYHr9o0SLdN2z1dyRPmmtra/Gf//wHgwcPRn5+PhwOB1q2bIl+/frhmmuuwezZs1FXV5fuYiaF8vJyTJ48GU888US6i3JYUlVVhUceeQRDhgxBs2bN4HQ6UVxcjDPOOAOvv/46JElKdxEPG8466yy89NJLqKmpQWlpKYYMGYK2bdumu1jYv38/7r33XvTv3x85OTlwOp1o1aoVjj76aNx444147733wtrB3LlzMXnyZKxevTqpZdm8eTMmT558RCt6Pv74Y1xwwQVo27YtXC4XCgoKMGDAANxzzz3YvXt3uotniYULF2LixIkYPHgwWrVqBafTiZycHAwYMAD3338/qqqq0l1ERgpYtGgRpk2bhnPOOQetWrVS5bXt27enu2gMBgOALd0FYDAY6adz585o3rw5AMDr9WLfvn348ssv8eWXX+KBBx7Aueeei+effx5NmzZNc0mBKVOmAEBaFD9//vknRo8ejZ9//hkA0KRJE3Tp0gVEhC1btmD27NmYPXs2BgwYgKVLl8LlcjV6GQ9F8vLy0KVLF7Rs2TLdRUk7//vf/wAAjz76KG677baox+fl5RkqVrdu3Ypt27YhNzcXvXr1CtufCQqHdLBjxw6ccMIJ2LBhAwCgRYsW6NSpE3w+H9avX4/Vq1fjpZdewi+//IKePXumrBwtW7ZEly5dkJeXl5TrmX1D5eXlmDJlCtq1a4ebb745KfdiyCxevBjnn38+9uzZA47j0KlTJ5SUlGDr1q345JNP8Mknn+CJJ57ARx99hFatWqW7uIc0P//8M7799lu0atUK69atS9p3kyi//PILRowYoSrkWrdujZYtW6KqqgqrV6/GypUr8cwzz6CqqgrZ2dnqeXPnzsWrr76KkpIS9O3bN2nl2bx5M6ZMmYKysjJT6/PCwkJ06dIFhYWFSbtvJlBRUYELLrgAn3/+OQCgWbNm6NWrFyorK7Fq1Sr89NNPePLJJ/HSSy/h/PPPT3NpI/Pyyy9j9uzZsNlsKC4uRu/evbF37171OWbMmIFFixYdseP44crZZ5+NioqKdBeDwWCYQQwG44ilXbt2BIBmzJgRtm/v3r30xBNPUGFhIQGgrl27Unl5eeMXMgQAFKnrmjFjBgGgsWPHJvW+mzdvpmbNmhEAKi0tpYULF5Ioiur+YDBICxcupBEjRhAAOnjwYFLvzzgy6NatGwGgX3/9NaHrTJo0iQBQWVlZcgp2mDBy5EgCQJ07d6Zly5bp9vl8Ppo/fz6NHj2a1q9fn5T7KX3spk2bknK9WNm0aRMBoHbt2qXl/pmO8p1MmjQppvO+/fZbcrlcBIDOO+882rx5s7pPkiT6/PPPqUOHDgSASkpKaP/+/Uku+ZHFW2+9RQDo/PPPT3dRVERRVPvrQYMG0dq1a3X7q6ur6Z133qGTTjqJqqurdfvGjh1rKnslwsKFC4/Ift/n89HRRx+tfm/z588nSZLU/Vu3bqULL7yQABDP8/Tuu++msbTReffdd+nTTz+l2tpa3fZ169ZR7969CQCddtppaSpdckj32GiFVH2nZhx77LE0btw4mj59Oq1cuVKd72zbtq1R7s9gMCLDLE4ZDIYhhYWFuOmmm3D22Wdj8ODB+O2333DzzTdjxowZ6S5aWrjkkkuwd+9elJWV4dNPP4Xb7dbtFwQBw4cPx/DhwzF9+nQIgpCmkjIOZRQX8dD2xUicnTt34osvvgAAzJgxA4MHD9btdzgcOPXUU3Hqqaemo3iMQwSv14tLLrkEXq8Xl19+uRpfVoHjOIwcORJLlizBwIEDsXnzZkyYMAFz5sxJY6kPbTKxX1yxYgXWr18PAHj33XfRunVr3X6Px4MxY8ZgzJgx6SjeEcWkSZPwww8/oGXLlliyZEnYu2jTpg3eeOMNuN1uzJgxA1dffTWGDh2KoqKiNJU4Mueee67h9u7du+Oll17CwIED8fnnn8Pr9TLPpsOIb7/9Nt1FYDAYEWAxThkMRkTatWuH6dOnAwBmzZqFbdu2hR1DRHjzzTcxYsQING3aFE6nEx06dMDEiROxa9eusOOVuIzDhw9HIBDAlClTcNRRR8HlcqFVq1a44YYbcODAAd05SkIDhdCYjUYB5n0+HyZPnoxOnTrB5XKhTZs2uPXWW1FTUxNTHXz99df49ttvYbfb8dprr0WdvF1//fXIycnRbQsEAnj66acxcOBA5ObmwuPxoE+fPnjggQdQW1sbdo3NmzeD4ziUlJQAAF566SX069cPWVlZaNWqFSZOnKjGuRJFEY899hh69OgBt9uN1q1b46677oLf7w+7rjYxxK5du3DVVVehuLgYLpcL3bp1w6OPPopgMBh2niiK+PDDD3HllVeiR48eyMvLQ1ZWFrp164Y77rgD+/btM6yL4cOHg+M4LFq0CKtXr8aYMWNQVFQEnufVOGyREtssXboU55xzDlq0aAG73Y6CggJ069YNV199Nb777ruw44kIs2bNQllZGfLz8+F2u9G1a1fceeedYW1KQZuA6dNPP8WwYcOQk5ODvLw8nHrqqVi1apXhedGoqanB1KlT0bt3b3g8HuTm5mLQoEF49tlnw+pYqSelHbdv3z6l8UgPHDiAu+++Gz179oTH40FOTg6OOeYYvPjii4ZxGbVJErZs2YJLL70URUVFyM7OxuDBg7FgwQL12F9++QXnnnsumjdvjqysLAwbNszwXQH6up8zZw4GDhyI7OxsFBQU4Oyzz8batWuT9sybNm1S/x2re2x5eTlefvllnHXWWejUqRPcbjfy8vIwaNAgPPXUU4bfTCTMkk5ov8+KigrcfPPNaNu2LZxOJzp16oT777/f8F5G39C4cePQvn17AMCWLVvC+kwAuPDCC8FxHB577DHTsr777rvgOA5HH310TM9oxoIFCzBhwgT06dMHBQUFcLlc6NixI8aPH4+tW7canqOtr7///htXXnklWrZsCZfLhR49euDZZ581vV8wGMQjjzyCrl27qmPMNddcE3e8w1mzZmHz5s0oLCzE008/bZq8rbi4GP/5z38AAG+99RY2btyo7ps6dSo4jkPPnj3h9XrDzn3llVfAcRyKi4uxf/9+iKKI1q1bg+M4/Pjjj6ZlmzBhAjiOw+23367b7vf78eCDD6JLly5qHVx33XXYu3dv1GRBv/32G6688kqUlJTA6XSiadOmOP300/H1118bHq9N+vLdd9/h1FNPRZMmTeDxeHDccceZnmeEIiso7frVV18Na8MKsfS32msPHz5cbSO9evVCVlaWOu5G4q+//gIgLzKHKurMUMb1V199FQBwxRVXmMaeXrt2LSZNmoTBgwejZcuWaizm0aNHY9myZWHXHj58OI4//ngAchgJ7XW1zxPtfS9btgyjR49GUVERHA4HWrdujcsvv1xVEhvdVxnjf/vtN5x33nkoLCyE2+3GgAED8PbbbxueV1NTg/vuu099X4qMNnz4cDz00EMIBAIWalTum5955hkAcoibSO/iySefRGFhoe4cBW297N27FxMmTEBJSQnsdnuYbLJgwQKMHj0axcXFalzj448/Hs8++yx8Pp96XF1dHd544w1ceOGF6NKlC7Kzs5GdnY2+ffti6tSpMcuiANC1a1cAskymvVc04h3DEpGPFFlBkQV69+6NZ599Nu48APG2Ne15K1aswOmnn46CggJ4PB4ce+yxmDt3btR7b9iwARdccAGaN28Ot9uNfv364ZVXXgk7Lh1jKoPBaCTSbPHKYDDSSCRXfS2iKFJxcTEBoJdeekm3z+/303nnnae6lBQXF1OfPn0oKyuLAFDLli3p999/152juJMNGzaMTj/9dNV1tm/fvmSz2QgAderUiXbv3q2e8/LLL9OQIUPU+wwZMkT327lzJxE1uOpffPHFNGzYMOI4jnr06EFdunQhnucJAI0YMSKmerrmmmsIAJ1zzjkxnadQW1tLJ5xwglr2bt26Ue/evdXy9O3bl/bt26c7R+tie+uttxIA6tixI/Xs2VOtoxNOOIFEUaSzzz5bvW6XLl2I4zgCQJdffnlYWRTX1AkTJlCbNm1IEATq27cvHXXUUWr5zj77bF0YAiKibdu2qW5uLVu2pP79+1PXrl1Vd9WSkhLatWtX2P3KysoIAE2ZMoWcTidlZ2fTgAEDqEOHDmq7MwuvMHfuXLWOmjZtqt7T4/EQALrpppt0x0uSRBdffLH6HB06dKD+/fuTw+FQ6/LPP/8MK6Ny/P/+9z/iOE59PuU+2dnZMbtu79mzh3r16qXWWe/evVW3TqUN1tXVqcdPmDCBhgwZQk6nUw0HobTtl19+OaZ7E0V21V+7di21atWKAJDD4aDu3btTx44d1XYzZswYnZsjUYPL2r333kuFhYXk8XhowIABaigPm81GX331FS1ZsoQ8Hg/l5+fTgAEDKC8vjwBQVlZWmCsrUUPdP/zwwwSAWrRoQaWlpZSTk0MAyO1205IlS2J+fiN++eUX9X5ff/11TOe+/vrran21a9eOjj76aOrQoYPaPk8//fSwb4bI3B3RzAVQeW8333wzdevWjWw2G/Xt25dKSkrUsl999dVh9zH6hh544AEqLS0lAOR0OsP6TCKizz//nABQr169TJ/9jDPOIAD0zDPPWK+wCAiCQBzHUfPmzalv377Us2dP9Vtr2rQprVu3Luwcpb4mT55MLVq0IJfLRf3791fHJQA0derUsPOCwSCNGjVKPeaoo46iPn36kCAI1LZtW5owYULMrvpKOJbQ/seIQCCgfiMPPvigrlyDBw82vM6mTZvU9j9//nx1+7/+9S8CQDfeeKPhvXw+HzVt2pQA6L61QCBAJ598sloHXbp0UcfakpISuvHGG03r4K233lL7z5ycHOrbty+1aNGCABDHcfTUU0+FnaO0+aeffprsdjs1bdpU1xfYbDZauHBh1LojIvrpp59oyJAh1LlzZwJAzZs3D2vDRLH3t0TGckjHjh1pwIAB1KNHj6hl+/jjj9V6MBpXjNi5cycNGTKEmjdvrso92ufR9vUnnngiAaD8/Hzq1q0b9e/fX21LgiDQ7NmzddeeMGEC9ezZkwBQbm6u7rpjxoxRj4sUnmL69OnqONC8eXMqLS2l/Px8AkAul4vmzZsXdo4yxj/66KOUnZ1NOTk5NGDAADW0EQB6/fXXdecEAgE65phj1PfVpUsXKi0tpeLiYrVPtRruaPbs2QSACgsLye/3Rz3+pptuUvsCLUq9XH/99dS2bVsSBIF69+5NvXv3piuvvFI97oYbblCfq2nTplRaWkrt2rVTy63t65csWaK2+datW1NpaSl17txZleH69+8f5o4fDaXP7tChQ0znxTuGxSsf/frrr2p/5HK5aMCAAdS2bVu1juNx1Y+nrWnPu++++8jhcFB2djaVlpZSy5Yt1fMee+yxsPOUcef//u//KC8vj5xOJ/Xv318tu1F/nMwxVbkHc9VnMDIDpjhlMI5grCpOiYjOPfdcAkDXXnutbvtdd91FAKhfv360atUqdXttbS1df/31qhJIizJhsdlslJubq1NibNmyhfr06aMqcEJRBAkzFAWC3W6n7t2765S2y5cvp9zcXAJAn376adRnVujRowcBoCeeeMLyOVpuu+02AmSl8o8//qhu37hxI3Xt2pWA8NhtiuLUZrNRXl4effnll+q+X375RRVIzz77bGrdurWu7hcuXKhOdkOVEMrkwGazUa9evXRC6+LFi9XJbahAV15eTjNnzgyL1Xfw4EFV+TBu3LiwZ1cEVkEQ6B//+AfV1NSo+5QJg5niVJkETp8+nYLBoLpdkiRauHAhffTRR7rjn376aXWC/8UXX6jblckqIMeiC0VpU1lZWbpvobKyUp28XnDBBWHnRUL5Xnr06EF//PGHuv2HH36goqIiAkB33HFH2HnJivtlpjitrq6mjh07EgCaOHEiVVRUqPvWrVuntvXQ969MIOx2O1144YVUWVlJRPKiivKd9+nTh0pKSujWW28ln89HRERer1dVXBnFJ1Tq3m6302OPPaZO3GpqauiSSy4hQFZ4xzq5NEIURXXi1qJFC3rmmWcsT0jWrFlD8+bNI6/Xq9v+559/0rBhwwgAzZw5M+y8eBWndrudhg0bRjt27FD3ffTRRyQIAgEIm6iafUPRYpxq6+Snn34K2797926y2WzkcDiSFqfz+eef1z0XkdwXPPDAAwSAhg8fHnaOtv2NGTNGp1SZPn26OjkPVbY8+eSTBICaNGmiU8Bv2rSJevbsSXa7PSbFqSRJlJ2dTQDo/ffft3SO0v5HjRql2/7HH3+Qx+MhjuNowYIFRCS/j+OOO44A0Pjx43XHb9y4MaKC6L333jMcb//zn/8QACooKKBvv/1W3b5161bq16+faR2sWbOGnE4nuVwueuGFF3RKlY8++ohyc3NJEARavXq17jylzdvtdpo2bZrad/v9fvWbNuqHIxEtdnk8/a0ihwiCQM2bN9fFPA5Vshpx8OBBVXnUqVMnmjlzJu3Zs8fS81iJnfjOO+/Qzz//rNsmSRLNnTuXsrOzKTc3V+2HQ58pUoxTM8XpqlWrVIXeI488or5vr9er9vF5eXn0999/685Txni73U4TJkxQ606SJLrzzjtV2Uc7hr/77rvqmBHaB+/Zs4eeeOIJnawQCUWReeaZZ1o6XvlOAOgWrJV6EQSBBg8erCuX8kxPPPGEKiu8/vrrum9i//799Nhjj+nawObNm+ntt9+mqqoqXRl27txJY8aMIUBeDIqGJEm0c+dOmjVrFrVs2ZJsNhvNnTvX0vMqxDuGxSMfSZJE/fv3JwB08skn68aON954g+x2u9rW4lGcxtLWtOfZbDa68MIL1ZjDkiTRU089pe4L7cuU79Rms9Hxxx+ve7fvvPOO2ndqFxSSOaYyxSmDkVkwxSmDcQQTi+L05ptvJkBvdblnzx5yOp2Um5trOLCLoqgG7P/mm2/U7YpwD4Aef/zxsPPWrFlDgLElh1XFKcdx9MMPP4TtV6w3J06cGPWZFRSLiw8//NDyOQoVFRWq9e0HH3wQtn/FihVqebUTPkXhAYD++9//hp2nWB+ZXVdJhBBav8rkAIBOiaugCJElJSVhVoeRaNOmDWVlZVEgENBtVwTWPn36GFozEJlPip1OJzVp0sTS/SVJojZt2pjW1/bt21Vl8ldffaXbZ2Y5QET0888/qxNGq2zYsEG12jESnN9++20CQB6PJ2zim2rFqfJ+zayn16xZQxzHhVmzKBOIli1bhk1oy8vLVcvjfv36hbWb3377jQDZCioUpe6NJr0+n0+1bnvllVesPHZUFixYoH6Pyq+4uJjOPvtsevrpp2nv3r0xX/OPP/4gwNiSPV7FqdvtNuxTR48ebfhdx6s4JSK65557CDC2oHz88ccJMF7ESgVDhw4lALR9+3bddqW+WrRoEZZoh4jUSbpWmSlJkjqBffbZZ8PO+fHHH9U2YFVxWl5erp6zZs0aS+coY2e/fv3C9j3//PMEgFq1akUHDhygadOmESBbwxkpjhSlqlGff+aZZ4YteoiiqFqXz5o1K+ycjRs3qsr40DpQ2tqTTz5p+FzKQpXWGo+ooc2HKoqJ5KSTilX9gQMHDK9rRCTFabz9rVYOee+99yyXRcurr76q1p/ya9++PV144YX08ssvh/XvCokmnfn3v/9NAMKsThNRnCpK7bPOOivsHEmS1EW1e+65R7cv0hjv9/vVPlz7bpR2bta2YkHxuLnlllssHb969WrDb1ipF6fTGbawQyQv7igL1q+99lrC5a6trSWHw0GdO3c2PeaDDz7QtS3l3S5dujTh+2uJNIbFIx99+eWX6jhmNKZOnDhRvW48itNY2pr2vObNmxsuiih9XaiXlvKdOp1O1atNizKfGDZsmG57ssZUpjhlMDILFuOUwWBYwuPxAIAaVxMA5s+fD5/Ph5NPPtkwrhTP8zjjjDMAyDG3QnE4HLj66qvDtvfu3RtDhw4FEanJXGKlb9++KC0tDduuxBRS4pNZQXlmpQ5iYenSpaitrUXbtm1x1llnGZZn8ODBICJdnEgtV155Zdg2JUajEgsylH79+gEwf87Bgwejf//+hvdyuVzYvHkzfv/997D9X3/9NW655RacfvrpGDZsGIYOHYqhQ4eioqICtbW1ujh+Wi699FLwfGxDTps2bVBeXm5aL1rWr1+Pbdu2weVy4Zprrgnb36pVKzXhglmbMmqLvXr1gsvlQkVFBfbv32+p3AsWLAARYejQoep70HLuueeidevWqKmpafRkAO+//z4A42cF5G+vpKQEf/31F7Zv3x62/6KLLkJWVpZuW15enhpLU4nZp6VLly5wu92orKw0rcMbbrghbJu2f/j888+jPJk1TjrpJKxZswZXX3018vPzAQB///035s6dixtvvBElJSV4+umnDc/1+XyYM2cOrrnmGpx88sk47rjjMHToUIwdOxYAsGbNmqSUEQBOOeUUwz41nv4rGso7mzNnTlhcQSUWo1H84URYuXIl7rrrLpx55pkoKytT+5ENGzYAAH7++WfD8y666CLDftioXtavX4+tW7fC5XIZlr9///445phjYiq3dvyzOh4YjZ0K//jHP3DGGWdgx44dOOecczBp0iTYbDbMmjUr7DsDGsYC5b0o7N27F59++ikcDgcuuugidfuvv/6KHTt2wOPx4Lzzzgu7XqdOnXDccceFbff7/Zg/fz4EQTB992eeeSYA47EdMO5jCgsL1XibyWrDifa3eXl5hmOzFS6//HL88MMPuOCCC9T3tWnTJrz55pu46qqr0L59e7zzzjtxXRsAtm7dioceegjnn38+TjjhBPU7eeuttwAkt89RxsUbb7wxbB/HcZg4caLuuFCuvPLKsDHebrejT58+APTvu02bNgCATz75xDDGeyzEKp9pjzP6Jk866SQUFxeHbf/222+xf/9+FBcX45JLLrFcPkmS8OGHH+KGG27Aqaeeqo4bI0aMAMdx2Lhxo2kdNG3aFEOGDMExxxyDVq1ageM4rFixAq+99pqaMC0WEhnDYpGPlPFaiUEayvXXXx9z2bXE0ta0XHXVVYbJtJTymMkZo0ePRosWLUzP+/bbb3XxatMxpjIYjNRjS3cBGAzGoUF1dTUAIDc3V932yy+/AAC+++47DB061PA8JQHHjh07wva1bt06LImSQrdu3bB06VJ1Ih0rHTt2NNzevHlzAA3PY4WcnByUl5fHFchfKX/Xrl1Nk4j06NEDy5cvN3zWZs2a6epcux0wf05lv9lzduvWzXC7x+NBmzZtsHHjRmzYsEFNROD3+3HBBRdEDaJvloDJ7H6RuOWWW3DDDTdg5MiRGDBgAE466SQMHToUZWVlYe1Gqbu2bduaTqB69OihOzaUSHW5bds2VFdXo2nTplHLrVy/e/fuhvt5nkfXrl2xfft2bNiwAaecckrUayYL5Zu999578eCDDxoeoyT62rFjR5jyLlIdrV+/PuL+rVu3mtahWftQtsfbDxjRqVMnvPjii3j++efx888/44cffsAXX3yB+fPno6amBhMnTkReXh4uv/xy9ZytW7di5MiRhosJCmZtPx6S2X9Fo3379hg+fDgWLlyITz/9VFWIrVmzBmvWrEGLFi2S1kaJCBMmTFATDpphVpex1IvSZtq1a2eohATk9mWWuMwIbb9jdTxQjjMb61566SX06tVLVUBOnjzZNGnIeeedh4kTJ+KTTz7Bvn37VKWEMkEfM2YMCgoK1OOVhayuXbvC4XAYXrN3795YtGiRbtuGDRvg9XrhcDhw2mmnGZ5H9QlejMZ2IPK7+v3335PWhhPtbzt37gxBEOK+f79+/fDmm28iEAhg1apVWLFiBT777DN88cUX2L9/Py688EIUFhaqiZus8uqrr+K6664zTB6mkKw+p7y8HHv37gVgXo/xjp9G3+bZZ5+NkpISfPHFFyguLsYpp5yC4447DsOHD1fvYxXlu4r1e9Seq8VsLFKSYw0cONDyInB5eTlOO+00LF++POJxBw8eNOyjjjvuOCxdulRXhhtuuAEvvPACtm7dik8//dRSOYDEx7BY5COljZjVZefOnWGz2WJOqhitLNHGx2hyxu7du1FZWRkmc5ud16FDBzidTvh8Pvz555/o3bs3gMYdUxkMRuPBLE4ZDIYllGzHimACABUVFQCAbdu24dtvvzX8/fHHHwBguDquvVYoRUVFAIwtAqxgpjxTBF5l0meFVq1aAdBn5baKIsDF+6xmE35FCRttv9lzxlqehx56CHPnzkWLFi3w2muvYfPmzfB6vSA55AuGDBkCAKaZcOOx1r3++uvx2muvoU+fPvjxxx/x8MMPY9SoUWjevDn+8Y9/qO0PSLyeI5Ux1jaTjLKkCqXOfvzxR9NvVimT0Tfb2O0xlfXE8zz69u2La665Bu+88w7Wr1+PXr16AQDuv/9+3bHjxo3D77//jkGDBuGzzz7Drl274Pf7QURqm493EmhEMvsvKxhZMir/vvTSSxNSLGl5/fXXMX36dHg8HkyfPl21tlL6EcWSK9Z+xKhelO9QWUQyQmlfVsnNzUV2djYA4M8//7R0jnKcMo4YlUFRFvE8H9ESyePx4Pzzz0cgEMAbb7yhbjezYoqmtDXbp/QTfr/ftJ9QMrubKfYaqw0n2t/GMzYZYbfbMXDgQEyYMAHz5s3DqlWrUFxcDEmSTBepzPjzzz9xzTXXwOv14rbbbsOqVatQWVkJSZJARHjxxRcBmH8nsaJVNMXbF8fyvj0eD5YsWYIrrrgCkiThrbfewoQJE9CzZ0/06NED8+bNs1x25buK9XvUnmvlOSorKwFA9VSwwq233orly5ejS5cueO+997Bjxw74fD61v1Pub/U9duvWDR9//DGKiorw2Wef6ZSq0Uh0DEtm38vzvKElqlXi7VvM2rZ2u1H7NjuP4zj1GUPPa6wxlcFgNB5MccpgMKIiSZK6Yj5w4EB1uzKBvPvuu1VB0Ow3c+bMsOsqFg5G7NmzB0DkCV9jceyxxwIwd0mMhFJHyvMYoVjlNuazxlr3s2fPBgDMnDkTl112Gdq1awen06nu37ZtW0rKedlll2H16tXYuXOn6v5os9nw4osv4tJLL1WPy6R6zqSyhKKUbePGjVG/2eHDhzdauczaY2P2A23btsVDDz0EAPjjjz9w8OBBALIr/8KFC5GVlYX58+fj5JNPRlFREex2O4DUtf3G5Nxzz0VeXh7mzZuH/fv3IxgMYs6cOQCS61Ko9COPPfYYxo8fj06dOsHtdqv7k1mXSlu30tdZheM4DB48GIC18SAYDKpjp3JeKM8++ywWLVoEnuchSRKuueaaiErF0An5L7/8glWrVhlaMSkKhkjWnUaKAqXuWrVqFbWfSLYSP1Yytb/t0aMH7r77bgDAihUrYjr37bffRiAQwIUXXohHH30Uffv2RU5OjroAlew+R6lDwLwek12HrVu3xiuvvIIDBw7gu+++w0MPPYTS0lL8+uuvOPvss/H9999buo4iny1btszS4tU333wDQLZ6tOJBoqA8d3l5uaXjg8Eg3n77bQDAhx9+iNGjR6O4uFi1/A4Gg9i1a5fl+yt4PB51bP7pp58sndPYY1i0vleSJMuhj5KJWXm0243at9l5RKTuCz2vscZUBoPReDDFKYPBiMrcuXOxa9cu2O12jBw5Ut2uuHStXbs2rusq7j1GKG5RRx11VFzXTiYXXHABAGDevHmq5a1VlPKvX7/edIK5bt063bGNgVK/odTW1qrPqC3P5s2bATRMUrTs37/f1F0zWbRo0QIXXHABXnrpJXz//ffgeR7z5s3Dzp07dWVV3MGNaKx6Vq7/66+/Gu6XJAm//fZbo5QllES/2VRh1h4bux/o0KGD+m+/3w8A2LJlCwDZ3VnrBq2QzDiDycYsPEgobrcbF154Ifx+P9544w18+umn2L17N0pLS2N2nY1EpH4kEAiYtoN40PYJZjEE47mfEit09uzZqhWaGe+++y727dsHjuMMY4xu2LABd9xxB3iex0cffYT27dtjwYIFeOaZZ0yveeyxx6Jr16748ccfsXbtWnVR0siKSamD3377zdSqTQnfoaVz586w2+3YuXNnUkNQpIJM7m+V/kTpSxSifZeRvhPAvM+x+r2Hkp+fr1rOmdVjqsZPm82GQYMG4c4778QPP/yACy+8EKIo4pVXXrF0/mmnnQaPx4N9+/ZFjSdbVVWlLt4ocp1VlH7whx9+gCRJUY/fu3cvampqUFBQgC5duoTtX7t2LURRjKkMCoqC2KqXQ2OPYdp+x4g//vgjadbSsRBNzigqKjIMjWV23qZNm+Dz+cDzfFj4gMYaUxkMRuPBFKcMBiMiW7ZswYQJEwDIiRC0rk2nn346HA4H5s+fb5oUKBJ+vx8vv/xy2Pa1a9diyZIl4DgOI0aM0O1TrJPiCYwfLyeeeCIGDx6MQCCAsWPHRow5BgDPPfecasUzdOhQZGVlYdu2bfjwww/Djl25ciWWL19u+KypZNmyZVi9enXY9ldeeQVerxft2rXTCftKvStWJ1oee+yxuCcA8dC9e3fk5eUBkC0pANmFrW3btvB6vXjppZfCzvn777/x3nvvAQBOPvnklJZv5MiR4DgOS5cuxapVq8L2v//++9i+fTs8Ho8a4qCxGD16NADgqaeeSrulmBajmJfa/kG7YBMvNTU1URORKO7HWkWC0vb37NljWGePPPJIwmVLFbH0l1pLxlQlsIjUj8yYMSOidWisdO3aFW3atEFdXR1ee+21sP2rV6+OGnvQCMXift++fYaJdBT+/vtv/POf/wQAnH/++ejcubNufzAYxGWXXYba2lrcdtttOP300/Haa6+B53nceeedEWMRXnHFFQCAl19+WVUEGb2rbt26oVWrVqiursa7774btv+vv/7CkiVLwrZnZWXh5JNPhiRJeOqpp0zLkQmkq789ePBgVMWV0p+Evvto32Wk7+S3337Dxx9/HPG8eOQjZVw0So5HROr2VI+fSsI2ZWyPRn5+vppc8LbbbjNMaqhw0003Yd++fcjLyzNMSBiJIUOGoLCwEDt27NCFyTBDeReVlZWG7yPecaOiogILFy4E0JAk1GpZGmsMU8brd955x9CyNFqM61Tx8ssvw+fzhW1XymMmZ7z33nuG36Jy3pAhQwzDBzTGmMpgMBoPpjhlMBiG7Nu3D0899RRKS0uxc+dOdO/eHY8//rjumOLiYtx8880IBAI4+eSTwxJMEBFWrFiB8ePHG2a5tNlsmDRpks7lcfv27WpSltGjR4et4ioWHPG4zSfC7Nmz0bRpUyxatAjHHXccFi1apLM6kCQJS5cuxSmnnILx48erisTc3FyMHz8eADBhwgTdxO7PP/9Us5mef/75pgHvU4HNZsO4ceNUSwQAWLp0Ke69914AwD//+U+d9YqS/Ou2225TLTqJCK+99hoeffRRw0yliVBZWYkLL7wwrJ5FUcRTTz2FgwcPwuPxqMpdjuNw++23AwAmTZqEr776Sj1n9+7d6sr/McccE3OSjljp1KmTqqC8/PLLdW3/p59+UrMTT5gwodFd9a+99lp06NABCxcuxCWXXKJa7CpUV1fj7bffxq233tqo5frkk0/w5JNPqpO6uro6XHPNNfj777/Rpk0bXHjhhbrjFy1aBI7jYrKw2rhxIzp06ID7778/LB5eMBjE66+/rj735ZdfrsZL69GjB5o0aYLt27fjgQceUMvo9Xpx0003GSprMoVmzZohJycHe/bsiWpdOXDgQPTs2RMrV67Ehx9+GJahPZThw4eD4zhMnjzZcnmUfuTf//63Tkn62Wef4fbbb09qP8LzvPo+7777blWJBcgLgmPHjlVdVWPB5XJh1qxZcDqdeO2113D++efr+lEiwoIFCzBs2DDs2LEDbdu2xbPPPht2nalTp2LFihXo1auXGlN36NCh+Oc//4m6ujpceumlpoq5yy+/HDabDc8880xEKyae53HzzTcDACZOnKhLhLV9+3acf/75pt/Q/fffD6fTialTp+Khhx4KU/7s3LkTTz75JJ577rnIFZZi0tXfLl68GF26dMF///vfMI+Luro6PPXUU3j44YcBNCi6FRQ55ptvvjFUZCnfyfTp03ULnBs2bMB5551nmuirffv2AGSr0VgXIW677TbYbDZ8+OGHeOyxx9Rx1+/346abbsLatWuRl5enyjOJ8N///hdPPPFEmDJq69at6sJn//79LV/vvvvuQ//+/bFz504MGzYMn332ma5et2/fjosvvhgzZswAx3F44YUXDLOkR8LlcuGee+4BII+jb7zxhu4eBw8exH//+1+13vPz89GjRw8Eg0HccsstqtWxKIp4+OGH8dZbbxm+x7///hs333yzauGr5bvvvsMpp5yCAwcOoFevXigrK7NU9sYew0488UT069cPtbW1uOyyy9SwN4AchuJ///sfbLbGz0+9f/9+XHXVVWrsZyLC9OnT8f7770MQBFO5RxRFXHLJJWriTAD44IMP1MUERfYMJdYxlcFgZDjEYDCOWNq1a0cAqHPnzjRkyBAaMmQIlZaWUklJCQFQf+eddx7t37/f8BqBQIAuvfRS9dgWLVrQwIEDqU+fPpSTk6NuX79+vXrOwoULCQANGzaMTj/9dAJARx11FPXr149sNhsBoA4dOtDOnTvD7nffffcRABIEgfr160dlZWVUVlamHjtjxgwCQGPHjjUsr3LvsrKymOtrw4YN1LNnT/WZCgoKqF+/ftS3b19q0qSJun3QoEHk9XrV82pra+n4449X93fv3p369OlDgiAQAOrTpw/t27dPd69NmzYRAGrXrl1cz2FWD5MmTSIAdMMNN1CbNm3IZrNR3759qUuXLmr5Ro0aRaIo6s5buXIlOZ1OAkC5ubk0YMAAKi4uJgB02WWXUVlZGQGghQsX6s4z2x6trAcPHlTL4/F4qE+fPlRaWkqFhYUEgDiOoxdffFF3HUmS6OKLL1bP69SpE/Xv358cDgcBoLZt29Kff/4Zdn/leDOU72TTpk2mx4SyZ88e6tWrl9pW+/TpQ927d1fvddJJJ1FdXV1S7mWE8p6N2sf69eupffv2BIB4nqdu3brRoEGD6KijjlLb5KBBg3TnjB07lgDQjBkzDO8X7T2bPZdSHw8//LDafxx99NGUm5tLAMjlctHixYvDrqe0/1jEmNWrV+v6tebNm9OAAQOoZ8+eur5q+PDhVFVVpTv3mWee0fVxpaWllJubq7ZDs7KYPbdZfSrvbdKkSYbPYPZdR+r3rrzySrUuS0tL1T7TiMcee0x9ljFjxhgeo6C8c7OyGrFlyxYqKCggAOR2u6lv377qeHP88cfTJZdcYlgv0dqfWb0Fg0E67bTT1Gfq2rUr9e3bl2w2G7Vt25YmTJgQ8zMofP3119SsWTO1P+rcuTOVlpZS8+bN1fv17duXtm7dGnbu999/TzabjRwOB61evVq3z+fzUZ8+fQgA3Xvvvab3HzVqlHqfZ555xvS4QCBAI0eO1NWBMtaWlJTQjTfeSADovvvuCzv3/fffp6ysLLX99O3blwYOHEht2rRRr3fnnXfqzonWh1kZE0KJNq7H098mIgsQEc2dO1fXn7Ru3ZqOPvpo6tatm1pnAOjCCy+kQCCgO/ePP/5Qx6V27drRcccdR2VlZWr7DgQCdMwxx6jP061bN+rZsydxHEctW7akqVOnmtbHCSecQAAoJyeHBg0aRGVlZXTBBReo+yP1MdOnTyeO4wgAFRUV0dFHH035+fkEgJxOJ82bNy/snGjv0+jbvemmm9T6KSkpoYEDB1LXrl3V8adnz55UXl4e9R1oOXjwIJ100knqdZs1a0alpaXUpUsX9Zmys7Npzpw5hudH63uJZBlj/Pjx6j0KCwvp6KOPppKSErXs2nb/0UcfqfcuKCjQyTD33HOP4beiyH7KOf3796d+/fqp5wGgjh070h9//BFT/cQ7hsUrH61du1bX15eWlqrHXn/99XHJOvG0Ne159913HzkcDsrJyaHS0lJVhgVAjzzyiOn1/vWvf1FeXh65XC4aMGCAbo50/fXXRyxzLGPqhAkTqGnTpupPOa9JkybqtjPPPDPiNRgMRupgFqcMBgMbN25UM+X+9ttvCAaDOOmkk3D33Xfj119/xdtvv20YFwmQLRdff/11fPLJJzj77LMBAKtWrcLOnTtx1FFHYcKECVi0aJFhXCyO4/DBBx9g8uTJkCQJv/76K5o1a4bx48fj+++/N7QIuOuuuzBp0iR06tQJv/76KxYvXozFixdHdZ9PBp07d8bq1asxe/ZsjB49Gh6PB+vXr8fvv/+OgoICXHLJJfj000+xfPlyXeIkt9uNzz//HE8++SRKS0uxZcsWbNiwAd27d8fUqVOxbNmymJIUJIPCwkKsWLECl19+OXbv3o1NmzahS5cuePjhh/H++++r1nYKAwYMwDfffIMRI0aoMeOaN2+Op556Spc1NFnk5OTg9ddfx2WXXYY2bdpg8+bNWLduHQoKCnDppZdi1apVuPrqq3XncByHWbNm4bXXXsNxxx2HPXv2YN26dWjXrh1uv/12/PTTT7oYlqmkWbNmWL58Oe677z5069YNGzZswJYtW3D00Ufj6aefxvz585NupWuVrl27Ys2aNXjooYdw9NFHY8eOHVi9ejX8fj/Kysrw6KOP4s0332zUMt1xxx2YPXs22rRpg3Xr1oHjOJx55pn4/vvvMWzYsLDjlaQavXv3tnyPPn36YPXq1Zg2bRpOOukk5Obm4rfffsOGDRuQm5uLUaNGYfbs2fjqq690yVIA4IYbbsCsWbPQt29fHDhwAH/88QdKS0sxf/78sHaYaTz55JO46aab0KJFC6xZs0btM4247LLL1DiZ0VwKlXdg1V0UkBNwLV++HKNHj4bD4cBvv/0Gl8uFKVOm4LPPPku6FZIgCJg7dy6mTZuGo446Cn/99Rd2796NsWPHYsWKFQn1u8cffzz++OMPTJs2Dccccwz279+PNWvWgOM4nHrqqZg5cyZWrlyJNm3a6M5TrLCCwSCmTJmCPn366PY7HA7VovXBBx80TSykWDFGs2Ky2Wz4+OOPMXXqVHTu3Bl//fUXdu3ahbFjx+L7779Xxyoja8xzzjkHv/76K2666SaUlJTg999/x6+//oqsrCycc845ePXVV3HXXXfFVG+pIB397ahRo7B8+XLce++9KCsrg91uxy+//IJNmzahefPmOO+88zBv3jy88cYbYe26Y8eO+Pjjj1FWVoaDBw9i6dKlWLx4sRrb1Gaz4fPPP8eNN96IoqIi/PHHHygvL8dVV12FH3/80TAbvMKcOXMwbtw45Obm4scff8TixYt1lsaRGD9+PJYsWYKzzz4bkiRh9erVyMrKwqWXXoqffvoJp59+etz1peW6667D5MmTMWzYMAQCAaxevRoHDx5U39eKFSvUcDxWyc/Px4IFCzB37lyMGTMGTqcTP//8M3bt2oU+ffrg//7v/7Bx48aELP44jsP06dPxySef4IwzzgDHcVizZg0CgQDKysowffp0FBcXq8ePGjUKn376KY499ljU1dXh999/R6dOnTBr1izcd999hvdo0aIFnn/+eZx//vkoLCzEn3/+iV9++QUcx+GEE07AU089hV9++SVmD6XGHsN69OiBlStX4uKLL0ZWVhbWrl2L3NxcPP300xFjOKeS4447DkuWLMHQoUPVBJDHHHMM3n//fVOrUUCO2bpixQqMGjUKW7duxc6dO9GnTx+88MILUZ8lljG1qqoK+/fvV38KBw8eVLdVVFRYf2AGg5FUOKIMCnLGYDCOCBYtWoTjjz8eZWVlYe79jNQyefJkTJkyBZMmTYrJxZbBSAWKm3CsosjEiRPx9NNP49VXX1VDezAS57fffkO3bt3QokULbN++PSzZkML+/fvRrFkzdOjQARs2bAhbaGGknueeew7jx4/HmDFjoibFicSoUaMwb948fPDBB+riJ4PBYBwuDB8+HIsXL8bChQsxfPjwRr231TGVwWBkPkzSZTAYDAaDcUjx7bffori4OCz2KSMxlGRcWisZI5YtWwYiwi233MKUpmlCeVeh8TNjYfv27ViwYAEEQVCT8jAYDAYjOVgdUxkMRubDpF0Gg8FgMBiHDDU1Nfj5558xYcIE0yQpjNjZtGkTnn/+eQiCgGuvvTbiscuWLUOTJk1YhuA08d5772HlypXo0KEDTjnllKjHT506FRs3btRt+/3333HWWWfB5/PhrLPOijlZDoPBYDDMiWVMZTAYmU/jp7RjMBgMBoPBiBOPx4NAIJDuYhw23HzzzVixYgXWrFmD2tpa/OMf/4gaP2/atGmYNm1aI5WQoTB8+HBUVVWpWbCnTp1qyeL3pZdewj333IPCwkKUlJSgoqJCVaR26NABTz31VErLzWAwGEcK8YypDAYj82EWpwwGg8FgMBhHKKtXr8by5cuRk5ODiRMn4oknnkh3kRgmLF68GGvWrEGHDh0wffp0y4lu7rnnHpx88slwOp1Yu3YtduzYgR49euDuu+/GypUrIyYbYjAYDIZ12JjKYByesORQDAaDwWAwGAwGg8FgMBgMBoMRArM4ZTAYDAaDwWAwGAwGg8FgMBiMEJjilMFgMBgMBoPBYDAYDAaDwWAwQmCKUwaDwWAwGAwGg8FgMBgMBoPBCIEpThkMBoPBYDAYDAaDwWAwGAwGIwSmOGUwGAwGg8FgMBgMBoPBYDAYjBCY4pTBYDAYDAaDwWAwGAwGg8FgMEJgilMGg8FgMBgMBoPBYDAYDAaDwQiBKU4ZDAaDwWAwGAwGg8FgMBgMBiMEpjhlMBgMBoPBYDAYDAaDwWAwGIwQmOKUwWAwGAwGg8FgMBgMBoPBYDBCYIpTBoPBYDAYDAaDwWAwGAwGg8EIgSlOGQwGg8FgMBgMBoPBYDAYDAYjBKY4ZTAYDAaDwWAwGAwGg8FgMBiMEJjilMFgMBgMBoPBYDAYDAaDwWAwQmCKUwaDwWAwGAwGg8FgMBgMBoPBCIEpThmMOOE4ztJv0aJF6S5q2pg/fz4mT56c7mJE5L777kP37t0hSZK6bfv27Rg5ciSysrIwZMgQrF+/3vDcjz/+GKNGjUJRUREcDgcKCgpw4oknYvbs2QgEAgCAgwcPIj8/H3Pnzk3ZM9TU1OChhx5Cv379kJ2dDY/Hg759++LBBx9ETU1Nyu4bjauvvho9e/ZEfn4+3G43jjrqKNx+++3Yt29f2srEYDAYDMaRBJNXo8Pk1caRV5NNSUkJzjjjjKRe89///jfOOOMMtGrVChzHYdy4cUm9PoPBODThiIjSXQgG41Dku+++0/19//33Y+HChfj6669127t3747c3NzGLFrGMGHCBDz77LPI1G7m77//xlFHHYWZM2dizJgx6vZTTz0VhYWFuPrqq/HRRx/h888/x9q1a9X9RIQrr7wSM2fOxGmnnYaLL74Ybdq0QUVFBRYuXIiXX34Z9913H2666SYAwJQpUzBr1iysW7cODocjqc+we/dunHTSSfjzzz8xceJEnHjiiQCAr7/+Gk8++SQ6duyIL7/8EkVFRUm9rxUuuugiDB48GJ06dYLL5cLKlSvxwAMPoHXr1li1alXS64LBYDAYDIYeJq9Gh8mrqZdXU0FJSQl69uyJefPmJe2aHo8HvXv3Rt++ffHKK6/goosuwsyZM5N2fQaDcYhCDAYjKYwdO5Y8Hk+6i5FSampqYjr+hhtuoFR0M7GWw4w77riDWrVqRaIo6rZ7PB6qqKhQ/27SpAnt27dP/fvhhx8mADRlyhTD6+7cuZOWLFmi/r1r1y6y2Ww0e/bspJRby8iRI8lms+nup7BkyRKy2Wx08sknR7yGJElUW1ub9LIZMX36dAJAX331VaPcj8FgMBgMRgNMXg2HyasyqZRXU0G7du3o9NNPT+o1tXXs8Xho7NixSb0+g8E4NGGu+gxGCvH7/Zg6dSq6du0Kp9OJZs2a4YorrsDevXt1xymuJvPmzUO/fv3gdrvRrVs3dQV15syZ6NatGzweDwYOHIiVK1fqzh83bhyys7Oxbt06nHjiifB4PGjWrBkmTJiA2tpa3bFEhOnTp6Nv375wu91o0qQJxowZg7/++kt33PDhw9GzZ0988803OPbYY5GVlYUrr7wSAPDWW29h5MiRaNmypVrWu+66S+cWPm7cODz77LMA9G5imzdvxubNm8FxnOEKLsdxOnepyZMng+M4/PTTTxgzZgyaNGmCjh07xvQsZu/m5ZdfxsUXXwye13eFHTt2xPTp01FZWYlZs2bBbrejoKAAABAIBPDwww+ja9euuOeeewyv3aJFCwwdOlT9u6ioCCNGjMBzzz0XtVyxsHLlSnzxxRe46qqrdPdTGDp0KK688kp8/vnn+PHHH9XtHMdhwoQJeO6559CtWzc4nU68+uqrAIDffvsNF110EYqKiuB0OtG2bVtcfvnl8Pl8AIC9e/fi+uuvR/fu3ZGdnY3mzZvjhBNOwJIlSyyVuVmzZgAAm82W6OMzGAwGg8FIAkxeZfIqkDp5FWiQPV9//XV069YNWVlZ6NOnT5i1qFKPq1atwujRo5Gbm4u8vDxceumlYe1R4YMPPkDv3r3hcrnQoUMHPPXUU+q+6upq5Ofn49prrw07b/PmzRAEAf/5z3/UbaF1zGAwGACYxSmDkSxCV/BFUaRTTjmFPB4PTZkyhRYsWEAvvfQStWrVirp3766z8GvXrh21bt2aevbsSW+88QbNnz+fBg0aRHa7ne69914aMmQIvf/++/TBBx/QUUcdRUVFRbrzx44dSw6Hg9q2bUsPPPAAffHFFzR58mSy2Wx0xhln6Mp5zTXXkN1up9tuu40+++wzmjNnDnXt2pWKiopo165d6nFlZWVUUFBAbdq0oaeffpoWLlxIixcvJiKi+++/n/773//SJ598QosWLaLnnnuO2rdvT8cff7x6/h9//EFjxowhALR8+XL15/V6adOmTQSAZsyYEVaPAGjSpEnq35MmTSIA1K5dO7rzzjtpwYIFNHfu3JiexYhvvvmGAND8+fPD9i1dupSaN29OACg/P193zLJlywgA3XnnnRGvH8rDDz9MPM/TwYMHYzovEg8++CABoE8//dT0mPnz5xMAmjZtmroNALVq1Yp69+5Nc+bMoa+//prWrl1Lq1evpuzsbCopKaHnnnuOvvrqK5o1axadf/75VFlZSUREv/32G40fP57efPNNWrRoEc2bN4+uuuoq4nmeFi5caFiGQCBA1dXVtHTpUuratSsNHTqUgsFg0uqBwWAwGAyGNZi8yuTVSKRCXiWS66ukpIQGDhxIb7/9Ns2fP5+GDx9ONpuN/vzzT/U4bT3efvvt9Pnnn9Pjjz9OHo+H+vXrR36/Xz22Xbt21KpVK2rbti298sorNH/+fLrkkksIAP3nP/9Rj7vlllvI4/FQeXm5rky33347uVwunZWuFmZxymAwFJjilMFIEqGC6BtvvEEA6L333tMd98MPPxAAmj59urqtXbt25Ha7afv27eq21atXEwBq2bKlztVn7ty5BIA++ugj3b0B0JNPPqm71wMPPEAAaOnSpUREtHz5cgJAjz32mO64bdu2kdvtpjvuuEPdVlZWZsmlWpIkCgQCtHjxYgJAa9asUfeZuT7FI4jee++9uuNieRYjFPclM4HV6/XS+vXrw1zY33zzTQJAzz33XMTrh7JgwYKoSs5Yue666wgA/fbbb6bHrF+/ngDQ+PHj1W0AKC8vjw4cOKA79oQTTqD8/Hzas2eP5TIEg0EKBAJ04okn0jnnnBO2X3lPyu+0005TlbAMBoPBYDAaFyavMnk1EqmQV4nk+ioqKtLJgLt27SKe53WL+0o93nLLLbrzZ8+eTQBo1qxZ6rZ27doRx3G0evVq3bEjRoyg3NxctT3++eefxPM8/fe//1WPqauro6ZNm9IVV1xhWmamOGUwGArMFp3BSBHz5s1Dfn4+Ro0ahWAwqP769u2LFi1ahGUv7du3L1q1aqX+3a1bNwCyC1JWVlbY9i1btoTd85JLLtH9ffHFFwMAFi5cqJaJ4zhceumlujK1aNECffr0CStTkyZNcMIJJ4Td56+//sLFF1+MFi1aQBAE2O12lJWVAYBpRs9EOffcc3V/x/osofz999/gOA6FhYWG+51OJ7p27Qq3252U8jdv3hwAsGPHjojHaZ8lGAwmnKhAOZ/jON32E044AU2aNFH/rq2txeLFi3H++eer7vRmPPfcc+jfvz9cLhdsNhvsdju++uorw3ffq1cv/PDDD1i8eDGefPJJrFq1CiNGjAhzyWMwGAwGg9H4MHk1uTB51Zzjjz8eOTk56t9FRUVo3ry5pTZy/vnnw2azqW1EoUePHujTp49u28UXX4zKykr89NNPAIAOHTrgjDPOwPTp09VyzpkzB/v378eECROilpvBYDBYkDkGI0Xs3r0b5eXlplkp9+3bp/tbiUmkoJxntt3r9eq222w2NG3aVLetRYsWAID9+/erZSIi0wzrHTp00P3dsmXLsGOqq6tx3HHHweVyYerUqTjqqKOQlZWFbdu2YfTo0airqzO8dqKEliXWZwmlrq4OdrsdgiDEVI62bdsCADZt2hTTeS6XS71vJOx2u+7vGTNmYNy4cVHL0qVLF8NjNm/eDABo06aNbntofR48eBCiKKJ169YRy/f444/jtttuw3XXXYf7778fhYWFEAQB99xzj+EkxOPxoLS0FAAwbNgwDBo0CMcccwyef/553HLLLRHvxWAwGAwGI7UweTW5MHnVnND3DsiKX6N7KW1CQWk3ShsxO067TXvsTTfdhBNPPBELFizAyJEj8eyzz2Lw4MHo379/xDIzGAwGwBSnDEbKKCwsRNOmTfHZZ58Z7teuuCaDYDCI/fv364SSXbt2AWgQVAoLC8FxHJYsWQKn0xl2jdBtoVaKAPD111/j77//xqJFi9RVewAoLy+3XFZFKFMSDimECkORyhLrs4RSWFgIv9+PmpoaeDweq0VHaWkpCgoK8OGHH2LatGmGdWTEgQMH1PtG4ocfftD93b59e9NjR4wYgf/7v//D3LlzccoppxgeM3fuXPVYLaHlLigogCAI2L59e8TyzZo1C8OHD8f//vc/3faqqqqI5ymUlpaC53ls2LDB0vEMBoPBYDBSB5NXzWHyqjmxyKvxsGvXLp1ls1G7UY4zOhfQK2pPOOEE9OzZE8888wyys7Px008/YdasWUktM4PBOHxhilMGI0WcccYZePPNNyGKIgYNGtQo95w9ezYmTpyo/j1nzhwAsvuUUqaHHnoIO3bswPnnnx/XPRTBK1TQe/7558OOVY6pq6vTuRAVFRXB5XLh559/1h3/4YcfWi5Hos/StWtXAMCff/6J3r17Wz7PbrfjzjvvxJ133on7778f9957b9gxe/bswcaNGzFkyBB1m5I5tXv37hGvr1hnWqG0tBQjR47Eyy+/jMsuu0x3PwBYunQpXnnlFZxyyikYMGBAxGu53W6UlZXhnXfewQMPPGAqMHMcF/buf/75ZyxfvjzMqtWIxYsXQ5IkdOrUKeqxDAaDwWAwUguTV5m8mmp5NR5mz56tk13ffvttBINBtY0orFu3DmvWrNG568+ZMwc5OTlh1qQTJ07Eddddh4qKChQVFeG8885L6TMwGIzDB6Y4ZTBSxIUXXojZs2fjtNNOw0033YSBAwfCbrdj+/btWLhwIc466yycc845Sbufw+HAY489hurqahx99NFYtmwZpk6dilNPPRVDhw4FAAwZMgT/+Mc/cMUVV2DlypUYNmwYPB4Pdu7ciaVLl6JXr14YP358xPsce+yxaNKkCa677jpMmjQJdrsds2fPxpo1a8KO7dWrFwDg4YcfxqmnngpBENC7d284HA5ceumleOWVV9CxY0f06dMHK1asUAVnKyT6LIrg9d1338UkiALA7bffjvXr12PSpElYsWIFLr74YrRp0wYVFRX45ptv8MILL2DKlCk6QfS7775D06ZN1TpJFq+99hpOOukkjBw5EhMnTsSJJ54IQLa0ePLJJ9G1a1fMnDnT0rUef/xxDB06FIMGDcJdd92FTp06Yffu3fjoo4/w/PPPIycnB2eccQbuv/9+TJo0CWVlZfj9999x3333oX379ggGg+q15s2bhxdffBFnnnkm2rVrh0AggJUrV+KJJ55Ap06dcPXVVye1HhgMBoPBYMQOk1eZvNoY8mqsvP/++7DZbBgxYgTWrVuHe+65B3369AlTPhcXF+PMM8/E5MmT0bJlS8yaNQsLFizAww8/rIu5CwCXXnop/vWvf+Gbb77Bv//9b8PwFIsXL8bevXsBAKIoYsuWLXj33XcBAGVlZVHzADAYjMOU9OWlYjAOL0KzlBIRBQIBevTRR6lPnz7kcrkoOzubunbtStdeey1t3LhRPa5du3Z0+umnh10TAN1www26bUqGz//85z9h9/75559p+PDh5Ha7qaCggMaPH0/V1dVh133llVdo0KBB5PF4yO12U8eOHenyyy+nlStXqseUlZVRjx49DJ912bJlNHjwYMrKyqJmzZrR1VdfTT/99FNY5lGfz0dXX301NWvWjDiOIwC0adMmIiKqqKigq6++moqKisjj8dCoUaNo8+bNpllK9+7da1gWK89ixnHHHUennXZa1OPM+PDDD+n000+nZs2akc1moyZNmtDxxx9Pzz33HPl8PvU4SZKoXbt2dOONN8Z9r0hUV1fTgw8+SH379qWsrCzKysqi3r1709SpUw3fv1G7Uvj111/pvPPOo6ZNm5LD4aC2bdvSuHHjyOv1EpH8Tv/5z39Sq1atyOVyUf/+/Wnu3Lk0duxYateunXqd9evX05gxY6hdu3bkcrnI5XJR165d6fbbb6f9+/enpB4YDAaDwWBEhsmrTF5Nh7xqJnu2a9dOl7leqccff/yRRo0aRdnZ2ZSTk0MXXXQR7d69O+zc008/nd59913q0aMHORwOKikpoccff9y0HOPGjSObzUbbt2833F9WVkYADH8LFy6M69kZDMahD0eUYMpmBoORdsaNG4d3330X1dXV6S7KIcV7772HCy64AFu2bNHFUUo2X331FUaOHIl169apLlcMBoPBYDAYRxJMXo2PI0lenTx5MqZMmYK9e/dGjbMaK36/HyUlJRg6dCjefvvtpF6bwWAc3vDpLgCDwWCki9GjR+Poo4/GtGnTUnqfqVOn4sorr2RKUwaDwWAwGAxGTDB5NTH27t2LpUuXYvz48di9ezfuuuuudBeJwWAcYjDFKYPBOGLhOA4vvvgiiouLIUlSSu5x8OBBlJWV4YEHHkjJ9RkMBoPBYDAYhy9MXk2MTz75BMcddxw+/fRTTJ8+PSxpFIPBYESDueozGAwGg8FgMBgMBoPBYDAYDEYIh4TF6fTp09G+fXu4XC4MGDAAS5YsSXeRGAwGg8FgMNLOtGnTcPTRRyMnJwfNmzfH2Wefjd9//113DBFh8uTJKC4uhtvtxvDhw7Fu3bo0lfjwh8mtDAaDwWAwGOEcqnJrxitO33rrLdx88824++67sWrVKhx33HE49dRTsXXr1nQXjcFgMBgMBiOtLF68GDfccAO+++47LFiwAMFgECNHjkRNTY16zCOPPILHH38czzzzDH744Qe0aNECI0aMQFVVVRpLfnjC5FYGg8FgMBgMYw5VuTXjXfUHDRqE/v3743//+5+6rVu3bjj77LNTHiCbwWAwGAwG41Bi7969aN68ORYvXoxhw4aBiFBcXIybb74Zd955JwDA5/OhqKgIDz/8MK699to0l/jwgsmtDAaDwWAwGNY4VORWW1ruahG/348ff/wxLPPdyJEjsWzZMsNzfD4ffD6f+rckSThw4ACaNm0KjuNSWl4Gg8FgMBjphYhQVVWF4uJi8Hx6HGu8Xi/8fn9C1yCiMLnF6XTC6XRGPK+iogIAUFBQAADYtGkTdu3ahZEjR+quU1ZWhmXLljHFaRJhciuDwWAwGIxYSLfcmk6ZFTh05NaMVpzu27cPoiiiqKhIt72oqAi7du0yPGfatGmYMmVKYxSPwWAwGAxGhrJt2za0bt260e/r9XrRwp2HCiQmhGZnZ6O6ulq3bdKkSZg8ebLpOUSEW2+9FUOHDkXPnj0BQJWXjGSpLVu2JFRGhh4mtzIYDAaDwYiHdMit6ZRZgUNLbs1oxalCqPbaSKOt8K9//Qu33nqr+ndFRQXatm2Lbdu2ITc3N6XlZDDiYdvF54VtazPnnTSUhMFgMA59Kisr0aZNG+Tk5KTl/n6/HxXw41EcC3ecYlYdgvhn9bIw2SXayv2ECRPw888/Y+nSpWH7YpGlGInB5FYGQ4+04BYAAD/iv2kuyeHLaZO+AADMnzIyypGZwZmvfoGPxqa+rLPyRuHSio9Tfh8GI17SKbemU2YFDi25NaMVp4WFhRAEIWyVfs+ePWEaaAUzk+Dc3FwmgDIykhy7PWwba6sMBoORGOlWCnp4O9xcfGIWTxwgxSa73Hjjjfjoo4/wzTff6CwWWrRoAUBewW/ZsqW6PZIsxYgPJrcyGMZIHgcAgGdtOmUs/e+YdBchJmzuLJz26ndYemNqladuzsb6UsYhQTrl1saWWYFDT25NT/AvizgcDgwYMAALFizQbV+wYAGOPfbYNJWKwUguHEdhPwaDwWAc2vBCYj+rEBEmTJiA999/H19//TXat2+v29++fXu0aNFCJ0v5/X4sXryYyVJJhsmtjEzg822vpbsIDAaDwTiEaCyZFTh05daMtjgFgFtvvRWXXXYZSktLMXjwYLzwwgvYunUrrrvuunQXjcFgpICPNs+ydNyZJZemuCQMBoMRPxzPgY/TeoAj6+fdcMMNmDNnDj788EPk5OSo1o55eXlwu93gOA4333wzHnzwQXTu3BmdO3fGgw8+iKysLFx88cVxlY9hDpNbGenknT9nI9eR7lIwGpPTXv8Y8y8ble5iJIVLPnkXs08fg5uWzcGTxx4h45P3Y8B1eLw/xqFLY8mswKErt2a84vSCCy7A/v37cd9992Hnzp3o2bMn5s+fj3bt2qW7aAxGUuAy2u678RGZwS2DwWBY5n//+x8AYPjw4brtM2bMwLhx4wAAd9xxB+rq6nD99dfj4MGDGDRoEL744ou0xYE9nGFyK4PBYMTOyBmfoF2HgKVjveLHEDg7fGINsmx54P7+FVyriaDyWeDyLwX9/gC4LneHnVcbnIss29lJLjmDwYiFQ1VuzXjFKQBcf/31uP7669NdDAaD0QhIMa5aMRgMRiYiCIAQZ3cmxLCARBT9YI7jMHny5KjZTRnJ4XCUWy/7TJ+0kucJr448P02lOUSoeEP+f95F6S1HhjAWJwAh7ej1U8ITpDIYWj7aPAtnllyKb3a+imEtx6a7OI0KU/QyGovGklmBQ1duZbZuDAYjo5DI2o/BYDAyGZ7nEvoxGJkEz5Pux2A0FpX+t9V/S8tuD9tPO6c3ZnGOLMQFsit57QfpLokhBAmEhv6I40KCLVa+1cglOrLZ530V+7yvprsYjDhgMmt0DgmLUwYjHjZWvAiBA6qD8vqAkyd0yb86zaViRIO56jcuw5/7DIuuOyXdxbDMwAe/VP+94v9OSmNJYmfY9M/xzfUnp7sYmUPFG4e1JRbPA/HKkkwvxWAw4kXUeO6s3v8K+ja9Muo5dOA1cAWXN2wIfNrwb5sLCHoh2mwQuBHJLKqO38tfgk/i0DKLxwGviBZZ2bDzLjgEN1D9HiRPHrgcD4CFgBgEAl5Q9V5w2c1kF21PU/lC9lPhEz+BUzhdvfZe7ww0c12RsrKnE6OFjJEzPgEAfHHF6Tjt9Y9R1LIWM066IPGb0UIAQIB8sPPhsmOyrEKjzQWIJIDT/FuBZ6oNBiMemMwaHda7MA47fOInOOj7W2du7uQJPonDU2tnw8ED13W/BLcun4PHB8sBhpVg5Mr/I/HC+tn4R7dLUvkIGYkSN4hx6HHKq/Pw2dgzIh5z0cfvoWmBDwDwzJAjIyC/RF+C5w4t5ethg7gAVVk2sAibDIZ1Tr7pIwTtPL56NHJ/zkgvXvFjuIT6ZC+OLNDel9R9XLOrQfQ1fFINgpIfIgVQG6xAy6xr8cQvszG82GdJ0WnGH1UceuRz+GHvDJT7BHTOC+KrHbIF2ImtQhRa4gJAGAHaPxMQbKA1k8D1mRJ+UQ4Ax0OQgErxbZT7y+G22bF8lz2hRJ2X96zDgu2vqX+3zQbKfTa0zJJQJ/IISn7YeZe8UwqCQOCaFkI1MHRlA1W7Ta9f7n8DAckLUQqCIOGbna/ir0obFm6xo1V+EOV+oE024BWBn//MAgBUVTpQuceRtoXZfd5XUeiS39OC7a9hROvLTY+94MP38dZZoyNe77TXP4bbHUTLXBGTfpyDc9vXoW12FmoClQBkJXtQ4tDMnY8ce0jYhLoPAWc2qGY/uNwioPItiDkFECRAgogK/5uQSIRPrAVBwu/lLgQkDh9tnoUlu3h0ziPs9XK4u58sU573wfvIzfNj984s7NnpQX5TgrcmxnTcBhCoIWHEYZg4ojrwHrLt51o61kqbOFTRLgYwGOngiFGcnvDsQqz811kAgBG3fgyJ5xBwCPjmwVMBAIOnfAFnXRC1ufJgec3iN/Bi2UW4/bs5aOYm9Gsqopk7iF/2O9HEKcHOE2w8oV+hAI+tCepEeQDiwCHPJyDoyUVtsAK5Djn+0/LdMwEA+70C6oKxderndTzylHShVPjftHyswNnhlwg2HghK4UsnW6s5XLtkDgDgmsVvYOd2D/Ly5cHG5ZYw9ou34XCKsAsEnpPdwnPsgMcONHUSAhLw3K+zYeeBq7rG8G6q3gGyC4HKXYAjC5LLAz5CPM/NVS/AJ/Io9wv4fo8DE3tGvtc5b8/FB+efbb08BuyqfRF5juaoDVagqZSDOgcPN5cFka+P6+H7BORwg6s5iCqnhKDkB8fxqAtWotwnoNxvQ22Qg50HfCKnCnwXffweqirtkCQuauZPZnGafFLlVinRl7q/mRLSnGP++yUcznSXIrMISn4c9M2OeEwT56E7/vFC/BlKI40NjCOHk2/6CACwv1U2mm2rQsAti+3HPrkAtt1B8G05NCuqRU21XXdeY2TYdrmDKb9HTNR9mO4SNODQyPli9Hqy8Q4s3z0T+Q47fGL0b//27+bo/s53Anae0NINABwKXPI97TxhY4ULPGciA3A8EPwcnKcpyFsBtOloftMQhRQRwSlImL/1dd3209peFrX80QiNf8eBBzheb1kYqZzBz0GcfKyNc0BEUL4GgDwHYUibAHLtwDe7uLDQT5LEgdMIooOnfAHRzkOy8cjO9Yd56OyoeR6tPNdic9ULKMn5h4Vn+xocOEAKAsIIBKXPYQsEEbALqPTvAQD8VfkitlY7AHB4fcNsXHaUPA5O+nEOPpvfDH2H78XzxzUscEsSh9KHvgIArLzrRMP7igTYYZ5HwErMQSP4etd4bbtV2ptSt6e8Og8tW9UAsKOywgFBExDR5RF115MstH8t8ZabcXhTFXgnfCGAEREms0bniFGcapF4DlRvi3zyTR/h8yfPDD8mpOPeVCWgmTuIdjlBVPp5iMTBpompQiSB0wgVHMcj216QoidgRIIgQaLYzM15gYCgrGCSDJStQOIKPSrfAS67EJRbBM5bZXqc7bWzsav2RQBAQOKw32uDwAEPrNILyhv2Nny+ksRBkhy44MP3AQAOpwibTUIwyMNmk3TuOXu9M3TXOeCVhZa22c1g4x1wCFnwSbWAPRsCAqijWtjJBY7XTMyyC0D+vRA4u7po4JN4XR0pAtM9P8xBbj5QVWmH2x3Eue9+gPfGnGOt0o5Uorgw/3zgZfQuuMry5SIpTs3aezq45JN31X9Hs/xmZDa7al9Ei6xrwrYfScIsz8muT3Gda0E/wDhyyD7ghVQv1OQc8MLbyoHafCcK3bUAAL9PgMMpRrpE0qmtseOij9/DG6OsWUIxzJGVP2kai4N+gCRAkuT/x0giMefjOpfj46oqTqMQsJIAZeCDX8JRFwRsstLU7PsSicPM32ejd1MbAtKL6vbOeSHjn7hA/j8vIEh+2MCrbu+wuyBSbch1oTO0uf27Odi80wV3TQCV5U5c8eVbkFWhDTTZU4uBD35paC0bkAAXgEq/sYWnSAbZ7Dk+zJJTdpG3AQbvTjvv4jlmCAE0WBAf9M2uXwheCOB40KZHwLW/A7TrOWDnDnAdaxHMzofN54Xk8gCQjRG4dPULjDBOe/3jRlmUTBdMZo3OEac4PeGOT+LugpQBXrFCVCCEtxZZkZq4+wFDhoxG6DiIN1tcKuGiWAPGI1hGUpSFrs4q15dINGzLkYj1eAYjlEk/zsGUAakPDbC77iUUufUxjpPVrzCso/Y/h6E7XSi8EH/A/HhX/RmHP2TSpg7nCZ0lMrlPiRB3MZ5xKFq3EpQ42K14mpAkWz4q/45RcSom2coomrxLIDmkABE41I8n2vceoQ3wUeZkiuFErIvJEiVBQcjxICl63Xdv68XCH9zq34qsr5RZitAwRJJ14/u9xvWQqDzEc4qlaWJtQlv/9/wwB/cfrbGsJTlRmMfeRN0WyzzEL86Pu1xnvam3aK+qdAAAvv7HqRHPq/T7EZCeR3N3B6DyLdRmOeHe8wxQUgqIC8DltwLyWsLvsMN+YAeQUwRAbq91wQ9jei9jv3gbh4NqZ+CjX2HFP40tp62SLEtkbVi/wz0pIpNZo5PBUkbq4A1GZqNtCiJxEDj5/0pG74CmY1dcR1QXEiG80xKTMbAyLGPmiqKgVaDa7eaDrrZZWJBpImOyjKMs6Co/OUNk4yskCaQONIbuUHFOSmJt98o3Fu0XL3u9M8KsbgFg5u/mLsMnvPCp6b6UkOTg9lq3KCu8sL6hLrRueFurX4i7DImcmyosuf0lkVhd0A5r4l3WZjCOICSBgxSy4isJ9cqd+oGQ54FgjCGgksXhPpFMCmno60RqkIOjykta4dZkTAxVQgga13+JON0v5SjyUYhMGs1YhTOY8obqCCIpTs221wUbvK2s1INOvudC/o/oCt7Q/kBLwBHdYKfCH9KfaIwnDNEeHmUeEE1Zb/YpDHzwS1XOttklXPX1m6ipE+AVgdkbZ8Mncnjvr9kocgewuboK/IEdqkIxx14IO+8EWnYHgp8Dziyg8i0gr6kcu9cmKzhFWoAg+UEk6cK//bTvFV1Zxn7xNiZ8OweXffZOVNk/J9ePU16dh4s+fg+3fzcH9/wwB/f9NAfTVs/Bzwde1h0bajmqbQdUvbf+oOT2FUOf/gJAwxxm+HOfmR778m+RwyYdidzzwxwIHHDG7I9wwYfvG86llDoe+OCXGHT/Agy6f0FjF5PRiBz6yxIJYPc3DBJc/cihxLXx1umrRtQoa2SLU7kDJJIMV4MkEg0Hv3ynGHOMU0ZsCo4g+WO6dsOKrWbVVuSA+g7S5+fhsUngeWC/j4PHRnFnnVPRDI7Fc27DnrH/Uf9WWqVTINj5IDZXOQyVj0ZCnOKe7/cJpvHHzJSy26oPosBlrczKdayuhFaWO+HJDsLv45My0WqXE8Siv1/F8OIImTsDn+KgdAACZ0euoxl8Yi0CkhcAIEpB/HzgZVT6BdQEeHjsEkSy47lfZ8MvATtqOHhF4EClHbt3ZkGSBJz00nw4nCK8dTYEgzxqq+3Iyg7AtjmImhyHetvv7wnPOLtg+2tom+1Hx9w2+Lt2C7JsThz0+ZHvtEGUgrDxDvCcgALRA/JWgWvSBvB+jEq+DgQJdt6FLNvZAGTLSTsnC3u1QR51QR77vQLK/XKCg63VHGqCch/26kg5xrLPJ/dFp73+MfbtlhMguA74Idp5uNuIuODD9xEM8AhIQEkOsNfL4YX1s9GnqR+5Dg7AQvx84C8UuXlUB95T21CWLd+w6pVVfa9YDRvvwEHfbtQFBXy/Zwbqgjx21cr9a2UACIgcpq1WwlA01OOxTy5Q2/HSG0eG3SO7MICRMz5BTo4f+QU+tM6T4BIAB0/onEvoWVCHDrnXYP7W1zGsZRZqAoRy4Q2IUgBZtjx4xWo0CbgA56eQbHbwfh+q+Fpk25piV91G2HkXApIX+702HPDZUO4TcGbJpZj04xx4g3JdV3t5vHzChWqZTnjhU9jskjp+fHP9yRgy6XNQAQ9J5AGbLLg6nCJatqoBzxMGtwpiv49DSzehZZaI2iCP7k288Ekc3IKEIncecrb8Ca7zv4DaD+B12uA8uBdS0zYQJABC9AzHofHwYuHmXuZhRYxYe8CNbk28cPCcnNU4CMB5uj65HC3EAf+OqNc684XmAL4w3R8M8gj65H5w5V0nYuCDX0LiOWTtPBBTmVOFwMu/uM5NblEYhyiKIiSSJVm64HnKrMUgmyP6MY2ESyvmBLzgbMkNcB2qDC33Ac3c8lylfTbVz1Esylo2h7G1qTb8mBjQ/Z1jbwKvWA0A5vFTLRBqsbpstxuDmnsR0Wox0sIyx6vPYePM24POeIIn+DXytMMhwlevZPW7beq8MBjgATfCCBCHQH3V+SJZq9bXH0/1bq31h9p4fTnl+aNxnQoc4M+zo0kTH+o0lqPO+jACPndD3TgcIqqrHLDZ5MIpBjz10bnqjYI0IeeM5gYcb2y5J1t5hBGpm+J5QlWlHZ7sABxOEa3aVqGmxi6HSnNwCAYb5gd+vwCbTUKbbPlvt03CgGa1KK+XZbmm7UCBgwCAysBe5NmLQJDkKq2vZ86dBwr6GopcX+EiyUnG/qp8EZUBQTWEen3DbNQEgY6FHLxBoML8UdTnUfDWCagMAOU+Dm1yCF3zDDxRjSpM016NEDg7guTHT/uqAbyKlll+7Kx1YFu1DZurOTR1ytf8YVf9OCEJkCRgyKTP0aJXLQBPfUIlHie9NF/9f16+Dy63qAuJJXDA59tew/YawTR/R13wQ7htZ8k5O3IK5fjN1fuAnObwkw9CfUg3DhzWHngZm6scKPYE0L9QTnb32M8Nytnbel+C8z54Hzab3C4qK5yw2SQ57EyFhKFPf4GlN45U515udxCS6ETHLuW4dskcHJVHEDi5zfVoEkSRO4hyv4ChLcYBALLtBaADr4GzuwG7S84twpH8/kmCwNvVOWFQ8qv/VuLqP7BqDlwhXY3PJ+C01z8GADgXelF1rAeSZMfgKV9ActsgiCJI4FD6yNe60B7LbjKX06sD70EiERX+atNjGgsms0bniNTgiTbjxw7aeVD9aKoonUQC3JoVBkWBFZBkVxizjpC5gGYu9vqv284DWXaSB23IK6FGSj2bXZKV5RKQ75A76oCUoAWxxipZqzTV4hM5HPQ13tpGsSdbLyBphGQCKRXUaOVJBMWilEBw23IBABIFVcFQqBe8nfXvXitEC/WGPF6xXlAGVMETCF9UsTKhLcnxoU6U+wWJZKFCuSfHcfDY8lHAN5U3kAS/VKee67E10V0rKIkQiUNtkIdEHHwih8qAXN7KQENZ/D4BF338nvr3Ka/Og9/XMLQFnAIknoPfL6CmWn4mSZKt6st9+olZUPKr95ZIBBFZdoMxWvSwp6AZVdWvl7iEcAt/WeiU610kzYICzwMBL3hOQNBug41zwC/VgeeEeiGch1OQDC12AvULLVd8+RZOe/1jVZhS2oxC0MbrtinKhlb5cjmaOOQxRiTAY5eQbZdUQV5pn+B50I6nAI6Hq6YWnDMHAvFJt04wIiBxMf/ksmehwr8bO4LbAXEBajxuBKTP1DhqTRzFCZcto5Q2BvA8l9CPwQjaeQRNOkxeIthskm7Rt7HJqARRvC2zflq0bkUa4vUu4jn9L8ch56MSCfizisOGitROY2uDFVEtI60QlDjdTyFivWjkUK5yd/h+g3pWT+UoTN4LhHw72m/J7pOVH3xQgs3EOy0ocWjukq8Tk+VtvVIykizltkk6ZaRIck6GqvpkcEpZAwEe2eU+dQ6r7HM4xQaDEAJKcgh+CagLVtZbymq9J43LQZDAOXMAbzWQlW9aVolkS2StvGTnG5SpksQhJ1ce//0+ATt3ZOtkawDqfEwS5bKvOxjJcpdgDzQop3SynQG8tyZ8W4iCWqSG+UA0Iw+lXnme4HDKz9HMLbevX8t5tT0rsqihAVAMc6q22T5VJnTwwM76kLj7fRyyXRIqKxoU8E2OalAYK/KnJHG6+vb79fcudEmwWTVssTngF+vCrb7r/wOAXIeItjn+sO8LAH47GP7cDofYYPHdnFfbgqKAtNnrleo+435nR41d992p81ZHlhzHmePBS6T2W0JdtfpO7Hy41RDPQTWSCKWy3ImKwiz9uKs0fAcXk4FQdoBXlbbphsms0Tk0tCBJRggaD362QMN27cdQJyqDDqcG1W6dHUBA4mSrO01nSKB6xSmL/ZiJpDXGaRxKjlS0IkVQU34icSHCU70lqbcSVYF9cAk58IpVIH8NqlELCSJECsrKJZLg4N3gOQG2eoFU4MKFkaYFPtRU2ywNJorSK9LPCnvFXXDwbtQF5eRVSvI2IoIoBWHnSBVsAhKnDo6BCJUe7+RUqg/zQSRhr9cOp+CBT+Tg4N0gItQEy4G6SpA2aVi9cp1AEDi74XUTsfQAGpS+nuz6DLyCLFS7BCDHLgsOdp5QGdiLps6gHK4EDVIEkaT+FOWqgr3qQEr7QUnidMncRAJy7Xr3QYWeBQIKXNk6TwCBs6PaLgF2lywAQrb0kOqF72TFR9KGgdG2nx3lNvh9AvZ4G8YYQE7c4BTkevOJnKxE12VcsDVqLL9QN8xoPwWRgqrrn3ZxQR4jj7d0b16giD/5IP036azLHEUOJwB8nD8WIp0ByPFMiQ9319cvxjR2qRowUyalhdC4R+n+mZUthSjyUQt3isKDKdZ89fHshARlECPZrk7k4RTk5DgSRAQlP/xSLcDxslJm7zb5QCkIZBfKSj3BJitINCjeZ1xIndv4BlnVKpKJwY38DBy21uvkrISTkjhCkIdalyIFwuQNZViL5qGolamr850Ry6ktn/JvWdHJ1XtVGmiIeL4hxIErW5ZTQTrPPsVQSHHT1w7JkeRpI4IBXl0QlSQOR+U1KGIDUsNcpdK/F9WBA/DaJNg5J+rEStg5pywfeatBgTpQXYXO0lt0ZYXdLxRtmwhV6mrxhSjvvHX6vzvmkKowzLLJi+8HfDsAjq+X6Wzg/T7Q78sQdLrA5beCnXeBCloDYkPdhrbdSOQXyMpSZTyoqdHPG6Iqgi0o+xVDFKN+TODtYUZjwShzptw8v04uDjU8AMLnXWF/m4QlIZIQyCmQ/+1pAnANsmhoOSMpLv2pHuLsLth5l3mojEaEyazROWJc9bOzDbIFauAtSBgNMYNInSSqMSHrP0LlczZzLfdluIVMppJsC960LIwYDYBJFKK1IQdcbtFUyReuzOIj7AvfRiSFdfASifBLdogkCzeh9ZsuhbXR83AcB4GzIUAxrK4mrTz178hogAxdgAGnll/7HPG0Xa2CUUEISpAc5iEdQgV/nXK9vjxmAz2BZBce2BJPOGAhPqtWeSpwemFNUViDE9QEaASCX6pDoa0F4K+FIysfQcmvllVOOKE8Y2oarxRijWA2BOky3XK87HIUaLzV6XjHLIlEiKS4CIa3Mba4yGAkgKaDDgYaZ4ANnXhLEpfexehQMqksVfuAnPp/O7MbEjCliIYYm/L/tQorkTjYzMbhkIzpVmVSvn48BWxJlafNxkH5XibK6DhQymzWfil0RwRNqE/kTGVfM1RZI45xkOfJ8FsEZOu8YNC8EJuqODR3y+daSuwVmniLl5XXNt4BUYytTRsp7qLFZta2h6DEIUgceI6Q62gmXxMCvFQNB+fWl5dLvodcaPl5niBq5CP5HcjHGCmMCVJ9OJGgrOjnecDWEK9XpECYFXdQ8oVfSLmfSZOMNxyaT+TgMbbRCCfBuWs8ZVTGuQYr6oZrBCQ57IS2vSgKfgfvlOueGneF0bKhDW8DRMuBVRhp5ohRnFZXR+4NIiWHUtBOoPn6D9QwziPHg2CsUGDxTY9gOF4W7An62FEhTSKRxEdWCHNLMjhGUfw7BQ+8YjWcvAecy4VsQY4Rw3E8JFFu41q38sbCSh01c7TFfv8O5NgLZYsFsS7msiY78YVEQeTaRQQkb318Kblf8tjyAb9XFqTE+uRgnC2tI6lIsiAlWyMEUO4XkGsX65WQ9a4/Jv0cADmuUJQHSMS6NxbrXwkiKrw+5DocqAkEkCUodawPR6Htz2VrbAkByXiYTNZk0agty+EiOLUcKhwvC9yR1wGTSiAOxbFE+gmhIvwr1snyMUlcXc9QFyE5ukl8ZWOSAgNosJARQjoKXiI19mJjuembKWsyhWR5CSQDr9vREA6TJENFA5EEJ+9BTfBgUu7pl/RhcGJa9Gski9hQjMpYF+ThE2sAyNaONt4hy0pUC4lE2FoeBUmJZ6mgy7BqLFhw9QK41ko2kuJf+fZ4SZ7RmYWGUeJuWo0ra7SYHKpAjWTJ63CKGkMJfZlsdgnB+miDfp9guPAskizbK1ajEe2GUtAezMKiqfsFeaHf7xMgEkExVlJCATkNnskpeOCVquEiB+DOBUcS4PCAfFXg7JGSN4SzsxbItdd7vFiYA+hyY0DWDfilhrZdG+SRZZPk8ER1dbDbnADvAwQHYNMrShWvVSPsPKnKbpGANtkN+5KxgKVYVlqyVLc5oBNE+YbvjkBhibDM0Lbf0DBo0bDzeuvpttkB7NZcQ/YgEzVlSj6GY6CfAEeMfS8QMdZtY8Fk1ugcMYrTUDgDITRarEIzFwxdZjyS0us3xUgpUr07kdVFOR0m7YJrZKvHaEpHY6GufhvHAxB1FtWyG0/juxhYdUOT44qKhiv70dxIACQlAYZS50qMU8BAYW3k2ge9skl7rVSizxCrKLkaXLFVYSTSQM/bEKrhU86XQwyE16k2ZlQiZQ9tG1olnW7hQDNRVGO3Glj5huKyATUmxhaxll2beNBoEtlgpYCG2MiNOMbEanGrd9eXrQAUpXRKkCjDFadxnpvcojAOYxpLgRnqlh8M8pn66WUOMSqeElWAJOyeb7HD4tBgIJKou75llLoUkjt1dQn65FCxUh1oiBVqRT6LJdmtEdqkM6FEkj901nikj90uEWds8FMfeo6r/3fD+Y3zzvVllGV2p0bXSKAwGTnRBQCHxVMj9bvRwopxNqdshMIrXlkh4ZiiYNZPGFkja1FCXBlhZsjgFT9W/+3kPeA4wCw5WGOjeJk1zE30nnGqPF/vdab+Wz0mdQpVK95yWjIhNw6TWaNzpDxnVEIVqUbok43IqjNl8KgL1sirx4IHB6T9OrdPRuJoYylG+zl4Nzz2yF1hPMJpuDImxgtYHMhDY45aQVHsKcG+Iw3oPpHX/fT7ZOtCAumCwIe561to26EB7a1iJcZpLEpTwNwyMtRVPyUxwTSEWtmZKZNCBevQ+tZOVOwxKOqsTrBdNm3m1YbtspW9gaBqUEbYHKbtRImplUr0sY70N9OVS1FQa4Ss2iBM48oCcsD4SEQTXgH5m5UkTqOkNjmOILvnA40e31S5fyw/+ZyGdibUl9fBZ6kZV5NKBmtueJ4DL8T5y+DnYqQPowV+sZFCQNl5/Y9hEROLN47j4ZPCE9Ykg3B5NULCoqC/QRm54y/DQ0iwGyp0kt1NlTYzd00OU5hyPIjjQP4a+RkioMRkNcJr9v0YPJyRDKUonKzOCeL1tlCK4/Ek5nIiknFiY8PyK/KRPzXt1AxtPTeEM9LLjYbycwT5iANnSWkd6/zQqE1o424C8rtTkhXJ/7dBIhE1LdrALnGgip1qtncIDSGurOoRFGvRRBbRrMjksdS5FcMULdESDUZTVIddj+oNDmxy/6tYwSZTN5MUr8T6xYlMCF/FZNboHLEWp6EorhgKxh2hPm6eltDkOmZLGKmKl3e4E0tHp1iOpQJtPMKYla+8TVeuRDvvUCtIqx24L5oLtGpNqFiJ1S/vakINxLJirq0nXohuvZkKhVqiK/zJwi/VGQqtkdxzjIhVsZ4ocrttmHhZars2h3EciBiw6ial7a8Vq3DT47V1Z5jluHEXvELfZejYUhvkAZ5ko26eT7hOYyXWthaQwpXiEon1QqvD8BwGg2GM6qqf5nIAaU6uybCE1nU1IDW8s2R7qlh1xY1GTOXieGNZyaLspIztulyLSXiMaF4j4ccHYOOcABdlUdeE3PzISmIjQmUkghQWtivqWJ+GUA6hhGVN16Cbe1swm0s0uap6HRM51dA7leNBSoxTZVsKFsQFgSDF+NGbyc3pnj8ZWckq80iR5EW8oMSZhJ2LXgfK80VLxJXs0G0qnFIOZmx3KHBEK05FGw9brCn/lHNDrJkkygwza0byk46EBqGOm9Ag6/U0dmSHSIKdHEcoPPGMPLDwCXXsQoxuC5GIdQGiIXkbl9avNDTzvK4+BRsQhGkstEgYTWiNBvlEB37Fbb/Bnd34eqHxQ82uZfTvZCArT/UuO6YOFnxDSAQt2n7EY5dQ6Q9XXRgl3Yp1xV9R9GrHFK1AH5Q4QLADAS8kEsFnVAYUY5TEifp33BBr6khB4OVfXOceOdXEiJFQq1NJ4hIOJ3M4kAkWO5mCX5LHjqhylzaZTgzKG67eVdcs7I5Voi2U695pvWVW9MIpMQOjH5rM2JCAtYX/RON722xSwpaF8vishCmKT56ORiJ1Kxm8Zu0mufwR6jFCrFstqZp+mYeMqk8qXW+9LSciDfGPVsN0pVYICB0zLIWZ0IZtS3LxYolxGtr+DT23QnIYZCqZpDBlMmt0mLONCdEGJV2mP/LDbZMzDVb4dyPPUQSBs6V9leZIxS/VoTZovAJs54FA/VirutekacJhtmJvFEe3MS09RAoaC6eHaOzesDADSR6kosVGBgCfJMfAqg0GIRmUCYDhpMUv1UGJEJlKjITUSBBRWD2GtWcDt75UuueHCakRjlXrn4OleFKRkvrNOOmC6IUzQBljtFbs6r6QOKEKsVompwOnoI3H27h964r/O6lR7xeNuF2e6n8MRjSqq9JnxZ0yC5zDgHjH7GR5O4pk0VsgZJ7CtelifqzU4EqrjPep6qYU+cJQXlMsT0ORYsvybka8i5+AHO5K+ZmhLbsyT7TSXiLVtfItxvJNxhR+jNco2OO8fjSM5mJaBaRpDPgIcDZnxP2piM+rlDfUVV2nE6iPWy8bGQBcfRgjWyAIBMKNV6zC8wReINhsjaR/0MW9jc8T0YhYFwMDkhICTO9RRpBMFeiiO9twe0MZI7cNKyEerXDQ/zeAzFj4YzJrdI5oi1MhmJxGKgfZFkEcISAZx45hMOJFEaQbK3xIgyCnSQBVv7qotTRMdzuPNGbpQiIYDJra/aLFTKjJIDSmbEN5JCBCTM10o1hsNiRAkFcfIrnrmcWVBaJbqSSa7ER2nWsIFm9m3UpEYe45ocKLBPO2JkkcrvjyLQBZCZVXW67QlXMJ0MV2kyA2rHjyPICFmqscn3A5kkHAwEpfSdKmEM0t6nAgoUD7TIxgMBiNAc83WL3F2C/HJJdaCDUTquzVjcc8D6IgErX54TmypPC1qoT0akQdK4uFVhUkoWVU/layzlvFzDov7LgYFjqNniG0LcSiRwlNpGOkNNOGFiBEiLOvVeYFfeBMYgynak4lSXIdh4ZCUMpGkADBASI5nq9ODg35RogkdV88IbpiSVAUk6JbW5Q0Golp529hcrpF4StVyUutKn4jhXdsbJjMGp0jWnEaK9pVReVjVT42bVwhZmmafBprJcZIGNEKT3HFNs0wQgeXUOHBSOEld+zx9ab2FARni2WhLzTIupwhVP8soUqrZKNcP2J8WY1yLDwGauT2n+pESwpKKUQLfZxIybH+MC1LApbiShxkggSOlxuoGy74URfZ0iWJKHGbjCxO9WXlwHECCPWLdKCMdxWRILcRkRoSbwHJHxtDJ5ADH/wSktuGrPKk3obBSDtkMssPBhqvNzjUZZ+0YrBAp+0PtcmLkqHQUTyXUiEbcBynylCxuupbilsesrjZcGOj2KapGaclPlRKNEfvLZKS4uiIZl3Kmbx0bdgxo/BFxoo+pKqKLbUFrcWpUbKhMItdbeiJRkSboM/MQlaeW9Unlg6t1NDEZxqIpHplP6U8v0E05XkkJR+BGkWJam6ZHBp6wGAuC8o4HU26jZAYscEUp0mAIFuaOupdFCNZWjEyk1hdzuIRjjjBbtg9cmlepgkLYE4UMQNprKR7sqVdsU03QYmDjVdWR0MqRrviHEKmxMCRiLO8iJFoHK9YCW3H2kmA1tJXzswqK3UVK0ieE1AHb/22xhOqJIlDQJQXFyIqUJWYV6GTg9BjU/CtxdrX6ZMo6mddqRIQV95xQkqumyg8H3+mUZ4lkmRYJFEL/URI9/iuhU1AjZH78OgviuPMV7nlBefkYzXGqZJEhyINSFHkPPlaqWmwRjEtI5YlDuWNVjQ0nLNYGGuU6jOSKQ0Vp0kiGWE9lCRcsheRiYEHHxJ7Mw7Z3+qQbfZMRu1ANqrSykKSzrvPaI6ilUXtR4A5n8sdjCnOaSihYe7UNsLxIClc4RvfN0gR/z7UYTJrdDJDm5Ah8JovLl5rJm2HzoS4zCeS0B+rIBSVDFHeRcOK4igTYrFEQlu+WL5DM5lc6+4S70Bpdm2CFBa7MnRAFymg+1uJvWPVtSpSmZW+zmzyrXV5l8tG9crHUJc6cyvZVK+SazH6ZkMnBH6xDoBcz+HlDg3jkBqUuLJKrOWGMAiNZ0GcKkJjTSm2O3JbT17fobTr0ke+Vrc564KYd//JSbtHInACwMf5i6DDYBzhiLaGsSKdStNMmzQSSRnz05EC2U8i/a+xSVWM09Bn0XnxhS4uJ3BvbbkTtfAVyWKceJMEXKEyiFkIJKXMsda5KuPprCKlMPkxaEXeiZZ5PMIljPqqaLE4Jck4X0WoJ5m6PVQhbMHvOJIcbebqHk/fZ5RUNSzsmUn9Wmmj8cS5tYLbdpb6U+s9BmOOaGWP9u0o7dbouSL1fUHym+9kGMJk1ugwi9MkoWQRBpirfrqx6mDT6JYSCQrPqRKOoymHZIvNxusRrT5npHIbDepJdxOO2UqZg0iATSc06eN3NWzXXzt0dV159kQz2saLkctUKEaxcuMh0iKWVhCPpGwMSJy6Yi8BsPGOhgWuENcjicSUKi4VF33DfWb35ZTst2LEuLJm/OeYi2M+R+H7PTPiPlep80xfaEkVbPWekWwknoMkcOBEAgmNF5+bERvxyhvJlEtlQ47U9iN8CpLrAMqYIcudqjWe8iihsnRo4qIQj4zQdyFwsjIn2TK11bpO1IMoXkWvIi/JMThD3ZqNz8kUbydAXmRWvg+zRW8JIgTOVp/1PbG5S8wyfgS52Gi+YkVhqmCWqMgfoZuJVn6rsW9151j0JIvFYEWr23Y4xQStTjVzAikQUseoz9XRoHRPtkciLxHETHLDiBEms0bn0DCBO8RoWJE5MieLRwqHulWYGeoCgMHAZ9S2rShF1KD2Sepxoip7EVv5Gq4bd5FiQiuMqtZ4GSCgmsfZDD9OpIbVcjMhKRl9YLTg9kpsKSuyCkHSeQVIJIaVPdfeLL6CxoiiEFasVfQuRlp3d2gUpyFxYw+BMeZIVZoyGKlCaqxMkYcYlEH/6RBsDdaGFiwOrcBz+l/cJEFpwHOk+yUbdRGWkhOfMFHFYygBiUuq7Jhsb0VFhtKW38hSORmKZKvvPx6rSJ1cBBGhcYLDEkaZfG+6chi8UoFr8ARKJlqlo87qNLTMBiS7y4/XUyGV8py3zhaxXWjnAmbl136H6fD6ZWPz4Q+zODUhWqdiNMBoY/FwOEJsljMUkZI30GgDqovEma78RcVkQKQ0utpFwmyQD/1bVvxlVlxf4++zwcUkiSFcLSNbmxq7G0VCdeVPA8kQrBNVCMcfNiX6MQSSF6E1Zazw767fl9x4aFYEPaO/tYTFOAUA7vgESxaZRCyWAhIHt8m+pC4spsNX1QKKC1Nc5ya3KIzDDMWyJZ2u+kBmxTjNVCQSG+17jkuBF0GpG43G1BMYKW3iib2abOVuokpT2esl+kAhcOYJaiP1A2bhmLQJdcyMERT5kwNkcShZ1g8WMQqZpoRvkBN8ahWQ1Gix9ePJi6GbUx0Ci97RiGdeEtp2Q+vRyNpU224jGVKEyqqJKnljHdv4OOXQTDIuYDJrdI6U59ShjQ8Vit0nd2wHDzjVbe6IH2r4tkiKggJXajNNM6x3QsmIa5QMCl66S/e31r3KyZNpzENJ4sJ+ikwTT6bdDRV1ur9D42pqE9SEZbKMgkhAlicIvy96uRRBKdJPIgvu4ly4JadVlww7D7iiDB7RLCG17Kq16/6WLR8bBCkl9iOXUwTO4Qk73y3khG1T2gnPRR/ghfqyRiuztt1Eat/RXACtCoV2vuFeofezIpgGAzwEgVBdaYedB6oCHMp9kd2PdBl7dQH6zS2ttX2FNs5YaBkdThEOZ2TBXZK4mNqOXAB5UiuRCL9UB3J64KXa2K4RJwGJi+lXG2yI1RqQuEzVaTYKAsdB4OP8pWN1h3FIkm7laaaQ7rim2p+dd6nl4qv2Wyq/LcHYhI768dSltcyihv+b9sU2R8O/zSzeRP24xtcr+uw8QaiXQQQLskg0Vu1zwKlYSIaUN5J3ixE2zhFxv5nsZBR3k49Qgd4g0NSlWNxGtwLOtTeDg29YUuRDlKbav90hZdm832Za5qxsvcwuSRz8voZrZXkC+Hu/QzUs0VtwJge3YHwlT3bANAant9aaDZdediMYxUwPax+a9sz7fYbXdYaUOSdyswEA2O1S2N+2+m0OHqgJaq17ubCyhf07NMxEPTZe1kXwHGG/T19PrbMaruEWgMpyp1q3ksTBkx2EbbO5zsFmD39XVuU1K/NsnqOofVp1lVzZgkBwuYNwuYNhMnTo/FZLpHmKwNnNd8aASwCaNvOGlUmLs05Tz47YOkEn74FPbBx5PhpMZo3OEak4NUMISgg45UEmL18OKqz9KI1W5MT6LNMRMyIz0op2dTkgyRmsAXmgEcmaAkwrfAJJeM+amE0H/zENHE/qT4uvESdEnfNcaO4uUP82SnCQSNwub50AhzP6+dYUp8mvF7umNwxIgLd+7E5GoPVm7iB89av+2kRFOhc0EBDwAsGGgOZ23hVx8Oc5gk+MzU2MFwi8QOoCUm2NHTXVdnWfwAG7NGO4ROF9X7wJKeJ5b1a+z+zcgPq+8p3hx2+u0kvCisBt1J7zHS1g5wnlPgF1QR48jJ9VdrHXP08wwOsmKkC46w7PEySRQ2FRHRxOEbkhr7e5W0JNUH432Ypgy/EALwvNDt4NzlcDF5cVXqgMQ0L9GEkEIkJQamjbyYwrlanwfGI/BiMamZagiZEYybDg9YqcLvah5XE3hj5ZIhEcx6UsxmkoB31/N/yhWRQPVegmG934HUEbKlpZzA/BijdOXVD/TkqaGivCjBZPjBZyO7WQx+ByvwCJgI0VsmIuNKGjet36xX1lQT8oyOXxiTXyM2gUgBIBdSJvKC/ZbBRWRuVvV1bDM4Uq8yoDWtlfLzsTUZh8LMt1JvUqGdedTwxv9/Yon0IgxDglUC/7KbJ4bcBo0V7UtF1J93/dgG8w+PMAcu36d7n2IKculgBAbr5PV8c11TYES2z1lwyvEyMDm2hh0Jy83A6U7059/5rLa+Pwx/pNAAiToZWyBwPytWpr5HdeFeDU/lIkYEuVvi3UBSvlf0hBEAhiSKgre/0LsjKv3b/Xpfs7tD597vgduEUKwClkhjzPZNboHCGPqUcIGn8kZpaodSKnU5hJxKG0UP4Atdn+GmJDxmaNx8gMrE5AElGaSgm4tCctppUJRBKqAvuQ65BjPLr5bPjFOjiELFlIkoKoEyvhF2t1VqcSiQhIHHwiD58YbmGWjpAvInHYUbsBDt4tx0IiCVm2PAQkL3hOQG0wCDtHCEoNoRdSEdPIiJoAj5qAnJleaQ91YiVEKWB4fFDyoU6sivk+sVg1OuuFa54niATkO2TB0WOX4LYRdtfZke+IbC0faqHsDkYeXpKxyGSzS2qMUwDIsWuF+IbtrTWWGK09gE+U4BKyUSdWwQE7fFKNun+fd2vSFfNGE4Y9O7Pg9wmoDHnte+p4OOr7ompFsOV4QLA1rPIn4FoZK6HZm6P9lHO0aMPYpIKVd52YkusyGJmK4hYoSVzc4UwYhy+KQiWaIiRREh2BjMaPgMSpsd8FjkeAfHAJ2aolL+1aj4DkBUcEUeDBufIAu0tvOYvoWbV5jixP9iPFLhQJ2O81VjwaURnYC7/U4OEVqtCJ5m6uVa5r5y211ZEt7GTLPfnfQUkub+c8X/09IyWIaljgt4nyv228ExIFwUNQ9ytVpFgZmpUz0lwrGOBRWa71+NSUX+OZVO7fC68oL8YKnB0+sQYuIVteWK6rAEQ/qHqvTlkqurLCFmx9ccanFaLI101dDft319lR7rdBIhEHcLB+0YEHBw5NfDYEJR9gd8HGOxBAALA1KOkUmSnWEHHxxZCNbhDhVeYiqgdiYjJddo7+G7WSGMpqUthk4U1x9IdYLekZ6SWtitNvvvkGo0aNQnFxMTiOw9y5c3X7iQiTJ09GcXEx3G43hg8fjnXr1sV1L4cjeS1fJKiuJED4qqHW/TaUA14WVpaReoxcMMwIHSwNV0AB1eLNKXhkt/L6gZPnBNh5glOQoq7SJgurg6VPqgFfH2+4OnAAdt4FiUR47HYEiIONp5RPLBRk93a57FoXZmWFXOeuo0FxSdJdy+I9IylPlQUklztcIRo5zqbx3UP7wVqbeT+oK4dJ9Zu5n0o8ZykAu1ns0C3VHBw8h7pgFVxCNrzw6tzmRJPV52QJaHG51dYrSdORQMyKBbj2Z4YEUU7GpSwwpiDGl9Iuzrjn86RfOx54gUvox8g8GlNuBQASOBBrC4ccAUnj2pldGPHYZPWFfikJ41QMZkOyxV/yxyStPGo2HjeUIfa6035Oyfq0YvXAiaQo4UyithqJPYo8YUVRVlnuhFeU20iBM2i60GkFJZyABNGS90jM4Yk0GJUv11EAO0+QIEKkABy8G16xWg5l5M4DBAv+9ibUGtswxE2RW76g4uVEJMnKUkAn8xu1ZTODCiukMoRLqpMgGbVnW71hRJYnAEnidIYSotqW9Tkk5PjBfMPivYVEXAmVWyLAH1tbz6R4t0xmjU5aFac1NTXo06cPnnnmGcP9jzzyCB5//HE888wz+OGHH9CiRQuMGDECVVWxW1/5/bFFu5UitGPZpaHh36H7lAHRqMNjrvyZR7qtNUjidL9oCggzEnXZCxXkJBJh513wi7WyYonn4RJyTAW+ZCkgrVm2RV8lLs7qHPO9U/l9KsJfrkNCbshCjttWH8OUD7ciTNagGql9KAKW1iIBACr9PKoDPIrcAZT7rS/6aC2SI2Fm5RurwKfEQNJtC8lMH2/g+EhH8TwZ1qvZdiOMlI6Sbj8ntwvSxPM6RHxitLG9iPRJznSKhcMU5vZ0+NGYcmumYXWRhBEdxaLSzruSFrYkYRksDeFTrLQpG+eA25YLAPBLteBa9kjontrwAtHm+kahdoxI5vcQKmPHq48IdXkORUok2a0F9N7nGovTCEpUh1PUWSHq5CLTBFbG1+PyWqoGH1aJVx8YMTkXyW72HHg05ZpC4DWWwRa/OZ6T4wlryXeaHNyIqPF4kziNjiY7m9V16+wka7wbiUQ8UZMNk1mjk1bzx1NPPRWnnnqq4T4iwhNPPIG7774bo0ePBgC8+uqrKCoqwpw5c3Dttdc2ShnNYpd+t8eO7vkN09s6kYc9KKKJk0dQ8kOkANxCbqOU8UggVkurHDvUJCVGpGVhJKRXSaZpfkNA8PivQSTVuwbvhcDZG+LDqPvNraxDSXVCGImiCzhaxViD1Wac6QIbAYIEcNa6ZG1LUpIzJBOPXXZPUQTVVL3PVH6HoWWO5oYGoD4OkqyU99RbbftiXHQLhZfIUCzSCn8BCXAZHKPCyYrThos23tCdSNgCniPUBXnkOuRA/dwREjxewShudSznMjKPTJBbKWTwS1dyqESsyFJBpro7BhEMm2wpXjt+sc7wnMaCQOA0giNV7oZR+GxJEGTvnRRbR/VpGoBP5KKOFTbOAZGr99bxVoATnLK7fhQETairVMgfyUyuY4aZ7Bur8URMyt6AF3DnxXR9I7Jz/DEbMikoofKUuOmhCwW6uPUGRggcuLAFfWeSx1njePgctEFAlUVkCSIO2r1wc7mAJEGkYFiiMAWjWMJapXddvZBps0lxjwcNBmGxn2s0J0x+yCvNvy0YPIkUgMDZ5LZQXz/JGCMO57jiTGaNTsbqhzdt2oRdu3Zh5MiR6jan04mysjIsW7bM9Dyfz4fKykrdLx5CP0olk3eoW7NIDQOgYSBoxiHF4dwhxoKcPIfCthn9O1MxGyAjBo+PgVjaSmiCJSPBRCJRVohp3EoygUzOip4Ma/HQ+ELpeN6oExg1nlT9gbxNXuE/BPSQ+jAgKajcDG6g2lC08fwYhxaNKbdyGdzu04Wa9C8jfhpFSYYqdFV4zcKcdoE/2Z1RIiv79RBRUjvHUCVkqFxnNUxGvBanibaNqNZ5JjKSkVIrmqIrHrlUqT4zz5xoaC2RrSridLHgE8SKp1aiWPHOCm2GVtrb4T6ftbrwoTf6sd6Gj0SvCiazRidjH3PXrl0AgKKiIt32oqIidZ8R06ZNQ15envpr06ZNTPflRMVyz/yLNAoUrLiCKkITcGgolw5HjOq9sTJ/JptUZI+3Smg9GrlfpyI2SyJxFBUkasi6mYzvMNkCiEhcWCye+huFHZuqSVeo1VLSrx+h3KHtOhmun9oJQizXUmJOhZatMfUS2vIalZ34ECuERuwWYk0OFZr9NkActlbXys/BxkTGYUy65FbGoUdGKlMNrPRSjZlsxxlMT0OV0YnIn8qcIBmu6pmyhhFziKNkWwRGqAdFhq6uij/2qFnyotAwQLHgi1Bn0RRzVucFRq00zLDKYoiuUHf9UIJRkrJGI51zzkSI1PYM45taQHn/qfZQTUfuAkb8ZKziVCHUXYOIIrpw/Otf/0JFRYX627ZtW0L31wbPVjoUv8G357FJyHMQdtdxEDi7LtkIo3ERODuqAnplqfLu7DzgEhoENLOsjymB43Udt1kA+FB4rnFCC+iEUqKonXk6A1rHq/OzWueG90wouD1nGGdT3if/36g+o8WBlIiDT0xQUJI4U/eeUGEkUgy1dCnFjModvjofnvG2ITlXAu/VILZqPERMqkT1MZAOkeVcV4iONyhxCBrUUUYqDpIMx1FCP8ahSWPKremO0c44tAmVibjsZuYHS0GA43VKzRSvvwKI7u3EKe7NUniiy3iIGK8yRWEx0ilPW42NG+6Fpv+b52SlgtF8JZaEtfqymYfMi6qw1shMfISGGhoPX4vNZl5us7agJOCKpIQ0k5ftnBMIejNePsrE8pnVd6iSWqn7QP2cPxOfJV0wmTU6GZvivUWLFgDkFfyWLVuq2/fs2RO2mq/F6XTC6YweMZmXKGJWuEiDo1Gw6tDOlkAJKWkYqSOR1WGRACWsd2OtMktkzYIuGfHG9FaQUtiqvzLApHKgsWpRalVgz8RBsUFZ2hCnSbagIHA8j8gpiYxJhVtJoskmUln3sUxgIsU3NQpLIZ/DwRejUoIXKLZySebl04d2EMFrY7FGUcSkk4bFxsZTlpY+8jVW3nECAMDntiGrPCW3iZlE3JcOET05Q0Oq5VagPmsvw5BMyk6cCKnJVG9xvDjCOh6BS67slExFcqRr8QIltGgS9zNzPJDgOB7JSCVaQqsGeVlvRZiqhXtPdvzK+IiyEDUkzCSQ3osoCXVsqXxpio0NAEflRQkxIXExGTMZxWdVjH8ycQ6YqTCZNToZ+5jt27dHixYtsGDBAnWb3+/H4sWLceyxxyZ8/UhKUy1GLpRW5NZEXAcYqSVegSFh4SqBXsWKxWmiliehgodRjN5McrWNNBGwmkE9XXNQ8+yg+nIauasBDWpVniM4hdS8k1jrxjymbONVsnaRIRmTIXcEa4NEESN8r6FvPZ3xshVrXas/LZLJ9lTirEuO1VEy4HgCH+fvSAm0fziRcrlV4Axl13ROgDMJyqD/GgqVXpnJ0jjeiDPe0H4uFlKhGI8mW1udK8ZLMg1somcj1/y73gsqEQTOHv0g9djYrq30aUp+AKk+aacZhm0jjnatfd08Bzic8cteoeU1Cn+m/tvEwy8R+Vlo5OR9mbpwFalc2vrl6v+zgiVDJX+s/Vv6ZT4ms0YnrRan1dXV+OOPP9S/N23ahNWrV6OgoABt27bFzTffjAcffBCdO3dG586d8eCDDyIrKwsXX3xxo5e1TtRnxdMiN3auvlNsSOLBRNnMxGzwzbQMsZlGaCxIdbtFZaoi1EWrZytKFpHI0sp+Jil6AbntWRlbMmEABfSTrmQomaNdI1kKgHCXrnorhfq+Wj5GY12dIQKfUd8kT3CCgBB/bLDDFaYwYjQ2h5LcysggjOKXZ8i4Ey+K10MiukUzeVy+doxCR4KKsmQQi5xk5u3SGCjlFImLKiWnooxW5ls8T2pi5mhlCluwsIhbkFAeYb+Zq77VxFaAsUdqrHMTJfRcIIkyT6TF+5iI47vbUKG/dypC5TXkmwm/trwvsnWzGUIM1t4r/nliXPdgZC5pVZyuXLkSxx9/vPr3rbfeCgAYO3YsZs6ciTvuuAN1dXW4/vrrcfDgQQwaNAhffPEFcnJyGr2sSkKoaFZMDRN0CeDi+ygZqSfW1U8xxDVcpMaJO5oOJAJsUaTJRAT+xozJps+mGOIO08horUyNhB8zITqStazRa/LYgJoYjO6sKJ+suPkdKpNAnStPhnkFRIrRxDlzAPgbt0BxYNXS91BpL4nAcQm4PR2m48uhzqEktzIyA7mvi/5BJ8NFPy7r/jg6KQ58ShZ44/IUsVB+rfeOtp6tyvHRwrspCj4r18vl8+ANGcsbSxZR5jL6UEAWY5ySVF/X5laYZm04Wcp1owRRpnWXhDE0kkJP2WfVrdwssVUqkUTOUNOT6KKzGiKBUm8klqwF8mR+Y4eroRWTWaOTVsXp8OHDIw68HMdh8uTJmDx5cuMVqh6zlZjQ7I8SyYoNkfRVmWkTcgZgDxnQ+ZDYRqEDX7JjHzUmkhhbfBhAHgCjKZWstutE6i1TQrhZFaglCweGZozVKk7DnjeDAsVIxIHnKO73aeb20tjvWCR91FhZGa21Qo2PRFbJYxEGCQTYHFAUp3L84cxfmMuUbzldcAm4Lx0pbk+HGpkstzIyh0S8XRoj4VIySGWcbeUba8wwL5FIqst+FBkvmruwVuRMhlIppnAOURSnCpGS2ibDutDQ+y0JSsjQuohFQaZ9F0Yys87LqX4uZTinsljHGYNJe+bjWAhyuYPw1kVXTVkz+JD/nyrPQ+KjfKkODgMf/QrAoWN5ymTW6GRscqh0E8tgFJCiuzowMod4LEWVpFAJKVJTqBBL1opcgCIrkxIVTGSBqREtTg2+TMUqwMkT6hqpHKEr+sFIkwHeBsAX0/Usl8OCta82AZr5MdYS/zR2yBKzuY1RfWmFKm3ZQ7/xxlJja+9raLWRQQr1WIg0KYvWn6TCfasxYYH2GY0BC1mRwcT4IadCaRrVQ0pbxkOh4+EAkqQQZV58RJ0PhLyQSDKULGfEN2Y1hgdGvN5e6fYOMUz8A4JEnKHLfizUialp72IcbSFZCj41LFoc8lO0OW6yjcJqaxpmG0rCM5tdQjBg/b1YtfRmRIfJrNFhilOLSFIkN8rwbZkWW5EhI4SsglpOumQ/tCfwViBIkCixni+SkiTdrg3abzKe7zPUijdWoUTSuUbpy6FLJifYkEj3EYubPmBNmD4cXPXNE3JFfo9Wniq0XSRTkXGoWr2nq9wSfyjY4jIYjGST6WNQJNIe1zzKrDdVXnRmMqM2ZwRQLyNxvHE5BBsgxpcUsFGtew3ulcw2ayRjm7mRS7A2Rsfy3kPfpdH8Kh5lnmRQRVET/mS4Fqcx+yqHU7SkiIxbZhOMVUnxGnhEw0y+Dm1/oiZ0Isc15J9RSHmYhGC9HUwUGmKxHrrj15FEZvcsaUDJyBsMWqsaJdtfKGZCUDN35mT8PVzRZqBO5eQ9WdcuePkuw+3JDAKuJTQLtlT/+6vSFpIMqKEezdxKUiFMa8NhmP0AIJDgGOOLsX5DhdJYFMEbK+TRU+krQuNL6bKmW7SicNbfP1Tw9ySwHKYIV1bb9l+V+9V/u225un3xCAFdW3stH+uv42NSUJotcIUKT4kIew5HuHtVqrPyZhqVAf3fUsgYqbQLr1jdmMVKCzyf2C8WvvnmG4waNQrFxcXgOA5z587V7a+ursaECRPQunVruN1udOvWDf/73/+S97CMI46sI2BBOV54zfKNo6bK2jkJDBXe+qmFIx4rfQtKJiFkOOdTlMNhzX47bCbP0LDQbC0RkI3TJ1TkDKa80Ywnkun1IJEo/+pftPIMoQ6/qQ71JhEQDMlanwxiab/ZOYGwujWS5ySJM06aacGVPd7FiKxoLldRiGq1GU1hp/ke7bxL/Xe8c0K/L/xbTVpiKCCuxKVH5RlXkpGbfizWp5GIR1Ga70zsW1zxzxMtuekTSRkR2qoxZVbg0JRbj0jFqWgzfmwhKMHnlj9abYcuRVHUmCV6YWQeXrFhUBM4wC8BNgvCv+oqIiUgZJD5qpIkNfwUBE5ue3beOMZk7zYN7tw8T+AFiqvjUuiQGwyJwWMQQyjOdi1wgMMhn5tuy1MjbDzBXl93NUFj4U2xzIyn/K09DUJeuYEQo2TZ1A3sHA+Bs4GHAJeQrTue5wg+kUNQ4lAX5HWueIrFKc9TRKFfEd4liVMXimx2CSIBeyPEMNAKox1ym5oeJ3DRpc9QQfu37Q1CYrQJi81JYdYUO2o4w+9zv1cw/W4N6x6AT+RQE+DBG5QTMJ5w+f3h75Y3kYbsdgkutwiBA3I0VZVrB/Z67ZAIqAoIaJ/jk787zcd9KMTQVpSlBU65QdaJlQhKDQkxPPYmaSlXY8JxlNAvFmpqatCnTx8888wzhvtvueUWfPbZZ5g1axbWr1+PW265BTfeeCM+/PDDZDwqI03wAsGVpgX5RBcvj3RC+3Geo7jiAgKAyya/D2+9nOKP5d1I9e0nmgJVs18i0VARmSyMrh1R8ZFEC0Pd/K9+fqeM42aLtU0c0RVbpPnPxWdHPFbBHZLVPZKit6AwcvCprOyGfqI6IKDcD2yskGWuSPMaAgF2lyzTWZhk+Cwo5aqrjOVDRRbN8gTVf+uTQ8Ufm573Rw6BpSUgyXVtVXFutze8J48NqPI36A5MZU9New6dW4Uq0wuc+bq/lXag1I1bAKorGxSYvECw2SN3AkICczEbyfMTkQKAIwsc1xA2QbHu5DkyXQTZUGFcJ0ZjmfIcigLVWyfA7+PxZyWnztsAYHOVTddWnAKPIPkhcHa4AvJij0QN13dwTktzWruFrkUIaq7jqJ+XWFxJkEiET6zNiHjOjSmzAoem3HpEKk51DVyDmUJVaftapVvfAuPYiQppd7thAEiuq0DCq0EGgh0RYd8VD5mewnORhbE3Rp2LN0adKx+b4NdMRGjt8UOoL2eOvRB+qQ4Cb4dfqquPKSTCJ9ZA4OwIkh88J8AnSvCJHHwip1NKa9EJPslc6TRBJGB33WZ4bE0QkLwISD7k2AvhFath4wWU++QYpxJxEDhCUOLUSaDHZu1Fx2KJIFv21p/HKav8Df1EQJItLTmDNiJBRG2wwvC6ZkJJvCjvxmMDXIJsIZ/rkLC7zo58A2tKLaFlzOI84DkBHOQ6TsVqaug7aO42vkkTp4i6eiG8bbYfdUEeeQ4PvGI18h0tIJEIgbdDlAIoyWkZ1m+kouyBAA9vnQCRgKpAw30O+oH8emVjjl1UJzZaDgWXVKXO1LAUIWPiofAMiaLEi4r3Fwunnnoqpk6ditGjRxvuX758OcaOHYvhw4ejpKQE//jHP9CnTx+sXLkyCU/KaAx4zUDqzWmYJFtJppEqWGy5zMTByzJGdYCPLAcn8P4IUtyK3kjIsmSgPsEQISj54RWrZYWjkI3KwB6IFICdd8oKJmd2vcmT/jsIkpJMMbyMAicrdpT2G60dW/Uc0XpzhUIkL9AKsMkydf0YqFhP8pxcfq3SrM6i9yMAHNjn1v0dqjgLlb3zHUBrjx/NXCFuIiaIFFCtO/xiLUQKgEOIxxQavKG0GLrtGxxns0koP+BEbU3Du5RIVmTWicABHwc7T9hSXa/Q5gRIJCIo+eESsuEUPBBESW4LB7bqy+9wGMrYRlhRlmkJhFhFejR64bogj911dmyucmK3tBPbaoKoDVbDzrtQaGsBB+9GXbASAmeHT6qFyElqnSqKvgO+8qh6uOxcf+QDQojH6lRrASsqSsgIlwlGWUzI8ujbnt8vWLIwdTgl1ASjL94pVud19QsQyjemfHvKAo2ZzsbIkMYIRX+kNUjhecLAR79SE0RFwilkWbpPqmlMmRU4NOXWI0Zx6nLJHziXwAxYkVm17sIS5E5dEUwkUpKNGH/Nu2sT9AFgMFJMaNsNVXDoVknr/+0UCE6BwlZBgYZEN41tadrUVVxfRv19g5KIfKfsqi9njLcuPMTrthU5jpfy7/qDDEafWNzirLrqKxYUqUrAUyWVQyIRBLmO43VDNFO0K+WOlslUi1LfbpuECn8NXEI29nll4VqUAhB4O/6q3BlfQZVyxdnOtdbmoRPdMKXjIWBxKoaEpRDJfFxkmFNZWan7+XzWrWa0DB06FB999BF27NgBIsLChQuxYcMGnHzyyUkuMSNVSBrtg6vKD+5QDYB8BGDjneq/pRxzzwwtdo0iL1lk1S8Ea+ctEUl0BT4KksTpfhGPVRbdQsa7vKBct6rLvsVggmbjj2EyxhDMPEcUDlrQWSmu+uDqlZBh+yNbjlsqZwR5Tlmo1c5lAdnDJVa0CjSFZC0wG7ULOy9bVeY5CAGJQ9tsRbEoguMM2pGvPhRQItlu4iS0frdVK6G6GmQ5h8a93S/VIcuWb3ItuU1kSsQnxcgjWXWqTQ4VDZ6vTx5V36fF6sKveJfFSmN5VmSCq34ySJbMCmSm3HrEKE6txMKLplTVCh1/11ob8ENJxeoswzqJDD4Jz1Ey3MLKbEBRVj4VJanLlqO6P4gUhFNITzcS7X3s9/6NmuBBOAQ3bJwDVYF9cAqeqNeKdN1Ekv4Yxmlq5O4g3vJn8oAe+kxmkwu3TQIRYWu1LLDq4m5qknNZVaQbvU9tNlMrCmkzpbB2Mc6ITLbWlHTfEqf2KiJxMXtihE6yY5l0ZwIcTwn9AKBNmzbIy8tTf9OmTYurLE899RS6d++O1q1bw+Fw4JRTTsH06dMxdOjQZD4y4zBGSa6p/DJlMp+J+KVa9d/RXNoVGYvnEpsjxGollwkYxa8HGhaLFY8rAiVt3Iun3SYjVrniph+6zei4RDBT8mrHzEq/4gbfYPQTKwJnB4FMF/aT1T8YueorKG3CxjvgFavhE2sgCjzgiN+Czxs9fCoA40VyI7nwqHy/po2HtOEkKSCN6jrWNZBYjEiCCFfyN/bCeP8iiy8qRZj2Cf7YP6ZMMYbIJJkVyEy5NX3+PY2MUew5I6KtKhpZ1AHh7tSZEKuCYYwi9B+pmDVxySAki4N3g0Bw8G6dcKTNUhjpmlqsKpOSZUTT3N0O+7xbEr5OMiwytcJetl0K6y9svEFw9RjbaCqMj3bV2iBwQIdcH/Z6bUmfKCdbIdvQ71LI9gZvAO19I7mPi8Qh1yHigC+2YVJZFY+HUCtNXT/F8epjZYqQFQ1FAWzUNsUo1jWHA4kYuyjnbdu2Dbm5DYnXnE6nyRmReeqpp/Ddd9/ho48+Qrt27fDNN9/g+uuvR8uWLXHSSSfFV0gGgxGZKB2AwNlUd+NElKaSBCA1+ZrSjo1zwM47ESQ/AqIPNlcBIEWO55lMrCpNJbIm0yhyR6LjeLQYln6fYCq/xhzGLEEFXyxzroJCLw7sc8FmS0ARx/FAQVug5mD4Lo4LFRGTglbuC5V5irMCCEgcWtlaw+nZB4GLXf0ihHjIWa3TWOYwVtuF0naVXAZaWTqWBY4sTwDVVbEnl1IQNfPWNtlB7I0QtiasXDG0aW082NCwDKEcyglhM0lmBTJTbj1iFKexYmTNEpAAQZAHxsoA9//s/Xv8JEV974+/qrp7Lp/bftgVdl0FvKExKooHRThGQQTBiBfwEiAE9OhXH2JOlKhBDV/WYwLC4RA9h0SNRgQPSKKIEaIIAYH4Qw2ISGLyRVQQVJYFdpfPbS7dVfX7o6dnunv6Un3vmaknj8+D/Xxmpqe6u7rqVe96X/CUwYbWcpPh8Z6OR7sGtrZNdCyCxgQ/OJMOEyYWDYon+hQGFWNGqspujW804oIN84mm4Z6Hmjj5oasB2DuLlkkyhcMzQfDbDbsPNyiwp/dbzOvRBVwcQ1Qdu3tU4vVcv0fi5P0iigviWSQJkcybwp03qKlxaEQbfse6pD0qbHLnws5v2mUY5oB1t0yAg09osIJ/UeOkVQkq0hGUp6ssnBy4YcbwSQl554JgzbT72aIxD0Ioemw9t+PbCfjr2xftSqPp+pFzWktLSx4RmoZOp4OPfvSjuOaaa/D7v//7AICDDz4Yd999Ny666CJlOFWkYpY3oJNg8i4aITuhlugP5/4qrqfF+9CoMWydWH0UZPP4+xgFNNDCI6desNkKDY0dRj9BQCMGTN61N/CZBVh928uw5LDsNFQ9f4fpisjNd24BSG/gysqYdhPBRXOHEAoB5nnqCMiYzo7rLbLPpEwEjP8cTN7FCnsULW0BHGyQMzZd//Xr/n5PQ6sd7pHpL6yaFgEOErJjE2SE9S87koTq+4lzFulYHI0GhuOEW+fLblqYAZfQ8G1YUCoQdKXzusZlUhfNCtRXt9Z/hqmYsPx5wxynrqIv9t+VkqwrZtX3xr3AnwBx5yfppFN1Woo6eeWFed35EYIPBJ+csI5LvJ43dQ7ZB4prX9WpBOPyDteR+rdwdjBNE6ZpgvqMzJqmgXN1pxSKOlC1ZqpCl4aF6ju4HR8cTZfFc6xIkuiEoJD9pJo1aY5HB3+djrrhN0IGXVdp43OFG6tSmj/iPGRycoYZdhvNasPYAbnxzF8cqkicaymrn2ULx4UxaUbTulFX3TrTHqdMp9ATZP3lEhO7Q9U7iorp5+D9e7jnofQu8FEIcI8RKq4/Rxmskk46suNhbonog3JV5myPNHnw97CBQdUpogRAKkRfbdDEMyrYNznXalSJnkQaxeu0KRBGj9FB356c6583eYQ9ybK2toaf//znw9/vv/9+3H333di8eTMOOOAAvPKVr8SHPvQhtNttHHjggbj11ltx+eWX4+KLL07XQMXMozxO5bDH6+DcjG6Kityp3CCbAtu7NHgQ9GziSxpB3J5xUteDEgTFc5eRW5skzdMkibvtqedlV8qgPMjF6zEod3rw7fMgU2wrC357ARPENuSycjUc1dKnj8qCTB/L4nE6+p7499hOKcXnMqHc9j5Nlh6huPYkpUzNCkymbp1pw2lSxsNt7f+vmRo0AmxuWnisq2P/BYJ100RbXd1K0IiBNZPBoAI9Rjwmvwa1Q5CZAIzB71JFXIImwIwTHwnxLOTD/Iaj44ctUL5ywkkAgFP/6WuZ2mJ/r/x77XYnm4Q4z5ZKIC12PlYtcWGaPBcxstXehx4Vw0JFFvQSwqMoFYHe9W5DnkOdJvmkixi/wdkuOOFc83ptdpmcTKRhYnGggy1OvAW4IApaDtYXAgGScnFGEs4vd955J4466qjh72eddRYA4PTTT8eXvvQlXHXVVfjIRz6CU089Fbt378aBBx6Iv/zLv8R73vOeVO1TVIM/D7/VI2gUs3+qKIG0obl5odOGXZl8oOfI0tbwNw8iYsogSGf4c+uPf8gCNHm9FKbx0hhHg7RSVUTlWPQWWpI7nl+f5onstQ4rEJWkTWUZK7sMaOnuPiHfnqY2BwiAwfbEFEKEOlNE6UO7+nyMw0sNCmwmyXEa1t4+t9OLhWFrT2+fEYKjnzJPMsvZCG3Q7MbjvChTswKTqVtn2rSnWckXyt6w/MHfAt83nktFkZ4kRo0gIWrvMFc/SQDpJu8yQ4UTGVCFsBOtBx4noMBNTiS5Hu7cNtP2TOqDzYEsRIknJ6TLKfJTtOeK420sE12VVvTFLWzcPWQ9JBRu3gjPJZtXeM5YJAOhw/5b935sF5rzjrl28RNXgbmA3LJ+pK5lUFW7mlDm7v2RRx4ZuTm0bds2XHrppekao6g1rbaFjbX6LL4UIV5wMRThAVd1mpmkOPqTeYxjMXOFnZgv1fdJF9jhorSiL/5zLUJD+3V+mQbfIkKY/ZpIiOSpDxw0ApQVQB41TlSh86pwjNB1jn6PohtR2Mmv972OHiHe4TXYxJClLpq+bI/TSdStM204TQIT3v/7/62YXGQncbcXXp76ScQYgAwqchVOspNJEeHgMtc6j+fKsyPt81JggkgPfHl6yLrHEKcPBXtVFDuwON6lSRYCefSFKEGWZ7qaoJQqSQVUnJF4PURVx/XvJMZe53oF3aJJCNX3X3OnsIdCociXqAVnkUyiR/ysIKujsuqNovsAF2ToMeZELdhh98V7vlJNpPKIlMFTvDTOk1YCrcJilkXjycka58UZYYAqKgVCHHH6M020U5Y1aJ6epmVqUafdnpQTvuBH/3Po5In1F7CaBA2tqCf1yKg9IfiNp2E5CxX1IKmQqSKRs8zgHZRDtwiiJvekVd/LQCb83XlGs7S9CEEalPtx6E0IXsi1/tZpJwDILpqSjnFC8MS72GkNqUnC0KL6T1bPWqqJREZ3f1t0Kob9o+r8dFwk+/F/dvRvVrsxpGgIFZl+FIowqNq5VyTALmQbPHfX0YiQSDPUpDgUEF3oKoyoIkDzhvyGY9I1DBOjAqNFDydpDezu3JzJrml9tEZUuwMLFhH/e0SgN3pNA20SY1ne51c3irt3QhSzvsqDOnjIKs0aj/I4TUiQx6m/YnbRHmOzSKJrSuo5KObNPQ81cfJDVwNIFqXkn8QdQZNIlETk3SmLSV83huXwcq5rnuNIkKCWz4NFKg3ryoM4L4Uw5g0Os1/+uRq++yUgarU4VMhB0keQqtutAACQiInOKUShqDEJH+RpMYZkIcrIC8R4aMaUH8iqG8OK7HBOwHLSbGk9I+MMp05uRndUTpxjRiangwksSpYVJoKNxMN+V9DEnkd6gTLD9KPGOcuXIqsOuViLpi6bV0qzxqMMpwmRHVgm3aijKIBZGVVQTj7MODyhUDlOSv5CSlmJDeNJKMbn9fD8m4HfX7AoyRqCVgRJvGbTGImzVjCt+tnJg/GQqdnY0HKTZRd+VnbvFYq8qMviU4ZJamuZBKVFi8XRGDXQGpEG3wKLLKXBiXyS0hsVX9u4tbf7mjoFYaskqJgVB8auo3K0GuU4BQbrqwj9HBbJldToK5NjPy12AUf5NYDdlnoYh5VmjWfmDac8YfxAWAjGpHlgTRrJikN5J8yipvuy0zJoRODDLzx1+LvjbZr8ON7f3Z7TRaGR8lMhZJkUnWsU6l3ASKLzCcq7GR2+k77tYUbT1375WszCkD9aeMX3Z2+esfJzNQHBgs89Zg2fyxosCpPgRGIoDyqFIj84JYOFmcJPXTdn7HYVP34HdYs6bGJnRQivkcMuNJhOy2TNyRq10RyUriYLlAism/LnKZMeaFR8a/T/uDk6zus0jYdsmFdb2o38uj77Y9D8NLjKMS2Px7Cek8HUjtrL51jKgD45TNZKrEBuvPgEqff1PZXc7P8rDTvd5O2R508KH4c/bDcMv2gKa7c7B1NWz+iJESs1Y7gDLWHcIyT+PW4BFWY4dXKcyuA+XlTeShlk+ngefbHZ4KHHiFoYlN2H3cb4RGPLBIlk2U0Ye6c9/GfScSqUpv1RKGTI6uGuKBY7BY/cg51XePOkRL1F5cgOowqPTZlCmkVd8yKOm/e6lVbo4enWCk6Ek0D6ugx5GCRD8/STYM2ZpL2bmwlCygIoModoFlrtdOcV5JiSN7GFXzN6CNRF7yrNGs/0ux9JcsxZ1wKUwOjZGaP8OTbcRlLZQdW7Q2p/aEuL4ZENddmLxK7eHP4EJyk8E2bYcKqi58E+l34Ae97+V4GvzesMgD4wLBGcf/eVw9cO3t/Oc+q0k1K5c/MbNRxvhEe7eqCR1h1elEawUmI/M5OUp8Z5xnWDwzQpGg0Gy6KgVIxNoERCgT7cAZYbjliN8FgAQ593xv7eoO3A91ucjPVDjaQXEf2+BsyNdyIZQ9icvsnXDgMmepGfiXuGojwoLJMC7ZGg6XQ1bOgMc4bT5vDjBuaXjRAu7jHf+fe8Dqx3vJ7H9nMogoUpt0OQOI32Vg7LfcsFg4DAurUHAgJdtoaWthB6nKrY25d7X49tFPL9WQVsnhAiQFIaQtJ+TjFblOl9GpYfvS7U0muHUrT7HGgEv+zfGG1mKEbp5FdcNOxjyG5gaRJLQY3DI12KMpT9dI+O5+0TbUAZm6tDVuwaMUKPwUT4Atg9P+sGh+jZzxkHQkULpQLrFmBIGA9M3sW8vs9Q62nE8JyTX2e7nzODAl1X29wsbeqh2/GelWVR6Lr9vk3Lo8m5DMO67PjQalvo96L7U1B9ETd5PPvOvaMEMDnQZdHn4PSTRoNB08SwyFFLA1ZMYFuAc1WSdgoINLV5mLzr+fvunn2PtzSBxwcSu6UBu1cMLC6Y6PUpdEPAsgjMvQQIkYlGgE6NLbqb0BitUzHMrevGua5jhaEGfbXb0Yf/5oxgft4MXEO6nS784928kbUQrv1/SoCl5X5kHx2ODwDQSPa966ZAU0teRLcIlGaNZ0bsw17CFlaUC5hN+8FwT5y7B2MW8xWB8hzTPTDWZOdAMR6uywSw2BDQBsa8Ph8N3GWFkvtFUZjRFAD29qMF7VdOOAlfOeGkXNq1pWnhucvzUmLb38fjwqKZQKDRsUiE4InSKTgT+bo1+oxlUhgGR7+vwTLpcOJ2G/SEhKFmv9bo3x0r+v0GbQ3FiRYSjtbU7Nd1KtCxKPocaLhEXxB2qP44lAp0BmLbuT+Pu+ydeQvsogS7v2+5+/FKP1qU+/MdcUHQYxQrfQ2UiGEuMDddlnDMoARUE8PngFKBuXkLJiNYMkbXpaUBD6zaq+xHOgaeOt8ftMne1JvX94FBm6UZTZ1CHbI/gFfItgfid29Pw6q5PjxuHY2+eUNpth+FQmgEImL1znWa2lNHUR1hBogshlOHVdNb0DFW06WwLzjzUREEtfex7q7hv93Gp4YWvKmcF34nmihkjKYyuEPf5w3vdTZd3SaubbrOh8YnP86Q8shGuHEZcK1XGnMAgB63Nzx7bN33vtH3xBWc8uM2SOk6B+cEnBNYlq25gwxKjrbvMa9RMey5olr8JpP72hrU1mJR+A15bj0Y99ko/MbVsGdtV9dr2J2bN7Huc8wylsPP2QxxEIuipS8CGK1N/NdbQCSua+CswR2jv2XSsX67vj7qp5Zpn/Qdv254oifvX/Ve9JW+fUJM2PMjhTb8t0YMGLQ57LdxkX0re0N2vgZwGj1Px1F26r8wlGaNZ0ZO00vY4Ok2qLoHxM0Do4fJAXMwfj17KXyEqeWu94TjD+eJ+0lCqca8HEOM7nmoiZOvvRonX5su12kQq+aeoaFjn+Y+6LI1cMFg8u5QzG1Ye9HU5mHxPgzawrppG+86Fh16xkYhk4cpDpnQjEe7j2Febw3PYbm5DV3WQYMSPNohaFIBLsjQy9Y53rxebH9ggngWR1wAPUYiQ3WCvFDzxBEpum6Huy8ZtgF2S4th+7yFPT0NT2qZkQuwdWuP5/c5bVPIO3Nq82C33D1Wh4nVpQZDx6LggmBz04LJCTQCdNkaNjW2AhjPo5YGWa9qy6KwLIqNdR2UCqy4yqF2GXDAYh9MAFvbJn69HizYhBClzDX+1B5xPw7+cZiJ4AWQQqHIht/LrCjyTPMzMySMYdRz0qPOcqbuY25Qn6JEDHVZU+MweQ9t3TacaERHQ2vD4j3otGFHLrC+nTtyWCTK/rF4eMRLVAqsII0aF8ngGPhk1iEaMbBm7R7+HtXOdVPeApd0HGAC2Do3Eh9B+s7vJNGkcxCCw6AtWLwHAgKT9zxaRCa9WJgjhWVRPP5oa+zvfe4dcx5YbQ4cYCg0YoCDgRINbX0JuqDQel1oex8BtJF+sghPbNSTDWDp9TSP/mu4vuaBVR0PbzTw67UGfrrnfjy0JrBmbsCgLTypdQAoNGhEByEUPbYBjpGhlAkTYcTZ6fSQtUxUape4cb1rrUa+7l/DWDGa2G8g5ZwkSiXARbIoUsfg61xXMjCDBWnpuGvhr5FDBh9oNJNvKuWVokVRPDNjOG008tkddR6kR7vuv8nvFDxaksCdNmxvX/mfYtuS8oPuCXvQRAGB5Uvfn+pwB+8/EltFGH/DjDJz+jJ6bB06bdghRwZBU+NDg6ufKsL5HNG6bnXR1OZBQLC3txMtrY0+F9i3LdDjdtEEmd3xsozrabw4ggo/JLnmzu6+9Psln69V6zH5RmREJsef0z939+yUFCYnaGrz2NN7pOjmBeIpEMWJx6s1SGxmydmVhTQepwobp0Jp2h+FgjAxXJAB5YbmK9IzNDgRCt6aj3zv0COKyC+gg4x0abWp9AZcSUnsnIgPAMP/A8nDhINwh9+Gfn9FOYOznl+cU8Ke3c3h+fclv2q4oey694RQUKJBowYEBAzaDPxsnA51dHWaNF5PW+zZ6RZoA0yYICDggqFjrcAiHKw5bnyVJe8h9mmL1thxg4uCjhvJTd7NHMVaxPrF4vE5mWTGIye9VRKcfv6Sp/YTFYN1I0S61HORxxx0+O66NlGp6dwozRrPzFjx+jGhmnGEebjFDYSKapGpZRpVRKks9r3s+uG/d+/9wtjrYQLECdM/9Z++lltb3Plbm9ocCKgdPl5BQv4s7Nt6Eh7vlWe8k8XxfnQbPN0eqGk9H2WFsCxcAI93NZgcePqSice60SFdab8j92MmvA5Bgstp11KDDfNJFUHY2BNkzK/CaApku0dRn52FlDZZEubPSqJ9hWLaCZrPORiE4KDQQInm2TQtey0hwEGg1XbQ0WkDTTqHLluDxftgwoJBXMa6hO12b/DVKCV2LNL1NQZvdPLyR2FfCxG66ckFS+yl6RC0hpIxkm3Zt4u9u5seb8So+iJhhn9reT8YPa83L6moyubWtokFg+J39zkQj3YfgEHt1Af+au+eXLeDtYC/zZubFh7vajBo/lE8WY+Xxwa/kxaNUoGX/58bhn93cqVyFmxsffoiw67OyNYzSRv5dQnVV5o1npkxnBaNCluaPCiVFyJMAPmbjYqh6N1yIXiiEOE6FZDIYvx1djmdCZtSkWpXcZImc2Byx7awdvv/zoWcx41bUBbdp4MMp79e/w02NezFokoH46LOK1+nMl7azyoUcZRoZVPOASmYldVkjvj7mX8zWQgemZfVPT/GGXHi+nTR0UZxG4jzBkOP5b9Ul9V1tuFO9pijd+YdelzWGiyL3g3btHd7RQatQZKuS7Ju5ketW+qUhsVd2AwIbneStorhf9O/aZ8apVljUTO6BEETwONdpwgGwdIgefev1xtYbljoMiGV40VRDFwAc7ptoFoICR/P63sSQb2Tnb9SYlY4z240fXCtOQyN2tvfC2CyPcOC7pHsfcvbOBac4N77u19AhQmqjqsSpUHFMJ9SXm0Omv/qIqaikBV9jvHavahyX2udilTCP6wQQ1KCjOtPmd+ey7GTkjbHqfNvp68uNRiWBgUmFAqFYiagNDAvIIUGQihM4fWIy3vtGTcfdtiKnSrASR+1Epy6Zhgx75ozSQFLyGcsBs+h/gKOGjVg8T4ICIRmADxdgbSq1/oy19DdRpkq70mJ2swf6v/eWqpjhyFbLDbIWJbW+cDv2Z0XshGtXACMj3KWmryLx7q/ggBHn3fARbI+7F5TdIur1SaNf5NCZj0S1QcoFfjeHx8r9d1R6zoCMhg/xseWuqxv1abk5FCp4fT888/HS17yEiwuLmK//fbDG9/4Rtx7772e9wghsGPHDmzfvh3tdhtHHnkkfvrTn1bS3qDdpGDDjMr1VjV1GQw9OMK0oJBbd0W7OuVXqUKYpg17SPu5rHnnwj4u21dkinIVTZJFVJFG2LBjBxc+sEPU/ONFXEL7MCwr/hr4n83ghUGqr68NkQsxjzeQiPyRpcwCf0kglGT6UdSLOmpWlfO05iQuRqPuJxA8B/rDmNMyLdc4SRGdIIoeOoqIzEmrHWmN5lNb3/iq0eewLsy67nM2v6PuW9q0DTK02ukNx87vcX06cx7hmmrNvFCaNZ5KDae33norzjzzTPzgBz/AjTfeCMuycOyxx2J9fX34ngsvvBAXX3wxLrnkEtxxxx3Ytm0bjjnmGKyuRld2K4uwBSIT1eWkU6SnTgZHQK46ZZGEeTxWbZhOI57yaLN70syrr2QxeHJBQotbJS365HzGPm7ytlTdJ2QY9/Dlg/97X9CpSGXwz0NUOW2sy+ZbWo9TBQCNZvtR1Ipp0KzTjONVVI+f6MGw7JzxYUaFyHWKk/Cu4nQD4TpUDP6fXnvkadyTDn/3RLqMt13WOGWZ8vdlqO18mlDaiFxxHwhKsRTEsE9UtP6O608yz71M253viepzlpW8c8f1YdnrWpf1QNqaEVLHzslQWCvdrDRrLJXmOL3++us9v1966aXYb7/98KMf/QiveMUrIITApz71KXzsYx/DiSeeCAC47LLLsHXrVlx55ZV497vfXUWzx9jb18AFwfa5Ph7t6njqfB9rZrZiVIr0tDSCVdOumL5mUc/ugEaAdcuuYG0y+/e8wmvj8IeIGLQlFTYSZhi756EmTn7o6sFvSaqie3+PG/tlcxzNquMLl5g8gwvLxX+OI75/5GFcNzJ6LlRJGgOxQ5RXY537c11EaRBLhrvKs114oig4J4NqdoV9RTYoSe9yPyO795PEtGhWRYkQGjkEakSHhfgK1bK4PcZk5rC2vmSH6g8gm54c/QGXAS3NPCS7uRi1oRyX0ijr/JhUTwSlqMn0/QWEk4d/F4FGhKcorAyTViy2TNYtWwdFEXb9mnQehBD0WSdTGzgHdD3dPSrDkJd0w2J+3kSvF25XiWqzkxPZb/SNS5cX59Ri6RSQWKPFMafzYYq8ylGaNZaa3CmbJ554AgCwefNmAMD999+PnTt34thjRzkums0mXvnKV+L222+vpI1+piXkQ1ENdqGlehhB4iaJKDEaZQSsujhUntc3j1CY4L+P5+Cpi3GMiXTej45RsiqB7W6zfwHpX+iU/Qw6i0cWk5PYPb88uPbbQttUNrkVuJoRsaaoH1VrVidMP2vIrqIEfN6bdZnfJwV/+paxYlEpyKuAERN2fYEiDE7rLiecorR0Gk/ZOCjJ1wAXlhYvT/KQEkFGdK8WDQ5HL1InT0p4eT/CMDr0mGYjR4m4/uX0Gc9YkYOX+vBYVS9uFZVQG8OpEAJnnXUWXv7yl+P5z38+AGDnzp0AgK1bt3reu3Xr1uFrfnq9HlZWVjw/ReEfFN2V8wDvwyqTe0ORD3UVpJO6Q5unUamsCTyuxaoquRxuYVJ26Hj6Qgf2/4OS5fvPISxUX/q7fN6usob1NAb4p87vl/gzVVP0nBfUR+qU85FoANFIyp+qW6+IIi/NCsjrVuoakJ1+/q8ffTUASBfRUJRM0hynBTVj0uCQT2MkICoNJTdzkshpdMjCYjJvZaeALE+bWieBdIksZKXJfbmskSyUilMMuLHrn7DarlGBau0UjWYy702/kbroOg9+vSkTbShLXcL1lWaNp9JQfTfve9/7cM899+B73/ve2GuE+Ba7Qoz9zeH888/Hxz/+8dDvEZQMRwb3v/34F7Zp8rdFhVu85ZmnJjvYjFOjtXBq6uJZWjZFJYivU5/IcwJ1k7RIDpD+ujjej3HJ4euMf4y+4r4r0JqSyZwlrLhaJVWJwDvPPhqHf/yGar48CBX2NLXkpVmBaN36w3OOGf77NX/yTdzyydcCAI48+1v4/338NQCAW95zXOL2p6HuXXKSNqfL1IN10kp+ZOaKvA1NaUxplIvidF7OqQZkGDn+RD/XQohExtKyx4g6GyHD8D+P/mtclWNHUAHsNBBCgYTpJhpNDleqcCnC0ti5ERBAUWNt3SfENCjNGksttmL++I//GN/85jfx3e9+F0996lOHf9+2bRsAjO3U79q1a2xH3+EjH/kInnjiieHPQw89BCDce4lTgqM/eF2i9lZdvVohh6yHnOzOZ1XUrUBU1OKkLgVt6obXc1NuIZOkSn0ceRSyyrr4KnvcjArP976PDBexUYvZIoyBSe5LmXnPsmLnTXP+Xe7CvajFbSo0ku1HUUvy1KxAuG71851Pv374b8eAqpgQalJoyY/AeIXvMsljyLNzGMpdW/937IpOczgKEXbNK6/4m+943pOHNoi6B2HzJ9UE1lYbY3+Twd/m2HPIud8mjSgaRXTGv7fqAlFBuMPGo/P3lrihkmFd4E2V4VsjRlz3PKXNSoiz9fd2fmnUFolCfWmZlBQIiVCaNZZKZ3AhBN73vvfh61//Om6++WY8/elP97z+9Kc/Hdu2bcONN944/Fu/38ett96KI444IvCYzWYTS0tLnp8oKBe46aLX2e0ZTIyHfcL+vpO+ds3Y+/2ebkGGImehOIk7YYriqNIb4t3/cqX0e8cqj/smQffvdfZkqBPTcJ2qqpqedmODCeDUg4I9+5MY+P15rFPZ5RJ2gKDrXNV84sxnsj8AsKUV7x2bx/nksSGgUMhShGYFkutWhSJv6pi+KGjaDNXRKQ17+7VG/5bVGrrOcdxl1+G4y64LXCdmJc9N8zCmQZNKkaJf5JXr1OTA/7rnirHXZO0DQX193azXxksceohx0W9j43w8x6lf3/l/D0rHNacD+7YsXHP//01UYC4NeTpdKaejyaHSUP0zzzwTV155Jf7xH/8Ri4uLw136TZs2od1ugxCC97///TjvvPNw0EEH4aCDDsJ5552Hubk5nHLKKbm3hwxmEid3lGUFD1CyBoQ6ChFFdQjB7RCGnDh4/x7ueagZ+z5KBVoacM4dtvH06Kck+56gCaYOoivqGZykSciRT3kWU6qT052bpAUDKBVSu7r+XKOA/T03/eYycGFPc1wQdAaVK53wNPuaEwiI0Gi0ovsSZ6T2Xu9JebSjo6kJ7Nu20AmZR3PdSOrX8/oRQkBSPoxRod2KaqibZlV4qZOHmazWq3qdMHbNSvaIjYoEcZN1oy1pyHkYTiG2bkfHPpu70I3090+jBjgft/6YvOsx+iSdQmSiLpgAYgq/SyMgQIkGQD6dUFZvvbx0WVyBsMd3N3HytVc7745uk6/Yp0GD898G9W17fagNf88Dy0p2jbI6R2TVdI0mG7uGDp2O7ukznNvX1qB2m51RayNDRqsqnZvqsKYGlGaVoVLD6Wc+8xkAwJFHHun5+6WXXoozzjgDAPDhD38YnU4H733ve7Fnzx4cdthhuOGGG7C4uFhYu75/7rE48rPX4x//4A32gLnsjeXwJyTWiONt4yTdju88X/3F+C5UGCofar5Mkzf5V044CQBcE/s4cV5ZUf21x9ahEa+8mpQ8YkHtzD1XFrUNb0kIEiZjOY8StFMmz4/nuwbCJO/Un006n+pzXTYSP0Gk8Sp0rufRTzkdV//yisEiRIRcZ234/yQU6X07LqzFxDx3bh7ZMLDUKCHFQMO+Xod+8qbc+3UmNGr/pP2solbUVbMq6smj3Uuxb/Np9i81C9GfdOzw/JDXEsyVcfO438BnxXj8yeiCdWsPDNoC4+bwb3ZeyMG/QeH8Mm8w7O3VphyJFI7dpeoN/Kh+ILvJsmVzD4/vjndQCeNPDz4VN/76cgD5aEZKgM1NC3sjKtA76Hr0F1YRsZOkhkKccT3M+P+c5XfiOcvAv+/+u0F+8fBjxL0+cyjNGkulo7HMTishBDt27MCOHTty+16m06F3qRvKBZode7vCmRw5J3hglYQWGOGDBXnsdw7esty0sLs7WZPgpNHz7VjF7SjKUkWYcpPak3vQRHPPQ02c/FCwwdQ/4Xz6iJG3yy2/vSzwM7t7emA+1azGRo3YhjEg3Is7KWl3Rt1jjkEEOrm0Jp6HOwRPbkt4TgqGjjVeUdmgrYB32wbCpQbHI53w6/qWa74OSkevR3k39nsaMDdu6BptDMlfdJ02YLHoiq+UAC0N6AftyseIOqtHgLYdNre+pmNu3kSXyYkyJshYCP7wewM2EoKO2aDAOoBLX/02vO6KbwIIFnp8kGydWhyckvB824EGdfuLheARPrH1YsUE9mtX8913nn30MNVOHSA0w+591atOxRhVada6cMl/9XrNfugH8imAZg23YWZe30dqf7WMEO0gOOI3tzRBPedACyqh/PMVimctyWlOW5tSkJCL29Dm0GVrnnvhLooUphWCIl3cxaFu/n+O97z2rlu/AqoJdBkwL7G8a+tLaNEF9LmtQHXaiPnECMO3Wb+w2B+2Wdc5+n3vfbEsCl23z7/dtvDIw3M44MA16e8DvH05bgxsauH3zrmmVBMefecP0Q6C+fSnW/+71yhp1ittffwz7uM7Dipv+odvhB6j6aoI39KAx3vAtrnx9yVtX1tbgsm9zlu7ezpMTjCv23rL+c4uE5ifs9DrU1Bqe5yGrbk4J2i38y846j4//1ocCArRJ9ANDssa9QHd4FJ9gnMCuNYzfg1tr/3ldFTUfdEIsLBkhnrDAgBraqCWfQyq20eUZU9Ph1WTKEmlWeOZDfNwAsym/bA64RhLy72x9ywZ4w8qC/A2VTlOqyXIEMEEMK+LYR5jJuJ3kPPEK0Di+0ePl9e25aaFAxa8/b2ppfMidF97SkbhKo0yvM+GbahPMR230dQduuw30hFQtLSF4e9hixNH6FECrPQpmADaLgHhFidffdOJgcdgBoXQvIY83eBgYiTGJoX5BVsABu1mcwHs6dHQUJgntexFi/t5tDiBKQj29jVQIsYM9c53UCrw326+avRdAcZeOkj+yXU6NFpTKtBoMCwumaCaQHPgGeBe1Lnby0T+AlcW59xlf/w0B+e8t6/h8e5oq0Ij+W8gHvrJm3I/pkKhCKZu6yRRs/+qJChEOE+4YIUZeoM28Pf0xjeUheBo0Gy7dLLebzLh72EONg5C8OFPj2+MvSZjQE0SYeQYU91sfbL3ex/tjFIZRdKwrYCOsXfD2jv2Fo0I9BiFycdzwwPhm+EtlwHPrUf7Pc3zu7fIqn2s36zLp7iiIeeYR97Q3sDQ57RxS3on1TEsMe6AQInAuk8Wck6wvjHSVbruvf/+69/pJNdgGrV9PPu+/uvGSVMiWxDWvwYP6yf+vry24n1efrXmPQ4TBAJ8uLHiT59i0Ja0nWZtZdy31d03tZ53vZmo8Kv0OxV1YGYMp26DjWYFd9OwiXH/Be/vKybB0xbtsE/mCdG3X7cXkMHH2rmhvE0VxZM2BOPxnj40dCwYc+haa9CIAZN30WPrtuBj62jr8+izDppaCysB+QXrsKB6pPME5g0Dfd6BgMCmxlaY3Kwk/6lf8PkTpvfY+FDsTOgCfGzHOc9z4JwMRR+lwuMh3KDAM5csPNrRccBCtPeoH4tHvz+rB7fetA/g3lFvhMxomxp8uPutEVuoOOP1rs6onY749m+EuRdXzueCvGRl4Zyg29GxumKAM4KeRSKvh1/cVb0oT0vSfvsPp/9W5qApW1MCqkKpQjGTtLVBagZie3QKIYY/eRC3YRWV/sZN5FziVKoPqVhflHMIE2QYbWVyAi4Y2rr9/TppoEnnICBg0BZ6fB0NMbBY+obMPgs37rjJY6hN4oDRZWsew5Oj7xzNFOfNG9beuIiuTkcfWxtsjink6L/HjqF6Tl8eOic47XZ0k5HCsuAYoTgnePSRkTE8bi3zlHlHqzEQQtHWlqCTBnTG0ex0AaM17LsWrFzrTMjy4JqGX683sLur41erK3i8p2Nvz4JOG9jU2ArA9kImhKLPO56N8g4b3zCoEnd6CRmsmPuXJNdtUP8OKhClyIDSrLHMjBXPGXyDQvRl8AuQDWt8d1Fmd6Wl1Xudp5htPB7TIR6xDa2N1e4etPV5dKx1LDU0rJvldmqZZ0gjwLppYtGwRdie3iPQqYZejjkXZA3USfL6OAuZOhjHqkhP4UCpkLq+UeEzbhxjdZ7nxHl46P20kPV6Zf38Le85LvS1l/3VPw92aWp6D7KIyRkRoQrFNOL2KOyxdU/0jv/JZsLMzXszSGsk0R91QCNiWMgxyPs0lEFkrkw0V5Wb+3HaLnORFYmT63OCVoailELwoYFXpw302XjiK6fPaUSARpyTlM6LaSoBgRAcHbaClrYIotHcDRzXvPWNw39Hhe37OWAh3roX1Sd0Ip/KoSwadJSHwPbqzDZ+pYn8XFiSc+Yoai0VmnbLQiK3RC4IuMildl12lGaNZWY8TvPKregfvIO8TRWTRdmGDwE5rwMmqjeyt/QFmLwLg7bQoO1KdmvTwAWwX3uzxPvyGeip5I3igmDeYGMepmH5NpPQkTQgJsHkwC9WdCw3GR5cs8VbroZHUcyOcdCzE3Wvw57HzU0LXER7g/7dq/4gTRMjc806ON8rhKjMoJ42VN9/zfzX3+Q9CPDYn0nGyReV9kehUEwvjvHJKcBZVVVi2UI5VUGJNkxhZPIuOmwVQD5zYZlr/TQpHNbN9Llk8yj+U7bRCQD23WobYRvNYHHoaDu3bg5qZ7fdAGLy7JfFk+dMbG5ZOHBxCcsNC8tNPdNzJ11gKUBnhl37vLR9kvNyt08mr6kftwPb/vNi7Bxs7Vzv8a1OKM0az8x4nObNrg7BAQsCPUaw1GAwKMHuno6tbTsU2B0KqigXLggWDWBPD1jQOTYsCl1y8pf1ckuDgPAksTd5d6xifRZ4DnNDx6LoaBRGg2HV7GK5Od4+mUmRi+BN7zKrOAZNlnmFySUlz7GACRJQAE2yHZwMPTQ1k4GFxFS1tWgRJXM+VYiVMG+bMMLOo6nx2BAjz3Fy6NdJQvXLJGmuvFGeVtvg7FzHzU0L83oLJh/PGx7G2y57KoDrI96hJIxCoagvQojQfOuEUJi82BKVcd6mPbbuzRO69hiwFHAcWHZe6jyEZgTPWJQTSwIcfbYBnTbRJwwyPnnuavV5Ihv1UgdSaxWrG+lqVYZGkdXRQnCQgHQHhNBCNgk4k4s84q4UUEIIWKKPNXM35vRN6FqrIITGpmkIuwaOTnOKQ0Ueo6B1mL9I21xAsbIs+NvNGQHTw6+7c6eddV9dN4iUrWiyUKuOjNj5d0YPc5jBaEY8mCeeMg17VeE30Dj9Nc77MmrnWXansqrrG9R2M7B6uqTnqKRQSoI7pymQ/yT/rdNOwJGfjTJCRVPV5J7XooS7DHpcEMB3r21fkGTXfFQcSr6IWppnwGm7ux87bS36iUpqOB2NJ+Ov1SH9RKmosCeFojRqtTAuqOp8EhJ7kNH6RRTJbdJO17xiO1TYuSTnDYa9PbmluuP4IatNZfoHF2woMqKus4xTQt6auYh6BUVMu+4+bG+k5P8d0m3JOb2UV5OKTHq00WS5b0LYOjl4LBaCT93YkRmlWWOp3yw5YVRRaEahmHXyCCkxAoykQXmK8xAZ7mrpfsLGkCJCs9Oei7vddR/zwvpGVA7qqjw6J2GjJn2o/vi5ua9zbkYOV+e88+yj8zlmXhBqGyPS/ExIWhSFoi4kr3tf3H8AsG/r7cN2VUWtvJkSNsaTc9+nhwINdTHTqQAvfG0fVbArCvfGbdpQ5zqRx3VOoo8irxmh0Krfx3Cl9CNSmjONLh1zjJnyHPxDh4iAS+UeP+b05eLawAnEtBgNlWaNZTbOMiNRcz0XwIZF0GMUy00Lj3aNwd+n5CGaQJoax+qg8N+aRT1ehBoB1gcVrPvc/j0sj07e+CdBnTalP1t27tyhh5vwekFOEvbObvhzGORxWhRp7p8QPDTEL290vdr7ywNykuZ7/PB7LVPUL9N3u0IQZHbT3X3FabfJSb28qSKY1+1rGuhxmjBVxt+f/uucWlUNRCOZfhQKhTwyOZPL+pHFH95aNp4wfQBY3C/8zQLDxXFV+VjdjBmkE0wvMnrjBx94dboPxlDHuTzstMpsq24U8F2D/spKrL4elbd/ZBwPzs/aoG07JQayXfuCM2qEksWLM02OU5m1Vdh4bPJu4u8LIqtxetEosXPGoDRrPDMdqk9yXqkrY2m9KNogkhQhOEA0zyAeNcG4jSZ1YlpDG/wTcNSEnHWXv4rws9d++VpkHfLLGuMcA6Nl0siNjbw9NsMMe4WEbwWke/BfX8eg7PW84aUuZvLatNnd07F9Lv59fm55z3Ghr73sr/55kBtgOsckhUIx2YxS8JQ7RtXK03RCedlf/TOKSIZTlYYO0ku2tii/PUEaOk7vuQlLiwe4vZJHOknW49TRO0XZgEae0+EaLqx/yKxpux3d4wiR1KgXlxM5L/KoI8Q5GfRp+xyjtOqGtRc6kcmE7GXOAFYLri+mbEeTxUwbToumboY7Rb0o2vhhmTSXHVzPzqgIDrXNc+Av27u2DJggYIPrGBqa7zPayXitBC2OlhvAuhXy/hwMjWUuyNL036D+wwRARfyYbF/z4ECMwDQLORluOSOAEZ77iongxcAk4L4fST3XpYpDcVHf2BlK0q8QZqRCqWJyMfnMpDVLTZrc2bXBfW8jxnEqmRs+b4q4rte89Y149Re+legzeW/gkgQhr3nkhKy74aYua4I3/cM3Mh/D0W9JdLS7nye1K1Qdqt+gAp2MfXSsKFTC583r3ZtszNgw49+T2zqgDs+h0qyx1HW5USukC98UHG6qUBSJv+9yQTw7n6MJnw1y9KjO7sBjJowyx4WoMKEkjHvgljcpFp23KzwsLWyn3/t7njU03KIr7JpzQbBzwxqEgYqJfPY2N0Os+Tly6CdvKvw7EuEk2k/7o1AoJpKkG1xVGVfrPJeErb0EeOZUAVWs8YWQixZxv2fdDHeVNMrMb5ohf6F7KqtbTtYi+4GnNsDg/2mft6XGZs/vYc9Gq128ziqKuJRh/k2CPIzCk+aIUDhKs8aiPE4liDKcOq9589IV2x5F9aQJZ0g7YRopJ4dC8gUhWODH9flWBYnZy1qI0MHJxxlPgwjOAxkjHnyf8fePlhbucZoHYQbUOnjV5BVm1GPe3MhlETTXUGLf821zei2ucV7UecGeF4QSkJQrs7SfUyjKwqBK78YRNZ8XvWif1HtT9CZt2NzOGcFJX7sGgHz9gTqRxpBUdh+RbSOlApSKQG8+Nogecjydw86BEFq7LD7OM5+0j6+ZuwO1rV8zjoXqRxiqg7yVec6h+gYV6Eg6c1gWzVRvIbzQbr7jrOa7pnafng69pjRrPMrjVDFTjHmOJXzOs4aMpDEWlJ3j1C1CPKH5GRRIXl6QSSjTMCNrNM17QRDUH7Ne67A+PkmLMP85JA2BaWrVGyidc5ik6+6mFmFHCoVCoUhV6b1OBBmZZYoNBulAJsjQeCoj3fKumJ22IFhedongdEbFzNeGz8ogm8PUNLObJ6ryJox6zjjyWQxNinPfuiV3HykVqYymUakqeM4aOu+UHMPjTvC4PIsoj1MJwqrTxYkQ9TBUS9QQHDTpUE0ABXrq2cWh7H/nUZH04P17uOeh+J3xvAb7oGqQTBDomLx8vlG5LMtE9rolrUZeJGHPFanB9Zx0TEndmKVyadl4ClvVqB+Xgkbtn7SfVSgUCgUAR7fFhy9lmRuLMo64Kb1QmOucyji/KAxNwAzydOTjxTLdFGX0LzM/73AzHOP2AQGRi89iq23Bchmdq85xWhR55PYtgjSRh7VCadZYZuMsMxI3YDtGOL8RpG7V0GeFMGPUtHV2GaNpkQQZUutEoIcCkidmjyOviTKv6rtFpkWIum6TEEZe5WYWteKvT9/1ljCPAqdfy+ZLm2T+/vRfV92EbGjIkC+q6sYrFIqyKTtFjJM3e9Koq+7MQpnnVJYW8m8Gy8hlGeOutPIZ5GZlJUe9OXaD/3XPFQBGG8hF32NHN+aZhz8tawHepllSYUb1izK9qKcapVljUR6nPoyePbo6Ozb2rka6gU6FKlZDlCCY1PzFebbZ8k0+To7MNVMby5fpLQ41fmG5awc1iv/yJIEbVpO3NYwyQs6WDGBPTsda6dvV7v34r1ufdwINkJR4ZyQuCHQqAE6Q5/5Mt6Njvm2Pgbbo8F7onm+X9//buxu/s+xNWu9g0BYYW5P63qj7GZajyeoRNAZ7B2FRAUGEFoZKkbvXT5b8TEHfF3Y0AQEuKsh/IYE7v27UHMiERLlSALe857jQ1172V//s+f3Os4/GYZ+4Ueq4ZUBIhnxROUQlKBSKarBEf/jvtrZU+PetW8DiQGP0OTDvez1KQ9pjcTvy+BrRS8kX+ctVgmcs5nOsPAzCVJPfEpbVC21tEXP6MkzeBWBrJS6Y1ObzoiHQtQjmDOExSmYNbS/KkOoP1Xf3wyc/dR2PP9qSPlYW3X/qxkfBMoYU+g13cd6cTAB/evCp+M5Dl0tfX3+fbWkLw37ilhL+a7GlBaz2gfUNXVqHFl+E1W5w0GbQ0xflv7tor9mRE9D4dZsz7OtaRjvqgNKs8dRgT6J8wjzEKBcwm7aBwl1Y5/Fe9u88cvvpOHL76dkPpJAibMHOhC08AHsCN/loMpQdFMvME7UhmR8G8O4wphng23p00nK/qEuyc/r/7bWPmWeYUJwQiRLN/nM0KNAYXL91y35tJcSuE3UOPzznmMC/L7mMprs60dtyBrWFpBAclGhgfLwhbZ3D4gQmJ+gxAiaA9kAEdVn4IsndL5yxDhidk25wcBF+7v7rFmY0dfALESd3qPMMUTIurP1tikM3+DBsp9MLPthGAr3MBdBhFKYg2Nsf7S3KPPeWRUPbzfXxtjWbDJQKNBuj68IF8PMVDUwAD6w0Qz00mDCljY9lw1359JzNmN09HXt6o5Mpw5gwS9x222044YQTsH37dhBC8I1vfGPsPf/5n/+J17/+9di0aRMWFxfxspe9DA8++GD5jVUoZgQx+K9o5vXRBqJGRtEL/QKDEspOz+PWnO5FeljOUEdLZcHRFjRGcBZlVJk3vBukq6bdng3Tp2ENPla0BvDqqGaTDY1qTr/49bpk6gOtAYv3hka8IIIMZH6PU43Y15RSgYd/bZv3dZ0Pr5/jtGQYHP1eeNuiNmWDDNBXzJ0HrQBfMc4JqObNzzmvh9caSBKZJSAgBAcTtoD1d0F3dNlKH5gzBObn7PeGFdbytD0k3H2/iMemxzfs/7N1EJBh2igBPnwO3Y4eeshzcf8qiWyDp52D82i1R+cGAGuro4WVRoCH1r2fa2scayYFJUBLW4TJR8YcCg0GbdkFxBA+lm2kkNiteZZoPHikY8ysd+wk6taZNJyGTYBhBtUgT7GnzCebJG/57WW45beXYUurwCSaionBEYB2mFT4RDqX0YMtKU2NDw0dczpg8i4M2oTF+8PJmwkTbd0AEybmDQNP9AmWDIZOhJF33RpVySyLvb0OFhs6uqwDLhgWjE0wOUFT49jd02EQAZMTUGJ7UjpCcl4vto1zukBzIHAd8ed4Aeu0MWZs1KgRKVb9hIXqf+u0E0I/4xdYGrENsR0GHLDA8FhXw0GbeuBC3pPeMeo5IorDrlZfJI4B0s+cSy/rVGBe5+gwCiYItrQsUKKhQdsQ4Nh/If78kniARy24ej0NnBP0+q6cVAR4+qJ9Hk9d6PuKtU3Ojre7n5SZR6xWpA55Sh4asb6+jhe+8IW45JJLAl//xS9+gZe//OX4nd/5Hdxyyy34yU9+gnPOOQetVnbjgkKhiMZJrVJkehX35l6DBv+9CDIMW2MwYc8XdgEnexOTC4ZV07aKNGgbfdYHAUVLWxjpZ8FhCq+XSxLdFEeeuQsp0WDyLnrcPqc+64CAoKnNgwvmKSC0bo4LOmPwJ3+uUOYYeQMMqCzEQPXkOY69PS1S1zkGMZ02YdAWhODosBVY3HbFy/M66wbH44+2PB60LQ3Y0hRYt4BV09bLj3c1UCLwyAZHj1EQYveTlraIBrW9p9tMB6gOcAuaBpiiNzSUZcW9ltF1Dsu3/nHr8D09DY92dKz0NTzaIVg3NfQYhRAC8/o+MEgTluhDCA6Tdz3RRM66S4YNk2B9YyR2i1hvuccvf6GroA0if4SjH3df9V/DJASNcRzAwsAJrstWfa+xoWHa+T0JUde2P9D1SSg7RUsoJWpWYDJ168yE6jcayR4KmU4/Xrk5vhLyQ2t6oTkIFdFMYph+Gpxd0CDGd7aC3xdk0LUTmI9fxBVTQ1vn6EXsEOeJyZPfS2dS7zGKzU0Le/t2aoI8QpQoF5mFNRfeAmIOjudpVl775WvhHvKNHhu02WXgogKU5FONcrRLbo+9eZtM9ebIQyFovHaPz/7zWLcoGgPh83hXx75thi5bAwHFQ2sCbudQ/2c/dsgp+B93XYkGBXwb3IEk7RfO99lVkEeffXCN4anzo348KXnpyvTQP/STN9UrzRIl6UshJ/zc8ccfj+OPPz709Y997GN47WtfiwsvvHD4t2c84xnp2qZQKCJxe9RTopWeWsUZdxvU1kph43AWY26Rec3d6yk/y419h/MfFwwt0gIMA8ipYnkaHA0io5nWrb1o0DZa2sLQYCMg0GNroEQb6L1wVzcz5Wn2ehosi3oq23MBLDcZ9ibQ7oRQtLUl9HnH8/e8vOYsi3rW7F0GPN4jWG4IzOv21LilxcAFwdY5io7Fhu1y0IU7BK9YU4dl0aEhLej+r5jAPr6SFO7NZEv0Ma/vA4uPh7e6U36UAYt47gA7dYAfIThIDmuUOLodHZQKmCZFszn+EES1WwjHKza/doatsfUYb+kgmKhJed0SNSswmbq1FvepDDrrRq7H29VN17HmZsZUrfDjN3RMguFDpw2YvAedNkCJBgICSjR0LBOUaFg3TWxqyJ1HnruffYmNjeVmG6t9C02tBUo0rPRXx3K4VoFBhcc7t61xz3wj0y+CxFknQ5XJsI2ilgY8uKbhSS2G+57IvxgZF+GV5LP0l6Dr4/fudSOEGAorN/M6C9UCsiGQcSF+ssh4whYBEyTRjyyOt800QzSS6QcAVlZWPD+9XvLcQZxz/NM//ROe/exn4zWveQ32228/HHbYYYFhUQqFIjtuL7wNa+/Y6848r5H81ibT5BjgzLttjYOAYsGYA2DPGxvsiVTHLCNiwzE8pdkwdBd+LJqGb/Uv016/PtKpHY6ZNSWC29OQc4KtT7bDwd0p80Lb5ETvCTtUvMtW0ecdmISho1kALybKM4lz1YELDJtbDEsNhi0tC/MGi12LuNcBGhk3HGgkPB2ALI0A46Nz7Diamp1mwWmn2+xX1ibR3Lx3c+EAf2Lniuh3kpnWynQuiKMumhWor26dGcNpGHmGX7iZ1XwVk0ye+TcnlVntt27blpPjNNHnM4wj6y7R6OQKqgtlT+j7b8sv5MtNmkUB4A03d47xlz++Mq9meQhabJVV+bYIJrntuUFpth8A+++/PzZt2jT8Of/88xM3Y9euXVhbW8MnP/lJHHfccbjhhhvwpje9CSeeeCJuvfXWvM9aoVBUjH8uCYukjNqoHW4oDn4AjEXEVEWYTsrbOFp0AZ08CcpxKotsCqa66NMgfTEJzihu4lK1pcHJcRqF45SQ1CtyUlFaNAE10axAfXWr8n+MwW1McwsRk40exjWToqkJ9BjFPoMdnLxCgBXJ4YJgqcHwaFfHgs6xYVHoOUyoTuhQWv8A/wTJhBkZgu30H1kvSdnK4lH90uIEPU6wALtfL+fvZJgbWfY88n42KRf4/rnHhr7ujB0aEdICNQp3rtA8vGj93p3zum1AdgqplclX33Qi3nLN1xN/Ls3GR1g/aGs8MjdTnCG2iE2YScpvGsSSwQbFwWZ+vzYRDz30EJaWRmG/zWbyQZkPJoc3vOEN+MAHPgAAeNGLXoTbb78dn/3sZ/HKV74yn8YqZo6CfA+miqCxm4BAYJQLPC84B7SBrGRiZCwNm7OYMNGgc4NGUWB9NzCIxnUXYGLCsj3fAoRmnjmsD1qKP5ZjyO2wFbS0RfRhomGJUfLPDFAqPMZSu3iN/XseKZkc3OuBuhgjI2H92hjNEzMw6FCiRXrzBm0syHhfOsWukkJAsW7tQVtfGhZb0lzpBkYeyOmi0IBB2raQtvk9TmXWRUmM0/M6w2pAjt68cM7NPc65cdZJ5kCPG7QVOt6m8fLOO4fstNiM8tCsQH11qzKcpkDWQKWojmkZgID8vUDTGO7ck6XAdG8KzOsCeyOS7OcJF/bkPh9RBCxMqKTxBp11r2p33+f+/4tgI0Cavh5UKZRaHGiM/z1K2Lqx8zNNhtExaIxxcrZOUzhpLDnki1paWvKI0DQ86UlPgq7r+N3f/V3P35/73Ofie9/7XqZjKxSK+mHrxikWai6SehrGFWIJq/QdZzTN4lgBFOcxWWZR1rTI6iBZ3VtGuoMkJNWRQbUkZFjf0KFLFhUO8zitU+i4LE6bk7Z90ryUC6cmmhWor25VhlMJZAa8UUGPWVoVThdhYgmwJ/UsYTBhVDG5FzEp5uFFmfw7y/suSkWuRkcmHA9mMvDCG5HVszBN3qO4c5MZ1+oqQPz93THg5eGFngSuU9CY73T3aS68z5UQAmTCpxf3+eXlQVtw3YdsuMKXUn02JxqNBl7ykpfg3nvv9fz9Zz/7GQ488MDcvkcxe0zzJmpehIaVFzQHZTXgBRFUuNKhCP0XHIrNRzktJ8FLMwEya4G0m45x+i7rM1z0OsZu/6iRMh7OVetRR997/5bsBlZ9DtMIAR2MI/UbP2phP6qJZgXqq1vrvOSoBc6EE2VsamoCK30NBmVY6VMs6Aw9RtCcDOegqYMSgbVBeMCKqaFJuUdwrJqje2rQ/I1iMghwaMQAF8UkLk+LVC7IGkw4WYVeEUL/sE/ciB+ec0ziz/knS/eCgAsWmc4hL8J2qMNCYPJAI1F1Y6ulio2AMJxn0u4XWiF5sfIkqr8UdV1r60ldoghdW1vDz3/+8+Hv999/P+6++25s3rwZBxxwAD70oQ/hbW97G17xilfgqKOOwvXXX49rr70Wt9xyS7r2KRSKWITghRhAkm6Ah43L1F9len7z8J9jm1sC9rhUXfH6YeSFgBjzyjNIc6KNTXlra1kvzuH7C7h0LQ1Yz3mZ4+gIp71127xZNe10V278bQ6CEAqdNEAIBcvYF9z33q+P6qqXZD1lk+LXnc645hTwqzoN1sKgCFotVH3JhtNJ1K3KtFcgtdg9UNSGqgdnBy6I50cGIeq5QzeNCIjIvhJ3z1pTmO/9FX/znUKP7xgiqxbgdQyR4iLZj0NZ5xJUNLeooo915s4778QhhxyCQw45BABw1lln4ZBDDsH/+//+vwCAN73pTfjsZz+LCy+8EC94wQvwhS98AVdffTVe/vKXV9lshWLqKavKtB/psOZ6LNnHCNM6fo+x8EJRyfOI1tWoFIQxAYWrZCOg8konYNDW8N91MaLH2QKSrq1kdKpzPZNe17gxI+lYodcsTUQdx7o6OWqUzSTq1pn2OBWUgLhGIFr1qlmhqBHOYF7HiaZq/MngZQw1QYIkKK+mX0QFiaq8jFJCi86kxH0ep0kM7VUQFqKYx9C+byuB50bKxVeUh6/dV1yhijXdyLBTIYz/nQviyS03E+MKyZAvKmFehiOPPDJ2c+4d73gH3vGOd6Rrj0JRc+qyOQ1gGNZelvEmau6Iei2qfWNjdMTx82aWjQl1Iqh/hGmPvJbQUWnT4jB512M8LYMktRCijKijYlDZtBHVRGJv46TI6Ld1SyvVGSG8AF74Z6JSkMwkJWpWYDJ1a6Uep5/5zGdw8MEHDxPJHn744fj2t789fF0IgR07dmD79u1ot9s48sgj8dOf/jS37yclPtFHbj8dR24/vbTvUwQjE3YcNdlk6TL+icYOuRW12RUNIq+FSN7h3lV75mUtGlXHRQHnJNTgl/dQmfR4t733NePHyCCuw8jqqBg6dsQceJQSxl3FOLifT5PB0amOHPUTRRF9IFecsKe0P4paUbVmVShkSTrHys4rtTJOu6nJeOnM21Vq1EkoBpU3dqRWPtoornhYHsStAcLWhVWrv7DnP2j8mNfTedrL9t+6eIc77dDMdHen6vWsB6VZY6n0LJ/61Kfik5/8JO68807ceeedeNWrXoU3vOENQ6F54YUX4uKLL8Yll1yCO+64A9u2bcMxxxyD1dXVUtsZ16llElUrFFkoe2Adz7spPP/3MynO2nVsp7uwXB7Cb28/8yEiqeM1TErYOfj/7v790W61Io0NPcDrfwPK2hjIuoFROEqEThWTolkV9cNJd1RkpEAanVjXjTj/uYxF4rjmweFrAdOO/3Np12tpjSJB1PGaT4quy5J+ouwoHS6Av/3PK0r7vjmjfjcx71D9tMbSMp45ZkyBZlOaNZZKz/KEE07Aa1/7Wjz72c/Gs5/9bPzlX/4lFhYW8IMf/ABCCHzqU5/Cxz72MZx44ol4/vOfj8suuwwbGxu48sorS2tjkoe0VrsGM0zSRfswF0wJi/A6CKawnISzSNAzW8ZzLHPd0xrIlhty7zOb+SZDDRKlZRv5wsbrsNDxOJggibxQI+eLkJs+3K0m3rf6vbQn6VmV6t95eS7NYD5TRTVMgmZVzC5RkT1FekGmyZsfhr+N0rUiSLLlbBHTRtbrOwmbog7+tvrXNkUWFg0j7+sn2/66RL5smMHtSOKBnLY2CxmYk9z3wLl+L35SfmHWYecSpDnL0sxZPbzrGIGoCKc25mHGGK666iqsr6/j8MMPx/3334+dO3fi2GOPHb6n2Wzila98JW6//fbcvvemi14X+TpnJHYyVJ1+uqiL+/+0ULZ4csiyuzzpG2cyAt7ojcJo8ujzRYr+ootDAfUr5ue+h3VrWxxqE3EAJdl+FLWlKs2qCMdOf1SPH0+bapqPehIJ3XALMZzmpUumwpsMwUa+LPO16tvRhBXHYmLc2ExijP9BOjCpcbDOaRwsq7hnbJI2JSpFadZYKi8O9W//9m84/PDD0e12sbCwgGuuuQa/+7u/OxSaW7du9bx/69at+NWvfhV6vF6vh16vN/x9ZWUlU/tkDQpxg9ctv71s8K/KL7miBiQZxMP61sH793DPQ83wzzGSyovWvRHgXQBMz8STRiiWLTjSVtrc2weCNH6W9nNBpiolid3HSzwfSXXLK86NVjTTfG6BUJJ+F2ZGROikkbdmBfLXrWWiuulkU9ucpUmhk7e2yqqpe/0SjbkJPXqTkLe2FoKPjJAFtjsM+XQCU/LshVCYh3sFzk1Frv9qFU2mNGsslc80z3nOc3D33Xdj7969uPrqq3H66afj1ltvHb5OfFW6hBBjf3Nz/vnn4+Mf/3jq9jheWJY56jhdFmyIiCLMC3VLy8Kjncov+8RRN6/eLGEocQax5yy/E/fu/QIAOz8MJcHf5Tea2mOdGKv4LksnYrfPI0RSYFB7N7Fqb94wz72wv1MqQKmAYXB0Ojp0Pd3u+t6eXAg9Bxva89yiipLwsPq0cxUP+KB73ItimG8zoi8bpAkL0QlXKbH7BgvYlXf3lcDiUJb9f93gME2Kfk+DrnN0886pJILHnwYFVn2VSykV0HWOfs93vygBtTicJGzuc+OMSM3EThtM3gXjFoQmQCa4HCghJHbR/geX7w/g+oh36PYNqqtgy5L3adLd3qeUvDUrkF23VkmtFn01os87AOw5ck7fVMp3Orq0kXDoMHkXDdqOfE+UBsmTX64SPGMx/n3+atgC4/NhQ5tDh8nnF3aqkQehmTzS65RSgS4jaEU4Kziarq0toUHbw9+b2jwsLpecfl4X6Ae00TQptIDvdldX13WOxx9rYWGpuET4hlsPkdH4ELVe6nb03AxTQojMVdIdfRu39neneaNUDD0mlxvAY+sUy02O//78U/GtB78c0lavZzow/oxpRAcXtkA2fNdoSxPY0wfWLftaLzYEupoFc7AG5JxgY93AwuLofrv7Q6OZvHiT40wTtiZ0n9OqqUGnAnc8eilesu/bQ4/Zalvo9+IXSJzHr23dxtr5wXqNZ6gf0dKBdRNYWDIj10e0DZAVDk7JYA9Hvj+bdYpyVZo1lsrPstFo4FnPehYOPfRQnH/++XjhC1+IT3/609i2bRsAYOfOnZ7379q1a2xH381HPvIRPPHEE8Ofhx56aOw9QQYDByfvn26MP2SyAnHSwiqnlSBjBxPA4iCBtkYAk5e3e5Vkd/E5y+8EAPRYskdUJteOu+qne5Jpahybm7Y1Sib/aWzFa9f1N7kt2uocJhK02HAqzZuDCTNtX9nSGv37iT4dXnf3NeLCzhNEiQYmTAhwUKIF9ps5nQ8/2xvc83k92bVlBgXxbQnrBofJgRVz/P15bF4UscjmnMAw+HDMbgWs76JE+34t7mkXEwQ9TmAKMlyg+L1tOQf6fHwXmnMSHG7EhWfecUStrnNQTQwFrHM7frlq95FHNgzPYYQQ0EkDGtVrbTR1jy1Ov+kwCsv1/MQt1NNw59lH535MhcJN3poVkNOtingIaK1+gEG1b99/UeSxB9TnyY+TxvvNOccy+OWqPUeG1QnIo35A1lyVUUbTvOiEtNEIWLM6G/9u9t1qG/S7g43nx7qS91Czd3dN3hu0Y9wrnhLbCNTUsqTJGrXXMmnsZv6v1uTvmU5s45ysl3WQlnTj2QAf6DlH97SbwTaEKA0cZtwLeza7DNiwRr+v9gnWN7y78G6jqb/tYxv8EjhGXGdjaNTGUduTbrJ0B85kcY4prbZ9sk5f73a83/Pguvf9ncH6ecEIbrNGjKHxN67NaytG5PqPd7zpPKp2ElIUR+WGUz9CCPR6PTz96U/Htm3bcOONNw5f6/f7uPXWW3HEEUeEfr7ZbGJpacnz44e6Rq6jP3hdbJuCBk/D9TeZ3YIgQ5WiWupwL2SqrCY1Nl395jelbs/e/qhjzxscXDAYtGXL/UFbuWCY03UIcLR1ij09ggYV6Fi0NMcvmXv3WLePBUNDj3UBAPN6CxoR0KnAqqnBIAIWHxX/6SfQemkFNhMEDQrM+Yyc6zG5fRi3vL/HGDGT9m33JK8NPJwNKtDnwJPnOFZNgmcs9SKOMI4pemOLmbD+kWZ8dCLz3PeCaiK24FdTE2hqfDhuM8GhpfCmTurVE4Rl2QsDv4B9xqJ93bbOBViwp4RpD1MDoPJFzQBZNSsgp1vriJnCQFckVec1DctzWgWlFUYpIIWPQcVwk63DKLhg2NK0wAXQ1pcwp29CQ2ujpS2CCwttugAA6LENz3H6vt+LJImhpMNWPIbHHluPeHf+OG3lAtjcFIk2xQ3ahIBAW1uCxfsghA6NqU6fk3X4cKcSG7aJEzzy8Nzw724nJneffryrgxJg35YJg4qBk4HtbNDU5tGiC5gTTTtUf6DvTJFMw8oSZPBruyTdr9cp9vQ0rJka/mNPGyt9bdi/27o91jfpPADAEn0wMdL7WTcn8nZWcRsY88hvW3VhLeccHIOwn64V+OfpRWnWWCqNGf/oRz+K448/Hvvvvz9WV1dx1VVX4ZZbbsH1118PQgje//7347zzzsNBBx2Egw46COeddx7m5uZwyimnJP4uozH+UAhKQHJQF9pAOMhMPnt7KkxfUSwnfe0aNJrpwvXDEOAggzASSjSsml20NIqOxbFPk+ChdQ1tnaOXYgezSNZMhsWGvcu8anYBEJicYNFg6DAKnQrpSN+ivWX93qdF5x7TTA6hRfstph0eHUO751gJj+F4ZaaBCcDw/e5ge+hSLAwE+eM9HVuaFpLGd8ka2qMiHPzIGI5nwuCYkkM/eVNAsFuFqLCnqaJMzaqYbAw6CjPpsXXM6cuh72WimA2yIp0DCGihxmFbmxG0B96LzrkEhegXxQ8+8Gq89KKbQJiYiuJQlkWHhipDc0eFSH6e99GgbRAQCAhoRIfJuzBoE4yN92GNjB87KPqn1baGXodxOG3e0rJgcoLlpr0OaQoGAtvI3mPrIISildLEYa/p5XWbZdHA9YHT1m1tuQscFPpuiT4ISOHPW1L8EUNRHptRYfpuLItGep12B+nSTNN+X6NRj+vhX6dwCzV0S5REadZYKrXiPfLIIzjttNPw8MMPY9OmTTj44INx/fXX45hjjgEAfPjDH0an08F73/te7NmzB4cddhhuuOEGLC5KJMDxYfbzXU7xlM+rygelqJokYpqAevJfEUInxnDzpFYDT/TDd5gNn6dEgwKrgxxhaZ9vGdo6x5pJ0XQNSfMpc6e6Wbfy3+1rafZu+b4tgV+ujBcik+0LYZtKXIRXHa0DusvzJRM0YAUx5fhP1/97n3nDpqYSJUKnijI1q2J6CJonHa8yjRjQiFGY8RSwx960OfmrwK8XKNGwuamjyzrYsNagEYp5Yzm374u7NqKAi9fWlgrT0o4RLywnpG08Hf1dNr2cTiUS9efA1idv4Im9DegGzxTyvEF6mBPltDmOpQaDRgQO2tTDWsroPL+GWo/xhiza2cNeDzo5T+3vEhBj3ptxOU79pG33U+a812TGJHc+KM0aS6WG07/7u7+LfJ0Qgh07dmDHjh3lNCiEOoR0K6aLqBAHpzAUMBr4q/CAl5l06la0axJxX0NHhNQtTzIXBAblkfc7SdhOkjG16lAeh0laeM4yRSxyFQpgcjSrQpGUPMJuJxm/JqEl5CsNwh3dVRYyWr/oCCg3YcbSLGtxGrCIesr8u3HfE59Pf9AEFLlWynN9GFvbYkIcZ5ISVFyubHiN6xYoRsyGeTiELGH67gF8bVA5zuT24NgPSI7NBVFGppJgwvbqA4B5neUyqbiNN2m9Ef3ClPF8PQzy8JK0OBlOnB1f3s0sE2YVUU5FT/BpdsLz2gF135uk/dspeBXFvA50fQbLoPGrLvnc/GTd7GpSUfjkmGRXPejqyhQaqQNODry2xnPfAKqLUT0MQkimH4WizkxB9HIpBOXP04idJ75IT1Mgfi4khAyL5gAA1ncHvo8LBi5Y4caFpy34vjfkfX3WQZetQiMGNvhqpXNhGi0YVFwpiLAcsnl4Ezp55WXWpmnve1FjRB7OBb9Z/9zgWNmOE6ZDZI7bsex+0GVruW5e1KEQ76IRHk5W5v72mqkNvtPrK5jXusV/rfVmsmtfJ89YpVnjmZmEm2VVOJN5AJQHa3LUNcuPuD6aRpDUaeCXxUx4nmFhT0XhGCTLrFwbRtj9zdsL4bePtPCWa77u+ZuM54fM+B41hvj7fFX9ucgUEdMI1QR4ASkqcoNkCHtKUbBMoVAoHFLNY5LjVRWbpUyQYU0JT1sSViOX5WV/9c9Imvs8KUFtL9MIbHECrSLv2mnE1qLZr2eS54uLyVyDpSGysn3B16AOxujCUZo1ltk4y4zEPYxNjaPHCLRBUbEGFWNVBWdpYKsajYw88tYtzXPdNQKsmqOB16DJBsM8DbgaNeLfNMAsWaPKekf7r0ddQszd7SgzxCiOuOvqb2tYpccsUCrG+nzcM5Cm3weJ/7gxcPvWbvIvCiDNbnadxuegfsJENYvVpITNdf6xIY9zqbvH6TBfVNofhUIxkTgGsbqHwI9pjPZy6HvtyuU+7VDCEBw0VwTpi6Y2Jz2vhHly1oEg786v/uKKQr7L8Totgjy8CqPm+Do9WY5BjzOCvX3vNQ37dxB2zuPsPm2WVYx+KHI8cwpDcU5gmcXrn6TrK1kHPKuXrOPrdTLIKs0ay2ycZQiiisSRCkVKNCI8P2Fc/eY35fJ9eRpByzb8psGpki5z3knzX03rUFNEqP5X33Si5/c8jWMyC4SqDKhJxDWAWqZIkCHPNleVh06hUCgUxVF2arMyoj3qMme7DUBZjaZR3rGyhlP/Zn6aCNHQ6zrwgivTpjM0orqaVKeN+Txw3/esHtIz4cmpmBpm2nAqC1PeolNL2XVE6u594BdRMiKvDkIwb4yA3Px5Tu5RYtUvQvzXt4y0FWWlxvB/T1Cofp4EPe+lLNAkJxDnegS1adJyZKv0KrB3TLL8KBQKhQRx422cZ+Ek5MueRkhAeGvQvXjLM08d+1uzkUPUxiDHadL5etJ0v274I14EnjL/7kqLfgbd56LWiHltMk/yOJE0+jDKQWlqUZo1lpnJcRpEluJQSalLCLMiHXl7NpU5+ZSV31eGqtoyKSIvSTspEYHGtJYGdBkwN29iY10+HUQUs2gEy9JjGk2Gfk+uMm7QMxE0NU16upfJeAJzJkv40oyEPSkUs8gkGyDKgAu5dbisZuIiu6ME5QI8pFFpNtb7fAMGbQW+Vse5vu6OHw52hXTnF7vNtCQLKeekVpEwmiZqtQaMwrIodJ2X7oGadH3I6p4iKgtKs8Yy04ZTWXhM8uxJ8wRSTDcnfe0aNJrhr/uNYGkFmj3Z1HegnBRjqYOscTKJ/vvycW9J1Iba54zMAXu89ueSlfnMCJl7dfP/c3zCls0eRTyjpE5W/iy78DOye69QTCN1MYyyHAyGUdTRK6soA1+Y0TStYapB58CFlbo9vf5If2cxjmU10jp93a+T4qawPAxksl6EWoFLlTBDaVQEUR1I02eC8u+6kdV0Scckd85TzkmlxuC4Ymp6U8Ayq21japRmjaW+Vo8pY9K9hWaNMga8Sdm9jcItCDoRycirtGUETeRxQsbMvyZTaoKEocxYsrFu4LTrv5p7e+rkPS9j6A27VrLjcZXn6+6nTJBaXfu6IqqMvVMoFApFZtyaMUmIbVqDdRnOUkKI2HMps5ipoyeK0Od1MxbSAKPOb9Y/V9r3B11jIbi0DiWkXtcTKHCDImD9rRvR3zUyUoe/J7Fnaco+nLQ4lGKyUIZThaJmPGf5nXjO8js9f2vJRf0WinvSCRJFbd07KdWtammeQi7MYHfYJ27M7TvCKNsInTXErcwNgmn2mJ2kbZawPlrGBmL9PE7TViid3r6sUChGpPG8d3KWylZF10j5Of2LxH/N8tIZYV6QmkSF0ywbm2F9gAuSu5b2G6bSTJmy1ztNYdgiCnVR3xpKpv2y16Uo3VnHqLmgjYk4L9Q0xBlK3WTRlEVEBujNGmnQpCjNGsvMGE7DJsObLnpd5mPXaZ2mkGMa7tkhB3QLPX7ctGXnoJqCC1khefXDIOGg6zxxqL6fJO0rOzRxIsNgUuI2+k+Dp/rMkFqAZsgzpVAoFGmRySuao1ekE0kRFVGR1IAkBv/lCTMoaI3DBrOEvcedVl7XMiykXUbLJS5elYNOktlosCIi7Rzc19fRcmHXvC4pPmQIKmyWhbR9OK29Lmkf8bfP/bs7jUdSQ3qtvLOVZo1lNs4ygqM/eJ3nd6Nnx+i682nkyTQY7OrOJFzjpAN2NyR0/CsnnISvnHDS2N/TTEBOqL13kk98mNLIep+NhEZft7hLmvz9N+uJ3i6FxcnAGzS/myQjAt387InO8N8GjUisOyDunm3fmmAzYNA58zCgJhUu8yE1t3R9/LlOs9gKuk61ElcKOVSFUoViJmHCBGAbQlraQuB78jRArg9SZRpaQR57RPO0t6iQ8l+sAqZvTuci2qCUh6E07JoVUeinSec9vzdoO/Mxp30jOciIWUdNlNd9cNaIFCNXWd3nNlulRJBZw0bdn6fM13hxOUAjAouN5O3k6dMWV4/SrLHMZHGosATfAGA27YHJcRPnnMAyKQwtWdLDMAPBgsGxVpBRVhGOcz+YABYNgb2DHCQmj57oqgz9ZYKgx+y+0tJGwtjhxw+2cPKDVw9/tzd7ROo2NzWBDcu1axYx6SU1WrY04HFJo9wFh50S+55zf3RlsgYMCDsnixM0Bs1LE1okyxN9AoCAkuCwLkr8wkgDC5iF2zoHExQWJzC5fbx5XWDdkr/3QiODsGY7iTmlAo0mAxPhhno/z940Evwm73lea9A2Osz0/G1Ot/uYU7DCoN6+/dtHRhVmYwUotauXukN6gj5DCYb3Ngzmq+Db46MPOAbqTQMBxQTQDRFGlkXRaLBxAzQloBYHQIbPp2VR6IZdQdQflrSzAywawCMbOpYawTejrFxoSZ915zo6Cx0n1NDiBIYmhv1epw1YvJ+pbc61vPPDrxr+TeU4VSgUk0JeHmbzg9WcyYKjJqPGcZP3oEtsfLpJlXMx5cI6bQi8QVvosrXh77bnanTeK7+GsOcYAc3kYEa0kEiiHVva4tjfgjxrN7cs7O3F5+oKc5ZwtJ37d8DWMEYD6DCgLZEKzBJ9MGGhzzseY56nDcTWk22dgws6Zux0rqX/GlMq0O9paLUtcDbSSP2eNmx7Yo/TgOfKIE30sQEA0KgBsM7Ye+zvkutvlI7Oxb1pvtwU6DBb36ZBQNjenINT0EkDAGBxBrfZxr0nT4n9vbsGMlzXeayGbjRtbXnqP30NusGx35JE2wYGU40agzYwMFjQaQMm74KA2usWwbFuUegh/fI363bb/BsT/v7qxvl7s8nAOUG/T9Fq29fBoMDDHWDJ5dRgcoK9PW2YRs5ulzXsv01tfjg+2BtD48/fat9u58KSGelQ12hzWM456ck2r8zBGkMxGcyk4ZRyEWk89ROUa8OZECbBu1GRHc4IkHHn2ZnIkwjlpjaqXC9rD7j6zW/Cqf/0NenvcPowJQIGJTAGk9O8bk+qOm2Ag4GAggsGAY6lBoHFgTmd4/GujrbOsburw6ACPUbG2tpl9kTe78crxdWLGwABAABJREFUtD/7YbxRtCUxcj3WYdjcIugxjjndwIKhweQmeoxib1/Dgs5gDYyOlAj0ByLDoOmLQ/3wnGMC//6UgYPBgmEbDv05a/f2NSw3GLhgY6LUnuy9Bki3AdhvDJY1egbhNrq3NIEuA562YB/zgMU+HlxtSB1HgKM/EKWUaKBEgAviMcwXQZjg6vPR89PWOTSCocF535YJSuxF1prZw+amhXXLvgd8+GyEf+elr34bXvvla4e/B3rtDuYcipFQdIQ25wT9noamPrLGbmvbxuSlBhsTnpMUylU2d559NF563j9X3YwRWcKXZiTsSaFQ5I8zd5k8fuMQcAwiyZLpk4KCFg1q64U1k6CtUzQox84NC0sNoKW1sbvXw7a5BRi0NTR2GELDhvUEmtrIm9PkowgWW+elLxYQZzQF5DW6044+34BOGugN/r9oPAnr5h7PHL+7q8vn2gwwSI59t8sQyUW80dRtzNVpAw3aRp930OcdaMQAAUGfew2QHYuOeQ0D0d67jYExTDc4VlcbaDTYyFCmC8zrtkbfsAQ6FgUXwFPmTfx2Q8O8zrFgUFi8jwZto6UtoM87aHEdIBQwu6DU204u8q0A69d97mduT9/2Fu0xAiaaWGow7NuyQAjFvLEEjejYsJ7AkrEvBOyCUUOPU6KhxzcCv3Net/t1Z3AqexMWJer3NLzhqn/EwqK370T1NyZsndpj68NnTSM6uGDQSQNMWB4DpBVjvPU7+riN0aFtYASGyy5DSfimxXKToec4K/A+NDKyrHbZ2vBZ44JF5mpdWzHQaof3mX6HgmbQ5rVx1lSaNZaZMZw22+MuQoISEAkzfx5GM4fHurQWhX4U1VK08SNq164IOhZFW+fY6OrDCaAuYTT+R5wJYMlg6HECnYpBrtZ8vuuwT9wYajyNapP/WvlD02QWKI7YaWm2oTMu7J4wYXud+v6exGFPph9zwQopcADYY7NlUrAGSeRpzYTtYe0UvlozKQzag0EFHukYaAaM90/0y+nPUYWV3NSxcEAV0DqrGJJBhOacP0yhKIIuA/7k9nQRIHnz0UOqbsEIx0sMsA0LfsrKVS2jbTxzie00KEXRc9DCwDgiwMFdGmhzc+QdKyCwoC2DEQ6w8esqwEHgbIQyJDUOJ0HWwNlhK2DCREtbBB8YogQ4Vs3HIITIZOB1414HRBmjmABCsg8FQqGhQdtDI9rw+0I0v19Txq1NLNOO3HHoWQTrlh1V1dJsh5LlJoMlCLbPMXR9F15A2OkQnCgoozU2DRMQPGX+3fjlyucj25IHQUY9t54zeQ/LjSfD4j1ohHqeK0ski8oJ9TwO0MeNJsM//sEbAACnXf9VqeMHjWVl4fRny6Iew+m0UAuvU6VZY5mNs0T+Idd93zMrO2Gmdd1XVEsReY4mFY0YWOnb12PDotinaYsnv2gK2nEum3VToK3bQmTNZMPUB2UTNiFyQQr1WpcVQ3Ukb8O/c507PoPyo12jFkb+oD7iDxnLM5/tNHHohTdX3YRgVL4ohWImcW8qrlt7I98blI5HYWNHXU0HAjzQ2FxEVfIoOCehedqToBEdAgIGbcW/OYKkufX9cEEgwKHTBgQ4emwdHbYyekOAQSfK4zQPneXW9ftluzy5GNLj1rBJC8m6N4bcJN1MybK2bjSiv6sOul6GWhhMHZRmjaXOvhq5YoUYTG666HWe32U8UB3iDB7TM91PPv4BNOj5rjKfaV0I6v4W79shUeCeMIc4jJSGr7xynD6prWG1H78giRrrZYx3SdJ+AKM8n+7yAJub2RdOXV//1XWeWZC2NODRrp1vUzZM30HGG9Xk2VILJCWpkVqnAkyIRMImsM9QUjN1VD1Z85sCtui2emSGtoAVCsUkEGdA6PMOuGBoaG1oVM89dLhMip7aOhbF9jkdGxZDl3WgEYqGFl5QadKiMSYp/Y5sW/19Ikkk06blHkzTzgGfpVDzBulhTti6lVac+3ypYTtuPHOph57LqUQIntr7vFODISPI6J+kP7vX3VmdJfZrxa8nCCGZ6gNoEoZebkFp0ilmZgynQRAucPQHrxsznsrgHoOdnIVMAD1GsGpqiSYJRf40NY4Oo2gH7FZXeW/cE0reQjmPSqp2H6YAGHb3dDQ10xNiLQS3k5YXSF45Th2EiK646g7Vd4oEOZEKeVXIdAx2Tsh61oVGzyU29EE+sCCS7iIDg7AtahtiW5pI/bzELV6ijJhFb2LE7UQ3KUeP0/x2rDPe8Em2uTrjR9oCHxONyhelUMw8QZ6GTqhzHQymnqru3RUgwCbJBQMhAlrBy8ZnjtdMGkOAo2OtgmsMTW0ea2xvbGV6R+dV6YVWVwOpzIayThuwWPhmp6xGyeqUljZCS/NNp7L3Iu/1ovs6ccHQY1209Xl02Woix5So4wL2pnKa9UueEXBtjcMUBCwnPd9qW+hLFEpzMAap2DoWxaYGPGtX2ftPKcCqH6LLQ2nWWBLNgPfeey++8pWv4F/+5V/wwAMPYGNjA/vuuy8OOeQQvOY1r8FJJ52EZjNZZcZZw8mpp5hdhOCROaTu3fuFwb+K6SiRBitBgJgJxb07KitCJ63P52GEdiMjRqo2juVlJC6boOJ9UVRynVN6nFbdJ/KgyIWq38B+6CdvqtdGP6Hp8z7NSL4ohWKWqYMxrQ5tKJIyz2+S5uwi00RNS9Ru0msUpqNldFBaT+mgPldmBGWW58sJ1feH7JddpwOY/nFQCqVZY5E6yx//+Mc45phj8MIXvhC33XYbXvKSl+D9738/PvGJT+AP//APIYTAxz72MWzfvh0XXHABer1e0e2uDNnCHeOvk4nJt6EIZ+g5WFIkUNI+U8RkmUQI1ikHY9pwDOmd84STOhf1ENWck0KMpEGiL0tIjCxZQrlKQ+LGJ11oCER7UitqgCNC0/4oFApFTSiroJWfIg18VVP1HJ7l2qZtu6M/0xrGpjl6papnrCisFGuNSXXimAqUZo1FyuP0jW98Iz70oQ/h7//+77F58+bQ933/+9/HX/3VX+F//a//hY9+9KO5NbJKZAb2Bh0VizKowKJhhzmHwZTXaaFoZFQApsMompQPjRIaAVZMApPb4cgGte9xFQM1JZp0mFad80DWlajd2zwMmGX0G8atxInh0/SVtAI2SuSVYTSVxZ0qIQwZb+uymORnMM/Ngbjni2oC3PK+518/+mq8/ANfy68RCoUilJZWrj6ZFJz5ry75NsPG5THjV3sp9BiUaGCoTyErf9vn9E255M7OQpq5u+ziUIp4pKLEQvTJ3h7BnDF+AC5GRl//RrmAsMcMAhBQcGQbVNOuTdLYJsL6r4yBuwzP2LB25PrcZahjkLYeiKIapAyn9913HxqN+MIghx9+OA4//HD0+9VOXEURNJCmXST+wbNOzdYYRSzu3JWKcBxjUpx3K8kYBFt26IXbcFeXxQsT+SSWlhF1lkVx2vVfjcxzSpiAOyVE0YZgJ8dr0cguXkZ9P933qJ1xRSQqX5RiBvj0EfEFHcvgkc4X4t9UE6r2NExDGW2Om4tZThpCIwg1AQfN65rJwQwKWnLYUF03UevSf21tHzNXluwJxxkBjFEtgyLv4UZ99jESUYS8CbrOfqNpkENHXfpyLVCaNRapNbyM0TTL+6skTWGoLDBlzFOUBOdkLG+MLEkmemdiqqvAc7CLMuX38LnFNeUCPOLBLiu1A5DMA0hoyfZc636Pg0iyzjGVIXTiOewTN+LGjx+LTZ+quiUACMmQL0r1RYUiCXWKcqjL41uH9EBlksYIUvWabNYNN7rOYZlUaiOaSaa8GhayDZl/q3KmCPtWu/aFHV3mb1uauhJlQEBLvY7djl563tOZQ2nWWFI5P/3rv/4rbrnlFuzatQvcZxG4+OKLc2lYWRz9wetKN55qBLjq51dIv195pyabLPx5NqsWRZNGkAeqAPd4nIbdj0nLPVS2CLFF32RdIyDd4svfZ8pmEo28DnHXu04GgijMejh6V4dKtK+YcroM+JPbr6y6GQCAj7yo6hZMP9OWgzFP8tIcfmPUJGrGJFiWd64rIpKHSsagO/dQI4CZeyuiqUNkXBU5b4si6/NY1nq2VjYKpVljSWw4Pe+88/Dnf/7neM5znoOtW7eCuCzMZAKszTdd9Docc9a1uR5zkhfos4rKMavIE8fb9IfnHJP5WHUTH4ocCMh/lGRxwASpVeE1WQyXjpo1zyeFQlEudTA8jJDPTT4pG2GZyXEScO51WYZcZsgZBdR6MB2WSe2c5YyAReS9lPU2df8/LqyqKsO0e7zKVJl+yjymi/AqFRC1zSSstPFkkdhw+ulPfxpf/OIXccYZZxTQnOlFTabVYlDhCcONS5mgcheOY3sQJitUVCfqumvPh6kO8itOVPV4M00LwSpETdX3z03ebZkpkah27xWK0qjT2EJJ9UbcJIVo0xo/qjbapCXJvEaYgMaEtPE0DOWtG45u8OG6y7IodF3+WjERXYPBXYSXECols5P0D3datCzFjpxn0N1PZPqMf9zzt6Go9WzeG1VF1cFwWulOh5DqONw26mspU+BNBEqzxpLYcEopxX/9r/+1iLaUwtEfvC5z8GjSwiOK7FQtiDkjQEmD5XOW3wkA+Pfdf2d/94T1I55ArE8bh33ixlRep2n7d9JQkiAxGiX0YkPGJ9w71hnLHaO1qm45Tpn5eacOlWhfoVAUQFWaeNLn/DDqtFlZNH7NJ3vuSQ2/Ra8DuGy+05A++5v1zyGusJT7HP7xD94w/PcbrvpHmSYCiL++w3ysKVhuAOs1KRBVL49/G3//IIQEF4gKuAd2lJe3E0+10RRQmlWCxGf5gQ98AH/9139dRFsmEiZGgyIXZOJyPCqqocgJ5qSvXZPp87KCXPX1/JHx1IwzpLcGG6q6zvHl494Se7y0BcTqjEzfzNp/oxYFaXf4/QI76l4LwWvrweI+D9nFTR7cefbR5XyRLM7ufdofhUKhSIB77J2EDWxnfkg7T5RlyM3qbZoFWpM0PWmNe34cr8I03oVhRsioNVUVOqmsXKF1MZoG0U+ogykVpUZ7phk7WEwqCT93fvhVuPPDr0r8PZWhNGssic/ygx/8IO69914885nPxAknnIATTzzR85OW888/H4QQvP/97x/+TQiBHTt2YPv27Wi32zjyyCPx05/+NPV3yKAPqllYZvIOEDW5cUHABcGikbppipIJEp1MFL+pcu/eL+DevV8AACwadohJSyK6wN0u3UguFNZi+nyW8GuD2uE3k5ICwRhcb0oFFpbMMaGXNBxnT1/ufRrVYfHxNweJwh6jgXkvu2zsT0NabVtlUYtDBHRw5/6kWsD4+kdbW4r9jEGD+zbVJAQU996TtVVjrMhAEoKEbtR1aER8VdCCQBvMLZyR2HNjYvw+OoZek3dhcrO2nj95hm5SKiJ/wp7D1557Q36NUChCqItuVdQPi48G8Ja2EPv+rOltVl2VbJJGCfR5J/Y91BfiWlQ6nvvXgF6KcOeg+bCpzUt9dp9G+GvujWUaI4xkr7tOGp62NWg78nq6N1Dndft9S4bcprezlg0zUmYy8CU0SHJGhgUjLZOiPRds9cuyTgjqB0m00pJrjd7Soq+P/5r2ehr6/fwWiEIIj7Fap+Ni2bmey037/+2WPe7MzUeXtur3ik275qROcNawfp7cHuh3Vx/WDT7Udm6qXDfO6wKGBiwtj9ZlmiawabkX2C5nXUUt+8YceuHNOPTCm8tprKIUEj/hf/zHf4zvfve7ePazn40tW7Zg06ZNnp803HHHHfjbv/1bHHzwwZ6/X3jhhbj44otxySWX4I477sC2bdtwzDHHYHV1NdX3OHDXyu6mi17nec0a7Cq6DU/9/vgAEzWY1tMHaLJ57j7vlP6Jos+BJUMMjaJdFi4+gu6xRmxxVFZYz+5e4mwauPrNb0r1XQsRxtZpylkZRI+RoQGPCcAczPWcE2ys6WMTpNNnZHfM3WJsb4wRVacjFa/R4PvPBUFTG2zycDIwQHrbYlkUp13/Vc/fuh37eFy3xzky6MjO+Tmh/EX173aCvFVJWVgMF4rthBqxxym4sI2VYV6fnQgD9RiuBZd/vKFUoNH0HmzVtEV7jxH0mHeaNmgLBjVAapvqfoRzDQGMpUGoOv1KKajd+6mlbN2qmC7yjjpaNEbzNqXF5x5NWwyYc+L5iX1/TGSI36CbBv/GtlvXcUYgNDLc+Cwaf79Yani1wbplX48Vc3wDf7jB78q36axl/dd6dXDOslqvxzZg8T76bMNup+ChBkl/m4ft08SwYKRucHQ2bD3qTiHl1kduB6Ywo/SDa83YtjsG3obWjn3viukU44x2QrDbNDCSufqLrgsstDjSdJexolbO3wfX2b0ZA3h17UofWG4KdLr2Hx2tH0ZQ2q4kut8UvcFnRsZvCg0CAgJ82I87IQ4eD3dG/XGY29a0nWv8DhDO9XXa7Him+o3Uj/f80U4Ea6aGJhWY0zfB5L1heynRPLlvw8aRdYvAZMDKXu/uyhN7m4HrP8IE9KYYrrFk2LBoffSw0qyxJD7Lyy+/HFdffTW+/e1v40tf+hIuvfRSz09S1tbWcOqpp+Lzn/889tlnn+HfhRD41Kc+hY997GM48cQT8fznPx+XXXYZNjY2cOWVVyb+Hjdxu4aAd0IKGmAcw9ss5cVRlE/ZORcNKobGreWGBY0I20hDiJ0bBgIcDAsGG7wmsNLX0NY5eiy68reu80ISf4exq0vR1Dg2LHv3c86lI9YsDQYRoESAEqCpiaFIShLeJrsT6h4nWtrIy9IZivb27cYxHrwDH5b43il4JjsOxXkoOOejEdsblAlgXh9sOISI4TAcLxa3uO5k8AgdY7AydN+DsIICjpGTC2De4MOwQIMKLBkMSw3mWaC1tXjVmzYMkjNvAnzOydjuvxOZ0NTE0EA+qcx03tgSRehtt92GE044Adu3bwchBN/4xjdC3/vud78bhBB86lOfynZ+M0oVulWhSELRC/FUm+kJrLlO+zsWhUEFHlyzJ/G2bkCnDbS1JTTpHBg3Ma/vA502sGE9MWibncamx9bHjluHNZsl+p62RXn8rvQ16Tk0iWeecx1kdIxjBNOIDoO2wIQ59IQkIOgzb/tXApyNAPlIrbiITy4I9vY0NKjA1ra9YS6EABMmKDS09EU0tXnME6/HcZ91XMbJfDsCZwRN1wa4O7PD4z3g8a6GPT2KB1cbWOlr6HECjRiY0xfAhDXsw35ogoK8e3vB17esdRfH+BrB4slSGObd1rnBmsAZG5zr6TaaBv2eBP9zl6ZAWG2K7JVsOJ1E3Zr4LDdv3oxnPvOZuTXgzDPPxO///u/j1a9+tefv999/P3bu3Iljjz12+Ldms4lXvvKVuP3220OP1+v1sLKy4vkBAD3nxaezm+Tf3YhjNdp7XlEicYKhyPxQRefcSZNqQhYCijVTAxMEJidYMBg6FkVTE6ETZEmb9WP0GEVbt3c/N1w2yQWdwRx4E5aZg7FqgsJzsvQVZ4ES1J+ZyDbYFSX2VvoaKLGFiskJVkwNe0OEfhRJF2Bpc6QFzSv2jr6obbi+wiGLAE3WX9bX1/HCF74Ql1xySeT7vvGNb+CHP/whtm/fnuG8ZpuydKticnEWwkIIdNla5HuzzpUOk5DTVAadiuH180epVBX9VGWO0yRaI043OUae5XhHzVA0YoALNtQhMp6cUcikWPJfg+UmQ5+PIq8IsQ2RHAxdazXQaC5LlAOIDP62bpG81kFGUibMyOiiqrqlTkZG3rJyyDr9xOnDjUay703q5Z/aOaLGeWfjKU+zApOpWxPHAe/YsQPnnnsuLr30UszNzWX68quuugp33XUX7rjjjrHXdu7cCQDYunWr5+9bt27Fr371q9Bjnn/++fj4xz8+9veiKpP7DS5hBphZMcxME0XsTNe1mEsYTBCAmzCoAQEOnWihxhrZZ6yswnv7tbzG0ipxP/8tDdiwgHlX+P5ywxozOiftK90Uu5xAdD5cjdjJ51tauBdBGpiwj23y4HCoNDu2RaARgSrT8tbBO6bOUE2AW/XoK1Vz/PHH4/jjj498z29+8xu8733vw3e+8x38/u//fkktmy7K1K2K6aXPOhAQ0GljaIgqgrg5hIDUfgPO5AQHLGjYsCx0mR0J1aRy+UtnmTwKf+ZhqE7qTedoUt3gYxv7STTRuljHPFwGvoz9/A1X/WPqz+7TZDA5wVMXTFAi0BwYuJ02xRn17Kgz7xjhTxdVZkQfYK9R0qbKKGKTZ7kx7qSTVUNrBFD+bsUxibo1seH0f//v/41f/OIX2Lp1K572tKfBMLzVju666y6p4zz00EP4kz/5E9xwww1otVqh7/Pn0bGTJYc/cR/5yEdw1llnDX9fWVnB/vvvL9WmtHDhnRiKMtIqpgfZCTxNkvys5BUyUJdKoHmSNUl53bxbhZYsU2bRY1tdDKYOSUKM4tBMDpEg71Eck7YJE0Tez8Khn7wpQWBbCVCafqco5x0mzjlOO+00fOhDH8Lznve8XI89K0yTblUoJgnHsMTFuNEl73yxRVF3A3UW8tRKddOBVRPVb8IKB7vXKkUVVxoZfSenXxNCpr5mRyZqpFmBeurWxIbTN77xjbl88Y9+9CPs2rUL/+W//Jfh3xhjuO2223DJJZfg3nvvBWDv4D/5yU8evmfXrl1ju/lums0mms0MMQiSOMYl5jKa2kYRgo5FQYmolYFklmDCzg3Y48h0HzQCFOWw6CRWT2K28u+cHXJAFz9+cLR4S1pJNQiTE6z0KZYbwOM9HfOGZDn4AKreQLDFtNxAXnVbk+Dvz3Yfz7/9Jk9eVGmScV/XIsZuZtDEgSyT1C/DcK6lyclM9ScAIISCpPTIcHLI+cO202qcCy64ALqu47//9/+eqj2KydetivrQ0NrgghXmaSoLFwxNbX5kfOxtAAFd0Wlrg7axAR6adz0rT18I+u7xebDDVsAxD53YuU0NGr6REYdaq8XToG10mbfAXWVpE1J+LQEBJZqnoFGi73UZdDVtVLCoa+qpvD2ZMNFnfbS09jAHZ1tbTHgM2wYh24c5J7l5psZ5nLY1jg4LLnzkbH4kMZKHtT3s3B3nnc6gwGqaMSKorzn9wGlP2Z6+RVInzQrUU7cmNpyee+65uXzx0UcfjX/7t3/z/O3tb387fud3fgd/9md/hmc84xnYtm0bbrzxRhxyyCEAgH6/j1tvvRUXXHBBLm3IStTgPQ0L3jpx9+NflH7vfMJeHTbo1SFMthkTavOVE04CAJx87dWevweFuMQRdb6TsqM/SYRN9s61TruL29Ls8Pqs1KH/lwUXBPB5SOfpQZFI2SqmhyyVRgef83sennvuudixY0eiQ/3oRz/Cpz/9adx1112pq2ErpkO3KsplmrRTlZ5lQnidINxGuyTX2O2tuqenlZojMipKpKh+kqehLA0GtYuLxpGHV2QVz5pMflZZhoWrIEATxYLJMw1GvqI8aBWojWYF6qtbExtOZYgLSwKAxcVFPP/5z/f8bX5+Hlu2bBn+/f3vfz/OO+88HHTQQTjooINw3nnnYW5uDqecckoRzQ6kiAd0lgwSkw7VRG0H6R8/2MLJD14d/8YZJW87lb8aet5klXxO3tA6YQvZ8twM6/qsRhHmKR43T0xSeJQiPQ899BCWlpaGv6fZuf+Xf/kX7Nq1CwcccMDwb4wx/Omf/ik+9alP4YEHHsijqVPPpOhWRf1R4aLpYYIMtU4WY9k+TYY1M7s+yRJaPg0pdxz8moWS4grD2s5JxT9DSTQ152SoQZOuP/z9YFL0nV2iNP1N9ufhzVvDOwWAgeTPmkaCc5xqAQ5NztqQcoFqYwiqJw/NCtRXt0oZTp/73OfinHPOwZvf/GY0Go3Q99133324+OKLceCBB+Lss8/O3LgPf/jD6HQ6eO9734s9e/bgsMMOww033IDFxWSu7HkSlE/EyXHqhOw3NQ6Te9+ojKXloRE7N6jJbXHV1IXntXVrEN4g7Pv5RCd8d6XIXDuUaNIDeVABnSiyVErng2rzeVFl369LntW014BxK3Xy9TzIcu9kNtDqRBYPUxmxR7kAcvIiEELkdajcGU/OX1xD/eMzrZtXbw6790tLSx4RmobTTjttrAL8a17zGpx22ml4+9vfnunYCi911K2K+kLSjg85MaYvmuFFfzWiwxS9gluUnjl9E0yevX1D45fKtRlK3Typq9Kbuj4e3bfe0dBuBS/a3DVRhBBgggzTtsmMBeFh6XLtdfo2pfVwCgp6xsryipXpL2U4o8RFlpZKTTQrUF/dKmU4/eu//mv82Z/9Gc4880wce+yxOPTQQ7F9+3a0Wi3s2bMH//Ef/4Hvfe97+I//+A+8733vw3vf+95Ujbnllls8vxNCsGPHjlQuvkXRZeHJmBWKqklTRVPW1iBjrGlqHJ0cQ1fqTFXCI84Q5RjZdZ3nGkakyAZhtjwOw/0cOgZr7vp/XkXbiqbM0Mfak4MIlWVtbQ0///nPh7/ff//9uPvuu7F582YccMAB2LJli+f9hmFg27ZteM5znpOufQoAk6FbFYpJxtkA54Ik2gyvm3Fv2oi6vnXbw5w0CAgs0U9UB0OGvI2SQnDAt/niNmLrVMBMsE6qi0E3DZySehUnTUOJmhWYTN0qZTh91atehTvuuAO33347/v7v/x5XXnklHnjgAXQ6HTzpSU/CIYccgj/6oz/CH/7hH2J5ebngJufL0R+8Djdd9LrI90Q9xLIeWcrjdDIpKlQ/2oRSLVkET4/Vx2oSZmDMy5u2iF1RtxAd5TtKL/6/fNxbUn2uDuOVbnD0e/nKEL9BsmyqzjeWhqR9ISw0bybzfpdYofTOO+/EUUcdNfzdqdJ++umn40tf+lK6NigUitIp0ks/LUmLmc4qUR5qkxJ+HUVR55CXwcw25Hn7ax2ve3iNg9ELOmmACX+guPyx6oDlu6eOnoxyBJDtB/0+RaudtmWKQErUrMBk6tZEOU6POOIIHHHEEUW1ZWpgrpwaCkVRHHJAFz9+MJ8qgXE4+bjqKECy4Dynaa5JGu/eSSIs92ZZZEs3kb+YTFp0bpapg+F91jjyyCMT5U1UeU0ViulGZhz2azrbW6ygBmXEqSAehRB8/Jxy8DzVTA5RchL5uuWszxtt4JjiGE1lN5UTbcJGvPUp8+/GL1c+H/nxiw8Pzk3NCkrjkCbXaRXRSAIcMv6VST1Ok9BoKI/ySWcSdWt93MMUihrCGal12MBXTjgJXznhpNK/d5o2BqJEWJSQq7vnoG4oUZGFNH08tE/k/MCoEMQJwQl7SvujUCgmkknSSNNUoKhqDDr6yYMFg09EtEZQf0/6DKRZa7GAmgx5OXgwAfzJ7VdGvicqHVamGgEx5+BPWTFJ403Z1NGDv7YozRqL8qGRIA/Dmduzzch8NEWeUE0AVjXf3daX0LFWcjtekcnssxhrqsh7aHsd2pU361DBlonRTxlk8dicZBoxp20vROx/yyxIgt7T0oEVVwTV9afb6V6Ou+y60OMwg9be2J4nyusUpeeLUigU9aLuUTp1Db8PNsSVU0m9Ctz9xK1X12qi4xz9P0tGdo0k1zFhkVrKeKeYCJRmjWXmDKe1q7qrKAwugkNd6jSBCQjMGydW3QwA052D0BZ90YN6UNG3Ongb+42+UbKVklFxqFmlH6Pr10yKOT25+F93ba50B//294+4cLOkOU6nzfjoHnuZINASFPqYSJQIVUw50x5OrPBSleEs7cZ9VdXWq6DMjdkszghFpbmSKWBbZ6o2SifRm7LX2p/j1KEI7afMOzmgNGsss3GWJaMeXoUsshNlkFGvbJx+ncXztA6GSCDeeG4UcL2TLjDr7qmikOP75x5bdRNKxd3Pp83wq1AoFLNK1ZqkyrUVkwybcvKrR7W1DhFQQegTHhEz9IotKJUR52T4UxTuZ2yp8dbwtgzWMBsVRUtWgRNRGbRBEKQ1/UZbkTL6UOlYhZuZN5zedNHrPL/rg5LAUXlLHOKML0Gvx4WRKoJ50ZZ3VN2EIWkLzqWhqckLAHe73PktZSurd6xijZoyz1SeZPGgNQdem3Heg7I4XpBxEzAlGizeBxcEAjxWCPqTwqdZWLjTO+QpCOf0TbEiRSPhmwKxbXGdbL+vYWNdB+cEvYL7sXMP3QbC4y67Dsdddl1gfzn84zfY73eVm487N3dqF/897bHuxGzORfV3ixMwEf0z8TgVStP+KBSKicegwUU88zZEBs1NMpiiF/sejXgDFIsyTt2/Nm7wSKvlmnQ+0fsdT8igedw9f0d9ViYlEyWap08YpCndxnZGb809u0ff5W+jRoDv7fxSpuP7c2/KkJfuTGuQXgipBxB1D93RQ87/zUFaBc4J1jfkA3qjniUnlYYAh05HYpkJYMmV98+g9u/tljfkzHSlenBf5zKcWDqMhhrj3WNUozlqc1C7giK7ZFhusly0skaApeV+5Hvca26aMJa7U/LaOBKlWWNJFarPOcfPf/5z7Nq1C9yX0OMVr3hFLg0ri6M/eJ3HeGoNdhX1QShn0srSMjsTk7LorRuyxtOoKon2ZCOwu0ugDcKaq8o7KONt2mPyA1FYXz3t+q9KGU91KjCnC6z0ixn8dJ2XbjwtC8oFeERpS0ckMGGHfDsbKO4qsVwQcGFBpw0AFrhg0GkDXDD49SAffI4Lu48wAczrAv2EYogwAcZH98R5FvwLrzrtuN559tEAgEM/edPwb40GQ6tti6+mPt7Y9kBvBi0o922ZeLTrzTzd4xTGoBpoXufuz3HqFn+6L3VAlwFz+qifcEGGC5KG1kCfRYu4KvE/Bs51bGrcE57V1Ph0GEejICRD2FN9rs0DDzyA2267Dc9+9rPxspe9zPPa97//fdx33334vd/7PTz96U+vqIUKxWQjW6VaBiaS55VPGiZMQEFK9L355YqORWM8D5FGDDBhBnwiOVlrBMQZTGWNzf7UAm5jZCdBGy2TjhUJ3WezbSR/vAssN73t7TGCI7efHnisHlu3/8/X0aTzYMKERka6iQt7TWVygrbO0bHk+7Kuc/R72thazDJprJHswbUG9m3JuV26NyoaWnv476A8srFODlSMrWcM17VenE/vCmr3k9H1c55NizO4/d38tvy9PQLL9OpMw+Do9eTvRdx5O9eQg0GDPvi/ASaCzzcsVN/znpg8vs75OH3Z+b3fp2iNbiNWTGDeZdXa29Owtc3RHjggMWFCoDkct7iQz2u2sreBRjP8+c1SU6JWNqEp0axAcbo1seH0Bz/4AU455RT86le/GtvdIYSAsXom2PMvTNPAXDkz/Qtw2Y7vPoZCnrse+2KCd2vDgbIIkhrTo+ixdfTY13PLc+rseqcZxLkg6DFg82DHcrnB0GMESw2vQBZCoD14nigRWDNHk7JGRG1ypa6YGjY3LXQsirbOoVMROYkXnRvUESQNV8VVp9jB3r4+vKYOTg4hLlhhCxShBefcZMJOV8CE7RHa50BbHxdgUR4zG9YTmdsXmRM0wFBNqQgcXzsMmNNtI6i3OBTGjKae75fsyzLFofztdGNZowUOcxlJg/K1On2hKI+fPPDPh7UShmUyJfmiLrjgAvzt3/4tvv3tb4+9trGxgbe//e145zvfic997nMVtE6hqDc6aZT+nUWPue6ImCz4DTXG8O+2Nloz6XDjDQDauq1HW9oCDNoEExbm9GUIwbFhPeG51j2+7m2zEMNja0S+JiyR2D3lTD5ntxACJu9C0+yzlfH4lSHKyBj2mm3slP+OBp0bfM4AJRqIINiw1gDQ4b0M8qCTMUQ6bXQbJOMcWw5Y6KNjUZjcBCW2N29bWwIA6NzrhSrAExnL0hSHAuxrbfLRxvejXQCggxQODWxuWVhq2I4Rc0QDEyZa+sLgO3V02dqwbyRpbxzuaxyEzLlSUl3eOMukaDRZJSnflpb76HbiTWZRDjQTwZRoVqA43Zr4LN/znvfg0EMPxb//+79j9+7d2LNnz/Bn9+7dSQ9XGnl7uvmNLLLPSp08t2YFR0BWXYgkbeJv2T6T1kveCYsdM3aEvJ8QMhRGXBAsBHgB1AVrsPtth8Ann9CqzMkaGp4v+fm8xrygcPG4HF55QKmQ9gaXuU+OMTKsSi0HsDG4ZjIbL+7n0gnVr0sO37rg7iNpvEsv/8MHc2xNBTgiNO1PTbj55puxtLSEY48dz9d79NFHY3l5GTfffHMFLVMo6k+HrUS+npfHZNlOGUVt6OpUDPV6WBi1IhtbfNkj0qxNbQ8+gbaeLCWCH1ndFKUhDGobcrlg6LAVdNla5LH6rIPfrJez0bdvQKaOJA4mJEILzFVU4ptGeMe71y5F5s1tNPIbG+LSpqzstTdknL4amcZtkvPOTolmBYrTrYkfufvuuw9f+9rX8KxnPSvxl00jbs+l0d/yC+9UpGPSN33qQlMTsLgdYttlAgsB46JbANQp9HZeL9agmzbFg0HHd/iXGxZ6PNuks26RoSers4CSTdMQhuONQEm4wTELTOTv6Ztl7J3TOXa7nD9sY2u1fXpaxzLZseKW9xwX+tpLL7op9DVFfvz617+O1Hz7778/fvazn5XYIoVinDrpj7iN+j7vALBzGOYRbs5TRrNVXfBJhiWDYcFg2NPT0bE4KOGJ8v9nRWgEnBJQid3iMvqg7H32h+mHUeR61aDBkTNROBGiusETRc/5o2DXxTrmyT6Jvrsoh4B9mnak0/Z5EzoVMCLGB5ln0qC2Nq26OFSQAbXMFB5ulozxvux+HoNy4LqNvHHOTWGpthT1pCjdmrh3H3bYYfj5z3+e+IumjaD8QSYnQ9d+FY5fHYsGAyUCTU3U2ujAka/FiPPsOZpMTvDoIBxhpR+8oxg0+dQlPD+OtAIxyEjq/1ucqI767iCxHXU4d782fO3Yt41cMDN0zyLDyA/95E2e/KZ5wwWByUmi/MJRfP/c8d3OWaI3GJOcYlAzxZTs3uu6jl/96ldjOe0BgDGGBx54AIYRnvJCoVB4MWgTGtHHvMnSFNfJghB8VJyIUBAWbMBlws677s4NWQRPXxj/Gxe2RnKPPh1rFT2+AQGODWtvaI7FMsnLAJm2yFEROFpOp/IFrNwkSQOQBrdOjtOdFFohoeYyRrQgPW/xPjasHggo+qyDPuuMvceuBD9+Xv41V1jfi/SMzLhedCMEH+u3eaXMk7m+QTYXSuxIMqf2g0b9Be7q85zVhinRrEBxulXK4/See+4Z/vuP//iP8ad/+qfYuXMnXvCCF4x96cEHH5y4EVUQV8xFMX2kXbQXWTwqy8D94wdbOPnBq3NsTbHkvUPXzXHSj0NKGFGCH55zTPR7SpinVwd1g6a5GJcMeXpRZDH4Hf7xG4CmLdYjc7a6mOScoJPc9twhSO+wXCN58tznPhd33HEHPvaxj+H888/3vHbOOedgZWUFL33pSytqnUKhyI2aLX7zpmzD9KyTxuM0LUHao05G6DDSOhp0Ks6SJiBAchYqcXlY816PV+UdW1umRLMCxelWKcPpi170IhBCPAPQO94xqnDuvFbn4lBFk2SRrsL4FXlwyAFd/PjBgOQ5GYgyeqT1Ki3K+7qlRT9IdpXPfB82zknpIRr+EDxZiZXVaGq4NuYn3RgW1/7lhoUVU8OGRUMXVvM55JKKE31x7ZwUj82wOS5p8bg/+r8HALg+4h319nIUQqReuNVpwffWt74V//qv/4oLL7wQ3/nOd/B7v/d7IITge9/7Hn784x+DEIK3ve1tVTdTMePUa56qfqxOW9ymjiS5t2nrCZRJkd5uRTp7xH63Tz8V7XEahG2PGPy7xkU0Jx230VSnDeQcRBkI52RYBFnq/Tlp5iTfOclMi2YFitOtUkvB+++/P/GBp5GoEHyN2CGzPWaH6/fq1X9mCmeg7DECSoCmy36kETunIhMAHVQMX+2XJ3DdO3QUmrR4CssD+ZUTThr++y3XfD1z+4qgKuFeRvEiz+8FfGGf9SNfDxIFeecMrS0prrd//HYMkXv7ei08UZwgiKhnpu4LASbyM2de/ocPDoyn8vzwnGPw8g98LacWKADgzDPPxP/9v/8Xd999N37yk5/gJz/5yfA1IQRe/OIX48wzz6ywhQrFZJK3x1bi7/d5mAqqhbaIEi0wnLgutLUlmLwb+764DXX/5jhhIjLZuPv9VRehLZKo9YqjWcpK2yW7rshioPZ/h/s+RxmnnRytSXDWhpboQyeNRJ+NksJmghyxRayZwory1mFDRyM6LESvscKI84xNQjtFf1HEU5RulTKcHnjggcN/33bbbTjiiCOg696PWpaF22+/3fPeSYTW4WlW1B4m6jHwO5x87dVwPBxO+to1aKRLR5SZMI+yJLvOFxx2Sux7zv3RlUmaVQqcEhz2iRtjw/XHPldQP8oaqm8ypCgfaCMgIMCHYTCFPCslp1pZd6VQq9OzP8nI9P2kxaFeet4/I9myozgEeGpDd50M5M1mEzfffDPOPPNMfPWrX4Vl2Q+Drut461vfiksuuQSNRl2uukIxGQiI3HMumnwULZJmnrLn7dmkyoIvE+ElK3igI/UktL0uMEGgT0luzSJC9YHiPabDtFUSI/u0FoeaFs0KFKdbEy+LjzrqKDz88MPYb7/9PH9/4okncNRRR81kqL4qBjUZ5LkTrO73ZFOv4T05PNoBYsiXj3tL6GuECQhXR55WIRBH2LW0F53FXJO4XKcj741Cvr40shqYz7hiwkP1B/+l/WydWF5exhVXXIHPfOYz+NnPfgYhBJ7znOdgaWmp6qYpFADqVaQyLoLBeb7rYnSq23jjR/beRp2Hs7DPO+VNFkNPna57ZKSL4InaygSpRXHeujxfcdgbFtrw33GYFel1SjTs6V0BjchrL38BW8CXfoyPr0PSFK6qlUOD7CKtZkyTZgWK0a2JDadOLlM/jz/+OObn51M3ZFqok3BT1JNk4iN5n7r6zW8aeKDmh+0VwWIn9DwE6Z/9MN6btJVDvsm8EBrJ1cLl5IlhMTla4/qFZVGcdv1XI42ns0athJUkXIxSiyjiITW6yXal2ZS79zVZ8G1sbOCiiy7CnXfeiUMPPRQf/OAHceihh1bdLIVCEUAVw1/Z3ykrt6rIuZeXUdat75x/n/m8U3H+3dVFW7n1v+2Zluz6FpUn0ukPReSA//QR8RFwaSnDQ88w8i0S27XW0NTmcjteFYQVhKqbx2QVTINmBYrVrdLmhxNPPBGAXQjqjDPOQLM5igVmjOGee+7BEUcckUujqoQrV8Kpw7/pM423+CsnnFRojlMu6udJ3k2xIykLLaDQoi3qvMKxTh6FeYbHhE2guW7C1uniKRKjbt9k8N/+23/DysoKTjjhBFx77bU444wz8A//8A9VN0uhUATQyjfyPxJlaMhOVdewDGN3Hef4JMZejQBnff9KXHx4ccbTNGxuWXi8a5tv5nSgk9PyjAmAS3THfZqnYqUfrQHcmxZJvGPT5g6N6s+TUlRVkR9F6lZpw+mmTZsA2A/D4uIi2u328LVGo4GXvexleNe73pVLo+pITG5wxQQQN3gmHayn0QA7SbQqqHJYRrXSvIS0rnNc+ur6VLqO8pCti5PgnM7xWLf+D7YSgpPBNIQ9ffvb38aDDz6IpaUlnHzyyROfx16hUKSjTh5FZSJKFPtCCIAEX+f//e9XwEkfpBHAQvC6pfgckfHHr6PRNIg47VmFNk0695d5rfM29Ietu/3eyf1e/jtCbuOu2gSymQbNChSrW6UNp5deeikA4GlPexo++MEPqrB8Ram8+EnvkH7vvXu/MPz3pEzeefKWa74OPadQdj6j+XvDdl3T5gENEl88wAM1KzL93RHVnvymLDrnpgxBwiOpGHnykzt4+OHRplxcLtBZQG3YTS5CiAxhT/Xo90cddRROOeUUvP71r8e3vvUtHHnkkVU3SaGoPbOoPavCGSun1fgRly9Xhjy0VF3mpDxoaG2Y3Ix8T1029KPYsOLfUzVBOU6jCFpnNZoMlpkuFDBoLA4qdJZr/04g3OuU4nEaNCtQrG5NbF4599xzAQC7du3CvffeC0IInv3sZ48Vi5oW0iQoVuTPXY99Ufq98znnv8zLeFPGbkyWHEJxOTWzYBQQ+l40sgbjJDkVZd5qp0VId8GcudpkJFGO06JyT6Xh6je/CSd97RoAxXhOZF3QBhnVrz/9dQCA4y67TuLz8R0rKK3DJFHlgqNM76A4pmH3/vLLL8cFF1yAb37zmzj44INx9tlnV90khUIhwSQYfvJmkoynVbRVZj1z028uw9FPOT3wNbuIUX0Fvey82WcdPGX+3bjvic8X3CI5bE/jgL+7ikY57O6OL3Lzkj1FjBlVFbIqE6oJcCs/x5qqmAbNChSrWxObmFZWVnDmmWfiqquuAmN2Yg1N0/C2t70Nf/3Xfz0M6Z90opIpB3Vy2Y7foPV6SKaRdYtiXs9PkISJjLT30REecYNM0l06YOA5WJARLEu/fd4+Ar/Zm1tTAAArZr0mY8oFeAnugc7uZI8RtHWOjkWl7s11p74eR342qkJ5co/aX6xwPHMpPxH98MPtodE0T8LyvpW5bKFcIFAZx+AYeuu0Kx2FrICnEjXVvnTqgzjjigPiD6QojMXFRfzFX/xF1c1Q1BBzcmxUpeMerw3aKvz71i1guQF0B/kOGwmm5T7voEHbkdOTRnRYop+tkRLcvwY8fSGfMd2gTXTZWujrK32tkunDX2A5ybWd1wX29otr9E2/uQxPnR/3xIxar0S9ZlCgHzBOpI3eypPfrH8OaZ0ULIsG5uPM29lKI8bQA1CnxScwLss+EaTJdYOn9iqNIsszPq8LrBe81nTmCpWCKz+K1K2JDafvfOc7cffdd+O6667D4YcfDkIIbr/9dvzJn/wJ3vWud01M0YA4A4fuMrzJDoSynkzKcFodTNgTubO477L0Xm1FOTa5K0Rag0m5pdnCWJa0E5DswC3zPvfz8NM9JHehtGRE37ckXntckEQLDSBY+P3wnGNiP7duhS9q/GNIQ2ugz/pjnglMEDQ1AZOT4W5uSxOJ8vg6nrLEJWAcIWhIGt+jjKYtbQFdtuZpux7wrOUprPPqY9bg+lqcgAlAI2Js3M7y/LvHHH+aBLfXNyXeZ40LV1hijcJiwmACaGoCPUYC770Mt7znuNDXXnrRTWmbVgp25eGUYU8T5DmlmE0MqoyneZG1cOK8bt+LlgYY2mhjqkjDYN08D/PyeNKN8U6tmVwqmkE2aqtB7ZREYfN4b7DuXDA4VvojkbYe4dUWt5Zxe5vu7QFbWrYedZ/W0U85fSzCj4DC4j1wMDBuQqdNRLFgMKz0R33jvz//VHz0X68MbatfDzlYJs3VESSJ4V9G34XpTcuimG+PKjaF2QZkNZzTry3ujUZra3aovvOMLzcFHjNHbfP3B1l9HGXLcDaBmDBh0CZM3gMVGkzeszcExMg5qMModCoCPU6dDR53myyTRrbR/VxSKtDvU7QGmb00YjvTuNeFJrfPpalxGLSJvtkBIxZ00gAlGpgwbY0mHGem8Spb/uct7Bmz/z54b8JBl4v6pHZRmjWexIbTf/qnf8J3vvMdvPzlLx/+7TWveQ0+//nP47jjwhc4k0zQwB02qNal8yumg7J3w5sax5xud+K5gTdjqylAiQaNsOHkMufaWNgYeGeb3PaS7YVsNKStlpgWDjs3VMeiaGq24NAGi4mORdHW+aDomwAlQD9j2zglOOwTN8YaTxt0PHXBqqmhrXOPF557LHELD3e+KytBm193xTcBBAtev/GOCYDSUVE8k9v9wRHwMt6PTFjDhZVG7HOweHoDmgxhoqbLgHlOoBF7IcIGQmW5wbBu2uJu0QBWTbtfjJ9L9PnKhOi7cYtaqnmfC+e7uBBD4aeIoGjrQAaE4BnyRc2GCFUoFPa4n2eWKZPb864T5VajDCaxMGHrBbNPQIlAjxIYTECnAi2N4Ik+waZGG006By4YGKyhdyl17QT3eQfAyEClEUPq+4OcZZhBB1Ej2WnQNoTg6HPbkMfBoBEDDdrGCn8UBBqag3XnWgIHCL++tkwaaAR2YGJkcHfjrynhhIsTEGjUsI2ogsGgLZiiix7rwm3Q24iI2JTBHfHJmb2Rb2j2VN+g9v9X+hoWDI5HOgaWDIYus2BQe60yp29Cl61hXtsERjiaXfs6U6KBBeQ1DdZ80W3UdR4ZmWrykYPEigk414cLA5tbFuZ0jn2pBkJM6KSBLuugYbShkwZM3hsehxJtkL4rHKdb7u1FP+R5rME2rFHbmLC9eQixzy2PzXzZNvrfE3e/TN6DAB+OD1wwUKIN1yhZjX5Zr2tdJKzSrPEkHt22bNkSGI6/adMm7LPPPrk0qgj0kNDtmy56XaLjZPUWVd6m5TIp4a15kyXcwd9HZScU2/skxuOxJjmDHaFkG1JJ5f2kqUVf4zRpG8LGPDdCI2P3ZGyXOuWYZfLusO/Ynt4pUk9E9Sea3otZI7ZQ2dvX0GEU65aGXV063CyomqBrPul5opIY+acFkfE/hUIxmbjndJ00KmsHJcmMpknGnaI9jBYCjH4CHMuu/V8Ohjl9k8fYFAYTI6NZlYaKHtuAKXpoaKNCmEyY2GBPFPq9jlGKat4ImqTrUp02PQbqINya+n//+xXybQxwVDIZgcmcCBz7/0sNBi6Are3gAk8a0YGBQa/XTPf8RT03QdozTI/6DdNckGH/E0LAEn3MG0ugGL+mfdaRbm9cO4omj/EgyhhdRBh/Hvj77CQXtFWaNZ7EvfDP//zPcdZZZ+Hhhx8e/m3nzp340Ic+hHPOOSfRsXbs2AFCiOdn27Ztw9eFENixYwe2b9+OdruNI488Ej/96U+TNhlA9MOYBidsOmzCsY0x439XhlNFEurobSbAPTvKczEGuio9HUxu5wF1cgPl9fwlNQDH3cceCx6fgnZwZY28lkWlCkMByYtD2V66xXbOvMWH4+kq68ERd8/S9KVAse3rS7LPvDNnTgpFehorFGVQpmZVTDbuja4NK9og5jboZWESi3CG4Wy0BhlPHZIu1NPq6SQFQKOwK1Y7qXbSG5niNLWMdtqSQ9pdS/QhINDQGpmcD9y6KK1zRUvTYXICLhjWrT1Db0g3QvBKjDtbojMbxEICkg+7+3IVmwCy3tthG+Z5PFKNhv0M9XmCYr6+a5mHsXdMwydIq6eYPBJPs5/5zGfwgx/8AAceeCCe9axn4VnPehYOOOAA3H777fjc5z6HF7/4xcMfGZ73vOfh4YcfHv7827/92/C1Cy+8EBdffDEuueQS3HHHHdi2bRuOOeYYrK6uJm22QjHVnHzt1YUct63zoRhhIvskU6fq7VURlBdu0fCG4iw1Rjvksnln3bl4nBylp13/1dD3u/N1hYlV5y0a8YZfxXnpOuJUZqESlSMvL+OpzIKSCzIWYpY0xLGonX7/ta7jhoqDrCAu6hzyWuTmgRP2lPZHUT+UZlXkgcX7YMIEF2xohOix6p75OnsLtXWO5YatkXqMoGPle53ynDI0MvqpmqgwfYeypssk18OJlpJpfxTr1p6BsbSY5yqJPl0wBDY1BJ48b2KpwaBndDxoagIdJ09ojvcw6bE0YicYMWLy3sqQZX3IRHzdizyoQ1GzIlGaNZ7EKXXe+MY35tsAXffs2DsIIfCpT30KH/vYx3DiiScCAC677DJs3boVV155Jd797nfn2o4bLz4Bx5x1rfT73RXhnMU1G7jfO3kTFdUwr3PwYWiwABdecVCVoHFP3nZCahEb7iLLV044CW+55uuZj9NjFD0G7NuysGZq2NzMd+usLqH6WaBU5GIAjhKsK/1+5C6yuwCBQUUhqQb4bMyBgehEYI17jahZxw3CROCMK9uX6mwsjcLJeVxWqL5MAY+yyBK+VGdDxixTF82qmGx02gAXrBaLTafgC4DAcGHAzmdoib7nvUVwwDyG+T39uHVOl62BEAoKDRvWE2hq84W2a9bRaRMWky+uJEOZIc2UDirUQ8TmDJUlixGNw9486XOBpkbQZx1oRB8zQMYZfYMKB+sGB+f2Oedt6JvXo59/93jWoHbrk6SZissdG0QjpMCs4zDRYxRCcOi0AQER4L9rU3Vxoyatfi5QmjWexIbTc889N9cG3Hfffdi+fTuazSYOO+wwnHfeeXjGM56B+++/Hzt37sSxxx47fG+z2cQrX/lK3H777bmJ0KM/eF3iPKdB1MjJRTHAXWhHUS3O80E1AUxAGAONmLezCpEqqxBPcu6dLARdc9nqt3lRJ4PeNFMrj1NVoXTqqFqzKqaXpkbRyzB+TVoRKFnCNoaF4ECE88GsLOTLwrmeztxUB6N/FmSjuaLQdZ4q92YSZwfZfrzcFHjM9OYCrULzCyHgziIVlooMyCdNQxTue+ykyeBIZzgPW/tNyrpWBqVZ40mVEWfv3r34whe+gI985CPYvXs3AOCuu+7Cb37zm0THOeyww3D55ZfjO9/5Dj7/+c9j586dOOKII/D4449j586dAICtW7d6PrN169bha0H0ej2srKx4foLwV0dM4m0axDSKlWmjDo90koGlivYqQ3Mykk70ZY0TZkGevWGeIElx+lneNq44o7b/+/zidU7nlYeaKxLic81WBmpFURShWQF53aqYPpRxL5yk+iAPQ16QhhAaGVsz5oV7TTCnjRdeXmrk4x2ZlToaRfIwfGYlS/0UmWsaV6m+W1H3SNsfmEin+7udcT+/LE4s7nGXkHokh+7xerRDEU1ij9N77rkHr371q7Fp0yY88MADeNe73oXNmzfjmmuuwa9+9Stcfvnl0sc6/vjjh/9+wQtegMMPPxzPfOYzcdlll+FlL3sZAIwVv7B3MsIflvPPPx8f//jHE55VNkZ5AO2wcKdSd5VVG2cZPqi62GN2HsZ5V/EijQCrbDRwB4U5FI3Th5OE6Vc1OeZNnUP1GynmLDvM2j6nOGE9r9uvB+U4DaPLiuuchImhkUk2XLxX4/s3K9RxAePGmQ/zMIqfccUBAK6PeIcxGvBriLsYSJrPKupFEZoVqEa3KuqBRvTcQofTIsBBBn40HCwkWB/QSaPWXoZNbR6WyB5OXlUeQ78BhxIBLpQxxY2jL+xN73zmyE7OxaP1gIK5/vb6lwvOHNHnncBiUIm+3+DQ9cnUD3kX8vZDQIZGU40Y6PPO8DWZuboIgtIMVIXSrPEk7qFnnXUWzjjjDNx3331otUa5Lo4//njcdtttmRozPz+PF7zgBbjvvvuGOaT8O/W7du0a29F385GPfARPPPHE8Oehhx7K1CaFIow8DANk8F/eZE2qrgi+v+6wl6Ti2l28qUha+aTNzYU6eASkwQpot78/lGWrKyJ/7aTwpVMfrLoJmXDCntL+KOpNHpoVULpVoYjCX6egzmQpDrVu7cm1LW5HhbB/F03S+5a2fsC0zpdh5+V3Ykh6ncPWL3HHWbe6yb4oBGdt4O+LQUZnAGi10zuRBPm0PKl1Opgwx/6+tf3OwGP407dNa9ozpVnjSexxescdd+Bzn/vc2N+f8pSnxIYjxdHr9fCf//mf+L3f+z08/elPx7Zt23DjjTfikEMOAQD0+33ceuutuOCCC0KP0Ww20Wxmr+6WByqUUxGFvctfrJXry8e9JbKyehTTUuDM75AW9lwm3fUr0yshbiyJEztBk/w0hzQnFZFtjaPjysOUteJpFGGCy+5P0/HMuclq+L3lPceFvvbSi27KdOyiUYn2p5s8NCtQL92qKIc6e24qbDgntTaQlKlBVX/Nn6w2ApnPT3sVeCC9x+Y+zVPzbcgUoDRrPIkNp61WKzD/0r333ot999030bE++MEP4oQTTsABBxyAXbt24S/+4i+wsrKC008/HYQQvP/978d5552Hgw46CAcddBDOO+88zM3N4ZRTTkna7DF4iLsQnZRtTUVqqo7qdBtMix5o0hpNk1L3x2ZSQgjy2GzJmtZhJLQm45olIU9bcaJ7FVKpbhZEbRZkQvWpDnC1plOUQJWaVTF9CMFBEqRsmlX8kSuyYdpxxr6lBsOame/1z0MLu/XqWorCQ3kjhHAyUg36bPVtiqMMx5QqWG4wrPS1Qb0BMqwc70bWo7hO+jOLF3SDyhtPBYTaBFBkIrHh9A1veAP+x//4H/iHf/gHAHZejgcffBBnn302TjrppETH+vWvf42TTz4Zjz32GPbdd1+87GUvww9+8AMceOCBAIAPf/jD6HQ6eO9734s9e/bgsMMOww033IDFxcWkzVbMKDIiZhod79JUeSyaWk3SgtTeo9bdxjxD3htNhn5v+gSlDGHjQSei6ieQg0E7x/CDSdgEKDPagltIWeayeITgqUW6Evf1Q2lWhUKRFid/onsOr8pLi/Px8OMwgvI+yrabi/D6AbLevEV4/cqGFRe5Psw7ldXe3njNgjp4TDe17FomqDiUIn+UZo0ncU+86KKL8NrXvhb77bcfOp0OXvnKV2Lnzp04/PDD8Zd/+ZeJjnXVVVdFvk4IwY4dO7Bjx46kzUzMjRefgGPOuhZcYpRMU4ui7h5500rY7azKWDoJRo847HNIdgEnLW1FmkJRaWA+z4kQx8RcmVWjKVD9JkkdRGydmPb8rQLpF8aqp9SPOmlWxeQzyaGNAmJYUKooJml+cBwD1FqvXIruI0Xdz7wiH51Cs25t68lnG+CwUnYKil6MY8K0QbkIjWquO0qzxpPYcLq0tITvfe97uPnmm3HXXXeBc44Xv/jFePWrX11E+yaKSS2EMks4kyATyYwoZXpLuvtRHUSYY8ibJBGblTpVOUxKSwPMgov0Ov1yUpKBF6VhkorPIMHKGUk1vkzDJkwRECZA67JTk2H3HjOye69QKPKBJ9S1WUk8/8u6OAYgoz+rNESnNUQFhb7bHp41mcPgDdW3f7fv+yQb/ieVvf10jg+yofBxa855vRX9hgH22DC9a8Y6RVDmitKssaT2fX7Vq16FV73qVXm2pVQmeUdAEU9d1s1RCCEQEAGTipOvvRpVTlKTYFTNwwid52Qpm6crl+/iBNed+noc+dmofJE2lIpCREEZz2Ro4SXXn9shVTvrzCSMZ3VhmoueKRQKRRhMAEaJ31e0x2lWlGEvf2xP42RzbJwjQhqj8yxpIjtfKwWQj0dEZIFSLdmFdZ6xqGctLlRfNzj6vWRjSdg5BK3zsq5Pg47pXyfZ7Un/PbPUnyedRD2Vc44vfvGLeN3rXofnP//5eMELXoDXv/71uPzyyyfW++Wmi14HADjmrGsBAPrA7z1NOKtGRKxxRq3pisedrzCJsayOYbRbWgxc2F6Efn78YAsnX3v1wGjqRTfKMQ65B/uogb+qPYo8DLpUE8O+QakY6yeOoSZqI0bm/LkYLwTgXFPD9Z1cjLyS9Yx9lvgekDCDaRqjc1Obj32PRhCY3F4K7r0X3Y4GzklkP2QC6FjJvpAJ7/V3MOj49YoyOjvXOqtRuluyGzoTyX/ijjcriIz/KRSKycStPRpau5TvdNYXTrE82Sg4i/clju31s0lqPJPlwXWgl6FQjJuWthD6WlCOe0c3B+lnv1YKYm/fvgfOTxiEEI8+SuLhNa+Ht2OoU0OMX0VsiKfxTjO0cN1Zp3VYlMHXHz3EOQEb9FvLormlxHL3E4OOtkU2LIJFw7u2WG4KtFts0IbgEH33/9OwbnWl39sffE9UqL7/WbMS6vMo8sitSgfP8sJi/BjpwPVk56ARe75o0uqdOpRmjUf67goh8PrXvx7vfOc78Zvf/AYveMEL8LznPQ+/+tWvcMYZZ+BNb3pTke0sDWuwim80k+/s+EVK0gW6ohwcUcNE9grkaZHdaNhbcj7KhRIMrmmerTJYGmgSvz52h1Jz7vr3QCS5BfX3zz028NhuY966Fd6GOZ83ZEsjaGrh44jFCUxOoJFoQR0EYQJCI6CaGJ6LY/jLS7yWuYvaatv9yhGSfZc4dDYeghYzi8Z4f7R8Y7kZIDQDd7Yjrp3QRq+5rzcA6K77blAxNEBqZNw43pqw3bd5w7kvvsWSxKL+i6c8JPUdd364ntEvAjzTj0KhUCSF0gwbkpKUvUh+pBPsSxtUuCgtWYqqUk1guSFnOJVhY7B+9Gvy9QCDWBhRBrJdA/uXKTnNmLwHIThMbn8wymDajPFaNH2Gcb8B0kHmfoT1iyAsEW388mu6qHsYtEmuuc7bMWC68WuepPqYCXPs8+5j7O0RdLq22I0Kzc+i79u6Mfhu5vl/n22EfibKgMk5kbrPrbY1XDs65+b3Ul0xvee8t6eBi1GUGRPmsL1J2ViP7mfTErqvNGs80qH6X/rSl3DbbbfhpptuwlFHHeV57eabb8Yb3/hGXH755fijP/qj3BuZN5SJoYG0KNwPq6Jc2jnsMtWFsr2zTE6GxjuNAGumhqUGgwCH4cpP5Z4INywKLjAw4InahO1zQdDUGHqMoqlxaIM8UpzYmxptnXsMYisDTeIY1WOP75sof3jOMbGfYQKYp97jM+E18vnpsXJyBTnnM/KulfMgDMMR2EBBqRzoeG5QtyBsuL1RGTA/eK9BBcyBwXlr28SaqaGtcaznsNElXSVW83qfWhYd7ry7+yQTtnF8knAWG/480mn7wC3vOS70tZdedFOqY5aFECJ1NM6kRvEoFIpxyq44nKaIbRxpwrTTsmFRLBgcK30NBhXD9ZQ9fwMN2kaDtsHB0NaXwAVDn21Ac3nldayV3NoTlwLGNuYIqWsuhECPraOtLwEACKFj/aM50CT+KKTINqTQCgaVN54CgE4a6PMOGrQNAQGTd7FuduH2w8rqMSzjdbhmUiw3GZoah04FegOhSomGeX0fmLyLtr4EJiyIgQs2AUGfd3JNMaHrHJZJx7SfWzfv6gJbmrYe+vWagS0thgWDYU7XYXITQgho1AAlGgzaQpetDT+b57iRRxouimTOPBYnkR6nfgOvrvNcvU79UKIVMhZnDdXXqcAar97ZTmnWeKQNp1/5ylfw0Y9+dMxoCtj5Ts8++2xcccUVE2E45Tl47IR5KsYdepbCFPPkxU96h/R7/3PPFwpsSX045IAufvxgcKLuLDvnMtjGSPshmNM5KLEF7UbAhOd/Jsqs6t6xKJYaDBqhw2fP2dSgRMCgAh3X+xMXDcsppMwx7mYlyQ620MjAW7aY8C17ZzfZsYvctdUHnpwmJ2jrHAYV2NvXYXICK8WEX4Y37STOF7LPkMz73nHl/gCi8vLai+RDL7y5tl6nZXHbbbfhf/7P/4kf/ehHePjhh3HNNdfgjW98IwDANE38+Z//Ob71rW/hl7/8JTZt2oRXv/rV+OQnP4nt27dX23CFYgpxe9j3WQdNOhf6XtuTLPvcV3aO06I8jJqaGG7gLzXYxETvMVGOLkiL27i332DpkKa9DdpGj2+ACwYhOFqajo6Vvi+k0X0Lhu34sKXJ0GMESw2CjmXrznVrDygJX2eU7Rm3X0tOywUZJbusg4bWAFCvvuUvaCbrgZ5HwJTjeNBoRt/Hqgp2U4snCtefRJ2fF5OoW6Xv7D333IPjjgv3/Dj++OPxk5/8JJdGlUFY1V06yz1YMVGEGU3zZMGwc6wSUJicDHeUksqOKib8oBxWDlUKkCBn96Bw8SQwkSyES5Y8Qs6isA2Z438vKs9V1Lm4RZY715DM+V9/+utw/emvKyVcZ1rCYYLyxvqRDdWvK2WGPa2vr+OFL3whLrnkkrHXNjY2cNddd+Gcc87BXXfdha9//ev42c9+hte//vV5napCoUiAJfrggsESfWikTHNnMHWeV3QqsDTQSCYnhUc15bUhXjV1yheaBCd1UdZaDevmnkDvwipyMS4adsqopy6YWGqwxEY9//M5p4vItF9l4Riow2oa6FTk4hQy9r0BfXvJmMz+DtTHKF52qP4k6lZpj9Pdu3dj69atoa9v3boVe/bsyaVRZXL0B68bFohKSlBHD7O7KntsNu567IsJ3k0LC9dX9zEdVRWHAmyD2ISlhRyyagLNgI1zZ+zRB2HnaZApdpAHZYZv5GW47A1CZriw008oqiNpqH5Z/VqGMsOejj/+eBx//PGBr23atAk33nij52//5//8H7z0pS/Fgw8+iAMOOCBVGxWKpKG+inJgBYTqB5Fn2LOfoM3vtEZTFjGX+6eMsOJKUaT5zDSRNjXEMO97Qu1WxTSftYhVljbbz5m9ebDUYFjpJ4/cKysPpwAHcXnPRoXqTwtTk+O05FD9SdSt0oZTxhh0PfztmqbBsmqw/VEwzsDnrnLe505VNPv/JiegZDxXHVCs95bCxjGaNjU731DchO68VvbAZ+/OpA9bjwrVT0uPkWG/TWuQqytcEFAiUoVvFLVzn3aX0d2f7WJC8ef0uiu+CaAh1y5OYBYc95e38JV5fmW/U09oLD3ususG/yrumamRPTAR62bwGCezAJYN1a8rWRLmF+0B9sQTT4AQguXl5UK/RzH9XHz4KVU3AQDwy5XPV90EaTRigIOBCbNQ46MMOo3XBUxYsHgPOm0W2pYDAhzXgnRSn3dAiQZCKDasvWhpi2PvSetZ6Hg83vnhV1WWR7uKWgFR36nTBhgzA18rYq4qYj2mEQMGFejzTiX5GN0ajgtgw7JAie3YYfE+BOFSz2Lcscsk6t43aL49o9/TIosL+6+BU1jNSfWRxbOfUjETmyN11qxAPXSrtOFUCIEzzjgDzWbwpNnr9XJrVBnwHLdiHYOpH3coIleGUwXyH1i+csJJAICTr7061+MqwglLsH74x28AAHz/3GPLblIqnGIHakiKJ2hBETSFhBnYw1LD5NkexXSysuItcNJsNkN1mCzdbhdnn302TjnlFCwtLWU6lkKhyIeijDlMBKcISkPZIf3O1FlmKKuTh//QC28GzdGm7dxfjUgvvSPhnGTe1J/UDVmgPuHNsiSqQVBQMbk8+kxSkoTqT6rnZtbiUNNEEZoVqI9ulZ4STj/9dOy3337YtGlT4M9+++03EYWh4ggqHJU2302SaoiKyWGShUZa0ojlqhJzh+EXLUmMT/7J3D0mxFVbDSKvPhRUcT2scF3Z1FHUum9VWP9sSu4qu8/PyXHq8K3TTkjVviD8faWO11WGWRw3ucj2AwD777+/R2udf/75mdpkmib+4A/+AJxz/M3f/E0OZ6lQKKII009FGSH5FKROqIt+LMKQw8T0R2cWTZh+9xeFqiKfaRK4AAiJ7mP+DRWZMH3OSWjfLds4GRSqn6eO7Rc83jnateiiy3WgjpoVqJduld72uvTSS4tsR62Jc892wvYpcXZ2BVb6FEuNeg/Y04qTy8gJO18y/K+PKjobtPhB14+AAEGy3FB5GsOKMLzU2ZgTnIuYRBaPSkKRORVlCujIct2pr8eRnw0Oe65bCEoRwk7WUN6xonMky9zu13752lyNp5OEQeXHg7hr+fmTH8K7vrJ/9kZVBBMktQHA+dxDDz3k2V3PsnNvmibe+ta34v7778fNN9+svE0VipIIM+A0aBsmLz5iT2pMJhRRpT+DwvTL8ECNmruF4CADY1lDmwMTweHkdScPA19RnoRxhj2Flyz3weTdXNrQarNKvDeD+nHd1oelGdPrduIS1E2zAvXTrfnECyhm0ptGoSiCCw6Lz5d27o+uzPU74+a3ulYn1akY8zptaYDJ7DxdlpV8h3RSQ2UU00cao2kaD/CicO/Cp/ksACwtLeUiFB3xed999+G73/0utmzZkvmYCoVCDqLCODNRFw/UMklaVKf0Og0FhZNPK3nZCeYNnqo4lANn5Ybrt/Vi+0mjAgeoMCgXYDXSoEmpk2YF6qlbleE0BVkHP2VknU3yzl/14wdbOPnBcnKbVl28oGomyZjoeCfLGk39qUjCcriWSVWG6qjFmey4XUUOKYVibW0NP//5z4e/33///bj77ruxefNmbN++HW9+85tx11134brrrgNjDDt37gQAbN68GY1GuoIUCoUiGwJi4CWZbM79m5d7N5g/9IPozWSpsg4xHqd1gxAaabwrOx+ronrcHsgy1CVf/DT31U4KB460TKCT50wzibpVGU4LxJ0Q2Vl017sGsEKhqBM8JKVAUnGQxJBXtdG0SMratAoL08/j2k6L580sbCByQVIvzJJ+7s4778RRRx01/P2ss84CYOen37FjB775zW8CAF70ohd5Pvfd734XRx55ZKo2KhSKdJTtrTdpBgV3e8PSKrmvoW14Su+FVwZOyLvjRBHXB+w1ZD7nlFV7RBqohV0YJ08jZJRmrWtfZoxAl7CqZG3/esZcm7pR3tgTVIehatKOvdO8NnIoU7MCk6lbZ9JwSpkAj9l+nYUHZJJIZiyo6azqo855g+RzFBLU+XrnbWQqwhszi9gMEiVOqL7nOxK0uQ4ep3ViFgx8imLgIn3/Sbq4OvLIIyOjGoqq2K1QKOKpqkhN0nFECF5ocegs2iLqXAiivU8TfU+GNiq9YFP0dZDt1yqdQPXkFaqfRy2GOvaHOm0ElKlZgcnUrTNpOFUo6oAQAlG207qEkEwDTATv3CedIOpsUJzXBUxOYExgVoWihYOzT5Yk9VDc8xe095Y1TD/sOjj9NMwDuU7USQRWTdm79wrFLFMno5VUaHxBMFFcdFuZIcXTNgZGGwjqZ9BxEEIkMqa7dVbZz4F/g6KoDQtnLZB2TeBog7rruTyIC9XXDY5+L37hwhkp3WqlEdubelZQmjWeCVxil4PKUaeYVYKr0AeLOj58vbj25IFGaGrv07yMpe0CKtfrvnGqDJFax9AbAOAR644ijHlhx6RU4LVfvtb7Xp0OX5tVnMVU0eLqXz/66kKPr1AoFIry4IIEmmsJqd8SlonRj0Jee8VpI9nrKVOEzTFS+9umNn2zkcZIzTmBFZN6wF+HYSJQnWlqUR6nOaKek+mjzh6GWaizqPuzH0YXOQCAVsKRyzb85iuykxrBOozACPnMqql5ciKnYd0iaJWQ4kunAiyBkCGE1GZsrHO/T0pZnj8XHHZK/JtcfOrfrpB6n4y3xedPfgjv+sr+ib7/pef9M1qJPlEceVQoVSgUk0uRnoTv/d5IK5Ux97upg4dkHdoAjBfi1EhxWmNeF1g1q1mXVJVuQjFZ+IsJ5xWqH0Y/4eFL6ceUTKSIU5o1npk0nPIk8ZrId7ejyzCRobSTRIdRLOh2kscg76YGHQkbxpKF71ZFSwPWLe/fDjmgix8/GGwiaDQZ+r1gJR0m6Joaz1z9UCNieM3DjIRVoA08E8K83boMWDKAx3vxgjeN1yAltscpE8CKGd7nNiyKOZfImNPttjUjvFXNgXHfCdU3E4gIwgSIZo9xTv6gvDYLWlobJu96/hbkEWtQ+xzdcE4G4TsRq0Eu396ki0rLZdTjggQWaQg6Fyc/7Fgf4QKECTA+7nnKOYHuuueGyzBtcu+9ZwJwPkpASzGeymxkuNmv7e3f8wbDupluVZ/UaFo3mCCpPd2npQiYQjGLmK55qUHbuR/fbTQNIkm4vsX70Gl0hWKN6OCCuX43QAhFxzIlv0WOn60QPHspuX4U4CC+ObqtLcHkXZi8l+hYQcVzCBMQIcLNmb9XTXv+A+LXFU1tfvjvIAOw03+WGgx7e6Ol+roVfmAZbWqZdgGjnRsE2xdsTRrXVko0cDAQEDBhBXr6Ngf6tsco2jrHgsGxt6dJRUFRKmCZFFQTw/U25wT9noZGkw00nvfc0syPJu/m5qXs13luHco5CbymUWuLsHQILa2NdauLlqYPr+XmloWdG7rneC0dWG4KPDZ4HLsdbaw/5KHt3UZHjejo8w4IKNbNPWDcBCF0+Cz2OYFOBVb68vpvmALBtSZxfneeS+e1fo9iYWn0nnWLeCL71kyKHiNYbrJB23kqo6lGgFbbwtrqaIyMupZOhJksto21HnpPadZ4Zs6ER5kALcntqC4PgsLLpHqdOQOa8xNmNE1Lx6KRBros1H0nyqC2QRMoxpDuJNzWyP+fvTOPd6Os9//neSbLyTmnp6UFuiiFooAgoHARLKJUpGUrqwjYggUEEfRixZ+sF1vxUhAVQbkiCkKvtIILIBZFigheL7uoCOpFkaUsZetytpwkM8/z+2MyyWQye2Yyk+T77mtePUkmM09mez7P9/ku7tvvt5mZLbh0wmk/rlaCttdL6AU1Ytsd+6Fso9XWzvO3pPnrKp1ynHLRPOhy+m3mAXeWAyXTxJ21T7HO7KcNt2dtp127YRAtLgRBEGGwThZyFm0qH01WoIoycgE3upLf77mOXT9tNh42rutsHo5yYtHJaGpmUoDEsmVR1Ldb/QcAeV43pma57oTgZXRyNeDYfJbJWoxpPvphITUIqUFCQkCrvWfGrFMqgmE0YOV3a+EfzmXNoOrcLobXinFl83UnqtQCfshx1nAtb5jQ74Uhy0/fVGo839ZzHUWqKOO8C6lBk7o3j4QAZwo406/VuDxO7a5nL8e2oVz9OpVS+krlYMdEMdPQhqjTbqUl1y1pVm/SPeqKkEwLN65dJTezVrB6SwHORtOBnvTx7Q5a7QjbmVTf1VPPA6OT40xi1OQpZvYAyFf/5gBGTV6q5hknwwCUVJEEVTAMZjVUBIMmBbJcBvZiiCO3Tq56uPwajoqqaDCmGdh9nzP755Eb1t9oCIKsApQFQ1mEu/YntGLwL5nwynsE+C/GNKE5H+/hioKCyVjqZCRt1dDHTAfRaLfQ9P+toX5O9IKxkSAIotMxtIaE9PTmjANr5EkrIZhOhNW0Pzz4Y7XFjrKo68eNVS1rTGjmFQFNAhmeq3nyFpQhMPCmCJeSNh7Y2xRoTfcZk+Nedlazl6lhcMrwXOBz5OT16JegEZBZltf3yxTklQFwpmBCq0fnKEw25MEP/HsUZz1kbMscBT29oHs8FFUBzvT7raAMgUNBITMEhdUH3ZwpNYN11Lgd+9cngE1l/Zp4aTSL0YqCDJe1a1pKiSzPI8v7kOW6Q4xhTDd0dFomyY3j6ZYmI8xzwY9B0rgv7WwycdKpzlZEPKTjTmwDdg9iHvCJbl49qHHCgG7AzqBbc5tGRal6fFTJMOgwKZGGUP3RioIsl1AYr4axV8NAPJrmVmgoTsYDpkqwm6Cx83q4/bij/G8zJdd+1O2I04B/8Mo1OHjlGu82pOCe6GbSVhhKgNWqlAZeeqiSK0F0K1IKFNWRpJvRUfQpdf24Rd7/YMsrDLfVUFLW5gFcnF5oWxVa33ZJG4OQGvo8rMTeerv1vq6Q4bX9FLXhmmdslAiN1ZYgbG0THFhU/ResZYwFNkb60ZqtHHeFNw807O4/p2KyUdxKhkdtzuewqV3OS1ztXN9L0qze9IzhNE6sITF2DwSqsthdJHEuFSYblnYwmNWqs8jc1uvRD5zJRI6XteJ8WjDP8BuGz0nZ6EWemaN/fIft+17hZwVF1nICA61f93bGS7ucrHEZGI32Ww3ORRsvU0MMRDV4kQqL1Bis52vqPIFm9hqJgzQZTw0vr7ALQRDdiSZVSCmhyYpruHmvYu2jjTRSJY0HTqcUVT/pJ1w/KNbQ4Sj7RScdFafHXhTtNyJE7XLNBqGoDtfCyQ0MT8motZOXZp2S0/XnrIEKBrMaOJPBU1eZ1u/PyKa6F0lgeEv3KYNt26fQmG1E2kAmHaIpaI7TNEGa1ZueDxwP6nVqYJ7hMAo+6QYmfSYp7ipyhDN6KI9ewZwzASGDd+Z2nWCrmklKS24haOBocylUD/Q8RVVv0pR4HhLuHZLumVE/V1GJqUqMtlwtxD0ZB07HNRPTxIRRPKqXcMvR5pUH/LoTXsIZt7zd9772XnEvACDa7M/hoUT7BNHbyGpmSCucKXrGSKHWcwOy5iI4sbdPCl+GW1WUoYpSra1xseOQv9+vijLKTA9jLmrDDcWWDDptYnFM3ehrvJKEdsqwXJMRMi3ofaX3daOwLPLKAEraWORt8DvZL0xtrZiKSFVEqaW0HhMpOTXmEP4Ml7F6nFqx6vnBquHdyL/brgmqTtb5pFm96VnDKRcSgrPQhlMvesXynkY6d64nPNaHdC6vtZTntLbdCB6EcRRbigshkOgFZFccyi9jKkOfok/qBM/q5U63eMtHdS0qzP4Z7ySeo+prOlmYhL2G7v/0wY6f7f3134RsDUEQROfSLX2yF53c5/lBQgIO+SLt9PdARmKkYn9MgkTqaBLImv72i4RMLCDXzmCc1H3gN79+O4mjJoOVMFXpzSR1vlptN0EY9KzhVEQ8ZdcrIqYTiMv2FYWXnPHwlhD6zFyA7XWagHQK7W+lUFtaiCPUKey1ZX32BE32nwRJGdP9Pqe9rlCn7TiJ6bgm6Ih0I1sIX5J0yRAE0WYYS7+A6LXxllMfkkbjXSuYDX9BPPbCpi6LwjHEjU5yGukk2l0cKjBlCWSCn/x2peBzgzSrN4n3kC+//DJOPPFETJs2Df39/Xjve9+LP/zhD7XPpZRYvnw5Zs2ahUKhgHnz5uHpp59uW/uMh7fbQ7xP0R+QRi7HQkY4VmYm4odDfwBVBENR5U0GKSPfrML0c+clwuJyuQ8SNuCnGFmcs41+Q54UJmMXI36xa0cU+SrbGYIx7hJ+E2kuLKpSmWrSck/5gQYLdUIn2a8uRPpIu2Yl0oFx/3ppp5xSaEdzHGkwlDL3atkZnm+rYdU8gPczmM9x52PZjrnLIPvw4wFnp1fHVOd+oVPDgw3i0KFJpGsIY8w22lkRE8H2ZXPKhWDI5b1/d6tGd4WF970LU4A39QbTLoA0qzeJWvc2btyID3zgA8hms/jVr36Fv/71r/jGN76BKVOm1Na54oorcOWVV+Kaa67BY489hhkzZmD+/PkYGaEqlURvIwSrLQZGlcFWsXq3sggfFWrAyvFxE9SIF8UMv90+oxD2YbfRjhAfIJkUJoaw9LPvIO0zC9a7lyzE3UsWuq5vrcjbcN/69MIW6Cwjaq9jTNKFXYh0QZqVILobrU1ayEzSXr5+JjvNhl4343qStKqNou5z29GHpyWYSchwRRHsjP1RTgCQXg4GaVZvEg3V/+pXv4ptttkGN954Y+297bbbrva3lBJXXXUVLrroIhxzzDEAgJUrV2L69OlYvXo1zjjjjFD7FQm7xKTlQUfoeJ0Pw1DWCZ5UaoWBKzKS/KZhcEsnwLlsm4Eubozfoc+ARp32I/z24iga0GpnaC2KlmbiLrpgFoReBvhuFyF+imDohaHudlmDqlET7SMpzUp0LkH6v07pK9OeL7DV9rXbc1NK4dpmu6i5VugEHd4JKQg4l7aOIG7XT5p0nVM7/bbRXCwszc+EuI2nUV2rnZaOr1dJdJrrzjvvxF577YWPfexj2HrrrbHHHnvg+9//fu3z5557DuvXr8eCBQtq7+Xzeey///548MEHk2hyE51gTCPSiV5BNX46QYAkTRAxIwSzDRlxy5usSaDsIFKinEiJelImKpHXbkEQtt1xTmpJl86i00Ps4uK6E15KugktQWFP3UU3aFaC6EQ6xajAWX1xg5km3JP2OI2LjM+xR6tjlNacDcLvO+26LUw4fFCMyZ6oUiKk/ZhaaXCG6AKvONKs3iTqcfqvf/0L1157Lc455xxceOGFePTRR3H22Wcjn8/jE5/4BNavXw8AmD59esP3pk+fjhdeeMF2m6VSCaVSvab08PBw0zpck5EXhyK6nyiKQ3UqeqeYjBdrFEiHkmF2D3rfBYQsHTwXEg8tW+CwdvQ49dEVEdyjIIrcQZ3gLRPlRFdSGsnIz9wr3P/pgx0/2/vrvwHPtGeAEAbRQqL9LtDgXUccmhXwp1uJziSJHIvdgB762b6Ort2egJ0Q+u4Xp/GBatXIVQOp0OpFrZSq9uRc1jS1Vzovo28shCg0m/SxNo85hGS2BYHa1cYonWqSPq5BSOMz2amYcrshzepNotNcQgjsueeeWLFiBfbYYw+cccYZOP3003Httdc2rGf1zJNSOnrrXXbZZZg8eXJt2WabbWJrP0G0QlBDk/FAa+XBZsdzI86PAd9GxKoYSENVQMClCmnEQrwdIU9ObW7ViO9n8igpA12QWWevdY1rgTN/uWXD3FsHr1yDg1euCfQda7s7IXwuSqIaFKfZQ4HyRXUXcWhWoHN161f3WYSv7rMo6WYQRNcRxpDSKdFl+Vyj4eq+Tx1i23a1oo9NxkcbU/K8Hqx+UgNm794k+lgjRVEUY5GkNQJndWN5O0L1W9HIcRpLmzRoLlg7F++wGADwb1ueGFWTQkOa1ZtEDaczZ87ELrvs0vDezjvvjBdffBEAMGPGDACozeIbvP76600z+gYXXHABNm/eXFvWrVsXQ8ud6ZULhwhPGmfmDp19Ulv2k2YjRxTM/fI9STfBN2kOK+mUAYAVtyJP1uJQZpzSP9iu2yPhML5J8XVMYU/dRRyaFUhetxKEgZcBJI361SAq401a9IeQDEM5/0V32qWvrcc5TPHY6z64CD879mj8/IQja+89/PkD8buzDoIQDGsWH4FVhx2LVYcdC0CfpLngvYvwhd11I9PCbU/Ce6ed2sKv6F2iuk7MBaGM54LXPXj2rotx9q6LI9l/N7HfjJOTbgIA0qx+SNRw+oEPfAD/93//1/DeM888g2233RYAMGfOHMyYMQNr166tfV4ul/HAAw9g3333td1mPp/H0NBQwxInZCglwtKuHKet0CsPwjDEIa6Hy/7TIZjtRZpkGMj4zCelyEhC8wHdk8pYiPgGLim2DTpitFlhvZVagOhe4tCsQPt1K0G0SlLFYNpSqTyhCX6rjuJMYrisNPT/fnVelFjHKmErqLvx+3+vp7n63VkHNXxmGE8NPvPuzjW89YrNIOoxQZh7sh26OS2TLET7SDTH6ec//3nsu+++WLFiBY477jg8+uij+N73vofvfe97APSH9dKlS7FixQrssMMO2GGHHbBixQr09/dj0aJ4woNyJb1D8MqxEpYxFejr3FSRHUFR4ygo6Z0VB/yJzgyTHWe4dAq/nTdT4Gcj+t9uXnlBGK4kd2yChoxkW3yc5G0MneMqR5ZLAN5t4Vxi4ao7AeRc14tywJBX+lARJe8VY2qHk0DV76n6h0nlLTYLrm4SX145WI1nRH9GeIYjnnHL2wHc7bKGHsL3+LkHBGxle6B8Ud1FGjUrkU7abSAZU4GBkCM6TVagIOtq7MjwHMqiWHvNmQJNVsLt0IS1r3hmmGHHIYl8yHGS2SM2zwcwoY220Lr46FMGa3+HNUJ76YYgkSxBCBL2bNZXQjCIlE2y29c58BaFRp5WYywQl7G9TylAlWUAQIY73xQDWeBNH9sTmn5NCMEi0Z2GUV1CNtx7TnUlmtojAF5dLZMVsdle6m0KRs7UHHMu/UlDZWzelLf/UlkCmc4auxuQZvUmUcPp+973Ptx+++244IILcMkll2DOnDm46qqrsHhxfTbp3HPPRbFYxFlnnYWNGzdin332wT333INJkybF0qZytbc2G3eCGEnIsyZ9GDllDAwPKE0CmtZsOHHqUKI+t3reM+fPVclqFR+DGttzeQ3lkr8vzZkk8MsXfxhsByb8DBD+9zVeO65eHaOfnGnL/rAaQ9mAOWLNf1uMZxVR7yBt82C2KIoqpp0Pm8YaeRsDv7nzKWQERiv2x8swPJU0PcG8JlmjSNXqotkIfZr33WYjFFdkbd2oDHhOA4Gme03qRuUJGweGXF7DRNG9i/J7nwa9fwwxzauTF/p5atyIncHVTYxKhdUKIBjrGALWTJZLaNU+Z0wF3j6Q7kkgN4QEBrIaxir6savIelDfuMohAOQjuOb2uuK+VBpPhWShc7l22qRZL5BGzUoQQLPRtNXJWi+E1EKFaIffn7sGl1JEVp3erg9nmoRs8wBPLx4EqE6fW/SGufiSFxsmGGYNSkxo3vqIgUOTFTAwV2O5oZecKtUnPUFcFsWGvJx26BO//hwSDKznQWgs0vGiKjRkuAJVaDCMkeMqw1AWeKvqm1DRgMkFgY1j+u8rlzhyeQG1YmqXz3GMnzGdJirIZQooizIyUkBCIMNzDc4SqmDIcOk6Qc5Nt6zXmLU2nqle36rJeUaTwJjaGHk3WuEoaRJT8hoyLIcJMRrYW9rJEWBk2N4JRXCm5zjtUNlOmtWbRA2nALBw4UIsXLjQ8XPGGJYvX47ly5e3r1EW7GbsnB4sxvt2BhGCCEq7H0RZLmsGIc70BPV5RTfQ2YkhziSKGgdneueoG6ml7YOXc1lL9t4OKoJhKK9V267LjSyXEKYk1oYYz/K6QVMx9XlxzNbnOFC2PB42lRX0ZwSGclqTyFAYUHIQwsb14dTRtZJMXWFAUauf96DX4nC5jP4Mg4RAXpEoapmmSQw3wlwrQrDauTUfkwmtcWAppC7qphVUDFcU5LnAUFaipHFb796SFu1122A85Y3GU/P5H8joBsb+iLy024XToN06qIrCaAqQxynRPjpBsxLpo925QStCfw4bRTv8GHLSUm3a6MNVwbCppCCvyGqfIpHlEkWVgzMFOV5ASYyDgYMxjrIYh8LqhYSs3qZ5xV8/bqf7ojSaMqYbIFWhexKyqpFuMDsVw+U3AKAaTdQ81rT2C2ZjU5gJfj+TyoaxSUJCYVmosgxNVJBXBlARE5jQdEOjwow+r33jlk3lDAYzGsYqsqYtcryAiiihLzupauDTvXsZGEraWCT7dRsbcEU2FMvZWNY1v8L0dFxZ3ngeJfQxVp+SQZb3QZN1U3mQqK3Nxfr1zRUJVWUN14TZQzYsFVGvzGVcF4xxQKJ2PZtRvYq3ikbjaVicbs+haiGyiiiBQX9uxJFqwkwn1/IgzepNojlO24k1PDiOwih+OouhrOcqRItEHabfiQ9Bv96mbvi9RYyk0Fkuq4ZJVp2xtayXwHG0m+DQZH022KnSei8RVzX3vCIwoUkwcJQ0bntNtIrfcCO7c5zhEpvKSs1Q+cZEBnlFOBqp40BoLPXPF0NI+V28thUnj154YLw7IAiCCEhB8ZezNmrDpTExHJXNz+phGreh1clzMWPq8xWWaQh7N2NtX0nz395cPnrjioTumSelREWUkFcGGgzqY+pGaB4G9mIb9YkbCs9Wf485cqv9bRvKavaOGibP0qI67GtbcY0F7CKqBrKN57mQydp6w3pdD06YjZFRasws77N935rmI7TxzaWtcY1VvOj1MSLRSOIep+3CGh4sAia2sw7OrR5jfgn7vV7nfVud4nvdpzbc0NK+nAwxWgBvOSdqlQelADxCRrzYffYEnnzRvhMLglsHZxhC+xSgqDLTd1jt/4GMhjd8PkraaSTKct2DsD8j9N+BZISdlT6l/hzQPRwFpuQ0lFts24TWmI8nCgqKrKW14AHDl7wwvE8rNs9EqxdmFDjdu0ICJWF/4IxQI6fvBYFpEtLh+Lk9cxr32ZhiIq1UBKAozeGjWsTt16+R9B6PViqN9krYE0F0I2Zj5YQ2ioHMlIbPhdRqRrS4SCp/d6uYvSCn5DWopognPbKp/sPiKFIVl4GmnakNAPfQ+Cn51o9bSRsHA0OfwlB0yidgbVNM1+RAlmGsGjVmhORPqCNQuO6txGO+GdyO9cwC0J8BNpWBoZyGoZyG4bKCoaw/47xdbtO8IvFWKZ7fFMRQyJFc0ZaMJV2bV+G0dnnUc1VAZDrTL5E0qzc9YzhtN3pop/1N2ivuzFHy2Bs3Blibd0SqBGulyqBEYTQNQruu2y8+vNpznf42eW67CWhrqM5DyxY4rOmfsLll4kKTRvmdzsPueg2b9y2IkHTygnUK9fMs8GCapOg0xqqDKU12jtE3SszhemG+SxAEQeiE0UdpST/gRTva2a4co06ewoRhmDL+jnE/LVxOUbbLmuP0W0+tqv5V1bUaAzwMnkT7IM3qTWeaxCMgTKi++aIwe3aNqfXPchwoqp1huOtW8ooAhz6zWUhxbkCn3DUCyeWVLmk8llBlO6/CdpDesx8NmoSjR2QU206KpMPXrcJfYf4qFnMersCW1+9Nm0E9CMNl3SOBMxl5v2gc672uuK/2XprC9Y18b+GWpFtPEEQU2BnFOFNqRXeSREitlhdUj4mw72tUUYYqSrF4eJrZcch5++Z0P0JqKIsipBQoasON0VwJ4jdtjROc1cOe3bS4MQkcJKVAK7rKq6iSH5IunpzheeR4IfLtRmGQVkU5UD5TK1FGs/rR/oYnr4H9M87/PuPQ/IPVdAhGjYJ2e3x3IqRZvaGrqE200pES3YG5Y4lbfBr88OCPtWU/nYCXx16r9+fcL9+DuV++p7WNWOjVZ0ZcnhFhDfh6xc7G99oRBtmr578V9l5xb9JNIAiCANCc+4/oXqKYbBayHo1mV6iyEEPB0iDYGcjS4NVL91k6aIvndML3gBedGqZP+INC9Qmiiznp7p80VSz8zLsXN7xe88IPbb/bTW73URug2tVxB/E07FPI0NZO6Fi3RpTy+vFzD4hwa9FBFUoJgiDah51TQhijWhQFVqNAYYDP9KGEDxgjo5YXYcZ+Ts5A1qN99q76+PPix7xTsjkRNgdxVEZdJ8cOwRmUDh84k2b1piefICLieIGBTD0EoSz08HDDNZxoP0Z2WSH1tAlWzzAjh4fCdGNTUmHkGZbzva5dVcY4sR4Svx2OJllH5Dfy27clPbOpmsJXnvRR9CysF2TSv5NopldESCskndLBC6OvCbsQBNHd5JWBRPdvDc13i4ZSeNYxlD8OrFFCbhPJEtKx4nfg/bapX/GTVqAT+gE7rdKJOdnTQEVMQMjWB3yZlOcNtTr0eOGdzqqFxrRIu3IHtwPSrN70pMcp1yTUsFVCUDe6Ee2j1RkQp0683QZJKxLCMe9KXIaT/3p6VcPrbQfj2U83E3bG08lIv6msoL/FfLwTWmPuZUInqDG5lc7fqTCU+fNW6TSDajv7yrSF6WtoIdF+pC0hCCKNJJ2Tk/AP06RjkccoMDxj9f/d9+PX4UNo7pokCtKQg11Pb9Bh4ihBWr0mNFFBRvHv/ONEGE1s5+jhdVuG8TZduttifOPJVd4rWuBcpn5S3wnSrN7QMDtCesXa3k30pSAaZzD70aSb0EQrs8XW73aCB2o7UFyOw5Scd5ez+9RPtrT/havubOn7nUoUhsZ2Gf+8+hAh25NbNUqMmeg4PFCcxP+arxwU+b4IgiDaQadNjqUFLyN0q8c1aqNpu2odGHSTZ1yc+DUEm41jSRvK2qVRDQOkwrP2+W6rxn9Dp5Y71IDYEmW6z7oZMpwSPYGd8S6ooTuKjskqlBg4Ris/a33DROTEMXhpwdE9VftIG2FFq1UgF9X4Dh7z8cChSIbuQpoqLAddqNYFQfQOreqNuB032m3k84u5XWltY1jsxi1FjTme67QYRpMI0w+SxzaK68Qp6ixpA2paMHRMLuA1GXVuYes91G3PiKghzepNDw6xCYLoJQyRSV4c4XAbkEmI2tL8PdZxea4KNukSOu039DKPXnggAGDhxb9OuCU6lC+KIIigdFpUQZQ8M+xgkPLoh729TdN/UPVw83TTqdXrRQoHAHaerWEMe2nWC0E9TnN55+i7MLUYOuG+TxOkWb3pyRynfqBZo+4lKa+uqPvt3WdP4MkXo0mG3+3EkYMpyOy+2Qs07ry6URU7S7ITjOL52872371kIQBgwY13Oa4jFeYr95Fbu3VjdKgmEgnQipjsFRFKEER0jKl6wdowpCHf6o5D4R981vZLKUMZIw1t9/i5B2CvK+4L3R4vzBPOURgkO2XcmsTEAE9wNsLcl3e7fvPKJfqtp4ycofGcjyR0U6fcd34gzeoNGU5jolcuoHaxz9an+F73KUv18U7MC+iHOI2mnMlAM3XdLgaiQDfeJnOgOJdYs/gIzPvu3aG+7+f8ahEMumbOGserr/S3vB0r9DxOD0GukrCCdM1XDsLkb4X6KkEQBOGAhEyFgdUON289LcQ4IE6jaVgGMhITIYuTAoBo86mLe2zQCWMPJ2cdt7oHZsJOABAEET1kOPWJV7VkL2jg3hoPvXaT73UnZb3XUZjzOWn1XBOdT18GQMnfurLAgTF3N1KzF2iWA+UIxGsQL1rDAJX269owmqa9nVYOXrmm+pfzOWGahKx+3o5Kt0Ty0Ow9QRB2hKny7Iew3qZ+YOAw107u1LDttODn+FGocXhySj80WWl4Lw1G/6ARcJoUyDDv3J+TCwIbx9pb8Tiu51inwoWEpjBwVUB0oMcWaVZvejLHqbCZ/ll75eEAgFxJFwUN1fJCzu7ZXUQjleb3iGgZqbS344iTKdV8L30+fpI5/0tfQa39HcZrK2qxZoSqZ2xySMZNmN9i9k7IZEVDuzmXgXPt+E0PMVxWGrwijGdI3rS/Pbc8NdC+zbhdC0JjLYWcKKyxO+nP5D2/UxH2xaz8TF5wIcG5hKpyqBVeSypfUqMXK3ml+bo1nycjVD+TEbbH0BBQYY+v1auipDGoIuacDzFgvhcHM8Iz2bzn9lIeIhU2yb7f308QRDox638pJcz/0obVuGRHljf258w0SaiwxqUVnhlmvtIN+Xk+FjKTAu07k3XesZ/ijkHSMOV4oWZ0ErL+xaC2loli3VJup5msWnVkOAcgWiOH+VxUjEn6CArythvj2lWYhPBhQDKOt6FDzHpkfMzbg8ePAbVPKdT+zvD6QLCkMUzJ1a8XxTReMdrCeeM1oVbiM/k4GaSdikMZ7eVcNrTRTfcHtcW0are86i96WgGFNY6pm/ZTbTOv3ggi07mmNdKs3nTu2W0BbvM0nH/OLwAA5bz+YErCwEO0nwkt3VXIN0VcYdAvbg9ApxlG623VKKb0/9UYq5a3itU4bbRfrfCGdgvBQk2mGGE5buJ6KKfV9qtJIMsl+jO6SHJCrYq1XAuHVmjM1hicdqFrCNVcXqsllc9nmhtt9sKx/qahbPMJEdVcopzp10FJ8z64hvHUdvAiZC3HKaCLWyH0Y269J8wDTyfP5LwiG0R0GjGO86Ah5C2HZTyiZwFPcdwMJdonCCIJ4ta1EhLchxdcVFQcJskyLFf7u1Xvt7BOMoYO8ePgYKZVI7pXe+206uQpZQDASFl//62Sv99sGHdVqX9fE/bG9iyXDam+zMardtWXcDquFTGhfy6NSdvGBpn7XB5wEsBqAJw0GJ2XlGFgNU+Wa1IfV5l11eYibzCOChFuctlt4kITavV//fcZ14XxLDB7UWuSORaHqhXtFf4dNowxinFNq5X69zQJDFcatzNc5tW2tUdMmT1MO9V4SprVm848synAMcy7Ry4cIjhxFCgyE1b0mclwWfNu5EyiIpjpf12YWmeXxlSlamAyjE0y9t/qh4pgyFdFHKD/Ns5kQ14hIeviyMmg6eaFAACsGEys24mxTWVnxT3uPNEZOWbhl+P1YkSarBto/TJcLjc9J+2ui7DPTEOk+JnkGlPr+zF7FUzJqSgJjoyHsLLzOLXD78SAWuF6oSiNNbXfbCxNqpBdJyHaeH8QBEFERdRhrub+1mpUiYIkwnI3TCioCIas4d0ndU2a4QoyPAdVllFQhqDwZg+/ojoSWTtkhJ0xYwxlUay9djJAWw17Z++6uGmdsNFl2arOn5YPdpEYhmrOFOR4AcwUaWRcb+1MLzCq6sduXK0byLJM946WUoCj8diaj3ur+D3erxaBt0q6nhtXOYoqR5brYxHjns3wHBSWQZblG7y5/bbXz+XpNZYxcDOAKQFnqp08Tp1oJYooLsOd13bTHvlERAsZTkPidCN5uYb7yb9JdCd+E4FHgTl8Jwxu1zFn9QUABjJazWBqGFDb+VvdKAkGVejGP/1/hopJ1HGXXLdeBMlRGUeH7jYocurI25lXM9PivqIWI8b1apwLTTJsKmf0sHcXoe/k6RJmUGo28nWz2ErKi3/vFfcms2MHjEmHMAtNwhJE52I2ZLh5ZkpIX6HyQffZDuIypJp/x9Q++4gQIFyO1Q5MOxgpRnGooN6xBhICUgowxlEWxar3pr+DGocOHszo10chU29HRZaqbbXfoZenb9SOHzML3usAaDBCG/jVAW7HNgqnGgNWNRvZTVTY4eRx2gqG52kmm06RxNXOjVgmzepNzxtOjdymRLrpFnfxNCQmD0KWy5ohtCJYrdPsBLIBDHduD/yo8wLZDW6m5BoHB7UwFhsB98SbP7DdrlvBqbAGU6VqDFdYeEOo2+DKqUhb0PaajZBRDB4NzwUh9bB4P6H6RB0/OercjNWtsvDiX8e27SC0M1/U7373Oxx++OGYNWsWGGO44447Gj6XUmL58uWYNWsWCoUC5s2bh6effjq6H0sQhG+MEFcJAYWRR4UdhjYwa7l2hd3GSdiiWt96alWg9dNQgNLcj7XbsK+KEgSC5YKPa/y4RU7fdl6RKGSE7X6CjA/7MxLDMdVMCWI4Noy95udZXHgZgLfIOZ88KmTnj3bnOO1E3UqjQYIgWiYNofm9Tis5TolGYgs163V3lxgwR449euGByTXEhnbmixobG8N73vMeXHPNNbafX3HFFbjyyitxzTXX4LHHHsOMGTMwf/58jIxEF85KEEQypNlhgOgdesXrLAh0b3YHQTx3uSo6Uu+3O8dpJ+rWFJdVSDd6/j/97zG1HpqY48BYhaPfkreOHpztYyingUN/ZhVSVOTLMC4aYSKqLCPHfMZwtAkjrN3420x6jmTrtGoYsyuk5IV+/t2/F0Z06p6g3kUCguLmwdoqmnT3Pog7jN2PoZ8z3XPSj/Y5eOWa6l8eKxsVp3qI0YqRoD+e7ZvTH6QtVL+dHHLIITjkkENsP5NS4qqrrsJFF12EY445BgCwcuVKTJ8+HatXr8YZZ5zRzqYSRE9h54XFmQIhNaiinKjHqYRsKLDEHPqwiihBFWXHz6NixyF/IkgVGjSuu9wVteGG39ANOGnBMbW56FI74EyBJhsTiksIMCRbpNIp3ZaUskmOZXkfGBiKWvxGF00CXne1JhnyVQ9qVZTBTQU/nTw3nX5vu20MUoqm42tNgaAwiRyXjumu7OBc2ur/MGOCemHS1m+WsOnvHj//Iy3vu5vpRN1KPkoEQfQ0YTvVNIRBBWHhqjuTbgIRwWiHvLvrPH7uAak2RKelQulzzz2H9evXY8GCBbX38vk89t9/fzz44IPR7YggCCKFWCdqw4SNM4+Hctyh6GfvuhgDmWh1Zzc59XRDGgc77GpGmMct3XQOuwohsdflv8Fel/8m6Zb4Ji2aFUivbiXDqQe3H3eU5zoD1YkIIRkmNGAgKzDus7oyET0cunekkEBR5a7j6j7FXz6+OHCaIder0zc22qniezuxtqlTQ3L8GEorpuNtZyCNMtm6azvaVEAojAdtnCRplG5nRdiG/VavqXbnAetk9v56oyBNX6g+a2kBgOHh4YalVCoFbsf69esBANOnT294f/r06bXPCIJoL1JKZHlfom1gYA3ebW6FczI8V8tp2M58/e02iOXyKRDcNgTNcdoLmMchSWk3O73qpOO8xk0VWXK9B92+P7lQvyc7zbHDShRRZ3EZlLu5sGtaNCuQXt1KofoOOLqKByo40703V7vZb8bJvtd9asMNvtdNeqYuzkTa7aTdRlTRxsNm9yywMzQ+tGxB03txISRrGkyUhZ4qxBBsmaxoKGy1ZvEROOB7v/LetsZaNqQ2DMSkdyqBtJNXBOAjJC3TQmoQVTWmfOok/XzqFPa64j48fu4BtVD9NV85CJO/lXCjED5hvvFdANhmm20a3l+2bBmWL18eapuMNd6HUsqm9wiCIJLGTuP4QQ8f9++4ou/D/hn4+LkHYK8r7gvcBr+0YnwO0690s8EnCGZ9GtfYxS1UP659bi5G47Dl1r6gY1br2mfvuhgAsOwPq+vrmK5Lt2s06LjEarxu5zhVZHhHehelTbMC6dOtZDj14Ogf34H+gaRbQfx+/U2+153SXamOAOiesXETtaE/nzIvxigRGoNi+X1zv3wPgOAG1KiOk11xqFWHHRt4O5ms6FmBHfYeuHvJQgB6rtOwM/2G0dUr/2u7acV4a/5ubBqyy/PGrlu3DkNDQ7XX+Xw+8DZmzJgBQJ/BnzlzZu39119/vWk2nyCI+KEqz/7pFicUw+jEWXhBb+Q4JZwx5+G1M0532r2nSRaJsSYJXW+tlREWzqXuCBLwQLTb+UB0sRb1SxSaFUivbqV48gjp1vwqRPKkIVQf6EwP2TA5IbNtzHdfMoX9RzFAMISCWuFYfNdPA38/LnHVabk5wxj6Oj08Kk5i05Oc6blOkcZQ/dbzRQ0NDTUsYUTonDlzMGPGDKxdu7b2XrlcxgMPPIB99903qp9LEEQX067w/DDGDnN4s4Ro0qpBtlkuxSsAO81w12m4hboT7SVj0cTfempVJCkn2qG1l+62OPR3udp5Y2UgPZoVSK9uJY9TB+xuSq8btVtmRTsdP48r4wZXGIWvWHHygOzAqAPftORVl+XgpeQs2+YZXQrtjuYYWK/1kmY/xxgk1y3TZKget5vvu0hI8QESLSTMD/qzRkdH8c9//rP2+rnnnsOf/vQnTJ06FbNnz8bSpUuxYsUK7LDDDthhhx2wYsUK9Pf3Y9GiReEaSBBEaDpxErqT0cdnHmO4qpZyGhPINIWCtBlNqkk3ITLace+FvVS8JieimIA2dGs7jI9OHqftTLcWlqv+Ym/g9XPcOjlUv12aFehM3Zqox+l2220HxljT8pnPfAaAPiu3fPlyzJo1C4VCAfPmzcPTTz+dZJMBkHGi0+jAZxfRARidpxKwupjmM4eM34kYp+dRJitCher3Gtk2eYlKhUX6MCppHaA8E8Cr8nE7EaK1JQiPP/449thjD+yxxx4AgHPOOQd77LEHvvSlLwEAzj33XCxduhRnnXUW9tprL7z88su45557MGnSpKh/dtfSqZqV6B3GWrRvtbPokxtp0O3W/KZx9S1+PSTP3nUxBjLRtSFq41XaopSj9jy997RDa4sXsRUm8lkcKmnSEGGWIinYMbRTswKdqVsTNZw+9thjePXVV2uL4Y77sY99DABwxRVX4Morr8Q111yDxx57DDNmzMD8+fMxMjLS8r559ekz/5xfBPpeGjpzonWM2UB6sBJW0pBjMsj+25FLttPvEzebZSVCj3O9wFN7yCudl2mH+s/4mDdvHqSUTctNN90EQE+wv3z5crz66quYmJjAAw88gF133TXZRncYSWpWgghLp/ffZsJG9nVD3/Otp1YlluNUYd0foNqJ90lYY3VYb9MghdeA5lD9KFErwX+8kCnJe0cA6EzdmujIa6uttsKMGTNqy5o1a/COd7wD+++/P6SUuOqqq3DRRRfhmGOOwa677oqVK1difHwcq1ev9t64B0YC37VXHu5rfcpd1104dZDtPM+qLLf0/d1nT0TUEme6QWwGJYjRstXq83ESNsdp2nn8/I/g8fM/4vi53flLjSB2UblckQ3tTE2bIyRuj5S9V9wLAFh48a/j3ZFPosgXRaSHJDUr4Y2QLDULER1B60cYg+9Owezl66W5o/Q4DYL1eJoNUGnoqzpxrKK0UBfFek8ICWwu+jfpxJGiTkLEdh6s7RWCIZP1vzNzega/z4ZWcpx2KqRZvUmNy0q5XMbNN9+MU089FYwxPPfcc1i/fj0WLKhXqM7n89h///3x4IMPOm6nVCpheHi4YfEDr57xXDVXoeE5dPtxR4X8RY1UBIvUs4lwZrisJ3bvdPHKfUT23nrkMbWlVSNeK8XN7I51nEIm7mJZcXYAfrbtZUDTpHPezVYIKqb+sbnuhcBY+PvN6HS3njnu2Y69Lv8N9rr8N67bCxMyYncNZx0OsZtxnXMZaALG6GuC5EvtBNomotIWH2hCQwsiNOnGE65EpVmB8LqVaIQzmZrF/PxrhxEvYMagwGR5Y4GPVirDu/HMsP/neacVAWLgTR57svrPwK07O3tX3ZCT1vyQVs3fK4aUMEZIv+PTPqVQ+zvDm++5sOMszmVb6ns45ThNiiD5ba/6yypbrd/NdVFIs3qTGsPpHXfcgU2bNuHkk08GAKxfvx4AMH369Ib1pk+fXvvMjssuuwyTJ0+uLdtss43vNnBNopzXH0zGwPfoH98R4Fd488ZE995wnYT5YdhvmrVq5wPRKkRrbZD1xQhz6LPRqE++2Ifjf35bbTEbXvoHKi21rVWjpyYbJwoMA1QmE43i689GspkaZQFMyel/axKoRNwDmK83w+hrJypHVd4gqDiTUAVrCsfPcom8oh/LkoPBzZrjdOGqOx3bFzZZ/A6T6wnVrIPDQqb5JBltNrCmRXj91f7a315tMdKt+AmPN+4fv97EGV4f+App327Omj2OMxmBctlG3BqjoWqbje/ZTXaY2ygkMJTrXDmiSaC/es8bzzSDTAsTNQ2k2NXE/CwPsxDpJSrNCrSmW4nOwKj0bjdwj6JYTZY3agqnST87whb+YeAop/hB5aSx3RCC1bTH4+ceUHs/6vymGZZz/bziYFhzC9X31Eymz0fKrGl7TqeSMwUCGqQUrqHOXnOYSRtSK8J/lF7Qy1oIVi8uprFY0n2pon7sx1WGIZPE7lMac5zq13H9b0CPQmsVhupvlBo4lJq3tJAacrzQsK4mWVOo/tm7Lq5NAIRFaAyZrIAQjRp6Y7nxoI9VFAyXFXAmkeOF2vUZxMkj1DWbq26fM88IubRBmtWb1BhOb7jhBhxyyCGYNWtWw/vWC1xK6XrRX3DBBdi8eXNtWbdune16djlOhcuTzmpQK5t0TtKdAdFIpxgaKqLkuU47vWat+9KNRwycSZQ0joGqAcTqPT2mKsgrohqiZu+5anhDRJUD0s+Me1HlyLK6gdHoNPO8MSwqyyVyHNhUzZygMNQEhxuGCJUF75XNz4iBTKPAzHCJTWUFmmQoVNuqWD4v+jhufp9DuXzz/WE3YaAw/VwbnaGTgdaJTSUVg1kBTYpaAaY4vGT9MKE1HnOjPQVFb1uGSUzNqxhXuW3OWHO7zQZVq5eoqnLkfDx/hKYPzoz/gboANIe8cFb3oCcIIj1EpVkB/7qVIPxiaK4oxyeM1ftBw4CWi8HjX6s6DSgM2DChNPS/xgBdYbzB69X8t2Ggtmrs/kz4PJ3SpyXMT9gqYwwCWu0YMuhF5vozk2u/I+swsegWqm/VcV56m3N9e17XSK2djINVj7uUAjlegIRsMhLabe8r79OrYH91n0W45gPRVcQerujHq6RxcCYhpagZpRWWgcKy4Kb8rGVR9NymkPZG4AOv/2VtsWI2SlvTLr0+oS+Gpi5pHEICJcF1R43qmIoxjizvqxkn/bbXYHORN5xz6zgpilR0Y2rd+CwsPoZ2Y1ovj9Owzkp+I7QMe8CEph9HhUXsdWOB94r1sIdJRbbnF154Affeey9uu+222nszZswAoM/iz5w5s/b+66+/3jSjbyafzyOfDz7L2C5mFGTsITXdyH4zTva97pMbbgBgGPDS6+HrNBtuVCM08t/kFQkETII9PhZv52ClpHEMZDVwxqAKhiwXoY2+X3u/t6i6+LHwOeNKgteMgZwFNwiaCRNeneWNEy/tYs3iI3DA934FAHj48wfW8kFaiSqEJ69IjFY4JmWbCzAJj4FFEMKIQeOcF6sCljNgpKRgeqGCl8cYhnLxPze6OdwnKR698EDs85W1STejRit5n2hCNr1EqVmB9OvWTiFN6ZnMfV6Gu3sXdipReMq6oUlgSl6rGU7Nus1MQRmCJr2jrCY0FYB/bbzXFffp++UMXEjfxlMvhNSNpoxxyKpRUkqJcXUzVKFBYfYGz289taq1/TpojqA/S0JC4c3H0c1m1Ipmd2Moq9lWcDdPVomQHtVRobev8eBYJ/IzPNeQ69bAyw7npROirtthRJIlmSaj3bUlki4W3E5Is3qTCsPpjTfeiK233hqHHXZY7b05c+ZgxowZWLt2LfbYYw8Aek6pBx54AF/96leTamrLkNG0fcQpots1qZTU5JWdEDHIctmQ1HwgE62H7xcf9hZYdqkL7KhIBk1jyHIt0LEM0lEKFfDrE6hFGM5gvb4V1nrHFbUxT9gIxqjaooe/+992lMZaJ6JKRUH4Q79GGk/qIxfPx/DwMCZ/K5k2mSER2p30kmYlwtGfMUe2uGukkhZNv9GqBkhLzlCF6Z5qGS595fq3Yj3euoGXIjfMTMq1fq5L2jg4U1LRV+UVgZKme8SqsgwOJbTfTNRO1DMLEmMBbLdWT844xoFCsJb0qsKSNx9xbjivJHMBOhqlyxLIdKa1lTSrN4mH6gshcOONN2LJkiXIZBoLjSxduhQrVqzA7bffjqeeegonn3wy+vv7sWhRdG7+VrjDmQ8za2N+2PVSxTHCH51Q9VNhEkIy5BVRC4nxSzbimc6gGCH6cZuylICzIWXRLISm5LSWKmwa242abHXgAsA2hD0K7J6LUc+Sh6UiUl17KNXo4ZT630fPObHpczWmiS0nT+okMIz1YRaK+EonadOsRGcjpIa8ktxQLC3GUjcKAQ081oJLUT1Lo85zGgVuE8y9PpGrSdWXJ3I72LqvntPfGBsFvS7NDi19CjBcMX8WRSuDY6Tv4EypeaAnpV22iGAyoNchzepN4lMG9957L1588UWceuqpTZ+de+65KBaLOOuss7Bx40bss88+uOeeezBp0qQEWtpIzqRzJrR6IvYsB8Yq9nnyiPYgqnk5OZMouOQDShpVlpFl6Q3Pa7UaohGqlibDk9OD3So6oi4O5UaY41zSeE186c8a723oxaH8h6nFIcSi7FituYSirEpvGP2CHgNzYQkzbnmPjPXtZs67QYiMqxy3P3czpvVViwWYfqObZ7sf9LQSrbaQIPzTqZqVSA4J0VRN3UCTlUgq1Hv1FW46zOw9xhzCxCuiBFWUwzQtEDsOyaaikXZopkJFRW3YNXeh0c+02p9GFarfiTCLxtREOgySQcjwHBhYQ95QNw3i5zoEwk/0FxQBpepRrYpyU3GlIDj5bySZEsrNGWRCM6ILB0JvX/VIYTeQ1Z8PxhirIhjyIR+1fQUVE0UlNU4dRHIkbjhdsGCBo+cdYwzLly/H8uXLY9v/2isPb3jtViCK6E7olBNpoFUjUqeSxEx51Gk8Dl65BoAPAe0xi5BCh5bQRDFhElSkpsnbFGit0mg3GM27kaQ1K9HdRK1HO71PCfMctMsVmVasBkk7Ov0cxkmn6Ga/55CB6WkGEqRTrrdMtn0NnSi6m8u6xaBKmtWbxEP1OwW/szZODxwK1Sc6BevDL+rrtt0dTKc+5KLuhNYsPsLffiOeoY67gERUTMm1t4BAtwgtwpmwIU+kFwiC6AUu2mNRwwI0a5+kopYeP/eAhtdpC9U3azUqNhkNVkNsyk65K5MLnaG1O4Wluy32va7t/Sck9rr8N9jr8t9E2Kp4Ic3qTafaFELz66vdjQdOOU4B547JXKhGSGAgK1BUe+7QpgbOjPwxzNd5GCknIzgyzH+l1YkIQ8e9HnROyfh7ZTYpTbh5RhrnzlgnKk+VXjXobSonHoDRNbQr35HRJxvVj9OGEKylhSCI7kBC1BYzWd4X635zAYcibt6aCsvYphXgrHGJgqCDcLcJ2qD544VgyOW1UP1KWo0IUfcnCvef9ikpopi0j8MD3O3aKInx0HmHNxfrN3u7dHxQ7+5vPbUK33pqVUytcaZTPJOThjSrNz03Ujzoc3c2vJ5/zi+awvXtEBoDt+QtNR5+aesgiXQS1pBQijB3Y1jS2OlEdd8F3Y4hSKzPg7SzcNWd4Nw73KRXOj8v4n6u03GOnkcvPDB14foEQRBuRFkodMDUxcfVh0VZUOrSP65ueP0Oh3TAmozOKJuUX56XIa+QmYRKeYPrOmNqNAchuGFa/4JhKHPKhdtuBHrQAywgRu59cw7+XnWQCMJVf2m/gZdIP/S8aRG3zocMqoQXUkpP0dzuQmNpMNS2yj5bn9LwOuqclnFR1PRHstuzY88t9aIknfKb2k2rz90g95tf47kIMeLr9P7D+pN70WNdaKylhSAIwi+d3mfERctFCCPqvBi4Y5GwVonLEBalUT9p2lHczIs4dXsnhOorTF+m5IHnX9W97c0FPuPWPe3IfywynWtaI83qTc95nPqFZmOIOJCQPlLBN5IGQ6ZTqFNajSGPvH4jsrwqUqptj8NrlvusaO+XgtLcqQvJPEPNzOchTGhRJpus4LJ6X7bijRk2tMpI8WG93/xc43cvWQgAOPSHv7DfdlpvlC7k0QsPxPDwcNLNAICWwpfII5kgiDTTTUa1KGjVcF1UR0J/16u/6NYxrZAMnMlA+j6q65ZzmRpjUZYDG0Y5MplktHyUXuhRoRupW29X0PtaKWnQ8skW+AoLaVZvyHBqwTrAvf24o7D4rp8m1BoiLmhmnoiDh5YtCPydoM6IT7z5AwB5x8+juraNRyHZ/JyximZV5cjlvBMSc0UGGshEJQDDcOXcRYHW/8aT/sKbRLRzDqmERChBEER7idSIE7MA0p0pknnWC4uNraQF85TTUw/YG4gKGYFKuXM97/ySln66Uj2X5ZKCXD7CohgRYx6fvOvtE3jy2YHY9sUD5jYmSLP6oWcMp35PaJiQSiJ+fr/+Jt/rDvmvuUT4JI05TruFqHS5Jv15W5ZLCt7/Tfs8kFF2fN1qcBUuudacZvsFZ45ep90qNtpRGVnP29X43t4r7kXfaxuj3xlBEEQMMJbcxBiRLtI6BDVCnA1DryYqCbdIJ8gEbIbnGtodVKPee9qhtb8PvP6Xwb5MNFBug2Nskg4HRPfS/dNBAaGQyt4mTeEsSRsrnfbfC7dItk1RFnbeoeQN7Y8kJ7mC3gOt9is0c+5CWkeaoAqlBNGrWPtxI7+lXY7LTg55L3epICyX0h1qG6Tb6/W+JI4wcrMRNShR5DnthNvOawz7lfcFi2ZqN4ELB3fCSfGANKs3PeNxGpajf3wH+uPzJCdShrnqYFrIR5xHM27sjDx96dagTVRCRrrM/fI9ocL1o0YIBrXCsfiun2LVYce2ff+tDgTd7sFWxIkfwWon9vKKc0haqHZUQ/ytQiNsftZOoCKAQtKNaDNShE+YL3tEhBJEL+NVab1VopqIjbudYZFS+JbHYefY3CJGWiFMoZqBjMR4JdgPcdJTPEbXqaLaHr8szeJVqF8P9lpNFWVfaRH0mgKsuv36+1YvU96Bgi3qMS5j5H/XTZBm9YYMpw6oMT30Xy0yzCykyzDXbQyXFQz5yDMYBMPA0Yp2CjPLuFVBxUujOVvD4+6zJ/Dki3223+sfqGB8LBtoX5xJX20MIz4N8ZHJiNTOSpkFUlap/07OJTIZAbWiPxPibH9R47UCUVo16T2g54tygldFnlXDZbL1Noch2+IjsD+TQUnzHhjkODBuec8Qd36OtbGO8cweHlcwNDnY/a9f++4/2Hx9cNZ4fA5euUZ/nwPlstKU51RwBqUigKpgVVWOnNLcRq9BrpC6qC9pDBkukFfiF63nPLQ60Ppvc5loND8/J2W1wDnVHDeaUq9TyhdFEL2JWUul3aNUkyoyzD3HVY4XUNLGaq8Z47FEwT4zzLDjUDQbzvAcNOk/pDyTFSiVlEbDEmeAkGA+LNATHrLDbHzmTIEmReD8puY+1JzL0k0vGXrKajCzprnpZOzGZlLKBqO6NVTfD262UbdjPj6WRd9Q876cxpBO7/cpBVTEBAA06L0JDZiWB94q6Y4enAFT+wXeFPo1YbTLzkhq6JI4nYRyVU3mR5rlcqLJw9vaNrXCAxexLarcdezkFyH1e22iqLdR09zHJ51aGAogzeoHmiowwTVZC/+MujKdEPWFSB6jM6wIYFLOu/MwHuLtHp9v9AgXuvXIY3DrkcdEsq+KYL69E4KmETASl6sqT+3DdaA6jWQcg1pxJMEaJlLCig3jGLgdY8NoasZuEiBvWs9aBd4giNE0LZVBW8F4Zg/1Nx8vN49nN2GlMOfzZfe+W3EoqTD9AcJZbcCTyXpPJAxYxKImGfKKbIvRNAr6Tcc3a7p3IjGaVnn83AMi2xZBEETUSIja4kZUHqLGxF5cTnFSCjDGagaSuDEM0VbtmeHeRQ0Un6lubDWTxaLlZkBtJbLKuC6M3VWqv9OqT4omrTZRrPs+2ekIQ7faaVbDa3VTOUg1etGQ69RKSucva6iiHOn23IyPkwajzwGrikZtWRH6YqQW2zDOmwyQdtdFKwZT4xhqUtW3L7WG/wH9OjBSeDgZhKfl6x+MjzX78FnbncmKeqRW9X+1wsCV+nY2Wq5l41Y1rkuFSVREyfnHBSCt41gifjpj5NUmRACF4TWzSESLkCzQ0il4CWk1gYezYdzIKwIVyZDlEqpgGMpqkFLWDHVCMnAGjKkK8oqAKlitk0w6PysAjKsceS6Q5xKcSShMgjMgzwU40w2OQtYHGGO6Dgg00AhicDT2k7N56m4o2QiH6v/DZQWjLXiOeiFUZxFQMb3vZKB1YnM53oekMcllJwKtYxvz81oVDHlFQEhd1EVhwLt7yULcvWSh7/Xrwo/X2m8+B8JkZB+L8dy3A/OzIA3PhXZC+aIIgghKFFHhlQ520tBMumxTScFYhdd0qWEE1ecgFWhSRUEZgsKaI6zqRp7Wn6WyKgylh0DUJKstbhiGJqsB0tBc2erv9BvyHtYYNiUnfRvrjbBsxjgYGLK8MeKt5mzQxn7euk8JWfOezvI8OGvU1iVhjW+KBrfj/2qRYX1RH1twpt+bQgKjqlI/3zwLCYk8728wQpZFMfL2tIKfiYqwtEPzZHk+8HfSPiEQJaRZvensEVkAnB4ia688vHE9n4rFz41k7jw415e3DaQ7ZKcXseqguG9+c14jp2IBaSavGMJVoiIYBjIaxlWOjOkeM8/wW2f725lDtiQ4SkI3pmtSN5SWBEdF6L/DEDFuuF0P5tnOsJhD8oHwotNL/K5ZfITt+zymhC3ZFs9zXPdhhkuMq9xw/qwaUJ335TROsusqoo5UIILz6IUHJt2EGuZIkzALQRCdiblP5w45Fw0mOrQiZFwpCISs67Ip+XR5qfgJ2W8FqxZxG5Ka+4ggaY0AoD8b/ndIKaDwLMpaOKNelFjH4gwMqmz2LH3PH07zvc2oJ3hbSc9XCaiDczHfL8Y9r7D2ZXp89P99pOG1Me7KtHANh8XPfaaU6ufg8fM/gsfP/4jL2umCNKs3nWWxiRC/FZlvP+6oaPbXQxdVN5FEoSjDE87AydPvyRf7cPzPb8PxP7/NcVs/PPhjLbUlWzWOZrjEprJ7R2kIPqvwS8rLrD+lRiw73T0lZ4S7hD9WcYTkmY2fhsE8iqT/5mNQNp2mLafXhXgairQFHSP1yoxrWMzPtWKEofoGe6+4N/JttoLQWEsLQRDdiWGAkFKirwOLzISBL/gv8AX/Ffh7A1lR64vbqidtrJZ2Hqdp0Cp2xD2Ry1jy162bYbkiShDVkPKwhLGTC6057dmMgr6titC9qZ1MEHYpEOpt0b80mBXoU4BhSzaAqf3BzncretVop5Gj1zw5FHUdtb2//htf623hI+1eWKwpEPyy1+W/wV6X+2t/GiDN6k3PGU5/fbXudWV4ls4/5xcNn6vZ6ArA2FUXJwgzfnJeGWiycXn3NhOO6xqFoU66+ye+29JqeI3T9e43v1SaqISYtH1o2QI8tGxBZG2oG6KDfc/Q9dZE6gtX3elYJCAIUSRbdyOqyapuopPSj7jRjt+xz1fWxr4PgiAIvyRdkT4qJ0k3o07aMRtc4+iH4jCepmEMOaP/9KSbECted6afOY0ozn3SzwgDu1RicROnw0GPzEkRbaR9vtYdhvEgPPrHd6Dfpkqw+eEyoTUmBR8uKyhkRNcMdjsNo5gOZxKFTPLCw4qABi4BFeWWwx3MhaE++tPbW20aFFYPDYnCszBJrCHwcTP3y/dEajh1w5yXM+tymlYddmzofSSdI02I6gxmAr2UVs2VbFw/dnlQOzS6kmgjVKGUIAg7GGOQUkKTlcTTNZl1qJHH0kpZFBtyL5qJUmftOCR9aQ89MkuDlALj2ubQWjppwwpD5z/nRYrymLsZ9zM8BwZWSzEQVVudikR5acSCImpRXarQoCjNeXrtsKt5EJWXZzkd9ttIGLQprBo3XEjfEc1phDSrN2Q4JYg2EuWs4tPr+nD8OnOYfruqm7ZlN67wCMYZrfyOKHKbemFN2dCr+O2M09BpO3keWHNnB71+0uB54pcv7L4Y33hyVcN7R885Eb97dWXb2rDmKwdh8rfatjtHSIQSRPtIU3/ZwWPnriVN14eBhNTDnAO0TXPRhmlNGwAka6SWkLURUlq8O6PCSAO4YbyznV3iIo33fVohzeoN3WUEkRB+Z8jzbTDSOWF43vnB93pteri20llmw6Wzwdwv3+P6eTs6cGOWW61wLL7rp7X3nYpDmbGK7qS9MYDmNgnObGd00zBgUB28tK3t7eZcQFajaUljuP25mxNqTbJoGmtpIQiCIMIRRw7OOIoPWj153Qx7BUUG1mXtNGh0l0kyHK06VkRReKkd59yuOFy7PI6DHmMynvqDNKs3ZDh1wO2hY70BzWH7mtRDxTs9zDltGN53fhbDO0tI5ngeDOOSwoBNpfAzLGEwOpsg4VkTNhFSbjlO46LTZ2ojC81pUwfRLq8Vaz7UNMOFbPLgNOMUHhVHaL0h3g5euQYHr1zjvB6pNoIgiJ7DSzNleK5NLfGHlM7t5UxpKAKTNqyGHDvDjh/cxgN2ObSdJkxbxS4kO0qiiNwioqUsipHkEk6DI4FdfQuF1ZdW8DMG66RILaJzoFB9gmgTYR/iJZcOwshxevzPb3NcJwiaDGasc7IHORkohegMsea3OFScBtSkc0URzpAdlPCDkC2EPdH9TxAdC92/nUE35ypXVY5MRqTCiBYXfu8zKQWQMqN/VIVz23kNmyeC/DjShB3HdPM1m2ZIs3rTASaMZHC7ae0MS14Dac71pZs76W6BHtj2uOVVsqIwWUt63is8tGxBW4pD7bnlqbHvoxeZklN9r2v0Ae3yPO5GQSKkHtbntgTl0QsPhExDfokqspovKswieyRfFEEQnc07hypJN8GTToipSTqiq5PHp25td/OiThIno2LS14EbQby47X6fJuuLF3Hp67Ce6HbE5W2eFKRZvSGPU6JnyLrM7pmrdztVSGwXVFQgWcKKRyO/aTuMpwaN1Uzdw18WrroTgL+qneZtEumh2wyo3SU5m6FE+wRB9AL7zTg5ku2kQXO46X+7iblMpjVDF3Mo7DqYFdhgychV1FgqjpETbn36d/Zb1LZ2+CG95snOgDOlKT+vQZCoLE1jUCw5S+MYhxtt8pv7WGH151Eur2Gi2OyxnMkIlMvp8mRuBdKs3pDhNCLI2NV92D0E0hSi+/S6Phy/LpoQ/bC4XfeVHnmIJoGoplTgTKbWmJamdjndt3peZAZzSds03eMAMJAVUKv3UhIDpjj36TVw+dZxL+PsH7/N+fui8dylDaGx0F4T3VxAjCAIol3Y9elu/Vq3GABaNeiGoduMkWk2UieBllLv3SCE8TjtNs9SJ0izetNzhtODPnen6+eZSuc/FIjgtKM4TpoMSV70+kRANsYJRIUBToFthkHUjSfe/AGAfNTNipSwoUZvvlbA0T++I9rGBCBOkcw02YM9buvc/+mDHT/b64r72tgSgiAIgnAmbROv7aY3zEvRYdacum72N/joNoNukIrsVgNdKo9Frz8IuhgaxllQs+Ee+3SPdCdckYD/1IeRYFxLhgEtr0jAIZQn7jb0Kn6LQ4UhSCffzvNgN1sYV7rINAgd67HdVM5gy75wudruXrIQAHDwyjWtNquJsQpHIQHPkXYQ9SBr7xX3RrzF1qCwJ4IgiPSSopTYHQFPWYElK1HnB036+shy6Vog2I2wHoBu+txvsadOchQi6pBm9YYmh4ieoSLdcwOl5abXQ7Drr8N0moNDZd/r/mvE/2PAb6fptp5ogw2olU7bTShFGYoQpyCzu5bXLD4i8HbSYOBMijBGayH0XE3WfE29ht11E8ckQNoL+QkB34n1m5ekW08QRFg6cfI5TBGdcsp+aJSFX+x49MIDY91+2nHKaQnoup+6rWB4jQMo5Vk68dKePGXPRb+QZvWGPE5NcE0iV4rR1QzA6xMMMwudeUN1ChsmMpja1+gmKiTzNKZxLpsMTknn7BjKCZQ0jr4YrWzbT9KfdnlFRNZJK5bcm4YjdyYjoaqdIwTczj/nVY9kH97Afk9fRTJkIZvC9QcdUkkIycBZdB7JUU4eDGQZNpW818txYLz695bTi3jztQIAoK+gYrSSc/yeIUyEYFArvJaDaKyoYCgb7XM8rzSHUNmdU84lxkazGBhs9FwVnEExrIkBBdVAVnTkINwgyyUWbnsS7n9lZcP7frxoP/vjtwG42/FzIXJIdY5Tmr0niJ7HzdgUJWEnOjWpIsOa+1pperZmeR9K2ljtNWO89uid0X96uB3b8OwIwzsmRfNMz/AcNGkfRaIw57RIdkYRVj24+3xlLR65eH7T50IwTHicALNRlzOlli/SfJx5tYit4XzAWeN5LSgSIyH1nqFPclN9CLOQdKI3VtZyvq3jFz9Y++vxsSwmT9KvvVYcEAYyfRip6BXC8kr96E5owLQ8sL6ov+YMmNov8PpwpjaW5YpMvQFP0xgGBlWMjUZvjhqrKOjPhA8ZNc5bRdTzBRcKKiqVxqvc/LwQnEELGbmcBkizepPo2VVVFf/xH/+BOXPmoFAoYPvtt8cll1wCYTJbSymxfPlyzJo1C4VCAfPmzcPTTz8dW5vK+cbBcdoLBBH+yXNRM3YY/2sSmJSTUCvNt0Lc3kyq9PYKHS7z0GEaQSlpYdNUNBulrQbYitCNkO00mlrFUJKYhZMmnYVUljUbTYdyzYMuw+jEmXMYT5C8vUlPEBgJyYXGcPtxRwEAyiX/IWGZrKgJm4FC8/Hqd9FkulG0EYVJZLgxgLG/N+wGXUKwJqMp4Dz7bDdZY2XM9Gzq5PAnTZL3BNHZpFGzEp2BlLK2xI0m65PVcSGl8F2dOgqc+r4Md55cbTd9AaLY7bx77a4Nq3QoBtBqdgVtCgXdkDRe0bezqey9Pbvwd1U0j18UFnWgfHRISFTEhO1ndrokaJ0Hq5brHwiX9skNVTRqW2tJlg3jvNGIp4Uzgrk5eihVw74xGWQY/c0TFEGPnV21ej+olcYdbSzbj0ON9rRSu8O4l/wez7QbrInwJGo4/epXv4rvfve7uOaaa/C3v/0NV1xxBb72ta/h29/+dm2dK664AldeeSWuueYaPPbYY5gxYwbmz5+PkZGRQPvyc7ELl6eF+fvWGcAgvK2fbqakGFXTkZvHkBZ2M/xRMTocbttCMmS5brwrZAQEdMOSKhiGchpynNU6o6LKkeUSRRujUhqMlqMVBRkmq8ZICVUw27a2E01Wi0OJxmfIprLztTlcVjBqY9j3w6rDjq39vXCVc2E8IViToTXLdeFhPBZLmnuqCytjFfeVW00DIKoqyCoU7RhX0fA7zPiZMLAzrkaBEMxzgsbJM7OkpXWIQhiYJwTCLES6aKdmJTqbSkPETV9b921ojLiJywgsZL2/fmsig7EKr2lKw3BjGEFUUUa/MhkKyzYZcg3jXtzFTv3042YYYw1epqzqQerHEF1oIQ2Q3Th4Si7Y9hjT9ZLCMlBYtuEzw0s2SZsRA4fC9JnyLM+Ds0zDZxPaaNvbtL7I8PK4fk1nuX58hARGKgoqgkGTrHaN5ngB3BTdNKbqxt6g91orjj9u2jzqyW9FkYEKQ7UT4xkUZBKq0w2mpFm9SdSK8NBDD+HII4/EYYcdhu222w7HHnssFixYgMcffxyA/qC46qqrcNFFF+GYY47BrrvuipUrV2J8fByrV68OtK+ovQfDDvrbIWYIe9yMH0G889pNPuZ8iYbHqN/nvdHBFzJ6aH8hJqNSFKiSoVL9fZzJVLc1DG4eiEGeeVE8H6PIdbbhzT4c/eM7AEQf9mE8s8PcT1bjqpDte5YXVe54nqcXTmtPI1rk9uduDpXT95rjXnb9PPU5TmXYXFHeqWWI9tNOzUp0NuYewylc3MArxNsvTs/YThzLG4dki3z0aQ78HI+cw37twvSj6ofyykCg9VsxVPRnw7XZnHbCzus0aSQENNlaRV+/tRwAfzp1RkrT8zldt360WtRFwrzqAthd65mQ13ArlHxEwikdbOghzepNoobT/fbbD7/5zW/wzDPPAAD+/Oc/4/e//z0OPfRQAMBzzz2H9evXY8GCBbXv5PN57L///njwwQdtt1kqlTA8PNywEAQAqCEMMUnk7DBmI5PE2D+HbjTKcInhstJkHEu6nW604vWa9akJwghXuzC6KTbh+NPyrYm/cknB4rt+Gug7ViGV5TKUwTHI7Hg55RrDNpep5b2DV67BwSvXtKdBHYrVNlC0CSO04/5PH+y4GM/nva64D0D6CneET7IfPs8UER9xaFaAdGsvYvSRQmqx5rD3bke6OmC7QzGQFbX+I4hRC4i/WFSUlLSxSL1jMz7yiHcbzGTWqIgSRItG1CC4GdDf1m+kK2osABxkDGW+9gcywHD02QCq+/G/ruEtbfY+jqUQqI/xxxa5aMenfo9DN2k10qzeJGo4Pe+88/Dxj38c73rXu5DNZrHHHntg6dKl+PjHPw4AWL9+PQBg+vTpDd+bPn167TMrl112GSZPnlxbttlmm0BtyvicKcjxenVwY+BvhJcMl5VUhCr3KnoxFf0GNoe5ZkKckzg9mvzkOAWaQ4vjxEhMD/g3bESNkQPUbfG7nVbx01kngfncOIWROHlMWDF+o7XTCzppmnNQ/O02rkcxBtUkCzXREiVBB4hpxQjt0otxpPN+6nT85N4kWicOzQq0rluJzsMIy25X4SjndtRDm61IKWpLRUxASM3Te7ZVthv010eYdcW4tjn2dvU6EjJ1RvagZHgOfcpgahw+JmU1ZLisFqNqbVthvt/thi6jSLRxbOI672mPfEornapbEzWc3nrrrbj55puxevVqPPHEE1i5ciW+/vWvY+XKxuq71rwvUkrHXDAXXHABNm/eXFvWrVsXWXt7JX9Dt5LtskH7u7exT3TeKr1awGXANHYwjG9J3vPbD52OnbcIH4rtVFzJr0G1FwgbWmIVYHcvWYi7lyyMoEX+ySscrxWvb+s+iWDIFnJFyQDPHj+5N4nWiUOzAvHqViIdSIjaQsRLnMd57xX3un4edILfSlqMemY0qdY8C7M8D6DR4D+Y1fTJZqn7e1rn0IMUzWqVTrq/omhpRFk+iAiRCUYQtEq7NCvQubrVpdZw/Hzxi1/E+eefjxNOOAEAsNtuu+GFF17AZZddhiVLlmDGjBkA9Fn8mTNn1r73+uuvN83oG+TzeeTz+cBt+fXVR2D+Ob+ove72mZhepBLCSJLm6+Dpde0pOJBGIednQqqVfCsT1eietHqctsqDn5tvOwDwVUSvOw9JailkREfmDtJk/EU5rHgNatuNEAwsZB8SpO8x594EgO222w4/+tGPark3iWiIQ7MC4XUrQRBEu5jW9wlsLt9Se92fmYyyKNpGx3x0+8UAgO/+dRUA4CvvW9SeRqYAO4eL9UVgUjYeQ2evGk/b6ZjolvYizXaCoLRLswKdq1sT9TgdHx8H541NUBSl5qY7Z84czJgxA2vXrq19Xi6X8cADD2DfffcNtc9fX31E6PbWQlots4m56k/gTA/bH8yKnvXaSwN5RdRCQp3CzY3zpzBgpJzMucqwnO91J2ycBOPyOO1m4u5nH1q2wHslDzrBMGkUFEuSKKpXhg0ddzMIci4Dhe50k+iyw5q2xnzdCB9LR2MkrA67+MQr9yYRDUloVqK7yfBcg5dcu52VrOHX5mrvVhhYUyX1NKUlayWfqflx69YntzuPtlVrFBOIgpqaPxFb5HVD6OTcCdgivxjT+j4BANiybwkAYNepn8R7p52KXad+Eh+auaT23U/vshif3mVx29rKApo1gujYe087tLYY2Gm9IA4X1v2XRRECFBVmRa2EN1e1ewK/o2mTZgU6V7cm6nF6+OGH49JLL8Xs2bPx7ne/G3/84x9x5ZVX4tRTTwWghzstXboUK1aswA477IAddtgBK1asQH9/PxYtCj97JRJ0o9Zk+4UR0dnoRXnsL5pbjzwGAHD8z2+LbH9pEsJph7ucm6TJZIWt2AhjqEtyRtupvYIzwGWQlwS2IlrIlmRwUeWBCnOljTgnETmXbfU6SAJroSA778TzzjsPmzdvxrve9S4oigJN03DppZfWcm8S0ZCUZiWIJGDMpB86twvqGOwMv3a2iKj0WKt951DuOADA7MFPRdCaaGg1VF/EFCkzowCMBahTZU6FEJeTQlpycwrBoITQuNynLbUVH4te9eZtBT+aFehc3Zqo4fTb3/42Lr74Ypx11ll4/fXXMWvWLJxxxhn40pe+VFvn3HPPRbFYxFlnnYWNGzdin332wT333INJkyaF3i/XZM14uvbKwxs+U50qrfiEjKJE1Ph5cN965DH42O23RZKTk7yl63R6XuNVhx2bdBMaMASgHtrlT5G0W9z5EalJegV3uZ0wELpRXeLxcw9Iuim2cCFDe0bL6veshYKWLVuG5cuXN7xnzr357ne/G3/605+wdOlSzJo1C0uWLAERDUlpVqL76IRq72koBqTJ6AaqURig9l5xb6RepxICDPUkoMJDGxUUiU0pnazvdg743q9qf/s12oWFszYmhk0QzecYK5MVqRiPpcXYHBft0qxA5+rWRA2nkyZNwlVXXYWrrrrKcR3GGJYvX2570MNw0OfujGQ7YSHDantIOow4SvxU9z7+59EYTQlv4gytLmocBcV9sLLnlqfi2c2rPGfG1QrH4rt+ilWHHdvQZrXCse/VaxGFp2wnDP6sCMnAmaz9H4Y0hP6UNIG8kmi2HcIDpkmwkC4LxvfWrVuHoaGh2vt2M/deuTeJaEhCsxJEEMbUxkKXRLiJTqfimnGie0u69+lp0B5EnaRTLaXZpuDHe1dRZOLHkKjTLs0KdK5u7elRFxeyoSBUFJBbd7po9XwkMbsUJn+kEbIfN2EEaFJCL2hbg14rcVwbXkbTKBGmE9ONwqUXnsXTC6cl3QRX4vbMtXqatjv/nBesOnsfZmHVgzc0NNSw2IlQr9ybBEF0Bkn3W8znhGqn5mFUQk6Wtoug578btVsn0Mpxb1UXReUYRNeOf1SHeindRrs0K9C5upXmJX1ADxci7eg5TuvX6eBQGaPD/otP+SWIl143zIx7JXnvFC9fzqVrSEwm2/6OKm6jmtdMvPk6dmuLJoEM95/LNmqDeiEjbIVy2ouI9SlApc2X1d4r7m3vDlOCV+5NgiCSxVp0iTFmG7HRqgdZq96m5nZ2Yo5TrxyXmmSpN566EUW/T2Pa7ifsOU6zByvRXXSqbu15w6mR4/Sgz93Z8MSIYvDrlNSbHkydR68LDeu1nHajTVDa5eWRhnvfrmiUWuGJGE/TgpeR30+6jFD77fJ8SXGz1xX3Jd0EV7gMny+KB0iD4Sf3JkEQ6aYU8URsUL1hNe66wcDRWtnDaGlX2qCwYaxREYVDAukOHY5oc8ZHOU5MKg1WmMvbLhey3+04OnQI2bEx0UyTkGkY7IWgXZoV6Fzd2nOG019ffUQtz6noBpc4oi0kE7Ifz3bP3nVxw+s7n7/ZuQ0AeiNFeSN9GQClpFthzxNv/gCAfeiDXx783Pwm77xWvWdbrWYKAFO3nMCGN/sAdK64j3qSpahy5BXZdZMV3ZSH2glmCl8K812/+Mm9SRBEuskrEkW19edi0uH+aSXNx4WBAxEbolWVI5Pp3QlxQieX12KNjgsy4UKkm3ZpVqBzdWvPGU7NxaHsrOq5kt5xxZXP4q0Sw9Z99JCJkw0TGUzJp2cmPCxehoWn1/Xh+HW3Rba/vCJrwjJqo8Yh26i4aYO/1AFXzl3kuc7Fj63GSDl9hpe5X74HDy1bEPr7FcmQDRBG5if5uhVrcSihMWSyIpSh8pnNOew4uRz4e27cftxROPrHd3iuF3ZWFPC+vlsxUlqPY69O0E1o7h5P+Rjy+T564YGpCtfnGsBDjtZ553dhBNGzKA2pYPzfzK0a98zFoXx7fUkVGeauz7K8D6oo1xLWcKYE+l1+eX6UYbtBSx8a8JgY3noKz0ATalRNc/Ui0ydM/TXU6k0YNl9s/2B0v40IB+fxFjcayPRhc7kECYFsxGaJNDgnmI9dLq81RcP5oewgJXWd39pv7FDH0dCQZvWmQx2hw/Prq49oeG0uDsU1CTWjHxK7WbpOyWdIeGM8DDUJTMr5e0i0e7aaM1nNrajnC7Ty7m0mQm33W0+talgMog4TM3Pvy7qS5xE+cfyeNz8YwlyT+jKRMj06aAmjL1SfT5w155F0u06dhJLQWINgsT7rnMSDm9G032Zazmos0ySQa/GaMISXEMxRwNrdP25kef3eA+yNfH5FrGHg5ULajgDdcs8C+rlOs6eMF+ZnrfkZk4lAtFuLQwHJh1ISBEEkgSbrRtOojSxAY1RJHEbTtNAOg5K1CJc1Ykd1mNw1S4jx0UaR5aUlzL9rvKKvO1LprnEtczFrVER9zKSZjq9VlgXJgWtoTlXlDcfXrKeNcYUf7MLe7do5XAGGsvXXnAFT++vf5Vx61mgIw2BWj3bTZAWaVCEhIaWAJivI8r5aW/R6GN6THmbNXi4FE+rWGkIbLc40m0oKNpaU6jjJuN6DjZs1qTsB2OH0nOjUMH3CHz3nceqG8HGxGzlK2130gogPPx1aUjlOvXIr3nrkMQCM4lDR7K+/apTTw4MZ8hmBimDIKxKFjECx6o1dVDmyXGJM5eCsHkpsVzzKuF/8FMs756HVnuv4KYDAmd4WDmBc5ShpHJwBgxkNgN6ZljQGhenrjvk0lrqJaj/epgoDxqvHIVvd1qaygryLyNlUUjCz31/7nFiz+AgceP0vbT8TgjX8Lq7ImtjIZWST0csPG0us6sWsF2MQEihpHJmIpyXNRl6nc2P2fqwIYIu8VvM6Na7dSVkNY6pSM0qbKWk8tPHSy+NUMZ13u30UVR6JkZFoP0a10bDfJQiiO3AziESJ4XFqaK6ysJ/ETDPCNKE6XFbQnxE1fWRoCc70Y8oY1//nmSZPTqu36VCOYVO0ATKhMLx1jRBnDgUSEn1KAZwVoQpDR+vawa/2UJTg3o+TsiZjXwfXchCmol/68RTI8QI4y9SM/AwcE9poLPu3OluZawa8McEwokhMydUn8StCv7an5dWaEVdKiVymgLJWrH23LIrw6+O2Yby5dgGgGySjStkwXC5jy77G94wicuZ2G/gxngLeRn83crzudWq+V/KKxBZ5DRXBamOtSdk+aLI1z5hurnlCmtWbnvE4dbrQjeJQVqNpXDfG2/p748LqFtLwgAxjNBkd9hcWHwS3Z6IxuwjUZ/bsiNLjNCwloTdCSL1jdQrzsCPqGVw/KREqkgW+BnI5zXexp6C/ydxmCVFbrGS4REXoYlYzXR9+6Su4ixvDIBmmqNVoRdGN6kzWrt2RioKBjIbREKFCrRBWMBYyHK8Vr4+4NUSUGCI07EIQRGdSMfWThidWO7BOKue4/1D3KPKUR4mTL4tZS0gpMJDZAgrL2q4rIWqaZbgc3zM1iJeqhKgZm8xMaKO1NoZJl+WlJczjGbv2dtMErV68LP2/R5PM9f50G08lgZ1jTEvbc7rmQqS48uOYE4Y+pdEwnoYUB3FBmtWbFJgx2kPcF7rfGcHxlIUAE+lLGB8krCNuOJMoafpsXUUwjFbq3m+FqifqQEqTz+uR0QwCQH9GIMul77yK2RgrYmmyHkZniKIpOWcvzCA5T82EyRVkhTN9JlerGpmjRmHO+YnGx+wHQk5Yn/HWe8h4bTcYc+rv3QYvQaMOnDxPlRiOaycwVonmJuMWQ0GawqSMRPthF4IgOhNz76vJStPnhndklCHv1kdfih6FgTA0sCZ17WZOV6N1UVFBc7i+buCtfxb3498ufVEnF2w0DHoSopYzVhVliBa9C6Ngqz6JGQX9byPs25pKwzjfVq9pM+ZrfyCjh+snBTeVDZZSNExcBLl2W3FOsjriTLPUjzGi5NotpTo5XRRpVm96xnDaMNMW8OT+6PCPRt0cosNIwwxTHDmr2k1cM4JRU3EYy0SR5zjMYCZKQWt4aNoZ8tJwnXvx6IUH4tELD4xse2Fn0P2ex16ZhU0KoQJ7XXFf0s0gCIIg2khQj8JOMgx6GYjtDJ/WSdiowrN7jaSN83beyHEQVURl2OJm7htNr25OQyQqkRwdlvkmPZiNWGOq3okZeXlGK7yWT4NoPwNVw5Amm4vqBMWomBjHg1KVZSgs2C34pT29K857cfauixte3/n8zbW/zUm04ywW1a3M/fI9vvKctoqRZxZwNqhnssLW69R4z2rQs4a8p1W3GFXTrb/MuEe9Jns16R0FVBEMqvCfXuDglWt8rceF9Mx56kYclejjxuzp202hgH6gfFEEQdjBGIOUMvEiS4zxBh1qLVpkUBETYOBQRbxJQrcblL6iOfQ8pwqkFBjXNjd6wIVMOeCl85kmUxPR4FSwJiy90N0oLIM+ZRBjarjCulFhaNChnIYslzV7AWPpuLb8olTzxzoV5BI+tLZBuawgl9ciiZQzmJJvvEnaMXHSir5PA6RZvSHDqQW7AlEf/8XP0FdIoDEE4UJUBaH8ELTDSXrG1g+d0MagGMXrymUFnEusOuzYxNridM0Yj9gxldUKE3BFNnnzBvV+tQ567LyGjfylg1mtmn/V+MR+X3lFYlO10ud2g83r2OVh3bwpj8lTSvZtzNQTzkXhvZx2+hS94ESG6wXGMmg0+kfF4+ceEPk2o4BrEjxk2FbY7xEEkTxm051b+G3a6IS8kN2AlKJ2rK3H3Embnr3rYlz1l1Wxt41oHSEYEPNE8VAWeMtearYV80RFjrOG9Ft5RTRoPqvjTiuolcb75K0Jhkm59jy/jPFGJ0TpBYE0qzdkOLXQKyeeaI12XiZBK13+5Ohj8PFf/CyWtujGsOYfb51oMgoCdQLtdCDwXR01ZJv8fM/LEzUqJuckNpf1BuUVgaLmXh3+hgNOCL0vtcKRz2sNhuILH10NADhpR32wccI7F+P2525u+q61TdP63F05vvb+RTjvkdWu6/zs2KOdP2xhRnqfrU8J/d2wXL1veC/37/5VH+QdPedE/Oblldhvxsl46LWbImqZzuPnfyTS7UUJly3M3neQsYUgiN6AM8VpnrEjMCqvW4vuWLvlXF6DWtKHyI+f/xHs85W1bWmfG996Kj6jaYc7ykFIVju3UgqA6RPevOoVyZkCzjIYVzcDAAqZLIbLAgVLFM/sAYmXxvWDEVSHG8Y0tcIhcgzIRH+j2I2rhnLAsMURPJfXMFFUAhn2vr//x0O1qawVXdMLuOnWu5cs9LUPtcI9f8twBZjkUBd5tKKgP2Dqii/s7mzkPeB7v6r9ncmIhkg+LiQqSoyFMmKENKs3PWk4VV2SRdp5nHphzjVTFnp4+BvFDPIO9w3ZZuMlr4iasXG0wjGUbTaEmMNHS6r9OY87j0mG5XyHFAUJy/nY7bchE+GdrTkYS4lwtOP+z+U0TBQzWHzXT229Th/83PxayLuZqK/5naacBgD4x+bv431bnYJfvvhDzJu1BPNmuX/v9uOOcvzMnN9036vrg5mfn3Bkw3or9q4b/Jbupgugo+ec2LS9x964EXtueWrt9avjKz0NlF/dp9GY6Cb+/vfLB9X+NnJx/v7f40/nkAY+vUtdeH7kbUsAAHOnnxzrPh+98EAMDw/Hug+CIIgoyPBcQ/j7YFZgQ4teZPVCSvqYxC4fpoFuZPIX3i6khgzXLRNOIf1RoTB9GVc5ClWDh5DMVxq0PmUQE9po7TVnEtPyKkZNBQmzXGIop+HFkUZLSzYrUK5GmZgn5R65eL7rPq/7oPcE44z+05vee2PiRtfvOOlFt3Pa6xgevIyxpus0y/sAhAvVv+9ThzS8XnDjXbW/VZU3pbsys74ITMnp6fycMDzTNVnR70sTM/vPAAC8VrwR89/+iYbPLv3j6iZNuuSeH+P2447C0T++A/d/+mDb/c377t3OjXFgu0mfAgBM66u34a2J/8bUfLO2fuT1G7H71E8G3oeVR//fR7Dv1Ws9dfPnHlyNc99T15zGcbr/lZUAgO2Hmu+/sJivhQO+9ys8+Dn9+fCBZb/W2xxhHQYiXfSk4ZQgkkRKiZg1pyvWWevtBsNtp5MS7aedTWUl0qr15bK3qhacdXxOGkOsdAppDSknYqKVSqMdfm8SBBGOKLSVkbZH96x0fpZISGhSRYblHHMVGvCqF1+e92NCG8W4qmK7SWe03FYzz48yvK2/3l4j136WSwjJUMjoob+c6VXTFZaBKsrIcT2fGgOHhMD0wmlYP/79hm0bE7lPvPmD2ntHbHcijgBw3iOr0VfQvfQA4HdnHQS/tDMlkh/P0F4qXmM3EbuhdDOGcsdhpPITAMBA9pjaZyXtx5g9qBv/turT39tpiv7/p3YOHkaeyQio1VB0pwn09UWGAZP36XBZ936cktdfG16kRl16Bg5V2ucSft9WzZP6F+3RbLRfueA4AO5OCE4G1aCYjahmooyQ8qP1naKj5s1aElk77DAbUc2OEh0JaVZPes5wetDn7gRHOM9SgiDSwZjqHJKRZqJ+7HAmyYDtg+/9bVUoUUzEx0BWQ0njHVnwyi+UaJ8gCMA9d2hJ0wsRGl5lz4/c5Lk9Ow/Hzz1YTyHTp6BWZMns+W/bNikgmYCEaDCeKqxurKjgF5AQUIUGxhim9X0CI5XvebbTC6vR59I/rsbJO9Xba06vM3f6yXhx9HvYacppeHX8OgC60ebNiZUYyumGouHyjzE5p6f9sfPwBNAQYWLw1X0W4fif39YUuUJ0Hob346Tsx9qyPz8GSHPYt3FNG96YL47q99HWBf26fHNiZW3d2YOfwr+GGycACCIuSLN603OGU4LwC+fNBWt6FUovER0KAyqW96bkNBS1aHKMGufKLZfpvlevBe8hr4RN8RYCJlogilCutEKJ9gmCsENKWTPsCXk9Slp9AilsOpOr911Uy+0NAF/acxEu/aN7Pu4t+/x5Y/UphzeFhxthu1FiNaRa0+sY3oKGkRlo/A2GATUMtx55jPdKREfTyvVh5Z5TDvO13pf29HdNG1jvyShDzAnCDdKs3pDhlCBcSFPIS0UAlzxhFsF9jusKwRKr9ucnB1UnYlf5HQBkgQNjAZLQWjBP0mVZ+GMnBGDNR95KCJkm9bb59ZK1FlvoVD40M96wHqKOXdgZQRBEr2E1nkSFXRgv0RmYq5Hb0T+otqklBEEQBACPhDZEjVw+vGHEipDBFiJaemRSJFacwsO7NWzcbEB3M6Y/tMw+ebn5O5qM9xpUGPDDgz8GtcKx+K6f1t5fuOpOAHBNYM+5DG1w92MwP3T2SaG23SrmhPFEOuhmT1MDVs0XFXYhCKL7mV44LekmEAnjlV/WSpCCsW5QN0MQhAFpVm/I47TNaAE8uAgiLENTShgd1pOA/vDgxjw/Z+/aaES68/l6Dim7514UGQjTYKw2t6GTDLwVyZBvwRPVjgc/Nx97r7g30m0SBNEIFwJchHuChv0eQRAE0fkUMs19wJjamnZNUxQdQRDpgjSrN+Rx6oHmI8dlGoxChDethEF3Mifd/ZPA3+GWY9VJhkY7gt6jWZei9FaPTNFitJS5SmolouNsd87XLD4CQD3HaRBosocggmMk2g+7EARBEL2H0+O/oNQ/GB/NJJaSiyCI7oM0qzfkcWohV4ouJN+O4QrDFrneuLiSYsNEBkO55vPYqlFKCAZFaf3cyQA+nANZgXGVoy9Cy9W3nlrV8Hq7Qf3/vCJRqk4UeBlK3QyRFcGawrYHMsCbAHI5gXI5ufkaIRnyPNisWCYjkMkIlEsKuCKhqhw8xHVQEUBBaTZC+ulr7K5n/busauR2P1+3H3dU7W+7olGZrIDQGIRgth4Jer5Tsp4SBEEQ6URLUR9l7mGDaL5WWbH3Ipz3iHtBKCJdSAhf14ibVvTj5AMAxWIG/QOUG5UgCCIM5HFqoZx3cTULQI8Y3jsOI1WC2XiVz6T3ZI3ZVEWPi5LGGrwfgWZjWdjreizFOs24FqwVYw1UldeMpULTi26Zi0QpFX+Doiz3zm+aZdLX4C9TNUxzJjGuMmgS4JZLxWzcPfKWnzd89uDn5tf+FhprKnplVwTLDqdczH4HAgTRzRgVSsMuBEEQRG/iNVndP6jWJrrtnDpUm+JShYIuxscr+veGK+mZbCAIIllIs3pDhtOQ+LSVEB1O3GEwsvrPjJAsMe++iqiHjhv/D2ZELXR/KKdBrXqUljT9/zGVI8MlhNQNeVnubPxrp7cpZ3p7OICixiEka6hSavwGg6iS7XuhsEZDI2fAprL7hM2ww+dO10mu6qG66rBja+8ZxaEavl89yVYvU67ImqE3x/U2t/LMI29VohdhsoVE+7I3RChB9AJSitpCEGaMwlBBPabHRxuDRoNExBlRR0NZ6mcIgtAhzeoNherHgJtXHnVSnYPVmJSNIEy/XQxvygc2+uYViZHq7DNn0vE6znCJksaR71MxXGGYUjWmcqYbyDQJ9GdEKsLmhGQAkygoAsNMopARKAkOIfWUAnlFYrTS3jblYrAdK6zRk7XsYoit5zhlel6agE72PTKpSBAt00rep17JF0UQ3YjZPMpZNJFsRPeiG0/9G9VrDg4hnTsGCm3yFCAIomMgzeoNeZz6pFwi4dONdIIRSE24CuaoymttcPJ8NGPNb5oUaX6GW1MiTHHIYQr4L2pmFDQcqE6HCY1h8V0/9dceLh3ztpZFPcVFbV824fkEQRAEQTQjTf/i5MJHKb9pL2GXk94gkwnm3UyajiAIwp1EDacjIyNYunQptt12WxQKBey777547LHHap9LKbF8+XLMmjULhUIB8+bNw9NPP93SPn999RGtNpvoEZKuVlnS9NvTyGeZpWmO2LAKxkqXTca3ei1HWJuMIHoGqlDafSShWwmCIMLiZlwlCIIwIM3qTaKmmNNOOw1r167FD3/4Q/zlL3/BggULcOCBB+Lll18GAFxxxRW48sorcc011+Cxxx7DjBkzMH/+fIyMjCTZbACNRqyKqHsu5jgwrnLkOyisu9sYyApwpntqxnkeWvFWlZCoiAnXnFd5RQ93N7w925FXN8dbn3WmfJbuFCMwyppzs/YpjdeiUYjL6kG6ZnHjpJGwuL26FYTyc62XfBaUIohegRLtdx+drFuJZJBtzP22Yu9FbdsXER1+imku3W0xihHrLI2ihwiCqEKa1ZvEDKfFYhE/+9nPcMUVV+BDH/oQ3vnOd2L58uWYM2cOrr32WkgpcdVVV+Giiy7CMcccg1133RUrV67E+Pg4Vq8OH4py0OcaC6TMP+cXrf4UosMg77nWcRNaPfLsjIw4RatRHCqMx0FQQz1NFhGEBYHQifYDpLsj2kRSupUgiN7DOhl91V9WRbJd8kAlCMIW0qyeJGY4VVUVmqahr6+v4f1CoYDf//73eO6557B+/XosWLCg9lk+n8f++++PBx98MLZ29YrFvJfptFOcaVPKgE7yGBwIWNYuqBdsNoaUxu3wGDZf2+Ycp16h+iSkCYIg3EmrbiUIorf5+QlH2r5vp+2STkNGEATRqQQ0P0THpEmTMHfuXHzlK1/BzjvvjOnTp+NHP/oRHnnkEeywww5Yv349AGD69OkN35s+fTpeeOEFx+2WSiWUSqXa682bNwMAtIlxDA8PQy2NAwCEwiC4XlXa/L7KMvrriTEMDw+jMj6OSqYCLlRwLiGyAgoDBAfGFSCbl+hTAMmAkQowrgGThYaNEwoGsvq2AaA0qm9/IisDezwa2+hlhoeLvtfN9akoSoaSyjGsMeQLFXAGlARDeUxgXAVGRhgUpnufjpQYyiVFP7+CQQimF8sRKtQKh6rq8wtcqFAYUCoDJQHkysHOzchwEchloIoyslwiy/ugSf1aVfL17YyN6L9VVQTGJzIYqzBsLAETpcYL5x1bjOPvL9cHcGpF/5wrEpzr4khUk8Ob2zlRvRYNxqsaqlQNIZcZiTFVxXgxg1FZAYdElkmMlTPIl1SIrMDYiMCIKGOslEEmq2F8RCJbFphQOTQJyIyAkAzDw8MYGymiNKagMq6iUuZN7bFSGht3/MwgowDZnHTczthIESWNIVPWwCFR4RJjpQyQ1Y/H2HgGuYqGsZKC8QmOYgWYUIHSBINQ9OJN5SJQHsuiMq5CndAflULTrw+hMlTGx6EWOVSmgE9orr+rPDYOTZGY4BKZrH6sN5aAwQygKRKjsoxxjQMZDZpkKHGJYejbGh0ugjNgmFdfjxQxPqJBYfUiU5UxhpIK5DNAqaS3WxoFvarPseHhYajFcUDVr2ltgkMKiYrKkeNlcC5RGZ9AOatfk6WKxEQFQNWTdFzq1/0Y1Fr6iBE2UfuNFcEwoOptHBnXr2Hj9ehwsdb+tDE6UsRwPp1tI8Jh3IftDJG1QyuPQw3pUq6p/vs8oj20W7eS9gvGaACdGDcCwHBmGCPjRTBwZHg9R0+urL/fr8Zzfktj4xgPqE+JZBiZ0K8PTVZQ0gTKGkNZkRgrqiiqHOPjCjTo53JidBwTGoOsAFIDKuMSZabWzvPESBFCMqhFfRz7yyXvx4HX3geoAoJLcKGhIlVUmIpytoxSGZio6GPScRVQGV0zBJEUadCtpFl9IBPkn//8p/zQhz4kAUhFUeT73vc+uXjxYrnzzjvL//3f/5UA5CuvvNLwndNOO00edNBBjttctmyZBEALLbTQQgsttPTwsm7durhljC3FYlHOmDGj5fbPmDFDFovFRH4DYQ/pVlpooYUWWmihJY4lCd1KmtU/TMqEXTIAjI3p3p0zZ87E8ccfj9HRUXz729/GO97xDjzxxBPYY489auseeeSRmDJlClauXGm7LevM/aZNm7DtttvixRdfxOTJk2P/Lb3M8PAwttlmG6xbtw5DQ0NJN6froePdPuhYtw861u2jW4+1lBIjIyOYNWsWOE8mI9HExATK5XJL28jlck1h4UQ6iFO3CiGwYcMGTJs2DYxRGpUo6dZnXpqgYxwvdHzjh45x/NAxbiRp3Uqa1R+JheqbGRgYwMDAADZu3Ihf//rXuOKKKzBnzhzMmDEDa9eurQnQcrmMBx54AF/96lcdt5XP55HP55venzx5Mt2YbWJoaIiOdRuh490+6Fi3DzrW7aMbj3XSE6V9fX1dLyB7mbh165QpU+Jsfs/Tjc+8tEHHOF7o+MYPHeP4oWNcJ0ndSprVH4kaTn/9619DSomddtoJ//znP/HFL34RO+20E0455RQwxrB06VKsWLECO+ywA3bYYQesWLEC/f39WLRoUZLNJgiCIAiCIHoM0q0EQRAEQRC9R6KG082bN+OCCy7ASy+9hKlTp+KjH/0oLr30UmSzWQDAueeei2KxiLPOOgsbN27EPvvsg3vuuQeTJk1KstkEQRAEQRBEj0G6lSAIgiAIovdI1HB63HHH4bjjjnP8nDGG5cuXY/ny5aH3kc/nsWzZMtvwfSJa6Fi3Fzre7YOOdfugY90+6FgTRDDaoVuJ+KBnXvzQMY4XOr7xQ8c4fugYE51IKopDEQRBEARBEARBEARBEARBpIlkys0SBEEQBEEQBEEQBEEQBEGkGDKcEgRBEARBEARBEARBEARBWCDDKUEQBEEQBEEQBEEQBEEQhAUynBIEQRAEQRAEQRAEQRAEQVggwylBEARBEARBEARBEARBEIQFMpwSBEEQBEEQBEEQBEEQBEFYIMMpQRAEQRAEQRAEQRAEQRCEBTKcEgRBEARBEARBEARBEARBWCDDKUEQBEEQBEEQBEEQBEEQhAUynBIEQRAEQRAEQRAEQRAEQVggwylBEARBEARBEARBEARBEIQFMpwSBEEQBEEQBEEQBEEQBEFYIMMpQRAEQRAEQRAEQRAEQRCEBTKcEgRBEARBEARBEARBEARBWCDDKUEQBEEQBEEQBEEQBEEQhAUynBIEQRAEQRAEQRAEQRAEQVggwylBpIBHHnkERx99NGbPno18Po/p06dj7ty5+MIXvhBqe8uXLwdjrOG9efPmYd68eZFt7zvf+Q5uuummUNvz4tlnn0U+n8dDDz0Uy/aD8KEPfQhLly6NbftSSqxevRoHHHAAtthiC+TzeWy//fb4zGc+g3Xr1sW2Xy++9a1v4f3vfz+23HJL5PN5zJ49GyeccAKefvrpxNpEEARBEERykF5tpJf0atScfPLJGBwcjHSb//3f/40TTjgBO+20Ezjn2G677SLdPkEQvQuTUsqkG0EQvcxdd92FI444AvPmzcPpp5+OmTNn4tVXX8Xjjz+OW265BS+99FLgbS5fvhxf/vKXYb69//rXvwIAdtlll8Dbe+mll/DSSy/h/e9/f+29XXfdFVtuuSXuv//+wNvz4uijj0alUsGaNWsi33ZQHnjgAcyfPx9/+ctfsNNOO0W6bSEEFi1ahFtvvRUf//jHcfzxx2Py5Ml48skn8bWvfQ2jo6NYs2YNPvCBD0S6Xz8sW7YMnHO85z3vwRZbbIF//etfuPzyy/Hyyy/jD3/4Q+THgiAIgiCI9EJ6tZle0atxcPLJJ+OnP/0pRkdHI9vm/PnzsX79erz3ve/Fww8/jEqlgueffz6y7RME0buQ4ZQgEmb//ffHyy+/jL///e/IZDINnwkhwHlwx3A7IRo1cQnRv/3tb9hll11w991346CDDop022HZbbfdMHfuXHzve9+LdLuXXXYZLrzwQlx++eU477zzGj577bXXsM8++2BiYgJ///vfMWXKFMftjI+Po7+/P9K22WGcm4svvhiXXHJJ7PsjCIIgCCIdkF5tpJf0ahzEYTg1X4cLFy7EU089RYZTgiAigUL1CSJh3nrrLWy55ZZNIhRAkwi99dZbsWDBAsycOROFQgE777wzzj//fIyNjXnuxxr69Pzzz4Mxhq9//eu48sorMWfOHAwODmLu3Ll4+OGHG75rDX3abrvt8PTTT+OBBx4AYwyMMWy33XYYHR3FlClTcMYZZzTt//nnn4eiKPja177m2s5rr70WM2bMwPz585vav+uuu+J//ud/8P73vx+FQgFve9vbcPHFF0PTtKZtvOc978Hg4CAmTZqEd73rXbjwwgsdf4/BTTfdBMZYk8g66aSTsHr1aoyMjLi2PQjlchlf+9rXsPPOO+Pcc89t+nz69Om47LLL8Nprr+GGG26ovW8ch9/97nfYd9990d/fj1NPPRUAsGnTJnzhC1/A9ttvj3w+j6233hqHHnoo/v73v9e+/+Uvfxn77LMPpk6diqGhIey555644YYbfA1attpqKwCwvVYJgiAIguheSK820it61fybHnvsMXzwgx9Ef38/tt9+e1x++eUQQtTWu//++8EYw80334xzzjkHM2bMQKFQwP77748//vGPttt++umn8ZGPfAQDAwPYaqut8NnPfhbj4+O1zz/ykY/gXe96V5NOlVLine98Jw477LDae2GM9wRBEH6gpwtBJMzcuXPxyCOP4Oyzz8YjjzyCSqXiuO4//vEPHHroobjhhhtw9913Y+nSpfjxj3+Mww8/PPT+/+u//gtr167FVVddhVWrVmFsbAyHHnooNm/e7Pid22+/Hdtvvz322GMPPPTQQ3jooYdw++23Y3BwEKeeeipWrVrV9P3vfOc7yOVyNSOfE3fddRc+9KEP2Yqf9evX44QTTsDixYvx85//HMceeyz+8z//E5/73Odq69xyyy0466yzsP/+++P222/HHXfcgc9//vO+xLoT8+bNw9jYWKTeCn/4wx+wceNGHHHEEbaiGAAOP/xwcM6xdu3ahvdfffVVnHjiiVi0aBF++ctf4qyzzsLIyAj2228/XHfddTjllFPwi1/8At/97nex44474tVXX6199/nnn8cZZ5yBH//4x7jttttwzDHH4N///d/xla98xbYNmqahVCrh73//O0477TRsvfXWOOWUUyI7DgRBEARBpB/Sq430il41WL9+PRYvXowTTzwRd955Jw455BBccMEFuPnmm5vWvfDCC/Gvf/0L119/Pa6//nq88sormDdvHv71r381rFepVHDooYfiIx/5CO644w589rOfxXXXXYfjjz++ts7nPvc5/N///R9+85vfNHz3V7/6FZ599ll85jOfify3EgRBNCEJgkiUN998U+63334SgAQgs9ms3HfffeVll10mR0ZGHL8nhJCVSkU+8MADEoD885//XPts2bJl0np777///nL//fevvX7uueckALnbbrtJVVVr7z/66KMSgPzRj37kur13v/vdDdszePbZZyXnXH7zm9+svVcsFuW0adPkKaec4nosXnvtNQlAXn755U2f7b///hKA/PnPf97w/umnny455/KFF16QUkr52c9+Vk6ZMsV1P3a/R0opb7zxRglAPvfccw3vl8tlyRiT5513nut2g3DLLbdIAPK73/2u63rTp0+XO++8c+21cRx+85vfNKx3ySWXSABy7dq1vtugaZqsVCrykksukdOmTZNCiKZ18vl87drccccd5V//+lff2ycIgiAIojsgvVqnl/SqlPXf9MgjjzS8v8suu8iDDjqo9vq3v/2tBCD33HPPBk35/PPPy2w2K0877bTae0uWLJEA5NVXX92wzUsvvVQCkL///e+llLpW3X777eWRRx7ZsN4hhxwi3/GOd9hqVymlPOyww+S2224b5ucSBEE0QR6nBJEw06ZNw//8z//gsccew+WXX44jjzwSzzzzDC644ALstttuePPNN2vr/utf/8KiRYswY8YMKIqCbDaL/fffH4CeaykMhx12GBRFqb3efffdAQAvvPBCqO1tv/32WLhwIb7zne/UwmpWr16Nt956C5/97Gddv/vKK68AALbeemvbzydNmoQjjjii4b1FixZBCIHf/e53AIC9994bmzZtwsc//nH8/Oc/bzh+Yclms5gyZQpefvll1/U0TYOqqrXFHL4UFillk0fqFltsgQMOOKDhvV/96lfYcccdceCBB7pu77777sOBBx6IyZMn166hL33pS3jrrbfw+uuvN63/4IMP4qGHHsLNN9+MSZMm4cMf/jCefvrpln8XQRAEQRCdA+nVOr2oV2fMmIG999674b3dd9/d9vgvWrSoQbtuu+222HffffHb3/62ad3Fixc3fRdAbV3OOT772c9izZo1ePHFFwEAzz77LO6++26cddZZjlFbBEEQUUKGU4JICXvttRfOO+88/OQnP8Err7yCz3/+83j++edxxRVXAABGR0fxwQ9+EI888gj+8z//E/fffz8ee+wx3HbbbQCAYrEYar/Tpk1reJ3P51vaHqCH1fzjH/+ohZj/13/9F+bOnYs999zT9XvGPvv6+mw/nz59etN7M2bMAKDn3gL0/E4/+MEP8MILL+CjH/0ott56a+yzzz5N4e5B6evr8zwmH/nIR5DNZmuLW5jX7NmzAQDPPfec4zpjY2N48803sc022zS8P3PmzKZ133jjDbz97W93bd+jjz6KBQsWAAC+//3v43//93/x2GOP4aKLLgJgf8733HNPvP/978fixYvx29/+FlLKhvxbBEEQBEH0DqRXe0uvGliPP6CfA7t9Gb/V+p7x2w0ymUzTdq3HCQBOPfVUFAoFfPe73wWgn6dCoeCr3QRBEFFAFT4IIoVks1ksW7YM3/zmN/HUU08B0D0FX3nlFdx///21WXtALwiUNg444ADsuuuuuOaaazA4OIgnnnjCNgeSlS233BIAsGHDBtvPX3vttab31q9fD6BR0J1yyik45ZRTMDY2ht/97ndYtmwZFi5ciGeeeQbbbrttTeiWSqWa8AbgOtu/cePGWvucuO666xoS8rut/2//9m/YYostcOedd+Kyyy6znTG/8847IYRoKjxgt+5WW22Fl156ybV9t9xyC7LZLNasWdMg9u+44w7X7xkYhQueeeYZX+sTBEEQBNG9kF7tfr0aBuO3Wt+zGklVVcVbb73V8L7dcZo8eTKWLFmC66+/Hv/v//0/3HjjjVi0aBGmTJkSabsJgiCcII9TgkgYc+EeM0Yo06xZswDUjWVm4QTo4icJnGaZDc4++2zcdddduOCCCzB9+nR87GMf89zmtttui0KhgGeffdb285GREdx5550N761evRqcc3zoQx9qWn9gYACHHHIILrroIpTL5VqI+XbbbQcAePLJJxvW/8UvfmG731deeQUTExPYZZddXNu/0047Ya+99qotxn7syOVy+OIXv4i//e1vtpVbX3/99dqxO+2001z3CwCHHHIInnnmGdx3332O6zDGkMlkGkLdisUifvjDH3puH9CF+l/+8he8853v9LU+QRAEQRDdAenVOr2kV8Pwox/9qJb+ANDTKTz44IOYN29e07qrVq1qeL169WoAaFr37LPPxptvvoljjz0WmzZt8kynQBAEESXkcUoQCXPQQQfh7W9/Ow4//HC8613vghACf/rTn/CNb3wDg4ODtQqc++67L7bYYgt8+tOfxrJly5DNZrFq1Sr8+c9/TqTdu+22G2655Rbceuut2H777dHX14fddtut9vmJJ56ICy64AL/73e/wH//xH8jlcp7bzOVymDt3Lh5++GHbz6dNm4YzzzwTL774InbccUf88pe/xPe//32ceeaZtdD3008/HYVCAR/4wAcwc+ZMrF+/HpdddhkmT56M973vfQCAQw89FFOnTsUnP/lJXHLJJchkMrjpppuwbt062/0a7fnwhz8c6Bh5cd555+HPf/5z7f/jjz8ekydPxpNPPomvfe1rGBkZwZo1azB58mTPbS1duhS33norjjzySJx//vnYe++9USwW8cADD2DhwoX48Ic/jMMOOwxXXnklFi1ahE996lN466238PWvf71pcLN582bMnz8fixYtwg477IBCoYBnnnkGV199NUqlEpYtWxbpcSAIgiAIIt2QXq3Ta3o1KK+//jqOPvponH766di8eTOWLVuGvr4+XHDBBQ3r5XI5fOMb38Do6Cje97734cEHH8R//ud/4pBDDsF+++3XsO6OO+6Igw8+GL/61a+w33774T3veU/Tfv/617/ir3/9KwDdc3V8fBw//elPAQC77LKLp0GZIAjCkURLUxEEIW+99Va5aNEiucMOO8jBwUGZzWbl7Nmz5UknndRUwfzBBx+Uc+fOlf39/XKrrbaSp512mnziiSckAHnjjTfW1gtSpfRrX/taU5sAyGXLlrlu7/nnn5cLFiyQkyZNkgBsK1eefPLJMpPJyJdeesn38bjhhhukoijylVdeaWr/u9/9bnn//ffLvfbaS+bzeTlz5kx54YUXykqlUltv5cqV8sMf/rCcPn26zOVyctasWfK4446TTz75ZMP2Hn30UbnvvvvKgYEB+ba3vU0uW7ZMXn/99bZVSk866SS52267+f4NQRBCyFWrVsl58+bJKVOmyFwuJ+fMmSPPPPPMWuVVu+Ngx8aNG+XnPvc5OXv2bJnNZuXWW28tDzvsMPn3v/+9ts4PfvADudNOO8l8Pi+33357edlll8kbbrih4XdPTEzI0047Te68885ycHBQZjIZ+fa3v12eeOKJ8umnn47lOBAEQRAEkV5IrzbSS3rVSXsuWbKk4Xj+9re/lQDkD3/4Q3n22WfLrbbaSubzefnBD35QPv74403fHRgYkE8++aScN2+eLBQKcurUqfLMM8+Uo6Ojtu246aabJAB5yy232H5unH+7xXydEARBBIVJafKjJwiCiIhyuYztttsO++23H3784x/7/t7ExARmz56NL3zhCzjvvPNq78+bNw9vvvlmLYdWuxgeHsasWbPwzW9+E6effnpb900QBEEQBEHEB+nV6Lj//vvx4Q9/GD/5yU9w7LHHRr79j370o3j44Yfx/PPPI5vNRr59giAIJyjHKUEQkfLGG2/g97//Pc4880y89tprOP/88wN9v6+vD1/+8pdx5ZVXYmxsLKZW+ueb3/wmZs+ejVNOOSXpphAEQRAEQRARQHq1MyiVSnjooYdw9dVX4/bbb8cXv/hFMpoSBNF2KMcpQRCRctddd+GUU07BzJkz8Z3vfAd77rln4G186lOfwqZNm/Cvf/2rIQ9VEgwNDeGmm25CJkOPS4IgCIIgiG6A9Gpn8Oqrr2LffffF0NAQzjjjDPz7v/970k0iCKIHoVB9giAIgiAIgiAIgiAIgiAICx0Rqv+d73wHc+bMQV9fH/7t3/4N//M//5N0kwiCIAiCIAiiCdKtBEEQBEEQ3UPqDae33norli5diosuugh//OMf8cEPfhCHHHIIXnzxxaSbRhAEQRAEQRA1SLcSBEEQBEF0F6kP1d9nn32w55574tprr629t/POO+Ooo47CZZddlmDLCIIgCIIgCKIO6VaCIAiCIIjuItUep+VyGX/4wx+wYMGChvcXLFiABx98MKFWEQRBEARBEEQjpFsJgiAIgiC6j1SX3XvzzTehaRqmT5/e8P706dOxfv162++USiWUSqXaayEENmzYgGnTpoExFmt7CYIgCIJIFiklRkZGMGvWLHCezPzwxMQEyuVyS9vI5XLo6+uLqEVEOyDdShAEQRBEEJLWraRZ/ZFqw6mBVThKKR3F5GWXXYYvf/nL7WgWQRAEQRApZd26dXj729/e9v1OTExgRmEyNqM1ETpjxgw899xzXS9EuxHSrQRBEARBBCEJ3Uqa1T+pNpxuueWWUBSlaZb+9ddfb5rNN7jgggtwzjnn1F5v3rwZs2fPxrp16zA0NBRrewkiDOX/OrHpvdxnbk6gJQRBEJ3P8PAwttlmG0yaNCmR/ZfLZWxGGVfyD6AQUmYVoeKc9f+Lcrnc1SK02yDdShD2nPnbnwEArv3wRxNuSfciHvkPAADf5z8Tbok/SlctQn7p6tj3c8c2R+GodXfEvh+CCEuSupU0q39SbTjN5XL4t3/7N6xduxZHH3107f21a9fiyCOPtP1OPp9HPp9ven9oaIgEKJFKyn3ZpvdydK0SBEG0RNJhzgNKBgUWTmZxCUBE2x4ifki3EoQ9uYF+AKBrOk7mfyvpFgSiNJBDvg3XQz/L0HVHdARJ6lbSrN6k2nAKAOeccw5OOukk7LXXXpg7dy6+973v4cUXX8SnP/3ppJtGEJEhhaz9zTjlNJN/Xub6OXsPhTUSBEEQ6YN0K5E04o5Pgh91Q9LNIAhPihcfhsJX7kq6GQRBEJ6k3nB6/PHH46233sIll1yCV199Fbvuuit++ctfYtttt026aQQRCWajqd3rXkP+4T98rcP+rTNCkQiC6E0YZ+AhvQeYpAm0ToV0K5Ek4uHzkm4C0WaeePMH2HPLU5NuRnC05vFO6bKjkL/gDog1nwJf+L0EGkUQvQlpVm9SbzgFgLPOOgtnnXVW0s0gCKIdqGrSLSAIgmgZRQGUkFpS6e35s46nG3WrfOzCpvfY+1Yk0JLOoXTZUQCA/AV3JNqOtPCD94xAvnF9w3tsq9MSak33MDXfHbq5uHwhlMnNaUts173oUCDLIUfKECU9Rnjwmnux8fQF2OL79+C1Ew/B9Jt/hfWLDmn43otHL8Ts29dE3vZWGD//EPRf/qukm0H0OKRZveFJN4AgCMKMlNLXQhAEkWY4Zy0tBJEqhGheCCIImtq8+EBdWS+iKu5sNrSOf2FBZE3sRPrCWjt8MPb5+fr/Zx/o+ztvnnJQ6zs2PV/K1xyn//9N+8JizGTNkEI/FtzBkpM2oylBpAXSrN50hMcpQRA9BHmctpVOyy9V+sYxtb/zX7gtwZYER735JGRO/GHSzUgNxYsOReHSXybdDIIgfCA1reE1U5SEWtI5pCH1UuW6E5A945bA33vlhEMbXs+6pbVnNecSkN7GdnHnacDUycDrGyAnNMgJFVA4KtedADFaBuMM2vKFgCYhxyuQQkJWJDZ/ej5kNVx0ynX3NG23cv3HkT3tRy39hrTCmf29aPxm7Scng++3N9jMcF7wVqPp6ycdDCkZpt/c7CU5ccnhofZhULtnVM19RdP6Pi6rnkE+dmGikQCvnah7+NpdGwTR6ZDhlOhaXjr2MPCMRK6gYfL7t0D5728hO3sIsiKQP/d2FJcvRG7HqVAW/Te0n5wM5WM3Qdx3NvgB7lUpxW2ngB9zY5t+RXoY/eyBGLzm3vh3lIKBRrehrf4ElEX/7brO+LkHQxvVheqk76xtR7MSZ+Ss+T3zW9PG2OfnozzKUEi6ITHCORB2Ep7TY5CwQf5lOdhuyyH/eDHYHl9p786tHqZkOHVk4tIj0XfRzwEAYnMJ4+fXw4X7L/8Vxj4/HwPf1Pse+X+Xovzzx5E/93bIpy9B6WePoe9Lvwi9b/mvV8GG+qDdugRyrALWl0H5mx9F7vM/c/2eH433xpKDAQDTPj4Hw7c/C/btUzE5d0KAxlmuoZHNkMOX1l8Pj9U0oNQkZKW6vuFRqUkgq7sX1j6rwjlgtu2/duIhULIC0z77PsjX3gROXYLyNcchd/Lx2JAtYsoDD0G8Pgw5oUJsmNANtABYVo9XzZ97u//fFRNe56Ry7fHInnkrMjzX/Nn1HwegFwpj+Qwwuhni918Ay2aBoUFAVSFfeAViUxFyrAIorMmwXLyobjyvlDg2f3o+SmP6fa+pDC8fdygYB5SMhJIVGHxnH8TmEgpTJEqXHYXi8+PIDQL939AN2eKXn0b58ZeRP+w9UB//J8R4BXyKfWi+tMl/2qts+ORBmHrDr32tKzUN3er7F3YSiPAHaVZvesZwOn7hURi65j4AuocV68tAmdqH7Jm3AtDDQLQ3x6Fs2Y/MkptrSanFbadAe20cys4zgYkStBc2gk/KQYxXwLIKxOYJKNMHoL4wDABg/dlqvhW9Ay4s10MCjFAHPjmP0eeCedRttfLuSI5BJxMk7GNgloLhFySyfXqoxsC2WZT//hYYZ2B9GWgbRiF+dw7y894JbNiMyvUfB+vLQKz5FAD9WmB9ujDg280Epk6G9j9/Ad96EHJ4AmK8AnHzSdBeGQ0srIxZWiOERApg8nv7bdd96djDMGVGCcoWeciShv4r3K8Da8GkMInVjZliMVqBskUfyuvGwLhEuaggV9ANTZUSR35IoLiJQ6gMjAP9UzWwfAZMYUCWg0/KQXttvNZmcf9SiBfeBABkltzs3ggK/4scMV5BHEPcdccc1vB6m9s6x3OVSBZZkZCCY8Mn3Z/tfgcLaYQr4RPt8x5JtE+4I/94MQBA++Oz4DvOBMvnIX75abBtZ0G+eCXEQ38Gm1SA2DDW8L12eLbLl19L1QDdCOdNE4wz25FoaZijfLoeXj7l7H0hxisoXnwY8h/Zwdd2xb3/3vzmRAlstx31v6veelJIyPEyANgaT8fPPRjQRM0I6WSoEyrDKyccimy+avsUEqUxBVs/9ywq9x3fsK4xrrLFaji1Fkd97U3n7xpoUl+q39WPcd3rUC2z6phBN7BWHnoGytQ+ZIbfRAWAfPZJTHnhZVT+/haUWYNNBYpESQXvz9Z3d+sSsIJubGS77AK29aca1n9x9HuYPfgpaHItFDbfs/kTlx4JWdEATaLwlbsw+tkDoVaqxmABqGWOaR+bjeFfPA+AN0RmlC47CtkP74Tyb/5eM8zrh6QCFKuvC0c27E9WdH2O8QlAyHCGtarh2vDolTb908C2WUATRoMavK3lI+dDfeI5KNtuATaQBTJ1RSo2lRo3ZJyPFp0ohJamp1N4Np6+AAhyxro8as+v8dSPwwjRCGlWb3oux2n5W8cCQiI7ZzLU18ZQuuJo+xX7+xpeylc2AEJCmTNNf0OT9Q4CsM2mq0zta3qPSAC7WUu7/FxCQHt5uOEtKWV9vXKlpWZs/rQuqDTV/eHyxkMlvHSsbpCSgqH4it4Jjp9/SMMi/3FZfXnlGmDrLaHefBLUm0+CuPtM/SfdeVpTQQdx52kNS/GiQ1G86FBUrjsBUDhYXwZyQoWsaFAKDGqFQ8mKWt4gQDd6GEbTiRFdACmT85AVUUvsnpk5AECf9db+9qq+7w3FlsN4eoHRz7rnkrIaLL2QE/5CnpJm0xkLaosjxqCpw7wR0jiojxOnXGRe13Y3wVl1Bj/MEkCDXnvttdh9990xNDSEoaEhzJ07F7/6lR4mV6lUcN5552G33XbDwMAAZs2ahU984hN45ZVXYvrVRJTIsXHIsXHwd70N2LAZEAL8A/vrn/3pr2DTt9BXbMfzUMjGpb8P4pefjn+/frHLwZrU4oOapiqrwc+f0/4mTEaoANuUAg0azw1zPkkIWX3QmZaUIv/6Z/0PIRqMcnLcRtsrDOLh8yBf+Lq+TkkF2/8I23Ob4wzyz8vAn/w95F+W1xYrpcuOqhULM87N2NkHQgoGxnTDr6YyMC4BVUMmK6AoEqU39TFA5drjkXnnFLCtpkLZstAwfmXggBSQI69B3POZxh2bQ9+FqBpQG4+BuU1+YEzqqRcsWL2As/2m46zJxuMXcXSZ0/U7Y3WyIePyD/8BQI9WBPSUTQCg/mARgKozl8Iw/oUFGDlrPjZ/en7DhHJuMOBx8pnioNuJI02Kk67tFtqlWYHO1a09ZzgFHNz/NUtn6HTDGQ/9sDdkhw32Ox3r5LY0zVI3YDkvsiKqM9r1DUQZNqKLVPtZWzOu+nt8or5IAQiHWUbufptLTTYel1Z+pyZSkdOr0/E7gPFNir14Xz6uHgpWuy9iaO74uQdHv1GiJSKyP/Q8b3/723H55Zfj8ccfx+OPP44DDjgARx55JJ5++mmMj4/jiSeewMUXX4wnnngCt912G5555hkcccQRSTeb8MPouL4Y3mJSQqoliwFC/ztz4g9rS1sQkm5SD/zoIVkqea7jm/GJYOuHMHTqHqcRnXe/D3wfutTx60LXpeLvL9sbDINs0EZn55X+6I1VbsfC5jNmeCRWXM6/qurfLVcaxgXMuAYCaHe7sYuc0CBGyw7rG16kovF/NzRZMzLWtiMktNWfaMh174RdcaigTgdmxB2fbFgq13+8lg7BDfnyeqgrT4TUpO6wsqEI7ScnQ311DMWLD4Os6B7fWlFCCCCT09u94ZMH4Y0lB6M07N9Us+SoH3aF4TRNE3JGehIgHTmru4VO1a09E6ofCULAbGuu3UCcgWU5pKZBjlfAp/YBGyydFxlM24a2uYzKRB48I5HJ6snjmUkcsrwCNmlQF4zTtwT74z+AsktHY+dpGsH5LBcVZPuEr23VQm3MmDtHa2VSzgHh4CHr8OCXhhc19x/ULUXd+0CUVP2e0CSgsMYwHU2mJqSveLEunDqpIFLLBLxex84+EAPf0sP1Np2xoFZoYfOn52Pyd8PlBH3txEOSTRZvnRxLALGhmHQTiDbClfCVRoOESx1+eKMX/6WXXoprr70WDz/8MD75yU9i7drGe/bb3/429t57b7z44ouYPXt2qPYRbcLQH2YdolWNE0LWDWXteL7ZXctkOPXG8Mq0oW/rTN2YF+RZYT3uVUOYLNkbrvzSEFlkc2qVjIRaZuGNMzaRXkEJa7xo8IZ02a95vFBbz/iuzUEZyGxRXU+JxIuSc2dHjcrf3kJ+9+Y2KDwLqAIoexjOhayHcld/mxQyknZDSIgSoBSCT36XvnEMUNa/xCfloP5gESovDiMzfQCV606AHK/o0WoKR+WfGwGlOvDQpH6+soA6zrDhkwdBCCO9G8P6RYfUxijrjjkMUuopJziXmLH6V9h0xgKMvpXF239aHw/IR85H8fY/I7fjFlDm7w22zVLHdhtt5TvOhPrECwAAZeYg1H9uQmbbIedQceN4W467kpGolKLzaZP/uAxshwsg7l8KPu8q1wKlRr5cos7G0xdACo6xsw/UUzxOb06tV1y+EIXla1D6xjEQVdtPpxY9bZdmBTpXt/as4dTa8Tp1xE2dV/WCkhUt1CwdET9GriD3lVQgl3UWT1pVxJYrehgV0PJ59vIuDYy57ZuHgf5CawbdgAJWSj28qIYhLKuGUzPMJpVFq+3wKtJVufZ4lJ/ZUBVVClDRgKwCluWYWF9B8ZMHQS0zSMkwOLWC0Q1ZTHl3HlJI8Ml5qC8Oo/+Ku2v5dMrf/CjEuAply4LegX54T7DZ5+ipEaoGsdzZP7Vv691nQntpE5Qt+6G9NgaW5Sg//WZN/GmjGjSN6WFNmkSlpGDkrPkojihgHCiNKTVh99qJh0DJMbx49EJoKpDJSgxsoWJiTKmJ1aEtK8hska113sp0PW3C2Ofng2UV9F9xNyYuPRLqq2NQJucw/oUFtdnu7JQM+KQcRs6aD54HsnmJ0hVHY+JfoxAaw8bTF5hm8usFCTRLPqk3lhyM0Q0ZDExRMbYpg0yW4/WTDsbEaAaZvEA2L1Au6r9//aJDGsKpsnmBkbPmQxnKgGW5rZFbVkSt4IYRasen9gEVAW1zGcoWeRS+chc2f3o+CrtMhhQSxYsO1QtAZBVUNqnI5PRKvFqF644YRaU2MOyfrOqvswKiml5j6x/ejY2nL0B+Wn2A1H/F3bUwfD4lDz51oDYw4UdcD/UHiyBL1XxzYyrK3/wotM0lKFv2Q31pBNk5k1F5ZoN+jQoJMa4i+7ZBqK+PgQ/mkD9sV6iPPovc2T9F8aJDoW0uQ1MZykV9gsNPDuzKdQGKd1gJcu8CyJ72o9r+xG2nQIyryJz4Q5S+cQzyX7gtfDtsELedgvJTb4JPyiH3+Z9h/AsLgKyCsU3pMFArvD6+C/zdkPvUNA0/+clPMDY2hrlz59qus3nzZjDGMGXKlJB7IdqGUSinoulFa2reeQl4e6bdkynNDgo2+pFxe+NJS0wE9F4NsW8pWaPnYJBtWD022zh+kiW1FklWG9tZrxmF205CSCHBGIO0uecU7jKWCNvWEXsDeHbnabZexQqrDuddHD3qXp8y+Hlza6vx0zUBIZr7Llnbn/M+xUi54Vyor+o5m5V3vw3a314BFL1GRc34bTpHsiKqbWjUKka7jP8ZB6QGaGUG3ifxxpKDke2r34cbT1+A4kgGMz+/O7RhtSntQANbTwXeHK+397HnISsCfJKuiflWhUa7QosTW1M+OgebzlgAoTJk8wLZGX1QZg1i4ok3oRQY+OQ8Mm+fhDfepmtRcfeZkBvGwKYOQDyxBGz6FnoKB01CrPkUxOujEKPlxjFLlqNy7fFQXxl1dCwZP/8Qvbjd2QdCqAyaxmopJtQSh5KVABjUMkNx+UKwrNKQi9cc6p77/M8g138XeOt1yJExQFXB5mwL+cgfwfbaDfKN68G2Og3id+foaWpMBr3KdSdA2aoAMa5CTqjgk3Lgu+8Aue5V8AX/Vd2ZBvUHiyBGy/o1MlbR08ltVYCc0FB5caRmL1DLDEpGP19bfF93FHn9JOP6qO5U07dRvOhQgDPk/20GSo+9Cj6Yw8SlRzac4+LyhQ3Hzah3Y8fEpUdCjlcw7uCt3U6S0KxAZ+nWnjWchmaiemHbhXybDEZSSLA0i7guRi1bOs+K0D2CTQMNPTl6tj4oaTqXQq/cKQRkpbXcpgZmI6NfI6rreuY0AiNjYJnWb2cp6p6hdpMJVm3Y1D5N6gM8k7GFcQYRscepfGMz5ITmmGtk/NyDkZ0zGQDApxYgRsr6b6v+Jt1opxslDcdcc+5ZluXgg9naLLhTfkpxx+xiaIkAAQAASURBVCfBB3MQb4xDTmgoXXYU8hfcYd8oazoIIcGqPQ3PSGTf1g+tKsQ0lUHJolqUS8PkrR1EdF6Ccd3Ql8kKZHISxREFQgByQsX4FxbUqpkaRkYxrmL0swciM3PAPiVAxWZwXG27puriwuv6fe7whRicWv2ddkUEplRqhj9AD6kyRIpvbISo2DDhaegzX+NA1TmbS0iV14STZpl8YRzI5Jr3V94sUD5jAfp3m6Jva0pzjXg+JQ/ttXF90FZre/W5M15p8Dzgk/O6EDTeUxhGbnoChZ2GOiZHavmbHwWfnAefPgD1lTE9LO0bx9QEpxTMd9qEwTk515zI2Z2nNb6hcPvrNyE4b2H2vnqVDg835t3O5/PI55urEP/lL3/B3LlzMTExgcHBQdx+++3YZZddmtabmJjA+eefj0WLFmFoaChU24j20ZB/0TCcAjXjD0vS41NVG59rCdOJYZRSk9EWczGM2yJA2iSFAwh2HYnxkG22Gt/9Gnp9TOBxDmhuj/9qwSJZqfa7XmM0O0Of2qzFFGQgZMQa1+HcVf72FvLv3KapXXk+AMix+hjVDnM6BM4bBT1nzoZCG2cIM4ZhKdD9J6R3+jNrTtSYMfSwrF5EshIub5Qs6YW/apGMPtLD+YXZlS5XOPgUkyZQVUBIsO2mA5tGwCbbFyBu2nZWcTcWW7A6SyhZ2XC45EgZ+SN3xcbTF9SMkQaZ922nr/OvZ8EmT9LP84bNwBzTSrVqb/qzhs15O/Dq3+ufD/YDI5urjZF6ShszOaVeeKxcT7OY2W4KKn9/q2k3RHs1K9CZurUnc5wCcH5oaXVRaochYpsNbabZyw4Ub2lHCuZ7Ear9rCOA+nkyHrDG7KyNUQuALvIMUduiIdy3sdRnXy0rldqCcqV1gWHz+4IIIaPDtf1OkLZZC1DYLX7aU7snTfvWjDa6nAut+Xdob443r2c6Sb6PkxCOwoRl/T2Ow3TygQeUFqOkNBmj/ORf1e9Fm/cDeF0zHuxZ2rS/htn+eloVt/vYeu8Zf2sVn+0258A2JmU8nht2n9eOt/W5pMno8996YS7G5WcBqoNT0bCNMEYNKaTrYqzTzWyzzTaYPHlybbnsssts19tpp53wpz/9CQ8//DDOPPNMLFmyBH/9618b1qlUKjjhhBMghMB3vvOddjSfaBE5oXvUNNFiscpQNCUhlpBhDWi9hNdANApPXqPvCXNdhPCGa6qE7gO7nJNS0xqWVvCSmbW+olxp6luFXYEoO+zOldmLNqIE3a4FPW2MjqyWM8vHfu3aGHc/KvylJbP/roN3sAdSMggHvVQuKs5aunoP2RYN80NZ089RjMdUClmP8oN+vTRc32E8wjURWXE3xgGtKDF2y1/sV6g5DDjYXMwnJ8jzMU2pYzq0kG2r+NWsQGfqVvI4NfBzYVdncJnH4FvfXopu3h7DzTjTYBA1Zp4Be+9hY70Yw9N8G8Hsrjdzu+Jup2QQHp1vk7EnDZ2FuQ1G+gUb6iE9zWLHVvyYJ1g8im+5ti1rem2a0beGGMWJn6JnTsZe13stqtQUDvem7Xlx8IqorWvOuyuZL2EbyFAZRiibhZ5NkULrcWy7Lgzzmyp1AW4XfdF/xd0YOWu+93Z8PkNq3k+cAelxOAVTwj8ejHRR69ata5hhd5q5z+VyeOc73wkA2GuvvfDYY4/h6quvxnXXXQdAF5/HHXccnnvuOdx3332Jz9oTwWjwlJdCNzJZB58JYGvUJRrxeoZWJ1RZXo/CaMng0uK14Pvrht4L+4ALvEMTXpORTn224TnpMoHdgJv3ZuMO9f8jDH93jZwwHTPWr4tIXg1fkmM2k/zm75kj1WS0Gl1WJKzh8jWs4xOv825ooQjGNU7G0+b1qn8YhlPrNeLzWq3dvy7XWG3iN8Q4SQjok9HW75rHrTmX+9LJMSxiQ2+lpKfAMiK5ArVnogQYAVy2kxWNYzs7jd8uWj5uKbIXtVOzAp2pW3vXcGozQA2CrLjkyHGjy71jUo9mGWh4dYRCND+0rQavGHE1nJnbJYTe0UT9ANYahZBhxLETprIi9ZAdO0+wQPeIz9/g9Vstie/1SrD1waftbqzbdGi3o8e5Y1vsjbEsy+virNzcIMabDZAseFSde/EzH1gFpC+PaBvjr9f3Wvam9AgpM9oQdC96CFJMOYqros9I2yCFj4m5NhJG2AON94j570DjZD/9pSYBbtloRF4TrcI5Wgh70hkaGgolFqWUKFWrdRvi8x//+Ad++9vfYtq0aR7fJtKC8exlueoDIkkNmXb9mqLnph9qfYqQVe2h+H9ANp2LRk0b9rntuVvTJHNLGwiKj9/jGqpveH4pzP91bE0j4PS1oik0NaJJDDfDrj5pUj3PRn53I8OgTf5TR1o2srs5qVg+s0sd4Wf/LmksZLUwlB4pFL7Pb/quQ8E98z3ltbdaTmonHMcWPiMTKxaPYVO0a1MxXovBXHt11D7CzTThHQVqmYF7GU0dvxxwzGKkdfBzTbU62QM4PkOkJoPV9EgZSWpWoDN0a88aTpu8yvyKDBevtcDbItpO8wxiQIN5LWQknOCw9cILHb7SGMrgOxerW8fi18Mr6QmysMfMz/e80m0Ib+OcE7KWs0kXVCyvuKY4kI1joYb32kJtoqHR8OUnebiops6wvgd4e6NKwexzOXnhdF78eNUKvX2cm38rgwJZ/cz+Ow2ECNFze6Z0TV+Sohn1dqKL0JDfDbDuhRdeiEMOOQTbbLMNRkZGcMstt+D+++/H3XffDVVVceyxx+KJJ57AmjVroGka1q9fDwCYOnUqcrmcx9aJVGB+Fgi1MfS1XQbNxDv+LqTJmNTiuWzDtSCrHm+hSOoa0kQ9/74Q/voka1utha2qyInNzt9xaEvTNuzqBTgZ0UzpGAyPU2a4ewWJgorwXNQmyv1GGvnddwIF6RxT8jmtb+dI4eRgY5vKLEykks14wfBSNn8W4HowDNFRITSfhlNre4FqVKjZkzukZ7pHiojIxlNRaNwU6OR2aVagc3VrzxpOm24kX3lhzB50pnAHi2dNosn6iSbM4kNWNL1jCOJxasyUps3bwtz2csW3wGgyxvgJTbduw0EceXsU+ulEoxdz0ET1OnA/j7bn2SbnqdFOXWjA/yBCSMd1zTPAkYW5G9sLO0Hg+LnePrdT5X0t+GiIUaTN9jOHNtoNODTzM5o1/N00NjKMu5Zt+Mrtasz0B7mG7X6H9Z6siGpF7QSeQVHdjwGKDvgmbc/khHjttddw0kkn4dVXX8XkyZOx++674+6778b8+fPx/PPP48477wQAvPe972343m9/+1vMmzev/Q0mwmN3P7ZLc3qFTBLhCHP+rN/hFu+2uM+LuU9tZYIvgnbGmufaHNq+/m/256oyEfk96Pqbxov1v42xqLG6kM4WDKtHYhgP0LBYtK9XmgDH3+/TuNSSB6o5/UgLlrVIJ75rEXQMsMkV7PYdx9e26zdfPMWLDvW1O2t0mfAT2+V0nv0azI3rwa/RsQXDcLfn0283napbe9dwasWSN0+8PuxqPQ8bhqxX96bDHpQgfZe5en3TdiY0sP6M/rA2heE7dnBC2j7Ao3qACsHw1p/LmPae+uxJLRy+XhzVHmv+JacVrR2FgwFDfXWslmPLihR67pNAGsJkcGSTqr/Pz73is8Nkff7vI6fzVQ8nrx4j49hwBj4p52qcq+FDbKr/94buGeD2+43PbLwmrRXohWDI5AWEWi2GlvfdFFf8Gmz97Kc01nwtNQgrl31VShy5gtaY188C789C22wJpYvBQzPINa+9No7MdrkGz3b1xWGwvOVadTGgW9drLG6X/kk5MVKGYtyb5kGnJYSpVIyuNmVaBS3nDDykdzoPkFDihhtucPxsu+22izyXHdFG7DzSNX1g3+6JerFhrOPC4ZPCPBHKJ+chrH2VE75D9S3rlXXPMlnR9MnGIM/ErAKU3PdrjQDZ+JdSrZp6IKztsoZic+4+MnVJx+N46LR6QcGmb3r0qfLpf9ZfWKpF17eh1g1bpmet0xOcZRW9z9L0/p1xCWj+Jmb51ALkhjGwfAZ80DRueHwt2Lv2aIhossWcFzlyY6/PPkuTqPzuGfeCXNa0amju560h0a16Dxrt3/Q/byFf8Fj35Tfs3zd7bTYZLmX9Pa3q9ezppFD/e+jw7bDp9hds11Om9/t/xlRxTSXggdex9no2qH94AbkPWd4cGtS3rTX2a3J4AqzPaWxafx740jnmc+CDygSv/5aY+r406dd2aVagc3VrdCOXDiIza8D2YWV2UedTB+of2M1QOBpU3N3CifZjfkYqU/sgxlVob45DvrUR8q1hfXax5oEqmz0MzcKujeeWKxKVCf0WtTMSyorWsKAvD75lvy4QN44GnsnPzBxo+P1AMCHiJpqU7baE9soooPgryOO9L+m/CqqDt6EZI4G5NFJxCKlXjbUWl3LIjez1mzI7b62vvrmkD1JsriNRqg6GK/XP8gNaUyVaoek5ndRSo4eq2bhqtKkeBt68P+1NvYiAGK1AK+qfK4oEsgrU160GyWgEtlZp7HLcxJWmuuf61KuKauD9mXqOK3OBLdN31VdHA7UzkxcY26jfczwjIWwGNXY5opSpfc3bevuk5h1whsycKWB9GbAsB8tnaudKKbBan6NsWcDkj7/LvSCWHwxP6jBLCKRdJdGK1nBO8oXWrylfBT4SROGtLQQhq0VAGu79kun5PNgP5NqUdL2s1Qf8mgCf7Fz0gQiAOf9jWGOW+RqoWIofVbcf5QB90nRVd1IIklMT0PW0eQlCVO33682mamDv1guX8KF8Y7XyhvXKYAP91TaKSIyStjkoAfx/9t493JKivvf+VnX3WmvvPXs2jMAMCCIqeLyRy9EHIb6ChkvQEAjJkwuRiDnJMeGSoEYikhzHJDLKE4nxQdF4EtRjCMk5kWBCJOBJhONDOEENr0Z9ERUQL8NIZtgzs/dea3V31ftHr+7V3asvVd3Vt7Xqw7MeZq9Ld3V1ddWvfle2fwtsfQS+acN9chN85F0L+eH/B1tL0fBVf08b5El+3nNAdh7l9aNpev2wbTm/MYYni2U5pQCA+YyepwgWcGqwzngOjLW+18bJ8cMyh3H0EsjAxPihJ/PbNyFPWScSNs4ZYPa41O3jQxfGTk9nQAwCbjOvYGXRwk8J7+3/m8exfsdj0zcpgfmjJwZ/2o+uw3zJcd4fLgcoBfv696MHjTnb8HgBMon2Euo5KYXzy/pysutM/nZIqpxn/sgJ3nFWQuPv4GHwR77lOQyEipz56Sj4IxOlMZusiesb098aFNj7VOTZ5rbrGRcMMt17hvU8/XwhyxqwRPk/Dz4UTzGhMj1CWbTMms+CXGYU53sbMxPGjFARnr0SFuveC6JJaoMKeYqFE02F1Hyf0pSQYW/TONZAYvVOKmQlS6hYEe2bcGwKQjwFrmFyjDYM2CPqJf2eKPR6Sy64zWFsN+E6BHzogAyMqNfdl78HY+dyrYpn+9F10G0W2OExiGXAWCIwthlwDtgYbdFA8egLW/5iz0MK2eB5zklvkMtEIORDB2x95HmzYjpvOOP0hZO5BMNDxS3D4fOnQWP7X+uZU2EmGn4zDWPP8y7or3hjkTEC0+Jw7Nmw+Lowj90WeH3SPgDbBSFemwDv3vtCtdVnM8+qYSkYt7HKn/Y3D3jjYdOJjDl3iwfPjvvUFtb/8v+LpoPhRHkqh7YSKI1SXm03UlKDlHppNAEuB5Y9w4z9j/8G8qxnBh/xLcHq35r5Ic3ANfl3oHibKFFyjyWJb+DlIzkvNyHDnONGPuM2m4ZPG2R6bROFg18gKBOXg04UMDNFn0SafWCiIE5UnIbaK6A4jcuUnjyFQKZmLBYuHv99uEiRHyXmOlgSmQfi7Tq8GTpGmkPQ5F5zMvGQTQjLZtOiW2zTnr18UeGPErj7h3Cf9BRnvRcfBXZo7MlPthupCcBtBj5yAwWYEXIyIJTPOB24MTk7S47Kk7HIzh2Rv+PG+Yji2zQ8OW/owv3BFrjNYD/q5cWla32Akkkaudn+9+XSHT9z4sxncez/97uhHxLQU46NfmEQ8lAuuP8Ne/n6feS3O0lxHY8sCvZUvof2gfXI5+Tk53j/YEzMc8cfm3El8AR2eBz5nsxcl5qSTkDuJL7XfwkHhCbQMms+C6M4nXHzLlxcJmrFDbzQ4p5pSJ6Y0qyImmx8ZYHoKxeXRxKsJyrGgip9CWOlDRv2BO8wf0Inq5M4ExXVA1MIr2nEInAPOjBMz2ORD2OCb4bnY90YS54V1OxPlFNOaLyEF9/YfS/l3camwl6q92bG8VeOFPPMSFNmJi30xlGecpRum3qqMAbPMzDBsBQ+BxeQacYTgYlSDntEYVrhY8Tal/HcpgkpfNMGLAPscIrncXz8he+nQcG5p9DlnMAwuZfyINRuAMF7oiQKo3mbEb+v3emmKRX/+Sb+GgPsu/QngldrqElD7kULND+naDS1cNhTJlj/zwvAv/XtyEd1GOz9TW9886tJILSJzA2hrfLe+cWQBBE1ynE2WbM3h1FloWDdAJWh4qJj349SmvHgLgtjEQ+5PJLWLUKnHnupYntWbQY7w/PXj6L7xrfAf7B/5hi+16p4MaRkJdlwX46cmiAL5e2Tuc08j0ODgPbN4DNCvcgc0jfActJMFCEogJY2RlO8pbk7u+9hT2/NfM88btv0D5ZelCmQQfPySyfJu5JKO5FaHllKQyWFlvyDxK6Xuxzkuc/y/vANJjUp6qgxTZmlHeM0C6PFi7tN525w8xb0BAVo2IqY+nAtii9zS0iqVAnAUzLarlgIbFKemhpJE6L4JByLx8OyFOAvEqbFwDmBNWBwHYLeEoNhMU/RNAkZj4eIz9CQstQ6aQ3ssA26bIEPHbhbHO5hN/FeB3ll45/FlJxJ1TOlEsCPGciK5VnQQ+cI0gQE54mdRkCB11tKCLvxj5lijQ0TGeZhjwZaLJREqJhSyrC1+l6fFCVp+vYVlGyE4L6GvxcO4/LbTk0O16aJ7eRDR8jzNpXg3uTkWJspUiW+uW0UFfNkThqBtofq+xVKi740mhl8JU04vVBDmzkuu/4tEHwjO5VQf8UNInQiiN7LJAVkbOGTXbcL6THHgimTfBw3+krDb7vLvHQ2IQ/awvN+kSiFSPRhynkreP5UpbRKJdz3BZ9hGvM0zJSF4vc63LbY+YPQ7GE03D0c2Zl4CjsaEVUkxBoAll9yRP6XRMb9pO10Ww902QQZGF4KgomHqQx85Mw4eTgPfTv9B8DseHVcZWm3fJk4SYFumFNFY+GUTCLPXTjNhMuBI1YrN+YF6S/mdN3TMms+ukqRKhI8TsMEk4zLsED66nbTEstRYQFprKjCbcpCKtsuxkJ2gYgRIsHztGpycg2zlEXf2QKsldnv1zFWiEGQdhap4mgJ00tuvh2XI72UweQYLVPWcTeqMGAsfWYNC6mMAZRNr9fvW1nv0rIEm4DAeBP6sCVzE4Byho+KhUu2PvI8EWpK8SgLpQS0YP4q2rLnTdMw/pzguJ6XXxvyorVpnuoonKGyzX5V8hZjBK6vlJJUnHJb8vu+N55BAUSjM0oRUr4KR4rIOFhUgd+mrOvPakeeMqpkv7oOgdmbdS5IK+bVCdLuueSzxRkHcTkQl1UEFZl5hpjoMfmsR3dNc3V8nzDaoslOEGEtW1JkZ5JRJS8VncwzWHCs+3NFXd6udaNl1nwWV3Eq8dAkWRZGX3jSKzIFeGGftgsYFHTZmubUSDqWFjQrx7CmOQrjycwjygrBMcBFhJUC+F6ccfy5n+Y4coat7sSiwP51r6BRGWw2VeQM/cq9CeeOW5YFFG9NkfT8hhf3mbBxUUWv4mc5yYvCb6cTKqrEGIkoR6mZn7RfpJAW52R6HAVCQVI4F1dgN8qbQ1VUVmUuwdJ2B/aoBiNXPCXEPAgfSRsEQL3wnrLpWHn3HcDNa2rPVQBi5M/jqb9V2xRNV/EFAsOY/n14M6hALF1gRzVtCtfvkBfQaMOAYXppbGQKiVRCaB41rTRDOgEwTWkTrLMS95/SjNBnH38850T/xL+TVxhoZp0VGCtedW+BMVVBhfqssPZAmYxpmL2Q4FPhs8oZJlFo3jgBML1nGSHvhJKc8G91zzShABd51EQ8i/1x6nKvpsNIMk2Bn5rJTzVl0MxrZZvT4yfKiBZNTjnH2FQIKXj/l971D8G/N992vvDvknK2Tts2aYuM4WUm+jPnemJ7d0LTnVNkmVePUy2z5rO4itM8iliT4oNtTh+stjMT2pq0yEyqjCaFMs0sXpGQkuKCR2oYS9FjzuS0EQhtqJHCC0vVbXd5ei5QTsTvhz+GRPNCpXjhTtslf91h5STnBAS8tOJQ6LwKlHvK2pnWb1n9maHoL9Uuf4OQEF6Wnus0w/PFZZF2Fm2b9Rt/VeyHAMZ//DOFf1u1oTAtZHPjbRdWel6Npkm4zUD8ddJx65M1Uzb/mnJEwvUF5Z+4fEXi60zF9yYoFFnjGFB2rqKh/rn5W2vsC9/zzS/slJZ4NEx4jCTlKE5S1qrqcxpTDFaUAq3M9iHIYykyPup2gvJTTWVEVuVStngwIHzd4QJi2SkcUhTO4Ry8QYq9hD0ui3o016rQTBls3E3PWavpPourOM17uIrMvi4D12H4rYExMlNVMYLLxcLdWro5CIcfZ1ptiy7wWdbPpvWyOR7DIgqbpMVcpOgRd3ktYRoiyklPOBFoiyIvTRHZPP59ViAHaCTtQxxJBbNs5dT+iovh4fSlUTqn6dhNCYsr/xDFq9t2ARmle14esLYXW9RhT5pKCBe3VLEZFmVOwxObJvAabAHS61vL80wn4RVnKtDu1EJB6u4fZwSgXFhuDwo7jTdA+qspx/TTfISuuwov2SxkvQV9Gth/CXmAi6ZECB+XZe9bMttUZB8XyYMt2N9tVPjZbFpXhmXs2ytUZsvse7ocxq9l1nwWV3FagiSvINo3vUqjmzZI30if5FqqhJsnmEtgDymMHg+FH3sPNFsfgSyboGsD0GceCfbt/wAZmMCk6mlSvrzEe6lggraHNFKQJgs+dIKE6QFhr7aKhVfOCJClhM5DpoqpisUv53xJBXfi74fHAne5N4JkCsjF8T1UU/IhJwlV402K3jKTVo55yinxfiQWAexpO+LLHw/lBPX+lmuPSgoJkDnzblAhGIgoTZlDpIpUJSn64u3NK3CQiMsm48cLhQuHQB3zP+4SP04NkJWEeSpBEGNMYJOed99avp7SEmFP7VYJaxojPp8IpGGplJY/g63ATbcE9rbFCmzVqQhPwM0oqEPopIhiaMjFC/hIU0M6pLhMIy0v1zzGGctZ25Lyho43gRTFqUj7Va2lqWLx2C4RXeeH/CdE51ShLAu3M8OrMA12yE426iZFIiWdM7FNyXJkeiMKKsbblE4waaORp9SLeDVnXwsbKcgdloCsx2mbUjhqmTWfhVWc5ubJk1xEPKVH9yyvC4Wfd8+d3CvfY8NNX4Dj46DOCU5aOaW4um7SM8BiCsYi3oS5qLaCT/qEseyqfzL9Hcl7a8EbT5KrTRnl41TRG7WEFjpmypgpFRIUIqtNcSVgckOyNhAF0hvkKJXD4yRs2BDq26R1IyW8NSxYcRElYsdQshETsdy3SOiMYxACo6D13piz8aApx8zzNFkn01IOaTpE2DOspaStf23ylhVBWoYPKe04T0nN5Lj13LusNdVJr62BJCVjld6moVRIvowa8eJsubElMkbSDBmMg1iSGqYseTVc/CzxtwKyZfw8BfP6yqDciYKnz4WcV6gszyGx1kdaAbkOr8daZs1nYRWnwhR4QHOVsgviztwGZiY7lwGYLHaOk5ybtmGCNucVhwonxk/6Agtdq8BxOOMzlcqVK3MEFF1NepElypKq2hO2Nicp6121+UnDx0rrU8YmIySe87Plgq0K0opXLW93MkP1M5FYL9pkZc6i0XYuwDjUaGRJigqohQYNyZ1lzh0qKpPXwsKYQcv1Y5m0TmHFWeM5qiYkeZzufQo48oTs31WUVzROkhw7U6BUNPIm575Xvl/IuOfcdsXSBSWmahLzOPWN96XnWpGxm1HEKwsl+8SsfhatJVHB8+mMF8WPUiOKVpymkfKQxkNtOcsICdabvtbCfe/McPXnwLKc7CEW+X1Ojk3ptpTF9z5JSqKtiFYp/EWE6JT7wxMiWAot/IqFTt/rMNcD0z89mxZaVtaGmDemTE5TpUpfkVQDFQn9mwdN0EnuUOYQUCpuXBES4oW+IyBod4W0tVTFfNJyxQ2l2V7ueb/VaMIEKWPi79f1HHQ4d1sbmRHTFHgq1e6BnJOHuhW4XI2CraI0CsLiepYC+NBGvjElHnbVFkVwBrnFNduAYAqvIgYv5hBQk+fme0/+cTjlgNqIxCzie4HELpkpwsyi/49DibziPzYPFl0nA69phhTP3/Y/R6JomTWfRi/zvvvuwwUXXIDjjjsOhBD87d/+beRzzjl2796N4447DktLSzjrrLPwla98pZnGyuCmW4i6VshjLvEtnaOUan5ZtGnx9pW3YSVuyYTvokmtE8MW4oqQMkWp8l6Sxy/83IU9cBPyHskIM3ULgH4+TPHvh/6IeB0XOXe0HUlty/o8E0GjRbSCa/pvwuePF1sSzUE8PU81E3zjXp8yr8xjyfWPX6wt7dV2qEFKvTTtozVyaxNzQsKzrr1OS9ImmVKCIG1T2fz6vsxaR7EiX/YPt1mmULBIQaC4nCrQHtnPItFmfu2Dg4fLnU8RUdkuGlGV+H4eCp1UZOCMCPUXZ9wbT5HaBRWMY4nnbJr/tUA7ujQfyeQ7jSMhX8kUhuo6WmbNp9HhsLGxgR/6oR/CTTfdlPj5DTfcgBtvvBE33XQTHnzwQezatQvnnHMODh06VPykQW7ClAklnLsw9RiCk1HC9+Ytj10biW+oEz2bEhZjUYt0Gct1ODflTFskBQRus+ClBAULppLxXVY5Ez5OgTZyRsTvsej3JASYeZ0jOE9X5BZShMXm19Z4RGdEK0TQioe5x7feF31p2kcjcmsaXdrkavJhXL3ysKtjpEIlqrDTRI1eeomnF+gCvzic0D6gaGV7AfKM4dxmqYUyM5Hsf2V7EJnv1OC5O3N/XZ6qmE6EMTmDgQKUR/KxWPsn3y3kYd/VebFitMyaT6Oh+ueffz7OP//8xM8453jf+96H6667DhdffDEA4GMf+xh27tyJW2+9FW984xsrbVvYO4wYJOJin1mt26+m5vJOJwieZ/w8nrxhoUglSRXZS1Oib6pWBpU9fmGPx5nwEknLuWCbAIAQnvqZCLmyXAvDS/w2i66/qsMSp0WaeK4i1huDas4tdH8NEirOpuS0YhSZV8KFr1LCiythTuZzTXtpjdwa20RKFyrRaBaJcGV2lwKWqOJO3WLbv/ZvAQBbv/fa/C+7DJTmnz7wOAXEBAM/WorPXnulcnvBfsx0YsirJzKTkkvse9FzFE8LpvI3XnTbVDLuQsSNFHEvWYmwfJX7QY0mj9bqhx999FHs3bsX5557bvBev9/HmWeeifvvvz/1d6PRCAcPHoy8kshPSJ3lcZpn2UkIB9GUIi9kUzZ8MzFHackk5ZWTFK6uGGGv2wq9+/y8wVmv/GP4/4+2U5kM7HsLFs3vldMQNgcLuX8NygW8rPHfEiuy6DhN/m3Cmy25LmkWvJgMobzUS9MtKpVbY2tGk0UUNYppKBy5CDNKBtl21yDHKiNeLCdNbqvI4zD1sKG9iO9xWmj8SHo4N6KsC7WvjFwVx7DyLyZeLLcoSubqxNyaOXJw0VB1hc+l1c/p5/i5wm6LM8lSq1FQ+7JWWnqzmXFfIF1cV9Ayaz6tVZzu3bsXALBz587I+zt37gw+S2LPnj1YW1sLXieckFNlMIYfwsEOjafvySrYEr4XfiBllIBzZ1VqC2lVDm139v66rFKh9sAj6cfeOuQ5hZNBtnM4H7ogO1ZA1wZeCMfhceb3k3C+L5AjKUSmci8s2LkcxnHb4H7vcO51eL9VFKqf0BYRGANgu+Ajx6uYSQnIwPAEtkkFTbLam7ZVAOebB4TOSyhPKFwF9JamCloaWpy88HehJnhUOI5l8wCxjEJYzpjAdXKUxwYFtznIwASxCAyDgznpv0vrJ5F9A3OTQs84BkdE28+eHsH5TjQk1xtHBohFA0V7xEskrQ2RUDAe+a4zpmCu5L0viIghI/xKq54bJ+xRXRj/2S66RlcMoeVemm5Rq9waD3ttokhPy5R9snNVlS8Y0weYrvXlLqRovxYtXmTkTzbxfN/jLc/DWUaRZRDM5jSNvyiVitabDf9O+WJan0b2aQlemK7Xp3THEjAcp/fx8gAwJby+Q9XYjYxc6nHZwzhuW+p3+Xceib7hcvChG+xhyX9+UbHaDgpgT4+86KAEYYf68nQSCueYvDXVHnlf2PiOA8NiMI9bAYaj5C8bZBrtZJDpM+5y0CP6uTk0iyiAl1ZD+4BtFpzvHAKdnJbbDOaJ23HHj/yV94bjwn1qE9h11PTZiuRhbcncfdQRkT/5174JshKdL/nGRKbMzDE8ez3GzuXSBQ3NHgPnBIf3R2V2uhzdy5IVK5hHiUGkHefaYgjVMms+rb9MQmJV0TifeS/Mtddei/X19eD1xBNPzHzH3Lmc/GODgPR9RdVEKEgY/GVCBzT14ymgvfviL27skA1uuyCrvWDDMZuDMGHiq+D+Hnly+nheWpUQctLaJmhRNo9Z8QQFH4kcvWmFhYJDPXEIxs6VWaVKEi7LfwnAIwJxvhXRMPn0e5YB0jeneWQ3HU9ImswHbD0kTAkseOaJ26Neqim/cWwaMbj2ltnMYsRCRhhf+cRcAnuYMZ0n3ZMDQ+//h11sHTKC4xFK4BwQuE850ASlqN/nShw0wsp5m8OxvT5J2oSMnpLbLDAGbK4bYA4BoQA1Zo9Jt1kYPh1LrzAwvWcopOAnlgFuu+A2C8Jp+abtKXwHJgglsFamx+ktTXOB+QpWPpy2n1LvGpUoHmuALJtgh21Ukk6k5RDCS7003USp3Bo2FibM47VWUNe0mvDepMqIN9+Y689RUhFBBYtBsRRnAH/Plt9mDh7PC4lon+U+S4MUBR9j3rNZVHGdQVz2cL8XdXAIZISkucGiwV7WbydZW/G+64fsb8nJellhzb53oXmkNfPZTD2G0L0POyr5n3GXe+mJ4p/FkZj/8jziwt6Rrk1hf+Np8EMbyV+OjaXIngAhZR+gxmuVAeOtqIxvnbIj8rfz+EFc+G8/H/xt7BgAe59KP2iCPJb3/BLfeSS23QiPi7BTja+MloEfHPoH8s61MhnjTx7w0uxN9uxsbzQyg+07GLkm9wdb6ScxCGifzrQ9jZUjos8J24zuKSL3G9N+EkW0MHPVaJk1n9YqTnft2gUAM1b6ffv2zVjzw/T7fWzfvj3yiuM8uZn84yxrzNiNvN8/9ejsC9AK1O4QKgg2s2jkWKNbhQJtlLt/OF0YByZc11McOWPPu80eUTgjCmpwUOq9COUYbhg4/B8WNp42MV4v1w4VofoA4D65AWOJwN7w2mgueV4Sjk2867A9rz2z57XX91SMpCHIELILX5/NwA6NQx7oHI5NU9MfeAKTgvx1GQrn/pKf98rL52xsN0FDFkR7k+QuinFFdG+JeUresmkdMtpNKCLKeJri2NM70gCxvHZYyxMjysRD1ezxiJdq+DrkC1aJjw++aYMPHXDGMQ7thcZbNNjAcRFDQ9tIDCmr0DXWZXq91bSCKuXWmWiLBTNCaOSQ3bjLUmlewFAYP6EEfOiAbpsoLQ0C9CbXRonnQel6a3mqDGW74MOEaLIcwgpGtn+ihEmTs9M8E0OM9lyE0Z6LvD9CSsTc6BpByPEnZ39hZn/DQJZmlZyZ56A8kAt9BRmbtN8eUU9e/Y8cuSVHHmBPT/syLUqND6dKakL9iK2JUXmiIDWsWESQYD+Hx7b7yD6h38QJ55y2v/E02PoIbP8Q7vcPw31qK+gDEvJcJHQ2tz6h2eHuLGPYSe9XBL6v3CDz1NORP8nzT1J37AxjvfvUlvBekhA+O98l/bbpdH6aWmit4vSkk07Crl27cM899wTvjcdj3HvvvTjjjDPqa4ibYCGLV6eToIbie5qChL26Emn7RoVNvTHJtozQlxzyFluzz+DaBIyRwPuxv8Sw7Rk2lrY7sJZ58vMhKrQqDNV3tzyFKWcEzhZgDTwPTtNiMC0GQjiccXQazFWWpSUvV0zVVeJ972tjiVRyKcONcsretPA17vJCCmxue7+xNyfCvuulCnDG6SkDMo+XFfKW5hldwFs66e95oJLx3TLBVYc9LRZVy63hoqWalhOai+LeaHFGj8Ry2hac70nfrG1scDaZw6uac+nUsAwAfKTQm1O0j8KFZH1q2sSJrvkyxlX2+a8KKXhzzznpAj+qKJ7GISAl3VD+8fMNRIEnLePgkwwPnHlKaBGlvmunL7DbnuWnoZBMgRJv6+Rv66Q18WPEKJSOqQZ5UWmaqLT2xk5Cjvb60VdK02PS01YEqPbkFOjbtoTdF0HLrPmIxThUxOHDh/GNb3wj+PvRRx/FQw89hB07duBZz3oWrr76alx//fU4+eSTcfLJJ+P666/H8vIyLrnkkvInn4QBiKDShbpqZYhGkJy8pTOVoBmPhoQsiAbcMLwQaF8wMgUSqvvCpg8xCGSWERGjBBGw+Rg7V+A8sVneOpSxUBZRaNFla+IxMQzeMy0GJybIyYY9+J6zReEJOUe9UHUOq88KhdyInDMJs6dA8FAgvBgTb1TTUi8IJQpXWcn+OyyMJSEieOdtgDjjrQ5VJhOv/KK/1bSPxuVWzVxg9RmGGwZGGwZWXrgC5/HkQrapdNWYlhHVlQYZmIDrpUwqshZyxkFQIMl5UroqHtsbNEyQLz0hnQe32ew+1/+8ZsP/zJ4qA2PHAM73NoIoQNHfxeWFsjIrZwTskJqoH99Rge4YeGkLNtKPmyYb+Z7JhHC4Bx0YeWkMEo9dzbzhySte+yjl6gvcCjzz9Kht4PtnUyskXbNx5ADOvpQ0DCK0WO4sg5ZZ82lUcfr5z38er3rVq4K/3/zmNwMAXv/61+OjH/0orrnmGmxtbeHyyy/HgQMHcNppp+Huu+/G6uqq9LlSJ4u0ohKp+SJ9i3+oKEVSnhCXtyZnhaY8/qLfaktSQlh5XSOQMW+xJxlOhk33nYjRwsuHK9BrRa/FZeCgIG0eR4pJks/Tc+VGvUyyCH8nN9QtqehDRnGqssgKp5wByHHQnUev03mHkOJW+IyUmJoGqVNunSHNu68pT+uWeXh3lgWSB0rRhMOCE4ssUdAGMjALpeHJi0ThPMc7MtUwW0O/spizkkQ/Nir7pPRNnW2yRxSGKedxzX0Hlq7oITINGLy0orLs/WIsVEPPZQDoXM7bWmbNp1HF6VlnnQXO0wceIQS7d+/G7t2762vUhLiSJ/7Qjf+//TCPn7iJGyQI86bbLLDDdvC+pn6cMYXRm4RvWBz2kKK3TVCgyJsI/aqfBYivC2aPKbPKkYEBdng8DQkrsEhwxsHWR0EYhJeUvVj7IkUK4nnZ8p4LIYGKZipiAwUcJ0DI35UzwUXBT/Yv8AwHoWRZnqnx/Ll+oaiEa5CVy/3iRUmV3zPJ6D9ikGCoV6lgVIVhFrj+CWnX11tqYJOWFYrbUSGNT7wiCJXzPBdiIlA3bZTRLA6Ny60LEu0y79gjCkK5dzubNioLhCMzx4s8invDyXgECpEzviNRBv56aRBQ8CAn/wxZipe8vq+g4JNSOmS8iKRZ6oghWMiIb+dEMPo5e2NjkDM+8aKe1BjI2A9OnQrIzL4GiEbGCslDLe9/7nKQjLAkoftS5bzqpxKp0UFJ0w4aVZy2mtDizV0OuGKLp/YKaickbXOdl4MnWOQZYCgo0COJVAL+pOtTvMnyF+w0hW+woCf1ZVMbPncaQuL1ZwPPaIGclVkesqryC/nFoCKEhNsSdoLoeSTbKzru87ycZfBSI8yeNzHXakKRBa89GflXO7TBKUWNayBnRU079UAoL2x0aLuxQlMvWrZcDJo2AlVeGVmBHBgoomR/E/q3yLoRLg4VkNX+BmTc3NyveSnJzArnloizAAOoUU4+kEixVzk5z6lwGqFFkQvT2LGW/pns81TxGhnZl8Tnk/i97uh6rWXWfBYklasCMh5gPnRBLApiUfBNp/JqlppsqMnhjj3Lsz2iMHtTbz/3wBBg3AuVsRnY/q3Uqo2zB/at3GoWOmdMhRVKuYWrGoKzWaWY0qThNTFzS9O0hWWKBOQISH6/hRWm9rCeuSRPOaoiH2XR4+YyEx2gTrB2xwSGQF5fbhcoGBgTrNKGU9cczIKca01htGf91Yn2NSpJUnAor3KsqZWlVU/xFayFZTbcCjbrWQbbWuelAteSqvQtk6e+5QoQ0g9ZjgW8dafFTdV5fsobxiXP2VAETlFvcPZ0rACXhJctITz3GRMxbpB+R/zi9q+nf5bn7e2P5YJjwS8YW5R5NGZqmTWfjjxZChAIp80kqZJz2Btx5vsMSFCgdlGp1GUSlSiURCdaUYtf2ybJcLvdjBlLRvPicmCi9ygyVjN/I1PJtAs4rnBbvST9dOGty6wpj98MvDFLUjeM4y0jvyiaqOc65lPY0iRDaXGPbRWe3hpNlei5TA26H6uFuwleVF2RM3PI9ThNQyrHaDGlCI/JPQSI7b3quweFDdBZz2bhWgclFXYJofqp52nYjl0Esn0AvjWeVZxK1j4AUN0Ym9PiUFpmzWdBLjOBlAcwmOiTHjabTcL252PB1XikCa0LI8xKjOmwYjRcSEmo8NJQPN1F3kuEUtW2E3J+zZzX/3sscF0NzBmcpysDSx03NAYGKy3P/1UQXwAweiHBP6svBZ6hhZlPmsZl2kCpmW8W3AA3L8QN+yr3F7WtNy3aD6Wu0bbryWvx50bkOZoJ1Z+Tfg08T+dzLmmDDFD1Mxgcv+H1QMkQCqdHPDicfS8cGp/2bMzpWNa0i8XxOK0Z5QnTNeqQtEhx5gmznPLGcuxI5/Jr4QIiUoBAigLXGKmMKEvKOBESjlzWuHBTBcMNtXl/i+RCFcqrk9H3nBMklS1KO3bSsGMjL5WGX1hNNfF+aeHjPQvLLpiwCBDCC+cMrDzXoKbTtMIQs+DPtwo4a28qplqoYTHzivDYnjE9yQtP1ThmLDutWxueWZ82tSWPuvddon2TlDqlRf3KbQYyqL82h1TR4x1r02K8swdS1yjVtOg+q0TLrPloxakEmVWzRRNBa2olURFDSaDYllJwxybxOhZIVcV5iqAsV2SocE4XSF2r4+13JpsdAaE79dpb2CdtL7hTNYwRMMZBZeRNfwxYkPbgzitupTJnq6ZeyuR9WpR8URp5WmOYb+H61UlihUaaLhAlTVPtFTRGc5vDdQisldB7HR27QntNEYVTTUqpwAA9GSOjL+wFWe2JH8AvKtUQQs9i3ncm47TMcy1Toyx+3rqh1HveSpOX47Rm2qzHVYWWWfNZPMVp3sSl8MnonPAz5+QpKXLvl7IQKlSeJKNVY8/X/NbcplKCcYJ1W2mfViDQMEZAjRbd9xhFp1ZVGxzOSOo9zPN0lUl5kNpelwd5kfx2+IIGZwQwphvmojnFuoQKhfBMqGvLDJi6QqmmEorkaFdBR5VNbSfwOGVcLPVPm2jJmEhbwzkjcJ1Y2iKXARBUxoUFl3BxpZJwl4MU8KIspTTNkmEr0goxFt3u9P/zLoy/vj/jB5LjqYL5L1XWb9O+CpgqZOP5Y+NOPi4HqUHbwxiBUVRuSfI6HdvlGwXk3jdCOaAdFABomVWExVOclmGy0HFFz7KmGoTCfd3skJrZY/qKjgom1xlBodoJXIUiKqgAn9CFaQoRbjOQhIJpdZB1qxPHS9ZC6yu3XIkNjsuVKnWqyF06F7gcjfjLhp+p2NjJUrhnGXPm1fOXqfBE6Ajaeq+phJYoqzRqiOQqLJxLSFVbJL8vq0wqo6ArWj2bk8m6M3/PDekX8MZ01SmA8+CcTPdP4Q8k91+Bkllx2H7ieA/Pryrn2oJV4IsamXmR62haORzOazoa58rAXuE3NeMhPiRz58Km+6oCtMyaz4JcpiAiIbduSMBJPEaxiVFTDW1VMEnlgCl0gnBRG9EFMzqmE3M5+sWg0pSjLG7Vx6zFvkUwt+B9qEDwbDIkO+9S4m3zwtnF2pusXBdtWbHj10ViSrMaPMC6HL5PzQrmgJbNKxpNLTScN1sXS1VEEGnQVMj79LzzuPl1xgSMpfSvyvymDcBHEwO+7FzAfAeA+X1+pY0ALd0vpsEZFxt2bZaPsi7AEcz9XFKRLiJPh8dGFfP0PD+H88YcLpE5lAnHdll6aIUe9K3ByNqYl7lPFd3j/Y9E/951KgNnBPZI/PFMLS4gMcG7T21N/qFYAJTtN5cDY5b5YvuH0s2YeskKLLIGUdoP7pMbud+RDXOgQZh39P8+nMkLjnFvwDxBsrc0PYGoQixLTvIV2c44/x6RvnjARJqgkzYW8vIKb/4g5Xib9sy52P6t/AZq5hJKvXxfxV5Nt17TVtqyySoSarwwhDxH6Vq/8tPxQ946QwYGuK1eiRdf32Xk00x866P/ojRIaRNHtIp4XPZJSukSkDOG3X35sltwXFEnhRiZe5ZIY1iGLMPzBb66DS1FiyfVNL8JRycm0ET0nNmL9UsJfQafRME1hf3/ftf7x9OH0r/kK/cbLJ43mhTAbdJBo060zJrPglzmFG67oMtmsuDZo8Ei6k8onHEgVA28qMAayAQtzkE4b0Qmusl9o2t98JEzCRs3YBy1nH+g+D1X6GXBGZkR6r7/kDdRW30GZyKc0n7+o0osCrLslQvlQ/k8WXHhXqX1laz2PIFexKvb9oTDrBfdMSh0D9IUZYbJYZgcnBOMNmIbjzRhk03GgYDwQXcsTb1KNpNzfXBGYBg8IvSbPQZqcJi9aBuoweE6082LY1NpL0S2PvJ+uzW9177y1n5aTFAZb6WPSyqgCPa9W3wP1vD8mJdcnh32+jH8bKQpXO3N+MYp+d/BsRlgjwjcMUlMdL98tPf3YCX2nFkU7pObk1xokznniNlNMzEIiEW9trscVn/aCNPy1x7vHNagWxKbP6785xiWN5+5WxxsNP2eqnxIbS7y4Yc9FX1pNHmQgQkyaCbrFrc7lo+zAXyZJfs7k38EOQrl5zSy0vcMd0PXU+pIyEfh8SOqICDUq6JMlzuY8S2SIzhbuefvEegRfU8wSCtYY8r1g1/tPGkPECYeFRUJSw7JpoQS8H+5f+b3YVmWPvsoYND3fjfogY9cYeOHSN71QG5dmn0PiBla4hZ0P//7pL2+YnKqLC+/zouuqYe+R2BYTHgPRCwakfPIihWZG4vKKOEuGm0Ykb60Vkj0uXU5jOO2Tf8+PAYMMo0KoGRmvi4U4h76jRGS1zkjgcw/jUxMUPb67f+hZ3r/OGIVkx95v3n40cnfs1F9bO/T3vUwz4HG+eYB79+TseHujSphiTFJE2GQ2Ws1SDAesmTR/oo7STcRew5jinNiTVNmECO9nkIqLZFjtcyaz4JcZhS2maIUGKdIDJa/wE2Vqb0XHeV91hLL/7zjK1ZEX+kHat/9esbz09tkWPW1l1jUU0hOPCV6axT2iMJ1vPxQ/sIx3jLQW/IWYKPH4boEm+smDj3Vw3iLwrHJjIWQrY88gb5GDxX3yQ1YfYatQwZcm8LqM9gj6q25WwYc27tOa8DgOiRQjvVX3PS5oCjxZO2x8KqpAnS2f5hLMNxIzmMVVrgVhXMCQqLjzNpugFLv+IR695gQnilIxr1VrYFnhTRMz1tFWW7LkFIyTprnhrXMA48Za3mi0DS9MKfBqhtsAgFg5Uhv7C6vTYXMtOPG7wuxDBg7Bp41P8/abzOwEQOMqHe5/29/yNjD+VmmZaMZ485I8VfbIeAgpOBrDvPxacpBBibAGPimDfrsYwBMFHNNeeRo+be9+LKWpMwruvk1LW8CTt1PlcFXmkzyF/KhE8hMhE5zZvp7M9FxGDbcCRE6Lnt68uO0hUd2QQopNBmbKiZ9JY6vJKMTY7pPlscpefnLo29ODLTeSXylfEjZalFwlwt7RIfbEZaZ40olZ2v63fB4yvSE9vOgWhTu+miqQI0rvPx9+CismPRSMRDqOUD4fRiOiIq3Pw/Xzn4Q4tcSjI8JxDKmxZuGLtjTI7CnR7C/fgDs8Nhz3qHEc3Yx6FS/wElU2TxpRm85fi2z48D93uHYG9HvxPsyfgxZBa8bU+on7b1zo8diHqfkuc+a+UpYSRnsIXuTPqPUM9KnzAH+Nc9ca0mvfG6ziOFiRiktu9dtSVFTLbPmMz87MkFyJ4a8BTicuLiAEu7QUz11SkBNPRQNN2mCkPAhS9Y1pSnM/AV+ec3Bth02zD6DafHI+YPjCicnZ/mvHPJk2N6SC8PkoAaXVkw1ce/NHAV6kgI1zwPVF5bDv1VpMRxtUjBG4DqeUjUe6lc29IXQiQJtVOxAzCGgFBge8iz5vmfHxoHqPGhkxo4f9hJYw0Nr06KEDWk0mim+gpQsW2DffDLyWSWFK+PnnxiE8gxDmuj94DnKxcTc8KpoyYZcmLDwFlI+hMdb2Lsr+Fxgr0SrzJiQ5omaQtLzE3ZQECUoDmXn52Zyv/UD8K3x5GQhpfC6rEY5P72AL0tKpcjyyZpbKPEU6hYNnpUkj8E0WbYJg6v71KbAl5KvWagOQ0Z/kYIGlFRU738CS7hA5N5RE49axTHheWMz7liiWWwWTnEKIFo4p+Ak4D61VcjaPlhtLlfHIsKCRTvlCzJCatMJ/HNIbVdRSSGlb3pLbpD3xbVpEF4u0p66N1v2iGKw4oKaHOMtA1afZYbri8ITwkhyqTEZv6iwmqeAy/s8btEP018uJ6HK3I8wjCUr+n2P1/HhajeSM/dXKxgS8UIUkfkqdtz29LcOe9JURsOFoTTZRDyQcu5VWkSJLH6qJu+cEvNgmbFU8Xwr6xnWmFGxhEZONi2WkjVuKK8sjePLaKrS7pSBUk+mcCfK5zyFY1bavJUjktNpSRF6pszjV2c/j91DYlH1/cia27MWll8kniPr5B2z30+a92qWwbtsVNQyaz4LcpkK0VVEGyFvg11kw502uXV20qtAsWv1WeCZKUMdC3XeOYyjpomWRMZEWthR6nnGxYQrumzOeIH0llhpS3hRoSurbxzbS9VACE8VRJ99x9/j2Xf8/cz7o8385SXt3Gl5kWZ+n7LhUGEh3lz3NrOpXv+C80SRZ0HW66RLKEvZ0AEI5aVeGs0MLTIMaIpjTELdhxvT1EcLgZ9qJyPlThxi0SCXKme8WaNBnqDWZC4ZN+aYE5ZRQrkgIyiaT/xc7L5MVkaBbewYqGgSxls0tR1ZilXl8pfLQVZ7oKs9WKccCbqtN/UUljlMSHZyttpVeDQsr4jUN0glazyGP4uPbQDGrqiCujNODC1ql5ZZ8+lgVm8FFAhd4YyDYLoJdp/cmBYWohRgHGzTAVm2vOIvKfkt5nlD3BZcm6K35MIeUiytunDGBL2l/N+lCTpVKFL5JB+PqvFABibgMrCUwkNCuBxsfRSE2Y8PA0bK2u4JR2HP7dh1uDy3WmnVeEUZSh4j694PR+LXmBSWxYBw98pEn4RzoRLqGwzU9ncXckimER+fRTAtDqMXHuMZ55vc36J3ID4W/OLCraDMJtVlQXFFQjlME4UrD+eep4UQWvw+Lor1XlMMzng0HLwBhWqbvLvbDGccJCZL+TkUhQ21VeGyiFdnmtHRT7fTqjQxIa9eQjkgEtZcFlWRXUyNjBzO9Sl1c3xFqmAb8tYje0hniphmrsuKx7lo91chV6V5RSc+y7GIV3Z4HOTtLSrDcwbQhvdb0mTcMLKtB76lwOs3jkG04TEHLbPmsyCXmUCRh6eEAo1zorRK+aLhV54UeWUeJ8FKlUsXNEhuQuXWGheILnSRTyTRfmru1oy+i1W+DcaUQuWNH8ZcKWEBrua5qfa5ULXxI36vJbxnitBJg1sTVvQWWe7r5Oabb8app56K7du3Y/v27Tj99NPx6U9/Ovicc47du3fjuOOOw9LSEs466yx85StfabDFGmkWdGx3nrB8IJijvTAFBLHWKr+rFCoz5TsBj9IinxWAc5JbpCj6gwLnr3JeMTLaLtNXNRtGlTsMV53OQqV82MA6EzGmMwZ+eBz9vGj/SdzETsrYHaercuviKk6L4katRZqOIXnPshVo5VdWpcqxlmys/Aqhc0nWPc8SEjOPmXzfmrLeyQgQ4y2Kxy78STx24U+WPKeaMcMZURIqlkvRew3MjqEKQ/4bwWXdaWvF1BX2dPzxx+Pd7343Pv/5z+Pzn/88Xv3qV+PCCy8MhMwbbrgBN954I2666SY8+OCD2LVrF8455xwcOnQo58gaTYcQKSxZ16vwNVQ0d1aQZqwpZ5DG1heRMH0JVESzRUK+84SeBryZRSCD9ODXoNp8VvFaxUovoXHtpldybztZ/d04/n1OTCvBov8vew7NDHWG6ndVbl08xWnZiS7p95NwEbpsemH6lgFupylD9ANbNX6ldGpybK4bk1BmbyFkmw5If7JouBzuk5v5yeeTBE4FC2aud2xo8WajAsJ4Whv961EoSOcKLi0NpS2lXKtYSOYMcMY0PcdmCkVySMrkBG2j57wj45VRktyxnpDjjGcJg3MG3RHOLVzuev1IjbRX26kr0f4FF1yA17zmNTjllFNwyimn4F3vehe2bduGBx54AJxzvO9978N1112Hiy++GC9+8YvxsY99DJubm7j11luru3hNLfChLjjaZQYrbmQu4yNHnbwksN7EK9Rn5X5cpAIghZHI30oywqsLKQP9HKci624FyiNfVk0szhkb0mF5uG1zmPS+IPacsUPjlC/OfjcJ0WcsLl+F/44UiptpQwv2Y2n7JydjLDg5uaBl92QKu2HmXsjI+i1KIVBncaiuyq2LuwTmTRxphYNaMrg1YpS2RLagQl+Y5RvuCl55FCtKk/Refh8mLkBuu5VFmTkr7WaKNcTTTcgu7Jx7eciqREXhpTR8hVhE/qkkx3CSYJ89zuNCQeq9cTn40AUf5o+hyL3mOcJTG4RdjRSE8FKvIriui9tuuw0bGxs4/fTT8eijj2Lv3r0499xzg+/0+32ceeaZuP/++1VdqqZOupQbR5NLJH2QZBV51VSuGA0bFhkrVCxqkfCLiKURyXEaKE5nf1Ond2RZGbHpfXZUBi/WlvDvGvFMTVsjam6LaKFXH26Hcpv619DQHnIRjURNyKxAt+TWFvtrV4jIRJhWfdBlgEXFJlMtBChDRoFUeLLLmpwVTtyckWKexwbF5jU/EfxJt2VYFIHCbS6kcJ0U45mGSs/x2HdDuU2LhllLp4wQ/67qxZ5zElkQi3r6VRk6b1oM9qhjUo5WhGoEOHjwYOTvfr+Pfr8/870vf/nLOP300zEcDrFt2zbcfvvteOELXxgImTt37ox8f+fOnXj88cera7hGCanrscuDQqdNKxo0ChkXXxdUKF0bT7OUMJbjhdCKkFjAVBbGc3Kc1hTBFSISqn94U8n5VeHNS6FrCcs8LEd+rnhOowaXjubKwy8iXRturH/nAZn7Ho7kqqLoV9NzYUcRlVmBbsqtHdtpVoDo5tXlSqxGOgFx91jkTYmoY0vEY4LVNM4ln0cpJ52kYltKDrwYPPfTf5f4vrQHbVe6Np7XTkqpLn6aLoSn51EklUQmLfVoB7zqpGVeAHDCCSdgbW0teO3ZsyfxXM9//vPx0EMP4YEHHsBv/MZv4PWvfz2++tWvBp8TEqvezfnMe5oOkLDelFUqadoDO5wR5humgpRL88bM2hrup3nss7xQ5gqxBqHUREI5QlOiOmu6L1kpKZpGVCbMjJqbRDzJOHjIILrHc8YJBotMhXlMuR4maZ0LivWq3yzkOaHMYwquOmVWoJty62J6nAqQqDTRCpK5QkYhqsLiXTnh0BDfO7oBvAU1Q0CtcZHxF/d5N1hwTmLK67iwkhPuNQmPp7H3vGMBxEj+XR10RnkKiD9zTEIx3zCy7YyMlYRnvepUEm2iSML88G8B4IknnsD27duD99Ms971eD8973vMAAC996Uvx4IMP4k/+5E/wO7/zOwCAvXv34thjjw2+v2/fvhlrvkajqYdKthMVy1ZtXYvz2sVZUqqdWRk1V85v+x4wTXGa1G7Ra6lQTumKDKQKkUJXhY/tchCXgU6OTQYGsC55EJcBVK2wb/b4rPK0DeiIr0TqlFmBbsqti+dxWtHExWU81DTS5BUJkSoYUuQ+VTjJPvW1Fi4qOaTJXG0VrFUSPOeVJNdv13GK8s3zL2jkvDLXPS3QGX3+Vo708oSlzSWcIZgP4jlpRejcOhH3bMp7aQJUJNrfvn175JUlhIbhnGM0GuGkk07Crl27cM899wSfjcdj3HvvvTjjjDOquGzNvBLPT6lJpUyO+S6sEUWiH6ryPSianojnhYsD3jgPfyfv3hR4PpLk5iC9Y17hS2P6eSQ/ZNJ53GrzyEpFz0g6rjSBJ+spOneJ+TLcr75nb1ujj+JjIE9p6o3JsJdpej/xrezxLUIj+WZFaIkit0mZFeiG3LrYHqehHFHC34/87VlnuiDkLDqMReSLQlSZv2bpXf8w/eO1zSidRMkrrFPLfirnmSsjVCQXuhKwxCpc+MoooLugvJYTsGUVk+KFnJLG6sYBMxJ2lnyO+uf8rq8zhXM7a3J5+9vfjvPPPx8nnHACDh06hNtuuw2f/exncdddd4EQgquvvhrXX389Tj75ZJx88sm4/vrrsby8jEsuuaTppmvK4nJgYAItq0ytmZAzb2v9sxhZ61+h0OYi8pqqmyVxbsNiyWHlvpfspqdMiiiEFA8qkbVbWKaTLRrrcq/q+Dzg8tk8xLJ6CAVECorFP2Nq0hIKkzU/Mgb2wO8Ef/KNWcWpbDQoqWMssfrvaRfpqty62IrTCuCMgyhY4DXliIcuB++HlTBpiwNj02QdFZI3FuZFoO6kwievunkRLXxL+6GJNAYiHiKqFW2MASqDkFT0W5pBJ2n6GX533K0qnxV7t4Rp7RxDSfFNn4Tg/eSTT+LSSy/F97//faytreHUU0/FXXfdhXPOOQcAcM0112BrawuXX345Dhw4gNNOOw133303VldXi7VN0xiJm9q2etFocokbeVUUeJJuQ52nbJtga5CMvYCkEqnpa2v6/CFmUnbFaYmHXduJp8qyhzTXsF+W2pSLwOyzF045tzECOWr6kfJI4TIyvMrx26b1uyaZFeiu3KoVpzHYofTE7GUeWl8wsQYMTl7ohaYUceusiFBIBsZUYKUUbP8W6I4lEMtbsciKBfb0CFjrAzUKtqMNA9aAYXBEjrXXdsFtF4QSb5yOXenxytZHye9nFRFlgBFa1L1NwKxnNlmxQEYu+NABrHaN/yzvVGJRACbYYRsYMRhH9sFHLoxjl6bf6ZsAkvvOhz2d/Tng9aXV96rDh8MegOS8kIYJjLcorMHsZ5wRsCyhNQV7SGGsuIWEgngbKfWqlhYRTlybgvVZpn7aHlEQwkEsAm5z7zwGh9XPmGMFnomk+cJ1CIzw9bkcrkth9hiccShUjnGwQ+Ng3gDgVUnuUcAg4JsO6FofsBi4LVfIYfDMHkbfH8MZk8AwRI0aBC7ZeWT/FozjtuV+z3UEU6t0GEJJ4dzYMr/7sz/7s+xjEYLdu3dj9+7dhdqi0SRBLAruNleQps2En1+6bHmyTwoqjHB8a7J3cRkwMACJqFbap3C3suf5+PrujAnMXgXrDyWT6vXFDQT+upJmaORuKHosXjAqNu/yzel941v2RN5LareEXGtQkGUz2EuYFodjT8+bZjCOy/RhOYNYFNi337s2v4mMR+QM84W7wH8wTXxZd+2GoP02k99P16Bo9cPK7RFFf8VF/9ge2P5h4nfJwAQOj4GxC7LaA7Eo3Ke2AJeDLltgmykPYInrMHsc9tBro7XMYW9SWH3myay2C/P4I/HXm38KYMUrDkUJyNFHgD/+FICQUcaigOtWeu85857DvByn3GYgTx2YvnHwMMi2npev1zRAX/4euP/vL4Bu68GVjKqgawOw/VvR8xVQUnJOYI8IqBkypFgxNwybgVPi7XcHpvx5yobEKqIumRXortza6J3as2cPXvayl2F1dRXHHHMMLrroIjz88MOR73DOsXv3bhx33HFYWlrCWWedha985SulzkvSFDc9Crram3mbp02Ams7gC1LU5BEBlh695An/w9AiwthEaRpSiGzY3kIpqewoi9ljsPr1KGrpmkQeEjb7d4uM3amE2x1OL2CYPFCMjbcmC+IkrIaPHNA+Bd1mgW/aIH0jomQWmR/oEf3J+XlmmAzgyd+cea+0QjqmxeFOhjEhHG6BSuW+kcixSSDYmD2vg+yN7hWZ8Dcb/v2bFgbzBOHM9kzmB7/iO2eA6wDO5HdGwn0wrajS1GsDAVmxol/sUW9DZjOQvhGMF9I3Ya1MhODQM05NHrSX22x67okg5m9Wa1GaFsUPI3R5IGC6LsF4a9pfSX0qS+vnHIOWe2laRVMyayYNhrE24R05r5RVnpKl0N7F5ZUrmipRmhaAxBQYpXKOJzxL4X0AWbJmPge8Z141vgOIPaKp1xRWiiY+ixadVfT6+xxRRa/LQCgP5d9N719/Tbf6LHFtDvZYGc4Tkf15mgK9IHkRO2GZxBkTDL8bdaTik6Ke/guUAj2BOKaEzijiiMVicr7VZ54hPXRPfm79v0bP84OnZ+cC28/Rn2ScEJs34pcUboPrELnoqKOOjB7r8NhT/IbPd9hzSAgrJO2v75+c28tV7H7/cPQ368PgGuNKPWIZUoVKZ/bhths1uliec0Tn5TYts+bS6FXee++9uOKKK/DAAw/gnnvugeM4OPfcc7GxsRF854YbbsCNN96Im266CQ8++CB27dqFc845B4cOHSp83lRhb5z8Plm2ooUvXI7ei45K/K5Gk0Z4YREV7gwrbA2Pjs+ZRVwBxpH9QBC1lqcKHOZ6Vdc587wcl1ZduDadePd5C/fBfb1UhRjfsL3nLm6lqxD3qSEMi2G4YYAxoL/keSISCgwPm55CbUjRW3LhOgTOmIIzoLfkVprjJ2n+GW14/ZKm4IsLTD69pSSBbPa7eePDFxh9YcdcAgyDgxAeeMEmKerC54+30VC0sUpTjll9L/cXy3fmhdWfKiB7S95GwFNQE/SWPAEtS1EthcDY8RXy9obnKRu+786YBEIasWghpXhriHvISEocvgEh7ZVIm8KeNHNFUzJrhIS5XNZ7XaMJaDpkOqngWFAZiQeh9L4iJeIRZdBJpFXyoVPXiKLyck4+RmFcFvFkDXub+m0WXStJPyRTH1EyhDVlLEyN0NH0Sa7jyf5sIj/7huS4HJu430lZp7nNUr08I98bOt79Z9Mq4H5FcEI56CT6KEywj5GIdEkdQ+OYYi+jze7+IfiGA7Zpw/n+hue0YDMQSgJnrTRvPV/uFnE2cL4TW2NmPJTFBlXZ/U947OYVh5oxVmxbLnXu2bZMxm5sjZRZMwlJT+WhDLeAF7amERoN1b/rrrsif99yyy045phj8IUvfAGvfOUrwTnH+973Plx33XW4+OKLAQAf+9jHsHPnTtx666144xvfKHwu1R5O7Adb+V9KwB4uhka+E4gsDk0LlWFkrDkGBZjazZQv/PSWGA7vN9Fb8hRqpuUJKqtH2clJ7BvAf95dm2Kw4mK8ZWC0RWFOEu0PtjlwbAqjxzHeMmCmefVm5jr1BZpii13TYcpk2QLfYIFiNIs0RX/YgzBO2bmuaJphxpItgq5DQOG12QwZJEYbhpD3zKyXdUb4UQUC0PgHY6Cy8nT1kFS4q0vHl4aS4kUCdHGB1lGnzJoEGXgiO99wQPqmF71AiRcaqJWnrSK8BrBNO1UxwpmnXOgtVbhpzpF1A+VTA/nOUwkrT9uOM1GClgyB8H/OGZnck6mBWAXOV/fC2DHwzqFgvjBML/KJ0Fl5KNc5pKSMRAYm+NABoSTWb5PoIZekK7xS2ulHoRmW4H0UvN/GjgHYoWKRq8wlEaeF5R0u7M3mn1PqRfvXShAtOpkTrOcdAfvR9YxfSB5f1ls95RniNpOW31qjNNUyay5t2mJgfd17AHbs2AEAePTRR7F3716ce+65wXf6/T7OPPNM3H///YnHGI1GOHjwYOQFqNtMSXn3tUnptoDoQlySJIxr32JLDS+UPd2yr06JFPekTXqJYBw1kDpvcH5BhWbRhY4sz+a/6a+0c9Pr5fbxvHLrVIqLCK485JwSeETwsBBcvh1pCvVZJWoxr28Z5XnvGclhgvOMvxFKeyWRZwSoE2J4hRaKvZpuvSYPFTIrkC63zhDycvK9h6w33ub9/1f/stS1aOrFNwzaQ9qKsPcmikQKYxCQgZ+CJ6EyOYq3Py8vn9C6rljpkVkUMyw7xp0p4u1ocSqNLMUtnSh3yypiapMFBJTQdNUCXbZg7FwGXTYL1XoIy7Tjw8kFkJsiPGapSFFXSQGdbptNoxjHOHop9ztlCLzBJ+kvZuah8LPZFkWoJFpmzac1OwzOOd785jfjFa94BV784hcDAPbu3QsA2LlzZ+S7O3fuDD6Ls2fPHqytrQWvE044wTu+ygkmrhDtgkVUk0zN947FrbI8vUBKeMw2mUg9TSB1M4qcVZ17kIdTZ4j+psTGILH//U2sgjFUdn4yRS3koiRcU6s3Vik8/cZzE98PRwUCNRhZ/P4MjyPZ8dvFdSZjHmp9flIV+Nb7oi9Na1ElswLpcisA9N/ySe91ze0AAOPnP4b+tX8LALB+468AAObrP6HsujLx190C669GEFWyW1355upwEGnLWIsLDuH3C5C2pqelZkqUy+I580X3Ck0rdpKufU7WvLRCuwCUjmUpmTw8RlOUtlV5PRbeOzQ9RidE9uiMg4+inq9zhZZZc2mN4vTKK6/El770JfzlX85azQmJK5v4zHs+1157LdbX14PXE088kXleutrDxm+eLd1e5/uHp0mHJ5MQ33RAl61JrgrSHtfrBcN1pp5iK0eGKmKydlnoVEL7ppc4O2nMxYU6l0Vf4Y8OjAJLcFo4iN+HwuEsiC3IDTwXonJtoNhO7Mfoe1LPt+IFNpwTC4B6b1CDwHWnea1UULfitUwqBEIBQyaRTUFFgtR81KX1JNwXk/nEMHhiTl7V1FVMT7PYqJJZAXG51fyVWxP/3Rgt2ziKRKvU9QralKYca8k0xUYM3A55i6UUHQwXTqy2Qb6RMftEPFQAizkkkudSBt+TNY5x1MR7LeH+sX/6zdkfKFyfhXKtx3NDhvurSFtynmU/2szLcyp/+Pi54t563M0uBFUooidB5iyaAirzPMNiEWOc8aBIq2ihvdQwfZn6Ef65Eh0k1I1jkVQJZUibW52PvS76hqJ1ambct2z909RDozlOfa666ip86lOfwn333Yfjjz8+eH/Xrl0APCv+scceG7y/b9++GYu+T7/fR78vWB18MmmZx24DMAkd6FGMb/o5AMBoz0XTkIEwIUsuZ3wm65xWmLYPzgDkrCtV37dalLbxiZwxsG8+Cfb1S8AZTwznk21X07k5halrUdOLp3LCAm+Z6utHfPhuHPi1c0t6Gxf+aegY3R0jRTxdycAACxW/qINDl58T2dy1AoMUr3reYLV0TTYqZVZAUm7VaNpESyopS835IYeBQkov0wT7h18HTAP03A/I/94nU1FI8pXAMt6+YWU+4yAl5NaiMlFX5CChvvfJ6keXY+v3XjsTQl6mH5hD1BQxbRoBy1Hg2QmAHR7PfiEpZYftglgGRu+9ODcNhyxC495lrZkTC6Fl1lwavbucc1x55ZX45Cc/iX/6p3/CSSedFPn8pJNOwq5du3DPPfcE743HY9x7770444wzyjdg4inKNr2kzSRmsfHf13STJAVfotfpnOesJRYFPaIPQgmcP79E+vdJi0VrFBNVk3DPOePlxoIbFWCLkLeAl1H2qfKEUaFwzKooH7f+xsckIRyHrzw74oHoHs7eJNUxruOKSOH+7tD8k7YZDRcTW4Q5hBASVIGWfmV4KGqaoXGZVTOXhPN0141w9fa077V8XVLusLDdc7QhR+8AKAW7+wppoYkd9vecyZ0aToNVRZ7OQKHUpNG/JQ4HSbcuPGZon2LzLedi8y3JaZ+SoGsTI1hYkaQovUkR+bwrCmsAkQvM88INikWFUK0szaVLfSuAllnzaVRxesUVV+ATn/gEbr31VqyurmLv3r3Yu3cvtra8ivWEEFx99dW4/vrrcfvtt+Pf//3fcdlll2F5eRmXXCKvAJLCDwHZPwy9l/yAcJsBjIP0jczqmZp6MEzAmQgbGwfMmYIxtE+9PCWMw31yIz1JeYsmxHAoldTvXA7yrKPFv19SeE8UUisSkKooxtO2VA6pua4SSLq2wYqLw1d6qUiS+otQ7j0TGRbsyvPV5iqBi41JP31BncWCEsdkwfHfllBOWYJNw4Rw6GqVofqrH7xncr7KTiGPQcu9NK2i1TKrpnVsvu383O8ULQxVpGBmEnHlXV7an6QK6l0h3O68PnOf3IykAwg4eFhde1IUQzJpsNqGv/42tQ6rPq+7Jf9shZ2ulv7gTpXNEadA8Skf0hLPwbyCUGnPj/n6T6D/lk9m/5ZxMCe9yGjttMSQoGXWfBoN1b/55psBAGeddVbk/VtuuQWXXXYZAOCaa67B1tYWLr/8chw4cACnnXYa7r77bqyurpZvgMsBSrD0B3di9N6Lg7d7V/41hr9/wcz7098JzsxteRA02eTdpy7fx4lwSC++JbCSFPE6BRQpchivxZ0/bTHkTNDDouVeFD6ck8Q8Qp4SlYMzL1epRdnChFGE2XbTZ3Dg1zxPAb9PylJHqoquKk0j1PQMcYaFqeapaZbGZdaG6b3pbyJ/j2746YZa0j3SFHVzMderpKYOIbR4HQr6yhu9Y0z+Tsx5mkTKmhgPDY/n4cxS7pBlS+zcFRAvdpv+vYobIgghvJD8tvzeuwEAzicuVd0kIUrnlK0At2xdBf/ZS8mzKuKAlpgnN+FYaVCTAxl1vMKwjkfga9TRqOKU8/xFixCC3bt3Y/fu3WrOKakEo9t6wkmbg3O0yFNRo45O3tc2KH2rUJaWkMTCihaeUiRVOTO5Z8Ph+uo9OHyr+2iLFvZoiZPXT7JFGVQhqxDljAApBTDijLdoarGh1P5I8lKJ/DD/3JS2Z7PRJLljziWlcuBWjR/CVPS3mnbRhMyq0bSBJKNzq7z7RZmsvzPyvJstp9Yt/zMmFhLqPrkhtZGv6zqqNjAXyb2eRBXFogDkjqcmEL33qvpW2RhIa3datGhN5PWnqn6sEy2z5qP157LEH4T4BjnnQelMYR0NgOaVpXUKpsEkHxvDomO2K0I0i4RrFSso0HbC13jEh++u7Dx1VEmXocoxKOpdoUknnON0IfAT7Rd9aTSahaF8qqSQ7NYheaUowooghfsuZcqQKu+PSOEdxXsbsxfz/pv/4dcN6lKUl5WPw2M26xlr0KNg5hrncY7VMmsujXqcdgbGIq7jyXnsBMq2a1pHE4pR4XDxUudQEJKcEgIrKhC1WXAqJUhPUnwEx2qRJ7LqPhc53rPv+HsAwKMX/GSJ8/j9KeM5Wvh0kfvvnbs99zCMN7aIFybUVCNaNL47h65QqtFoZFHpqaTn70xEw4LrgtBJ9E6FhlpuM5BeOYmirKzJbbdU7DMxCPgC1m/25dXeEpOqgRD83mbTHKaKPSKZQ0BDEW5JacSqImsflpompUD/iZ5T/ljKDlUOLbPmsmDuHxpNiJZbi5SFby+w4Bw3Tvpeg3kLuuyCmBuykfN5cmXP9ixC2lO+elojOJUka6yr9lCmgikXNBpNBXQwFFFTjvA6VWsURhARVe9CKSQLMq7UE84ZT7fmaamCEp+9tDb4Fd0nn8cLghVBxvkjSX5U7XDQChm1xrHpR+9UlmqgAFlFZlPJTGvVcqFYr38LyWJ7nBbRjsfyNXLGkXSUeH6aNilBNB5t8hTsOrUrfUouWL6QNa0AWuD5DLVBpcdCnqyQ1Nd5G5hE7+HY+G+z56Uodc2zcikeClRlbZO8qHgzUNbK3yV0viiNRtMYLXcOKEUT0WLzqijJuK60fVItMn8N95ixEkpX0fFQ07ghg3SVTuLYVeghmFXjIOszqX14ifFALAN85BT+/aKgZdZ8FltxqgLfkpdDqzbCGnCXgxQtRqko6bdqC2nrhTpXsCxhRdcxPx59yeMm7EXb9mut01PFVwjzAtlUektMui+rMMg06U0hWxwx3NJ4X7R9XCpHhz1pNJqakVmDFsmBoJZ9mMRJPM/PaIEbzgQ89/JqaUjI0JXef9dLNZT6WdE9WMuQTvdQVeEogftOLNquKMSMwrnCvxftSxV7y3k2RgFaZhWgRU7eNZEXMrt/CCC6WeQb6qwUhjXnD92c0pRwOTzs2TaIlT0hsZHjWdMmE1dmPt60YxwulzAoN3THoN1ddFwOzni0P2eUQjy1v9n6SOg04bAbFnjDRr8T/nu0SZUq1cabckvCeIvisQt/Eo9dOJvfNKnaeTy3KOckcdwwl+TuP+wRBTU4rD4LNhqMyYUupSny4l6Rzjgh1IyTmYIIcLmXuyv8PdsFGRiTf7PUMDlRL1Z7VO+yzZncyx/rac+Cf68I5bnHEqatRiNCvQFZ5FV1ImyNRlMpy+/+NACA9OvxUSGUSCtxPA+j/O/FlXn2UH5+EtpXmw3WishbR7LkaYl2020WyGov+Ds1HB/i6z3pm+AHDs+8H/ayozuWwA+NhdtZhEyjuMsT9wBZnpJFyJIdkuTKeMofT7bLGQuhHLF02QQ9oh/62wIfzVZ8jxZvy5dZ4jJhWKbuLTG4bkieHjngjOOv1/7U+3vTASgBWV1KPaeKlA1pbQUA1yWJ+4CZNux9anqcQ1uga/3ol4p6QIaesaL485xrx/rKdwKajGc+nN7voF8Zn77y2toWcU/LrLksxlWK0qOgOwYAsicUuhwyk7XJcqMJSFO6UAqwkZccm1gGaN/MX7QVbcqLKLgG2+oLLaDbLJjHRBcs0TbHv8fchN+JepyqQvWz6Y+DyXFlrPpkeTrG+MhNVSCHxy1n6Rsa0/LObQ1CBp4C44szAtemgWLQ7HFwTuBsSR+qUcKKTtfxjQbT90YZ1dx7S7MCLuApS8dbFJwlC9GE8EguMgDAZF6JfM8ywDcmRglKwIcTgXbZQm8bB6WhjVN8XEzGWHgjULfxjTMi9Yrjb+IZA8ZbuoCiRqOpCD8CrC2vhsgy4sodJ31uN3ssVymiEr6ZbNiPr7eRz2TFzaIeU0VcWSUjOfLgI2d2zNGYPOLyQCklG1bryyBsUtx2RvbBVLlupskofv/GlEnBvaVkWrgorz2BbCQ3BsOG9eCaEvYrScbyyLM9jsqN7sTpyof0U8ZlgecyLaXYTD+7DD+3/l8j52L7N6Z/x/o2rOxTiZsgj2ey66jInzOOJn6fxfQybDM65t0nNyOf5xkJCOX5qdEm+6oZuTsmq5dVQi9cNFaHWRjFqZA3zzh55JKVqGKNbdqwnndEynmyT3HoqTmJTegAVYTlBIt0Wz2cJkQ9IwU7gnGw9VGgSDYtDnvoefUxl2C8ZYAzbyHsLTHYIwqrz+DYs96BbSja4hywYfUZtg5519NbjoZd80luo7RntrKFLEGB7Nq0kTzIhPJAICCUg5o8CPk3DA7OCPpLDKMNI98CH0NIYCqB1WeTcTntyzRvU6vPAmVz3HMmTZmX5QVSGsbBN22MDlIwVr8X6TzTpnzixCClXhqNpptEDPKCyhKVMquoYqyMgtV1SHXGcEqjbfOjqSwDxKLea2KI9Nf0rOgcoFzKm9z+dMSVUOywDT50gshGFes/6Zsg2wexE0XvLVsfSqfeiUOp169mj00iQ0hguPb/78S980RhHNzlcH8gbrmP3xdqcs9pzuARxwLAu/9NpM1z9w/BNh3woQN3/+QeTO4N9b0iU9b7vL2U0PUkKNTrJEsmi49HsjJ13plxTikxduORYJpktMyaj96thUgVIBLCC9jT+aG3SYqX5TX98NZJPORz4XLNVqDgJdQL0TYtDntEA4VURCmZIaDWmYvVHlEsrTrgjGC8SVM9EAopSSseTCJtUqXcbZOyyUdltVDOCRw7Ktwnfk9CiS7sjV1wYzqT1kBHN3QPSsq9NJq203IjclOEN+p8mB45FFY8SZHg3TpXa8QCCOtJXmq+jFpIJkvpsyQPZBVjhdCpwT2LXDlVdq3LaDtzPGeIsBdpckFV/7OEKBmi9jkydgxSP0vbD4VvJUnwkvX+XdRDuvz1GaqcYxgXftbjfUWXzUrGdZi0iLQsyhonGkXLrLksjOI0sapbCYEv/HCqCovR1EPmYtNwiJUyFF2DNfC8+vxckkCKEqnmdYKz5FxJYcwj6/PullkoycCcabvv9SmiLExS2Kno/+Qwa47RFkV/xU0OXSoJIdE8l+H3VSMrZNojit4SE/Jmkc7JmdK2rHVk6+np4OhcWE/CfFRIWSBIa/bcfqL9oi+NRjPXCBUD0gR5YrntllZMFNmvtX2Pl1QxvKmCsZyl5zpNyv0ZMFG8GEcvpX8nh/CzVCQPrzSCdRvospcWjq71hcK6k/YCYblmnJF+qmmqTnXpP4vxZ7LMuJFC9XPVprlFy6y5tPfJq5q0gS/4QLhPhfKZuMzLY7dpgy7XkwRek47rTMNsl9bc3Ek8EC5i9771VepDEEq8xbhkm9lo6h1hj2imgqbtypsi96+wBVfRgpGm8IkrS33vSc4ICPFCk1Qqi8wlRBLP++dqG2ltkh2bSUJ+WmoCdV6+k/8Leq4uHdHyBy4Ff5MbyeWq0Wg0msbhNo+saWmhwfF1L7MIUBkEQ965zby1xSjhsZt03IaVGEnyhbDRusK2Z+2jZGRDJlKcKn5vFO3FCOEzCkkV8pzQNQVfjqUP8PO7xq4xS54P55v1iRSga3DvGp4XhL1SKxq309R6k44qsE9r475H0yxay1eGQoqZCtqxAJRVCnmTX3wxZgBtplhJJeNA4WIZXiw4AyDZTaU8BmsQXEt5B7ocbV5KE73rFcFZtwsnis4jYS9T1dfLGQdRMO2UydemqQevYnWx+1T0dxqNphvo/UD1lF4nXQ7Qam5UYFQ0udhYYDw7HLY1oRbpsJQiX96H3XFWAQSU7KE9WVmFfGEFXlsdgKoYqzVeK2ft3gcWRcus+Sy84lRkMpv5juDDqcobSqOGpmWKRu67YBhJGJl2+kpVzkgrFTn9pfpDuhJJ8WoWnUtSPVET0yaQSpWnYXpLrFUhQ2WecSmvCZnzyDyDbRVyFVL1PNj0PB/BoMWLp1RVdEWj0SwETXtP1o0K2YfQEvnEJX/nhWzne9jGixylEURZqbzvLgdUqYhcDj50yxWRqWlMG7l5W5t7tghtpx6BOSSSKiEetea9mdFvLNlLJ3BWaUC4S5tP5lZJqGXWXBbjKiuGWAa47YIMTLDN9CTwmnogdBpmvrVuzCwwxhIBd728tGzTBvwk/nmhO02GP+TUIpNZxP2cvLK5eVML5yTl3Iy/10TfMS8/Z+JHeUqyhPbWIah4FUunbWNJgkcB8pSCZm/24pIT6s8e59l3/D2efcffF25bGq1SgCXgFWxSOy7yqgJ3Abqt13QT2oOBEvmimm68RqOpmqYjOIgVXdNVyRypMB59FT1GAspyxcbTdlWsJPNDmtOdbapX0lR9jcGeQLS6eQGnD6Da3OlwWfDKUpxletVWuBcK30ORPKpzT46jSmvC8NukhNUyay76ycrBeuNtUt+PKD06uOldRDIFhgYUfqqVMaoJCtm00MNUBbl9X6GA6UoKfSwoKjT7mafYU3uP4ucZb1E8duFP4rELf1LpeQCxQll1UefmVvSetX2eSKNpRYFGo9HMHU1uOPyiqi0oriorQ8kdvISyNwN71P1F0Rm3/xpk9yxzFR4vMW5LeQQvCIvmza+Z0v6ZrmHsD/9C003QVEUbF7cqEBWoC1p4u4RSRVMQft+9ftt202dyv6NCwRWvPA80rxCV3V9mjRlC66ggGss3PIExUl2BDo0SCCFBzijpF9H3VqNZNJRsyMO5FRdFzlVBzX3lF2LNYqagYtb4qNEJpKiitNT4rklZ1UmnkLS+Ce9PRNMM2uJCcthBI+7xLV4ciiX/O07ZMdxWhTDjrfF+1TJrPguf4zQNbU1YAAwCSCwQVSBSObEJKsuR2WRBLp6sgIp/lvhbVffCIBEBp+hx83J5ySzC9ojm5nNaVNL62R8vifevg4p0pei1c4ofwlT0txqNRlMCYhDwjMjhhXEg0CwUVeyf0vQCQgU/O/ScGUcOCv+WUq7OoF+RLGl/84Dwd1P3Uh26n1JomTWXhfE4rTs8sJMWqzmni/ck0uZQfp0Z5UxFk3ieAi7NG65ySlyv306lFj6J9qjyAFHV/hmPhuD4Sg4/NzRhEW6LFVpTEErKvTQazVxS9dxem/NHVYbCNhngalKSpMlczrj5tSDetqS8+FLHS+vTltz3qlI+tMopqxdTjCgY512IgrKeeySACh2EispubRgbWmbNZWEUpyrIsjZpOkjeIpHkDtoVK1NeyE5OPqokob6o4tkXkFQ+JzKhJK3BZa0ZP4evPDvxfRFlafg7vaXpH2WS8nNOKjVsyF5XZZR4Brae7thyHTz39Svhu2gk02g0GiUsSNSD7LpSS4SIYOErzjjIwAv6zIw8C0dKVSk/Fjh2G4zrMvsKQvLuSdnWFEPmGqwBq66dXfYYrM24ETqP1v0sJDpUP8hTWCA3jH5oukuCYMMZT6+UGM4ZlfW9jkNNLqxk6krxs1Z57RkEGDUovMVSBcji9WX098++4+8BAN88/wKhY2SNm9GGgf6KYNXVDiEqGMc9uMNDd+kIhvFh9QW/8pDOCdsS40AbIAYpXGhBF2jQaDSFcXltihApo3jFgqNhcrhZqQkE4Yyj6t4TyXGaS3i9LXLPS67XrZKvK6DS4Vq3rMR4vlegy0s5uSgN1W8ZuR6qfr91WDekZdZ8OubC0gBJD0CHHwpNSUosdMoXE4EqpkUWwLz8mVl0dcEsoqyc6VuJirLh36oQPIseo9IKtAXZ+YlPR/5uUkGfNi6yxktlEQhaIdk9KC330mg0Gk3AvEX4rX7wnnpOVIEXct0p8KpAeXRKzXKaUjGhqVD9SHEo9f2XHi1c7t6nOgl02bFKy6y5aI/TGO7+4eQf1Ux+Zp/BdZopjqMpsEi2QEgbb9HUPJRhhAXKlO+xEZNeSEQVrMpD6zsWisYOj4W8lA2Tz+Sz8qpWpn9/uGFgaVXQSzM2r8WLQtlDKuTxGW7PYxf+JACA1rya0GUT2JL35PT+rqJFgPvUEMZR0cT63GbdDoGShI8ccNZL/CwsHy9EOH2ZvE9dFr41mkXHnXofkYEJblcbScEODAGDgFiGtCcjoflroq8k8+dt5pCgirbSa6NUqbWUsxIKPsbARwyknyPcOHLXT7dZcA94vzl0+TnoLwGOnT7fm73pWOKMg/QT9pC+0iLP61Sx7ExodkVwZ0wT86FKeaexarynkyKovPeVn6oQnHnPG5m0kVJPRrcGBfaDIjoNg1Si+0jaJ9oPH0Df/8Nv67ZlYNPTwXgFt7x7njhWFHvUp80T9oiGvpM8XuYKLbPmshjq4SxCkwuxKIwdk01v+IHUnj5zAyEc7hYHsShgUZBly/t3HgI5i6pgvOm1jfZzvghExmlEsBJsN+0Xnw680P30SZNYFISS1noL9JZYsAlwxuqnRbptqkiKbzJcN6bU8yu2cwJqcDCXRBZ0xqaCtOsQ9JdDeUZlFN8ug+sQ2CMaeJ6aPe989qaYojEsVMSJK2UBwLSiB+KcpG5q8vZOowPePfONCoyl51mV3Ye5YwJnTOC6BMwhsIezjTSs2YPGlabemwltmggYVp+BEA5rwII2Esox2vCeX3tEq0tgXxPE8q7VdQlce9qPSf1XFs6qzZWr0Wg0bYQeOfDCbH2lqYRSoYiiiJoctM61qYDsWFhhGuo70je9c2ftA01D2tsqLBNmETekp+5XGBNSmPt5Vadp6sRvvqgcFe73tCJSEW+98L3122N5MlAT9QyEx83kGuhqzzPkT6CrPaX7RTbZI4T737R48B5jk31FuE/HbjWKrMn9SVP0h+cE1yWJ+wAAsJ5/5OQHZHphhzfBN2fzbPBJNB9ZtgAgcELhw9BeyiBwn9qM/nCiCCaWAWIZQGgsEcuIyNZp97yu4rmeAULtMTXVsLCK06QBmjRB87BVI7TAGGtii55mvqhb8ddbZpECPEKUUPQTygMFIqEcrjNV3rmOl1+RuQTWwPuO1fc8JHtLDFvrBpiTkoPRt5TXaJGyD7qw+gzDDW+B7C15i6xhcoy3vKnPdQDD9Lx6WaA8jPV3PIeUQjgjMAweKCCTqqdSg0cUglUsrkkKR9PingfqEsN4yxCyckeOmaDEcuxiS87m284X+h5NEdIonX5m9jioMfWS8O+3MVFG95Znr1P22nOZzCP2iHqK6mHUqu17/Vp9eS/w1pAwV1ahLG01OuxJo9E0wWQ/w0vmLBRCoOBoWXylIO2bYJs2iEVnjP1x+UlpKqIsRbSkxymAyPo4msij1oDNKHACb9OU34YJlKI5RMaDQcFHYh7K4SXJGdNJ4cfZiKhSMqpBwdZHwMTBgPgOLpR4Y9lm3r7cdr2229G+oCYHoZ4izJfbwt7SYeWjCqO035dsM70P2aGx1+6hA/cHW+Cj6XjxnHeM1D7LK2jlQ5etYIz6bapa6Zx3n3tLLP8ZjI1lMigYkZs27/h9EnNYmfmbSURQVtCtrZHztcyay2JcJcpVfC5C2oN1cJ9WuDYBS6rsHJ9oaw7/9ttUySQ8ShfkuMsjLxUMNwwMVt2J0NJuDznXIbD6vnLYU542zUwoeUzhWEmfGhRGyGPTPw811JyLM3GhrwhWn3neoDOhNLPEPSVYyMvX9zB2JsfxvT3LwFmxzWpmdd0F0znOBVoI1WgWEqFIphogBsk0WJdZV5rKaU/XQiFYrmfsT1s7w23kjJSXeZN+bxpS6QrY+ggswbNuvJWuQItQ1AEh7JEcIjcVQQ5lozx8T8LgeDGFH9+0g9BtYlEvdNsyAJcFES3Bdyf3Oyx7pueqr6l4WsZ+DBBLdZHn7VtbUU4je16rck7wvVFTFcIF+oDH5oeFR8usuSzGVVZBwYVrIJqLUFMZTRWbqV3xUdFCSgiHPfTG/3iLJlvEs1Dg/SCqlLJHFIMVF5wRjLeiCrHS96MqzwqJdiV9NzXko2B7yz4vid79ZY7pMsDN98ScUZZOjGdJXr1ppMkBnEXDzusgfL1dLcK2cBAyzRkl+yL6Hms0XSUso2R5owGKHDsyZKKiHqecRV+Z5w6/VJAkeKiSuWLHUeaR22QlS1lK5oc0e2zi2ekZ280ei4wRKTl26CSOm8RcriLHY1HjeJHfS5E2LifXZBy1NPNenLgCOPi6S4ScGUS9hiOMi49XP1WACLkKScYCxa+MAriwd+rs6dXi3+PJXqVTNTm0zJpLo4rTm2++Gaeeeiq2b9+O7du34/TTT8enPz2tqMw5x+7du3HcccdhaWkJZ511Fr7yla8UOldaCGeELg1ujTp0DtsZ/IXOMCc5NgmH0QFv0jDWdrFFlTNSXhElIXgTK9ouxhCkEUhCVIjzv1fEahr2GAj/2+x5aQR6S25ins/o+Yv1YR0Ghay2ZZ2fEC62dtRI3QYYzonUSxSVimeloYIaTQp1yqyaOSMWyk4oD4oytW2NaSN+GDrbtCO5CvOYWQtammdfBU3UEPBlK5W1AYwjvVzxeZ6aeeTJrHVCLOrVUTlqqbBCOExijtGEvWxb60pEiLUx4lEuAT16OXk/r3U7GoU0Oqscf/zxePe7343Pf/7z+PznP49Xv/rVuPDCCwNB84YbbsCNN96Im266CQ8++CB27dqFc845B4cOHaquUfGHjrHEB9E9MAIwCXvetL38K0PHE4BcdeGuGnk4m1rDhPKDFrC8tnIxUlAR0XVI4P0gkh+qS4rUVpEo4Ij/3BlP80r5IUlBHicFMoLVZ5lVXttOnhI373Nqcpg9rqbQkMQzGS4MFqdLzixhQdXPQUZItD8XQrmpw57milbKrJrWkyRLJeWGbANZexfOSOn0O7mpogQXOj50wEYMMLxCjmnTpWyBqJkw4DbK+kC2XKGdQRIhhFeyrCalXfDZ2v2Tmb8NiiGVvGdxh4zKqEIJKSPcyvST78XqP9MLUvW9FFpmzaXRq7zgggvwmte8BqeccgpOOeUUvOtd78K2bdvwwAMPgHOO973vfbjuuutw8cUX48UvfjE+9rGPYXNzE7feemt9jZSczNooCC0acaWIirDWQMAruWgUDWWRPo8WnGbwE9lr6kNW8dhfcfHk68QKQaWes5LE7YoOJDB/zMMawpm6/MmdpiYhdM+ePXjZy16G1dVVHHPMMbjooovw8MMPR75z+PBhXHnllTj++OOxtLSEF7zgBbj55ptVX/Fc0wmZVdNtGp43lRgLG6BThsUQqx+8B0AzsqlMXtaukCU/5Y1tz5ih+D7U8DynVa5fKET6uWR6ioWgRsVpV+XW1qiHXdfFbbfdho2NDZx++ul49NFHsXfvXpx77rnBd/r9Ps4880zcf//9tbXLt1S00sNQo4ZF2+AzFn3lfDULX8iYB2VP1/HvgQ778yhr/PTHvla2awpTNFeU/xLk3nvvxRVXXIEHHngA99xzDxzHwbnnnouNjY3gO29605tw11134ROf+AS+9rWv4U1vehOuuuoq3HHHHVVc+dzTVplVo9F0Az/9QF8kMq4j1OUcUhelDQkGKa0/mE1F1A2ZdLyVL4SXMrCL/HbR9vdlqUlmBbort5YrpaeAL3/5yzj99NMxHA6xbds23H777XjhC18YCJo7d+6MfH/nzp14/PHHU483Go0wGo2Cvw8ePCjWkBIPF1m2wA6NQVd74Fs2COXCCZ011eCHGY+3KFYG06TZzCXob/cU4sSiXrXGpATTM5VluHJrlZ/fSgQ2Aoyl/O9VSV5bOSOtCd3PV/gKvt/wouvnl42TdS+EC02EvB+tPhNKzaAS4dytEoKrCkG9v+JGjiNVZKB0VU/pn7eOshV65wpKimvwJYTQu+66K/L3LbfcgmOOOQZf+MIX8MpXvhIA8C//8i94/etfj7POOgsA8F//63/Fhz/8YXz+85/HhRdeWKyNC4hqmRUoIbdqNIrJzPlNFaWvyTq/61VPL4LZSymMKYvLgVChd+5yECv962UZbdHKolwXKfKjLV7H7NC46SYARsEBpdBJrLfEYJg8syBr8KwzDq74/GGSlNdtUUC36hmtSWYFuiu3Nu5x+vznPx8PPfQQHnjgAfzGb/wGXv/61+OrX/1q8DmJVeninM+8F2bPnj1YW1sLXieccEJlbY/TqsGvkSZxYm06bKqMIFBwAWqL8KGRR6bQhIwVvGzBqTp/G4clVASWGeNKnoe0fG6qjr/ApFWjXWTW19cBADt27Ajee8UrXoFPfepT+O53vwvOOf75n/8ZX//613Heeec11cxOolpmBZqVWzUdJVyxueHiJ7l5SwscT/o3KTJDqgxdVRShYDSXCFUbUmXzYnZNVmmDIXpp9997/+iKfqCJPKCMqTlvWh+XeNbtUeNqsoWhK3Jr4yOi1+vhec97Hl760pdiz549+KEf+iH8yZ/8CXbt2gUA2Lt3b+T7+/btm7Hoh7n22muxvr4evJ544onM88ss0KmKBl2xrRPElT9p916nZZglLpRaA91HZcgT6EQE1LTcvcyRq25eBSryCodZfvenc7+Tp9wVFfpHG8mbiaqE8KjHqVYChvFzjqW+ePmCeJWiIF/UwYMHI6+wZ2ISnHO8+c1vxite8Qq8+MUvDt5///vfjxe+8IU4/vjj0ev18BM/8RP44Ac/iFe84hWVdsG8oVpmBeTlVo1mhhJarU6tO2Xl8xL7tSr2BocuPyd6Dl4wz2ab10GE5KfEgmAZBclafl2JVLyHzI3sC/fZTMHryd9p84WitgtHlFV9f8Pe610cS3XTgMwKdEtubVxxGodzjtFohJNOOgm7du3CPffcE3w2Ho9x77334owzzkj9fb/fx/bt2yOvNjDd7DXdEo1PZjhQBRNsEWGojAKKu7zUdWS11x56n7UlND+LrlnJRSk0l+jk6NKUnrMVCtGd2uDWxGz+r2bakYiCfFEnnHBCxBtxz549mae88sor8aUvfQl/+Zd/GXn//e9/Px544AF86lOfwhe+8AW8973vxeWXX47PfOYzlV3+IlBWZgXaK7dq6oOxagozVaWY8OfZzjoapHi4EStlW5zVj+P0quqdoLLw6GbGc9nnSLXhvwrmShaUin6rb77hzEtjlktX58AkGpBZgW7JrY0mI3v729+O888/HyeccAIOHTqE2267DZ/97Gdx1113gRCCq6++Gtdffz1OPvlknHzyybj++uuxvLyMSy65pMlmazSaCd7i3Z1FgzMvt2xZ6GovKBwHTHJgKQxxqUz5kyF0tkrhJAhjxVM5FWXXrZ/G/v8SDRMpK8QmjUvOCDDJk80YIBdUp2kFBSqNRn4L4Iknnogo0vr9fupPrrrqKnzqU5/Cfffdh+OPPz54f2trC29/+9tx++2347WvfS0A4NRTT8VDDz2EP/qjP8LZZ59drI0LhpZZNUXwFDlZa2/3lCCEArSI4TyuZFBkzFUl26Uyj0Znt3oBKlz7oPJ7pEmmZsVetECYQO2LMt4tLoOWjhVSs8wKdE9ubVRx+uSTT+LSSy/F97//faytreHUU0/FXXfdhXPO8UIXrrnmGmxtbeHyyy/HgQMHcNppp+Huu+/G6upqk80O6GQIgUaeeGiPQmGjUoGZMQB0dlGqeNx6ntUteDZcBmDav74VOavPKw9xd3mqpwPnyYWgVMBYs+EFjJFimywBrD4r/ByZPY7RRv73wuy95HyY/eKyhQh5SmxKee3FvKRJTMavN06yiHggcs5x1VVX4fbbb8dnP/tZnHTSSZHPbduGbdugsUFrGAbYvLrkV0DXZVaNRiWMtTxVSl2Y8oobulxhtak8Stwze0TVyak1prljbdiTVE0LrjEsu463KAYrbq58Lq1L0XNOqxGNmumq3Nqo4vTP/uzPMj8nhGD37t3YvXt35W1phaJHUzlhD8mgemdHJuH4GBVWmziukvNnha+EFY5dCN/PIjdMx2Vgh8bSifWnJ0jun6qUpl1itGGgvyI2XlWsm/4xuuBt23TeWk0BFFjvRbjiiitw66234o477sDq6mqQZ3NtbQ1LS0vYvn07zjzzTLz1rW/F0tISTjzxRNx77734+Mc/jhtvvLFY+xaQNsmsGs0MNSqi2mQEK7Q2Mj6fXqQVY/VZZpV0KQwKMPH9SWedlWpoN7fd9DQTDdFbqng+UtyvXdgHVE5NMivQXbm1UcVpk8h4KMUVVqmTd1aC62CDLuC2rmktnKkNyc4/X4kf++M0pmHKMhKU8XqsddHJ8NysAhXPLWdcXNldATMbHZcjTf3epACx8xOfxpOvO1/4+/aIwrSK3RvWhNemy4EUZ5N5c/7j9mKvdYSQ3IrqWb8V5eabbwYAnHXWWZH3b7nlFlx22WUAgNtuuw3XXnstfumXfgn79+/HiSeeiHe961349V//9ULt02g03aeLaQJk4S2N5uVDJ/2zFsoCRfQpReRm7cgkh+sQWMstHOCisJr2cxnjilCFzxwlrfD+LUJdMivQXbl1YRWnAbHB7R4YTv4RrkqX/TSJTPK+RdQaKLTWLRAyE5pyxXQFOYBELeT2iGJp1QU105VcAe7Egu5y0GUTbF3O05SNvND+vHxcWaTdJ9/YwBkHadH6ntZe3/PR/5wxAIzAOsIEHzlejtPhpH8Nml1oDIB7YARizX4nrigzexz2aPZ7aZ4dnBNsHTKwvJYfDiPCeCvZ4zNNoZf1XFKDg7nVzXWuTWH2OEyLwR7R2LnUzgHOOHoDOCNg4DPCFrcZyMCIrh+UgC5bcNdH3lxil5POOCetDtPnI0fI80GVoJpk1GiNMoCUsN5LuHNxnj/ed+3ahVtuuaVYWzQajRyhNaC3RsGHNWjC/PXFkNu4E8ql58yqnECIQZR5FhomL7bf8uW5sJHTZoClRsFD1/oTWcEEtmz0lzwZRoTUfPoGAR86IPEUALYb+Q5bH3nfcfnEmM+U9HeRMaQKVQZn/xoMk4st25NxQiwDZGCAHXIBxkG39eA+tend3ziSfe2LAfG+NSwG5hKYFvcKy9kuQAn+evXDAJYCpbxx9BLcJzeT9RS95jxUw2OO2wykb4T+DWDsAiE5ktvykZN0rQ+2HqvoLqnQ9J9L16YwlqZtmKlJMHKDuYEYLUlXV4SaZFagu3Jru/y668Bl6YpQg8I4cjD5t8QC4PLcDSBn05emOQyLwd7wHlZiEJBlq3XhDWFosGjCW3DDL1EEpQrap+gdWUyrmTeufcWi2gJKYn0gqqSmpieAuGMSUZr66wilAN+0QSgBOzQOzs9tN1fwNI6cJsfO8jKwRzTSl9Tgie33FOleeP9gGwNn0/eEMTwFnD2iwebCsLxjZQnxZSqOqp7//ONRg4Ma0z6Jk9U3veVQka9QXzOHBI+O2WMwetFjmL3ZeZ9YdObZ5DYD27Qn/54KXq5DYFgMZo/BGkwPRE2O8Zb3HPr/j5yD8NaESGbiMhCLTAV/Tib5j72/dWoKjUajqQCbeUoHQTmxiMKLUA5K8/c+qnD3D4N/VxKyzXi+UqVkaD9nPHgB2bJg0KyJkTRekHKGtD6JpZSiO5byG5oAZ5485MtEScZkH3s4UTa5OXUF8pySXIF7IjEW8mSOcDuFtk2xc0f2N0VTeSXgy6VxQwWJlbAgBsHPHXqj98ek39wnN9OPOyyexs2x1e3lEvfgPSP2HSNQ+PsK37gyle3fiv09BAwSKGXjx5PB2xtNrzlJ9s9zoNHMB13YfqknyYMwR6EanyDpcnFnXW/zKP7SqENUiRZRymWNjYoxLKY+fDdDAesedGBa3gkN07O++gopYDJ2OQmUSGaPwx4SDFZdjLeoJ1y1xBtufNjLxzTepCDU80ykJgehPFAMhr0m/HbHFWSqYc7scz3aMGbGZljBVPXmxD83pZ4wRqinjHTGBGaPT7w75Rrhe4CWUrRmPK+GxQLFbx6uTWGY0zFrTu4xNZOLLHn3qGCjBTFMr1+dMQ02Gv65rb538t6SmvzEbUFauS9Aq1PfUFrupdFoNEUoGdlQGYIOAHHlqK9cIcsWyMAAGZigfW9vRohnOA2vowDURmbkOVhIeJjxQ2Oww+PAI3G0lX7stDUzyXGADEwxh4LQd7jEOAkcCDiB2WOBzByPLAobgosQ8RJMK6Y6miqdpw4mEzl2YkgPG8Vd11PkVpIOyWXgG3bkrbASzX1qy3OwGLlwDww970T/e75XqhFWyoVqRnTcwCzb38pT4cXnmMnx40YLlfJ+Z3PxAlpmFWAxrhIV5LILP9wCVgbGCBgjM1Y6TfWUUdx0FbaZb8mOI+rBSQiHO/FQtIcE1oBjeMhAb4l5XggVKEcS2yGwwNojit6yZyl0bBooLX3FVDi8qK52p5EmIM0qVBWNZ5fDMHnQF4D6HJtt8rD3515nTAIP27R1wR8LXpTA7Hc4qzY/atizI3zOoH1tVhZm0BajSm1QUu6l0Wg6j30w2wCmLKWNYgO/b0T1X3FYS5w7fEPotJZEzbJHDWG5O/7sH/O/lKWIZr6yOqVjCnhu+nJS2Lkiek7hQ0pD+lOFoy8rBU4QLhF+ppLaqErh7ivQjKNmvXxllGtJewPpgmh+urQCIe9JiNYVUKlL45PILYwn+zcRr1HtBSqHlllzWRgtXqVeKaEJcN6Ke8wTkXsjI2BWkONUliLCqaocK2EBJPwcRfJ/tpDeNrnv16XUMbbNLvb9Fbd01fRw+1XdE2p6Xhye92k1z0Gd1eKTzuWGcqD5AmrgfWxWt3b4z7TM5qKtz1oSefMPc0lgUEx7hVPcJL1aj7beazSaBMLKnTTF0zwSDleXkVHpas/7/aadGWJctSK3idyFWXlalbRHoWARDWcudi/ompfaSib0OUkeGG+GInlU37c0xWfK3pJYBkjfgHHkAKRvlA7rZk6xQr6yIeqVEYnqVHNv/HGjKYGWWXNZjKssS0Nh2pqW0JX7X3DxUZ0Sog0eCPNMq0OTBeniGJFV1C39wZ3pHxaYU7rYZxqNRqOZTyjlUjq3Kp2/ShtgW+AtlSRjJModFSlvW1HQRtF+q22RhlX2rRGPlkvaC7ZtH9vCcPamow413UArTgvCDk/zmfBN26uY7TJw7uV4jFuQO+MhMwdw5lUa5MwLIxf2JPQn8pomdNnxkOtt1RMvBpCG63oh7UC5cJU6lDyygkjZ54/F+71BQaTqlB+GwdWFD1aEKk/VcE7bINeryYNiYT51FGSaeqG2u+9zYbOe6UD13rutQ4c9aTSLzWRfEIca5Yr8FfXcjJNUcCb5fJOc8CEvtyqUU4k5NxOuj23aYCMGGCQoqtmJookFMEXz7isIw08jbe3OL4xcYIxUJFsrd4ozfHmtYAErxqe5NkveI+W5QXMQMZi4GZ7SdRLOKZvHMf/jrsjf4VRmC4GWWXOZ02WmXpImzbRNvVaeamRpi1IgPHbbZs1Ngqcob9qKaNhNW8aDRh2ySmClRS801UFJibAnfY81Gk1zpBnqa5GnYvuqThRcqSCXTi3yXm3OIgu2pqUoVGUUeXlwToTkwVZ4E1eIiutjDsG+S38i/fMO7CNLo2XWXIqXhu8YU08eDlJhig/OALQkhYhGHm98zMHDH57h4wuKoJAka8H3lD9hZWX3+jFcXECakgu3Kg9KanK4Bb1FvbQNvLE5rL/i4snXnS/8fW+M1SMQJlnPq87PGj5++JE2TK6Vp12gjIvLguSL0mg0BWiJIrHOHOWpbSgjtzVIvLK39O9T9rPCSqSWjKFClPS0zoMzAtSZFssggORwaMOzl0Uj7Ss4JggtMH/MozJay6y5LMZVVgxdtsDtaXVBavLUB7DtE9284NgEhHLYQxLJW8IcAnNS4JC73Es0nxQaVAOiSsnS4a0VJX6fV9okfBcJly9S5Mqwohe9EJbVEPFxLdOHuaE8ScJVCwrOVUXdxQcWYU7SaDSaKojPn7mh14r3MNzlkVcZrEEJwUW0WE2XlY0pVKmAnGtZMmUssMPjwof0HFZCe9aiKbOs+ZMxybLVdBM0Gq04VUpsM6yVpM3S1g11l8eFqBK3TQWM2qQITSJpPPhjN0/oTMydlpLgfNtNnxFuUxHDYZP9XOaZoiXHqj2qdxnt8vyxcOh8URqNpgbKKh3brOCqPEy/oXz1ZJAf9Nnm+xImSf5LanuinEjjynv195upi46fIhidGL8e0k8wLqeM8XC9FKk9bcrxuK22I/LGp8rxyzft/C/lkZY+oSPPWeVomTWXhQnVV0XmAh5afDkjicojxgCqQ/m7w2TW54yDAN5i1JbJIbwAJLVpMlZlhU4/3QTnBCQjDLqtiuks8q5J6BhFhLqyYfxVFGHIEBTCws48F10AyuXrpRUX0ZonYW4aTqm+v1Y/eI/yYypBhz1pNBpJKpn3581TsqLr4SM3W8ZXrGQVUSw5VRfZyejLpmSQYM/lE2qjyJ4mr91KltcGn6mwg4RhcgBEqF+IZUS+N7rhp8GHjjfu59BLNZV5SMlXBVpmzWUxrlKjCVF39cEkumJFTkLE4y1ROTJvgrtPSEGtwjMiSZEn48FbJFR/kYiPzaTcpWleu0ns/MSnS7epCF4+Wn2vWw0pmmSfzre1QqPRaOYNSQN5JwpeJdDGqBfZ5bLJPViZ4lB+36uW8xO9YAsgKpPWVqyqo89YY2iZNZfFuEqIT5LzXnlO0z3qVI7Mk4dbEUT6upTinXHAZc0JbdrKmotpzd4cxqa5kpMU24ypEcR5xNNX3yuNRqPRtBNK0+s5dJ6GwveTMHvJ+9KisqiswrZVjh4F9uhtk6VklZR5KbmKFgolAwP9a27H4L/9XaHfi9C4E2LanqdKharWI801TQ/pZlC1IOqHo1OoyA/TSQqO0ySBOKkP0wTnsJdkRFBrgUDaFou5aDvErbiKCze0TOCsA8dOXhZVWfjndqOpmUXni9JoNE1SkdarFtlgnuRwwLsehdekxNGnwDEIae99SZOpGePVKYAT7qmUctr1jfKqGiRPlcrThaOoQaMN+y0ts+aymDlODQpAXYJkmQlSb5qbhbFJ7pyiD7gvZLRA+acKf7FOUhfJjFfGgLAdtclF4Khb/hEbbzqnvhOy7Ny3dYZkUZPDTci7efjKs0Gs6ftl7o9h8lwrd11znWklX28WMtfe5DgOnzstb3arCecl62L7y6LzRWnmnR7F6L0XN92KuaIrEY9mv+JFvk0RMjYDBgLfk9F+CRbqUZLjtM1K6JqdkKjBi+W2r7EPReVOw6hQIdwAM7ltVVOHcq/LTnVaZs1FSnH68MMP4y//8i/xf/7P/8Fjjz2Gzc1NHH300fiRH/kRnHfeefiZn/kZ9Pv9qtqqHsHBrcP3m6cVlpgGEL5uBWPU2YodkpFIRcdWwXjjQvXMAt+SeaKMZ6SostNXmvaWGMZb3mIpkxc07TyjDQP9FbHNRG8bYA8BxyalNppGjyf2WZaiz7EpzJ5YO1XljtKI0aq1gpTI+9QV7YlG0xLoEX2wp0dNN6M0RYyObP8QxKIgA1NN9ekUpkX+AGdEYZhqq3QTi4Lb6R0gYoQOyyVl4UMHsAyvcI6I4kxADiTLFvjhsYLWJWO+7n9UdmxltERerpMqlIKuS1rtAayEgprhvP4WOex4i86IYsQi4LbaPm+N8lvLrLkIXeW//du/4ZxzzsEP/dAP4b777sPLXvYyXH311fiDP/gDvO51rwPnHNdddx2OO+44vOc978Fo1G7BhQta+QIUWpl6S215OhaHsBBq9nigICQGAVm2khVwFVgWiwjDji3hGbdhB9dCli3pc5lL0j+RRpkRQrHVcLxFpzksBRSPstdhP+2AUAJus2BTEB8PnAFWyIODMQLTSrYm0wSFnt9+UQUmnXiNjrcMuHZU+SlaKT68OYn3m2EltDFBER8W+kSUppxxcMYxfJrAMDmowSObuSQMi8HsiT2Afo7T8LFmrs3kiUrVpKT/3GYgAxOw3YinO2NeOguzxyP3nZo86P80T5NC3hI1EV9ffVmKUB5RaqqSsRbOi1Wj0STSVqVpb1v156A7BoBBPUUfIFUhu8imnVDP47RVhqoJvlxiSBhzfUjfiOwJyMD0OihDmQvA2zNQMk14ntOpdFsv+LfVn81774ecy0XHJFxvbD3m8ag5gXFCqdeO8GX5Moi/jodD5Mdb8sZiutaPKMV9eVmlgtVIkD+TZClKudzYMQiI5V0zZ3y6/0qITEzbO8RlV1+uYe7UgSUu60Rz4vPovc7qN/8mltjnJtUC8uVkf8wKOd7EB/44Yw9gGRN52gDbtKeypstBLAq2Hpv/XeZdo0U92ZuSoF/cAyOhe9xbYuAMwR4JALjNZ67dn3d5TvRhGgvirDkXCHmcXnTRRXjrW9+Kv/qrv8KOHTtSv/cv//Iv+OM//mO8973vxdvf/nZljWyEpAmlxCTTRuFinslSUqrIb1kq3F8CM0H5JI3EuO0fSTH8Dw6g2Hn9hdMZE1gJzucifSbiUZB3nKfecB6WjzYgeh1WnwXV1YU9JyX61dpugNtuJFR+xopJAXs0u3pSCsjsa1RX2wS850mFossTPtQYjxibChuibUuaFwyTwx2T4HiOTdGbeNH436eT7+SR6F1qu55QZdBcox3nBMyZCpxmLz8lwiLj359Dl5+D1Q/e02xjktDWe41G01FO+OSdwb+fuPi1AKKKJmdEhSNEpAgpOCYnBXt6FCinGkFEEc24cFomPnI9peyG5x1Mqaek8WVAJV6EjHnesiGlL7EM8KEbtBcGyZVlfdmI0mm0EXNIRFYOtzcss3BGAAHjJlsfed7GjE5+xz15OUdxykb+eXJPESHv+65DpJSnbOQo2xNyRiI6A9cmiY4IMyKCEddkMsCo5pmxR3RmrxQ3jvtNKM1E0CcGCTzS6bI1lacNAj50QWLPKGccxCDBv8Oe7MaRfYx/IO71HVcCc4aoN2vJuUl7nHYHIcXpI488gl6vl/u9008/HaeffjrG4+pCEFTgTW5y1iTYLGJFoP1iA2S8RSPeRZpmmHHhb3P+nwIEoVoJQkeWt+R4nYFOZgV/nMblN8YAa8ACZVqSoi5SBbSgBa4sowMMZs8L/6aGb0FW6yEh7UHLksPCh4fNVOWkt2DHhRHJnJ58ds5zxr7HJsPwsHfT2URYJNQThDnz7uV4i6In6LHp40p4SxcRGgyTwxl7lmSSo0ANhxRaAwZ7OP3ieDP6o96SKz1GpI0xLvM2ITaBMybgnMCw9LqgitbkEtf5ojSahUdUTlA6b8X2LFVQWeSDzaZen4x7c+FEKUSXTU8BYlEQAGzE0FvisEcU400akT2VGh1tlq4ckRRg+KYd8UyzR3Tiwee1veg4EFLcxb0g8zxpY3hyl6c09dvJYuHiS6sONtflSqgESi+XRT0Hc66J9gE2iSLkzGsHoYDZA3gsF/80F369+xG2PgLpe96S/NDYG8uUBKk12KYDYhFQBnDeIvmlDuJyTi/0jMX25XzotGKvPtf5+rXMmovQzCaiNC3zfY2mbVSeoFqCti2ilALDw56AytnEQ3PktZP2p4tJGyxonucrgzMmcB0C16btzdtaBzUnty8rXKjydA0TVpqKKjyTnkHRTZnsXMI5ASno8d02wveP0GrmslZHcxBSwnrf4uvSaDTC2JsEVj99TvdTs5Re6xQXLfW9TGvHolOjP833iBShyNpT9z5gtGFU57QVV94rKJLsOU4gki4p8dRs1hmyCgjlYC4Fd6eOAVkc/7/uxPd+4TUz7zNGYIjKYInRqdHOoGv9aQqNAgiPiZYVLa5auUgsQz71YpHzyI7dLufv1TJrLnImoQn/+q//is9+9rPYt28fWEw7cuONNyppWB0oq3Td5YdkgcgM34/fw5YtQE3BWTXKqzrobePYerp9E3nYQu4z2OZg62DydJyU5zZpLDOHAAVSO2TloyLUE0AJVey9McELARO7viaoStmnUduvrQzT12g09dImWTzHU84PyTYtPv/FXcrCmKd8OjQG25RTQHmGtQXt35Z7gPGQcpyPpqHWdNkC27RBDALueukP8rxpZ3JOMgJ7GPWMbRIyMAHDBVnteUrUAnNV2EgcTpXgKYjbt9dRhqAXDlntJXtQu+WKCXMGQNd41UyQVpxef/31+N3f/V08//nPx86dO0FCGmayINpmwAsPocueVZTb7mSD7RX1cMa6YEXTmBaHPfIXTflxqayIUeY5FB6MEpAVCxiXO6inKPXCXewRDQrlFDqWglyyKmm1Z1pJOCdi48lIzxkVvl+EcKECUW3s00iaiAKMtwz0llwUEkQVpaVok7GizDwVVjwzhyTmwCpLq9danS9Ko1l4kuZQ02KtkZEoneomsqYdzrx2u2Mj9J7aa+BDVyifKLen6aLCRSqFzpHlRDFKOX8D6aaAWFtdBlC1GhxRByLRdTZasKgd4zuN7/zsa4PUZIXxU/lJFGMLYBx86Hhyks3husXX/CzFMnc5iHy94EwMgfnLq2mQ4hFaqmaMXywrtGdJ6P+gYJfNQAzDU8S3ybjWRrTMmov0lPEnf/In+PM//3NcdtllFTSnI2Q8eJwRYJFDgeeB8ITu/7sleVXqgLHyxrVWKzNKwm0mr1LL8WAuu4Eqkxaht+QGOU59z5dpRddSzVJCUW+cNqSK8CED09uQJX1GAe5mP99NbkDkz13/s6+LQ2k09dOmlEaaKCJeel1GVDaZZ1k0l3AFTahzCMmSV1UsW8qiQf3jVWGgUNSXZGCWCuMHvGgwmlCMt06U7xVcOScEnuhpKucqWkWE2fJ771Z7wKrRMmsu0ldJKcWP/diPVdGWeqhIAZb3sPkhz5p6iW/6ld0DReOokoqkPjUoe7s8T5bJb6kRp2z/5d2neM5aZ5z8fWcsPlibUFQmbfDapPwtSrxCrI+KwiJt92gJEu0XfWk0mm7SsGcTKRGa2kVavxYA3pioYVw4n7i08nMA6iNjVCtMa6GLba6JwvKrasFX4pk75n/cNfNemTG++ZZzsfmWc4sfoG60zJqL9FW+6U1vwgc+8IEq2tJZwlZdavJJ0ZwOLOIdwlc8i7yAaV5Ib2GPVtm0lj1LPHe5V31ecuFT7er/nDv/Lvc7ZdaRsu3tsnK0CGnPLucExCKJISHCSObOTcpvGmlTwuFoTkL8JPyK7nlKyjYpkf37JJJSAEBuoYBKybjvbepTFRDLULYB4pxkvoCObJg1Go2mA2StR15YvOJkf74ysSalYh6kb2TuCTLlaVlBPVTYpqtG0kbkl/A9aFpxmWCgYIft6BuCcn/cwUrEucNIi3Btgbe51ZcYHCqe/cRCXcnHLbKP07KmBiigOP3t3/5tPPzww3juc5+LCy64ABdffHHkVZQ9e/aAEIKrr746eI9zjt27d+O4447D0tISzjrrLHzlK18pfA7N4hKZ8JpeaEOMNgx867UXNN2MXPzcp8mfze9i0oVrKypw15FfrYn+S8txWqS4VZ2bgi6MNSF0Yb0pfthT0Zem1Wi5VSMKU11csWUKR2FcHn1VQG+pRG7+lJQ6AMTWNkX3RKl8NimyBNRTv6E0WW0sIF90TSmd1N4kWdR/r5BTQA37YC/HaQ5ZNyemlFY5dhND+zMIHDRapD+oBC2z5iJ9lVdddRX++Z//Gaeccgqe8YxnYG1tLfIqwoMPPog//dM/xamnnhp5/4YbbsCNN96Im266CQ8++CB27dqFc845B4cOHSp0nrqZN0+iuSbTI6y6iVIkVL+0ADXvE70AbSnCUAciG7Q8JV3X5q5we9NC9ZtEVkjTzAlaCJ1b5lVu1VTHyvs/g5X3f6bpZiilTUopa+A1JlwsKtXg3wa5eFK8Jskzr2hud2kEb2C4H9PaliZnlzUKtyXthPXG24KXKvz8pkX7yHWJsFNAK8a8DDW3lzNg36U/kfhZPCXY3KJl1lyki0N9/OMfx9/8zd/gta99rZIGHD58GL/0S7+Ej3zkI/jDP/zD4H3OOd73vvfhuuuuCzxZP/axj2Hnzp249dZb8cY3vlHJ+Uvjsm5Y8DrOcz+dH87u0wUPTp/RhuKwJ4WIKM/aVP27SnJlS5cBRnpHcMZnkp0X7buiSk3OCIjrV6PkgGCIe9nz1k2ax2kWYYHftLIv9Ljb/gFPvu5873cd6ZMytGlj3Dl0ov25pPNyq2Z+mbf9SM715K3BtReHElD21LpnzFrABcK5WxUJk1mYucZ2KKbLbdfMGVpmzUX6Knfs2IHnPve5yhpwxRVX4LWvfS3OPvvsyPuPPvoo9u7di3PPnSbV7ff7OPPMM3H//fcrO39dhHOyabqH6oWtkoUyTWCrMXTWF7KyK4TPmWBfEH+N6YLQ1IU2+sQ9TmUUqYwBjkh4UYN06V5oNPPIositGnVQk2PjN8/Gxm+enf/lOaUljoNSdMVLr5BcLfib8N61rCE12CPYFRbGLUmajGV/+BeCl9hxujF2ilKJLDpu77gAtPytKeBxunv3brzjHe/ALbfcguXl5VInv+222/DFL34RDz744Mxne/fuBQDs3Lkz8v7OnTvx+OOPpx5zNBphNBoFfx88eLBY40QXlNj39EOlaYQSC/RUKEoJv1E0pjkDmpCb8wS9rPytM8S8RoUJC98uR5U9QU0ON82b1CBCY4UzUr+nhiiSGxnR0P02ek97FemT26XXmimrH7wn+P/+/3Jew60JUyZ8qWWDUQOg5XKrRtMEc64gqhp7lD3XF4miqZq43BxWrm4dylctECsUbdfl8dMCxbph8omc2E7LRKKsWtChp25ltIyhIGJk6Wyufy2z5iGtOH3/+9+Pb37zm9i5cyee/exnw7KsyOdf/OIXhY7zxBNP4Ld+67dw9913YzAYpH6PkFhyYM5n3guzZ88evPOd7xRqQxnospn6YOgN7RzQgsWwKVoVmlMzbXp2i7ZFeRGKGinT/1V4hSfJD9/7hdfAkF451Z2/yyzc3EKp9yr6W02r6LrcqtGogjOAttW4GsJbcwTbSQmIRVNzklettOmvuBhvzabvEjH+tlVplkqsvcSiqd693OWZ18c5ichKbZLj20RbcsUWgQ+dhd6X14aWWXOR3v5ddNFFSk78hS98Afv27cN//s//OXjPdV3cd999uOmmm/Dwww8D8Cz4xx57bPCdffv2zVjzw1x77bV485vfHPx98OBBnHDCCUraHIZtOqB9+UGiJ/T64AxgFW7U2x6G4bev7e2sG29ceHO8bLh8Ua9ZUSVY5fPDggseeYo7o2ACeD2vi0EoXyjlKSEUhBTLY03mTWs+B3RdbtVoVFKlfC0C7VOw0fwsvqMNI1NOXH7v3dh82/mpn3PGG4nqirah2+dt0mCdFenFOQERNQAURXJ/ME3NJn+q8L6UMz5V6vaS5SUyMIH9Q/kTdYS2pHLUMms+0orTd7zjHUpO/OM//uP48pe/HHnvDW94A/7Tf/pP+J3f+R085znPwa5du3DPPffgR37kRwAA4/EY9957L97znvekHrff76Pf70u3hzPPosX2b0n/VgZrsNiKi6I8ct5PSXybCIe2dCV/UR3Ym2ITd1rogm/ZT1xEq1DeVnzvVCp4XGd2TCYJaL0lFqkIm4S/WXFtCmpyDA8ZGKyqzwtU9vrNPoOTE4KWR9Y63F9xsbk+u4RRs/i4SE1xIMhwn4PBrmgUBumrd09ts6I2vHlzxiTVCE0pV77xPnT5OQDoQilnNfXRNrlV03444+htA1Bx6j721BZIv9iGt00FAMnAANt0QCw6I+NxxoVkSZXrCh9N2qLiWH5xzr4JYpDgb6vPcsP1AWDzLZPcyYYZVGOHlf79plhadbC5bmYqIYlBwIcuyKB9BXL9FEkzyOxjKtjzsAz5lI0AYyn/GHzotCLZMPvBRNcSEhBJ3wQfzU6UfMMB1ko4AYWjgyU9s50RTUmV1XwfapqhkoDDvLAkAFhdXcWLX/ziyHsrKyt4xjOeEbx/9dVX4/rrr8fJJ5+Mk08+Gddffz2Wl5dxySWXlGufzZDkN8YZB92RMPP4YRuMe+EECQ92HmHBxGjfOrEwGCaHPaKwDA5qEJDlFkodIRybwBqIecDzoeNZ5VzuKWsO2VLnsvoMow2xwSmdc4l6oTRKvV8VLP6+cOTYBP0VBmxN3/O943IXSIFrMsyp929eKH1Y6DctDsdOmKs4gWExcE4wWHU9T8lebjMiWH2GrUMGnDENBDJa0ONSFFmlZpbgvXXIAKF8Mq6895wx8dae0Hko9ZS4/n20Bgz2MPmgYY9T77gpAjS8exq/l4NjZpdUb+MVuzkGBWPupP0EpsngOtN7wFwCQnjm9XcBf55gDgGN9VfT3kq1oCuUzhVNyq0aTRb0qCXwTQeBhjZB8ViW8HpEaLOh+v56TiwCjHK+LEqCLEf6preBYzxT5uQ2U+LtyRlAjKkHWli+AQBMcoOSgTlbYMm/35P/c5tFFNCEEhDLAB+6wW/JsuUppjIwDA7GvFysvtyZBqFiOU65zUCWE75nTNc97k4U5TQ9N79oDnvAkwVFjATSxndKpqkEXA6ybIIPU/QEBXJf+s+dYTG4k+Klcc9U2o9GGSalm+Au98aPAkuJ346k/ZHfXj+yL+lsdMck1U2oLXzkeMWhYuOCrHh/02UTbHM6VtnI8frdH++btrcH9o9nMxCLgyxbIJYBd30U5NYVNYYYFo8orIN5J9T/gUHEmPgEUxJMw8vvvTv/JIx7e4821MXSMmsuQorTF7zgBfi93/s9/OzP/ix6vfTd+SOPPIIbb7wRJ554It72treVbtw111yDra0tXH755Thw4ABOO+003H333VhdXS11XGJRwElYINMsEZR4D6BBgsmoSJi+RiNrpTKt+hNhWwNvjFt97/9TQTkaZustHJ5iyep7ip+w0jEOZwC1SG2pA7aepjBMjvGWAUK4p6Ri07YQw1NauQ6BNeBwx1NBNYlcJVaGQBQOwaEmhxvzLvAV1mFv00ji/VQvX7n3RSGUgxoc9sicKFgpDMmxyFwCxgBfFc8YqTz/apJCnzFgvGVgsBKVSjgDCOETIZnDsLyNgWlV637DGQnGCmfE6yeXBEprX2kaaWdouCyIbDIfaCF04ahKbtV0G2dMsPahe2be5zw63yvDZpMNvCfndCm2yleGsPVh4DXA1j3tKFk24T41hLHdAmw3KLbpG4KVFlLyFSLLllIlNBkYYPuHgfLGHlFQGs1x6o8JKVlO1JmAMfiSGd+0wW03Wqwphpsgk0xlWgLHjkaWLK062DhQ0CnFZRHlKSgBXTa9fYPNwEYMdJl6jiIWBaUcrovJ/sNrJ7UAxrj3mUPQW2LTy4ZnnPYN1epC/GN5WMOh6DYDbAY+csH8vp7k0yUDE8RlGB30FKNxz+O44jyrvXl5bj0v33Iep2n5f9PI1dHGvYJCofqBInjicZrbtqRUFZNrDYwM1P9bvZxfJoK1bLSbMrTMmouQ4vQDH/gAfud3fgdXXHEFzj33XLz0pS/Fcccdh8FggAMHDuCrX/0qPve5z+GrX/0qrrzySlx++eWFGvPZz3428jchBLt378bu3bsLHa9OOCNC1kbmkMJ59DQ104Iwfn+R9C13wr8bZVuQ08gSOrOUvvaIorfEQjlDk3P1CClNFSpW09pMqLdh4WzqDRr/XZryt+zyJmMh98lbj8IeANTkQIKXahxfWKe9qadxVihQWu6lNJgTFabD3imqNoueRygPjin+u4lF3PWUuZwTuI5nqBjZRmA0qAO/LW0Ov9cURAuhc0+X5VZNfSTJGWGqzHFXlbGaiUTkxJkxMM8q7HwlFF0bgB0az3xurPUCJYVvuHfs6uZLvmnnptzxlaAifc3WR55CxzIAeLI6Y4DjK03LRCVm7Fs8T8RZt7YspWkaIvJgWl7OPAVTXLnHNp0gByaxPMOz73FLTZ6odOIMQZHvvPRXyomnmNi0M6Mb3S0vnYez5e3B/D2C6xBxr26Xi4Whl/Q4LZK2InFuk5iTfI9TdmgcVaoXIeG8VYbd++k1Mj1PC3ghV4aWWXMRUpy++tWvxoMPPoj7778ff/VXf4Vbb70Vjz32GLa2tnDUUUfhR37kR/DLv/zLeN3rXocjjjii4iZXjOAADkIgBPE3xXpzrAGyk4DPfrfixhQ4vzMmMHtTpU+diiZRlo5gntfpJLyFM6LWu6PgZsQTjICwbbS/4mJ4aOIBkNOVaZ+7Y1KJh7IzJrmbvjZACM/cfLqOdx1pYfqJx5x4VKQdrywstC6U2iy1iZoNTrIKfY1Go6kTe5PA6nNs/ObZAICV938mUPRRytXN/SU34I0UKImvFxa8XK2MA/bES44BdK0Ptn9rko4AqUqiNuVrnaHmQq1Ze1RiGaW97nyFkxkLZ5aGEi8FHvWVozQoGCTqxWeYHK4zCSF3vbbZQ1Io532ah2e4LZkV6mP3ma71PYWfQUCp5fU74+CbdqIi0O9Xw4ymawpHbMnsIasgnDZABXzogq5aUp7xtB9NV0G39Sp5xvjUQVsMXZB5rpHKcXrGGWfgjDPOqKot7SXrIXCz895o2kNbqtZVSkVKi4XIRzjnMBYY4Iv9fuKZiU4F/eVDTQ435qFLqJePs6oQ+bhXyoIYahcPSuVCBeK/1Wg0Gk01iHrpxX9T5nMB4gZ+pekHgNJtDIe6i+IXj9WUxxlTNc4MJcZB2n566iSWPT6aKMycl8og/XeKG9JmtMyay2JcpSDhzWzeQ51oyXM5TEt+QdGoxTA5DHOavD5I5lxFHqmaEJmPwkmxi8IcEoRt+7l2fKVpliekSEXQtsGY2hANzrhQmFYVHsRhLwsVeUQ5I0qtyVWRJKSF00WI/DapvzgjQsYCUWOMV6AhmmcrqS1zQ+g58Pu3SIqKzuOHPRV9aTSaThLeQyTN76bFYJi88cc8ngYqrz29Jc/Dq6o1K1z8JQv3oAM28hphj2jl+dOVEh4bGTJEmyp3F9GJFNlz1VEDoZR3bAJxz11hpaBleLlaKQcbIVXmFnrWWuLAFZ4/ZMYMGZR0u0/wtvf1NOzwJN1HgZQUC4eWWXNZjKssQ8oEyEastiI3Go1GjqNu+UcA82EAU71B4bG8ZPOmtCtzPa1J0D4PJKydCxdWX5MQumfPHrzsZS/D6uoqjjnmGFx00UV4+OGHZ773ta99DT/1Uz+FtbU1rK6u4uUvfzm+/e1vC5/nOc95Turruc99rvBxNBqNpixxWWZeUW10XJS9ayNRhoxLhWrPm/zt4xdfTaXVOTXS6WizxalRcdpVubW8i1rHKFLcRcal3B55ORUZS89hvBAh4y1E93s2rVnAC4ZTzCAZClIkF1LpnGJhT1EmkQg+h64b/rK8PcuMU8NicJ1JAQYK8Nk6CZWwKBuVOFXPKUnRHXMv2CZw77334oorrsDLXvYyOI6D6667Dueeey6++tWvYmVlBQDwzW9+E694xSvwX/7Lf8E73/lOrK2t4Wtf+xoGg4HweR577LHUzwjR66tGo0lHiWgXr7reVVpQfNZnpiK88uMX/J3NpAZNI0r0JNmugjHa1Tz41Es5O0u8gNbQza0b4+W9Vdc2HxKKTFVCm4o9tZiuyq0LozitRWlmTBM62yPEvLr0pqJOXMdbaFgsgbYzplhecwBMko5v2iBr/dkD+JW6W6LwiIdTJdIiQaxpnnrDeVhaFVOisJbmXuKsuAdklqAaPA+hY1MjmtxfaLwpQqWiS1a4rM1YIPls+jnOlBYzq4m48FulIrP1RctqqlB61113Rf6+5ZZbcMwxx+ALX/gCXvnKVwIArrvuOrzmNa/BDTfcEHzvOc95jlST3vGOd0T+Xl9fx5133olvfetb+K3f+i2pY2k0i0xbDPn+Ou+3Jy/kfbzVkPaGJUf5hQs4WgMmlCotd2pNk/tVy9gJFe7LHY9lhyPnpaAroTwtJTMy7hWEirevYHtU1GQolc+/hNLUy63vKfJ2fuLT2HvJ+TPfMXtsVqcQy9frF1XrEqXznkru11XMwZxxaWe8GQwKoCU3qyaZFeiu3LowitOiFFGcaSVpuwkrV5pIUN1W5mncHnXLPwYVbFuFxHirc2NVh4DV9gJjSVVKlaQ0kCggGK6gmv29dvclAMAg4Dnp6lSMu1b3RUOJ9tfX1wEAO3bsAAAwxnDnnXfimmuuwXnnnYd/+7d/w0knnYRrr70WF110kfBx4wIoALzrXe/Ci170Ihw+fLhwezUajSaVhDW0jKKuSORh/jEFFChxTzTLQJI/3tSQLbk/yfHYy4PbDJtvOx/L7/50qeO0CaXyQdgKbHibyNQ9pITXYVYb/Ui0XLlQMsdpom6DcXBXgSIQXgRfVu2LmQKpSTlOa9ifi8rcC0ODxaG6IrcWUpwyxvCNb3wD+/btA4u5k/ha4rahzGunJR6Ii8bJ//gp4e9+67UXVNiS8oQfGavPhAor1VXNnJocGKW3gbTQM1MFjAHSfhQ0rFTL7pd4RfsqlKKiiklfSLP6DCPHaLfiqQCtFIJixSC8NiZ5z9TXpHmmNZ4WhJSw3nvP5cGDByNv9/t99PsJURITOOd485vfjFe84hV48YtfDADYt28fDh8+jHe/+934wz/8Q7znPe/BXXfdhYsvvhj//M//jDPPPLNYGwEsLS3hqKOOwv/8n/8TH/rQhwofR6NZNPSmXS32kBZLudRlioQFpymkDALY5ZoTpgt7hrLyb3Kh6GoEEGryzMJWbYmQDJMacVRUKao4DULZ+TfVS9vwCsIuv/fucieomwZkVqBbcqu04vSBBx7AJZdcgscffxycxywGhMB1a0oaJ4mvqCgzSQaWJZ2/QlMCSqdO+W2qRq86pLbJEOOn3nAeBityv0kLUUvtFwVCCqHpSh7GiiuATCu/bdnWYAIWEngZI6BG+4SyJPI2o7J9qkoJFxdqk5TneiOtiXPCCSdE/n7HO96B3bt3p37/yiuvxJe+9CV87nOfC97zDdwXXngh3vSmNwEAfviHfxj3338/PvShDwkLoL/yK78S+dt1XTzyyCP4/Oc/j6OPPlroGBqNJpnWGHzmmDYql4Do3jRNObb83rux+bbZ0O0ZSuxR496mdeUMT8pnSgyiowIFcB0C00r+rMn+MwruGebini+wnkhWZgW6JbdKK05//dd/HS996Utx55134thjj9UFAQqwiMUryvL1c35K+Ltmr8KGdIXwwpOzCPnCehcTj9eNau9MvVFSj6eMTr5Pri2ulQyeiwYUmSK5WtuSIy8Vl894Qc+bd3MuCvJFPfHEE9i+fXvwdpbl/qqrrsKnPvUp3HfffTj++OOD94866iiYpokXvvCFke+/4AUviAiqeXz0ox+dkfl8A/oll1wifByNRqOYEgrBedmT5OU47ep1mj3v3m6+5dzsHKZJiCihXAaO/HXK6jM1fdhS5XVZ6lLKO2Oand+9S0q7Bh/KPOcexgiMiQMJc7vjPFKKmmVWoHtyq7Ti9JFHHsH/+l//C8973vOkTzZ3zINVRNN66swNmVUYgDGA1qFcnUOhinNSqVClFbBqMAyu+1IFDQnuqx+8B6M3nNfIuRNRIIRu3749IoQmwTnHVVddhdtvvx2f/exncdJJJ0U+7/V6eNnLXoaHH3448v7Xv/51nHjiicJNeuUrXxkRQAkhOOaYY/DjP/7jeMMb3iB8HI1Gk4yyCAe32krpAEBp92Q1Qgm4aPh4S/Z4zrja+yhSrTxNv9XmKJkqo96EvCIzvpP1+zQDs78/a31RzBCUJmXxxaxzT4rHbB7x3MLhfuWMgyh6hn2lqWzavM23nAsA3QnZr0lmBbort0orTk877TR84xvfWEzF6RwqdDQeokot7nKQghO8pl667t3mb6DacB11KRNFjARV9oebECJX17W33oNUAX61WFGcMQm8bTpJTRVKr7jiCtx666244447sLq6ir179wIA1tbWsLS0BAB461vfip//+Z/HK1/5SrzqVa/CXXfdhb/7u7/DZz/7WeHzyHxXo9FolKFIASIk61ekcM47t9lncKpK35Xl2VdCcTXvVC1/0z6FvcGF6urk5ThtA2F5uZRMqziXaRpee8WLt849NcmsQHflViHF6Ze+9KXg31dddRXe8pa3YO/evXjJS14Cy4rOtqeeeqrSBjZOl1zeNQDabQHVzBdN58vijCzGYq4Iw2JwxlHXCkIBnpGaW2YuEfXy8cZNuwXgNiCiNCUd9HpSzc033wwAOOussyLv33LLLbjssssAAD/90z+ND33oQ9izZw9+8zd/E89//vPxN3/zN3jFK15R+LwPPvggPve5z+ElL3kJzj777MLH0Wg0mlwkladtlY3S9iiVKU3T2uHyyr1q67wHnJWL0GvreIkTNkAbBp/IQOXlyS7mFlXhVZ9l0BceE4xXZnCZV7oqtwopTn/4h38YhJBIMahwslX/szYXhwrjbqVPDmzdKylOjJQHoKQiVSv0qsd1SFBZU3ohdL149PgC0pTXnz2iMHquUJJtNnJA+5NH2jIAOFLnyrJkFgnJSrSgutyr3FkDqaFFAlbQ4YaBpdX0/iOW4SWzF4QQb2HOU/KYfQYI5JoC/OrsHMNDJgahtlKTz6RcEMmZ6X9PBZx5SkqRnKKUFktzxNn0Oacmh7NhBIKz1Rc/oMg1M4dE5m7OUuaEBEU6sShgEHCbg1DAMMoJe34ON2q00/uA2yyx0mx8PlA31qZ9cOjycwBQ8LYopQmK72ckfhcv1JnGr/zKr8wkypfh0ksvxa233op7770XnHO8+tWvDhL4f+QjHyl1bI2mLG3d+Pe28ZR41YqwKFDDXiycA1AEEdGPLptgm05ytXJJzB6HPUw5aZLRm2akVGJ80q8pn7s8ReidhVgEdNkKxmtWO2cKiDIv0UD825xxEJvN5EANXw+xKNj+oVAbkxCR0wqt64oUTkU9HOMh/YSmhPlHwsvdYEAHY3Xyub3BhSNl2IhBdLH35elE2XOyt/rr5ZsB9IOxRVd7YIfG3u9sV3iM1obLwW0XZOCNWz50QPqxMbzhAGuYPGPi99jcuQL29Ki0cYAzgIEkjglP3jUC3QEA7xlkXFhfxG0XrSkXVJPMCnRXbhV6gh599FF861vfwqOPPpr48j/71re+JX9FLYOueUlsqxTAOJN7adTiTBYfYhDQ1XZXkpJRAJWFUKC/MitsF82nkyhk1aQ0BdKFqLS8RzR0nYOEfogc2074PMN67yu4PA/R9D7gjESKG5gWj7Qr6ftLaw4IBcye1+HMIXDs/H72E/27Dgn6ylcO+scqS115350xgWl5J/P/H6a35N2vJEVub5nNJH0nlAd9wRkS70Hic5Eg1HGbAS4HsQhgEC8dwCQEiU6iYszQc06N6bmTxqp/3jYqTeNwPg21j1v1F8GIyDkv9Wob//qv/4pt27bhx37sx/AXf/EXcF0Xz3nOc8A5x0033dR08zSaTqI8TYvNAkVEleevM8epm6LwI1a2TCVDrjE8bV/oTORBR85ZIbMtbPr/iBIuRXGUZIzlQ3fmfeMoLwSWb9re7wT3QP4Y8WWotHoIhAKb65JZACPK3em45S4HkmTtEHaGl258XIfbbEyaSCif+R5nAs+EZUzHg9/+0P6GLKvPfWAkyLauG90z/Nzmb0zaNNkPTJSmqvAV8fG8u14dh9k+E9kDkJyCZ/5cZuwYeG9MFJJsFH3e2GRM+zjfOeT9fnIveOz7MvNeWmGoQGkeTysg6WTXllRd8yazAurlVqGty4knnhi8Hn/8cTzzmc+MvHfiiSfimc98Jh5//HHpBjSBsUSKb+j9DW9/AXZ9mkrCWFggEGVPlHUWhfKxRzRQnhoZ+XTCSiPPu5B7CrgWKfrtIfUSk9s0MEL4iih3TALDqy/8ZxXGUknS3DPa8AQDN0HhOeM9WtECG8lNxDyFlx9S5nnLSh4v1M4qxgWhs561aUr+8dZUMLMGLPDioAaHPcwQvCsaz77inU3GZThEj00EYc5JJ5SjScS9dtY+dE9l52pzqD4HK/VqG9/97nfx7Gc/G4QQPPTQQ3jhC1+IRx55BCeddBK++c1vNt08jabzKFMCDtsf/ZdKyAjNXe4pAAeepossWyAWhXWE6e3lRp5hlNDZtVxpUaUsTzfTkHIK4DaPKLT8diY5LoQ/z8XyPRLF10QuoVjjjMCwGJhLYPR4YGCOG+qX1+QVyL4CittuVIEdV6r542LoncM3lDtjCmpwGCaH1WcweywwmAfnqFJWiEcphpR0bH0EdmgMfmgM98DEAMA4iEUDXQI1efAKy51VFoKaGScC40Z5wbnYc+M/51lwCW/OPAIHCU6CV9p3FoF5k1kB9XKr9HB41atehf3798+8v76+jle96lXSDagLoep6Ekoyz71enjYplhYdWa/iusPASlnzc6y0WYiMUSfkuUeop/AzTJ6+wDSUC5RNQsb9fNf+omj0eKDAFCpI1BJrYBpF5hV75CmWqxLM6lJEy2IPadBfzBVX9se/V5c3rX9uvXbM4hlr2jnO5hFKKUYjL53Rww8/jBe/+MUAvCqqXUjTpNE0wfhwu+eootXHqzLuk2VzGgZdY5RSKYrsD0rI6dK4HNxmgbIs0SNS8Bqo4Rmt/bXXtMrLkLL7q0CRTn2vXBYYne0RhTMWTHlVg/zgR7IG54x5RvokPYduy+RozjgOX3k2zNAeqjJiylHf69z3UM3zVK0CITncdhuvf6GZolpulVac+rlM4/zHf/wHVlZWpBtQF1Ul3ZbdzC6S5aJztHSia0Jh4nvoUYNHFu4uKW+sQTsbm6SojFvGixAWFMsKsr5A5AulXph1qUPmnqtJ0jw7lc7XvqdEC663DajsBy+3afvgJf9rG8997nPxyCOP4OSTT8bBgwfx0pe+FADwve99D8cdd1zDrdNouoPvRdg2xYgMtYXq9yjosqco45u2VH55oJnorcYIKZsS0zWUcACpVHaJ5WIFyivNw5FGTUNXeyCrPRhHDjylLyWJe86sPk5zRqjSKzUOt1NC1mNK3yYM2rRAeoQqxnSXlabzJrMC6uVW4UQkF198MQCvENRll12Gfn9qQXFdF1/60pdwxhlnSDdg3miDEkCj0ciTlUs0l4LCqEjBqDiEzOZkKkuW8NB2b9uiEIrEgh2EttdbdtFwxiSzyEKdG4YicM7AC0rmRX9XJW9605vwhje8Ad/85jdx5JFH4tJLL8WXv/xl/OAHPyhUnVSjWWSSFHptTj0Sx1DgadgZDKI+dZdlgLMKvE5rjo5r4VKlqZBtN30GT7/x3MTPZoqZpSCVTqKDikjlKQ1qYt5kVkC93CqsOF1bWwPgeZyurq5iaWkp+KzX6+HlL385fu3Xfk26AW1H6IF1ORgjoC7PrRDt5wzUVIcfMh6EZy+ItZn2Ux5niUWHTcJcfE/TtITYXcSruO5VNZ8nyqxVjCUX2eSMwFGbU372HAUVsvH5tczzzdhsTiO/GJSzRQPFnPA5Oijg1YXreOk8ZO/Xzk98OvWzp95wXtlmVUoZK3wbrfe//Mu/jB/+4R/GQw89hOc+97n4zne+g2OOOQb33HMPnvOc5zTdPI2mM/g5xKsmbw8TX0+zFLecExgmg+t7y9pEufKUbc5W1Z5+OD2X/bQTyC5xz8Lektsqb8NKUJTjURTfozC8fqftZyPf4cnVyHPPF1M8qUiVVsXem9vMq6yeNmazfuvySdo/AmdM4No013CS+ryFvXPjhYomEMvI78emZFiXZ+cRjnxXcOz7eXNHDsjAaCS0v2vMm8wKqJdbhRWnt9xyCwDg2c9+Nn77t3+71WH5mvnjlHs+Jfzdb55/AYDFs4JyxkEoARs5MCQqqibhCZ7FpAxPEdW+CTTNwzAJxlJlj0JwRsAYT1RSAlGBLk+xlKZwnNfxnu8NW36seQaCGsL14d/f9j0fVeGMCdZ//RwUyAwkTdsiPrxKo0Wt9+0bI7Zt4+Mf/zg+8IEPYDz2LCu9Xg+XX3459uzZ03DrNJoW0TEjmqhTR1fkjONu+wd89+deM/tBzd6YMlTp5FGV115bx0Nb21ULKYpFbrvJnhIFUNa/Cp/HJKVw1rhf6DGSwrzJrIB6uVVYcerzjne8AwCwb98+PPzwwyCE4JRTTsExxxwjffK5wZhU6DYIGPOMHJwRoEMhN23n6+f8lPB3DXM6Ifr5GSOfh7wo2aExjFji7qrgnIBIKEzCYVyuSyLtrpJ5WUxUX0ddCq9wu+PVSqtCNLymCUQVl1VUoJeNEOC2W8jzIOm8ye+333ueWLTR0Kq2h+93mauvvhof+tCHIgLyaDTC+973PgyHQ3zgAx9osHUaTfcoapibURIkKSAE5uF4lFzWGkOIFzFwwifvxBMXv1a0qbVhDZhUzli62guqs0fomNJbNRtvOgcrf3yPkmNRo0LP6hYqwbnLYa2QwjKQl74r/XO/EO/sBzzidUosw1OUylCBFzOlwv4qIIbMDlmClHFS2inCnXgbl/Rk7WpYf1dQLbdKD5uDBw/i0ksvxTOf+UyceeaZeOUrX4lnPvOZeN3rXof19XXZw80NbfN0WWRYLEyky7Sx/W1VsImgyNiqBJVKsLoVapw1X808fv55SisRpo1zgCh1zBVJoW1tmaPmLdH+X/zFXwAAfvEXfxF33HEH7rjjDlxyySXgnAefaTQaedoyZ9UNZzzyKncsubWSHZLIR9Sgki4rz3ciJfpx8y3nwjhyEPzdlMysyvha6XNlkKCQ1Qwzho2KH/CShbRUUaa/VaRjkKWU8tSgSvq9TTlc501mBdTLrdIep7/6q7+Khx56CH//93+P008/HYQQ3H///fit3/ot/Nqv/Rr++q//WroRjdGiwaqpDiFhqoWWyybIy8+LOU4RU7QgkOxin+QRsaibprrIq/4b91ZtUimc6m0q6bG+qHjPVzv6iYOBo2DYU8HfVYlhGDjppJMiwuYFF1yABx54AE8//XRzDdM0h5adlFKkYGTqsfS90SiicQNuyf362RcN4Kquw9Wx50sox2kOebJx1dFrfkq60jA/Z291dWfapBAVZd5kVkC93Co9XO688078+Z//Oc477zxs374dq6urOO+88/CRj3wEd955p3QDWk/HJkbNLG2uUppUyZ0xEnjN1uHJvPTspfwvFaBJQeuoW/4xWOBdezrNNeUZHj6vaCixjFdnEUEl/JsiyfvLnK8qkqoUZ70vQpNK7TLtbiNVKKTjx2xTqL5fobToq238/M//PA4ePIjNzc3gvcOHD2N9fR2XXnppgy3TaDQzFBB4dPRcffBRQpqABJxxbN1UoZBJ8YBcfu/dqT8pItNXkUJJBaLjvOnnIU0MqKpdnPFC3rFp97lQO2tWOPoyJGciNRUqoEV6pnmTWQH1cqu0x+kznvEMrK2tzby/traGI488UroB80bT4aua7vGcO/+u6SbgyI/cjQO/dm6h37Z0rgwwLBZRns4zzC1WwVTjUVce4UWFUK7XyA6ztraGQ4cO4Ud/9Efxkz/5kyCE4O/+7u8wGo2wsrKC3//93w+++9/+239rsKUajaYqmshvWqX3lpJjF1A2kb4JHFbtBlmewX8T35P4HoacoY76j4X5zN8O8aoLpk4iIvsWlcrJxr0PK1bO1Zkqq7TXqeCNPe62f8C+S39C7tixXLOa5lEtt0orTn/3d38Xb37zm/Hxj38cxx57LABg7969eOtb34rf+73fkz3cwlGVS7immzCH4FuvvaAVytOq4Yyk1C1Xz1NvOK90biYZBU9euIfIscLh5FafwR7JX0DRRPx5ltRFU3YpNwaEhGZRYTzehnlPlaGKNuW6LZP3qY35ot7znveAEIKvf/3r+OM//mMAXiVVQshMdVKtONVoxPFD9JuIkGo8DDsGPzQGWbEK/368ZeB7v/CaYj8uomBy5JWfnKE2eViIqnNwJp5TQMnEOKCL58wws7/RCjvlfO8XXgNTZhpqWjmugHmTWQH1cqu04vTmm2/GN77xDZx44ol41rOeBQD49re/jX6/jx/84Af48Ic/HHz3i1/8Yuaxdu/ejXe+852R93bu3Im9e/cC8C7sne98J/70T/8UBw4cwGmnnYYPfOADeNGLXiTb7NZQZT4NzfzRdm/OLpK0SVhkpVTToUh1kJfj1MedhBsVnaNJX3xJ1c92NXghY+0Q4MqEL7Ux7OlZz3oWCFnczdkiyqyaelGZ41RTkDKKuiYUkDES81gW9DjMkw9buExl0qhnrJuvBGasnJ6AVuxZ2ob9AqHE8zptwZ4t8Hx1mVcsquPMm8wKqJdbpRWnF110kbKTA8CLXvQifOYznwn+Nozpk3DDDTfgxhtvxEc/+lGccsop+MM//EOcc845ePjhh7G6uqq0HRpNHB7zEmvBHN1dWiBMNkl4PXEdkihsMkaEFXxp5OWTUrGuiR6jDQKWKJ6XIskM1dcGLzlaKkPVyrxZ7x977LGmm9A4WmbVVMm8K03jIctJEgtZ7TXrvSV7brOlu4M0JVrZAkF1eigr9jZVKse1yMOTM7RCkajlvgkGBVj70nDkMW8yK6BebpVWnL7jHe9Q2wDTxK5du2be55zjfe97H6677jpcfPHFAICPfexj2LlzJ2699Va88Y1vVNoOH7Y+AgCQiiZELx9MeybbeUR44tYhIACArce2sFUwv2mj5Ah/WYq7Kjy/s8Zdbzl/UIaVpiJh+szxxu7wkInekrdAU4OXSsaf9+wYVvQLvSWG8Za6jhxvUfSWshvhC+3WgGG0Ycy8X4apx+n0XoiOE84Ihj9gWDou+gOyXDzkMAxjBEZLBZMwbMRArPx7UXX1VY2mCtoms2paSki27G3jgMAeuszewN0/BBkY4LYLYrVAg1IQumyCbTogVmgdLRiGrGKN8dIGCG6VBRWuxCLgNgcfOeCMgtLivgU8qA7Op0roFlmti6aPUons+ZlDgF7OvbTdcgpowf1nWP5sW0qNMkjlKB0rHkCxPAeEcqClRcw07aPQjvfpp5/Gf//v/x3XXnst9u/fD8ALy//ud78rfaxHHnkExx13HE466ST8wi/8Ar71rW8BAB599FHs3bsX5547Vej0+32ceeaZuP/++1OPNxqNcPDgwcgrjruVMtkZBHStDyAl1AEAXNZ8kmdNYcweC5QjgCektclqGMdfNEWK1vBNe/pHgWuy+hVKNwadLE4Knx2F940zAmr6AmgxAYUzkrrxGW9Op9q0qt+MkZn8jFafpXqgUNPLhzZYdUCop0j0manCmoCvoAy32R9vZi99LIQFuSylqdVnYLH7TWPXzllUhslTmoZxxgSGFe2fNAHZsHji+X2SlM1+kS2/8EH82OF2+33Y3z7bgMhz6R+bEhA6PYbZZ8Hx/bYC3lhpOmenP65FX3H88W6Ys4WhihwvD9dpz3zOwUq9NO1DtcwKiMmtmvmCM2/NV4WxYwC4PFCakoGc8rSo0rYRD9kqI5hiCq1Aaap432es9VJT+4QN+5mGWzds4CXgw1ntfGS/apBAIc0Oj73fCRh2jYnyU1QBubku55PFQyHsYYUat5mnoFQEE5QN0uREUewNLmYwlxxThsUC+TA3hcLQmdlv8Zy+5Cx/j2ateH3oOgQ0ZJhgbnqKkaRxk6ZH4UMn9Tt0tTd932bgQydiOOAjJ/J9/3kgA9N7PmwXcBnsr++Hc8DOHc/H3fYPqe3PQiZlFwDvuWxJUV8ts+YjrTj90pe+hFNOOQXvec978Ed/9Ed4+umnAQC33347rr32WqljnXbaafj4xz+Of/zHf8RHPvIR7N27F2eccQb+4z/+I8gZtXPnzshvwvmkktizZw/W1taC1wknnDDzHWMpZfKUUOqIeNRomiEuaIQFQmecMOQrzgkTR2YSrsNSu/Rsr9KkPaIwTB4orwyTw7Fp4AkZFuTiyhz/s9T2usy7DzUqqTnzFnbXpoHQR6mnEPPHgfeep4D0haqqQ7Jdh8ycY7xlgNJZb1HOCZhDUpVBuWNbkPh9cx0yUXRN3yOhvvQJKzrjm0DXpqAGAefT6xUVXIuSdu98BS9zCMweDxTjpsVAiKecNCceBkmKSkLFxkWWwBTuN874ZOPs/e2EPIxde9pHrkMif3eROlMccE5SDRNNwDkv9dK0iypkVkBMbtUIwHi7XgVQFZHmKw340E1UqKmCM+IpMsOvsoxdcJuB7d8Cdzm4zcA3PAMkGZhwtzis7QZoH0FBLWryGYNxXN4oVTBUYXQaXba8a5ooehibKqB9OaqI7B9XlnObhXIwJoxHxjwFao5cHs/97qeb8oz3iDijAMDymhM/RD7+82LQqMLMMkAGBsiyJ1sFirpNBzBIcI+dMQUhHIbJAyeQ3pILQoH+Cpu0X6H3a45Xd9hgzjYd8E0HfNOG+9TWRKnJQCwKYnkyi694jMsv8fRdUu2P3dfAE73EntfeiKawC1Nk7ppJ3TFIkKF7sQc3QdGe58HKQ+MLAMwjPcV2lpNMuMCc9LiRnAfb4k2sZdZ8pJeRN7/5zbjsssvwyCOPYDAYBO+ff/75uO+++6SOdf755+NnfuZn8JKXvARnn3027rzzTgBeeJNPPKGrXwkrjWuvvRbr6+vB64knngDgefQoYQ6S/847whNcwsQWTK4VeRXXFbLCbbkTHfmRu0udj00EqS7kgeScBB6VhMp5fSRaVNnUAlxVhJRI7tOwl6iI97CvTCzjMZLlccoYwFwOQqoJ1eKMTBS5cuFOwNSb1LFpILA4Yy/HaVqqg6bDzXza0o620qY5SFvv54sqZFYgXW7VdJjwRr4G43yaBxcZGNLep6Io8Zh1efQVwo8AjGNsnypXOCNedIuAUbYtEezu+thLR9CPXkcc5e2dKKH9f4ffFyGIipkoTEUolDrKb8/kGeJDF3wzqoylfQq4POIdGlY+GaFQ+9FGtLF1R/HEPSEBRHQJruON4aR21R1B02b5kh2aeElb5YW8pXf9Q+IY3nXrp2fea5NMWTVaZs1HOsfpgw8+iA9/+MMz7z/zmc/MtarnsbKygpe85CV45JFHgiJUe/fuxbHHHht8Z9++fTMW/TD9fh/9fvJiO0O8CpqEsoyNAOr3nsuRnOJ8lq4olxaB1FCBjqZiSE0vURBfKI4XLeLME4ba5NmVBmOTvJ8gE4/Jkl4HFSJTHCo+j8T/tkcUg9V6E5OXLWylgqhXZ/J3fK+ULAGROWQihM9e03G3/QP2XnJ+8qamprmjzcItAG+DpmBTbQ0Ynnzd+amfGwnRcN79bX4sauYfFTIrICm3atJpU8760FogkrvbZ96LQ4ngF4fiYze53kTGOquyhgRnHKRgflV1bZD47tANPDPzoGv9IFy/KGwSPWUYHE5Kv4vkOCUGmYZcFwzNN3teznvGvAgtd0xAB9mpmerajxtHDsAO2yDLFvikjopK/Aix2Q94snucQQC7nHe4YfIZpa7n0Vvfs1JWgXrEh8s5DAXE5iM+cuRyuGo6hfSoGwwGifmXHn74YRx99NGlGjMajfC1r30Nxx57LE466STs2rUL99xzT/D5eDzGvffeizPOOEP62H4oZFssjppmMHtsmkuk5hD9LmJOigExllwJvs3UuQGRERbCIfD+fOQXdyrDeMtQfo/iylnVeB6/yTlEq6Bs7iqNOro2nxSBl/xP026qlFk1842vdFDlUTbPG3VCCcjKJLR2EubcKkIbSy8ND1fmgCETwhv3LFbhmdcEqtpdhUxcFF+hbRy1FLwn6+wS9qou7ADCmNK9r79HUOHFW7Yot3RuUc0MWmbNR/rRu/DCC/H7v//7sO1JvhlC8O1vfxtve9vb8DM/8zNSx/rt3/5t3HvvvXj00Ufxf//v/8XP/uzP4uDBg3j9618PQgiuvvpqXH/99bj99tvx7//+77jsssuwvLyMSy65RLbZygkrZXzvJG6LJW3WVEvY8pY1mWcuqDUIZqoXdD9xdhnCeTLbInDURVNKtSyla9pcUrWVPCuvapdJC+djrmcYiOfyiv8biOY9EmHRnqM4voevl9t3MQQrH85ZqZemXXRZZtW0CyNUjLJJ4jJGmkKG88k+p+L2sk2x/Jj2QRds4rw33lKXikB15FYefv9LrY15+5OEayiryE2TOZsev1nEHRJEc9ULoWKjb7uB3sDLZy/WuKTir0rqrgiMfb84VJxCKRliZD17SUVW8/ANCX7BqdYal1rkxKVl1nyk1fN/9Ed/hNe85jU45phjsLW1hTPPPBN79+7F6aefjne9611Sx/rOd76DX/zFX8RTTz2Fo48+Gi9/+cvxwAMP4MQTTwQAXHPNNdja2sLll1+OAwcO4LTTTsPdd9+N1dVV2WYnk5GvNNXy0TZLpyYVQoHKUm6wZsN3EnEZQI1KJuG0MGzG2h2yL+MJWnXhopnzKRyb4VxjhsXgjKvJaTbP+CFnpWirYFYjtE+lcyyrpE3zEQcKW+HbcxUan8ZlVk0nqS18taZUMSd88k48cfFrK0vPw9ZHShwB2o6nDFIrqyUqSBtSBjfNeMtopFp5Wponmd+T0O8ZIzCKPmuMSbmn1hlqn0qLFInAJKXDgmyptMyaj7TidPv27fjc5z6Hf/qnf8IXv/hFMMbwoz/6ozj77LOlT37bbbdlfk4Iwe7du7F7927pYwsRz3Eaom6ro6Y+/EUtvkBwl4Mk5MyL0NH8pzKMtyiWrKjkk1cEoC2CUhEKCf81Kqe7gpJCETUi6nmwIEbU2ujyXKFZbBqXWTWaDLjLS4e7pkEInwkbN6xqZZa21Bsgy1brlDmJdKGNNeDLbGafwY15Z3KGArG25dpRy7lsrsbrtCE44+mVYlzuPYM5v9do6qBwQohXv/rVePWrX62yLc0g40Ga8V1CppNWW4vPLAqMEVDwoIhRGHtIsTQpmmMsEbBNB3S13TeMMwLXJfLecIq8o+e9oJk/XkRItMYq6uek4lBFvGBFw33CECpZhKAGgVAmt1ed+MWhNMloATZEmfAlrbHXaOYesxedLzkrkdKEMcCQc42iFHBDEc1phi3OSSPeezJQU1FxmprWMLJsAYe8DueMACn3XaksFCrE1CokonU440Jh186INjJmrWUOFCxb4DpqnjMyMIMQdVGaFjmIQcS9Fts4hgvSdL9H0DJrLlKKU8YYPvrRj+KTn/wkHnvsMRBCcNJJJ+Fnf/Zncemll4KQdm50laOtehpN5ygyp2vvuOYghINjNqdaFWuzV/lVfv1aEDmhMJwRQEHRgK5SJmH+oiTa12g03cS1iZTXqQpnWFGlmffdDKO/yyAVJs94pnJPhTJyvFXeQ4FYGW4Aob1rU8rTVKNATv/mEa7PkH3+wqdoNXV5m9obyfePGrxQXYTW5h0NES2SWy4NQ9vRMms+wlMI5xw/9VM/hV/91V/Fd7/7XbzkJS/Bi170Ijz++OO47LLL8NM//dNVtrNzcBZN4FxX1WhNlHCfp1rxCngM1pXKocl8M63IdTOHOAU8Quuk6H1PSzVQ1lsiLuiKJvhPO2/ZImCyxaE01bP6Qa+SedvWWA5W6qXRaDSlmHNHj6qN25xxucI0Lp++KqSVXqMCqNxX1L3ec8aDVyEmvyMDcZ815fuwkiGxacWhwpSS+cs+N3kTgsvADo2lD5t2TU3m868CLbPmI/z0fvSjH8V9992H//2//zde9apXRT77p3/6J1x00UX4+Mc/jl/+5V9W3sgqqCMMNB6Co2mWMqFGbQ0bTqVlwnJTQl4daQZkr820GOxRdqMIVRRyVjFtU1TlQU0ONiYzyffDVNXvnJH0HE4ajUaj0aikZXJgVyHLFmCzTK/Isp5znifm9BhtzRnfNZmvDaje/7RJtxAeD5UW2FVYmFtZ4TldLHwh+f/Ze/N4Oaoy//9zTlV333uTmxsCJCEQQsSwCIqoiCJfiErCLosIDIqgOKIhKuBPNDJqdISMURlUZMeA7MqWsIYgiCLiIIzDDCIgO4EQINvNXbqr6pzfH9XVXdVd1bV0bd39vHn1i9zu6qpT1adOPedzniWwpHD99dfj29/+dpNoCpj5Tr/1rW/h2muvjbVxucFl0LNPrtv1YCKInoKMeV/8xLskjdfI+dVsxLXQELyAU/PxvBZJ3LZtzIWcOEZrYbwTRPMoRAnlCsLwgnmOv/OSYkNK2daLIAgiMjEXikrFgSAG+7BQav8BEFbs6lQP0Diw94vQtmnE3zsX19ur7TH0Ya/raLdVQ9mJKVwvNy3Efy7TXruifD+Kx2mvQDarP4E9Tp944gksXbrU8/ODDz4YP//5z2NpVKeTl0lbN7HTqhWBt332wE8k2JLuY+zFMYz96/xY9ylEi1WZhKq+hqFVAYYsV9QtobBQ8vdK9YIrTs+FVrRViCIF4vYYjroinlSf6FaBlDBpJ3ypV8KeCILoLF45+tCsm+DLjBvuiq+diYfdp2gHeJyLFDJ/BXdC5D1ViwJaOXy96zTtfWm0qBzfQN5zsUrBwDkgQxaWbblPrxy8cd5/Ss4vbMaQzepP4B60bt06TJs2zfPzadOmYf369bE0iiCIBDGE49U/s+S5aSL5OHPkcer2wG80WNJM02B55NlF06Ae7cX+8GU88yyaWrgVh+qmcLG8huS1i9sCYpvptToOWr0nCCJNHPn3rX/nyOZKA63M285FnmTRGj6xkNi+G/H1yGujbyQebZnQb5CIc1NY0bmNMG9rntCu/d6ut6dosMUjLwCkEfJu6+exherbsF/L2tiRUr7jOCGb1Z/AyzOGYUBVvTdXFAW6rsfSqNzB7a7x0TqGNTn2KqBCtOaZecG9SPO+UpdHtrjsXqxv0+s0rwKQ9WC3BNAsPMIbxdcwBobQmee1tRtOlTEFimpAhtRPO9XrMax4WugTDo9TxmVi43H/v9+ZyH47EXvfZ1wCCfc3Gv8JIkUMmYsoEiJ9hGBQ0qqk7OUpmZf6A4YMblw2zCNTy2lf9Hg4injv4U61KX2x90E37dtPIIvJozfvjgNWmqxQc62kxUV7/454LKXQfEKsYN5TrEEnSnLhhciWwMKplBInn3wySiV377RyuRxbo7LEWD8OAGBtPkSkZDBsOrI10BmC5SqxczcS6aGiMMjNOlifAjmuNwnk1oNAagaYocTQymBYK4uK4t9nxKgOZchsm3UeQRh7pRx7qH4jrKCAaTqkli9hg3EAwjL06tdYrzCoEwSkwcGYhKHxmkhpjEmoA/V9SE2ClxjEmPdx3B64QPW4NvFOqa3gO0P1FdvKvtW/9QqDokqMD6tQXXJ6hQ1zF4KBIz4DXi1KVGzXxG2CI3RzPHRbcPabEDEOR4Enr/yZ1rXTxnnDdWTVtAbBCCR+V8eNse8cWhNPWYHVF98MCUWVNWMrDJbIa+is2m9lfiaNNqQmA/U7FiDEK8pYrlec93KWUNgT0QuUzro16yYAAEbPOijrJjRjSJQmhI8GCYsUEqygmB6nnMUuRDCWzvOGDxYghhFL+5WiDJWehymsfv0sKmZRKMuT12tvrMAhNgSbB0vNgDJUhLGxAiDkfEKr9yWpCTDF/L4UEtCEu21R5MC4YfNAjufZErkYEGf5SwvQgBTm+Xl51cpxAyhyyFHN+YGQ0MocqofNHxb78e33nxBm1LkUAFPqdtcNgxcDKNXmf2ygYLYVZr8z/58v28Lsx/V+K4WE2FgGHyo5/g6LstVApO81tc/SbzQO3iJ/snV9GWehrnGeFhrIZvUn8OztpJNOwtSpUzE0NOT6mjp1Kj772c8m2dbY0EY8BuwCh7JFH4CGcJcQA7x9oqdQ0ahMcfPSK/QJGNXk2saYBOurGi2aACuZ6wisT3WuFhl1g5EV4hNNg4gLhb7kByJ7qH5fAAM/yiAvNcPMp1nIzwOiEa5KCMEghSn6ScFqkwWu1gVFpd/ZN1iBQfg8mw3NbhS4XwPOJQydwagwaGVeC0n3MtysNvYNmgZSY6i+vX8ZOsPQxauc3y/Uz6lRoMrT4k5Q8ddrvDV0hkJJ1K5l07k2GEJu27jhuo3LKrPUnLnDLIGXq7LWZnsblILzPKy/rfHMEhzzKJq6YU0gOHeK24lWYM0JVtq4qC+CIIggODyeNFG3bRMkjiJMQWglnMQlUAEN8z4Lm5emn0MNn+yd9ios1vOxaXHXNgext6fR4w1ATTBDxT4xrc5/3hg19x8wbNlqj2V3tLKRyiM+fa/h4Wa/7o2eerLc2gGkMmb+Ptq4v6EYSkTnrVMRsD4FqAiwAfe0C67pGNoUrJWCAON1+9ysUeDc5vjhLzn+bhJ2gUgL97X9CXdvUntat7C2qVt7LNEUMPsEHyrV+qolSspytX9X+09jX9FfHa7v35Dm9yL+BoGcAez3ZhvXOEvIZvUnsMfpsmXLkmxHqhQmMFQ2N7xpVH/1ksuA7zIZ5iUAyS8iE1mTcW4SoTOgkHwbrFB9XWNNwo31wLA/OOzGnBSmaCVFveIjjzFheFQMjdeKLJleaPUci5rOagKZ5ckn9Low5UubTwjTa9AZZu8Vjt8qVN+Lxmvvt4hjF+XMv83vVMYYODevk1++28Y2mtfT/bhCtJ/v0hIPrXNr1d+0stkX7IZzbRW5YgrkQnBIyar3XHtt80NqAkJXakKibvMuNjTndTS0cJ6xeYbz+FNlMC4x8YL74t1pTBiSwYgocEf9HkEQRE006zCkIWueWwAgx3XTg6vAAU2ADxQgRjUUJjBTUC2zmp0ndKeQZFSahaWosAJvafeF8jDTJIyNFVNcGxGQ1QV7O5ZoZ6+iHgmfOUzYCuOMmR6VSlFWF/cZjAZtrjTB8BdPPZBCOtJ/WA4tTdtpptOCKiR0rZ4Kj/FqG2FGiVk238eP6Iehy5ZepHFiFyzFxnJNEDbeGjP7ksIBzsCq/UZRJYQhoXBz7sICRM345TiVQjrF/hgMsLyEoEtDRosMTqM4VEFxeIZ3EmSz+tOZkngE3EJZ20G3haBaokwjbqGj5IVKAMmLikkazYxLh7jDeD182BJ4Wj2b0xRU9aoophYlhEDtZYmljLt7JrsVJIoLo11DOCIbvzTP8bdW5q6GV+N7UXPXRrHPLC9bKerpMeKi8Te0JlRRPTeTNr7zmjM4bzR6cOfJW5ogCMLyikuamuCYUiJ3ezqhOOFDpXruwL7wldLjRnaICOLr5WYrVKNMG2i9bQvUagoEobOq80HkXQEIlxpP2iNvNFmzwwp9ohYxZonodn63vEUuLdfjuLwZsdiP3XvS9VjSw7sYISNzglzHmJyBsij0aYn8tbHBcnRLOMd22MUXNy9fonvI/omUEnpCD/iwCMGgUIGonkQIQEkvPWoN1/AjD7Rx7nhIqAVRFdiqhoRH+0UOqwYqBZHLcGC1IJoWW4r9BsaG2xuOK2MK+gfjNfCthR6hM7PdMY+jjEvXOV7WeXDrnrcsUAGpKVesBACMnDEPrBB/xc4s2fqqe0Jtv3nhAYG2i7MgxvCCeRi80ExFkbWnu512wpd6JeyJIHoRvWIuXBo661iHirSK3UohwQcKMNaNQ5b13Hi95R3Wp9Q9YQ0B8AwmIBFgBR66ELNbqL5e5pEX4OO2QdlgEXK4AmWrfsiyYeYgDfl72OczWQiXrVALAhW9WmMjDqeHCEUHWUkNtGgUtm+FqRcRtrZE3iCb1Z+eEU7jJOjEzG27tAwNoscJIWT6FYfq5IeAlCx2z8V2sBK6J03cv1mexKg4sdIPxJUv1CusrBVBngmdks/UD3uKirhE09QqEkdASAYR8beL+j2CIHoPhxhgyM6NJxTSNT1aHLQlNqWsCnSizZWZc4hgKPSJlumkzFD9GA+akbNI0PlMWHHQ/E78951p7yWwXy9RNYdOPJ0E2az+9KRwag4o7f/Ajnx50qyixrj5b65IZwXnWoeimzppLNEoSO7DLIl7ZYoPtH87M17Nsdhff69VO/N6bYF8VSq0MMeB+MaAughVf88M92nv3L08dYUIXQM217h50frljXJj3SkHAgD6tu7U2WpyWJMZIQC1KFxT2LRD431u/p2P56yVri3qdwki70SZoPcabrYIt0VzZOlxanfQamXPScmqaY6SXYyW4waYmy3bMJBqIxKcA7rGkrf1DBko73mY6K5Ow1HdPYTdL4zk+otZHMknz6dNzGE8mn3XklDFoxu21YxaWipds3L0RvSQzbjwrl8NhNgwgi+sWCH9UhNgCqsWiQo3abUXQ+tkJ6KgkM3qTw90g+TwynFnPVTcPMatHCxhXgQRJ1JIxytx2qwk2U0objmMWlweJUS+xmK/GabvV0zAyvPqRR4E5zTHvaDp4JJMG2flM3XLa0q5Tgk/lixZgr322guDg4OYOnUqjjzySDz99NOe25966qlgjOH8889Pr5EEQXQVnfBssuwiX2Lwco1UrIYw8bv+LeYRdrGxE/pkO7RdLCwF0oqQynLRLu55Ui9qPZ1qt/accBrphtaM3pHSiUQJ0v/mrFyBOStXtH+sGPpsaquIOaYXH2h2gp5/O2lIzKqy8RkiUoQzMBmTKPSl/0N3a9/yLVLRI1hhT1FfQXnwwQdx2mmn4ZFHHsGqVaug6zrmz5+PkZGRpm1vu+02/OUvf8GMGTPiPFWiR6F8k71J0uJIEqKIY/GzMWdSTud4eUk1FdVWcSt4lARWjlOe49Q9RDTaGgsswd3uRhnSmSeMp2mne6WmZbMCnWu39mSofiui3KBqUUKvoFZAhysSwqAiUFlhPeANncHQmGMg08Y5ShMMwJBQ+rl3WJAXRosKSSEJMsDWzsVgrt6KzdtTn/PCLdTCur55FbCMSjoGoKLKWgh11JxESa30J2WwS2ELw7E98PNsdOe1n9pJ23AUMVT1TYq0Eu3fc4+zgNeyZcswdepUPPbYY9hvv/1q769evRoLFy7EypUrceihh0ZrGEEQsZHEgp0UMvATnHPACOqUyTMS8gIWNuJqs2hWGVPcowNb2fIRB+1uDtUPQxp2SphjlCY0p2RqN6WPNdeShjT7km2xWC0Ea5zXfK3VPcYVCb3CwFUJpao5MJduzAcKECGru7ebL76t3z3HkYlUHCr4d8PQqXYrCacNuK6eFxTfHtGYu7ATJrhEPnn2wE8E2s5upCUVIqQWBLSYK6l3Ml45PnkJEGPe32scD9xyM3EuQ4uPeRL53DxOLQ+PpLxTgngzWKJaUGMmSo6pKVesBACMnnVQ6O+2+s071QgzK/n6/+Z+z0ltnPsKC4oqMfGC+0K0Lj0MyWBE7PvW9zZt2uR4v1QqoVQqtfzuxo0bAQBTpkypvSeEwIknnohvfOMb2G233SK1iSAaocVagoiG2KxBitbT8LwWhkyqKCMrKG2JaF721O+Wj+Gjh/e7fkbkAMsD3MiowlgLLKc4uy2eVNGrrMnKZgU6x27twCkZQQTDK+F+lt5JeQm78SOvxloatBJzvPqOKFcLxLVx3dr12KyMmcaGm5goBcPQxava2n8eCRKO75WblNu8bIl4iTNUf/p1d3u+ADOyYHjBvNiOlzdmzpyJoaGh2mvJkiUtt5dS4swzz8S+++6L3Xffvfb+j370I6iqiq9+9atJN5kgiA4id44eJMansyjehodsY/uyXOCNeq2SnOewAZdqYml7JOfAAzpPzh1x0q3nFQdhbVags+xW8jj1oObBJ+xepNkPQkRwLFHEyygME87UqRS+fCMqFxyb6DECGd1GAqtzCRkFzeH8jVW7bf2mVoKw23uSO8V+gcpYshZzGIO8lTHj1k+t98wFjei/4bpTDgQA9G0ZbB+5m6i24M2TwnnRDgwl1JCAJFnEKyyi+or6XQB45ZVXMGnSpNr7fiv3CxcuxBNPPIGHHnqo9t5jjz2Gn/3sZ3j88cfBWG+OVQSRBZ001qfBD/Y4HN/9n9uzbkYuKfYLjI/ky9suNScKUa+WnuRcO+sonnbPTRgMxX6RiJ0jBfPdryi7b6AWBIxKRn03YYG4l8bwLGxWoLPsVvI4bSBpcbSdAipEPGQ5sU7bk1O76LjEj+FlhBRKPfS0yQi3sPJ2q26GXUnd8e7bsePdnTERsuc6Ex7epmkY1Z0Yfh8GM1Q/heO49FXO82PoCrSRaL8q5E+aNMnxamWEfuUrX8GKFSvwwAMPYLvttqu9/8c//hFr167F9ttvD1VVoaoqXnrpJXz961/HDjvskPRlIAiCqFH4wvW1V9dhJQlMYC458NN7g22YkJAkBPMsGBvpmetyjaTWIuFuixD+Vil9yiPhDK44vAllwPyi9mMJAYqC8qClNpNQqjqLVvZ6o63b6bZ92jYr0Hl2K3mcpowQjMTTHsd6UGa98hkXfgZTJ3pqt5s4PiqKKiMXhCr2t67wsPFL86DYRvw8eeY1Eud9YU+v4CWWAtXCcQPC3MZ/gTQ0QtRXKvMi7OWdQp/AmhMO9vxccYmGyxNpJdqXUuIrX/kKbr31Vvz+97/H7NmzHZ+feOKJOOCAAxzvHXjggTjxxBPxuc99LloDCYIITKuIhzwgRHOheSIZeIl7eu750kpYTBmuypY2FWEi1o2DT+kLtK3S4poyDsD287vVSkgaXgo3SGSdC1RsDlcgy43GcdpekNQtLRUbKOTqPg1DmsWhOtVuJeHUA6qOSMSNFAjk4z1n5QoAwYtEAWZ/TeLR1Mu5TjuBWFbGhfP/jbTKvVoZ43ju4MPbbkMWdOKihZQsV5PtKFBuqPg57bTTcN1112H58uUYHBzEmjVrAABDQ0Po7+/HlltuiS233NLxnUKhgOnTp2PnnXfOoskE0RN043iXml0YYh7W9kIwZ6nnhOQTC8AwzTXbwc0ecitcFbYwVJx2lpto2sqhREoG1sJxQ68wR/RU1xH0PjRkIG/TNGxmKSRYvrJs5J5OtVs7cOpI9CJW4Z0gr9D7zplH5LMHfiKUaJpXtHI+hpdWfaI5n2nzd5PyzGw07Dhvr1hRY3EoKfLl0ZIV1u9X6BORjU17H5pxw13hv08LcT2JVaE06isoF110ETZu3Ii5c+dim222qb1uvPHGBM+OIAgiHRK301OcB0T1Nh39+vz4GhHQJkmqoG3LkPwIaOMpzzfCiPrrxoPvVme+11wttvebtHMvhf1uEgtHYVJB8YnOsKQ05vtB0zTkkbRsVqBz7dae9DjVRj1+XM7cBzjNiC2GRRgUqp80qayGpyy2Ki6V0hsRozqUoRIkANanAGXdfcOERJxGkc6e45QVOJgQkBk8TxiTnn3CanOoivYu189PXFUD5HutpfEoAlrZ+b4X7YbpNBe+amt3DtSihN7wezdeJ69QIyn872PGAQZphhiqslakqjyioDSh2SjXxrmnwel7LFvxqNeOP6SaRzNYn2EFVgvnkdUQH17iwFigr2cOie/RkW2EPcmQofphefHFF0N/hyCI8KSW751Hm6cEib5oZUfFCStwyHGjpSdZUPGDq82eh4HaUPJwHePMU7RhBQ45XAm2/wIDKwWbfnNFBs5bLzXRHDqs2DxpFQaxsW5cRhGR1IJwbY/Vh4L2EVaoX+OWQpitaFTTRw3pJeJKfxbIrrbPAxr0AV3jYExCcVuo95h/2e0su8epIy9/w3W3t1OUzW2vn3ARgD6IUc2cdw0UzPsJcIaPxzAP9EorEEhst+WrlZoAUywbWYJBmL97wrlLo+I6zBoSqGq0bKBgtj+gwCtEcxqGrEjLZjW370y7NR8uYTkiSB6Sbgy96XakzetMSmYaEGVTYGQeD+VexC9PJtDc/72EPbvHqSgLUyQrBLjWhvB/BUAthpusWAZfu8WV3NDLddHOa/zgXEII5shxqhSl63lIwaBXmGNffr/d0MWrqsdxvs9cium0u6KdNobOakaqm2jqNnG1zrnY791PrN/EbTIQVFAU5frEgPG6eMxVWZ3YdXchNbVgnluj2NwLgmzkJPvVF0EQhCtCOF8NsL7k40YTe265CCZeXlyJPzvtApOPosAmBEu6LTUJ6eLY4BZx1GSPFoL/rnLcACrO62PNcY03RgBURR6//diKFlm2UFN0VnVRmDFZi36KQuN8zM8z1S2yzcvGjlo/wBU3Uc/WP9qxoRuFR+tacz8HGoXhX0a+XP+eJpz3TYi+40djf7CKhkWJ/HTLE+q6XZ9zscEhuBsSclRzLAbIslHdv9VnZSzzfVdHmcb+EHCeapEXe5hsVn8yF05Xr16Nz3zmM9hyyy0xMDCA9773vXjsscdqn0spsXjxYsyYMQP9/f2YO3cunnzyydDHUWyDWGHAY/Dxeig2DDaMe6wkBcCaRBLJkVRoSdb42MkOaiuMITE07gj1rj0cG45nreraV3drK86+xaLSGVwrYwqU6uq4tRIdxCHD1zhBe6HXhosw28rQ1CvujXYzzIKmFbBEVDMXVF38tn5Dy4vTbsh7VVP1Qo/TSHVBGCywyK2VeVOftf5vearGSf+/39nyc1E2i1AJnYFxL+M/9malRlBDOJFjU0QHkSBp2axEdyAEMslHGNUGDENS6ZjkuF4TLIUl/FQFD8tTU+0HeMm0UQslAc7NBWo7UQsXeXlAtrL7AoUPG7J2XlJr3lfUeSVQFYX8nru249e+FyCs2GHnM6cnpH0x2Pp/EAcML6RwtpH5iH124VxRJTiXtbRMakk45oNRPZBdsdoogjlziI1lU1wT0uzfVRg3PbnVgqkrKKrTs7uTim/F4ZEeRNjM0r4kiEx73/r16/GRj3wEhUIBd999N/7+97/jpz/9KSZPnlzbZunSpTjvvPNwwQUX4NFHH8X06dMxb948DA8PhzpW22Jaw8AYNRdhqJBgIhJug3cnFoLJA25pJSyxDUjGOzNuGK97VcaRrzSqoNUoJCYp8LRqoxDAxi/NC7x9VsS9AGIvgmUK6dH2b+U4TXoy3Kljlr0vNd5vYZ+bqectixlrnhr1ReSLNG1WontIYnHOlaQSsqcMHyzW/h00pL3TCSM6xZGnUZk2oe19GBqPxXb0FMJCnGehT8DQGYRg0MZ5W4JjYHE1YCh5kEjWMHg5JbiJ8UkRVORvtLNLi25DadFtkY5pF5yBfAiobgsmnZ3jlGxWPzJ9Iv3oRz/CzJkzsWzZstp7O+ywQ+3fUkqcf/75OPvss3H00UcDAK666ipMmzYN1113HU499dTAx2pciWwH+6DKVZm4ZxWREQmPAp0gjLh5lgYl6/Bju+doo3EnBIPSomqlhT23peP9NnLvqAUBbZw3hdmXR8yV9airtpUxBf2D3iv9G780D0rDiO9lIJrvy5rXqZQMitr694yyKOQlXrZ7b7ilHwiyz8Z5p5V31qsfJEkexeygmMZkPNdr+nV3e3725kkHOY/rkTM3K9oJX+qVsKdOIk2blehuzGgDc/7QSalxUqkhYGETzliBm6HHZT1wNe12jtlUJZsz/zlB0IJLBeYqctkF9rDPMTdPPdanJOZ5HMVzUwj3qK8m8cnKy1pibdWTsM/7H7h9DHMP7Y93wTvEHJEPlWo1VFif6iuu2e2/xsg+tWjm9s/S3rHyy7o5OKQW9dmQB5X1KaEKR8WGh8dxJ9rwZLP6k6l0s2LFCnzgAx/Apz71KUydOhV77rknLrvsstrnL7zwAtasWYP58+uVBEulEvbff388/PDDrvssl8vYtGmT4xWICIOzfUVLCtTCLoXBAoX7EsFhTIZ6Aaa3pFKoh527kuESSTsV1AGYfdZ6AeADatsr0YZeD3/uBGHXDyNkeHlauPXHMMJj0saSPU1DpxF0YhfG8A87WRz7zqGhtu8FrPQPSe3bIk85yO1DdJQXkS+SsFmBNuxWoiNwG5OsZ3jW45VRTWXkh5QsFYfWoMKHPmbmDxcGg1bmuXC2jatid1aRia1SEcT57HYU37KuGa+LpMJWHNWtMJQlOqv94Y8du5jVzhzSMFMHMCahayySzW3N01oKwnm4Odqllhoh+PW2+pnVX9rNbxpX1GIjnAdLEZcGZLP6k6mq8Pzzz+Oiiy7CnDlzsHLlSnzpS1/CV7/6Vfz6178GAKxZswYAMG3aNMf3pk2bVvuskSVLlmBoaKj2mjlzZryN9hkkO3GFgfAmLkMobdJut9vDJKn8V50IpehID8akYxz2ymvrNla7bdv42712/CFttK59sp5oB6ExhGryJfdm1BKCiI8kbFYgBbs1IfrOXo6+s5dn3Qyik4lQ+DMoqXrHxgjnMebiTIB27VmxueL4e2DpPQ7VhZcavtBQICrstXErAOrneZpXx5E8aQxBhN6wv5Xr3DXmcSExqu0MUnDNzuCFZs2JwfPoWdoJZBqqL4TABz7wAZx77rkAgD333BNPPvkkLrroInz2s5+tbcdYQ5U9KZves1i0aBHOPPPM2t+bNm1KzAgVIgfVtQgiIaxckL2IWXAggf0aDKqHt6hVwT0P1BL/RwxR3/m+5XhyvyPjbZQPftfOrS+rRQmt3Px+u/gVhyKCUegTWHPCwZ6fK4XmImZ5op28T72SL6qTSMJmBdK1W4l0kTJf6UM6lcycGBJKCZArYTSkJ16YeYEwmGvo9sDSezzfG/36fAz856ra+6Nfn4+Bn9YXX4cXzMPEC+4DAGxeeECA9jafn9AZeAwpMsL2S2lIR6ovxiWQYl8I0t4o95pXnzDHvmz7Oivk6F7zYOjiVbmINCGb1Z9Mdb9tttkG73rXuxzv7brrrnj55ZcBANOnTweAppX6tWvXNq3oW5RKJUyaNMnxakWYAaIxJ42Vl0gtSrNid7UaHldkRxTN6XaEYDA05lg51Ma5+RA3JHjJDAvKJCcKvENf5qxcgTkrVzjec6vEnheSCr/NO63CmrxQGsIx7BMqN+HPSCl/ctw51p4+4IhY9xcXXl4GYXIyWcWh0qSTFzB0jWPDqfM9PX+TIC+TUitfVNQXkS+SsFmB8HYr0T2oxWwH90abpNXYmcoYHtC7zM2b1ErN1TZCth3WmwRSSIf3ZVAbtOU8Nydqh5uQWvvsp86IFctDL6+0k+Oz1SKwWdS0xXFtAiEP6fUYN3myWaWWXBy5W4GqTi4ORTarP5kKpx/5yEfw9NNPO9575plnMGvWLADA7NmzMX36dKxaVR8kK5UKHnzwQeyzzz6pttXrwdNO5T4iOFKywK9O4x133t7+Tlo9FLohv03KNIrBnXAJi/3xFQGwxrVOvJ8asf92XuN1q/PkEbyFKMdpd/SddqF8Ud1FJ9msBBGWvCw4NaGkP1WtzfkSEBYTr36eRJtT7BuNQmm7aOX81m3I7T2XB3Ii6rciK8erpCCb1Z9MQ/XPOOMM7LPPPjj33HNx7LHH4r/+679w6aWX4tJLLwVghjudfvrpOPfcczFnzhzMmTMH5557LgYGBnDCCSek3l77oGtOCnukl3QgeX8YCcGgeAgyzx74iYQP3jv9VimIyAWi3MRSq5Jk3nATqfIgXKmFZMfJdlb2GQe0sdbXKKxoKjXDWfiA8ERK9xA+gsgrnWazEkSvkSdPtzhoFcHIEkoj4NmWgAXN8mB7pkIC119RJYykHRbzKEgawscBKIdtJnqSTIXTvfbaC7feeisWLVqEH/zgB5g9ezbOP/98fPrTn65tc9ZZZ2FsbAwLFizA+vXrsffee+Pee+/F4OBgNo1WGKC7f9RtD2yCcCOqKC0EwI108t24tVGK9nONxRGqlpSoLwWDEBI8oG4XRzuK/QKVMe+LomsSarHtw0TCbrwHHZtbeRYH+e1Zwbz4SeQ47fScw0I0X0PDYE2hou2Sp3yCQjIYESeRvRL21El0pM1K9AYZiiF5KKIat12VSqh+gOuWp7RvQrBA1b87eUFUSgYWdLE/5D0nRdbZPuNFUWW8UbcpjGF5GKvyDNms/mQqnALAYYcdhsMOO8zzc8YYFi9ejMWLF6fXqFakJPwQvcPzhx4eT7h+mwQ1PO3CRBAjKluDPt57NW6P0zjEXAutzNFfjBauH1WQayWapkFcnv95MPTzUhgsbWbe4i0ytyoMZWfo4nzmPGsnfIns+3zScTYrkQ22XJ15j4DKK1HyyHcaXnkrU1kA7IHr20icNrdjvw1Fn4K1pfr/NgQnKQCWUZCTPR+r1xgXdeyTRvx5hmXMuYu9RFi3vKedAtms/nTur5sVKYdGEESahBXQ8u4BF3W1XvcoyuRl4Kj9wfYbV5EvN2OkUMr5j5ExjZOTOIxnL7Gzm3KchskvnYcQvTyJFJRonyAIgsg9EbwnPT/L8bMrKUG6JpoGLG6Wa7IU1IMWPPPargcXA+KEbFZ/Mvc4zStp544hWrPzfcsDb/vMvJhzhPbKMgqROG5hyabQI8G5bMvrUCtzqBE9TnOZNL/6EG5loLfyFHX7HlclULH265E3zGZY138PmXiBsHZ//05EUSReOdpbZC70tf6+FK2r0BIEQWRCHpOhE570n3MXRr8VLMKBILqaICkkdGba0xkgy/EVwvU9Vhfo4ES8kHDqgdtqhpmfpB6qH+aGqm1LdUMiEUUM5VzCoLQKiSIlg+GR85dIjjzlcUwC+9jaStQVRrzGG+fegmoc+W1b4SaaJhVWRqSDIaM7QJDjBEF0L4zTpDxPjJ19SOsNLDEp6RXUnBPEm9RMP5DuA8zNbmunOGye0St1uzevTg+B019FMHRYSYEcbZh4JuDgNOOGuwKni+oWyGb1J4e3XLYYb407/o47x46hkZCXGzxd/XvTMErM0FEYWKHz+r2bgdiqkE2r4j3FfsPX4LSEM9Ul5F7xEAe5KjG6sXn9y1WEC2jw+m9T30+x3/sLarH9/tQq7LrYbwQ2Gq39CEdOJtvnIUJMXjvee4I1/nbzOSuTaH3SDbd+HpY8ThrsmPmiooY9Zd16giDiIA3PLLGxPndhpXDPHGscbaUJppYHvKhAjmj+DfLA/ixXCjHa8jHmRmTcaReEc8KpVrYf1R3zU698i1kWw2k8r6QXn1vx8SMC5tOCd4ovKaTjlQb2saOVneqVXqyJAJpGEN2j1ZgWdaxgffnzLMu7jRk3ZLP602NdwkQb9R5glK2aYwNlmVzqsiZKnj038ajQJ8yHosIgdAZW4K6JnH0fiimJq7VVxQAPIrFZqyW+5gPhxZqkcwPygB4WjcaJ2ytuDK1eLVTXGBg3r7kwmKdoaUcfa/15Zcw0CILkODVsBpCXcWIXAvsHzbCVqDlO3TxfWomedoE9SHEo+74br2WQipyNbZOCQQqGypgS2EAr9ocL7bFEcO4I2zf/P+OGu8y/Xdret2Xze8YmvWk1nJc4uCrBVQkpANU2wVMKtmMazPFZJ2Jvv92418vdb35YifajvgiCIILAh+pzF1nWUxEhui2vessUbX4DssJidbmybLzGAqyWKF6btxiW5yGD1Jy/h2j0yrOdn/HGiPm9AP1E6KxJw27OGV8XRvUKr7Xfbr/FleM/KHZv098tH3PY1q2IIrg7RGzJwAYKoffhhWVrNtq7jkK9HJCazXYc1ZpqssShZVhzTKGbcyO7yGz11VA5bm1tlOMGoDDvOV51WytUX47Xz0eO65AjzvOToxqM9eOm407Egk2RowI6NFUL2az+dOYv2yaFAduv2/igc3nwsULzgyUPVZgJf/JUKCQsUgQTljyJEgLBzYefFObDTzQYP1IyxzW17oNiiUEYzH2l1pCQWvI5IhsRBqudi3Ue3Gbc2d9XCnUDQC1Ih8AXZw5FRZGuxqMlrHph6AxPzT2y6f24rmnjORo6A+fO9wOvaFepjAFqoW7wMSYzy0fZeH1r3r1FafYJRZqLKimFmImyMCcjuinS6zYD3x6VwBXp+KxTsCZw7Y6/2njrc49a/I0gCCJLGifkcdtHctwUF8RwpUlQyzu158eIDjmqQWqGac8KCVZSoVcYCiUBXqoLeIoqmyL6GsO02/J4bOVxGlYxUBigGTVh0zqHYr+oLdZadkjTM06rLgK7CEGu1bx9nDzkuOHbfjebyLKv3XALI59yxcqWx4iKZVPqFVPI41xCLZrnbAmgStWPhDWkYtr+1jsiH7exOnuj6C42a7V/y+EKxMYyWIGZ/XlcBwxpOmhUr60U7k4abaXzaJgDhvVEd0OU6w1qtOeF0Syw++KiwTRe2yCwPvdzU7aoLiilPQb2aORqL9AzMYRZJTFupNtWaDuNXskZ2LTSnDCVssRASXbEgoIQVg6mah7cqnjlhaKmK/jZV2vTEP6D5hMNC1cYdE1CUaNXWW11r0oBSETLccq5abRqY9XVc4NBG+co9AkYOkOhFKm5qZHnqrVxM/26uz0/e+Mz+c4/RfmiCKJHsU2cs4wa4INF8x8JDChamSc6p2ET1JoAbMceESOFOa/SAkQw+Ik6baVmMyQQ0MnQciRQ+pvbLARzRLrEitf5RRCq3ERTIQDFtkadRg5fUzBvft9uy3rVYXj5qMPAEjKl7JH3HKztAAEAAElEQVRcUhNN3p+sT3V4TCoFUXVMce7HbQ6gFtN3RLFII+2aFLJ6szbcH5Z3tVuO07D7D8Brxx+SaXqJLCCb1Z+e6RJtee7FSK9VTc4beRJNEzMqYvCXr4UJcefKMWOyrWuYlgfw1lfdA66YXqR2AyqIsaGnlIfYfh2DhJLv+vvbWn4eZOIQFrsBH0fO0qb9x7ig5Xc/tfrcS/BvNYlJejHO7V7phOdHml7+XDG9wzd+aV5qxwyDgbohGvqVdeMJgogFt2ezNU4aerNYEokYPJzyIhLwyfWVSzZQcET9RQk37pQiXMFSHwXIUVndplXKLmXahOAN8yBoxMfUq+9p+1h+qEXTwUEIVk0V0OxxHJS4bRg+pQ98qARRrnpGFhTTizogXnOuxnb6ipoxqq2W/VsLz7c7YKTkQNPoZcom+PsCppGbttM8/O2QzepPz3icEgTQOx6nDmJeBrI/rKVkYMj39QyWV9X7M7u3qRAAR3SjKmiOp04x9POC5UEcrsiC+X8hAM6b83HlDfvYxZjMrddpnONroU+0rGqqFOJNpRE3so28TzLfwypBEDGRlwIkuSsYb8hI7j1WlJAQAFec1zfPz/ggsJIaUTyWTss14IMpDjtj7YkHpSKexoFaEjVHqyjzRVOYC7cYIgXAIqYkbue7uUTIJu/crJhxw10t7c9uhGxWf3LyuO4MpGD15MS2h4lW5tViIqxWUMYr9wuQn7QB3Yq12sW5NMMfgj7AUs5sHPeEn08stL2aJkWyeQPTMszfPOmgWPbT6j5uF69V7bCFjOIQqhrbIkU2glR5JLoFGPQ+t8Zuv8lqXJPZsH0+qFepEDmc6Fax51qzcrRKES2tQicTeeW+jXApgiDyhduz3p7bMEsMwynyeHq3Sdb0zEkkTL/iY/9UB0atzCHKqP270V6xijj2Ok1zgohzhKjeyGksCgS1g7jaXsRc3NR0A27Ou7zqCAQZI/J0XrHQYABFSaNhFeiqFc0io8oXsln9IY/TCMQxWd3x7tvb3wkRmiwfLubDr40wd5+VXylkbCuP3fIQZkxCtuEhGgQpALUfqGyOZ3+VMSW092RSMA4g5XZs+xtzwrPh1Pmhvsc4INpM7avYnohSAHC5n3ox71FYzFAlukgEQRDdSmI5Tn1m4G62kW+qHtme/R2INtIleLXfiqZxHqf5PJo8Sr2Ok5K6Yc0hrAKtDhJsg/1YSkGEDtfXyzxRh4kkkZqEHqR6vN/1j9mJyO4MUF5yZOuNQ+TbleM6WKEYqi1RCk8RhB0STiPSCUVwuomd71seeNtn5n3C8XdjsZ1uEQUdRprSOSJFGl5yhT7hW5Hby1BVC+H7hz4WfFslgFGWB9E0SaSPrvba8YdgwuTkRe/YMQQg0rkXSbytM3Txqqyb4Aol2ieIHiWCTZbXCAIiGdLIt5gWdoG32+3XPKO65dcMUbgsLFKy1PUQ675pzHFKtA/ZrP70TK9rOxzGMPOWNMK4REGVteTvUrJaURp7WGL9+BJCZ3ju4MMDH5q8U4F/fOyIwNvyqpeYEKy62lh/kOgVhuKAOTJwNdskzkqIsNUk8xlafdNutNffYx0pNvuJpn7oFQalamhY+bLiIIhoCtTzdbYyQOM0TtWiyHWuSD+ChIPlJY9cHOQ1v2mNnOSoyhoyQgmCaIVarD/IOa9WJk/xWaUoErpwOhd40SmLdYbO8Nrxh6Arox5CFBXyIknB1gyHtwoyd+9DTArp6b1oCYlRdIcgdrhecU97xAoMqJj/5gMFiOFK6OPHjZFSsV1XhKz19aQ8rVkQD98OgmxWf3pGOHWjnYeHFfbRiaISQUSh3VQDaWNo1UUMD+OllZDmVUE+rYlDO6Jo2O+2EuGy9BzIvTiYAo3X3/43eSflH9FGov0uckYiiJ6G5gidAVNYtHlh1Idx3EpDkLaHbKtXuqs8epU2zsfDhunHTZD7nnEJhKwroRZlbu0/rxRXccJ43ksSdy5ks/rTXVI5QbiQ57QKeTQ+LMxq4+GuXd68+izxLa/X2c+wMr2msxUQs7p2eb5vPYnBVSjI9e7Ia0MQBNGDpFEAyk3w66ZQ8HbIm/3HJyYUN80jCr8x43W9k7JbOsUTOgkYN+c5UrB6EaR2aSNXb9tQtBKRc3p4uHHS0o07y0GEaJu8e6694858p2LoZW8J4bMSbI0bXh6qFl4FFOwTqrAidVSkZKHviaRWt7OuKBwGyzinar35ZcoVK7NuggOqUEoQRJ7Jq+daJxE2DFiW26ximSF5E6Et8tiPg9i3cdnAXTNPC3Av5WFxoFshm9UfEk7DEkPPcMtNQiRHqAqJCd/5jQ93xoHnDw2e7zaPcC5h5PBBphSsPEPO95My/GQ1H6wbVg7kVnilFFAiFKtKi2J/vBezNMHA6mMPiWVfjdczSj/g3Ez1wFh+Q6PyRieJ4Ukj2jBAczikEgSRMHlf6M8bbs8bv/zweSVueyoIcYhQjhRCHZwr3xdD1F+hvxuipkVc3SDifDZOYVIpyLadQkgoTQ+yWf3pmRyneVuNoYJP2SOFW7kvIi6yFlDiEEytQm+EO5Wx7l578xKzCW/MZ206KTIa7811pxyY7AFDQvmiCKJHSTtSrYvcfWoFXYRbds1wFPoE9EqMz/EWceGdJPAkVSyn5TElgxASrANF7VaE6qeGqFcwjuXYzhRpIuVQdykAVj0drrgX0iU7unMgm9WfnhFO20EK6ToB9BOGvD4XOsNzBwf3MiSRNSMUBmhZNyL/dPtD0fM+FxKoVtUMa5hLyeCW3jyM0BRGmBais8IL0vAWCZuPtxM9WLqdUNEEBEEQRKzk/bmojfP2HGcMCVgpSc3E/223ycxF2Wy/BVqILiiA5nHRhQyWIzJl0VRKhnWnHFj1Pox//2GjgfLeZ/3QK8w1cpUVGGCY/5ZGvS+EXoCI2D+8nEyieJxKIcF8lDhpSLCE0gUDwGvHH+LbX6UmwAqdNLsi2oV+7UYoMXHP00mrxlliGR+K7QHe6QZJK/Ieqq0W8tfAPKZwaJfXjjdTCSTlUe0n6HbEPZaR9xPlOCUIoifpwmdtL8G4d6h+W8/8lB4krewWqyhUFmkoErPbXTzKs/DibWR0sJh1EzIhq2vfbaIp2az+dNcv3oKgk1x9bTnRdugBch0S7ZFEaLVluKQtqlrenL7VKA0BOaqDVT0g+UB4Z3LflbU2DBDGzf0rceX3Tfh3MHQGzp2GHuemEaZrzPGQ1jXue152UbOVIcc4oLgIoPb973L/ctfv6lp7Y4uZo7WtXTjwK5hlHtO7X/kZ2YxXUynoDIzLWshSeSRYGFS75+r6fUPUvJAtFNX0TJaSQehmHlxeahXu538cI8fpI4I+a936ebdBRihB9ChKfYznqqzlQG8cH2ON2KkOGqwUfzBhUhXRm1A4UDFiSXWg2vLDt91+IcEKLWyLEE43jAPKRMU2r2ix24J0iJKtCku5iUd8sFibFwCAHEmmMJV1Do22iaHVi5Gm1YfUomhLpGXcDDkPOpdk3DknkJK5hqxHwe5Zap2T3ba2+oYUDFKTuF073/y7rAMKc4wFctyIpU1h8RvjZNnWLpf7iHEGOao5PwswB+RT+gK3MQ4sfYANFBzjfydBNqs/nfnLtok26n4TS0NCnVpyvDfwH3c3b0fJ23NNq/BNtVhNu6CYBixTmLfBk9EoYBeT0qq0DlSjkEIIm9YD224geK06S2HuPy5jIgmsfmNdfyHgKApkRWmpBWn2mypqQfiel13UbCVQSwEYjm0l1GKzVW0PPbMET0ucDTs+cUU2GTZpFLCL0xNAClbre6UJzcZhoc95MOt81aJEoeTdEF4VZENd0waDztBZ7T2uyqrIW//bqDDHfW4Xya1JSOPvo+Q4RL0xLNJqq3ne9fOIo4hE44Rz3SkH5soz3JCsrRdBEERYZFkH64svj6IXadqnXkJJq+d33EgtWeHJLVTf0JwL2n6iuF0kFcMViOGKw+GDTy4BQkKsGwMAyPFgQmrdDq6Gf3s8nxTbYnYjac2d9Yq7vW1U7HOV1n1XUSW4IgMvBLOGeWRhcjKLF46+wJvTCH58+2/W/6iIlkJ7JKrz4kb7zSHu235nKZzjRGnRbSgtus353VLrsUoKaYqRFlaqiob70Vg37vz7tc1NbQvDjBvuivbFDoZsVn96MsdpYUBCH2t+v3HgawchGBSXHIZENLy87Nx4Zt4nEmxJdyMFqwmIpodlVbjRzZw61gPREuusFeRSiQMQqRVSkoZ0GIhuCMM8F0WtnwfnALiZutYyOBivCqXVtkd5yCqqhBEwH64lyFpCkqJKVMa8DQe9wl28ED3yJ0dMwWW/Ftb+zXbx2udueVyL/cIzL1fFZYyNEykACQa1JGrXw8tzQxvnKPbXjSxFNb04hAZoZe7wTEkDM8eZeV8pxbpwLQUgbNmo8iCQJpUaIKlJVBI51AiCIDoJOW7kzgUo6Ngsy0ZNKJGjWpO4x7i5UGyPMFGLEpUx5zNF15i50B3HM8HH3oQmgKBhuwqDsdmotYtxQLbQZMO0P2xUHOtT69c3iBcflxBgVRu2XpzIbidYHtZwmQMLEa8znuWUYGgcXLUquMtqbluzD1gw3tzWtvG4x8RmDVYeW7FuHFAYeMnKiVm39xmXQHWuYjoAOOcSfm1t7ButFjNYnxLI67TlMRNIZyiFbT5ny83a0aRdHJBIjZ4RThUXry1XAhoaYUMOrNU6rxw2RGv+8bEjQmzt/sDuemwDtRhNJhzHgvGq0SQZVFVgbFSg2G/LZSQYkKY3ggeNITOi6k3auCLaKOIECTNvu21VsSysF655L8S4yNOm2G0Vr3v2QOeCBVcYoEe/joxJtF9T1x1DZ44KoPZrIAxbH27VvoQEOrvRavbL7O8jIhpUoZQgehSbPWZGOXlv2hF5q1OEDRRM706j6mk2XHHdzrpuhZKA5pMGLU/PUq/iUOkc2xTO+JR+M/y5DYTBmrwg00YtCOgVBUpBQBtXIXnVscOjAKuXN2yS8Cl9EBttaQA9PJddvXRDpPJghfT6VKP9G3sfcNNirPcKvLpQ4RxU/ZxpkoZxBqFJYFTr2NynZLP60zPCqVHpzE5M5IusB+Yk6J+uYGyN+4OccwlDmN6m+rACRW1+OuY1/J4rMpBXWxapNxqNumK/gbHh9oZjXeNQiubvGMaIMVMTeIRdqaa4yLgpJmsxp4D28gDIouJ9Yzg/YHoqJyGQSp9wtzwRNQef328SU4Fi1/3mhXbyPuXMWYwgiDZoFEWsKB7zsyxa1B5pjrMOr0iEf953gjDdqo2OxdQQoddsQgFyQzxGW1LFMJMkrQi4IPCJRehvV6D0c1PwayOEXq+wmldv2iJwI25jF2Pec6/ykiMTawufXMosj6tFJ47ldshm9adnhFOC8MXwcQtANaQgndakypQrVuKtzx0IIF8r80nQygCM+tALIx67GRT1UHO7dywLlUPMynHaTgJ+z0JNHu9XxjieO/jw6l/Z3RlBfzeuSsBjHqGNc5QG2pxhdWhC+DixG/NOz+7w/cNPtPVaHNn26puAoaHQx4sb0YYR2iur9wTRzeRCtOuWGS2Fv4KV1LY9RZOkvhiQTp+LKuh6pRLoBjznqQmMA1IALIZ0yonPrYUVSdadc/i4IJvVn0xneTvssAMYY02v0047DQAgpcTixYsxY8YM9Pf3Y+7cuXjyySdjOXa7nj7272vleg5CxiSEwRxVtIl0sUQUziWUQnp5N8MSVGwLZHgrHGywGDq/EQCMrTGw7pQDa8eyjpcnz620yGqSE8bIdMv3a+Zyim84ly6FvNxynPpRalE9Pm6C/HZhChIxLhMrfpG1l0CSNJ6bvcpuN5830f1kabMSnYubuGPZqXEUyWuHoHMhKRmEiN8ulEI6XjBEIIFU13jNRtHKPJJ90tSWIIpBAoZxLsR1D6z+oUQsGKqknD++FVZxzriJMu+qf7eeLqqd6D3GZS13ftZE0VeSiOZkfaZvoHV/xXGftRLq2+kHROeQqXD66KOP4vXXX6+9Vq1aBQD41Kc+BQBYunQpzjvvPFxwwQV49NFHMX36dMybNw/Dw8NZNpvoQNw80npBGAxkCBIOkjRivfpcmFXzcPl+o5FVuIlV6AHIXxi7QvEZsZCGeLr6xGMSP0YQLKEh6isoS5YswV577YXBwUFMnToVRx55JJ5++una55qm4Zvf/Cbe/e53Y8KECZgxYwY++9nP4rXXXkvgrLsXslmJqJgFNVnuQ55zs7jVaLvmRZTwyS8jDVl75YJW1y1AG9uJYCI6k6hjVGpz6rzcWx7keSHEj7RsVqBz7dZMhdOtt94a06dPr73uuOMO7Ljjjth///0hpcT555+Ps88+G0cffTR23313XHXVVRgdHcV1112XZbN9ybthRCD3A2+cNK6C2Q27KMZdJz8UgmCE9FAOe7/n6fqFCc2PUjCrXA5/stv+5q7Q32kkCdHVSLbeGtGFWPmior6C8uCDD+K0007DI488glWrVkHXdcyfPx8jIyMAgNHRUTz++OP4zne+g8cffxy33HILnnnmGXziE5/w2TNhp1ttVqIDCTJYdHJ16oyF0qjeY0xhtVc3EVYUyes8OEi7Irc9aJyzSCa3caviUGHmekkunpQW3YbSotsS278vCc79GWe5mt9FIS2bFehcuzU3PjSVSgXXXHMNzjzzTDDG8Pzzz2PNmjWYP39+bZtSqYT9998fDz/8ME499dRM2ul2UxRKApUxcwQUBoNSMDA+UkChZKty3kNCXdZYK6RWfjyu1K+9XmEo9Jl/K6opHGa1wh4m9CVv3ndupJkSIYxRGjSBumUYKtX+wrn5nv37rQraJLHaGrUwjxuTL7kXwwvmuX6mFgX0nBXQy4MBEuf17xX87re8TqiSwEAbifZDbHvPPfc4/l62bBmmTp2Kxx57DPvttx+GhoZq3pEWv/jFL/DBD34QL7/8MrbffvtojexhOsVmJfKNlRNSCgZkYIsyJmHP+tdqfG60fYRgDvs6Lnol5DWTZ2HIB1LYuYdV9Cw3nss20rQp+cQCjE3hV9v1CnfkDWVcBu4n9lB9VlIhK5XWX/DoC0GPl0RxTwhpLvjErZmkkB+5G8attGxWoHPt1tzMlG+77TZs2LABJ598MgBgzZo1AIBp06Y5tps2bVrtMzfK5TI2bdrkeLXD6LcObuv7ROeQ90HPyj9af9nyQqVIHqoGJhUGFfXc0ha2kw6JycVvnPKkotDX+qJaofozbrjLW1ANaJz1kniYBhu/5L4g0A002jPlsn+V5I0bNwIApkyZ0nIbxhgmT54cV1N7irhsViB+u5UgOpkk8h2mRe5C9TPAbt8Ymi3HeY+E/bc6T7f5WitBt9FWbLTN6/k7g3jSxnv9G+chiQip8BkPQt5nrBC9kUHy9eZh7pQ1UWxWoHPs1tz8xFdccQUOPvhgzJgxw/E+Y84bRkrZ9J6dJUuWYGhoqPaaOXNmIu2NSh68qIiApBBqYy/GlCeET7vMXF3O94J4HnSC52wQOsEojsNITdvjsjTBwOpjDwEQPFzIMhjjMFgaw/Htfdz67LXjD2n63pQrVmLKFSu9dxxwImidi9+4EDadRBaQOGw6T7TzAoCZM2c6bJolS5a0PKaUEmeeeSb23Xdf7L777q7bjI+P41vf+hZOOOEETJo0Ke7T7gnislmB/NutBOFGUsUT2yXOXLJJOCb0wrPROkdLbGppH3UoTX2jDa/GMJ7bXmmzWoXq10hw7hLZoaMD5lNByeN8PgxZ2KxAZ9mtuQjVf+mll3Dffffhlltuqb03ffp0AOYq/jbbbFN7f+3atU0r+nYWLVqEM888s/b3pk2bYjVCaTWBiAMpEHjZIu0+F9nrMsSqaSfgZQQIASgxGdNSJPf7tiNSu7VLG29uaLG/nqakHdz6DldkqukfiM5EUWRuC/1Fyftk/y4AvPLKKw4jsVQqtfzewoUL8cQTT+Chhx5y/VzTNBx//PEQQuDCCy+M1rgeJ06bFUjebiWIJEgqVB9wX5z2EjELJQG9orh+RuSLoYtX+W/UJlmJV1b/jGJ7GxoH54CeZC79hAVKzpu1Y65K6FrzHKGp9oawJwxpvW2WqMWcGpsxkYXNCnSW3ZoL4dTKa3DooYfW3ps9ezamT5+OVatWYc899wRg5pR68MEH8aMf/chzX6VSKdCPFJgWN6yV77DTVxg6gV3uXx5422fmtZk4WEv+B20lllkP3azDWnK/SNDi3tz6qnuw9sSDOvLebBSBvM7BTyxiTGLq1fe03sgHziUMH9F7x7tvBwA8e2Dw+y5o3tng+4ttV0TMKIpMzEPWGivTmIxFIQ4jdNKkSYFX17/yla9gxYoV+MMf/oDtttuu6XNN03DsscfihRdewP3330/ephGJ02YFErBbe5UU8tjllU6IgkkKrZyxsZoHYSfK76+w0G23RyEJASgeenWjfbfulAOhFEK3kAiBPcepg5TGhlQWsDNO45H7eXGbpG2zAp1nt2beBYQQWLZsGU466SSoal3HZYzh9NNPx7nnnotbb70V//d//4eTTz4ZAwMDOOGEEzJscTSESGlQIaITdLSIwUjKk9DTt7XbaqDz4ST05odV4wOkUx8oQX8Le/6edvLkxE1aSfj9coA20pMF8RSvymFeSfidf+exoEJY3M5h8iX3Aojf8zzrxaW8IKXEwoULccstt+D+++/H7Nmzm7axjM9nn30W9913H7bccssMWtr59IrNSmRDnmzDrPDzMPN7jmSZAosprPYK/B2ekf0cwkbrxKgxNxK3sWJO8ZZUe9v14gxzf8Wa0iNiu6Ocr1taLrfIOyIanWq3Zu5xet999+Hll1/G5z//+abPzjrrLIyNjWHBggVYv3499t57b9x7770YHBzMoKV1kgyvJeKlG0J90zACp1yxEm997sCm43q1x475UGy+zkpBtNxPkrx50kGu7wc9pyRpZYAyj2sZ6TiS4Y3PHIxp19wd7fsBrklljOO5gw+v/pXOvRZ1Acr0TrQqGEc/vtv4v+4U897p2zJIgn7vbeL2xM2CiRfch5GvHuC7XZyFBDZ+aV7N6zSpAgVREG2s3oex80877TRcd911WL58OQYHB2vFiIaGhtDf3w9d13HMMcfg8ccfxx133AHDMGrbTJkyBcViMVoje5BOtFmJHoA8M4h2CeGxned6BYwDMmyJ75gRmzWEsYkZlwELPFn/Z0CH24qhoPEtFdKyWYHOtVszF07nz58PKT0SHTOGxYsXY/Hixek2KiZo5bg7yCoEyi70+G6rGWAJ387eIePM9XPDJa9NbG0p62ADycb9cA7oWvrGoaJIGCmJkF6wgClI7DlOo64q248zPqygb9AIdGy1JKAHDNFz21+Y8dn0bKz/JmG+W5jUW7nXhhfMA8/QssiTfW1PmB/lu0G56KKLAABz5851vL9s2TKcfPLJePXVV7FixQoAwHvf+17HNg888EDT9whvutlm7XgUlyR7vULVTpWjGqAwsAKHLCO2MF3GpEMsS3KBinHmsHwb//ajOCBQGc1mBS3IfIGr0hHFFZtzhBAAotsbceaSNEXA7hL2+r57O8Z/cLj/hgmRZ7G6Ea7I2tzQnt5h/JwjAJj39PgPDgfr8zcWWYbh+UKwprlNZUxB34SMlfmESMtmBTrXbs1cOM0CbdT9JpSGdL9BYxTOxjYzTJzcXQ+TTkEKoNBfv/aGzsxcFa3y/GRghNvDT7lq/jtIoRw5XAHfagASAOtTIMfDZRnnHHA728ZV0Cje1lyVEBUGtSBguIT9h4WV4h26pGBQCxLaeL1iuRA+lS4NAfBgRqpaEGDM/A0LJdEyJ5c9H6SVY7SxiqYp6kpwpS5aW9VLvdhw6nwoitm/hi5ehTdPOgiMAwqXMLTG3zjY6nerwlDFfkAbdr7XONkydOe59Q3WjRG//m5oHFyRgSYcQdMMKLZuJQWD2i+gV9zTVLge1xBASXGMJ9omA4XJKqQwU14Io+5VqhQkKpsUFPuNmnFpv7+EAEpFWbtnOiFcjnHpCFdLQ8i05zjNk8dpHPmiguAl5FnssMMOvtsQRMeTU9E0zSgCNlCALOuQZT3x3IaFkjBthxSdCwJFwlRFUyVA4arAYmGr7QwJFHio68BLgCi3alfrZ72rmOxyfD6x6DhHMWrOC8S6MUhNgE8u+c4VghQAc9gtBqtFnGVJo+0hdFabU7WCcdPmajxvL9GUcQbZUBuDTyzA2NR+pSe7rcmYhL2EElfr9q8QzkxRsqw3pw2w9Y+wixG17xWU2rHN49avk704lDBYzeYNhZ9Ial1rQwAGAMX8W5Z1GOvGwW0ONXJchxwWYNy8D4z1ZYiygBIiAIRz2SSeFvu9RVMpGJSJ1rww+3sgLGnZrEDn2q05mmJ0DlGEI0PI2otIj8YHX6BJvGUAxWwMRllRDv3QcXw5WPvH3xRYd8qBEDGmoGgUvYTOICVzra7YhHXtW7yC5I8KYiBZMC5r3qVBjO2w6BqHlP4VaN2M5bC5RS3C5H8UEQW5Yn+9bUH2oXslr88Aq68XSt7X16j228Ao3P2+E9I03lQZoA84/3YTbnNPw9i54dT5iR1KCDNUHzBTjhAEQXQSSUSnJR2RAwCG5m/TRCGM52O7Ap2rs0zQ9xIkqNguy94ijhiuQGyuON7jQ/UidHygALGhhXpr7SdAyjN7H2aseeE9T5EgQVBCzB+A5roHZqi+C23OK+1ztKYc+QVvoRRATUhtx7PYEtkb56ZSMtffOMw8zNxx8/aO9orq/M9SibnpXe/lTMOn9Jlf21wxbfBSSrJXThfxiPbpSeHUa6LsKcYodQ80aXtFYWhKfoQDIp9IGVKscdvHeLQwAruBxLgphlkGnCXgSVG/FxrFOavdSRjTjuMEMD4qYwq4IqEWzXYHEfYa7+skcuS6hf97eaAKwVAeUSKLZ375TaUwJz9Gw/5l1cvV7h3slhS9lcdpZay+rySQAlXvTf9ttXFuevy6jN2N115tMD6TKEBkXRNDY1BLwjPdhRdJiPtZwJhs+QqLlWs2LwjB2noRBNGZiHJ9ME/aHnIjqg0YhsTGKE2AD5hCiBzVHOKfWUhJQlEkFFXC0DgKJeEq0Bhp1jjQgk8Khc4gynUx0bKb1RaLuO47itCvGtStIKHSXqgeUU5uv0VSkSDW6RgaB+PmArVl86sF6SzqyrOJ2hHrxiE2lmseolIz7027+GiNEYU+4fTejSFCr0ZA0balyN1m8au+s5ej7+zlgbb1nOelvIhheZs2RuZ1I2Sz+tMzwmnoVY+EiCNMmSCyhHHTCGI8/zl3hMGgV1rn4GxlSCUx4Qm7zyheqi23lywRD8BYK2cmgNVXWwmthu7uFevWz+37mXLFSvJ29KDVhMlaJPJ6RWXbq2+K/N04EQZr60UQRGdi92zyu5c7ccKZmAdh1ZNMbDQ9IaN4zrbtfNBKkMyJ62Rkr8GqGMUnVz1P2/CMszsB+C1gJ33ZzLRNZni4ZfNHJW5x1fJ6TJKw/b1V/2lH5A567VhBQWHnKdEPBAAFW6q0gPdDlPvGb3xu3KeVDqMTIZvVn54RTmNdtWmgE/LOESEIsXLckVjZnxuyQHv1Y6vSd6PHYd6Ln6ktQristkddyGjMZxQGt6JZrcLFvWjK39Tw0JKS4Y3PHBx6v3bs4Up+KQOiTP4ssTWO1cp2+6M2zh05Tq19hkpfQeE5TXhNmJKaSOVkXguAVu8JgnC3rerVsZ2LjjSfaIZPrFdPNiP+wl8jL/ugpZCS8vM8aLHLoPDBbKpOu5GUx6mXYMiYmX4rSXvALc2DVyEjPlSq6RBxFDsKlTc5ZHqAMNfMGruSiMwKizKlL9V8yxZZFq+KG7JZ/enJ4lBxYE2mhagP3FaOSEPjofOjEPFhVaO3CuvkdRXE0Fls/YQVFLCB9m9nq4ARlLpBL3wqvJvnkM9r3C559Kjd5f7leHK/I323a6yCGwZz1T7bgkSWYO+FZ4GmGGg0AEyjMH99IQ1m3HBXqO03LzwAgJl7TivzRO+hxrF9yhUr8dbnDsTqE49J7JgEQRDtUptDxGgHRiHo+GzPYZhoAb6AYqVhMDDhDNVuF1bgzTlDUxBPG4v+ZIU9/2kjdlsr704TrQgiONoXNYIgRbRfj6uyJqYKgzUVeApDnOmb4rq//ZwO9Jc2eX4W9Zo6jl9NQyEFwJRqcbBg9XwdtIqmk5poym9LdDcknPowsPQejJwxL+tm9Dz/+NgRgbeNq8BR0iRhLNdWz8nzLRBmjqzw32MFDpnTa2xNhOwTIqEzoNh9izlCMCiRaoNmQydPOELRZh6sbqGdVfheWb0nCKJ9pJBd4/kUJId9rFSP104kUa8QxIaxL7Zr5WQdiYK0J+yc0J7ar9V3u+mes5NG1I4o6+BWGg4hO9ZmZAXeVrGtvEE2qz8dIjFlx+hZB4Xavmcmxh1MXkKhuinfreiAB0dSg3pSRkaUscQq2BW3l1+Qe8YZbtje8awCEEmT5ljQa88GQ+Ou5xzndcii6EoYKOyJIAgiPSI9X9oUbZIQTjxTZ5Wd+RNZKaQLXUwCVd6fvXYa+0Scdl/cv72fyGuPBssTbnMOv3uxdNatCbWGiArZrP6Qx2kDTWEaQH01shoC3oiiSOiC1dzblYLA+IjSlC+PSAcr14oQzKy0yOq/qdAZlGquxtoqaAY5URzH94HxZKq7ByHIQGgKwJ1jREVBCgYBiVYmal4E+SgU+kSkhPrFfoHKWLWYQ9giVT5GFVdkqH7fydc/z7x2/CGhtp+0FSCrBbbcJgFpRATkRaSWbaSKof5MEN2PEnckSILuYvYQXvu/8zLedj1Gfj3zvPLB571oqBdWeHcoDFmdCUX/jSqj3PfYalG63+a2uSwrqZCVSuR2ZEHrfMOd2Y86DbJZ/SGPU4IgCA+ymBD4HTNM2goLnmCo1I53344d777d9bNSKflHjCP3VkY5adedciDWnXJg9ARVXYgQ7n056Xsq0fx7BEEQRDp0iljSKe30IgavyaxSpFliTaeL936i07Rr7gbQOanoCKJb6TmfyE4fXIkUSWhlN2wfjNpnPfNENeXmjPc8fUNNclhwyQsyUpqxG3iVMY7nDj4cQPaCFeMSCLhSqnp4+RjVKLhapdAYz8nal3d13/iOlSeSSB3RKVC+KIIgwpBGfkEi/3ilKmIlFXI0QmL+RlzmB2HydTaHv7vbS0ohXORQkgRN/2TauP7bMs5Ch+on7ZU3+PwYsEV7+2hly4tyuH3Fdb7dlEc0z5DN6g/JAjHTKx0nbaRggV+J0ukryy2ImlOzMeVANwhAVvh5EHpNFPIyPt3GvnI5uc7Qqp/59UGvHFGN6VWC9uUpV6zElCtWBts4AN3WpyZfcm9qx8qT8ED5ogiCyIwch3bHSTmEvZZnhGDh7GefAqVi2D1UO47iW2EXlbN8Lic1L2xXzIt9rhTgXg/S5la/FS+FaVAwpNHZRba82t6Jjjdks/rTcx6nBGGRRT6OThIVeyVfiRtKIVmBXAqglTbGuCmesQ7PHat4GBRe3gl5IE/CmxuMd9g4Ihk2nDofgHuxqHbhHBi8cJXj77wgRPT+lPd+SBBEZ5BE9W8anzqUDETTPJPFInUUwfWNzxwMVm2qXmHgqoQUzOnIYMhYAgjjtqHc8tz2L74j3oPklIkX3Jd1E0JBNqs/XTT8EURMFPxvi14LG3ATUb2Mp24yqoKQhBgkRb3IWdTvt0PQ37DY3/pARofdJ4buv40btRynXh4gMU5apQCMnIS+tUOc983GL82Lb2cEQRCdTERxrJMWyztp8dCLKKKdLAc3UvhgsfnNLvVA9ruW+x88kFJLTKLcS3m5/1oKYB5jSzvzFSDgnDrANlnMzXtND+h1yOO0AVYKVkYvUsU9orPo4rD8KHRa+HA77VVUCc4Bw4ixQSFo9DgNci7tGi5BacxxGiejG1UMDEVULxOglYDsOnFrURwqzomeosiuEE/jIM+r3MKIXqE0L3nhCIJIl1gFlBzZsd9//wlZNwGGzprSS3mRhKduHgkbKi2Fu00qBYCcz4vzIk62g3ntk7uvo3ic5n5+aEjEXc/DDSHq0wApgM0LDwDQOZ6nZLP602O+YdHphsG2l+iG1ehOpVuuvah6fSZ9Pn6VxxsNkl3uX55sg9D6NwyaYD8KSYumYQ3CbunLWZKWoG+RJyGV8kURBEHkh6CiqSdtCNFSmK928kSyUnB/J68cp2FIMz95GiRpv2ZxnK7AMtq8vFl9RH05HnLekKPFpLxBNqs/JJw2UHmz+qBJyPV686ZEdkvYMLTw3VpqAkJnZhiL1jCIC2l6nll9osAhtej9wz64+A02hm5+xpXWx5OaATlcqT1gWF9w46pvcvIPEa5KMCahFuJRNVjC4UaGzsCrXp/2CuzWapzU6uchBfM9L+tzv1VZKQDVJb9qodS8f84BYUiMDaezxO8nIjbmMSoEmBw09v3RjWrtWH6rl4ybkyDrmlqLW1rZ+/73E9Ws4lBhDQCrMJQc15vC8qVktbFDCgYpWeCJk6uoLhkMg+Uql2crvPq8X5qHKPted8qBbe8zTsgIJQgiDRHFLi6wvvhtgsYFsCSfP3wgnmBIxcdurtFCSJFC1kNxvYptGSJwtCIASE362gBezjpyVDPto43llhEuFmygUG1jdmKR3/wlTtp1cmJMQteC7cNN0GtnbugGtwn9reYPVgTSzcbPAVT7h52q8cuH/I3POBefN69THbbM+DlH1F6NsOp9L8c9Qv0y8P4WgtXm4c734XpPWfNFY6wzxVmyWf3pkKlXvHiFl0pDorh1NSdMD4Rn9CL2h5D94cAK3DRuDdmc45RXK11afUITYIV0+oddtEuSOCuC54Uw3oJSsJqRbRkglsepvQI746YRyGx9hHEJ3Uest3+utBBZuVo32qz2F/ubjQjO6/23f9AIZSxaXg9WgSauyJphYD34eLteGR6oAe6bbX9zV6Q8udbk1E1kLvSFswTtInCQfmQJdqzAmxbd7BNOxs0FBKlJs39xQC9z1+T5gCnkNo4BjMlaX91hef4T7NvP3274R1ngIgiCIJqxC3xy3EhEPLUjhHvRl7SxP+8jT9xbLMQzzkyBTHiIplXsi+lx0mgLsYGCuWi8RV9TTnW3NshRzfyH1faq4m15owZpt134bGWbMVuIshtJhHOHEfmEiwDWiGGwWp/yW7y37jfGTWcKKVCbG8Yl/tuxbKlCSTQXhoJ53T+pfNXctk9x9lfrd28UVF1otShin/tIm1gmPJw++gcNxzjRd/by2qsROarX225/37KprfFNE5CaAWhGdXvzWhvrxp3fG9ch1o2b/VIxr5fwP30HnEvXPs+r+2xErzDwEofSTxpSt9KTMxe7p4t9gGcKgyxXRQoXj1NH+GyPKOvdRqvfrWlwLCZ/e3AuWxqfjX3O/koCYbDadTCrNjYLUobOIETVK7Mquk2YqEBK5mnECN30tGvlDRg3QpjnYhcBGTeFKMYBvcLNc1BlVfw0r2lgL4UQ2H9HYTSvYFqLOW6GXWVM8bxuXGk2nqJgHdfqi1KYnraGbu6fcQm90vq3a5y0lMecn0sB6DGuxstqHwwSCj4+otS2M8+p2bi3i6tJr5xKUfVoFoBaEhAu97SUDIYOh3BvRwjgxSMOS7SdRHsYBmvrRRBEZ5OkvdbyuF5eWx2ALBs1T0k5qkFsroecM27apFyRUFQJrcxR6hdQCqLJlo51DPVzpgkRpSgFcwg4rQRFv4XbmjAKp6gVFKcQ5n4OdgHRWnAHmgU2q61pFohVqtXlLbgqoRaFGdnDnW007b5k7sXGay9G6+HjxlvjEBvLtbmG+aZ0zANq86w+4bh+YRxAmq57Al7GrYR2N09dxUVMjQNWCLYwxKf0mf+oXosoaTLysECUFmSz+tMzxaHiylXX7qA7ODmedvQaaeSta+ojHZwHJXTOlzYZ2Wxg8pYphg9bHgA+mGKZ0+iDJVj1m+kZKmO8pfhoL9LULl7jkJkKonHb8Angw3zHEg+TSujNuXeR+aC4rapHoVEMtxv/dqxxhnPTIzQOnx2vSZEQyQu0RLYIGT18SeS92AJBEJ5oI/VnTqsok1gxJFBobxdh5kpCsFTDsL1otSDv9azvVOxCKWALxQ+K1kJQDzjnkVb+f8lq9o3bYrQQDAokhMGgVKNt4sZa3IfNjs3Uroq5CJGb5qCVedN9l3YueSB4CpLGUH0LN6/Thi86/67O+1iB153ccorXIkTeIZvVny56nLQm6IOzlqfGZ3WRcemYEAcVVHul6hgRH0kbfeMbGNadcqCrwGOt0DJuruwbej25vqJWDaKEwrpbEuChxLnZvkYvzvKo/wVN8pykaL5mbuHlQRBGfbU9ahhUq4ektZpveqDGP/lrtZIb94TMuj6N194y9juhEFQntDEohm6Jx96vTscKZYvyoqgWguhc7ClW3NKSJPHcieJxGAdWbvK4kIY0BUKFgQ0UwCcW658JivgLjcsKNh8sumwYHCvCzE2wy9JOEbpp8zMmazZG2DZZ/Suqt6Rb1JqVW7TmZRqwToNX2izGbba/iDcNQivbq/E6Wja8m9NM4gsWDV6niuVdmjGi3LnGK9ms/vSMxylBhCGtB3+neZy5rSr7EXYw7ShxqENXFYOQF+EqjYdxu+dq5QgePeugGFrTO7Trod5RYwVBEESCSCETL5zpxcQL7otlP7U8rUL6ekD2ykS9kXafe659JAVbdujiVYkfwyKJfKpBMQwG1eYUoGxhiqZBcqz60Y4Hde69IDMau8JSGVPQNyHfHq9EcpBwGgP2YjKcSxgaz8YLjwDgXOlXCmauG7/8tEkldm+FlWvRD6vtrcQdVlDABtS2H4w1YVSJ5yGfRxRVwtAY9Ip3UZ4kCRN67mUgW7lCuWKFSbV3Hm7pCNL8/a3znLCFjtXHHhLrSnWUyZUQzrQTQY1wqRmJev1IWfWkMJijQFiStDtJs1+7Ru+Udtuf9xDMdiqNdtqiGkEQ7riNc/VCOuFT8iSJ15hqz2Efa0qmRnE0oHhiRu+Z3xWidbHBvF3jRhiTkCHDu4PY+nywCNFQMAcwPXpr+1CC/ZiNNlBjGiw/tlqWfQFaZsvhH4Sgto/UBFhfi9RSCnNdBLDnZ213ESCtUP2whWgbYSkW3raKRllisxQsxiQKPlR/77gWlNKCbFZ/cj7tSAbyUulNWlaDtIsdOcxtmuXqKRHvmNGugfSPjx3hvxHhi99v6iXqbfubu+JvTEgURebGIzhPWJ6/eUEYrK0XQRAEURf7wtAo8KaWgz8EUW37dgWo3HsfhiQP83q7aJpYEaou6sNNRJl7N/bjdgsrBKDY39rbVIp6irjNCw/A5oUHJN6muCCb1Z8c3oL5hCapnUMeHqBxk0Xibze68doGoe4dkm07CO8qxeFWwpOqrBpHOanOx+v6NhrYVtVbr1enEzVXVDur/gRBEGHphbD3tudxMTlVBIkQihxFFKCN7aRziCLccUXirc8dGPmYSRD0+oY5X/s95Nh/Dp1x4iSW+WmXXaNO1YzIZvWnC6Ym2WNPBC0Eg1IQ9QTQROrYi8oYGncM6qbLvncy67wSaSUnoxXlPA+edsMm7mJHZtGCYNsGvUZprS6rEYtTFfsjFrWKqY/EmRJFr3TQgJBjspyArzvlwI4a1wmC6E6C2gJexV8i4zYAhvDCatVutwWtVL2MfMSVPNueQItF36QjygKG4weBnAcacLm32rlG2jiP9P3G+5KV8pGJMdS5BBT0a6n1tKrnZw5FV4oS7V7ycWcRRArkxWuT6DzaScgehTyG4wDuRtCOd98OAHj2wE+k3BozT7AasPJpO/d/2HxeaZBWjtNOI0/XRIjok/k8nQdBEEQjUgDgwNSr78m6Ka64V3z3yEMZFzEN3EnmmHekPUghtFkYDEoG9QS6Abd+UCiJGLynO9DAqDoDMYV1XaqJvEA2qz+ZTs91Xce//du/Yfbs2ejv78c73vEO/OAHP4CwXX0pJRYvXowZM2agv78fc+fOxZNPPpleIztxcCFcsVaA8hKSFMZbLk9CWtvFYjK+pezFw4h8MbI+n2t59tXj1cce0npbQ4bKxxb1fuhEI6XXFq8o7Km76AiblehtOvHBEJQsq24nKNS4PRcDeSIr3LVdfWcv9/xKk+AUozeqF/YowCwJO/fL07yr6wlybzfm9bWnxiKtJhbIZvUn02HhRz/6ES6++GJccMEFeOqpp7B06VL8+Mc/xi9+8YvaNkuXLsV5552HCy64AI8++iimT5+OefPmYXh4ONnG0WpG15GXh3cUshYbO5E8DuJxV/NMCvvx025L0OJLcf6+UcK73UJxpNY6abzn93rw/o5zAWvo4lWx7StOKNF+d5Frm5XINaYnT2frmpm3PcCCpN0u8A2XzXCe1+j1KgRDIWzKpKBikX076xrGFN6cl5DksCJnEPujU+wybisWOvyO/mwb4wInb+OOgWxWfzIVTv/85z/jiCOOwKGHHooddtgBxxxzDObPn4+//vWvAMyV+/PPPx9nn302jj76aOy+++646qqrMDo6iuuuu66tY3fKgEjEh6H1xk2dFGohnZvGygPV6tWpBJ14tDICd7nf25uA8KaVgR9mUSWosEsQRHeRpc1KED1J5mqtjRg9Xhvt2DjFpfFzjgAAiOGK+UaDV6mjOFQET72wImUagkq3zemjCtKDz4/F3BKCIOxkKpzuu++++N3vfodnnnkGAPA///M/eOihh3DIIWYo5AsvvIA1a9Zg/vz5te+USiXsv//+ePjhh1Nrp9eA3G0DdbcTtQAO4U6n9P+g7bTnyvQr7hYmFDtu/vGxIzI7diOVMY7nDj4czx18uOvnSmNojY1OFsCJcEy+5N5I44Ve7uxYOSHbCHvKiScPUadTbFaiM2gUoOIsKssKnT12xkGaqWGytAlDETKVUCNh7bZOmSckjbG+nHUTOo9Ouae6CLJZ/ck0odw3v/lNbNy4EbvssgsURYFhGDjnnHPwL//yLwCANWvWAACmTZvm+N60adPw0ksvue6zXC6jXK4PUJs2bUqo9USnkWSydSJ/WIUL8oQUDLB5FjDublhKAZQmGNArnd1nDRGuqNKELXSsPvaQxHJLdZNYm3bBsqAwLpuu84ZT5yPqzTjjBm8P3zc+czAAYOOX5tXC9aOkXUiKdvI+5THVSK+ThM0KkN3ajWT9rKlVnibiw5CJ5lnVQi4USiEjlax0eJzGlOM0K4E0TLGvRIuCdQCMx1tUKeicOrQtk3PBtDKmoG+Cf1quToRsVn8ynWLceOONuOaaa3Ddddfh8ccfx1VXXYWf/OQnuOqqqxzbMeb8MaSUTe9ZLFmyBENDQ7XXzJkzozXOxVMqj5NUIh7IyPRH1+o3QKSckDFe4jAr5o33rV5hbd3LhhbfQOB3TXZatSK2Y7keXzLXNrhdnzyPf+3m2QoTStaqOBSzJ6tPgR2W35Hq8YKQtWCQJ2QbuaJkj+SL6iSSsFmBGO1WoqNIS2zq1QrUUe2CpL1HG5+Rbu1M0tHDcX4BQvVbPdODePXmpShkJ9omrYqEWUJwVrkl3drmJk6nmePUbazL89wlb5DN6k+m3ekb3/gGvvWtb+H444/Hu9/9bpx44ok444wzsGTJEgDA9OnTAdRX8S3Wrl3btKJvsWjRImzcuLH2euWVV5q2abWqV3mzmhPGVuTDuuksI6edwXdkOB8PkG7G6/dt9XBJM6wpjLFsreD4DfxSMyCHK2BVwZ/1hXcm90tMb89xGjbtFFcluCJTLdBlrkQ3v68WZcvfIIlk92ox2HnbDZF33Hm77/bCkBgbDi7W+f1uIsTqvR+FUpD2OK/1yPp6vzU03rK9nEtwLiEMhmJ/fbwe3+zd96Oem5vh79aHxKju9OawtjMEDJ3VQjGV/uh9jPH6GPfiEYdF3k9SBL3GQe+JsOQpJR7RXSRhswLB7Fais7CP8UEXmpUgldRbUakOfgkIf43PwCQ9+1lfvAuQgT0Sq8/uxmc44C+mMoWFKjbVKDrF4a3V6ADCB4uu29XOryqaup1v03eYxIwb7qrZWnY7mXFg9u13QAqGmbfcCSkZtrvpTke0yFbLVoY6l6ywUnYF+T1q860ChxzXwUvW+81pN+IQ7+yODo31HqzPbjZ+bv49qpne0RmG4Nht1fb2E+3eYAMF8x9teolbv6X1G9rnG+b7jb+1hNLBxaiJ1mQqnI6OjoI33NSKokBUZz6zZ8/G9OnTsWpVvWJupVLBgw8+iH322cd1n6VSCZMmTXK8giINieLW1QdNRM8hyueSb+wPr06YYKe5UqeVeWCBKCxCz6bqXtS2tz2BacAKuZcCUHyKbAVZmFEL5jZcYegfNEyRuPrbGQGvsRSmMVwoidp1EjrzDH1Ka2yLUnxJG+e19vVN1Js+L/R5N96e29bCFGXNfxsadxXT3RYB+IDaNMFiHIDCwXm9XxljEkJn4FxCK3PP/uZmbEthLnJ02io6482LEvZK016vTiZyrqg2wqWI5EjCZgXas1sJogmFxS4+NiKqqWL0SrYPoiALcE0enh5jaytxNIi46BapGBWv53tNDPLCJt7WikPZv1/tF3LctJOCRNtNuWIlpl59DwBg6tX3YLub7sT2t94BtSAx85Y7a9tZi/3b31qPhJl69T2172aNXcz0E9ODzL3s3o2sT4WwpTFVMyhuzzjwSeWr9TcM6TCi4vA8b7xujXZK473l55ADwHehp9bu6v9r96nmFDCNdePOtq1Lp1CW23XtVNuVbFZ/Ms1xevjhh+Occ87B9ttvj9122w3//d//jfPOOw+f//znAZjhTqeffjrOPfdczJkzB3PmzMG5556LgYEBnHDCCZGPWygJ11UQrwejm2Bg6Cx2cYUgskbX6iKOmavQXBm3HoaKWhcBDZ2BKxJ6haG/n0FWn9GpiL3CP9cU4xKMm+0XOoOhmdurRVkzSnWN1wyBoJ6mpvAZfbIgDAajwqAW6jlOK2Pm/qKmAWjXS9TQOLgioRbNwc7y1jXKDFyVYJoMPUEqR7BZrBynQbAe0qqPEA2YwmqpmpPI0JnD28MwWCaL8lyV0DUOtSA9i4LUvQtSbBgRH0KG8kJq+i6RK7KyWQkiLHJUM//fieOIJsBKKmSlAjmiQ2yugCkMEpagKMEV05muPMZQ6hcoA5CCOybvQgBKStlzpGaAlYJPqe2h+IyZC7X2tkd55keJnGMFDlmuepGG9FTe7iZTNM0yZZBaFNDGbWnE1Hr4ulL9OaxLqdjmMub/k7k3pACkVs/vb6wv1+YiTMB83zDtP0Ux2ySE+T21KKGVm/uBW077lna/y28ZR45Tr0UHN6GwW+xWT63HkJ6LJeZ8sgPHXrJZfclUOP3FL36B73znO1iwYAHWrl2LGTNm4NRTT8V3v/vd2jZnnXUWxsbGsGDBAqxfvx5777037r33XgwODoY6Vqs8Ia74dICoE+0Jgx16M/UiCSaBTxprNTny9z0eeHZhVFFNb7liv8CGtyVKA6xm/Ck56ONWSL5pcEgoBQlFNYVe6/zUgkBlTGkyQAydQfFZ2A+Dp4dDTIaFFAyoekAqiqyJhL7fkyy2AlSNgjnngdJneaIUBESAMB8pWaAcWpYho6jSNLQLqPUPezONgA//JFI6NB2jy1ZwpQBYumlgM4ULCR7RmOxIwaPLSdNmJTobYyz4/RubzVS0PS9TWA1MShiRmlHzhGQTVGBzs+dkN2K/nkEiSlxzqvt4vcpx0zZkfSrEqBY5DDov6BVuOkdUI63C5Ibd/tY78PJRyac7UrYo1cTTsIS1AYff0Q+sD3+cToIp8Ra5IuqQzepPpsLp4OAgzj//fJx//vme2zDGsHjxYixevLitY4VOtM2tValwHaHTwieJFuS8sl/SMF7N1VNhNe84rnZOJcHKKK+FaNuND7UoUUkngsMVQ2dQGsLLiv0C4yNKVQAMPlYJWx+1r3CWRxQMDNV/K0PjUIv+v51eMYVwC0tklIJBLRrQyvGqXryhAvvIehUTttATGUfDTvKEABQ0p1bY9jd34bXjg3nFEt7oFRZ+QdOFoMJ5FjBDgkV8jkT9HpEcadqsRHdjeZBJEX9qoI7GZdzjE4sQVfHUXOyMIR9oxIr0ccAa7B47fp6QlidxEPhgEaIhfLmXMPTWc3I30VTXmGv6plYE6UvKUBH6eg1CAGoBkRxzGKt7ODIuE4t8DeMUYDlMmE4z5numg034fYXGtnAghYQ6pa8pXB9Az8/lw0A2qz8k84XA/qCze6hpZV4LteRcmmGvKeamJJzYHyRKQQTO+Zg2rcJzw4o8rKCADRYjrfjYcwkqaj1s2G2xwTNMI6d6ajcuZOxy/3LoWmMezWq6AY8Cdq3yqtqvUT1UP4rQGPw+89r3hC3qntJW2oKoaQi8jhHkvFqdS9BUAr1OY+45t1CzdumWUDCCINpHCpmblx23MNZ60dmE7NOISfa8xmhLAMlL7j5hsFpbymM8UJqjVtfaL0w9bBh7GKKKS1Jr0/DuUqHDyy4w03clcM4Rr6OVZopVc+rb7z1rMditva7jSXX7wedbe4WkWQg5LiIXh6oWSSY7kYiTTD1Oc02PuBwT4aABODiJGCgJYrSX3SASdm+5OPpWNwrFURDVHK2NpBL63sazo2PzIhGusDbCngTZIAQRinyFHYe/fw3dvTBjktjtjiQWt7JGSgbWo89Ut+JQRDxIIWNLOxSnXeoXqh+kGFi7tJMlRBqyaRzP0jvcjhQww9B8t2OO/3cSZLP602WPyOSQMn2DhkiPJFeTe4U0cj4GJYgI6fZQs7yVswids5LH+/GPjx1R+zfPUR7ePC8q6FqK14mzWKvrEt7kfZLPpazljAr9ksHHoCVLlmCvvfbC4OAgpk6diiOPPBJPP/20YxspJRYvXowZM2agv78fc+fOxZNPPhn3KRMEkRUx2LG5e44bDZW0WxB7VeeE5gV+gkrjecR9Xo3XkuY/3nh7r5KNlwReRbqJdEjLZgU6124lj9MYsFfZNovKCIgRBQoJrbGx2x9uC7ztM/M+Ufu3oXEoSj2cJU9GoaLKwAaRb7s9qvAUF/4G5Z8eHbJl0Ug1z6AhgIAhJ0JntVxi7WIvwtSJSMlcjXa1JMLngW4g7yKWnThya2ZNXr2DGvtXGmPu0MWrAABTrliJtz53YPIHDAgTEiziKnyY7z344IM47bTTsNdee0HXdZx99tmYP38+/v73v2PChAkAgKVLl+K8887DlVdeiZ122gk//OEPMW/ePDz99NNUuIggEsZrYTnWZ1GUvIkhbaMUak41kXbREWlIsBiLg6ZKj3h9pUUaNpY9561VvLZdb1Y2WITYWE7cU9MruiuplB7SkHVxVTMAxZSx0hCyrfOsjCnoC1iAt9NIy2YFOtduJeE0ZaRIYFWUSBYyRACEM67zIlCHbYeucRT6bEJ7Sl60eckbljVWcSg7SYS7GBVmJuj3IeykUmqGe6XbkNiT67dih+V3tH2spNArVhGDjBvSA9xzzz2Ov5ctW4apU6fisccew3777QcpJc4//3ycffbZOPpocyHtqquuwrRp03Ddddfh1FNPzaLZBBErvVLV1xNDAp0q+GUMU1h3eF5y5ulIQbRnTzaOL37iZhC7vh3bP1JknCEAJUdGWTtjVtXWlppBY38H0ql2KwmnREfw5H5HBt62UEquHZ2C9RCpXHBsesdMM1Q/gQe/YhsNTc/x2A8RmShCdF7E67BYVeuVgoAoJ2PgJSXmBRFNO/V3CUsn5neKG24APOJknFfXbzZt2uR4v1QqoVRq/ZDbuHEjAGDKlCkAgBdeeAFr1qzB/PnzHfvZf//98fDDD5NwShAJQYuiBEF4wXn04rpSJJNCMNXowRa4iaEUyp8sWdmsQOfYrTladugMvIwgMo46H5roNxNG5MnLwzYq7RSHkgIo9EUbBIIIzmGEPsMI14/tv7FeqR+oVbvSyhkqBYtlbLWL4kl4/K875UCsOyW+EHE/b1MtIUE5aXpFNLaInCvKlqB/5syZGBoaqr2WLFnS8phSSpx55pnYd999sfvuuwMA1qxZAwCYNm2aY9tp06bVPiMIovfotTG567GJTXyw6LpJL4tPmdQqCeANaURIleVmG094aTz0fuImNj2kGzzAO4wsbFags+xW8jgNQdD8hp06qe0lutJYpDCtQFghxICVn6f1PR0m39DUq+/x38gGV2RifTGKV6VaDN6YmbfciWcP/ITn52ksJiV9H+d1nCiURKridVR6PS2N3ZiM8l0AeOWVVzBp0qTa+34r9wsXLsQTTzyBhx56qOkzxhryz0rZ9B5BEASRHoxJGKLNeWMc9j+FO0MtpHANDOmaj9jN3gxrf43M6gPWu3wQ0CCXkrXtBMN5BPu/DZE0jvRYQTB0Bt7BNS6CkIXNCnSW3UoKXwgsgcVvQCiUcjrbJggf8ioUxYGXB2UYw8RNZI2yUmwhQnqHtsLvt5t8yb2u77cSWO3Cl307tSDxytGHhmleKGbccFdi+26XNDzTgxidjAMvHnFY4m2JC8Yp32kUJk2a5Hi1MkK/8pWvYMWKFXjggQew3Xbb1d6fPn06ADSt0q9du7ZpNZ8gCCIvRMldKETrZ2gmXoc+8IY2JWmLd0Uu1w4gi0Jq7RJGNA1SUDZqP3Yr9hS238rxNsIIiciEsVmBzrNbO/C2zg8U2t070G9t0g3CqlqMbjS69QMrQbs2zrH2xIMi79v7mOG2VxSJvsHkDIY07oXXjj+kre83TkL8t/f+LNXcvV2C26S1G8aOsFgVSqO+giKlxMKFC3HLLbfg/vvvx+zZsx2fz549G9OnT8eqVatq71UqFTz44IPYZ599YjtfgiB6h6QXwnqt4AvNM7qbVoK9X6GnPEfvJGHbRbr3aUGgbdKyWYHOtVspVD8AcRgH7/vLCgDAPz52RPs7IwLRixP1nsEQkC4rklHJi8Hq1o6WHqEehsL4sIqBoXAZ5/N0vyTVFq/9tptWYMoVKwEAo2fFL5wTnUscYU9BOO2003Dddddh+fLlGBwcrK3QDw0Nob+/H4wxnH766Tj33HMxZ84czJkzB+eeey4GBgZwwgknRGofQRBEpyEEwMGQD4svAgpLLqTeyJERSAAwxdbY5ycd/DtLQ7bO0ds4J3KbI/XYgkwY0rJZgc61W0k4baDyZgX9gGNgyZOgQPijlTkYFzXBqVM9xoTBfFchLaSQnoZg6eu3BNqHUhDQOyk/rxaxFGVEpGBAxBCvoIWjvFak7WNQ3F4eUtT3GXZVu2+CgfGRdPILNVIoCVTG6heDcUC6dAn7NY1y7fJU9EwpiEDhUZ2AWpSx5cHd+KV5GLp4lf+GKcMN2UaF0uDfu+iiiwAAc+fOdby/bNkynHzyyQCAs846C2NjY1iwYAHWr1+PvffeG/feey8GBwcjtY8gCG+4f1q3JhQ1+pjIOIM0JOS4AdYX/zPZfA7Wnz1JhiGzkgqpVdrej18bpSHBfPKCSi35CWDUOUpauR17CV1jUGx5LBNNmWCztxtTfrn1CV3jgeeEkdsUQ47TSAgZKLQ+y8JmSV/7PJCWzQp0rt3ak8KpV/EmaUgUt65WIQzxQArz0JOC9Vz4SVa4PfAs4YTxNgXVFEICuCId7fVDjmrgAwVIALykwhg1H0Llnx4dSDw1NO+DBFnxbHU9uSrBqvk84zJE2EB8lbB0TdrEw+YHpJQMDLL277Bo4xylCQYYtwS/+vhi7q+67+p1bvy9i/3Oi6YWGCplu3HHoBRaX9gNp85veo8xCbVotg+o5yziqoQRoPhQK9G01A+Mjjjf4wqr/f5amdfyQatFiXfcebvv8exY47g2zjFhCw2VMQXb33pH03ZbLVuJl486DNOvuxtrTjgYQD23rNt9JWziq6JKVMYUCCEw+3Zz39vddGctlYDqcc0HlroXCZOCYcJkHVxt9iJgXAKGy3s2tv1N+rlft7vpzsjfffOkgyB0hilXrMSbJx2EqVfdjTc+c3BsbZt2zd2x7auTkdL/ecQYw+LFi7F48eLkG0QQRKpIIQFDgk1QIUd08K37IUeSS9kjRPJOJW55DtOgUZwpnnEzKhccG+sxgl4/+2K2FKjZoW6YornPtL56bnJch9QE+GARGO3dXJBckY5aA0p13mUJmX7FgKQwCz3JcdOus2A8/vtDLQjX+YerHbuxbLbPZQyQQrreW4MXBl98lrI659Ccoi/jzsUfQ2cOu7W06DbHfhr/tmia3VUEmMJaepzqr4+AlepzEvu9EOW3aFVrYeSrB5j7tRZWMhR0O5VOtVt7UjgtlISreBpmJcPQWUcmfiY6i7S9nQ297uXKbf+XgoFxQCnKmshmVRjUKwz9A+a9I4SZX7LxQS50Fuu5tPKwteCq2Q5TBOSQAtArrJbjlHEJYXAwLqEW6u0Le1/br1ng71QY1KplwJisefp6eZzaPSuDEDbHafMqe/235aoE0+q/exisFCVPH3AEdrl/OZ7c78iaANmKVgLh1lfVRcnVxx5S8+ZtJfBZgur065qFtleOPhQzb6l/d/xjR2DOyuUt2+dlULkJplZRrgEAwwvmAQAm/Pw+TGh5hO7A/ltZ/05a7Nxq2UoUN20ChoYSPU4QuGwj7CmAUUkQRGeQti0nR7Xav4MKkEG8zUwbL0GPUyFrRWCkkGAVUTsXKzpG11jNxnSr4F3sN6NRrLZ6XXs5qjV759quVf+/1+2C4sLftGx28as3+Z6amzBlX0gs9hsQBoMQrCaQcS5dC5CKzRqkZoAVbFE3Decihlt77bICd3j5daJTj+Wl3RgtxZiEWjD7S0VnteKUQSN2LJt+6tV1G6Z/sdN2HT/HTL3HCkpLb0ljY6W6HYMCaV53TcAweO1+q80/VAkpWdNvbtmcb3zmYGy1bKXjsw2nzq9F3DwMAJiH8XOOQN/Zy1FecmSTODm2+DD0ffd2jH0nfIFXqw/b7bjVxx7i6rTwwuGHxbLY37/4DpSXHIn+c7z3VYKZKst+z9q337zwgFDCsB8Tfn5f7d8jXz0AE/7T3PfGL82DEN7FePMO2az+9Ixwmpdwe7UkctMWIv9ETQguyumuII+NCvRN4FUjlkUeeMMQJoTKvVhNVRzUm2cAhs6gxOfQ6tx3C89eL1p5HLuNJ2FynOqVzl0pzcIDsx3iNNyIDiBCwnz7dwmC6Ez0sfq/CyXh8GoDrAVp9+9GrvpetIloAwXIER2MMwjNf6HZj7qQZ3tPsLYiEjwRwkw9YP1d4IBh2jN8sAhF12AYprhoem7aUwhICMGww3JTyHn5qMMAOBdNrQVMoC6GjZ19SM2jzf5+ENTPXxf6FN2wIpG4z0I84wCfWICxPkK6qoZoOVmu7yMrD992sPLL27EWw18+6jAwOKOZnj/0cM/oJvsCelDs/dQS0xoXxU3HEwlRNn87Y8xMe2E5K0hpRl3ZbXGvscFt4dlNpOs721z8d/PotPq2XWRsBy87PIiTRFC8PFPteEV6AcDEC+7z/Kxd7CJqHlNGhYJsVl96Rjj1exBF3m/9eR4Ivcx9Q2oJAqiGQvD89RWrYrmiSmhl3hRGHraieZJIYa4wqwXT+9TyNs0T9tCbsPkreczhIWoxf/0tDtaccLCrtymRLfb8ut1Imon2CYLIJ4bGfcVQQ2M1r/zNCw/w3WfxjJub3iv/9GjXbVuJgHYvvEZvU7uQZAmQQD2C49VjwnusNVI49QbH39pFxzV5b46fcwRYQcHAf9yNsbMPweCFq2qph7ZaZqaBsQSlNScc7IgIcfOEc1vA7D/nLoydfQgG/iMbOyGKk0RbOU4VDmgCrKRAdlmovtVv3X77JGgl2FnYhTtLuLf6odWXLe9Wuxfytr+5K5b7jCCCQDarPz0jnIauShdDB7CvGD2+9ycAAP39XTxL7BAir+ZnRNbFrQyNgyumd4Q2znMljLZC+ITQp+n53XisxoUctSHvqR9uHrSmR0v8Se3NNAsMXBVA2bsv5tmTPqsCVoQ/lmcQQRBEr2BU0+AAzel+onpHlb5+Cyo/P6b+96LbUF5yZMvvWN5qa088qGWo/va33oEXjzgMhg68eMRh2GH5HYl4mxa+fGPTe5b3HFAPv7V72dlTwrSzQNoqFDhpOJcQIf2CG0P1m/Y5WIRYN95u07qKsLn0W2Hvl61oFOob/270GG30Kk3Eq5sgiEj0jHDaLoUBicpmWwJpW3EPvWIKC1Kaxk+UUFwiPhRVmnmBhGmYxlW5uV2EYOA2YcvQWWzeVowzMzSrTcHfzBdkhrALnZmJY7qMuEPTrQlPoU9EygPql1PMTZAUtnArtz606+9vqxVCarlvD1FeCjSFFnYyfROChwXscn8wY5honzhDufJImhVKCYLIJ0KYDn6NWCGuq489JLGIiCAhroAzl6MXtMiVHGE8Ti2bsC2PU4IgiAbIZvWHhNM2iSLKZe1BSPiQI3dzIRgYy4nya0OEHCDjFq+j5mKSAij0SVTGWm8XqNhTw0xIChZo8tHqWnBVAuXm98PmOH1q7pHYYoZvU2IlyCLAbn+4LfF2EJ1BWmF0WcLayBcVOc8UQRAE0VE0epy2WlA3K7bT84EgiHghm9WfnhVOpWCA0b6aQyIokVsi9O+oxajSRor2ix10C1nkiOy0cY/ymxJZwIUAj7hqFPV7BEF0Fp1W5JBIjyRschZzbnyCILoDsln9oZhyPwJ41qlFWcubaegssUJURDAYrxsbQme1KqDmKq0pmkvRsKKbwkpJY25QL69Gs32s4b3oxy19/ZboX25xfMOjkFG7hp4Q/q928ct57HVueSSO3KKNBb4IgiAIgiCI9JGyeR5Q+ywOc63qWEGeqwRBEMEh4TQg2qj7A8wvPyFBpIlbCLtXpdXw+45lN7nDrVhYoFD9Bo9evcKw9sSD4moWQRAdjlWhNOqLIIgQGDI/L4IIQZLRXlJrzvFOgilBEI2QzepPz4bqAwAUlqt8loQ3YXIjPn3AEck1JAM6KSy6Rzz1Y8X8fc1xSOTY0zWMl4OfRy9B9AKUaJ8gCIJoh0AL+e0gpDkfJgiipyGb1Z/eFk5DIgUDFHs1a1l9321bkD8vkTpuK8txYlWOJ4E0PsJ6rTeON2ZqCmetqr5B3bGNoXGoxeB9g3EARm8IoDNvuTPrJhBdCpNtJNqXvWGEEgRB9DqNxaFi3fdAAWJUc/2McQZ60hAEAZDNGgQSTtugUUglkuPJ/Y4MvK1aDLHjIAOEIYAuKkXUHKIT7NykALTxzlsN4KpsKQB2ozg4PqyifzC6iB4lh1YsebcIgiAIoouw8uoTRBDi7itS896hfT5A4fsEQRCtIeHUhjSka45Ioouh37tGoSRg6IrrZ/Z0AWaRKwZFlRCG8/px3lwEK2/YvWUb2x8FQ2e+oVRB0y1wVQJl53tx5JZVCvFY4qbI7H6u3ZoDlyCi0k7ep17JF0UQRAL0SNhkLyM1A6xQN7ykkO5uEAap9gRB+EM2qz8knLZJJ+WfJLJFCAYeISimmwqQScFcizElSZS8oeMjCiZMrhubUgBw15QzhzxZCCKfkBFKEARBxAUbKEBudg+7JwiCaAeyWf3J1EdoeHgYp59+OmbNmoX+/n7ss88+ePTRR2ufSymxePFizJgxA/39/Zg7dy6efPLJxNrDKDl2V+MqMPXIjd6K/qpAqJWDDQd+1T/dPs/bAkM352j1utaTL7k3/L6Eub8g4iwJuAThxEq0H/VF5I+82a0EQXQ3hsfiPyvEt5ov6XlDED0P2az+ZCqcfuELX8CqVatw9dVX43//938xf/58HHDAAVi9ejUAYOnSpTjvvPNwwQUX4NFHH8X06dMxb948DA8Px9MAlx+5vLa6kpdQaMPYGKkLSaNX2hDpciakWqHkfmHQUkjIUa1WIYiXgjuTj20wvxNXOLcbakGA8WooesYE8UAtlOrXQi2Zbbc8ZYXOmvoJVyTUove5tfIabhQ67cdu9R4ACENifMTdeG4UsDecOt+zDV7f8aM0QOMZQRC9Q+Z2K9ER2O2BtKNsqEJ69yI9ijwBcJ3TSkOauUt7RNQgCIJIksyE07GxMdx8881YunQp9ttvP7zzne/E4sWLMXv2bFx00UWQUuL888/H2WefjaOPPhq77747rrrqKoyOjuK6665r69hennXSkChNLZh/KJSwrxuxBDDGq4KVS47TPK28eglmSWBo3DdXp1p0tscSdIt9rQ11XeOQIlrYfLtYYq2bRyRXZG1SY51LozeqXjbbbhWR4qp09Bt7rtepV9/j2ga7ONr4mzaKqkE8f3l1YsQVhr4JBjg3228/R84lpl93d8v9MCbN9ld/F+v/YQTuOStXYM7KFYG3J4ieQQBMyEgv0JpE7sjSbiWIwOTIhiXCIwUDYxKVsWZbkPXVnSKkVi8AWlp0m+u+mMJqtTvcij/xkko5UAmCMCGb1ZfMcpzqug7DMNDX1+d4v7+/Hw899BBeeOEFrFmzBvPn172kSqUS9t9/fzz88MM49dRTXfdbLpdRLterq2zcuBEAMKzp2LRpEzZVdBRKApWKglJJQOoSYtMmjJZ1MAWAYNCqf+ubNmGkokPoDIYhIHQGRQroFQ45zsBVMxeEJQgpkBjVJIyKgVFNQpHAwKZNAIDNRn2VUIYUjzZV99HLbNbD5fQp6gJSAIbOITQdWsWAEAyKlFAgUFQEtApHsSzBBIMsCxgVA2oZkAYgKjoK4xrkuA5R1jFeYaiUOURFh1JmEBUdvKxBC/HbbNY1KExA16teoagLVvbf2DpXDgkuJUrcgKzoMBo8aYfXAn1D5khlGUZ8XIMsa+Aqg1HWoY5pkBUdJdv+R8q6Yz/jFbM9hs6hVfu1KiU2a0C5LMC4WZV+RFdR0QwYOkeFcRjjAlIyMENiswHAACplgT5VQGESSkVA2bQJwxUdhsFq4iPjEkqL67apont+ZqHCTIKve+xnuKKjYgiomoShm2LkeMXMwVIcMFCGgkrFFDytdmllHZouoBsGRMWAys1rW9ZMY1ORspb/pViWptepLlCumNvp4xzrjzsAW192S3N7NA2o6BCCYawssXmMQTEklOoIrAiB8TFTxC1rAlLW+8RmXQN059+GzqDrElwAWklA0wU4JFRunvOoLqFqOoY/NQ/TrrgZwxUdCuoCshSs1p+EYBgf5VAUiUKfhF4R1X5poGyYorFmcFTKAhVNoKiKmlBcGeN4++MH1/braDOcf9M4RqSF1dekzFZAMCqj0CNGMRj6WMytIdolbbuVxsxwjASwHdLEqNo/jaibNmFYS+aZWKnarXxMQYH6T+4Z1sz+YehOxwJhmPNNa0F806ZN2FzRwRVzfsLXj0NqBriC2jykPFIxbf9xDZVNmzD21gigCTApICsGGMwCyKKsAYKbAntZg9QFICRkWYdBfYYgMiEPdivZrAGQGfLhD39Y7r///nL16tVS13V59dVXS8aY3GmnneSf/vQnCUCuXr3a8Z1//dd/lfPnz/fc5/e+9z0Js+wzvehFL3rRi1706tHXK6+8krQZ48rY2JicPn162+2fPn26HBsby+QcCHfIbqUXvehFL3rRi15JvLKwW8lmDU5mHqcAcPXVV+Pzn/88tt12WyiKgve973044YQT8Pjjj9e2YczpZSelbHrPzqJFi3DmmWfW/t6wYQNmzZqFl19+GUNDQ/GfBFFj06ZNmDlzJl555RVMmjQp6+Z0PXS904OudXrQtU6Pbr3WUkoMDw9jxowZmRy/r68PL7zwAiqVSlv7KRaLTd6NRLakYbcKIbBu3TpsueWWLb9HhKdbx7w8Qdc4Wej6Jg9d4+Sha+wkS7uVbNbgZCqc7rjjjnjwwQcxMjKCTZs2YZtttsFxxx2H2bNnY/r06QCANWvWYJtttql9Z+3atZg2bZrnPkulEkqlUtP7Q0NDdGOmxKRJk+hapwhd7/Sga50edK3ToxuvddYLpX19fV1vQPYiadmtkydPTqT9hEk3jnl5g65xstD1TR66xslD17hOlnYr2azByEUFpAkTJmCbbbbB+vXrsXLlShxxxBE1I3TVqlW17SqVCh588EHss88+GbaWIAiCIAiC6FXIbiUIgiAIgugdMvU4XblyJaSU2HnnnfHPf/4T3/jGN7Dzzjvjc5/7HBhjOP3003Huuedizpw5mDNnDs4991wMDAzghBNOyLLZBEEQBEEQRI9BditBEARBEETvkalwunHjRixatAivvvoqpkyZgk9+8pM455xzUCgUAABnnXUWxsbGsGDBAqxfvx5777037r33XgwODgY+RqlUwve+9z3X8H0iXuhapwtd7/Sga50edK3Tg641QYQjDbuVSA4a85KHrnGy0PVNHrrGyUPXmOhEmJRSZt0IgiAIgiAIgiAIgiAIgiCIPJGLHKcEQRAEQRAEQRAEQRAEQRB5goRTgiAIgiAIgiAIgiAIgiCIBkg4JQiCIAiCIAiCIAiCIAiCaICEU4IgCIIgCIIgCIIgCIIgiAZIOCUIgiAIgiAIgiAIgiAIgmiAhFOCIAiCIAiCIAiCIAiCIIgGSDglCIIgCIIgCIIgCIIgCIJogIRTgiAIgiAIgiAIgiAIgiCIBkg4JQiCIAiCIAiCIAiCIAiCaICEU4IgCIIgCIIgCIIgCIIgiAZIOCUIgiAIgiAIgiAIgiAIgmiAhFOCIAiCIAiCIAiCIAiCIIgGSDglCIIgCIIgCIIgCIIgCIJogIRTgiAIgiAIgiAIgiAIgiCIBkg4JQiCIAiCIAiCIAiCIAiCaICEU4IgCIIgCIIgCIIgCIIgiAZIOCUIgiAIgiAIgiAIgiAIgmiAhFOCSJFHHnkEn/rUp7DNNtugWCxi+vTpOOaYY/DnP/8566Zlxh//+EeUSiW89NJLmbbjzDPPxB577AEAuPLKK8EYw1//+lfP7Z955hkUi0U8/vjjibXp7bffxqJFi/Cud70LAwMDmDRpEj70oQ/hl7/8JTRNS+y4rRgZGcHxxx+PnXfeGYODg5gwYQJ22203/PCHP8TIyEgmbSIIgiAIIj7IXm2G7NX0YIxh4cKFse1veHgYZ511FubPn4+tt94ajDEsXrw4tv0TBNH9kHBKECnxi1/8Ah/5yEfw6quvYunSpbjvvvvwk5/8BKtXr8a+++6LCy64IOsmpo6UEqeffjr+9V//FbNmzcq0Lbfccgs++clPBt5+p512wqc//WmcccYZibTnH//4B/bcc09ccskl+PSnP40777wTN9xwA973vvfha1/7GubNm4fR0dFEjt0KTdMgpcSZZ56Jm2++GcuXL8cnP/lJ/OAHP8ARRxyRensIgiAIgogPslebIXu1s3n77bdx6aWXolwu48gjj8y6OQRBdCBq1g0giF7gT3/6E04//XQccsghuPXWW6Gq9Vvv+OOPx1FHHYWvfe1r2HPPPfGRj3wkw5amyz333IPHH38c1113XabtePTRR/HSSy+FMkQBYOHChfjABz6Ahx9+GPvss09s7TEMA5/85CexadMm/Nd//Rd22mmn2meHHHII9t9/fxx//PE488wzcfHFF7fcj67rKJVKsbVt8uTJuPHGGx3vHXDAASiXy1i6dCmef/55vOMd74jteARBEARBpAPZq+6QvdrZzJo1C+vXrwdjDG+99RYuv/zyrJtEEESHQR6nBJECS5YsAWMMF110kcMIBQBVVXHhhReCMYb/+I//AACMj49jzz33xDvf+U5s3Lixtu2aNWswffp0zJ07F4Zh4OqrrwZjzDV06gc/+AEKhQJee+01AOZq+bnnnotZs2ahr68PH/jAB7Bq1SrMnTsXc+fOdXx306ZN+P/+v/8Ps2fPRrFYxLbbbovTTz+9KRTbCqW5+uqrseuuu2JgYAB77LEH7rjjjkDX5aKLLsJee+2FnXfe2fH+DjvsgMMOOwx33HEH9txzT/T392PXXXet7ffKK6/ErrvuigkTJuCDH/yga4jSZZddhp122gmlUgnvete7cN111+Hkk0/GDjvs0LTtzTffjJ133hm77bZboHZbvP/978euu+7aUryMwq233oq///3v+Na3vuUQTS2OO+44zJ8/H1dccQXWrFkDAHjxxRfBGMPSpUvxwx/+ELNnz0apVMIDDzwAAPjLX/6Cww8/HFtuuSX6+vqw44474vTTT6/t85///Cc+97nPYc6cORgYGMC2226Lww8/HP/7v/8bqM1bb701ADT1b4IgCIIgOgOyV90he9Udy/b8yU9+gvPOOw+zZ8/GxIkT8eEPfxiPPPKIY9uTTz4ZEydOxJNPPomPf/zjmDBhArbeemssXLjQM4LqkksucVybG264wXFsVVWxZMmSpu/94Q9/AGMMv/3tbwGYvz9jLMYzJwii55AEQSSKrutyYGBA7r333i23++AHPygHBgakrutSSimfeeYZOTg4KI8++mgppZSGYciPfexjcurUqfK1116TUkpZLpfl9OnT5ac//WnHvjRNkzNmzJCf+tSnau8tWrRIApBf/OIX5T333CMvu+wyuf3228ttttlG7r///rXtRkZG5Hvf+1651VZbyfPOO0/ed9998mc/+5kcGhqSH/vYx6QQorYtALnDDjvID37wg/I3v/mNvOuuu+TcuXOlqqryueeea3m+5XJZ9vf3y7POOqvps1mzZsnttttO7r777vL666+Xd911l9x7771loVCQ3/3ud+VHPvIRecstt8hbb71V7rTTTnLatGlydHS09v1LLrlEApCf/OQn5R133CGvvfZaudNOO8lZs2bJWbNmNR3vne98p/z2t79d+3vZsmUSgHz00UdbnoOUUn75y1+WW221leO6tMsXv/hFCUA+9dRTnttceOGFEoC8/vrrpZRSvvDCCxKA3HbbbeVHP/pRedNNN8l7771XvvDCC/Kee+6RhUJBvuc975FXXnmlvP/+++WvfvUrefzxx9f29+CDD8qvf/3r8qabbpIPPvigvPXWW+WRRx4p+/v75T/+8Y+m4wshpKZpcuPGjfLuu++W06dPl//yL/8S2zUgCIIgCCI9yF51h+xVbyzbc4cddpAHHXSQvO222+Rtt90m3/3ud8sttthCbtiwobbtSSedJIvFotx+++3lOeecI++99165ePFiqaqqPOywwxz7BSBnzpwp3/Wud8nrr79erlixQh500EESgPztb39b2+6oo46S22+/fa0vWnzqU5+SM2bMkJqmNbX5zTfflADk9773vdiuA0EQ3Q8JpwSRMGvWrJEAHCKVG8cdd5wEIN94443aezfeeKMEIM8//3z53e9+V3LO5b333uv43ve+9z1ZLBZdv/fggw9KKaVct26dLJVK8rjjjnN8989//rME4DBElyxZIjnnTUbYTTfdJAHIu+66q/YeADlt2jS5adMmx/lyzuWSJUtanu9f/vIXCUDecMMNTZ/NmjVL9vf3y1dffbX23t/+9jcJQG6zzTZyZGSk9v5tt90mAcgVK1ZIKU2Dffr06U2G/0svvSQLhUKTIWrt97HHHqu9F8YQveyyy3xFzrBYxuH4+LjnNnfffbcEIH/0ox9JKevG64477igrlYpj2x133FHuuOOOcmxsLHAbdF2XlUpFzpkzR55xxhlNn19//fUSQO31uc99ztVAJQiCIAgi/5C96g7Zq95Ytue73/1uh3j5X//1X47FfSlN4RSA/NnPfubYxznnnCMByIceeqj2HgDZ398v16xZU3tP13W5yy67yHe+85219x544AEJQN56662191avXi1VVZXf//73XdtMwilBEFGgUH2CyAlSSgBwhJIce+yx+PKXv4xvfOMb+OEPf4hvf/vbmDdvnuN7X/7ylwGYoT4WF1xwAd797ndjv/32A2BWRy2Xyzj22GMd3/3Qhz7UFAp0xx13YPfdd8d73/te6Lpeex144IFgjOH3v/+9Y/uPfvSjGBwcrP09bdo0TJ061bfqqBWSNXXqVNfP3/ve92Lbbbet/b3rrrsCAObOnYuBgYGm963jPf3001izZk3TuW6//fau+bhuvvlm7LDDDnjf+97Xsr1eWO1fvXp1y+3s11LX9drvHRW3/gIAn/jEJ1AoFGp/P/PMM3juuedwyimnoK+vr2X7zj33XLzrXe9CsViEqqooFot49tln8dRTTzVtf+CBB+LRRx/F/fffj3POOQc333wzPvnJT0II0dZ5EQRBEASRX8hedUL2KnDooYdCUZTa3+95z3sAwPXafvrTn3b8fcIJJwBALbWUxcc//nFMmzat9reiKDjuuOPwz3/+E6+++ioA8xrvscce+OUvf1nb7uKLLwZjDF/84hd9200QBBEUEk4JImG22morDAwM4IUXXmi53YsvvoiBgQFMmTLF8f7nP/95aJoGVVXx1a9+tel706ZNw3HHHYdLLrkEhmHgiSeewB//+EcsXLiwts3bb79d29bt+3beeOMNPPHEEygUCo7X4OAgpJR46623HNtvueWWTfsslUoYGxtreb7W515iXuN1KBaLLd8fHx8HEO5cAeCmm24KnWTfjtX+Vuf74osvNl3PBx980HP77bffHgBa9pkXX3wRADBz5kzH+9tss43j7zfffBMAsN1223mfBIAzzzwT3/nOd3DkkUfi9ttvx1/+8hc8+uij2GOPPVzPbYsttsAHPvABfPSjH8W3v/1tXHrppVixYgWWL1/e8jgEQRAEQeQPslfdIXvV2161aLy2VlHSxmOpqtq07fTp0wHUr0fj+37bfvWrX8Xvfvc7PP3009A0DZdddhmOOeYY1+8TBEFEhap4EETCKIqCj370o7jnnnvw6quvugpYr776Kh577DEcfPDBjhXbkZERnHjiidhpp53wxhtv4Atf+IKrMPW1r30NV199NZYvX4577rkHkydPdqzoWkbKG2+80fTdNWvWOFbxt9pqK/T39+NXv/qV6/lstdVWgc+9FdZ+1q1bF8v+LPzO1c5TTz2Fp556CldccUXk41ntb3VdZsyYgUcffdTxXmOBATvz5s3DpZdeittuuw3f+ta3XLe57bbboKpqU6GERg9Uq2iTtTrvxTXXXIPPfvazOPfccx3vv/XWW5g8eXLL7wLABz/4QQCmhytBEARBEJ0F2avukL3qba+GRdd1vP322w7x1DrXRkG18Rp4bXvCCSfgm9/8Jn75y1/iQx/6ENasWYPTTjsttjYTBEEA5HFKEKmwaNEiSCmxYMECGIbh+MwwDHz5y1+GlBKLFi1yfPalL30JL7/8Mm655RZcccUVWLFiBf7zP/+zaf/vf//7sc8+++BHP/oRrr32Wpx88smYMGFC7fO9994bpVIJN954o+N7jzzySFMYzWGHHYbnnnsOW265JT7wgQ80vdyqfEbBCll67rnnYtmfxc4774zp06fjN7/5jeP9l19+GQ8//LDjvZtvvhkzZszAhz70ocjHe/7558E5b2lYFovFputoDxdr5KijjsK73vUu/Md//IerEHnjjTfi3nvvxRe+8AXfFfWddtoJO+64I371q1+hXC57bscYq3kIWNx5552+IV0WVojVO9/5zkDbEwRBEASRL8hebYbsVW97NQrXXnut4+/rrrsOAJocAX73u985RGXDMHDjjTdixx13dIj6fX19+OIXv4irrroK5513Ht773ve6pjogCIJoB/I4JYgU+MhHPoLzzz8fp59+Ovbdd18sXLgQ22+/PV5++WX88pe/xF/+8hecf/752GeffWrfufzyy3HNNddg2bJl2G233bDbbrth4cKF+OY3v4mPfOQjNQ8/i6997Ws47rjjwBjDggULHJ9NmTIFZ555JpYsWYItttgCRx11FF599VV8//vfxzbbbAPO62sop59+Om6++Wbst99+OOOMM/Ce97wHQgi8/PLLuPfee/H1r38de++9d9vXZLvttsM73vEOPPLII64hXVHhnOP73/8+Tj31VBxzzDH4/Oc/jw0bNrie60033YSjjz66yUvT4v7776+FxNs55JBDanmrHnnkEbz3ve/FFltsEds5KIqCm2++GfPmzcOHP/xhfP3rX8eHP/xhlMtl3H777bj00kux//7746c//Wmg/f3yl7/E4Ycfjg996EM444wzan1v5cqVNQP2sMMOw5VXXolddtkF73nPe/DYY4/hxz/+cZPHySWXXII//vGPmD9/PmbOnImRkRH88Y9/xC9+8Qvss88+OOKII2K7DgRBEARBpAfZq82QvRofxWIRP/3pT7F582bstddeePjhh/HDH/4QBx98MPbdd1/HtltttRU+9rGP4Tvf+Q4mTJiACy+8EP/4xz9www03NO13wYIFWLp0KR577DFcfvnlrse+++67MTIyguHhYQDA3//+d9x0000AnNeJIAjClYyKUhFET/LnP/9ZHnPMMXLatGlSVVU5depUefTRR8uHH37Ysd0TTzwh+/v75UknneR4f3x8XL7//e+XO+ywg1y/fr3js3K5LEulkjzooINcjy2EkD/84Q/ldtttJ4vFonzPe94j77jjDrnHHnvIo446yrHt5s2b5b/927/JnXfeWRaLRTk0NCTf/e53yzPOOMNR4RKAPO2005qONWvWrKa2u/Gd73xHbrHFFk3V42fNmiUPPfTQpu3djmdV9Pzxj3/seP/SSy+V73znO2WxWJQ77bST/NWvfiWPOOIIueeee0oppfznP/8pAcgHHnig6ThWlVKv1wsvvCCllHJ4eFgODAzIn/70p77nGoW33npLfutb35K77LKL7OvrkxMnTpQf/OAH5QUXXCArlUqg62Dx5z//WR588MFyaGhIlkolueOOO8ozzjij9vn69evlKaecIqdOnSoHBgbkvvvuK//4xz/K/fff31HF9k9/+pM87LDD5IwZM2SxWJQDAwNyjz32kP/+7//uqB5LEARBEERnQvaqE7JX3Wlle6Khcv1JJ50kJ0yYIJ944gk5d+5c2d/fL6dMmSK//OUvy82bNzd997TTTpMXXnih3HHHHWWhUJC77LKLvPbaaz3bMnfuXDllyhQ5Ojrq+vmsWbN8rxNBEIQXTMo2SzsTBJELbr/9dnziE5/AnXfeiUMOOSTQd1544QXssssu+N73vodvf/vbCbewmddeew2zZ8/Gr3/9axx33HGJHmvDhg3YaaedcOSRR+LSSy/F0qVL8ZOf/ASvv/66I09XGK644gp87WtfwyuvvJLpCj5BEARBEEQnQPZqa7rVXj355JNx0003YfPmzbHve+3atZg1axa+8pWvYOnSpbHvnyAIgoRTguhw/v73v+Oll17C1772NUyYMAGPP/64ayjP//zP/+D666/HPvvsg0mTJuHpp5/G0qVLsWnTJvzf//2fawXPNPjmN7+Ju+++G3/7298cYUntsGbNGpxzzjn46Ec/ii233BIvvfQS/vM//xP/+Mc/8Ne//hW77bZb28fQdR3vete7cNJJJ+Hss8+OodUEQRAEQRDdCdmrzfSSvZqEcPrqq6/i+eefx49//GPcf//9eOaZZ7DtttvGtn+CIAgLynFKEB3OggUL8Kc//Qnve9/7cNVVV3nmP5owYQL++te/4oorrsCGDRswNDSEuXPn4pxzzsnMCAWAf/u3f8PAwABWr16NmTNnxrLPUqmEF198EQsWLMC6deswMDCAD33oQ7j44otjMUIB4JVXXsFnPvMZfP3rX49lfwRBEARBEN0K2avNkL3aHpdffjl+8IMfYIcddsC1115LoilBEIlBHqcEQRAEQRAEQRAEQRAEQRANxBNnkDAXXnghZs+ejb6+Prz//e/HH//4x6ybRBAEQRAEkQv+8Ic/4PDDD8eMGTPAGMNtt93m+Hzz5s1YuHAhtttuO/T392PXXXfFRRddlE1jewCyWwmCIAiCINzpRLs198LpjTfeiNNPPx1nn302/vu//xv/7//9Pxx88MF4+eWXs24aQRAEQRBE5oyMjGCPPfbABRdc4Pr5GWecgXvuuQfXXHMNnnrqKZxxxhn4yle+guXLl6fc0u6H7FaCIAiCIAhvOtFuzX2o/t577433ve99DoV51113xZFHHoklS5Zk2DKCIAiCIIh8wRjDrbfeiiOPPLL23u67747jjjsO3/nOd2rvvf/978chhxyCf//3f8+gld0L2a0EQRAEQRDB6BS7NdfFoSqVCh577DF861vfcrw/f/58PPzww67fKZfLKJfLtb+FEFi3bh223HJLzyTkBEEQBEF0B1JKDA8PY8aMGbFVPg7L+Pg4KpVKW/uQUjbZLaVSCaVSKfS+9t13X6xYsQKf//znMWPGDPz+97/HM888g5/97GdttZFwQnYrQRAEQRBhyNpuzZvNCuTTbs21cPrWW2/BMIymCorTpk3DmjVrXL+zZMkSfP/730+jeQRBEARB5JRXXnkF2223XerHHR8fx/T+IWxEe0boxIkTsXnzZsd73/ve97B48eLQ+/r5z3+Of/3Xf8V2220HVVXBOcfll1+Offfdt602Ek7IbiUIgiAIIgpZ2K15tFmBfNqtuRZOLRrVazdF22LRokU488wza39v3LgR22+/PV555RVMmjQp0XYSRBTmnXtf03urvn1ABi0hCILofDZt2oSZM2dicHAwk+NXKhVsRAXn8Y+gP6KZNQYdZ27+U5PtEnXl/uc//zkeeeQRrFixArNmzcIf/vAHLFiwANtssw0OOICeN3FDditBEKkzfKv5/8Gjsm1HQJ7beCV2HDo58eNc8Y8bccouxyV+nKisGf0Vpg98PutmEBmSpd2aR5sVyKfdmmvhdKuttoKiKE2r9GvXrm1azbfwcgmeNGkSGaBELikUBpreo75KEATRHlmHOfdDRT+LaGZVs8/HYbuMjY3h29/+Nm699VYceuihAID3vOc9+Nvf/oaf/OQnJJzGCNmtBEFkxqSTsm5BKLZgfZg0mPwY1z9xINdjabk4hEl97u27+flr8cl3fDrlFhFZkaXdmhebFciv3ZpN8q+AFItFvP/978eqVasc769atQr77LNPRq0iCIIgCIJoDVfae8WFpmnQNK0pb5aiKBBCxHcgguxWIhfI/12cdRMIwhdOKZwBABzeD3yR6xLeRDeRF5sVyK/dmmuPUwA488wzceKJJ+IDH/gAPvzhD+PSSy/Fyy+/jC996UtZN40gYoEb9FR0oN0dbLvCwcm2gyAIog0YZ+ARvQeYDPe9zZs345///Gft7xdeeAF/+9vfMGXKFGy//fbYf//98Y1vfAP9/f2YNWsWHnzwQfz617/GeeedF6l9hDdktxJZIl+me7rn0O7uSJtYYTT/AQCFFzw/I3GZSIs0bVagM+3W3Aunxx13HN5++2384Ac/wOuvv47dd98dd911F2bNmpV10wiCIAiCIFxRFECJOOlRQs4n//rXv+KjH/1o7W8rZ+ZJJ52EK6+8EjfccAMWLVqET3/601i3bh1mzZqFc845h8S8BCC7lciUQh+ATVm3gkgTlusAUk9cRcHx24G+w32/u658DbYYrmBkaAhjxiZs9dJrYDufjbVjv8LU/s/jjbHLMa3/C3j0zWUAirXv/f61qzB3Rr5SGrTyOOUkLhMpkabNCnSm3Zp74RQAFixYgAULFmTdDIIg0qADV80JgiCyZO7cuZDS23KdPn06li1blmKLehuyWwkAgL7S/L96YHrHVPI7tRvRbml6b0Lh6Axa0mV0qHAamNFbgYGjIOR94Kye23D9YBEFCMezT6J1GG/JReF5aM2V2Hf6ybE1NyyceQunBU7CKdGddKLdmt+nK0EQRAiufuZax98n7kTJ1AmCyA7eRtgTjxD2RBAEAcYB3p1C2pi+HH2rnwWb9f853t+s3YyJhU9m1Kru5i9rl0ETLJSw2FZBIxdv05GCxASXTQ2poYBqYb1qMtBWQkxeYfB+3neacHrts+Zc7NNzaA7WaZDN6g8Jp0TXsuLFa/COSWUIABNVAc4kdhj8YtbNIvywPDT8aPDgGKDRLBLy9QvBtukcz6g1o5fV/j194F8zbAnRLs9uvAxzhrr3N+Q8en6yDpsrEQQRkdi93bjTGJLPLgGbs8j3a+vK12BK6TO1v1e9+uv6LpnExILpybf31M/V3l9fvhZblIILJBJBBrYHIJ/6EzBte6AyCry9FhjoA/omQm49A3L1G1g37deoiDGovIgBZQj/3LQRY/qVeHPMPPdP7PAZ3PrCNThqdv18/vb2rzBBNXyfOStf+TUOnPnZwOeUC1w8TsvGnQCAknIoxo3bwaGgqBzi2EY+9UOwXf8t1KFWvHgNOJMoKRLztmu+Tg+tuRKAd87OdgjSf9w8Tv1KSWTpbQoArIXHsNphxkBigmnV6zgOHn/rV3jfVp+PZV/dBNms/pDUQHQdz268DKtHilA5R4FLCAloggFgeH7TZXjHpLrRZP398uZLsf3EgKJqjIP3ihevARdTYtkXQXgxbtyOPsU9Z9RNo0P4VPXfmyq/AQBMKh6bUsuIXuXZjZfhxeES5gxl3ZLk4Aqt3hPJsaFyPSYX/yXrZhAuvDh8qblQzzh0JqDpy2uf9atH4OkNl+ONsQIml3Rs3Sfxf+uuwO5TTsGofhsG1CPbOvb40Bbo7x+CXHspWP8WkKvfgL7jPQCAAj/Ise2w9luorIj+isBg31bmd6aatrA9t2LZ4JhUFCgpAg+tuRLvnKThrXGOpzf04ZPviN7WgQfuh8D9tb/5x4+E4Kb/HesfApQCJNaa3oSjw6iIMfTP3Nb8vzoJb4yOoH+C94z9rpevxi6TxzGqc0xQBTZUVDy94XJM7e/HMxsr4AzYa2tTCP7tc9di+8EKNKHiqfWXY9ctvhD9xNrgd6uvwse3NXNw/mXtModQ7YlNeKsYdzkE0rJxJ1RWhJAG5AtLIZ96Hpg8CKYowJQhQPwOw8Y6CGlgqHi8Y7dvjF0OTah45yQNf3j9KvSrAqN6EVv3GxjTOa58+lpMKUkY0vSMLCkSJYWhXxV49M1lKBsMW5b02rV8e/zX2LLvs1g79qtaeLr1noUuVkLl7qktFDbP8fdWG8pYN7n9ct5Zh+q39jgFHn1zWa2f+mKsApR5/tslxA3/ND1Oj39n/ALqsPZbAMBg4VNNn4l7TwOf/8vYj9lLkM3qT88Ip39+41ocOOnLAOorpJsqv6kJBPKtX4FN3NrcuO9wyJfPA9v+TGDzzZBvPgcMTYd85kmID34MqqbDKBahiwoKf/k98OEDMay9hfXlTSgbHNsMTIIuK9BFBVP7zRWN3792FQBgzaiK1aPA199DLuxh+Mva4DkuSoqCUZ1jYkFUDb/6zVw2GFaPXILNmoKJBQOG5Hhj7PLa5y9vvhRFzjBuSGxRmoQxfRjT+XSMF4BRfSNKfAB9/YNQhn8LMXELR64di42VG1zbNW5sxuujHCUuoEmGTRUFJYWDC2+j79E3l2GiamCLkvT1rrNClZ5YdwUAYFNFwYaygsNmndjye3Y2VK6HLipY9JciLvt/U1GW41g98ho2aQomqAZeHy2iXxVQmMRT60voU4BJRdOAAoAdJpWhC/N621fz1pevhZAGADgMJFe6PVdTBkjpnfPpmIGNtX+HFUyf3XiZ4+80vAf98lcRnYHoESOLINrhrXHTdlR5EYbQICHBwNCvToLKiuYkeXQDMNg8kUyamjiYE6yFv7ygi5VQwaHyIipizPHZpKKBN8fNKZiQwJjB8eibyzBnqA/PV0XUMLwxdjlUVsRgYSsAgFz9D2Dy1pCb34Tc/1Cgan81wsDRzwYwXNgARYxj46QSUO1zzefDUKpqVBICw1qh/cI1agvRSxv3+I5Z6KdsjMDNfJ7Sp+OhNVdCyAIAiU2aAs4kxgyOssGAgmmPA0VMVM3r8vhbv8Kkoop+VWDrft3hdfXm+DJs3fe52v8bkf/zPbA9vg/56LfB9jrX95QPuPwunH/06xAA3jPlFPz+tauwqaLgPVuO4sVhM+z86Q2X4+XNRUwbEDVRHTBtrimlEtaOVaByia36BgAAW6hTAeUBVAxnP2uylxTV9N4FTPcyUf9cuPQRzpSafe/2WxvSfN+QplhaNngth6j9t9lQuR5lYwRlQ2BL2/fLBoPK68fdrN2MiXyS98VzodELtcWUKre08ji187e3f4X3bunjKZmhaAr4e/dGhnFXwdSTjdcDQ7SwSMRLzwinjawvXwuFtQglGN5c+6d89iXw/XcDGINaHge4CkNoEFIHKxQgIFE2Rpt2wWyqvTWQbN2v4+2yil8+eW3T9l6cthuJrGEoG+Z1tx6eQjpdzzXBHA9W01gwBdWywQFI9CkMmihj3JBAqQ9CjkAXFRR5PxQBQFEDhhzV6VMmQshRvF1WayFPAPDNr7yN834yufb3om+ux+9fu6raZo7JRR2A6R1rZ8u+QcffRd4PTdyDssGhC4YZAxo2lBWsePEafGKHz8ALawUPAFRWBOcKfvxhA2NiM14cfhMqN69Z2eAQEnhzTMUWJQN9CtCvCtz9ioq525ieCJsqCgZUAZVLPLHuCrxnyil4c3wZFFaALiso8L5axcu46URjKSp+v2kjLftqcSByO6JWX/TCEv0Bc0LhxjYDp8Z2vI2VG5o8LIiYkA8A7KOeH3da3q4ocBY91SCn9QECzcKHhACrVmBmYJCr/xdgHHLifa4LuXHy4vClru/lRTzN06LaFqVJ9eeuoQf+nsKiTcuklNBkGRISnKlAsWD7THgungppmPasIQEGTCxMqUWnKKwuoA6ozu8/t8kU+Oy2bCT6Ss7z2Pg6+ORtnRZLo7iqFgE0i3xGzeZn1bYZNnufVf9tfvbGWKH2/123AAzJ8H/rFWw7QcMzG4r40DRzTmfZx2+OL0OB9zkcbmoIgcoFx6Jw9H7A5pvr70905lz93Wrzei46GNh2Qh9eGRmvOdVM6dPx+mgRmmDgTEITDFv26RCSoVB9GDy78bLac3NKH7ChzDBubMY2A6eaRZP0CjhXHAKolKImygkYMLbbDfwfzzn6R21bFzvRni9USAYhZe3fjQjJsKliOq1Y9viIxrFlCZhc/Be8MXY5BtQSXh+9BAor1O5XXVSa9hWEKaXPQOLi0N+LKuxtqFzv+Duot/+w9ltT8NPuBgoH15xcxENfB9/3p8CmG1EaXQ9M/R3ueOU1TC4Z+Pt68/f54q6fxuSSXp2b9g6NRcAsWnmcpsGrxxyK7W66M5NjpwHZrP701p3og9z8Zv3fr7xe/8B6aHNuesMJHbL6n9tqqfUwaH7gMPKyiQhn4V5ulBTh2J8m3DdsEuC4CkNqzvfa9Iq0H+P8pUPgQtZeP1oyufZZGHGhZhzJ+rmG+f5gYStMZBNRUiagYoxBQmJqf7HeZqAWjlM2mKtQKSSDIRk2lBtybFWN9qbr6HoiPNirAUM6X2nw7MbLmrwu46BRJE8SVqoL8Jsqv8G68jWpHRsw84mF4fXRS2qvMGjinlDbp4F85fysm5AcPo86ayzpZrjC2noRhJTSFMWEh/edogJSuHqLJY25mJqffipz9l8YhIxv8VdIHdp27wq8vZQytOi83YRoYlcjTFEcL3AOwaTpCWlb1GUzdoF292PmH9Ucrgwcc4ZmOtput/36VXdPRNEgsFrst03zOVkenLqotIzcYQoDBiZXkwT6F+daMzpWa6/V5j22nFybl+i2thm2f1ufW/PLPmUi1pevBZcMFWY4+l2Bl5ochPgj94HtuD1YoQD0FYHR+rjS6vxGq9q/5X26oezuKTygSnAma9fWmo8Na791zImn9n8eDLz2+Yh2C9aVr4EmxiHfeBowVmGzdjPGjdtr39ms3QxDroL8n+9Brr3UtFVDqDx/WbsMf3j9KozpHH9+40oApq1tidd2Xh+9BBsrN3hGEALA2rFfoWLcZf5hrILccA0gflc7X3H/VwFUf6ux5ZAbVgP6SowbmyH/+zsY/9D/w2btZrxZHMXbk/vx0NpXsNfUMiYV62P5xX+/thbFB9R//7+9/SsAaLLXV77ya3PR2sJYBcAUIq12Wblvk2KPLet96vevXeV6ff0II6aLR77p/kGLeTpnweYe8rULzD4w/Ft84ou3YNsf7QfA7K8WduejUf22YI128ID/JilBNqs/PeNxGsS4YxNsAQS2wZi9cwfzH6pirnQaOkpSxYgse4aZeD2A3h5vPxcLEZ1+NZhxKCGg8iKAcs0QqRlnHsJd/bv+1q/h0x/nzjgJf3g9/MMGAEqKxDYDAiOadayGDYZ/6/y7r/7P9cZbAMywwAE2AZuEuZhQNhi2nygB6Hh1cxFlg4EzM3Trg1vLWqgOYOaUbbzOEhJCGijwPugyHoNbvnk52NbeOah0sRKvjb6EPkWFkAYYY3h5s1KdoDCsLyvYss9cybUKH5S4QFlwTCnptZy3r49egm0GTsXTGy438+VKhomqqJ4jx+SSWntYeuUmk29fCTZxa8i//REj79sLEgIvDW9CgUvsPPkL+NrD1+E9UySOmi1rxRn+snYZXthUxBPrGPadbuCQ7c2UCytf+TW2+//Z+/N4W46yXhz+VnX3mvZ45iHJCQkJYxgFI1d+EERARGQSARMSZu4PEBEv3svL9YoTXNCXi8qrCCGEQADhIiCgDHoF5ILKYJgMEELmnPnscY3dXfX+UV3d1dVVPaxh73Wy1/d8+nP2WquHp6urq556hu8zH2S4r+Tnb526BufMMRxoJm3jUfGQheLpiyjL9b8GX9iH7w9Wcf8PXom1Zz0RDnEx5+4SRSK8Q0A4wMnwGPZ55+JMcBx12sLJ3iljhJFOYP+vJ96LG1dqmHOB5bpQBCnhseK96VMcbAWghMQRtOo4/cPVq+FRwZ1logDwaAO3b74LDuHwqIf9fBfgNcSCy3HBN0+CLF8h+LO8Q+BgONP/AL53JsTFSz2c7rmoOwyd4K8ErcXAwfrAwblzA/xgtYFOQOAQEVU7YAnh/ZePvg+HWgM4BMaCc5v+x2IjxmLtV9ENPomQB6DEQSv0wE/fIvrE7XeAXHhv8FveCtQawKnTIPd+MOA1EHgu2sEKltgc3vyDDbz+AgIsPQ+d4BPY8E+BEgdneiHuuzx5DjZ+05sr7U8ufr0YYxYivrzFQ4L+5tg7QQ7+51Sq2fpARMTnIS+y2mefhUd/IeYF/NhPrsfD9nawsd61HrOVcKjYhjp2vKLMcA8AB0fDmU9lOJHDDwK/89vbIo8cn6cFeYafrYZLa0Ie4sGHj4p21KHAwdAOVtB0FuCduFXMh8jXSeNAD6nnlmzDdd+J58CqMqbgWpahm6KP882TAOPg/Q14T3mEkO/2m+Hc7wIAwA9W78T+pqC+0g3Pp3tOyjkn9YuQJ47/vY1y0cAurUXmcHP7uM95CggpN2q/+e/34c1POx7L5lEh27dPr8JRAiAqgVB4pGF1sBBCQbkDcuG9gTtuB293QFoNYL4er2fy+kndYVFQhthnsRaiE+lyMhrSZwQhFzqT1Af1+9j0+6g7Qq/2aAMe5TjYvBin+3fE0dZk8RA6vI2ADzDfBcA/CtL0AM5Av/MVkPs8HLyzIozatRYC1sXagGD/BQ+Ji4ce7fwVNn2KWzcSmrd+SLHpUyzWQqz0HXzt+LUIuRdTu33vzHvQDWlEj0bBwTHn7spt9trAxwq9HoRQLDcEYbvQR5bjvr1w7E7wxf3A3gsBzkUAyd49aAUO2A1fw4kHXIR5z8FyjeMn6y5210WfrFFgf1P0twsXHHzl2LVYrDHcuHI1Fj2R1UcBrA/ehTnPg0tqWB9EfTD4HJjjiOi48AvgVHDfUjgIWB91/1PgnRWQ3dWKoLX9v8Gc90wc716NG1c81B2OTpAEhS3WQtyy3sCuOsPHb/kAdtXzz9cLPxU7JyhxME/mFSqOz6DuPAWc/x/0WRteowUEAyywFrD+12Df+TeQ888DvfQXwG9+C8h5h1L8rvzGfwfn3wK56L4g8/vg1zxs+qexNmhjtV/HE849jC/ceV3cp+c9obdLmrkbTl8Dt9HETXcF+PQtAOAg/Nr34N4bojBd+Bm0gxXUaBNt/29izl6ffRYh9+N1F5Dl5lXRCdZwovsubGxsv94601mLsWMiTk2RLSH3U16DUlAMZiLi1AXn0shWjNXx2IxmKIGQJxGQKlTjjPxbpver6AWb8CiPUuOUV6XIcBqlRZk2EwjjmU1FWSeOeg0przH6tiBy037+RK49jcQQ9rUTZgHr0TuXyOKUizgtCbJ8TuqzHnHKweN0rAHjONklWO076Ec8V62Ij0k+e0o4fE5Qpwwtt47j3atxonsNCChO966LxxDGCepO8s63nCUwHiJgg1yOta4TAJRini7iWGc1jgq+4fQ1uOLiPtpBsmi5aa2ORS+EFz2eey/2U+fqBEIB/NtbP4B/vOt9+N6Z94Bxgq8dvzZ+5ip3rySe15V+wkIcft1H8NQwnfYS99Wof7TZBjxaRzfcACCMmj9cvRo2fPTm65VFShJNw7hIl5OGVAlKOD592/sz3xUh9apQV6REcgZQN72IcVz4rIfTvW4si4zoIKA42XNjT/7qwMXdHYKWy9FyhWGg5fJUheHk+uKYDf+j2PA/avU2U6Kkz0XvHTnvHCAYAJSC7D5fvKyOULTdTkIV8/oHCe5tfvLq1BiyOtgiNcV1Km0yspfxEGRJvKP86F+gvWcfTnSvwaZffsx57GE3jvowbUDaw+9Rjk4gCpbMMMM9ARwsHrdN4zi/89sApZUjHMcBNbJsGrDdEabqv9O9lVgul+SvD9b9ZCy/eX1j6Pv3aCMx9JTU7Qio6GPR3FIUuSyj38b23LV0MUIcoTPOKxRCjIE4igWGUqMB02bEz6wBtP2/deoaMA44ms5xuncdCKHgnOe3C6UgThTZSd1k0yAdsYDdMCr1t9CwdikCCX0wA4UBoOh0lIo0/ZqXidY0tSmHMJj2QxobSqV8HuVwSDqbD0hn8+lrkHlPPMc5d1fcpqf7d0TXMjQKTdYpAR8ANQ+8sQCy53zUnGa822ItxBptoxdyrPTdKCuuuP30fTyazrQrhEKFEBug5VpMBlY1Fc5WuW/U9kQrxCP15fR3+ffhUY6ms5huP7eGkBc4BYbIyZZrgJNdEXyi6nMyKMIhgtojb+0qI4kHYReUOKIuTBRU0wnWUvvanBXEU/pwrQ5yn0sF37eE64I+5D8BADacXvwO3L6ZjCWCFsMu52v+5hDuvdTHE46EeMfbTsF5zMPAb39bvP5L6fYRAibWa4VOqN6ngN6nYoNrYMmCnWG6sGMMpzoyRMz6Z0qzv1GDocmVHb6cRXQhh1Z1hsmiGxSnlXmUw6Mcmz6NBzPGQ8Urz0QKKqUjRTfIiZESpNL05abCpgyalHVTNGeR4VWmAso5d5ezV0z8G8fj9BwAONGjON7xYplsip9sY/V36QXP5RWWGDJVn/H01g/b4v4ixY8p+4Qp2Ug8YXk5xjrhTU8iFiRkNG0puA58EuK8+YP48tE0t6j+nORiytbWHhWTfjvaz6UcTZclHmcDiDbkM0qw/Lz74JOXm59LB4kHtB92MgqMaqjWZfQZMfa9xVoY86Wd7KYXF3duJnLY3lX5DKUs8bOQfcKtZfqIeIdFVHFRhJTKk+YzEitVWWXWHMFOiQOX1mIeNEKo3WGg9mdKwduno5MPxLtCKEBd8E6yCJcOjH2NYGsoHRy32iblBAcoRc8D4DVSBiBAGKhHxSDspMbhusOmiOUQoJSMtM0wg4R87+UYnppzDEaaSUClnDLN8zOkkWfMlvM0BTBXMhNKxbHOu1NbypgOLsZiLdDDJk+sQXKW2ieP/qg+LkI73fmmQpX/7h8lX9/n4Zr8LNUPh6U9UIdcXXcRGVN1cxu6jngHSxqrqZONgtXlZVw1RPHUvnlQn6HP+tkdCFXo56LzcZasAzLnU2WF8e+871KX1oyE+ucY4cAebGLI8qw7LeO1VweOMWiKcZLLzVvJCaUU15J2g164CQ4uqCcikPoCcPpWIIzWaIMoMjiKSuUQuotD0usL9b7UAB+fESx6yRyw4YtsQUqQXQcG44vYkuOMvGsZ4KAGOvQisUThsHLnnXd3pxxM6jOQf9MVhUIxcmjEcGvgK3ek30H5XkL0Y5NToWge+5NnHMPrfm8f3vkPe/Drr9kDdMWaiICi7og1nNqPZZ+lUfylQ56QG20qz9UNyo0dk8ZMZy3GdDypLYCjDZ6cs9gwBsBgODV0AGXAXmMrYgChFITQOMXgUGsRa4N1BHyAtcHWc07NAMy7wjDDonQch/BM9JrOdWSCR4VXSg7amajTikg4SEXfalsir37zv6/HJPJVoPZnq0ICpDmYNI8jIRQ9IibZ9lzizXVIWmmTBtQy2Nu4Kv57nBGn+jMwKfnSE67zC8uIWRXq7wTEqEQCiYKg/l6aH0wxuOtpbp5yO5KbK1FA0s9TVernFOWJcaT4kRL5eCynrhT+3I+fgs+f+/bMMT2upINqba1GkJq4m59978ut79b6wMFmZOydi5RXdbh96J4XFVcNBazPRwis7KcYtjd9mlGUGu583Gb7momnYN4LwXj6uahwiDjfTWvvxoL37Gpk9V5D9N/of75xXJNfHWuSzxwc4Vano1Y0nMr+LdJUo/7u1tBwFtB0ksgLPbpnWBBCY4qMpssRMJKhjdguEAegQ24lsz5nuIfDZtBIQXnvthKmjJ7tRF62z1ZvjJPI0U7RCVYzsi7WQjBO4syBsddAUI2OOX0jNoTwEHNoptJLVcjsHPV5D0PTQEBTW0YfXdifPoAZZKduHNDgEBFtZ9J7dEhe7UQHMLd3bE8sa0Br1Es591XkOYbzfs89p+OUk1mt2wGUWs9IJ7H+zPXPLIpE1Y9L75P+POcux+stifg+dNnq0brs9G1R4SvzRGlqPxEhK86bl/ki+5b+3izXnpfaAGDQFOukRW9fLGvdmYv0nhyHllvDhtPD3fc7D/OeI46X17fKlb0ndd9Y9wIH/B48ktAw9ILhI9nzoMvUdJPgBFkk7LLDVxmOzCLgA4DQpP2h6JIAEA5SxlW5zuUnb4rT+1Xwk2fE9wOxlikVuKPhPn/8Ufzx754E/YkYXwZ/83WsHNifWfPpjilppA3Y5xCwzxVep+5MR/bGTGctxo4xnKowhq9TCt7fyITR6/sgNn5FkzQlGS+txFIt24t6M1vqUNCjCfO20OBBkoamjubVmdO8jupCoBNsIuTR81WNZJwPZTjVryNBQ57aRlGgRdpAwU6acqdHgjUU0lObwXmPxgsljdRAlutSYphJa1xQIyKzip55AeDROnzmoxfyeD+VsF9EOcjUyZIKtptWbOPqr26YMoZ2A5JSOHVFKuRZegkZNZvnudQjTjk4Pv29P8FT7vqvyncMDhXPytj3FajvnYqP3nx9qk3j6BqlP+lt/kvnPx9HFgb4zpn3CO6maN8yVBXSiYX6fCKnTquC9Hsn3/NusB7LJzmoPYrcyN1cWYoMGOrY4feS7ygFaSyhpy40aORVp9Jwug3xlE6t2haBI3kGRPanMctfc9JR24JzkcScVdsNYQsY1nu/3dLPMG0QSzOGhjOffEnlPD4dfX6GBClDxlZDRkCSZO6wjb9iDcMQOOYUeBPGZjA3OPKtMsiMhpwUc1131mNgVL1DZiLJeynSOawOjEYzlW1RhPMvXI+vb0NaZy3R1jEFgH2RGc/Jrms0SNtS9cvAViwWyJe/HxK0g9X0O0LM/XDB22ts5yQwYPT3bNFTMwx5HMmpQ9Jypa4dvW8h98VnaaA2rRcjQ18YOVjkc+sEdmq51JrAsI4BlMAONzJEc8H533AXMA7Id6AcDUKJ86G4sKG02fR27UvsN0qbkv0Xx7onn1M4aSkR42DE9SyvUxQ5raL1e68CAHz2yPtAGcOvXSyMwJzzmGu80LFZANnfumz7lb6ZzlqMHXKbxch4rSxFnyTiAVrpKbGHeYZthe0JUGL/Lf98orCQ8EDyOIqgKspynKpQjZAZDk+NO1U9f5LOlzV+VpWxG6bv1VYQYkuj9DdPlYo4BYAzveJJfrEW8TgxqkVUZI3YjBPctFbXDIrFPUvyM6mQZOQhN6e1q9dUYdu3H1bvl61fuBDP+thq4X51pxWPb2X4t4QTwi5fy008/3r0ocqPaqeqYFYOX30cZjzEfOBGf6vOFYMHnxPUaNapIvGYQ1nvueQ4lfBZL1WNVabt8FoUxS3pBIA0BYxcFKg0AwhT6UYhJxkD+ERRNeJUponq9zGhqt+cs5ir3KWiON20RJzOMMO4QUCzC7UtStXPS92eBmwnp6n+T8qDCelF0hBqM4gSx1MMkfkPq4iD1YRhVzoZuTWOU12vS3HZG4xmci43OTrT9Qxg/LsKbPyhqTR9SzYXkNzibT9JMi9sDv1hUWoN6jpAEGYN0DkGIJlhlHwu0v/yReiFm6nrBWyQzgKVoG5azhJjnTCGF+6GRx14QVyISWLdd8A5L6VjqZl9G356TcLBcqkn4NYi7ly5fzqgQhYlTc5XvYPICM5RzlEFoaUvf/HubAZlw3lq7rnUNVWahkSjRiAU/O7vg7j17O9IDNp5jiOTzIDow8/+uz4e+I//jI8+6WkAgDdctmI8nmgDPd0xpZJ2HnaM4bTQISAHF5VAWwclsRKkRmKFPIg5Tm/bbGPBm4NDPOtLqiufRdsM1dD2BWG1SzloxBcjycql4YYSmbKTJjI3wWgUG8ZwGk1aogK9SCstMmoyLki2eyU6guSoChWjkxEF6UQbbBUyskWXxYQi0U71KtIOkDJbVm71nXn8Oe1CBVJGH9cdkd6rGwIlT5Ap1UhHoUJCqFic1OuxXDqXUZZTi+DfTtr5d2RkqU4o/qgDL8jKF0e+KPcSebwvu/1Z+N+X3mbcXz2mH3YqGb9UmdU2dIgwGHcCEnOdbvp2JaOV0/6ZdulvRjLrEaf5zg65CJDPwJSer/ePsmMz58y+4AKUBZeyaFT+D5mfZDoo59Gj5yeGspzD0UZJwiul3geLIgVsERTDwOawMPGabQf0YKqq2wwzlMKIGTCjYBYqYIdx3o0gMzX0FPOxccbSdHSmjTOSgMLnfXDO0Q3X0fbNhgEJmepelO5eXk7LoGdKI6duZm4HEv3LRqtTFZfsFpkgKs0UkOMgd2uVIk7LYBxpu1YdmLoR/2N0jVynfVauYdelJsNs3eFouUv2ffWJUG9nhUNefT5lMve+dvxaYwupRrYFb2/uOeR1JTVRCjVzlh0ljhIFSZKAHAAXLAzideHL7n95tI/5uqb7kzps6tkTWroOiwkne++Nt4TaY+jTAUiKQ0lw8EIHTmPlZGLQplRETcc1AlyQ3eeDtteSA2QRObVoFzgesU9kbNy8fkt0L/Z+MvgMx3d/7jH4008eBADseqFw0gd8EBeIKlsc3AYZ1TwNfOEznbUYO+Q2y01CpJ6EsqukzjGUXmHjXxFRp/ben1e9bYbxQk0fT75Lf1aNpqYUf0BJxeDjjyJgnIAyltr038sgLyWsKBJUj5AoMo7pnudtQckRuhtQ6AWd8qIQpKHaBNVwVneEolN5oquJ1GLBsZz+yaN2A2zZtDhKOL5y7Frr7yae3r//wR/jHx7zeSFXwfOP+bdQvGBWZZZGXp0+I+SCB2neqx6NmKQMRV8oRjp9gWNUapVj8xwYJloEKb9UzmO+NiBbeFAHpSLDoSQfmmosFdx5yW8XLr40/1rjQEXDqTxGtHlyDlmgS8W4CfGdqMp3HsXzVoJSAuoMue0Qov0Z8qEu4l1ayxhDyO7zkwXihGEqDjWDHYWRnoaMorFBd8KVgDDglBNC1A8YRjANeStv/TtDJoOE4IwVf6ttmVcoqmp7Mx6ajafUTTsLLXM6jeot0CEde6VSnzXjZMj9tMyEZigPkrXN8GOI2pYmfUmFbWoz6p5KNK8aPRh/BtD2/dTnKjKv9vMN3mW5oxkPU+tCwXGaU6jVEUEUst0451gfOBFFgzjRe35wfXI+5dnY1gOV7n8CzjbGhRas9gVKzBynsmCw2MexR5VCeQaOMv+p45vap1VQmnG0ECSZwWU4ut/6J8KR9LXzrsNfvOMMetc9PbPPuLKppoEvfKazFmPHGE4L05X1QSTPMKMqqYYQ8KKBdizKxgylUUUVMBlSTdF3w3Ca6N5QG1RFT/bbRslOM4pXMbn+eFNqJ7agG3LiV6PRKEmUPPXZJ5yY5nMcmRftLPmJShfmaMynikOpUD/r8w/j2d9k4asqUJ9FUG+Ac4bmL1yEA998lvUesrymZfuieT9d7nF4WVMySr4/Q6RC3rXU+9rwi+XKm1NUZ4T9BNrC1hRtA7vRd8swjOFUW5ABk0sTm2ZuR4eOts0wQyEIjTmEJw2dT34GO4QBJEyMUhq10sShzC+yKKRtrBTV4rPRsXlGclugQXU5tVR9HVrEqfod4+FQ2qXJQCGNPipO9t5b7oSa07DIGarLMsl3yVhbQEt3l2nGVeRIc8UmQQljuRdCswYy5TfbZ8ZDNN1qE6eZm9W870r/+ngD0sE0STAV4u9MBYvi46LfJMWfaswDgBoFXny/y1PfqVD7cCFFF6EjR0XmXV/C1m5fO36t9Tyy3TrBmvF7K1LjAk36tDq+uk68nk0RqVRYv9+nJzKl/B+vYv9nvoZ3/yDh1VfX2yl6lrLgLC3vFGCmsxZja4iRzgaUMZymFrO6MSH9fxFefcnlVaTb8Rg1uoGSchXrTMYQORDGFfw4wzDl44ZZ4OfJrJ5PVIE3D8BVq1frhtOmw9DOSaWuAgoHIQzF2RSUmdRMrVJFYdP31SMPhjX2LtZ+1fxDNHYQtxmdP2uYtTnrZGRjESjh8Cg3Uk9wcKwNPhxzSK0OPoQ5dxcICP7w4GPwhi98DqtPe7zxvKphOBO1W7lvESC691Gja8Qz0u61MQ/wrLOD8TD2SKsLFfm3VPgpMfejomJD896zAACd4BPlb4BQoNESFT+NhlKpSCsRp1AqApe/0paCcwZQD4CfiSJQn8s4nNMcXEQrTJnyOcMM48BNq+/D4b2GasFg4CAgcCoZae7pmLYaAylHuzXKjlTioU+OS3/OjKdD8N5KHn8bJlJ0Ly9IRfbtmifScqmbGesZt+u+KtK6C48/S6OT6tB1iJnH36bDE8erHOFr039CTlAnvFCfFX0r0csrBXPoTtuo/Uy6o24gU+WqwqkvC+mYoBvNUpC6s1zjRP063HUIGBwzHqLqmcOCaXqkDmMhLc5TvKepKEi9X3gNcNaJ27PM+rAb0Ay1B1AuiMIUVJOp7VICRf2MAZp+XXxfReM2B08Pn5QmCrCsEUAp+Mod5sxhyxiTXQfqdFwEP2q4QAic+I2n4DdevQsfu/L/YhWPSGSLqLgcMro5bcQaUzNsEWaGU4lMighJ/9ZbLzxOpIfkp+rL/f7se9fn7qNiZmQdHTbDkz7BmibcUSpNFoESDpqjIY2iUMs0hCLDaSatWXrOCojitxUVFory7lSZT3btQ5/NeM5QbIBfH3zEbjwFIl4jYTjWI04pyfLKyv3KGBkZJ/BZmmrgVO99GZ4uFRwc/+X6a4GfOqjIERUyMiiNVZ67jTtY5eZknKATUHiU49O3vR9ADb90/vNxw+lryl9IglCgtymMp/JzBGMEqgL9uarpUjq+fPR9ONQy/mSFUKgBwpXZgYiUfW6KOFWPlbKHiWxVx5/bN99VTWAF59GKNwuIBW6kqBP9OYwZ02w0lSlMQx07qaoyM5w1yNAGRfQXqfeIbp3hNBtltN2KwHRjUgXxSkGjTbFmlAypy4oii8MKlw8ODiI5vx0XGPiA6wgDJfyI+iVrLB5GHo9y9MP84pyFiLhXSUknRlGqfsjNmYkhJ3DH8c7pRl4qI3jNUYS2FGLGgTlXypZ/Sb2f1Z1WxpjKOcsY8xgPQRVHcnI+GeFJ42GIg6Htp4MStjL9mYOBwElk0yNO9ejp6JZMhcu6IfCuG6/HvsZ45Ut95mFlLaNsgSUbXYPURXfVd6W+92hdk61igBJJDKgx3KyjBUjuQe0bRcEpL/vYYWw+rIajj7w/muWlyoeUbYpUvZnOWoyZm9oG9eVjxYYz9QUUg6e5A83NTNVnHZJUq3TF1MrnAUPV9KZx8IhVjeyqqkgXRVur/Ekhz482lfsVbQAyCqot20tvw5AD+5r5chBQBMy+6JHG6CotlZe6w5BWlJm2LralvetQaQjUxDPTM/WiczZf9Gj84J0Wx5Aup9J/i/qwyjdWd7g1OsHEKfvQPS8qJY8qUwZaCtemfyb+rFNymLz4ybHm702G4byFsm1OkAbUVMcl5menK4E3rlyd2iYBQpxKmzhIvseaE4rri6fRjJ4czMgpWzXKflKYEe3PME4Y0wz1xeIWIs/BNIOavpmkyufpj4u1cGRDTzxfmIor5R0X67dqqr59rh/2uXPOU1tZrm8AisEvLV9ZsIr6tw6rbkxofgHICA6pTtWWTy9UQjYdsp0NJ84zftr6ZTtQ97GfoyhSUS9mlHzP039HvJXu6omMfIyHpY3nee1a9R2Uup06PqvRsWInbZymNFXMV8/q0lE2opgSXtqZXDbidF/jhfGWh1GKhuXpzvH9qPcl21LhwM04ERs1JRBIzX4qLyjjwIO/+U189ukbOPDNVbzzPxaKDzqLMdNZi7FDbnMIWKxNac42M/ecamiTkBN8u9huNIMBasX0oi0PwyhONoVklOipaeJQ1pV50wQto6mTz5O7AV7inwlSKc1Wp9c/k1S6tpp+Ziddz0nZqVBQIS99zhTpKvuz6r3VIz1cLXohVsQsMusKyhvaF+FbVz87rmwaMt943KhR1iYjmS0qdSjElTOj56EaTqNFjXzu/ZCmDP7rAwfnzGVTmQZxREAi52MOiQheU+V2mqOIZgoKmqI+SEJmL+cXG0/o/IgV6SeFzOLBAkrsxvTS14rOrxpPJxUFNQwoJSNtM8xgg87rPEPWKLedm5BHOHrLRp6OYoTO02mL9JPUHFPCQKNea6IRfXoUmZwfFUxUF+UljVCOWym62BRxqlI22LKMhp3xM8/fkOUi+qmZ+1VCX2ONMtfmpe4LeRQdQi3uQ5L0aw6Wugf1GYScRI4d+zVGed9K6fyajqcaKtX3TM9UlYXXXnb/y5XvwqEyENXrZ/ryEPPGME4HI+2FNs6Uak+9yJnpb3WN1RBRrHkG4jLOl+/81E/hMW9ZBgD8nv/vZtHGEQk+BZjprMXYcdrW6uBD5h9KcZwWd4qiF3CaFnU7BfqTrDr5mAbEUQbJKpO1KmsRv1TCm5mOCqxyv6ZCWCaY+rlqBCsbITk0DBN+jSab4L2y37cpNSYPgzAxqo1CU6AbflVlmZJEmVCftVCiy7VnyImx7VWFkhIHy7XnxW34mj+/DnsazEjOrsracObj8SuMjM/qlpUl+VsafvXxT8qaN7R2tMrroWb4jpEzhjMeokaTBBum/Q8Ad7VrKRmLlO6yRt/UWGFS9tT/aXZBA0SK33YZR4YoDiXHDj0atOq4WcaBYlrY7hD9bYZ7OGz9OFMlO0rHnmF6wBRjSJlMm7FDL9RXEO0K5Du6TLzwYyl0m5lDtN/0fWE37uZTcsm/s7/XHT7anCG5V4cMuZI6hyk7SscobW6sSD5imFgiuwxKSP/eDRKdYBjnu63PJtktqp6XbcNhjKN59AR5yDVMqgWMkDjzVU5Q+VmHMFini0eNjCEpXoraRaxpyp9POpdimILRTH1ABhUoYwchTppXtlaHKWNL/l/UGxkHXv0HBwAAX/xPHwcA3PzA+5S4q5KY8ZOflZgljuuQL905FybfGQaYeOI2vuT21/GixRA/XBtPoZ0ZzEh7RO0jePEEkF246AOvCabUUQDwSANAL/7cDQhcyvGKP+riL96QZU3pBgR1RxiOFjxhZFKVprSRc3jI85zu3xGdS5DO5ynZjBOs+0DTMIK0fYq6k5Dvc7DcSDybPLkgVBTVUWhxqBJt+m8nWvjFI+LvTEGjMjIUTKlhxIVb9pxSyUuKRaTP/93TDext2CMWVGOo3icT4yNP/a+CcwaX1OIF3OrgQ1h29wMIse/Pr8Dj3v5hdP7br6IftuG5aa6hvKqj7YBi0RNyd4N8BcD0vsko1H5I8IwLroi/v+H0NYW0JvJ8VmdUKgKVpVLplmthLK9eNbjI6C85TiU3GgBs+B+NfzdWsYWSqm8aHwwKlEpxIfdRi41UccIdmX9Z+Z11bHy0eB8FAeuXquCaxzNcFtPu5ScOQIec7me23xlKYRsXXqNGjI8b01QcarmepOjvqh9GN1gf6/lN86nPeugEa2g48+l05wKdqhsWy6ZnWASMAAVcnaXgaPNAdx1OczEZ2Qv6N+PZeUCdz01GHNVhnSoKaeQVLWH0prRS33vDz5+Js7gYF7qTHhhhKxq2GVAsRdPrrnryez9so+7MZeQIuJZJoxpKtbatGhQwSiBQyH04xEM/JPAy0S3mviujT1P9WTFGJsU+YXyWOu+mLYDCZ6Q4UEWuBTPcqyzmos4YpZW+zniY6rf6OxpywXHKOMG+ppDpyPwA7aBYoYidytp7MQ59KZvBl33HhjHuc85Qd+eMvwV8ABcWvlh9fHCU/bxG0mcU/b8KpcMf/rdT+ObJOl759WfhINbgXvFJ4H8/N5F7ynXQqpjprMWYLq1nC7Bce17+DmE0SZ68I/nuxEmgPm/2zEWDuMnTZcLRzsxoOgykcaPsZkPTZXGqtpiwuTHlVl4TiDxiPJmIyhhP8zDvhUqasF3eplveMCdBCEHTFR68O9s1MF6e9H5P/bzU57zUo5ADi17SRnISWh+YhxTOOUIWlKo8WDZVn9fSxuaGA3g02UyweUI9yuN22vSTd1RWW1c/Z+Ut50kX40SIlp9OfTJBKniPPcixXOOpdHzGERumZdTjgCX9yBQJKdutz9rZiy0dRvMNr4zOHYISBxt+O3N8L9zMyCyNpibY+l3d4bHRzBatKmTJV14bjot+SNFyk/YP641I3iS9i4OhF3ZT7+uZvqpsp43Osv3O9JNo2J52m0c7tVRfIKAgoKDIju+Jgh3dC3XBeQicvAO8uwa0Bfcq2XsB+PpxQZlAXdScJvjKHZhzd8WGVfEOJed2Kcf9d70k3iaCISJO5X0HbBBH+jIewme9+H06Mp+lRhgW0xptN0t7mmHcSPgyoz7fWweC8b1LVTAqR/EMAiLqTLzvFywMtyxzokrsDUcUR+xjkOKdLq2nlDQAupRn9KOhYOM4ZTy7Eo8MlOMwkOtyq06ATcU45RAXHAwurdmzmNwGameOVrr+xUt2g2zIEx1QnQYYJ2gq79xKn6AfdrCrfjk82shUTvdopA+pa5YwAKEeSLMBOC78ez1I/AZu1MVCLvRjadzNc5Y0I/ogVW+T3zWdxdS+NgdzyAMgDLBMd4MQik64lrP25lpmkakyevK31KNVA+o4onoZD6N+Ik5GCEXIg/jdI3N7xI40bThN/k6i01W9UpXjznYNx7se7tz0wCDG3oWaOF8noPAZQcgTmi3doOcQN62LDulwk+vlpsOwWAvhM4J+SNEPKRY8jtM9B4vRo5XtrN7TkfmX4cj8y+Iiui6txfUY+mEbm+Fqhv6MwhGyR/L3qdDvyZ5lEMcDWT4H8HsIFnanxgwyvw+Nu24C97vYXT8HgDDYf+OkaNv7LqlFcc3v9qIX4qf29dGPooRe/NRXZvYhhED+E58pQu5n1qwZNJ8GNJ+GBW8vVgfTYRua6azF2HGGU4mMFzEvVX//voyX7mDroux+EUyT65POuxJPOu/KYcWdYUQMzQ2D8afqq4Y5AHjnf0+XTVRTkVW5dS7LPJAhX21KHBxo3hsAsKt2OKUk7akHsXz9UESc+ozgCeeYldhAK5jmUHd8KWuG904aweX2/ZUO5iKlrRtS7K4H8Jlo1+MdL1b6xf3QWIGazzEGqsgqaGZuUBUcHCt0E71wE5fs7saG8wsXffRDipvXs/d1V9s+GTFOMv3C5gjIyKd47r9w/GTKSz3nNlB35kBA4FIHvXATDWc+15CvyhFyYHcjiGQUv8lIzn5ICotzyeJQZtoBC8caAZx+z7iocqkTRf4E8CjHci3AfZcbaPsO6o5YAB5q+VjtO7h4qZ85vlGg08jFnOzfKi0AIBSr1GfqgRy8EKS5BLIoUoH46l0gu86LKRO6wTrIrvOwGSRFreKI062MrHLcSlsqigIMA9YFIDjNRl5kl8BYFvNjAnVG22aYQY53atFRn/WSMYa6QGN+W+WbwQ5Z0T5T3NKA9YGDWzZGLJgXzel1IvTKwfxSYcZPxrlXAmNLGTYYTkMeAI0ocqy7DrQaIBc+HAgGcIgHcuZOdAIKlzqgRFTk7gTUWslbd+wPEympGyVVcPBc/noJSjgo4Xjrl5Zx64ajfA9s+hSU8LiwodTjit6vutPCSv/6TASjRMZAKdvZFfQ/3u3fi1PWTD2PKQ76fkhQd0Sg0Jm+mGcdAqwN0lQInaC4b9Sc/Nrkq0zoPQ1nHh3SB+MhNvxTWG2I7KlOqw6f+ehThqZLsT5wsK+xF3saAfY2AtQdhj2RviflDxixUixVL6KrRWBHkb3ye6rQK/H2aQQORVCroYMuGA/xk/WjaDjzeBAT9Aa3b4ZYroW4Zb2WWiNesCDWI3L9de68fZ2hv+dqpXpbFGpVqGtCPfBnwy/IAlOwPvgIAMBn/dgZKOSzj3+D3YfS+6jrwForCmxSLu646J4jbDVn+neBg8fBDSFPX8s2nh38bSHn/6XvwEee/Blc+VjRLzlnqUCgrKHaA0HaoJpB5+Nig8iCmwbMdNZi7BjDqZpGSkCMkW+8v5F8KBhF81L1432Ul/Jzd1yHz91x3Yzj9CxAkUI4rtD8phtNsCFPbTYUpRDL/rY+cEBAcKBVbMhLQaUBMCj4eX3XIWmDXZ6RVzci6YgXGjmblFGFVErlZoJUQvc1g5GM6TZIL2oREu9y8h0lHBcuZg2Kc17aQ05Jejwru4BxiGd06vTCDdz75SIdu+HMg/OkUrlNmTFFSuufj3XSY+ww7Z3X53zmp9LlM8ikvqcjTm9c6aPpMqwPHFDCcbTjYbke4qa1un4mAOlndahlXkTJdpLGwqxMsHOKafynNm7USfTbXAzDcapHgFKKutNKfXWqZ444GUpE7VnvEMf3DPdw6EYTOSZ4tJGMMY6bq4fOsD1Q51qdP3yi10V6bVJrb+RmD6WOga6TpDcdlFTPisqehKY3VS7OwTdPZtNytejO070Vqx6gFoFcrNmNMmr0tFNxjmUI0VlcLP0e0r8bZAx4816SDTcM1GdoNdQASRvXvNjYW3ZNI581JcDuevYYE12TPEZ9B/KMwTrND+cMLTRBCMWctwvLgxp83ker68OjHupOq7B/24IJ0nImf+u8+nnQdR1T9gvZdV6iS0e/X7x0npA76jN7GwEGTEZoJsdKI+q4iqClKKOG4ji1f7Y91yLjv2ybgA+w4O41/C7aTEZ1N3jUR9RBKQoE0flSy9btsOGutzwHF//eB0F3N4CQ4+lve1/pYwsjTuV+nEU1FWaK69mAHaNtqakDMoxe78ykvpB8yCPMJhREMZzqxV6miWdphtGxnWmgwxgAVBoAkYY83LVlv96IJm45qDtEpLXLdIzP3pl+Vxa3wnNWcsJvB6J6ep0yHO961tTvYaNmqhyne3x1Rcim3Dkkf0K1yXCg+RLsbVwVXdPeh/uv/P/h/BfsscgsCenDUtV2rdewGTcjeJTj07e9H5++7f3xd9JA2LJUj6+qSIY8wOm+G0UXKxES2n6H59IOh/yqrCNEXJkKRWnga+kF4rZEd1WMOFWR5e1K2n13fXIFU+iYnFujwiEEDh1yK3AwzTADgG0tMDFtC70qVe8nva0N8gtUSjAOrPbT42Z3SO7YutPIfqk74SrA5oweawCIje6lI+oBkP0XZw2nFQoamQpDlem3pnRtDmatYaByqFeVy4RQMVKWWYEwHpTiFpeFJvnJM5n52iRTltMymwq/VCvfIUw8/6YCPmmhlTanSV8QfKLi2ou1EHd3TuN418Opnpv7Dpl0bXWdpBrRbe9O6VoMENlEwqiXBCIIGwTLjN3jGFNjntXM9+N7cduKcXnLKVuiInL8aORUaatZWeaAAwn1PS27tv+P37kc8Bme+X+ehkEnOWccZczTa7siQ/40Y6azFmPHGE5NsKU2AMhXRGnWw19mwlG/r7LNMBpU/ij1u/hvnv4/D6Pym+ooih6rZJjj0iBX7djYJ6Yp+XLwl9GjZ/rZKG1dAbFN+ip1QNFioizHaRHuu5zI2w1p3B56sSg56ZfxSusIFW6iMnJxzlCjTTScedy4kixyxqF40IjjTOJ49+pSx73rFVfhj+79ROvv/ZBhzt1l5kctCdX4qy5IbFHUN5y+xnquIh5jI7UGVzgBI9gWf3duZhcfJo5TFQves7HgPRsuyR6bcdCp6VR6dVvlc6pKr6044VZgSI5T/Rwc6f7ZrhDVYYNpHGYcYFNCU68HU1XdZtjZuO+uq6y/pSILZxGnUw2T43J94MQRhstjdCLZnKTSoJt3jD6eOiS9mTCyEdUwfxAQgCmydNrgP/kW4LgI2ADhBQ8tzHiR0HXsMvKqRjR9/jYapJQ6CKNgbyObJWYrYJTdz26ssemmhDgA44VZYLbr7qqX01vP9N24jxHQ4qJyrtCjYmOjmsmiGc85mHWtfLzrWVPzh0HeGkS8X5aUc0pRgweHuJgjc6DEQT9sg3MO4niljKUBJ6mI3n5IsTEQ40ZRISsh32SMmzKwQV0/ybGirBE4JdswjysypNY67fS5JHWUjEaNxsCqQRePoASXHXsR3CDEO3/zyqnl1B8HZjprMbb1Nr/85S/jqU99Kg4fPgxCCD7xiU+kfuec441vfCMOHz6MZrOJyy67DN///vfHdv1c3h+TIhp5uECAo90fxd8RJNUPz5kboBtQtIPe2ELrZ6gGSjjmPYZ+SCLCfHN1yjyUIQfP80Satl6wmdpv0x/f60cIzfTnYfof4yGOdkTfXunfbd3Ppnyq0aau0uZVorBVLjDbZoqiMBUIKzNxSyVO7qunGwnS9XSqvIRM6aqqNAuPc/q7KpHBsj/XHQZKgBo1p8yd6uWklUS7//YDduP/fUA/WTyBg4CgF2zYjy2BNA+peR/9vTyyMMB3zrwn9V1RPy6tnBne17yifnOundvUnqpvGxOyhtsUYgOp6djEgLotc8oIhlMODp/1AELhEBdNN/l9UvcyTXQ41CEjbTNMH7Zbb01dSxoVZl1lasHBcaK7kYpGBRJdSXUeluVXt6Ef9pIPJftEyIO4cE/LXcKclxTxUdP0N33BITr2YA59/mjMm41Pcl+INm26DG1fcKcveA3saQTWuTxrZC0nmmnONhrNwI3Rg1VhCk4oC1Uuqx4iv9ccsmX01zLOfVtE7+56IIpeaufSDbY6zYSQzdwH1GNkar1at0DHg3YHqDvpYsBqkImpWryOQs5KC5ICbek10YB18S2/iz4jqFGipOWLfVQVwNZn5w2GSxvGnQ1rWsOqdBhNQ7bY7Zvvwu2b77Kes9RaitDEUSCDDqK/TRGnpCGyiU0UdHpEuqmdf+QEeOxTTuPkTy/hd87dzO6gijbEZDzOSOBRMdNZi7GthtN2u42HPOQheMc73mH8/a1vfSve9ra34R3veAe+/vWv4+DBg3jCE56AjY3RFvRyIDZ66OSg7NgnsNRxhokyzIkW3SH9aluhkpkPi6pRm1WgG4uYQ1Jbet9q52Y8hKzQKGUvazQumlRDi0JSTq6hDqsEIV+ycc7idOCmpvSZjCtFBhd1gr11w8yDaYV0ugwBSsxRB0FUzRIQBlyRTlcgRqSoLteeF3/3k6f/BW6+9G+M+ycpKCwqDjXULSiyl+s/ss8Wp7Mlf+cpXKa2t53b1A90A6oecVoEY0QHoUCtlfytIU+ZCrfS4z0Mx6m6QNjK6NgdjCKDHgDceOON+OVf/mUsLS1hYWEBP/MzP4Pbb79964U9i7FdequKdIQOnb1jEco4XbdqU7GtlAYjGPP0NP1RdEArbI43qWwMkZ4/Dkg9IPsszcbtxOinbCUxil7VDzvR9YfQCUboG2qftunOKf0sWpPoctqiJfUxTp4jnZXDc6P/tsOJapLbuB8SZ/qo40MeJ2+AyVAiSZn18UAUNU7+tmF1sFr9oqpBXdOP47WKPjdq/c00V+aNaS+4+gL0GcHv3/h3eNylp8F/crNyLrNjpbTxdJYtclbqrdv6xJ785CfjD//wD/HMZz4z8xvnHG9/+9vxhje8Ac985jNxySWX4H3vex86nQ4++MEPDn3N1cGHAMBYHCoF02RNpFdLmThpOlotbeCYWUmnCUXKie15qROc+DyeytZVCejzCi4BJgVveM9XUYRcHkF45pxVozFLFofSYYo4lR78hC+qnCwUjnEylQ6Rey30U+cFxJiyNvhwyXvMylFaNgPn6WbgGJ+35DjNw1//0fNw6T88TcgVPX+HePHf8r2RMg/TrzzLTCPPpTs6mPK8yr4nRe+jvd+Y76lI6aaEY86rNgaoxQBiEJqif1HlJAsHoou5saxbjhFT9dP8ZekbKBrThgHjZGo4Trcy7anIoHfzzTfj0Y9+NO53v/vhi1/8Ir797W/jd37nd9BoGHgRZ7BiO/TWXMzUzKlFvg41/gdXdxrD6VslxkszHdkY7mEMuZ5l5ZdzumluV9PH83QxY2HhHL20LPKyX0zfS/orveiiCp/1rL+Jk9AUJYJJv0jxwec0c17b5opQYIZIO2GZSL/m2bXOOPri6sBJ3WORESxjlLP1w0g3SvG6Rn/L9i2q8B4aMieL2ppzDhcWW8cYDXY2eceJrNG8PMesyaFfFte+5BbsqQdgGwP8j598HuyHd5WStSrn8bRgq1P1z0a9dfi8gAnjlltuwbFjx/DEJybce/V6HY997GPx1a9+FS9/+cuHPreN3Dv/ILunQzWk3tmu4cj8AE3Xi/lHZthaeJRjfUDhUQ4/mmxEur5ILWg6LJ6q+yFBPYexQYWIJJAReMMvzOUk03Q5/Iq61oWLL43/Pt27rtQxZaOczR68rV+VDdu2qsLz0L0dcJijAqsanzyaz4lTRWHWjfAhN6e+uZRj06f40jGCI/P6eJNW7H1GMO+GWB241e6ttwl4Dl734D34zB0hLl1Ixiuf9VB35hInQckiF3lQFWvZniFPJqFfOv/5mTR9U5VZeR6jzc0ytpcpCiFlUfdpB+b3R6bqt7VUJdFe5gEls0AgFBiIaJE8jSOlMMayTq+1hICkFuNFRPm/fK8rrL9JR2dZyEiHafHhE8pBhjQOVz3uyU9+Mp785Cdbf3/DG96AX/zFX8Rb3/rW+LsLL7xwKNlmMGOSeqsOwfcnUq2HSQ8cBpfsfnHq8w9Xy/Foz2DLetiCwiqUgudEnTnUi3WYdrCK9cEAy5HqpM99LZcPxQWvYqSAA0KBeC7PGo6EXlSO+zS9j/I3AE+hYEo7k+2ym+bpste0/V7FGKjqaKbxwEhNp/CE5umxYylYxNN6rzhvmGlTojxjKZu8nUwaNp98mnMRBYKJ8zRkPhzHzVIiIOmf6jEyIKPpMhye86N+nH5eai2OYQr+xnUsxjhVtFymPMtyxxyZf1np8/fCzXS2V24Er2C2T/eR6H/qpvrUA3Z1cfN6HTetnwJQnD34Z99bwB86BP/2mMvwM7f+oLT8hYjuZ9M/Ob5zjoit1FmBs1NvnZb1RQbHjh0DABw4cCD1/YEDB+LfTOj3+1hfX09tKtQU1Qw4i0mpUy/oIPLayUlGjQiy8KTqhobQYACY4exEkaGMEGrcRo1QLVW8CiKtysShGaPx1PRmPRczet7L0iBMdDlgociQmwnq90lE4ySEMyDDy5TzfBTYC8wJwesOsy5kCChO9t4rrpdj+Fx54f/CU0h64vZo2pvHwYzFoVQONBMmnSqlKvQZpdbAhZU+VvxvG5cZBxa8LUr3MvKDpknuQWnsANpSkIqbBtVwmo2KH6+oVbmsJ42qwbqm4F1dn+n3+5XlYIzhM5/5DO5zn/vgSU96Evbv349LL73UmBY1w/CYlN6qYpr40KYNVQuvTnIbRnb5f1k+SdP1bLygueeqEB017jGbECe1GaE4FouMfJlDFZoBYHQjoM14Ng6U0wnz5W84C5bjDBRzQ0YdVu0DojiUOEh3IPdD+/2QOB1fM5hG0PtClqc0OfcNp6vHiZloN4r3N8hqysSJihWZ2rJK5HEhxpwKrsrQMRT4LCtjN/hk/LdDPOM+DWc+/QWlon8TgxHdgLjfpIqNMUv0vF3WV1+ygUdtvBw//eUv4kvn3d++oyqqJYDChKLibFuJadFZgenVW6fWcCqRIY/m+RUA3/zmN2NpaSnezjvvvGoXDKKiH6qnSOM7NSkZCa/p9LwA9yRMQmHVOVpy0831aMwc5a1KenkVME7wk/V3x1tRlflR01fME3ry/3q2ACgAexRlWQybql9kOB03qt6jzXip86/qGIUXOTdSNJrl/vX3L8d/XPHl1E8BF+OgqW8NY5wqG1n94N0vxoO1qKZxwGYcLS48lX/eoVPNlYJPALKGU10sQkGoWbmcNmTHSo5TODOx66mRNBTbRGcwQZx33nkpnebNb35z5XOcOHECm5ub+J//83/iF37hF/D5z38ez3jGM/DMZz4TX/rSlyYg9c7GpPRWq84BjlpOyu648L0z70ltMxSDc1YiutDMFzgsTBGHeUYg2a/KOnSBMY6zBVQvMQryQEctIqkbq3W9a5zGDfq0LPVOlWdfZKgtY8gl5x+ubFQLDWssWz9Y6WuOYKWPlZVRR6oAlyL7sO2oY7kWZhzTRRkzsVz6d5wnMhqCrjJRqpxkCtOK6yd/l9G9ixzrqQJcE+ANTgpbVXu+ev9IfxcZ3YmDXmjmCufgUXR9llYP1M3tb2pGWqaQHAQFyrUvuQUv2fVk/ONdZ4cevp0Yh84KTK/eOrWp+gcPHgQgPPiHDh2Kvz9x4kTGm6/i9a9/PV772tfGn9fX161KaG56kzqhSMMpSSq2xYOZzdNRQQGZYWthSufRwTgxDvzjrkpovvZ4z1O6OFRJ4+68xzJKkZhsCpS5MRewkKmKiQy6PGISLxsNabuHsopYFUVQ3bercGvJNgoYQd3hWzKGPPZwA80Xz2PF8JuuuORBbafnXnQ53v+j60vL4FGOT9/2fgAiZR8QbTDO6Ep5L7sbSdqiQ7g1glpte58hRelxtFPDkfk+6g7HxUsvzRxbo00MWFe5NgdI9H4RKgyn6t95KUgFv087Jj1mMh7G9DtVlfVJgxAOMqRM8rg77rgDi4tJpet6vWJhOgjPPQA87WlPw2/+5m8CAB760Ifiq1/9Kt75znfisY997FAyzpDGVuitOjhnw9FPzTC1GMXhrfLUE6DU3FFWd+kE5amtSqNK36U0TmVSjRxFc0xeenNo0fXleXnJ3GbBv1nuXlhOlGUedF10sVaNRzFluLvtbpDDDyx9rKlPHu+aM7+M1x4yKjdj8I+iUEEpECbnHaVwman6u0Q7WEGrpKUkMxbncGwOoxcNPS6MUY/WI7iHhWwLj9bjdY9L0vRqfdZBUztORlRXCUaSwW5qXwHKZx52gj4u+svP4Jqn/xT40ZM4g0eMhx6nwvpqqzAtOiswvXrr1BpOL7jgAhw8eBBf+MIX8LCHPQwAMBgM8KUvfQlvectbrMfV6/WhH1IKpgIeEfQX1pi6Matyum3IVK0vYdQrwjgiRseNSfOahZzAoxzdSDcbRzQ1IWQ874bGg7SdqGYwlZyh5fuTrqA86bwr8eWj71Mqz4viUKZrHWi+JPO9R6LxMfLO3vWkD+D//sWv4qm8H6XAFC1CiPJ36dvYVpiLHhQr2u0Cmuo8Q10uLQyQO8cA0RwiMyAIBRafA6y/G8DWtvso76tMR5MwpdL97a0fsB7/mMP5q3Rb8YZpGa1HKZoqj1tcXEwpocNg7969cF0XD3jAA1Lf3//+98dXvvKVkc49Q4JJ6q15/HScM/ish+bUavRbg2miwxpXFFwVDJOmD9j1kSKn+6SoUao4bE2wZUuNnKZfUMW9LNrtbNSalHnizj85KQ0ZbTiOvizvVaTtG9rTQrOUGgMJzeoTlusUoRtQzBsKfRbpPurvRr3Z0sYqdy6QztILeRLtXMY4mfcOCt5Piw5FMHaHfKi8Y2X7ic/6GYOpRJ1qWRSEohduWPcHzFG9ZccRvb0v3f9CfOfMe9D2KRqvvgJHnTNYP+cw9mjnHxpxAMVopxknpkVnBaZXb91WNWtzcxM//vGP48+33HILbrjhBuzevRtHjhzBa17zGrzpTW/CxRdfjIsvvhhvetOb0Gq18Gu/9muTF05PB7D1pIrclUUL8Rm2D2WVKg4O5FQi3Srv0dqgj6VaerGlGhGsk27vU9ZzOsSFmoFvisYz8doUXjNCGSPMpNqPKYXCysCjHIElGvHGlQbuu5yuWJqrUBMKSK9nrDSpz8p8nZ8/zHHLZvq7z91xnXGB3A8Jmi6PqsOKa53svRf7Gi+MrmHmVvjRNc/GC2/9Ok6d/+D4O6mYcJRvLxP0dLdhie1NyJMrT7E62XVx7nzSFpnUHJ6V21O6/GMOXYWb1oQB0/TcKlX7VJG3kJkixaoIWxGVn4ct54DNAaEcdAuJ9m2o1Wp45CMfiR/+8Iep73/0ox/h/PPPH9t1dgKmTW8tqvw8w/YiT59JnHfje9eHMeyphqktpxszOQyBZCCX4igDe14h014IzBuyaYt0035IUaP2CM5BOICTk2EoZM23OMi27XWzClxeu9vT4V1QsomGMx/ThznERcjFQjM3Gp0SpTjUdHrAZbaNkaIrjuIcn76xOnBwuOWn+krN0WMe7chElGYiTvWgK3Mx0SrRnD4jxjoHhXQOnA+VqZAOnMgfu0x9+vbNdwEAlmvLiSxDPkNyvwfl/h47YJT/bU6VPEq03Q3g92/08c0fHcQnHvkDnD7noP2a0TNlCOEUsWH60RrSvlzZckyLzgpMr966rYbTb3zjG3jc4x4Xf5apSldddRWuvfZa/PZv/za63S5e8YpXYGVlBZdeeik+//nPY2HBTH5dBQEf5C6u03xzyeCnDt6igIrZGCFenln61HbDFh2nDtMO4fBolqRcTfMWBqTxRBJXMd7leUxVo+k4vOAcPOa2rALGCFhOVFn6GixbXXwLYZoc0yn+5r9VhJxgzuCdLoLKiysmcHOUqMRiLcT7b6rhXgvilyLkpRup8Hkfq4MPYZksAwDuv6uLu//LTahd+mDrMXr/OtQa4GinljJS+SVfjby+f2RhgO+ceQ8Ae5q+PL5KZAbjZKTFgakv+BGdgglxG0dRpxl+tAynqaF4AESxQu6L4gikb3d4TCu2Y0E2bQWitgpFBr3Xve51eM5znoPHPOYxeNzjHofPfvaz+NSnPoUvfvGL2yf0WYjt1FttmFbDxwwJtvIZlSmcEu/LGRhCqxGnCFtqaM01XNpltxmipD7YCShaFv2piJ+4jHy6HIGv8nOSynPWne0QByN7Xt2Zy+1bplR3AOmCW1XSnkuIqnJGqnJU5XE1cvVynjJKFsk+asahynG6u35F/Pfp3nXlT2KQtaqx0PaedUN7380DBwNxtsYENAnKMQ4O/oPvgjz4Z8RnA6WVLeK0yph136s/jY88/Vfgh8Bf33wNcJm9AjyASutb3l0Tf9SELWon0juejXrrthpOL7vsslxDFCEEb3zjG/HGN75x64QyCpJe5MqX0Gc9gHjgBvLosyWF9Z6KupOtVjhsJJIweCkKAGf26p8lUDRom+TsjBCpXHS9NBl3vgFUVfIWt6riuAVZcvXyx+YVvqo7woCcp+SpRvZSaWXUPKGnr69HPpaIHtb2L1LAa7QJl9Tg86TKYeOFn8D7/8fleDF6OUdm8agDL8APV6+udEwVVHEwxIiehc96cJ20Y0zt5+k0SvH/Yo0ZnSdVinPJVLIMnUvJxVeuYyY6pzNMu2wjtjsCdTtByAhpTxUfcZFB7xnPeAbe+c534s1vfjNe/epX4773vS8+9rGP4dGPfvRwAu5QbKfeOjOQzlCExFjASschJwV78sfqljuB/mfLtMjJwMirIVFl7VWkV5ki0XIzzUoO9vf60kngWeM3OreDFdSduXzjDaHgp28B8byhikOpONBkuLM9fCBEUeElGREp90sZgRXZQ07gIr12YZzE0dx6Jfi6U44bVi8CfKb/AeU3Q5SnUnehSn8QMpP4/zKG9Lw3VZXD5314AU/FcZWNkDZBL6IGlAs4GRW6YbSMXhn3mxECi374kl/CFXfdhN8O74PbXvlUnDe/FwjWhj5fChsr4v+lA1Oj02+lzgqcnXrrjmRE4pzBJTXhsZAvn3yxXLHYJp4hPN/ineFgpTv9BQsMP16fRaJOEmplwmFTg/WJyzpJGmD7vkabkCnUKl7xR138xRuS/iYnnk2fxrK33GLjacgDUDg4d85HyDgONKv1s9XB0dRnW59mvIzCmT6WEjGJ0RIG53EYWr52vIlfOj9psGHPSAlHjRIMGMdyLcCZvot9DR/rgzqaLsVyLRCxDqRgKK3PA2FirJT3KOW6ea2GPY1Q4TkS7ffzhzl+tE5S/EuiLcXf/ZCi6QaYd0OsDhIZTIY6h3gIuY8B62JX/XLA/3sAgPeBp+Oufy9uC2ksoITjznYNd7avxYFm0hGaSvTlh398PTwKhAX6qUc5+mE21Ui+f3WHGSuNAkmFV5dyrPYdHPICDDwHYdgRO+gLnhGixU1FxkyRDAxhzrjAxYLGrYH3N0C8RvKjQVabvHe2a+gGYmw41KoeIV4VVd/HQdhFnc4VHrs+GM88qKebVTF0TxqE8qHTl6oeV2TQA4AXvehFeNGLXjSUPDNMJ6aRf30GRFkpgsrroqX96IWb1n3D2GiC1P9VwXgIh3jGPpFndO/LOTPn2gdafkzdxCJORneIsS0jhzZ+k34bTn0u2T9O3c+S70lZbeOeKfIxb00gnZIqfYLkiaw5NYTMroTvrp+DEAxUuZZuSJDUTy/5swD3Xe7h1o26lWtd6hem4lXnzjk43RPPuB+2Y2MpM6wvQuanDKmbdWDOqYF3e2LuLMF1WiUooRadbqnGU87vbmCnRwJEBmfAsvoMt9GiqQbKnPNWxerAgUs56k6IhjNvlAlAai1D4YAoxaMd6iFkPuCmo3tTqfw5znT1Pk73gfvvCrHhO6l1wHwUZdp0WMyR6lGOR+5P+igHh+eH8D0H4NLwTFCT3KHBYCQr0LwX5gaY+IzAZ2ZDsEuFrcWj9Xj8CfgA6/7JpA6DvA/OQKmDzPqZ5Y9z9UGAgQvF1kMrRT1/7fi1mPOAf957Af7LRR0svuUTaLzwMnQO7AMlDjzaQC/cjPuCjJAus84FAH7jzQCA5r0uwi0bm2B8+7kct1JnBc5OvXXHWvCMKcmEJsU41AmS0BSRckopsUw6eS8n49W2GYZHqClM8x5LLayHj0LNS42x/zNBNZrqGCbtVB7jEI7VvmFWbDw1vUVY8g5gf/38ytcrA8ajwlBjjD7TFwchT29lr0VJWjHshwSUOLESPYhewtWBi5ATnOx5uHipj27AcCZq30KKA7+n9IKsXKHhXV8fOAg58DP7s3QgMi2/7jAEjGDdd4zKreQ3FddIK9ChK2Tf0zgP3/nMLgCSQiDEmf5q/FnFnsb4poyy76HJw61jsRbG9yMoVBJwLhR4vd1VDz+QNuTJSFN1k/ji3e/DXe1a6t1cH3wE64OPgMLJp4ABgDAAoR4w6AC1Fnh/A+isgiwcAFbujFLvGJZq+wEWYKl2ICX7kfkBjswPtsRoOizawUrcdxa9feCcoxOsYX2QKJT7mpNREqeL43S0bYYZiuBQDzUYSB23ADP9NB9VnXXjMPxIXst+2C4tBweLDK7l5ZXOzq3qA71zLgaom5HxyHzikC7iCU1HxmX3zVu3lWmbIge6qp+WRRElUd1JnJRyzpUGHJfW4VAvpT/MBy7QmAc5/zAA4BuL+3PPL4/cDCgaDnC8Kyam0/3svi7lGDDEVFayjXfXAzSiwCNTO6rf+awHuWyRfTmVFScN2lwYlUVAih0e5bF+3QlIblr7Yi0xzDEO9MLNUlH+pn0cqkT0eo3cCb3oHVqN9KZOQFJ9lBKObpiclxCCr59QAyiYuLYCuQbg4JnfymAhOmaxFmLTd7A+oOiHFD4jCLk0lop9l+vFOh7nHB6tg4DEurPP+6k1MyFURI8SCo820AlWhTH1QY8QJ2mIQkQdL92QYaMFzjlqtBmtAxy0fYqb14Vh9sKF+fhdFAEpJDUuPOrACwAAD9vbwv/4hjA2/4OTvC+DyOA77Lo2uHUVwa2r8edpmE9nOmsxdshtloRqJFB7QBgtUL1G/CIfbF2Ye6ppeAFmyKIb0NIpPjo/j/x/q9LlpHexHTilBmZb5EkVJW3FP4Z5bzc4GHY35gEAdcrhEGGsk0YshwArA9FGTzyXxRNm23ewPnAyBt+E5794yJHRdnlbGQzCAfY1AjAu5DrU8rE+cNB0Ge5qu5j3RGq2rphK3sqQk5TRruidNhLYSyjjic/6aPs+HrQn0TzPX/AjA27C3znvCSXuM7d72ExxYgGr/axHs0yk3YB1jYrmb770tBAzknOx1ooKDnC4lGNt0EYvDOIoBxPaQVqmxZrYV/a/okXhL53//Mx3/bC4v6gFvGqB+SH5jKAbMOyuBzjYClB3OB6wq4tuQDMGSGk0lX1WFoYyFQpr+xQ3rqTpCkqND4SKKGS/B1JfAFrL4BvHgV3nxgvetcEJgLpYHRwdiZZiq8HBMefuSn0WizohtLo4Gcv1ZhF3M+xAqGNCH9vnRJmmSvbTiFy9IMIk1gs1J6lITQjJlSPmjdwOGFbfIfeBB0SpmGt3A0t70EQD4AyUOGh0BwgYQdNluLtTQycQOpFezJSSJOpN/Y1xggUvmYeKOCI55/CZcGDb2ulM/65C3TRgBAEj+K/Xn4f/WGnE87iacTPK+zTv7UkZzG0gNHG0PKK7UnpN0wtFev6AAU0HuLsjMl/WBmkndDvSV0XEqflcPitHDaX2W1FrQjy3U/3bAADdcB0tl6EdODgyX8Ph1gDLtRBNh+HI/CBDt5RX3LYq1L6gF19V0+U3/TPYCE6hHaxgna3hRI8i5KLew6X774U5l8GlHE2X4XjHxeleoksfmS/3Xpr0a0JoYr9Aev01rN50opuda/L0UVPhqjwsevvsPzquFriW76gwccrKoJOkVoL43VQI+WvHrwUAPPV35vDKB3YBAD/7jg/Zr6e8R2XWusHdbQR3i/d1ecx68QyTw45J1e8EqhGMwyEGDz1jZn7xKBxcTjYcHN1gHdGXlQxpJ7oUAwb89kMuL33MDMNDnbSnKRKpLPImnbVBP1UgSuJUz8NynWPdXLdsaDBFyQs5sCsKrPv8nRSPP4fFxtV5L01dcbD1Uhzt/FXE/7i1xaGOdz3UHYamy3C042GxFmJ94OCcuQArfQd7GiE2fRrzI8n2rkTwXcaQS6me1Q3AXrws5IlneaFkxUWZTm6L0FyqPReneu+LPzshQ0CAj/3kNOrRuKcqe7pcy7VltP31UrI896LLce0Przf+ZurTjAOfvu39AGo4sjAYO98P4wQNBzjWFZG5/ZDgP1aaWK6HUfRo+XNddvgqAMBNa+8ei2x80I6bPHHQRAtZzko7CqYVcqETcoaQu6mo03GDErFYmxaPMC2XCWk9doYZTBCFU3Y2f/C0o+1T1Opi7G4Hq3FqqoQ6368PnFivGkVPLZsiqkOmo28LDGFKhFDgR18D7vPT4EsHQU7dmt6XSu5LkjHMNZTbYDypd6BXH9/wkx3zikONE1vlZEiiMplmPOKiDakLnFkDzkWSSRnRApRBjYp23lUXHKdLNR4bTyVMxjSbEZUQgkHYtfbfdIq7uJ/d9XNxV3ALKBxsBhRzbojbNwfwWS2mY2gWZCs9/pyr8IU7s0Weio4T91KOegwA5tHCBjYLo211hFyMIyZnc5mxgnMGuA0gqmkgi6j5rAfHmR8pRFDV40YtwCVkSxcnNhUGQxgAnoua00LA+mDf/hfQh/yMyN7y7OasWK/Waw+UnD//6TW3A70Af/Wrz8PP/cZfY7d+fs4ztBxliu31T4vn6nAZrFNKnIliprMWY4fcZhJFttI3L+ZzQWlk9ClPTDwtRL8zjA+6UjGuyFNGSWrTMefaPVF7GlfGm5DRj6M9pREhg+4n01sEEV1Yy0zk/SgFox/SVATgyjZnCpui8NStphQHMinYOiZqWFfGjhptoulSfPNkYvTe6rQ3Fc9ZuxGXvv6DKaOdBAGJojMa6IbljKZVYPLyPnj3iyudI/VeFhSUWK7lpw6ZInl9y1DvkCQlLVO5NiVffqTKMJjm+YWDYTM4kyzeICOP0zLL9K5RoXOcAsNzGo8bhPCRthlmmGb4UzwOTRNMY/+678AhgiJmXkttHquBTa5fcsD4NkedmkBpYuhYPw1+13cR8AEYD9H28u9HdTwD2RRcAKmI07qTPV+SKVNu7pY6gLrpsNGv6bRB40ImClLK5LiJICWtHWVlG4fxp87SMhk5e0sUZb19s1ZK7rx98p69/l7pBjr19wV3L5ruAhbpEvY1gni9UdS3ZHsKuoFETjVFf5h1AwdPZ9kOCREok6Y8M71PVUAjg6PpuQd8kOW9jfpwK7AbKocNQPAIx2DfeXj8p++Nqz70QRz4zK9B1LUR44fJwBuyclFLm6c9bJ7eHpodG2Y6azF2jOHUlMZqDFWXk4jJE+Oki6+o+6mk7kXFc2o7ptW3F6FBWbI9l6IFvDrobqVyWVWRcogHStLyVjmHjQjdhjIT9rHOuytN7CYFtEghzcMoBtGifsF4ed7WYVNjDPzn2N0YPq1jwLopB9LJt38DB684N/cYm3IqFyS2PpY3DpZN4R8WZRWlMjKq+3zx7vfhi3cnkbv33/WS9HW1/pCJSjAsVITH2lE+J1VPY+4yMpqivJWYd4VPnvMktS5gJPOmVE3jMkF9r6SjqHw96clixhc1w1ZgKymEphlV6wdMcjtbUOTgKsLIhjIZ4qSHOhnmyaS6erWLmjjkTSjiEx03yhsjzZlJKlLclUWgLrA4N9REYyr8qspmo4yS/etE1y4fB8ty1CNdH4KDGwtG6XKN8g6OhWsYiiOioI0ZhpM31+CrtJFebGkU6ONDPq9w9rcj8y/DkfmXZb4vtY4qMvITmrvOku2hjtHq+GUau1cHLupOC3/2K3fjD556Obz/fq3xnBlRS0Twt1ddtFfd+NrTgJnOWowdk6o/lhBopVesDlaxWFsAgIjQuI2QExxq+egGFHWHW685mCKn7j0VHuXoBqLqeTekoITHHIXDTorqwDaMEawf9gAkUZCbPi1V+KYsXFqDqKoqBK2qBHIw9MMOQs7gUgdH2+24KKSKqt7EqYpiUDAO5ah08S4tWl036lVV+tKFjAgWvRCnTYXADPBoI+aX4mD441deibtP1/A2rCrnlFGSelQviWkNysCmRB/vJLI2XeGxNnGcFiGzyCuYuc/0XZzsujg85xuVpD2NEGtR2/ZK2KaHVnaU8YPU5jItek8xgnAwbPprAIA9jQXU/TWc6Y1X7TBGnN4zmm+GGWa4B+Boh+G8ubQetOiFONl1U9RGVcatrP5iODild5hP7rMeXOqA8RBz7i64LTNH5t1tQXXUGveqURu/ea0OIIwtcpKWQv4t/heckJ2AgnECl/KYhkmF6pyV1eulXqym6if7Jxzz8nMVPVrIOnmnnSgeyXGqRxQna4UTUCpS9e+N0taOvMy3+LQlZNjfJNgcI41Y1fVFyxW1DYbB7voV8d8q7ZU06BdBZK4mnxkP8a8n7gTgoOmwmBtW/Fbcnmpgh3UtqTndUxiTpUu1dRQ5w2/ffBcAQf0l4bN+hh5NH6/EZ2L8Ldkp3QYDJnhJe+FmJKefGTeLakPsjgpcPXBzDX+4+i1883XPwb0sMkpInZRzhprzi9ZzH71TnPtw9HmaM8lmSLBjDKfqyzH0xBZzwViKSOVAKkTtyRQSnqEETJPQJBbYoxoKh42QDNggjjgdF9SB3KO8vKHQAMmjRXQymAmhSmpG0eQ5cj/JGSfSHvtybaPvt+7rfEMWMaKxb1f9ciD4HADg588JcMmDNqDy8ahtF/J0n1bPX9QfBkxE2KvtK7mZ1O+kAnjD6Wtyzyeun9xNBoTClKidFwWk8jOppPxF8BmJnQjJgi6EA1ejO6Dg0BRrSWpPaSJuiblkV72FXrhZ2YC9XchbUBRlZoyCaeGzJpSDDBlVO+xxM9yzYXPaboXBZobhYJqT1e/GMQ5Ko5/Kb1kWIjNgdBnGCpoYH3RUTbsdda4RRp1s+nVWrhwjVQFGNZqUXnfI0LAjR5LPI8qlGv5H7csmnn2Vg9fGV2mTaTtR5ADnYJniVYB5bBj6flgAOCULJZQ5nfzfOKYNd84abcZGzlwQmq5PQ2lsGDa1dUKZUPzu5iF433vwjoc/Gb+x5wzOnRtADYDKFZdQ+OyzAACP/kLm987m9BWEmumsxdghgbXlBnPeW0s+mCYTywQjBr9yKeEzTB7jbvsMjw3nhRPiKJBGHllJvUy1dEBEnHKwFMepPF8Z6IqI2qdV4ny1wruKvLT2SRgydEVxlFS5ib+vhrEj77k2x1So4GTvvYX7POA3/hqdZ34m08+ll1ZC/X1fI+sBUtv8wz/OckkzRQE80Ariv21QOZyqoMy7qXrFVbkPz2VDIUx941BL7Kf3awrHyntVBnpamg3TGcMtIO9fTx/eyihaOiVG5Vna0wyj4py5l+OcuZcX7rcV79clu1+c2mYoRpXnovJqbgeyOlU+Fc9EETkX03MIS/2fGHHKn1bqtfq83tf0jbJ6dxXItrzguycL952ETpqimLv7bvF3CY5T0/O39dXS6xUijE9lMtiMRZVQ3tivc2+6BQae/hi414HsmiodgJDed6vfsaGpwwpsHZKLtRsMr8AwPdBAYkxK0eE5vxQlyaMOvAD3XX4JnIdfhP/9kT3o/c23sO/DXxqLDADQ7TB0O9Xp5yaJmc5ajB1ym8lgnqfEkNYuw5f5nDtAwgvpUY6jHS9KPTW/lHPuZCbkGRLUHY5NX6Tnn+yJCEyVfJ0SDr1YUJ7Hz4ZRBztZEKAIVaM8ZS+V9zkulCnkYvM4y7beqgrhjz2U9l7aFKx+KPpB3rOoadYx/Vyl7okk3EwSDsmeS2+7fzo6+cHi3D+4FBe9+zLjb3of39dMBHz0wReUvoZOT3K848b3akub8iRfZZU+XKGAnwmTqnqbirLWUxP9rvF79bskonWINhkRvOK/+Dgu+rteqGMyC8LpUTxVCNo+PuS23dLPcDagH5pTq2eYbshxUNVPJ4KC1axHG/Fc2QnWcLRjH0tHLfpihLbyjudtShOdiZJSkZF6mrDU68vMOaPSZlUJqCBsvLp5GaS41gkFDh1M/h4jbG2t68mygrqeom2DrW1t+rfktR3WCTGOYI+yKfwqdjcCLNbKHacGI0hISjpR6Jcl2U1bCFlQtYzxVPYDIDGm6/ygKuc/kKPb67q1pjdLyGf7o7XiKNfvnHkPHvUPj8Y/P/ffcMVdLwC76orCY6rqo/2wU2n/SWKmsxZjh9xmdeOTERHxcBxRM8RibZaqv33Ii2CrspgfpkCRxDgjCZZqdZzuXYfTvetwpv8Ba2GnonsTBo58pa9jmQBDDlx2mFmMpdV5u4ByhpphYWsLWxQtAPSUg4IhPdFFxlXJvyXbTI9+yEPABMepCmmoUxW3Tf9jxuOf/t2H4C82Diiy2lPjTnbFeU/2XHzl2LVWmZ570eUAkkJ4eQXxWi6DRzk+fdv7U98XRQUA5SIv57zlzHdFToCy40H5aO4kCtMK1eg7RYZAUvFfw5kHMB5uYzHf2rcZZphh+zAN6bDTjirj1Djbs6yeNLXjqMGgZ6ukXi6d3Py3DaoOUIVequr8lKcnZ6MS5TVGWEhQJTRMGqtLyDps3xyHo1TVJZI+MHq//ce7Ep7SFE+nYi+o0tZy3zyD6cng7tTnYdq17TvxcU3N4E+JWCOVKvQ7hNG8WnR39jtbcSiJTf9M/Pc4nrHPeqlI9bKF4gDga8evRV2uQ5aX0W962PBPpfaZUeTsPOwYw+lIYGlvh4TqzdBf76njC9qhKHoOpdJELIP3uKInGaWpTUKPgqSEpzYdkpDaIaJHVn25TcpT3WEpJcKEL969PcOILi8lyabDFvGm9g9TxMHEKr6DxXKqRryq44bJo6saHDMV3Q345K/O4xWHzIqeqY9XldEhWYfRvqb4YhxV1W1QF1dlI0mPtgV/UpmsAFmA7saVq7Xrllg4qRWE5bxicteq51DmH8ZFtc9pRjYCVdzLVmRcsClRZmdpTzOMG/eUwnH3dIScJCnlOY7lrUIZY94w65aqhrHSzi81Uq4glClPhrFUSFf0IOt6AMM782w6qS1gwSSDntGkwhjVeToyACmFbMpC8nKOqw9nDI02WjyTUx8sk0EozlmOm7VKnz/T/0C86TJIOMRVvtdpmzj2eedmzqv33zJG9Ow50vfr0vHxmtpgoxSrO8X1MBZrv5r5To0+NcJR2rYih7MO2Z5lxq+vPfGr+Nn/fX/87Mu7WLj608l5LWOBQ73K8/Skst2qYqazFmOH3KZ5EBUTjXThlSP1ziwEK8Ym+2yWqr8VGCXNwjaQyj6U6jcVoctVNLnnDeobfi/3WIfwKFWlWmNk+Xr1VHXz+fImSkd5t/Y1XlhJHhNW/WOF++R5K9OKavp+fEYiZSx7nGpcrZK2ZlKqs/QQ5SdPxoWcRVyoqkIacj+WRcXNT3k7Trz6Q7lG1lE8vyEXFCUmUMJz77lypsAQUZvToLBwpOcfU6V4ADjdS1KL6g7DxUsvnbhs48JWGXymKQqOgIOQIbeZgWyGEpDjXBkn2QxbB1mNvRRn9TbTl1S9/hPOvXLoYzOwrbxlcSh1zSWDVQz3lqcrF+n04wDnHCQqUlOaq7yEwcx2rVL7KTKkIhAJQO79kOjvyZsBjnezCuCwa6ii4mdbFbQkdWJZrMjMwzqed7BMP5XjTWbtGz3fAZtMOng52ey/qfOWS2pouUsp43MKKSounvrOZlQ3vYdldX45bpD7/yxe/KQT+K+df4f3pIcZ91WjWofnjx3qsLFiprMWY8cYTksjL/pH4deYhg4+w+iw8StOG2xcMXsaV2JP48rUd8MajW2KHsPoxv4qqU5lMS5DjC0lvKgdhyU/l6T2pjYNlLStojFmXNGazkeeihve/LzMM5Ip1xJFSqDeXvubyf4qx2kVY+go/S6vf5R1WCx6ubsZrjmEwqRFntZoU/ltuqNK88B5mtJkGL6vsx0z7/0Mo+Ku9l/hrvZfbbcYM4wZeU7tsRn0ztKBxFadXs4h6tyuc/lvV2HeqgaTNHVAIr+q17UsjvFh9IzYGUuooOa6+dvCgOqUU3Ly+PjV3x60O1tgsyx0bksJU+SmjlEc4La6DGWMu/aMRKU/5LyDk7Il6Kn6Hm2M5bxqO49SACo+H8v2F27M4wVAaNpBWCJwLaVPI13vpAxO9ly0wzW8aH8IcmgfXnTbhcb91Kjus1nXnemsxTh7V2UVkearGf7pprhWCgw37SA7CXhURJ2+/bvZqtM2vOZBl5cXcIZM+kWRoaZowuWcA8TszbLuX+I645wwd9evwEr/ehBlUqEkIUhPC6jJbbl9hmpcmyp0RURtk5O9944l6lSHbmQbxqNdZCzth3QovmTbWCH7hEx7GqVPCEUg4VgqG4H0zZNz+NmDHQAuQh4Yj9Pbck89wOl+evooI/tyPUQ3oGCcpJ6XzwieccEVuOH0NaVkVq9nW0JIpbXtrwKgcVurCpOuPO1rBtjwvZRsDUszjmuBRqgnnpqxOJRQyPTshpATuFvk3R3FQWFKcZwrWRRvFNAd4vmeYedBOiS4MnZNLU/lFmOaos23AyLqUfDulTE2SYScxBFrZfCFO6+DJ2NMJtzkajZGHNWl9PcyRUttGEqXy9ErOXhWvy4Jmz7RCWgmu8nmeC+aq1NrlsP3Ev+P0Tlrq3VwqOUb9yOEpNqTITQXBiqhy6qtPoouXaU/62vAJOqQ27kvx2BdkplmUg+UNRLsgm7t/NAPSarPltGVORgCPgAHR8AH5qhTQjEIuqg5zcz3QNZYWVRboKg4r0TABzjZDPBHPzgX1zxkA6eUPjquAJ7ZDH72YIfYh0cEpfHkbS6cIjhW9OJDc27yIrOo8Is/ezu2BHLyK2vccEh5j6UeSTUsJq1wThJ6+nWRkiLbaxKRpxIOSTYdNvnkMy9b9KlMwaKyKOJiLYJcMOjp+lULWD31k38D9qKPZ743KQTySrrR1IQT3WQ8lMWhTvec1EKHEpFiNGz0rG2hXFWZkf3jpJJStqxQRDkkWWRddvgq63lKXddU9AI8ZRg1GkLOIneuqR04z6dlGPpaU2w0IpSPtM0wg44qBrEZtg9hZLwRBUlIJoXbxLs+keizCvNG1fHZFhFZCbaQJV1uQo0Rp8Bw7ZaXzTLKPDVKEdOQZw3BVdo4j381BhHrWVJfEJ+d8obTcfdPkxG6iOfSViBsnBiXnpKSkeTrKunxYPjrFzlAVOPuuCHHMWk0Nennt2++K94k+qwNQKTqA9nI41xZY6dKBadBBexrBHjtV4ArPnwA/2v9n9H5gw8Xnl8G552NkacznbUYOybiVAXnbOioU3VCzOdQNEcEeRTohcBvPXgWRTpJGPkpKQMsqSD28wi+SxIdN0pBqIZjjtB71Rvb+PPfT9Ki3/VHc3jZG9rY9CmW6/aBd8Fr4HTvuvizGiko5Kzm8ewEa5nv6g5DnzkpeatCRDOQoSeuYfCvJ5p40nmbI50jjmjkJDaaBYxkohTU/jEsjnXcKOp0pNPEYDxrmF2qPTfVX4DI6dMJcPhdV+EkshxIRc/seNfDgaaIJljw0n11zhVjnQmTSKdz5OttinqIZUruJ4lATaKzTeiFaSeBqMTq4ch8VsE3RRnkjhnaQpFzhgHrJulFYWDed4sxjHFST7eSf68PJncf08YfTmhlGvTUsTPMIMcpSsZXTXoUfOfMe+K/xRwzZS/dlKDI4DXupxgwAjhqOnv1Ggx5ONgKUka9USI9U9BOQxkBt1R75+CgxMkYJHRD0/qAYt5jlfSMfkhRo1mFJdSyY0wI2CA2kpfBFX8UFO+UA5NMVap7c3Dwu34A3OdRpdbCxYWJSl/aCEoceLQBn/VizlAVIuo0/xxbHW3uEA8BBqk+auLjzSCnvW2UAfK3shHSnDN4jmhPiUHYze44hiaT8ukBG3WHoxvYL7BcW47/FpHyUQ0RzsAQwskxT1UJXkrTRVVbYzkEONN38coHd/D6T7ZAHnMv3Pn7P4Vv3FHDL5xnX5vL/lqFd3xasiVmOmsxdshtpiEnikyntlQwJkvnRH+MHt1y3tzOsMhvJ/IGxrrDMsYvh3DrxG/6PjGcj/YsbRGnL3uD8L7NRymtsgiQjFqWmw2JwQ9YrLHS3su60yov/BCQnEGjGJ8llmsHxxpptlwP4zalJJExiQSxp3eXQT9sw6U1zKGJXrBpLLhl6muPPsBxzhxHy01+pATY3RCTtsox5DPRV8oqsaEjjiX/7WU46q6mfusEiWIvnQcmSKOpjg//+PoofSj7m0c5VvsO6g5H25eeWYK/vfUD2Z1z0GcULuHwCMfJnlC2+6HZ+Ds/QmSMR9McrRIBI5kUOnVs0McHAlE4gtWbgN8D/B745kmAMziDAeDU4KyfRI02wRBizt0FTh0s1Q6Ic2laSZ1y/HD16qHvqyyqvmfdcD3VX+Zcwa11tENxV7sWL/iqFFcrgr74Y1NizJl572eYNOrOHJqmAWoCUI2mwPQs9iTknDM9GwHjIe6z1CwWPsJybbgoJZfyFEVPyPzSxHPDcBVuaZ2HaDWfMgrnQOrO8wW0MIyTWAdRv1MhI/icKFLTdG2X1uBRDwEbxNyWRfPmJbuzhiz92iEn6GjPRkYyZ48N0fZXMt+HPNHlKHHAb/2WkO3A+SI9up7Pfcm4mKtXBy4oATZ88zs/5yaOy5ATrA1IpoaETZeUz5XCEUVMCU2iD43UUWljpa0v6u25PkjOJbOcpC7NFEd6ldGUg8MhHhzqxnIxHiLFeVspqleuQ4Qs7QBYrIXxOyr7a9NhSk0EgoARBGyQZNFpkbt1Zy6jk/qsX+FOBfbUg+h8DE03cU5QwrGnLvTitYGQYbEWwmdmx4NMxddl6oRr8bOX4Jyh4cwjRAAOBpfWEbABeo94FPrNBgLCQECwQTuZ8w1YF4yHWPT2YdN34HOCm9dqqDsMFy06cXvbst521wPc540fxKfvdz3+T+Mg7nPTT/DE8wYpnVMEzySfKXFKGXZ/ZfXz+JXVz6PmNLHp06mYT2c6azF2pOEUkOn1ob1zm6o7crEY1l/qGaYX4xiIqiqIUrkybSa8441zIIzHm8SmptBV5WMKOcFKv/wr7hAPBxtm4mv7Ncrux0DJZFP1dbi02nsq7yUvusCldiN7HoQ3vY9NdGJ+HrVf/enVu2OeU/EbiWW6eMkcneBRjqbL4DOC1YEbf/etUxUrGkEY9VQyeY/ykQ3T6qJFNaKGkUG/5bKR+S4ZRD/f1zATzNugP0O9UEfIgdUBsG6wCz/+nKtw7lzyw/13vSS1ULJdVyhXBHTQBxxD3+QM4eI+AOJ5tIMVcDCsDY6L388Sd65wjrD4bxU2Y/q4IMfIaSneOCPan2Hc4JynFmmcM3RrdJayP6WwpW3bdNPVwWjZKxLDZNVVGTfH5fiSznTVqZ7RPShFZ/+5WPD2xsdInDs3AEP5go/65yIdREbWhjn6kIzsk9yyZVL17+5kdQDVeCPvxxS5HOuJuVcQBhydK5Jf+FNC1sgg6XaSzCzb8++HJK6XILOITkc2N9N83nIZFgxqKCUcZ3rZ7wEREckinsou78SGv6IMT70IUhkwTiJHA3Cm58Syqb8XIeQabysL4ufu0XpqjM5e3/Bdzj7rAyem5FKpuZpO+ih1zSOiMtUIWJaKSuZg8GjdKqMNizVxjW5AUzo+4yTuE7IuwPrAyRgkj8y/DEfmX5Yy6FcBAY0DUQCgPggQ8iB+HnqWU402wcGx7p/Ech3woufcCSh81o+fe14EffdPLscrHvB0XHPDHIJv32LcRzfwEySOnjIYZyDBKJjprMXYIbeZVE/P9QRaSLL56dvE/xDG1oAPcKh1jvVaeYPuTeskJlWfYesxrCF1HFGS4vqjHXfh4kvjzQYZyepRiyeWs/Sm4Ix/FEu1RQDAoRYVxZCi31zK43PXqPCE1ihw2WGmGMXyo2EnCT3a44erBIu1MH7377WQVrBk2oZsI4ckk2eRt/B7Z7IRJGV5rQI2QMAI7rWYyPP7rzqBAy0/o4Q2HOCLd3voaCkvxzvJWKUqJj4juOxwopkeaL7EKofUuWp334Qv3t2KCg644OCY80QfYDzEUo1j06cpQ770OqvY8BPF4bkXJVQkeUUPivhY84xsdcrivrbSdwFCMxU0JTYDijN9F4wDywbZdThK6r5K2VCE0sZmJmQgCwcAAGFN87DfA6jibW2xWBv/vanXmhaj6QwzjBvCMDMejvVxYPau2SHnNs4ZzvSytEG2qurAcM4lnduQgER8lpN5SCFHJhpyrOffdQgA0GAuyJ4L0HAX0As3AAAtdwn9kKLpMBzveqhHuq7U9WRWlh58wHL01Loz/Dvlkhr8qDp4mYjTD7zBjQ12KkalP2g4gvLLXgwnW3wJ9fxMMz07al9DNOKeOnB3R/x2IlI5Bwz47hkvfg5ljEG6rHqqvh5dqvdnaUDrhwSLXoh9jQALXogDTR/3Wuyn2pRxYNMfj2OiCtYGx7E2OI4Nv43jvZtxvOthpe+iHxI8fG8Ti7UQ8y5Dy+U43XNSUdBzlmBVW18Ztl5AWdyykWRCFkGlGZDQ+U11Y26NNq08t9IJkDJSUtfa39W+or776vX030144W8u4117b8IH7nMT/uQRT432DwvtAtVS9UvvOsM2Y8eY8Cpb8y0FPOSL1glWo2rr1RWT2Qtyz4BNMdI96OpWpiDUu/9AKDJ60R/GCX6y/u54WxuUS7PI9DeLiyjp21muUwmpnMvMQFOGYB6vzbhQ1pAtPZ6ME9y6kfXwL9ZYqp3LVJZVK3aOUoFTx/GOV8o4xzhwoBXEY1o/JFiuCUOcRznaOYqhGoUia9l9KtyL5x4sStfKyvXogy+w7v/hH1+fey61T6qKzO3KM2oHTqn2iM9DZLVpczvvjgymq4bCVlKx29cMcOFi1oBtgks5OgHF97T0VQBG44ZM1Y8JhOoRr7F02BWR3KcikovlGxd4xX/pY7OK6SQ5Tqet4B4hfKRthhlUGIuuzSJNpxJJcSiOOY9YDWqMD2cw0x3FQJLRI7LpqveLIhoo8zGVL1MKzqrItOiSrBElv77E+GRgvJohKm8uLHu9ovbPoxaLozOVPiYj++LvSCTnj79fUbasXIdbiRG1Hfmj76NkSA1DAaEbm8x6RTYjyqMc676Dkz0XG76Du0vq0yrk/i7hQwWA2HTPJe+Ask86slUEZA3nOGEcmaLUmfeRs7GGAh5uifdRBubUnXR/nEQBUAk9Ir3xja8Bbg0NNKI+wY2RvrbnoraV6T2X0ag05CDnPxD/+dj5cYFv1eBLQDMRyFUxDWn6wExnLYMdYzgdFXKgtk2GMnJtkmmIOxlVuaWmbQGtQ/LXmJTOl/5OmqcxL3V8T+PKeJMYtyIrp5yAkVIKflJRMSvPVlYZvGCh2LDMeKLc6VGdNlClCnxVsnEAqDlNuJTj5rViKgFbcSV5bRVVI9nls3jykb3o/el1xn0ocbDSF5G76dT7cm01TLGeh+55UaX9GRBzPZU+puT+i14ypkslShSHMiMvPTK12HOjZ2/Y32e9qaoUry74y2wqGLdXydX5z8aFaRr7KR1tm2GGGc5OyJFQjItZJUFGa672s+msY0PEy1kGVQ0eRdkiI0MZAPn6UdBTt6EbbIDxEJt+4tw3zeXjpIQJczjetxqX7n9h7u+6nIyHIotIGpzU9evDf078X2BUK3rOuo73o7WsY/pox4vkSe9si8hrkla2MFhOsISt796+UctQnFWlPFOxu35FvCVy2fuG2t6L3n7MuQ0cbF2EA00fu+qBlT5ChwxGUdtvwAj8Mu8soXFmoSpPHpVAWahZYy5Nr/uKoFNIEFARXMCZkQ6xF27G/TvVj5VM4UWyUEX8UlgdOHCCEPzoj/A/f5rjd3bdib1HT0Zy2CO7z1bMdNZi7JDbNKNKGDWQ9uat9CPjFqFwaS1erO1phFj3HWvk2p7qlCIzVATjBK2omNK5cwPjxC+K8WSLu6iwTbDDGjV6YXpiGbfhwFSNsir6YTuW62hHEp2PT06P5kc2jgJTBIY6ieup+hKJobcobZwY/x4GJuWiiqJ/suvGCy9RET5fnjzF/8yVf4p/e9EzU9/1gs1IzkQBmHN3YdELS927mqqvYlddr4ZbeKqhkY52FDLr3nkTVK7bdd9s/L2zLd61osrJlVDQrHLhcPP61k4iw0ac6k5GvZDYODidCEjKWO0QEQUxLcbTGdH+DOOGbkCYFqPODGZwcPx4PaubyfFvuT6+Rbaow5CtRJ/Hs98OerHhdt5zrAUfj3Vc+Gz8Y6teByBAoPym9HU1W4YTeJSjG1KEHGgHtLJcZQ08VRzjZWoajIJ/PfHeWP+SBXjUAj9lMrHkPqS9UioqVupDuw0UR8Pob7sNSwCVYmlSRqf7LLGxvmsqEn5NjqICZpxzhNH6s+UyfONkH5s+xerAqbQm1PVwabh0KU878KP16iBMFyMbtn/2FR26G9C4D0jZZQZfPySVM/Kkkz1uwwxHfmAc30Bo7rpc2noCFqaOLrum2/9CH7cd3INd7n7wO47h1KF9Y8304JxNdC1UBTOdtRg71nA6tk6/U9hwdyAYN1cDHDde8bvt3N9ldVYdS7U6TveuizcbRjF85kVCqNw7eYO+vP6o/E0qhGI6vkHalFLUdPPf7SoT3SQjCMtWAd3wP5r6LGU68+fPwqHWADVTwSIkKYftYAXrFfmh8tpIRvjm0SOUjcRRlfoqKTOqfHKBdIthkZt3/CW7Xxx/zvCHAXHBgxiEAsEgd+6QfZsyjgVvT+q3rRiTxoWQE7ikFhUDEI4siXE5jkzvFp2lL89wDwQxeFe2Ozq9DL3NVkGmmk/DJiFTcXXn0pbQrZQMAZLz4DQY4WX7EDWwRZsr9UwfXT+uQjnQ9vPbaBJOuJ88ZH/qc/pest/pYDyd/SUzzqo8P755stR+eiGqslGSEnF9kRH71qjH37g6ubV6ocE6elR5a5ZhgjGqrO1kUdqtRJkxjiFE3Ul4doWbJ8sf2nDmM0bp3iMeldsvTHOjXoBXldU2bpx4r4dfu+YCvO7rJ/EnSz9VfFMz3KOxY6x+psVmqQV2/Snxn0bC75nh9KxD1QnKlKozbl6xT179rHgbBqSIHzEH4/SOjxpJOSlQwtEvMNyaZNfHDblIvGS35r0tyblqa+eQ25Ugfe3jljAm5vVxKWuNiMjFrx5v4vAbPxLJl5y7z/IN+kU41cuOjSt9J5KvnKyA3cBmOo6DV468Vtv9ZNfFBYvJvLAYnao27mHei8Iu1HTEOJ0uqX7KaHoBvh3Qo2iKNnHM1rz0putQMj2KzaxC6QyjQlYhNkFEGE7BBDuDEYwTq26gzjt5haK2CiZqJT2DR4VL+XgzLvJA3Uq0AyrCMbVtkQFV6iNqTYMy+w8LqYt6tJ4KnPBIOiPFyIvMGfr77AWOxwHZj/IyS0LuoxtQBHyQmwE6TudQXp/V1wCqQa/M/nlIdKN8vk3Tu9Z0y1/IIVp7jVmROG2oEaBCvmPyuesBM3nzmQnHOu9Wzp2Oem5842ul5r9R58jWswjCdeCH1zTw2gftHelcNkwNx+lMZy3EDrnNEdD/TKHX1mc9MA40HYbTPQdzbjadVSofp8vV85lhBNQdUbSFEo7bN2sphacfkkz1zEmSWavIVvEsP5gPwyclU1bHabgcxfvuUQ6f9Yp3HBIyCoFx4GcOZK9je4vVyqv6JB9ykXoyCi/SKPj+iplmAkiMuvozKXreOufklV/6FFq/exUGoZnKYBSVdaujI1UeahPfpu2zlHNfM5uOluw/oZspiDw1KX16xMkkMQrH6XZhOqSAeDmdIbdp4RuYYaoxyTl1hvFBdy6F3Gx4GVXXyFA5FIzJLTcxtK0POE727I5Hh4w/UtZE9SLTb2MUrMilTCrPIuN2/UO9hzlvfLNFWQe6RDZ6s3yk7HI9HGoBL/tf/c4fat/bDPzF5zQZ3VUcag1fOMdkaDR9V3UdV6ZwVT/sVKYOICBxQS4Tiox4exvpegJFaCrr2YAN4kADhyrv8RaQT6rrWfVvj/JS6wDTu/OVY8JgUqbgWu5vyhjIOHDBoljr3L6ZzrKz1azofIzjS/zP8NhXdTH4b//LcO1yfdQGWx2AbcFMZy3EjjGcVjYeGQYa44tJ5PnT+scF/QABAABJREFUxgwbqhZwmWGy6AxR9VHCNlDnRWJNCukqmtm0pUnAZHgy7zf+6xcpH6Zr3r5Zy5Wl6fJUang/zD4zn1WvOjssNv1yvF26Ud2W3r7gPRsAMsTrxKNYa5m9/VV5oFXsbSTtZ+ofDcfeNx6650VoOmyoQm96OmvLXYr/lu9G2cXfuqLvq3PIuXPih35I8b0z76koYPmqn6l9DH3+vssvqXbtLUDTXYjvZyvSUU0FuVgRYewWgVAy0jbDDGVhSuOfYfsRR5ppkYiT1iPUOWVSUckdheNw7FDHdZoOZ8qm2VbPJrLJbTJcy0I6o85noxatYor+sj7I6maZ6vM5egU572Gl9I4iecflHB9F17Rhq7Pd5Ls+Tp7Wonsw8fZLnSieE5idb3UU6EFIEmVomOY8UVdBvluECFonjsQB/+iDdRxsvTRzbMzTS7TraLrgMOtEFTSyBX787QxkzsNvbt6AxjMfUnj+SfTlrcJMZy3Gtprx3vzmN+ORj3wkFhYWsH//fjz96U/HD3+oecE4xxvf+EYcPnwYzWYTl112Gb7//e+PdN3KSgSrHknDkP9Svv2715feZqiGLeGOGgLDTuKyH1HCU1seRjXUrg4RGT0tqQY6iuTSvbsykk8aJLsBtUb3yXMTQoYykOdFQY4Dx7tXx3+vDT6c/pFQcHC845FPwdKNP7CeQxZSG5dsZXhLbzh9Ten99eerj++dYK2CdILjtOEk72uV99ZE/0LhZPuFH0WJWSJpOHhs8N3wT4nvojnoXgvi5fQoxw9XrzYeP80Y9zhh5rEa6yVmmAHA9umsM9xzYRoPxzZGlsidnAZeUyP01Hwq6ajyUq2rt1sRxynjFblDxxQsIfWOzYq88oDZmSgR60f9zWhnOnbDuih+lP7OZOgdBkV0QIwTzHnFhktTXzFFrWaMcyWgp+WrNEycM2Nko0kemx2qG1CjjiMLVXPOMAg7W07jIp953eGp98qkQ6vrEY40tYWpiHA/bGd1PZoUhbJRIRRFqpYBv+OHqP/Wr4P+p1/EH9aE4VR1VJ7NhtIZqmNbDadf+tKX8MpXvhL/8i//gi984QsIggBPfOIT0W4n3Hpvfetb8ba3vQ3veMc78PWvfx0HDx7EE57wBGxsbFS6lskrVpULTx+wTRPj7kYwtQakGcy4py+yh72/A80k7SkPrQL+napVrrczHTjkBKs5Cp68j++cbkaf+VioHqrQNqjPgxLh9VXHHJ8R1AwNblMeXvOgw+CnV+LiUGXad3Xg4CvHri2QM5HBpDj5hsscWRikjKZbjWMdwd/UKxEwYBrn8xYs2Z1LLGpTKUaTqQhbKEPFf/IYIbNpMTDZAXe7aDWMcOhoWwV8+ctfxlOf+lQcPnwYhBB84hOfsO778pe/HIQQvP3tbx/t/nYYtlJnLQNVJ51xnU4f1HlPN6hNUu9U56Eq/SJv7bKdRQlJgWFCpz3I42bVUSZVnxQslfPWhMOgzBpysWbWB4qMOLGhaeN4dcEssLVzc6s4cDW0hzA2D4uq426V/edc8d51A3N/yNN1aio/6xjJJ/c1kuCAviHaVXyflrfs2DGyjkuoMYpWfS+HWa99onUhHvFWjv/Pvx3Fy+/fic4ZRb2CZOQe5j6mxg6xhTorcHbqrdtqOP3sZz+LF7zgBXjgAx+IhzzkIXjve9+L22+/Hd/85jcBCC/N29/+drzhDW/AM5/5TFxyySV43/veh06ngw9+8INbJ6ghbd82UZzpmYmTq1R5nOHshsq1md5Ge/62qq02jGrQO97NP75rmRu2Kj2mipJaxXBbJiLSo3bDUFUUTZhVFiy6PAeaIpU7TocxpHMe+7W34mPnX1q6mIFaRfl4t5rzSYdU/PL6jB7te/9dL8H9dyUp6i7hhW1o+51FkRG26xf1ZVuqko7UwqsCd5sKXeHeKo7TUWBqP5VbbBjuZhVTn54sc72G3Sqg3W7jIQ95CN7xjnfk7veJT3wC//qv/4rDhw+Pcmc7EtOgs6rVkbfLmTKtsOteW79JxNFmJYsGjQNVnMtbRR1QGTQ9T6rGU31eGUX2oohTHSZdoqoz/37/drT0+ect0ZP6fvn8j1n5VpZapYx4RQ7wcSBkdk5QiWEdQ6r8q1Fx0mGNVKd718WbDRwcNVqtgr2NekLNfFKNwdIgXdTv4+e+DdzzZYrY2jBgXeP3mT5QkrtVH3OZJYMujLLrVNQdhrdetx/PeuIx/NHBY9j1ns9j6eq/N8o0LRz/I2ELdVbg7NRb88ujbTHW1kRK5e7duwEAt9xyC44dO4YnPvGJ8T71eh2Pfexj8dWvfhUvf/nLt1xGEVKucAfFipB44XY3kglgajwI9wBUUYycbY44yjNY6tGCeRD3bL+XtUEfS7V65nv9/jPKjm6sMVxiqcYBcHRy9JlmjlM3rWxtjUI+jFIXcsEluqueVk5NixtHiS6VnlZp+OOcI8+GY5pcs8p/8vcoSgcADBhH3SE43r0aB5oviRUoU5T9getfh2dvnMQJVOdnONC0k/6r9+cQ8XlXPUzxCqt9/JfvdYUx2rRoHA2U/mUupJT+PO+F1r6yrxlg0/cw5wIDRQcaMMC16GiX7H5x/Pfq4ENDK08cLFNUgINjzt0FDoYT3aMAKG5er8Mh5Qz82wER+5Yo9jYlWOIZF1xh/W2ln09Vw8Gn2nhKHIAMGapVNfvryU9+Mp785Cfn7nPXXXfhVa96FT73uc/hKU95ylByzZBgK3VWOY71wzZcmvBUO8RDwAap77YSD9/7om257tkG3Xg1DBVM2esQEqWwEgogLJyTGCfbrjdnYOQCT2Q0FeCdFIqc9OOI9lblXx84pe/HZ314NLsOKMKutQ6CvRDtXEH8YY3Ui7XQWJBJGAEpAjbIpMWb2pVzntpvEsaqMmekSE/QaqTvgHVzI38ZJ8ZoUb1tTVlZYj9NlqJ3t+IzzsPJnod7LeTv4zNgscZzHeN6rQUT1Peu7syhH7bj7wkc4yJaPUYUiyXxd8OsRS9YWMS+uzbx6ve9F89cexk+duXtOP0zD4m1TjHOVj7t1GIrdVbg7NRbp8ZwyjnHa1/7Wjz60Y/GJZdcAgA4duwYAODAgQOpfQ8cOIDbbrvNeJ5+v49+PzEArK+vm68HBsDZ8vSmRQ9YHQCvedDlW3rdnYShuUSVvynhmUlsHIrZuLmT9zSujP9e6V9fLVVYg6qUEkKMxsOWy0pxFU06XXacypJHOToBza1kKecRQTuQ5pgdh4PEpIxKCgR9DnvSeVfi725/f/xZLXhECYfPkj6gRjrqip7E399xF570lS8Az7gs81s/ZGA8XRihzygWa2FhP1gbEGO0rLzXkAP1CfYTfWyvovC3A1HIb1dN/D0KGEJQOOZ0P+19rW+uY9BKT8tS6dvXOIDbN0+OJswQGOZdU8eOfkhw68a7QIl4BlXS93bV8+fJtv83me/mPYaVzj1Hk9V1mHq9jnq9+kKZMYbnP//5eN3rXocHPvCB4xJvx2JcOitQXm8FxAJyEHZBqYOQB9jlPQvrg4+g5T59hLuZYdLYykAK05g9iUjXLStwRagxaq7M9ctyyIYFgQp5SBlrxrCmXKyF6HXt+pVuANrTuBJn+h+oVGSS7L8YYOWd5WXb8T5LQZTFk+g2RzsedtXLKVKJwT8/o0Rtc50OzLRWCzmwXA8rRxgXIc+orr5zksfT9oxsMov/BW+rrb/rQTaZdSCR8kzOyFemIFQRKDHUA8iDm7wjCY9suiF1/tSquGVjHd35/Wj+wn3wnAsH+N2Vn8aroyCTca5Dt7qQ2SQxLp0VmE69dWoMp6961avwne98B1/5ylcyv2W8UJrHScWb3/xm/N7v/d5EZExIiNXB8B4Qmj1DJRRFOZVVkCepSDMuqi0Oy0uV59kX31WXh5JirqhxwuZdHIU2Qxp/dIxjHFDbVCohMlKzPEeQ2ZOdh1+4+3v45KOeiJ/FoHDfpsPQDoSy8uiDL8BNa+8udQ1piBx39LHpHdIjsqRCrSqhbszBKc9jliuP67Qsd69QVofj3PIYwZlgDUu1Rjzv3Huxj1s3hlNCzjYURZy6tGZ0CGxBNmw5DJm+FB8L4Lzzzkt9/bu/+7t44xvfWPl0b3nLW+C6Ll796lcPJ88MKYxLZwXK6a3nzNmjVRdrv1og7QzbhVGinbYCuu6izqnbmr5PKFLhDDlBAboeIOd6s+PWfpxNi6PEyaXFsBltqmAYXX2xFsKjDZzuXVc9aMLvpS66E9eyISdYrIksqHH29RptIuCJPj1s2+atEfMyEjln6IdtY5GlrYBXoiuq7SPBeBgF7ZQ08Na0DDprsdWignLp9YCKfkjx+dcfx49rD8X7/vs8fuWVmyUEq15DZ2owRTorMJ1667ZynEr8+q//Ov72b/8W//RP/4Rzzz03/v7gwYMAEi++xIkTJzIefYnXv/71WFtbi7c77rgj9bsaoRdyHw1nHr3wU/F33Ik6e8lJiGsv3JmeG/+tKkqS92huakzV91xsN1eTzkUqNzW1Vu0j41SoCUhl3skDxPwuneiV5/YF7FGmDMDp/ng7PgdHw7Hni/zfY9UMS6q3dNlCup+HIiN4J1hNpaboffSOTTe3bfXU/VbMcaTTP9hPcuNqkuaiIvz2bfjlr30eAOCzXuq3upNEm5reK4ckW167NRTblozmbjhJUSyPcnz6tvdbji6GKlvdmYudXEc7f2Xdv0pBruzx6c8r/eux0r++nAeaUOv84i/sqnTdaUQ3WC9VAGXTpyMXj1AdMZv+x1BzalgfONs+B8RQX5BhNgB33HFHSqd5/etfX1mMb37zm/jTP/1TXHvttUNVCZ4hjXHqrECx3joteLBCSzJDPjySrA3uvdhDwEi82RByYi24okPXL9Xq65vBmUqylplXlut6ARTBEzjuSCmPGHQ3w3ypzxzDjvll5iDOeSr1+lgn6zCuMjc/6485HrKnE3/W7RSbOVGRklJBPm9ZGM4hsrBlOcMOP3pjeYE1DHKaTO0Pamr+Sj/RcRknWBtkn5ceWKFHC+r61SjzvPrcdWoxb4hMqEw19xzvbdl3JuTpjKc8/b4fkpgr1sazqhvXSVCdnqsIJ7r5PLK3brwLt268Cyv9bFYFg3kNsbdxFYB0G/usDzSisUK5r8/cxnD9TddH+5d/jnl96fF/fAgfunkOrY0+rvrGZzOyyLFBvV7I7TRmVa+/pZgSnRWYXr11W814nHP8+q//Oj7+8Y/ji1/8Ii644ILU7xdccAEOHjyIL3zhC3jYwx4GABgMBvjSl76Et7zlLcZzVg0J7oWbWK49D8DHARaAsBBwINJC+p8BAJBDDwRgTjMQHBoi7X+G6YdLeUoxrTsMHuXWQish3/qX5JfOfz4A4At3CgJySjhcmuWLWarVUyTlIs2B414LfbjUiSeulsvxtePXxhXDn3FoKXPNA82XYH3wkVLyCYUj6e8dQ8VHlnIaEBxshqUjJ4vScwHAZ59FN1iHV5HWzTaZH57z44WAzwg4QgDUyP0l9xF/y+jV/Am66S5iwz+FXXQ/ToZ3lpb3gbs49jfDlCL9uTuui9Pxu4EwPvmMFDoJ77vcSE320uMbvPh5qH9ekJ1LL+mAccxZzlM20tKkHIq2TKgFpPwmmOgyVLQDirrD4SrPJ2B90GgB8bk7NvHEc/fhn+5u4+KlfnzNtk8zi8AykLI8/pyrcOPK1aAk258lt1xhahChQG8dvLsG3PUTuA/4WXBCwXgIl9QwYF0QUAxIGBuC5aJBLi58RlL8qpPCsFE0d7ZD1Ckw79Wx6fdxvOuh7dN4HNtVDwur3xaNBZv+xwCIsS/kAQbhAEBjatKeCCEgQ3rvpaK4uLiIxcXFkeT453/+Z5w4cQJHjhyJvwvDEL/1W7+Ft7/97bj11ltHOv9OwSR0VmC0VLathmo8/dapLCf1dmLaojrd1EJ6stcS82g0Znj7hGFhgqCER/PohDRkQsERxtldG02KBezBup+mqznQ9HFXu1gRvGjJx8mua9RdTDpNO3CwXAvieV9GnHYCipbLcPvmu3AmCgi4YKFVinNc12ds+rCIgjS3q+zjTZdhdeBAMvuEPADnLGXgFYbHRNehcBI94pwHAQjhQxh4AjYAYG7HusNxuudgwICNHHtQwwFuXndx78Ugut+kXVuanqcWvao7rbi/UuIAndW4W+lcoRwMUGgATnS7AByjbi91etnuZ3puXNCzG1C4lMep+6pRss8o6o6QryhykHMOl9YQct+o953uXYfF2v5czlMdNv7jgBGsDxws10MseCG6IU0FAIScxfcheVYl/22sQyp9LnTdypaL5Zp4trJWgUeBMHqUe7QpbMCEnmp6N5brIvBFj+RWef7/Y6WHR0X+Rs4ZHOKJqNRIB948fD6aALqhMMKuBifwi0fEOb9z5j043HLhsx4c4qHlttANNgAAP1n30HI5jsz3cbzjgnECl2aLzD5y3wtxw+lr8H/eOMCKw/ESAH98yZOBHwAvvZ94EUikt6vPNzaklkzld4gHf0qiIqZFZwWmV2/dVsPpK1/5Snzwgx/EJz/5SSwsLMRe+qWlJTSbTRBC8JrXvAZvetObcPHFF+Piiy/Gm970JrRaLfzar/1apWvpnho1dWpt8GEsoQ5QN+HRidJEAs+Fc/T7wKH7JseC4XBrDzaDM6lF5c5LdJhulDFo5R9vNxDlGRPKKMgi5XtIwSrCZNg0gYPBpTU03Qa6wTr2NRhW+w68yGhbdzhW+g4CRjDnCgLwhpN4n2WaeGCYKMWEnk1hHCf0dr91o47legg/ivK4YKGPO9s11B2G2zcdHGoJvlaHCCWKEqDpcniUGykFlmthHDmr359TIkJdFJCiCJnggLpoKUlV2d8MwbiZJ+gf7nLxM/uT0eVJ510ZR2c2XWH4bzos5d2XfausskYe/tBETnC03Do82kA3WIFLRRTz/ZabuGWjYz3HLRs1XKjMlYue8JaHPOkrp3pOzN2qIs9AWiUy1CFe/G4+6bx5cM7wsL0dHO96cCnHnMvQjLZuQBFyURCq7VPsboS4c9PD4bkA66viOQ+YeXETWigRKByEZWeC5iJIYxFoLCAgDAQiYjzgA7ikhoAPUIOHlbANCieOKBHXL90k24qQE+SlSYUc+PgtH7D+ftnh/PFCpqIxHmLeexbWBuYI452O5z//+fj5n//51HdPetKT8PznPx8vfOELt0mqsw9bqbPOsDOgz311h5WOOs2DQ1yAULSDU7n6Kuc84qMcblIZlg6qCL7nAMwXhpV6CzXK0A5WomJoYk6hhON418P6wMFiLbQW0wGAW9Y9NJzyRRXnXDOnpG4A1FHGWPLmjxzEn7/wjtj4JOU+POfjzk0P3YAOtT4w6XvCqWi3dnqkDhBYi8tJvXTOA2oUWPCA033gro74O+TAui/0vWR/Ib9aO0AGTqjFlKUO1Q87sey6IY3xEDWnCQICn/Xhsz4a7jzWBxugRBjuGCcIObDohZhrhNjwHQTMwZGFAY62Pcx5iTFOGr5tkIESifGyWuSgjj2NKxGwz2FtcBybfgjG78KG4jB+wK4ejna82Kh/qpf8FnLgYDZwNEbTYSntquaYn6E06MqIU6mTDcN5ujowm40cIvrFnnq6qNX6wMGeRvlCAUKHFm3+gF1CvzvVex8WvX2lz7GncSX2NMRx0ti66a+l1ml6IFLAzDq9Szie+Nc1/B3/KD763hfhX0/IwJfxDnyOVjtjhunVW7fVcPqXf/mXAIDLLrss9f173/tevOAFLwAA/PZv/za63S5e8YpXYGVlBZdeeik+//nPY2GhoKybBlM1P4ml2nOB4OPZH+pPgdv/DBBFnJorNpsjlxgngPISyEH4rk45/o8Ztg6mKIXtDJuXRrF6gc1rbdDHUi0bpbLpO/BogDmXxByZjzrwgmSH3qcyx4wLjGcNXVWNeGWQRHrnY33ggBKeUu77IcWR+RCrfeG5lVGPRYuV1agYkonntMggzLkwSm+E5VPopMF7zksbVD93x3VQJ+28KBvGQ/zriffifsuJ9rVUey4AUdVygC4a62vg//J14Ek/C0ocEBBwcISsWGFUDXi7lCjOD//4erQDwRHacMR+eelddvmz3924cjUAYM4lGDCCASdoRb9xcPTCDTjEAwEw5z0Tq4O/inlNpQhtn8JnBE2X43jHw2ItxJmeg33NINXWc24+z2lGXkuqEaD0EcPjcjmFvKxLaql5pUabKaOpRDtnTttONN1FcHCcO+fgWCdRmGVa57gL5JkwPWlPVGzDHlsBm5ub+PGPfxx/vuWWW3DDDTdg9+7dOHLkCPbs2ZPa3/M8HDx4EPe97331U81gwVbqrGcDQk7wrVPX4OF7X7Tdokwd1OnOZ1ledT09eGxlrzW0nKXSqftVjXWne9V1urIZDDJCzqONTFTK3qaDo53ky4uXeoUUVefNB1jpl5fXlG0kIfmGj8yLz6uDD1mz1mxY6TuoKw7vkCM2mo5KYaNC6hIcPK2fEArOfYAKw2X58wkD6sFm4hgHhJ6n60otLR3e1p5FCJkfR0+6tAYCiqXaIlb669hVb+Fkb5DRg3c3grhth9EHyjgEQk5i3UwEY6V/lxpn0fsXcoILF/vGyOlOADQV9U8vYlu3OAJEEEGBkX/EMWe5HuBkVwinrgV0G8dlh6/KkSEro22tGHI/klkafkuOJZZ2KNMvzplr4PPPdzH48z5e/k+n8Jff+zQAYP1lTy117bIIR6i9MVZsoc4KnJ1667an6heBEII3vvGNQxPLmmAl+laq+dkgvYm9cFNUyIu53ESH31vgWVmuiVSHt383v+iFitc8qDh1eYbJoaoyuZWDn8rZW1RIxYbj/DjQvRoNZz7zW93hWPfF/UhDXt1hONZ1UItelQWP40w/e8+6IqmnM9hQ5j7m3F2F+9xroY+frNfhUUHRcEvFgjotF1gz1Euy9Ycy4xnnHB6twyF93LhSw/13iQt4lOPWDReHWmJcqjscLTebOiJxoBXgzk0vNkId77pDR3687U4He+7/c/hFJKl9HCzikSU42aPYXQ9woruBqpQkktN5zi02nP7yva7ADaeT1M9xv0cUwtjYDSi8mh7VkN5XKn7Sc151DPBoPZ16BruTrQxUBffH61tLOl+1sEE3WEfTTUKPbe9FZ0yGX0mPAExfqi6hI6Q9VTzuG9/4Bh73uMfFn1/72tcCAK666ipce+21Q8kwQxrbpbNOM6btnZs2hJxg3XcyBg4a0dasD+hEnUnjqPIukXBUjs8BlonQjM5bYwQ+BKVQzeeohwHOOG0wLvk9qwlQKhMMW5s56Fgyz2RUrEwjr1qxPGS+VVWT/YHf8e/AuQ9I/VZV59pTB0720hz2KTmiqNIDrawTPlenai0Dg3bh9VV5HSJS7E/3kzZb7buVjdD9UBiu572sncD0LpmKHEmqJYkFby84ZwjYXViqHcDa4Cg8yuNgDP1eVKj9Vn3nNnxHZJyVeL8l3YWMMCWgIKClU8lNaLkMp3uCtzYJmBHUCKassiooM2ZxzrDo7kIAhqaziAE7juXaQaz079bOZafO0scE0zNY6Xfw9ptO442veSX+y+pPEP5Tt1BOxsNSWYjqvUhaie3GVuqswNmpt85KFZUAP3Yj+MGLjL8xHpZSpqVRY3UwizjdCoxrAJpUGlIV2CgHjBynYzIgUOIgYCoHEUMnyGpHA1YcGTutmPNYpp8EjGDTksqjtqlerKkMAjaAa0mlkZDRunmK8pPOuxJfP/newnNIXLr/hVgdfCj+vDb4cBx1CgCv3XUScFycjOM2BTgYOgUZNur7kdfn8hYtecUygOJFg3pdDoaGs5AqclX2XZD7SQWGkiS9TF0YfOHO63CoZTmJgv1NEYVlon3QIVL1DfsRmlHOZBT5ONI5y6CsV387obfRNCigAFKE+UMdWwGXXXZZpWc14zWdYYbpxNjGLzKacWRakdc+7QBoRvO1OoTeseliqaZQq2X4Rkdr9DJGR11um140qlPRocXO1e45F2UMAJNMFR73nDxOh4AJa4MQC2P2UWcKsxb0Gdlmo7Qd5zw2nE4CJuN/PzTzmppQxYCr6jcebcSUikW3x8EiI361sfDrJ9+LpkPx6AMBLv3/cpz/7QVc/R5RgwRRYATnLFN0S4IhBD3b6t9soc4KnJ16644z4amGptIwvBSnelFhFTaAQwXhtDQAhFPiOdipECm4DCEHDs35qWI+40RVhbQfySCNbuOKuFJhG8DTO9H0piBgA5zpZatySiONqV9L5U+SrudhXEaYMkpT2XeQEp6pYiom2uz9DBttWlbJk0bCusMLIyTqDo890Is1NSUq/zhdls4ffxr8hu9Fx4ZRmn55TiITnntRcZS8KQL1oXtehIfuGT7tM++dVH8pUliloXTAzIsbm1Joun5uxKZBjFQEg8ZJpUItrjBJiOjj8puOTiD60qGWjwsWDCHcYwTj442GmmGGGWYYFWd6bjw2JcYQsU7Y0xDjeMjHZ1wyRcHZ0AnEfBZy4UyuKXObKvPpnhPx2KePH3dwwYBZIro0XZVxEnFpEtzd8Urp+EXGTab9nz7Wfty4jNNSPpmOPeeZz1v2avqcrMrZQjO1nw1SV5L9NJE1/9o2/XUlyk5rGDpOkYFv1NoSQDFHbZl1zChQ2/pwa4D/WGmg7VMc73pK0dn0MWp6vu0+q9QCSGSpfsy+Rj6F18FWGFM21MosRyN+g6HqXxgCC9TPsq1lu2azIElhvwk4wf9zaBdap/r47bd1sMSSsrlF7z2BkG/SRv4ZthY7MuJ0lJRJHXlh4LZJmvFZ+v1WI10Hvhh5Fb2rpq4Oi4Qb1Ny/VI5TQqiIOI0G6GEU8NSEwzlO9jwsasaZPINEP6TljKdTUkat7VOjYlqPi0PZqr3LxYTKUcZG4nDVJ+/FWv4YJXmFbPIZv4djbPvjf/gcfPzWFp6PdBVe2zhZoxxBiegKyXllWlip/dONio8BSKXq23D/XS8BAHzvzHtS3xd5dk3vs+m7Yx0HvVC0466aiGAZsGw6muTsVOEQDyH34bM+TnSviaNOJaqQ8W/6a1jyDsBnPbikluHPqg0R9TwMqip9JsoPCbW9JklpUjbaYeLYYu/9DDPMMF3Y6iAKuR6JU7JLGPWqOJvubntwIv14mAjFoaLfiFkfM1dST/4OOeDh7CimqMqtZ9lUNYoFbBAveGRxHAkOS3ZLCblsyGvfvPoiZWHTQYr6ny67qGlQrv+VnX5dUkNIqgUajDompPoKI4U8pwROxqBYtR9IrPvF6xw18MBG4xDLwrlVJ84aRQ20HsouJltM2TR9G25eq8MlJ3DJU5u4faOG+y33MAjTVAyyjUfBVPCbAjOdtQR2TMSp5DmRnJDDGm+yKYGaF26os84wLVCjAYDhFC7VS69HGYwbonqg6NMhz07e4468KvLWTiNsafU2b74Ne+qifXWjaRnIxUvZcSfPMKqi7VdQgBEi5EFmIfW14y381sXzKdmkEXicRQp0yDm2KFXf9vw2SihwVSGfq6RTWYkCd2zVeseiJ+RFiSvn173nWwVZpKP0JhfsCv834wRHOyLvbdzpgCbDwLRUJ5V8UcNuM8wwQ3mwKdqmAmTyKc0TA6FT42QfN3760cdL7xumHPTp3/TAhpAHqNGm9p05QrBHslHJec7lojWMrYimqkMWrafy+mqVfrzVRijh2K4WLTtOY76q75TRSSXH6TiQ5QlNf97XLG9UpnAKo+V1fU/onbYMsNEa+ZH7Xoh7L/Vx78W9+PN7r+PDv+ui9iflaomcrRQpM521GDvGcDo06k/JXdhycDAeohNQuJSXNnjMMDnISpUOAY62RQEd6ZELmOBekYN7P6QZw82kJ115vbJGSMaJ0bgkOU4l/YRaeVsnTc8D5zwzwYQxV2p2f1WRk6kYedeYRPGIIoX6MYf6ub/nQTe6SMPd6X763R4lqi00RCuGPB1ZwDjB91ZGa7uUMVT3iBIxuT/vtn9B+PGPia8Myt95c4nis7segAHY9Cm+cuza3GvLaNOynM5/e+sHyu1ogSxoZUNV54Xep/XjKRF0G3rkax5iKg2abZQ8RWs7F5CMh5W2WOZoTJnziHKunaFYxZDe+2G3GWaY4axG0ZhXtfDPuKEattYHDgY5jjlKeCVDiAlc+1cahjlTh0OQ4aVU5+1RAxjGpcv+21cO5P6u2h+qcq9S4sClCZe+Q7JEnRwMjYgrKY5QzjEy5Rn5JOVSUWShH7Xdrnr2ZA6ttm6uqg8N+9zLXqcTrKU+m9ockGut/HPuqjO0ouYIebY/m2AaY+R6kENEdFLiZKjchtErq0YQ90OCf7zrfZWvo2fwmcYLznkpWhL9+Z8TrWmOd71SBuzbN0+i985PY/fLQqz8xlOMVGajGGkZtoZ2qxRmOmshdozhVEbpDMVxmjNhV/UqLNdm/GvbhT7LPkeGsyONZxSUvT+1L+sVAW0p+CEHNv2kQ09j3553iyel+ZzoU5PS9dC9HQAV2tZafdHeYHrKmcTf3f5+4/dF57Ne564V/MP/8/MAoKWfpCMHTZAG4Lx2qMJ3pKJrKX5048rVuHHl6sLjZX+uqjSrHE3jRp533Lx/Ou0SSLhNPcrxw9XidhgV+kK36F9ynGj/ti++O9AUkS+TNp7e08fzGWaY4Z6LcYyP4+KSLzO/TxKm+wg5SRVy3AoUFclMz3t2o3BRW4ZcGLJ1p7w0rku7BOME3YCWSpvOyCr1osZcwZ6JTOOASZuT+qY0RFUx5KnrFZnVMg7MKY6Eprs4lnPqCAvk1XVWvQZDWeTREp7N0dzi7VK4eyveS9U+/Xsvb4FvDHDmXQ6e+e57WQ39wxbhOhsKsM6QYMcYTktFh7mGitf9z2QiTkft5LPCUVsDfXCs0/KD61Y8o1EVkrXB8FGVKggh1jQTGemqV/BejLygeWka6js3iajTqij7TM9EkaWqEdj0rHxGKjvYVGXadE69YNglu7I7MS7SX9RIlTL3pns15Tj2oUc9GU86lI6AUBWRkz03ugaJ26YsRnFANh0W8cmaT7KgpakVRZvqfdA0J+jG6jlX7pvdr8oYYVTs+p3Sx+kOurMhctM0T+64uY9Q4XgdZitT6G+GGWaIIQ0o07IByTwvDX7p1OvymUHDoEyE2z0BstDWKNB1Lz3zaCuCAtK8+cn3wxT+KcK4KRyGcTaXNXipEbQq9HXJJHCg+RLj9zbDXdE9jbPdGYeV3zS+3ha+/3OW5cHjz7nKeozeXmrmZBH0Y21tP6q+fP2b7kD9pw8h8Cj+1/PutO6nrrFKFWpWMDUO/5nOWogdnVde2gBakKpvelnDIYnTZxgd02pUUBXpcSlhkt8UANYGHx7bJClS9RNvdt1h2PTdqCiALc1c9QDbz21TRKoiyzcM7bNo5M3AsaY7mQy9upJapj+FnCAvo4aDxcqfTXEyten3VggarnlR5ZD8SNmyeO5FezB4x7tBX/aUyscOs9gr+37KAm36c1WLQ7mUI9yCVMeq9+nROnyWODZEdU3tWZVIPQQEfxZHQqdxuBXiR2vj53e1oXpkQr5scl6Uz/UZF1xh3XelX45PKnV1Mj0cg8QhIENaRIY9boYZZjh7MKkFs15R3YZhDY5VCkoNi5T8hIKNaWCv2uYtF2M2M5ZD26elgw5216/AqV65lGjOGZyQISSjRx5WzSSyyqQV2HFoUtQqYIOhi6+OYlDvBuvoBn+FQ62XZ36ryhEa1zkoyIQyfT/vsbFx2zMeZjIKx4V2CRYPqf+f6W1iWbOHE0JgMsvIscy0vpW8+qZ1lSyAFfJiY1fIs3r+v554L+oOcMeBXag99dG4+0fL+Km//yRWnvN45RqjjwxF/LhbiZnOWoydYR4eFdEgsxM8tzOYcbZEShFCYyNhVW4kwddr/m0Yz65e1EdO/Me7o6cXl30Xl+vV3eAJ/235SaBWYgURsGIuHom6I4yG5or0BMc7rrFoUtGCQOU5IiCgxIH/urfhS8/8Zat8+xpBqkBAVceEQ8a7ONRT9dU+W6UIl6lPhxw41kkU9CJF0MZTrBpNrVCUV5Py5dKkEqra38/mFKtJQ76GU6OHUjLaNsMMM5z1mJpoonsYxtmudYenFsRV9JxxrA3Dklks8kp64c61wYdj46LPeoXn8Uty9Kt66LDtrbblKPpLnIGDxPk67sjZdiby2G6wTeueWZqi7QYBGXv72ArGyrYIOUHd4bF+7VGOL96db9BXAwOqIEsPlX8O0/tV5p07r+fiV689gj97+Z1wHnCkqphnF2Y6ayF2dMRpaRBqnRjzBkjbC0kJ8GffKx9J8+pLLi+97wzVUEY5EvucXZqviOoSUc9V0uQ96qEfJh5JW0VziTTxfjrKuiqJ+CSwPnBACUfLzY9O3fQpWi5H02WlJtKvn5jDJbu7peUwKQWjOOds89Mw52z+t1/FExb34Hb/rlRKejY9vPw5P/xjMb4V8XnlRenK/lQu4re8bDr2NAKjkVw1+Kre6Cece2VsuA05cMnuF8eRkTaS98w8QYrTWupOwkEmFcJQMWD7UaG7SaOqQsvBAMtiQx+LTEXv0ueqdu2zxcE1wwwzzDAJpNOGqxtz1DF6qrK3tiEN9MLFl+In6+8GMNm5ReoXJj3GITxDI1AEjzYARHO35RF6tI5BWF6HzVtHmKL1bNDb0WckG7XaW4+tEw5xLdGEfCIUBpOGrstJmPpXFb1WPb5Gm6V0p2EM/osRRZbkXW04xRzAVeHReua7KoEnKjhYZg1vG9ds7f1dytE/TfHIr34Fr9n/ePx3mAMj9MyyaTGgzzBebL9lY4uhpjZnEFheTEtKpfpSTJWCMYMVozhExvmMq9A4DEv5sDoYzi+yq96K/2YpJTqZLKum51SJfq1SgCYPIQcOtdLvdBnlV0bGyns3tb/pu7KpcWX2sUUyAklkwp5GVlvJ6yvLtedlvmM8xA9cIPzYXxfKpKIMRYCtj6gy2oqOCdnE/0XGexvyqBzy+sHBllAMyyitcrGwq345dtXtDi5TWhen+alnbX8dAKxVQ7fCaDosRPpUcR8Z9tmeNZhVKJ1hhh2NKkVgZkhDRKLlzyPD6Mfq0Jr3fKTRNORsosFUZYd6XSeZdxlCLoouLtWeO1Lka1ER0DLflUHIiTVqkSqp+tJQFvLxWeXU980mw1yO7m1C3nqkSjTkONANRF8YsG58zYQaIATnDD7rj2TQO961hzs0osd3skesuv2Fiy+NNx3yWfusj7zCVipsKfwqqtAimNAPKerdAPSXfhVzbn4wwVlf6GmmsxZixxlOgZwJYocQ284wvAF1lAnHxsFZhEmPRaKAQPXBvmGx+4hIwWwq9KQNPVUqwKreXlWubkCxuy4mb5tCHnLgYXvThX0GJWfgsortSn/rOCzve+MP8Zn/9EQA+VU4dTz64Atyfx9Et5r3PPohTRnPbt9ISI9s7+j9d70k5jk1oROsZr5T3zX9vKfj4lfp79X3zhYNIo3sZ/ofwJn+B4ztZ1SYrRkM6Xcxr79ULVC1XRilKjMp+GfCNGULEUpG2maYYYZ7BpiymVB1jJTjv2kesBUVPFswKbnDiGrI1NZ51EwOoROPOFX/r3KcQ/LydgRMOkjIg0qBCMNC5+Y0tWPVdRXnxcYyE/QpVZelH5JMqv64EPN0RvfKUL5o7qiUFKpOWXda0XejvWNNl8Gj3FgUTA2a0J//T9bfjZ+sv3so/noTdVXqd+17W4HSqu8y44A3CNF70zvwpkua1Q4ugWkyts501mLsSEthHqlzbOuhSbQeWTqn1Hn1tEPToLhYPMfNMOUYdpBr5kTXqfil85+PXzr/+QBEnwp5ucgsxkMQELg0SWGZ9wyp51olPEIICCGleJHkuGgzitmqm7oF0XVVUaTs/eNdItWjHWSvK+VbH4iXXZ3YZTsPGI8NqrqB2yHA986IybOsQtMLN43fy+PP9FyDYT0x3pmM5ye7LroBHYp3NIXNDp66LP70mR9dO8xt402f4ivHrrX+/tyLLkeNmtunSNaH7nlRtJ/4rI+rkuN0wxfPVtArEHDOEHBRRMBmAK7STqrs+n34OeextZv8nrAwnl8454Bvf+9M3E83rTXQCcoXjZg26NHKH7/lA9ZtWEyNHurQ0bYZZpjhrMe5c36kG5GJZqdJo0yNZhf3BNS49gk5SShgcs49jkKUZWCroF4lsEV11g1jdJJXklFxYQkjk0s5wkh/KsJ/+ZVjeMCuJE3elp0z57GYM1LCU+mwQoqQ++BgONP/gMVAKmTiYKDEiXXRKtXL84I3BkrThDwdUMF4Epggd+uHNKbxWh84qDs0W/iouVxaNhOq6sSLNaEvepRnIk517lLdAAoALXdJFDaKoh9DFsTtLs6R33/y+uitytJBXSPMeSFcmtSlkG14v+UBHOLG109oG0QRpX7YEWMBoWjS+Vy5imArWCX7y95GiPWBg8sOX5V7nn7Yjv8O2ACcsxS3rDpuValW33KX4r/VtjvVK78e/YPfmsdPd0/jH17+XZx47VPRqal8vTz+XxZ4ku9ZFVDiTE+w5kxnLcSO5Dg1erdazwB6n4Iji4mX9MZMk6dghnLoKpGQc24YEVlPy6gFfPq29wMAPJoY8kzGyKVaHad718WfTYO1TK1PwTLxuKSGpruYmsTyYJrsbVGaAQtjo+uBpj1acJxgnGC17xiNzqpR0qOSRzPZr0aJ0ZMKpO9bPUceGs58rLCKdJp0f9MddVJRvs8Sx646yzzHfc0AJ7tubDS0KTB6WzMeJgUEuODp6T7u8TjznPcA1z0NLrUbHQGxyBqWOmIwxLqLcVI5nbvhLKAftlPj/HItwHrK0Gq/nvzNIYiNv7oR2KYeUOKYK3+CxRGSnDogLBCKVm8TvLcGb2E/QgSo+0CXhOiHbbTceXSDdTjUTSnq917s4QerQhmeRuNpL+yi5c7H7dhyGToBxfGuh/VBMkbNeQwrfQfPuOAK67nKRiXMe8+K/x7ZkTDDDDPMcBajz0RGzKSjCT2Lc3QSOMVPYam2F2f6p+PvGCeY90Irn77PAEdTiyXvv7FQDNJz+0/W313q/oZpZ9McxbjIeqo7oeI0T9cp0J22BBScc1BFd/NZLzZgOsRLpbs33UUwHipp0cUBEwCwGmVBrftCNzrdB+bctNHXo8CGnx/Rx3ii74p0eYoaFYVKGUIRQdtdjR+ENEgC2fUNJRx3tvvG30w43XNiGqxNn8Z6+/rAwXK9GiWAuvaXqeVq9K/UBU/23ot5d3fqOFVDPHfOx53t/IiqbiBk9RlJrVUYJ/AB1BWd/AerNTzqgBvriz7rxcZTIB1x2uWbaFa0de2LKMLaftLmIUckG3CiS1PG8z2NAF+8+31W4ykBRY3WcikZVIeQz3qibcGx2j8KjzZiaoJ1/2TquD4Ta1l1faX+vbcR4I5NYQaT7avj9MF5/Ldjh/GH3/ok9h1v48kHX4WPGG6Fcz5SUdJZAcGzBzvDPGyA9GCUClffPJX56kBrLvOdXOBXrWY+w3SAKZ53YPiUT+nBN22TBgcfyXO16Z+JlcDlWoB2QGMjXt3hqDssniB9hlQxISBJ06eEY96rXtG+LMq8t2f6biSzqPB4oCWqwzddhm5AEXJzZXUVNoOo2jfKTnjSw+9EBY8u2S04nOZchnkvxOFW4j2WhvwBA7501MlNE8/jCT3eFUWMitrrvA+9Iv6bEgeUOGg6C7Gh62TPRcgJ+qF5wZEHWzRFUT+VbawvMGSq/pwXImAkjroV5zQroKsDN/XM6g6HSzn2NYPKCnMRTIuoTKQPobHiTRYPwed9cM7QdwGPiGjpTrCZKhClIy/tc7uRt5BUDe9FxaHKYtP/2FjOM3Y4GIEvaruFn2GGfMy7k5vjZxgN9CwfQHpE6EcD1gXq86jRJrrhOvohwf6mcOAu1wNs+g4OtXz4jKCtTeVVdGE1qlOdV/Vz2JzUVYIvrvvaIn6w2oiNT2VojUwom8WmQtcFPdqIUt/LXXzRE/Iu14ATPfH3RhRc6Uenzls76eugtp++riqfLhfnCbXARpSpsxhFXvpMGGX3NQLMeQzL9RCH5vzU82KcFBbaOtMffzxZJ1hDJ1hDN6DoBGvohxT9kOJoxwPjwGKNYW8jiOtIqEEb9yoRFCp1qqabb4AlIOiHndx9qkANMnDIcGtmNVCDwoFDk3tI9YWS2q6JwkmPyjWhH1JjRsDbX3cMv3JhH8HxNl79uMvxyiectpxBoGq0aVrOKXD4z3TWQuwYw6neIUetdlYmKs9kYFgvl8kxwxZCfU7TYPRWU/V15BFrS2wGIvVlITJcZiYzWdG7RGXvc+bS70kQVfLuhsJo6muvUZHiRwiJjXmjwFS9XOU4DRUDZD8UROXHO26sYCTG4HzSf9NE65DE4FM2+lIfb9Q+J1POj3Wz12o4wHK2wCQYJ3GkrMkgn2cQ1hXn1sYm/PcXp0WrR+UVr9LRNaytQwvP2CQhIh041gcU/ZAgiBwAZ3ppRflEN+1JB2CNPpZQOTdNipu10qby/qkpSE1nMbvvWQ59Dl4f0Ht8cShCRuCLGiV8YYYZtgiP3PfC7RZhqsG4cDzqfKTJ/+N/z9XifAPWnQhnaMhJRv8bJxoQBj0T7YAJRe0455bbzwSnZHqwjDIsy8E5pwUXVKUY6BY4/rN6Z0LBFGfAKHIu18o5kWtUbPsb4v8FzV4nKcaqwOT0zkvLnvfqYJxgsdaK1iXi+5M9F22fxhGyQLYtbUEsjKeLGjXdxdTvsh6EbmSWwQYm7Gu8EEu1A8k5cnQ6kz604dsLWVXFOCLQT0b6stp3Zft2DN2nijFV6jw1x0w1IrP2pLFVtmuNNuN+rN6jLJYlYXv3S/VVn+FPHkXwyx/5aO5unPNKtSKmDTOdtRg7xnCqGzgqpdhbBu+idAQVz7735Xj2vS+fhWPPEGPYlGeJPY0rU9s4JkU5qfdCHqW6J550lVdxzuKU3apK32Xe3931IBVFYINOFr46cFO/mTDKs/OoB5dy3LhSiydymwGpanSnTUmRCqhHs1bYN93m4tZn/xzqDk0pf51gLY4a3tcIMpNFUXEooLjQYl60rMR9l9N0A5LjtAiyjzRdIXkVfjkps5pyJMfuL9x5XfaACLHxlKSViEwaklTyalkFUd2X8RAhE5+5onJPhWe6AHKsUBcpaSfV6BGn2YXhlLXLrELpDDPMkAOpX43zdVeLqBQZHhmvlrmgjuFbNt4OOlgkCxiEA3iU41h3OP3Ltv7KczTrx0yi/slSLa+ifbkLqvyqcTZLhSU+B0vpvmkZzH9L2PRUE4UCQ2II9CjHnGe4v9Zy/KfNIFnGqXy07ZVek4wr+0Vdh6l/N91FNF2GlruEusNiuapkItYdHq892r5jrQMAwMq3K1P1dfmGASXJs1fXRPq6y5Smv9LPRr4m9BH9zG/p4AOz3Ave3lx5M3Ukcn7T0XjZz+EtN2QDIFQarnsEZjprIXaM4VSFIEYezTq+qrzXPiMx16AkUNcn14/efD0+erPgazsbKiGfzRARhqKRdzdC+IygP6ZJUT67YTz4A02GojTxKjjT/4BVwSg7lnEIT9lqX/DFrCp8hLphz9aHZYSmqlCrUbzj4gQeVySepBZQIRWaVOqWcj+yMmtVSKWAg5U+3qakn9bIzYuUQ9lfTTxCb7jIw8WOwsEEJgqNGRxGUu5OkF8c6qM3X48BS/hBTSjbL29ae7f1N5NxTkc3YLGyrxu8Q06wXE97h/c3y3mLTdccpUqt7qUOo4JX2w29IELRZsOh1gAHWkn/U6Nrxo1RnVIzzDBDMTYDB18/+d7tFmPqYUrjlnP7nsZ4o5MYTwrBqLCNz4yTuODQvMuszkzJs366N9nSGAEbmH/Q9JGAEaxGadVHO55V7rwIzt2Gtg94NptoUGHRxpV/ZbE2GN9awFaItAzyIk5lAaUiqO3cdFmq75vWPAET55VUVinDI2cZvcikE5XVI/Y0Amu2lC144WDLnt0HiPeqH7bhklqu/mOKiDzUEsbN9QHFqZ4bG0Dl/ejdTlBlJe0pxxBK0muAwGB4nAR0+SgB9jeH11nz9F1B06AV7ip4x+TaU/ICDxO5K/vvm84cxg//wsWNL/vlyueY4Z6FHVscinOers/S+Xhc6Xgr8OpLLt+ya80wHFQS83FgFI5T6dn7yXraiJSXsm9FTvpLwrFJjd+Lv7ffq1RWKW262cJKRfK7crJlWaOqxIP3dGJOHHFOgAxpMAu53dvNShiXZFqUup9QogyGPc5ACMXq4ENoOUsAgJXXvhtzD1gA/vOTDbINXwxKxbDv0rjfQQlKBM3EmZ6D9YGDOaVisJqqL9Fw0sWt9CISu+piPF8dfMh4vUwF2wqVQSV+st6FS6ezIFQRLl56aTx2VRk/ZLvaYOM2nZqMIUH4PPyxM8www47AOJ1IHHwsTrdtDfIomCNN82DIgXyWR2EQ9Vn63I85dJXRAXDh4ktzHbeTQMtNN7pDeC4v56hBBEW6tK0P5PVXoTMSLNYY1guMwv2QomVZehNCUaRWF/VzPejBhGHqMZjafbuKRdt0dDUSclKF4vQ2vbNNsa8hvjzVc3De/Og1BCbZrkXUGHMuwwNPn8BrPvFw/M1f3oFnXX0Ef/OSOycmz7ZjprMWYkdGnKooNZjQdDPdk3jndgpsXJBlMQljhY1P9dO3vR+fvu39lc61u26vTJ2J7CvgOA15uRRqG6SHTrbZw/e+SFx2jMPNqIuCPKVvlHsvA10JKEMnUBVVjJ2Nv3wl1v9f4UVV+XlkG+tUBjbk7ZOuapnsqBvojywMcMPpa0pKrl9fi0ywRNeI/5PvZMQpi6NXEf9fdTFLQOAQV2Q1KP09LkZYUXlV979gwUB2O4WoObUoUsT8+7ijQfXIaEqAbVq/ZEAcMtI2wwwznN0IK1DEjBP6XKPPScOAcYLDc9tXqKGMHr5qCVgt4imXmGS2wnMvuhzPvUg4A+X8+Ox7i88JT2T2Hm06Yr0o08ho3Nu69WuVFP68SFldZy6jRw1r9K+y1jO917J9CahW3Gj8/aroHidlLB03pJy24q7jwLBj8L+faoBc+AjUuwFe9bIF/MXld2T2Gefadrsx01mLsSMjTiUyUacVooAWa6FSUY6j7VPsbogKj3MuQ8DGE6k1g0CVSdCjPDbenek52N0I0VSqwTcdhm5IwSAK8yxU9DaOy3DuUo4wpxKnTHsPGBmJOiRbHKr4mFFoBExp42XJ9bcC/ZBk0nJUZakfUix4LLdQ2HdOt3Df5d7Y5JHXl1QfUlH+0RrR/TZWlFEMTOn3b/9eG1de3INLk0hLSfvAuDC8n+67WFZStUZZCIpjecnokOLzyfQbrrCA2t5R25jcchnWB+liAvLaAwbYa9tnMQ5i+E6wBqAcr9PZhKqLmZX+9bm/e7QBIB1ZISKKpkSBozTjeK107AwzzHCPhp4RMw6IrDqScJ2WMjQRdEOSq/tRwjO0A1u2VlZ0F13/ONTycVd7vEaXSRi7P/zjiK6NLcXfSQo3QOgd895o64uGM59bVMmGSUQXl6W1cmkNIfdB4Vj7qinVvSpW+24qulQWg0qCPdJGkW6wjm7wVzjUennueRlP83I61LXqgaox1dTmIuKYZAz9IScZA3qefuzRRqqtXFrDgHXtB5TEvoY9grRGgXPnRJSxXAd2DY4AG0Lux33XIS7yXDQBGwxtmF6qZTMRbfi7HzZwxeLN2PXTB/DRX2ph9Tfeg8Hbn5vaR/CcDj+Oh9zH1JSkn+mshdiRhtPcDp4z4agv5vrAyYT3yyOlwUWdMKRX8V03Xg9KgD/7Xv6CUMUsrX9yqBpJGnIy0kujVlIdp2ImOU6ngaQ6jAxjNhxovsT6W1lw8MydjiMqWEabDhiHQxJDm25wm0aniGqwtvUtxsMMF+5/7fw78G3g5MPuW+rcZfDse1+O9/wgGeMSAvlKpxkKnWBVVLeN+mDDEe+aHJfzokhNiqzO0fqEc6/EDaevgUftUZVlQQKhbEsKBYmWuwSXppXcaeA7HQayjWaFEWeYYYadBobpr2tgo+RRdaqtMpC6tCZ4TguMf2XbtGi/TPEnJEVjdGqsMigbWGHThTZ9irqjViy3N7yo3ZC+AVFQsh8XttxOvUGPLK3LoJWYEkwEMfish5a7ZOe3nTA2fQfLdbUoZ/LbOKMJTX1xHE+HaWsuNyoCG3IfLqmN4QoJTvZcXLho/k019lJir28AAAeae4zfc87QdBYyBaL0mjRVoqlFxmn2nTvZdVO/28Y4/0NfwAdf/SLwH9+AxaddiFPa73ofGcZxAcx05LMFO9JwWhklX4KyA+C0K1HTiCoGF+PkZFi8l3mqASNwJpBKXQajVKhnHGhHSouuEI/CF+MQjqCkcVZVmsJoQpumyFMTugHFnEIgrj9/YYAbLhpBn+hDLnlrPZw3H4Dx4dqGKpysActG06b3zXo1ux+9Ae6fvAYYHDUec7zrlYrgU99RNYqiCm7fqOGX73UFvnXqmuicxX1VPjNbcbRegTay2newrxlklJbmEA5gxkM4xBtL1ClgJsQ/m6GnrdYdjo/f8gHr/pcdLu53urI87Ps5Ecz4omaYYYb/P3tvHjdJUd+Pv6u6e47n3ufZG1jOBZVDQRQhRPAAg0oEiQlyn5JojIRoNJ54wVd/xph4cy9yGeOtiUC8CEEMSBABgwssy7H38TzPPs8zR3dX/f6oqZ7q7uprpmeeeXbnzWte7DPTR3V3ddW7Psf7kwFzTnsZRkBj3uhB525baHDHuLF9xPIbb1RjSMkIGyZ2VP365r0CVWc9ar0Y/N6gVmrDY5SBabKuNwl0ymheNHjDeOo37sk1Shajb/B+uA1jWBJqLkld+Cor2omOzWpEU9+LbgXQFA2OWSWitJSCM8u6HLP2dyK3mXOmvGyiKAQjaiWyXHsSTzxm6YXgt92OuTV/hqFbbsfsWafjuvp+OAt+oy6DC9orEaPtos9ZE7FHGk61C9EWDDouJ4mpphKtGhL66ByipuR2Ddt50rDgwB5VDGq8eA4m67drJ5J2SY8kN0C6qM6iwUAJ96pXPrTtBiwrt9eGIDhnQIShTCLuObZrWGkl4lTV72EKoT9o1PaliUvIe80iOpQ0lBaVXeOMplF45ANno7hzM/Zq5KNTYjQiPsR9WlxyAmns+U+OkiTuP9LUOKWEJxqC84Ku+ELFBQYbM2TVTccJCKGNtJuI3yWpo2bIgy4h5icDM/YcxgpiQaEuhLvteMvsaGlclnzHbEZ8BTZaqWwaBZEi1cOEtZ/21EcfeyyautlhjX1ZQCeIATOcDt8KwhWoe8NAmGQMC0aapYE84nSO8qtZOZ5FeW5yOotLLjbOZZvX5iOydEvVb5iWRmsp9yCL2urQan+U2TmecVW551m46YDJ2pIkC7ULzJfppPtdhbwvm+es2L423IIChc2qWsNjPgXjiPf/VsYpGcWtRpzmOTbp7n87nLkyWMDaqWkcsWEGX3yshv+4bzHOOuiF0HaEkDb6dA85ufqcNRF7pOE0c+h9bPp+cDBMN5Bcfng//X4+kVStO27Cn08EU4dUQ6ouDVuHNIN70WBexGoaWPMwXmYhAWmNb6pRR6Sv+X+nhPu+bxYSai9KREgENG9izfXrGal98fT9z8G9m27C1ooJk3L86X7i7zhEpY5wcMw5BK/86S+w7fRXJ7Yz6zuh3hPqGdSax7GoMI7qz9X8/pld12C/4XdkO7nvWP5jJo3TLgdGGq9SnbUWfaoDBw97pp06YDU9C3J+GrIG8jlplxEV7dSpKFCxiOoNo0AIfRLaRx97NKLGvSijzUJI13zDPufh35/NVsA0M3KeLlq9r5LDUNKdZ5P2HIwTbXGoOqtoi+zMR1EoffYfAQjH9qqJCUUv0+UOGNyOFtoJyutJTNf9qfqdhGrYi+NEBkGsxqfYXwYIJncaTyOWc0T47NtCVFbajJ2dPA+YoyEHCuMuSsZQKKo6rbFSlTNIy0V/veVG4PXj4jy2i8u/dxtOe89pCOarEpDGfW3vxvaEzaHPWROxZ1wl9FX80hiZ+ugjCgz6SZhGfFRjbZyn7s37nos373uuOFab6VYsQrsqbwSFzIMTk1p4KA+k9ewPmvEpOK6G4FVcGioMJa9Hyic0C8OlakZqbK+GfVnBuehbT92aixGqYAhj3bFfvAP0+Je1fTwVaqXYuIVAO0V89BVNOQbMscTt0qDS6Dq6Z8x4m5G3zIHLG0TdKnnPAmgU9gDDdH0uUBzKX1Qgb53kboDx+LEviF9sSL8gCJ6njz766KNXUTRYx8bvYJHEOONCWkNdp4yGU/XN6TZMyAp0OfEyRPzf+//Oes91HLHTCDvsk/eR8kBpubFXOIyz1MXDdAhy/yyouURE6qaIuNO1Mfxs44+hcjZdllEr4Jx7zyfqOlqJRJbXNtegieq1penDLreVglqsyTc7jHW7pKSGCFhZUs5+XpvVQvaZduw17XD17/3FMACA2wy73v9WrPrENxP3aRqpmffpY/fBHhlxqiJVh04xYfexcFDJkJ6RZ5qwSn4smq3yc5xwtYSq7RI3sQYncW+yV3YpGeqxmt9LjVM1jVmHKF1Vt8sTyOaK3/OeRDgqDvU9pyARk8/ssPFKCwTchkGib5rL4fPAy++Seuudz92MwcZlBiNV41B3KyAgKB23FzYtHkzlRWtHwsbQRGy0o+ObFlGOg+Dzk38vLjWjrRkXAvfqdd/9/M2YiJdfStcuGADE8667ldSC8gvBWCoX6g4nKEZsk/Y6FhWjszN22d/K2rTugrShF9WJsJA++uijq4gz5nTSqd2J9M9OOetM+gbv3677YwDx7ZeOQ4mNsy3kMyv49ZYbQ8O0WlCyW8hqnNUVh4qDyv3z0MFcWgJemBP/nnWaa5SyyTBt08i+YlIOt+FANakRGalHCAWFoRiFW1s/zBdnSmpvluhiiek6xZKyo82eUt8Zg1i+yONuBYoNmki9BtEhzshcdWdgkoIn1eYLLOjQ2rL60X/E0e9+C6oGweL/+g1w0oGYiZGIYnBhpDSt/cfepwAAjvzDW3Nrb9voc9ZEzGvE6Ve/+lUcccQRGBkZwcjICI499lj8x3/8h/c75xxXXnklVq5ciXK5jBNPPBGPPfZYS+dqV1ctrcco7Xm+8LtbU3/6aKb3pvm0giSj5EKOYGrH2JV03RYFhix9Wq7qUNhSzXeoyUqgWiFOKmnW9S2bpY/mzepxVolHUt+0mVjMFA2eKgJWJRgcHDce/Bos/eF93ne6wkbM+y36uPELxOR2AcC6aX+RALmfmqav04sLt6V5Da2QOJXQZo1qaEfnrECjxYCbzgfxNyW8K9HkrUC21UxoX1L06YkrCXbWbo38AH4ZCiGl0Wbj84RMe2r1kwH33HMPTj31VKxcuRKEEHzve9/zfrNtG+9///tx+OGHY3BwECtXrsR5552HDRs25HzBuze6yVn7yI4sPLHTn7i2RSEP/efg3NjOfNQur84DadsvCqJ2pg2qg3fVUFgyqNP6sVEOfF2qPgCMFP488ZhpIjjbQVK2kUTFYZnS89P0h1YLfgXXCSVjKOV+zX93Q0s4GHQTtb5RsyKDhsW89Hgl5DuytOw/T8VpfQGaJphANQjnfU3HLL0Q1U02yKJ9YIyX8OuXvgLffdEfx/bXLEWiqCE+vaI/DaCrnBVYmLx1Xg2ne++9N/7f//t/ePDBB/Hggw/ita99Ld7ylrd4RPOzn/0sPv/5z+NLX/oSHnjgASxfvhwnnXQSdu3a1fnGRWoCMnDOMVrQv6A1N35Rv6gQ+VMfXUKRhgeptNGfjMtK1zHe8IiPSM0KHy/43Y/WfwM/Wv+NttKYAfiqw6eBqh0TrETejsfW5QRLS/lPDA73a93ELVxUqY52vKGA35DZ9PrG71N1Znx/B8cIWXxJpurXXNJIB29EnUbc/qChNMqQFiRNY4W3N/Y3cdp+Lsi+y70K7iopSCK+z89GD2hRRtzgtZjUb/B92cRFoX2e2XWNclwOg/DQeyxSzrL1syiCbZBkg7VqWN9RuwU7ardojc7NdKnG9jKtK1i8Q+Mxz5sIdgMut2Ofg/r+tfsuRqFnint2kYTOzs7ipS99Kb70pS+Ffpubm8NDDz2Ej3zkI3jooYfwne98B3/4wx/wp3/6p3ld6R6BnuasffQUJCdwOYlMV80zEm7Wpo0MCYKam30uTHaS844YUEcLy+CwO71PsMJ6EFGcRHcvVe19O+Z2HLP0wsjfgjzg2Zlr9BumgORz5x435fu+EBjq1ftMNXxTHkuFakCaqt/Rcht1yMOgqra9aHAUDQaLchQN7vXVvPRN5bvQCkYs18s0rLozkdupbc3CN1SeF/c8JZ6fa25TcwlGCiyRm6q8cb44JOMEczFG082V7ZG/2azq49Jx0bI6zh3XJhVpHO2cEZz/810gf30JXr54KR7erkT4ws/ts/bfwSEDg0MGnnrFDzPt11F02XC6EHnrvKbqn3rqqb6/P/3pT+OrX/0q7r//frzkJS/BF77wBXzoQx/CW98qwpjXrFmDZcuW4bbbbsNll12Wf4OYhtxQClglwJ3zfS1SjvWDQlwq+PbsBSP7aBPBdOCKK9KxKYQxUxhJuKdpmBZZPEs6pCOqohBRmtR+Dg4CoGwwFA2GrVUTY0UnVHwnKqWBEgP1hEYFDX5xm6uGpTrjKFAKlzNsrlyHZeVLYs+TBiZpzQvhagyraqSHqHhPPeOxy/2SDa2QyLI5jKo7g6o7oyUBckKXqfoiJQ44bBHHxkp0+0Xbmu1O0rQNPnuXOygZQ2BPbgCOOAgOc2FSYWhuFHTH5orVKF4Vxt6Dde33UTCIaGfF8RNb3T2Nug7ZB3fZRihCh4Nj1tnZ+EP8VnEoVg3VsblipX52UlZA3b4U8bo/uuN6rBxsJqQbxAwZ9XUgoGCmBVrZBasw6hkcDWJhzpnCsFWCy2wfGVsIafqMAwRNQirHrh010/celU2GGTtf3628P70aidtJnHLKKTjllFO0v42OjuLuu+/2fffFL34Rr3zlK/Hss89i1apV3WjigkfPcdZ5RlKRzT6yo+a2VmhSzoV1xlE0aDOlNQUYkJnNMt45x1crEVhJc3tcAdNgqr66aTPDI/occo7Oki68ctDGs7vCHFYXXOH/m/jWNDK7g3G3cd/8EXhq1KHkniYtgnEXLrfBuJsqbX+6Tj09U13/VL+T87pBmv1SnZNrLkHNpY3K9gQmbTq+OecglSkYhgkOnqkvpOFHcw4N9Vu1aNSsQyMl2qLaYhALLhelnDjncFhd9AkC7KzdCouW2pLOEBJiYj04WTOwpOx4bRTfi75ZdR3I5y/4JMeAOdToG/7zc85QNkcyt0U+z0rjPlZdId1mMwKXAxvnKAwiIk8XNwJmfvrCGrxur/N9x1lUbBY/Ve8N466XeaW+Tw6re8WhDGrBZlWYpABKDNTcWVBiYJe9zbe+okRENJcNgqXlMtbtqqHmEkzVCQZMYMBsBm0MmPpCtSOvWYprfncHTvrZJVjywi58vbAG9pfeFkrVV+Um0spumabY56Bf/xl2bEq1y26Hhchbe6Y4lOu6uOOOOzA7O4tjjz0W69atw6ZNm3DyySd72xSLRZxwwgm47777Io9Tq9UwPT3t+0Qh5KkwIwwxdhVAc9AkJFxtu3lMgnKEkQEAJqIE3/qYFyRNtPNhqJDFod6wz3mZDACisp/fmzlZS/aNEEIafdqARTlGCiLte9BkPkOpMDILI4iqbzpjExRomFQGjawuZ7ktstKQkO2Na7eoSGmeKIn3XcgIiG3kRFlxKKbrYUIlIbeT7X90RzmTR1sdayoOAwNwyFizZmbRYBgrAFsrpve3bOPWSj43TaY260BXLgLQLOI1YAJlcwQOI1hSsjFrG9h7aAArBpLqfIah6vPK6Nm0KYm6909GnOpAQDBgjoa+X6csUEYL4t5Kx8RYUTybkYKINAies878iwLqXUs4u8AgplaE3/NMcwZVr4uAAoWBxrW6qLMKXG6jbA5jql6DQcPabQvBeKoi2F6Znp/mOn6xgWNR8ezIT8+DkvY+HcTU1BQIIRgbG+voeXZX5MVZgWy8tdewkGWMuoGsqe5xBr4skM47m1VTbZ+mVgPVzIPtggf+A0RQQtUVUdqMu0BxCDvqL6BoCGPbnENRNhlGCi5sBtTcJncbU5ZxapRpMOK0bHbI6Mu594nCPZuIx/UAwTEA4MjFdYwWuO9ZtHOfCYg2wEP2CYNYKNAyKu6uVM+/ZAgNy6oLbKmKDwDsrPv3HYrI5NEFFUkjsIw0loYvyaM457BoEQPmKBzmYs6pweU2ZmwXFuVYt0sUWTMph0k5hiyGQUtEs64cdODyJt+cTeGodQM6vq2mUauGNMnt5hyK9TMOKg71nMlLyg5GCgyztgG3EaUpJSfqmlMPWn67hQyuAYCS4V/vCaOiP+hLFh8F4iNqo6Bm7wWlluKiuiUOGLkUB4xc6v0d1LdVDZ9SozVoq+GcwaIl329RkaflRmTJloqIQJHjhGyrDESJio41z/kGrMNXwC6Kdo2dvm+jDUFDdPbxxLQITIt47egJ9DBnBXqDt857cajf/e53OPbYY1GtVjE0NITvfve7eMlLXuIRzWXLlvm2X7ZsGdavXx95vKuvvhof//jHQ99XkiropfQQCM+i/gWVOoM6yJdiU0X7cx8dQFwaNeNAVABnr0ZQpI1CmHXEAD9suWA8vWh+O5VX1Qle3PfwDgahkSLwncKAyTwNUPUaZERh0LM8Y1OPyKn9QG4n+9Jh4xXUMhQZkygZQ6i5s17fdHlzENZFFgDAgBX+zdVEl2YpDAUIolpnFQyyIq5ZcQz+FIJgEVDwxhgnrzv4/MsmSx5TG4hL2RfRBjw2otphBKtHLw19X248W12BKYOYWiJlkKYsh80IKg7BdN3AoMUwXTd8kQfeeWJCcQwiFjnjxXMApEuRU4khcWoAjZ+GZRSJ+H/3fZ3zqb90wkohgxAFi4Y9kT1lWKakpfQlb18gZEQrFosoFtvzwFarVXzgAx/AWWedhZGR7FEnezLy5qxANG/tY/fAeNHBjhRO7Hag410cHCYtwHGzZYYk4c7nbgZAUHOjg0jagRodp8veOGjExqZKcx7db6SGJ3bGV2yUBmnJZVSjD+MENgMatpHQjKfyL53GqTxGEs5efXbj/8C/P/sNDFouaq7ptet/txUwaAITpfa0uqO00hl3wTVO57IxjDknfTpkyRCfWUf8X2brBdtsMwLZkiBfXVxiDad68vxosxpc7sCkBgrEgEEsDFkcU3UX+w9T/N+kn58DwFjR9Th6Wq6qol1DlpR0W1Q6G1urNyamce83UsPmOf96reoS7D/kb0jU+iqyHV3gbyrHd7kwSjqMoMYJBjJKxonCT8KgarNmn+TgqLozMIgFzpm4m12iemSfFXDHDGzcbxRbXvuK3E7LetHr2KOcFegd3jrvEaeHHHIIHn74Ydx///34q7/6K5x//vl4/PHHvd+DhhbOeazx5R/+4R8wNTXlfZ577jkAbaaUaAb2qEEw6T2ISvfso/NgiPbm6ybJNB7YTiOLEYCDa1ME8ia2QUPVQGA9EIySle9EpydwmVqtE6VXU83jongtz1DY3F6kl/tv4iPbB5AFqrEs6pnuVNYHkvClJW9RqfRx4OAwiIm5j3wRFxy8KHH7Z2f8nutXrzg/Yssw4jzRktSevv85OH3/c7zvZZRv0LgtIz2ZZgEEAHPOlG/hpT7vosFidZfUd14a15MkPA4bv9j7dxq9JXUbburJRNB77e8/iafIFQQ000cHneE7Twxab+3o8VtGDnpR++yzD0ZHR73P1Vdf3VaTbNvGmWeeCcYYvvKVr+RxlXsU8uasQDRv7WPhQuVdz+xKt2gMStjsySgagwCazjHOWVvpzkEwDuw3nM6grD7LdjROsyAuUELKMrUDqlQlT6uDWQ0YSF0ugiZGNAVis0KtsQBCYRDTa2e6/UWAxIwtssfUiN44uJxgxvafI+s72LyPeqI7ai3Tfp8WZZMl2jCSdU/zWX9JPi3XHOoaJbi+Tir+GYSMME0bJS/7hhwrOoUHF++Fz739efzLezagaPjXfhRGSOoirWSHGnHaM+hBzgr0Fm+d94jTQqGAgw46CABw9NFH44EHHsA///M/4/3vfz8AYNOmTVixYoW3/ZYtW0IefRVRlm0jsPgOasGkhUkLcJx8vbd97HloxZuZdZ9dtr5/ZxELFynRQnNLpEMx1DJqwc4XJooOKi6NjEocskTEojq524xgrCAuUN0naGzN+izU9O0BE5hxOJ6YtLDPkCPkPUx/NKEkbgYBWAa+43LAVa5HZ8gihGKyfjuGrcWiPZ98N9xv3gGc9se+7eTkv7VqYcAUHt6Nc1aqiqXfeurWUIq77p4VDX1l+KMWX4Tf77wu8TwW5YnkLO0CQ97zHTW/8bQVvTkdKIxI7SObVb0IYF27dAbZnoqsbAEVh2SOktYhi67cQsRzzz3n866347m3bRt//ud/jnXr1uFnP/tZP9q0BeTNWYH8IjL66E3oDDFSt7ASo6nYLlJrnHIC9LIudH0OE6V98OzMWlQcA7OOqFPQrpF5OoIjSxwwcinWTl3rnafd8926timXtKgIzCacv93zpeH63SweVDYYZh2j4RSPPi8rDcKtTaY2mkZhw6yJgYAkg8OanMPlwEiG7KkkSMOfDkJuoIpFxQI2zDmouX4niV6WqvlvwZWaBYYdRmAo3EkEjNhoxa7RDlxlrSKhymVM1w2Ml/TF8eKgcl7V8SjHNJvVfJHVHBxD1jjmnCnlGPGBQ1nWccc9/GuAUtiveyPq9XxSh4vFhVW/IC3y5KxA7/HWeY84DYJzjlqthv333x/Lly/3CcPW63X88pe/xHHHHdfdRimLXekVm1I0XWquMHxIgWaGPbM4Ra/AbUgmUMK9CbLGxDMMRr4NmtFWQJ2xrR3IKMJmmnb6gbJbg6rNCKbr4rqTSGXV7SFdlpRI295wESz/30cunutIZIjU22y2Q581ESTcNZd6uk4qgUnjZf7II1PY9JY/CpyXoeLuipQjeMWSCxOPm4Q09083jh42frEvyjOIAXM0csEYJQega0tUXzlp7/MACKdC1IJXZyBVizTo9LSzVAftJqQmVtqP3CeIsYIoVKdGJeRVXGTW/o7v754hoTnoRY2MjPg+rZJQST7Xrl2L//zP/8TExESeV7rHoic5axfRq9JG8w117tLNO1JqZkk5u1Ehb5iNtsrCojoIySN/dksnikOljTYTkYWCBz0/U/D6YVpeFsW/nZi5Iy8Zv3/+VnIEoso/dP2nnTWmqrmu/h2HsslDEYUrFEUANQp1qu7fMPhMVN6U5twev2gz4jhOWz/IGSSPzlopPV7yzH+OsYKDrRXTi5CVNgSJLH1NOPn9hlu17Trt/VYwopGzUrFywH/9aca3IG+UxnwZdRzeProfqNxf3u/ZhmF8MKNsAAA8vP0GLCvbqP5sHU5+9k3AZ68V2VWBLJLg374I6ggEC9H3RLZBD3FWoDd567xGnH7wgx/EKaecgn322Qe7du3CHXfcgV/84hf4yU9+AkIILr/8clx11VVYvXo1Vq9ejauuugoDAwM466yz8m9MSo3TPhYO0iyeZx0jcSLoNn60/hvev0dSFo6P0wEMImhU8shISg++SuJUsgQ0C+7ovMni2G6iF1nqRcZhS+WGxG2210ytvo5MAa+5zUqVkoQOmM2Fw4qByzBZuy61sXXOCcsWqBCpUfqDVRzqVZyXyGqUrrn6yNogOGc+w94nX2Thu1sGceyyaC+qqzxTxoF7N92E45dfENnGtx14Nq75/a1eYSiLNkXYWWBBUDTCBZke2nZDrLaour/u+oIQGrcienq0wCINqBKyiJUOdz9/Mybi5dQAABOl87x/q7qxIRDqvS5xEQsqktrfC5gv42XWYiwdRZAZZ903A2ZmZvDkk096f69btw4PP/wwxsfHsXLlSvzZn/0ZHnroIfzoRz+C67rYtEmUcR0fH0ehkHKi2cPRU5y1R9Az71qPwWEExQ5FkqZF2mhCBjFey08UgoafrKm4aRDkJ3nA5YCFdH3V7FLQy0jBbVSXb20ZzhS5IhUFWkadVaBXOdUjySApuWma4j/+NmbYNoofJUAY20giX5Z9d6Tgao3msjp9nggbAuNP4HpBNf7vde1KilJPevc5eEtanWkCfibr/rVQq1ww7hqkoTJLxHTc89X99ustNwIguOOpQby7aOCHz38Fxv5j/v0i+m2BlhsRwAsMXeSswMLkrfNqON28eTPOPfdcbNy4EaOjozjiiCPwk5/8BCeddBIA4O///u9RqVTwzne+Ezt37sQxxxyDu+66C8PDw22dl4DAIFb6NABlYZsFqpbeQovM21OQZqKMM6JkPVcrE8isQ7308SQEtVZa6Xdp21gymppHKmwWTr8tUGm46j7SXo9MQZ+sm1hW9k940rAq+8HjO8vYf7jm3V95juUDei3HpJS5YKp+MgnUp6HIQlhBEELBOYNBLLjcxljh7XDYnXC5g51XXIu3nHEgtiw7Sjl+Z41eahulAfu764TxX+qc6ircZ0GSh92iIiJdFBFonmfYEv26kIIDVFyKR3ZcjyMaEbDBirA6EFDAqQNm2Egadmo0PfFycdML2svtoBKjMdsKZN/uSXSRhD744IN4zWte4/19xRVXAADOP/98XHnllfjBD34AAHjZy17m2+/nP/85TjzxxNbauIdhvjhrHwsXzSKl6cY96WxsB6qubp66oBJv2Oc8/Puz30jeMC/EjIXSgBiM1ssDa6euTb1tnucOrkuCDvG8OIAoX5Q8d2a9ttEC86L8WoFqDOvVTByJrJGweWmNBlP1WzlXK7wp7rkGDeu6miJPTzffqUWBQET5rAu0DEKIj0dbtAjXba7LTNI0msn+kuZ6VFmGNGPy9qqJ16ysgw5YuOfct6LmErwCNZAESYQ0RlNq9qBhqMuG04XIW+fVcHr99dfH/k4IwZVXXokrr7yy7XNVlZeludCKjgDzNyTecGoQkTYyUXK9F1FnPAL6BtRuwGjoRqkoUga74U0vGwwVr/gOgc1IYtpLJ6KnDJLOMGTSdBU2gxGNg5YL4WfPD5LQzzph/cdgpGmUd3VZ+ZJc2ySh3qPT96vCJBx1JTJvspbOUTJRTE4tkYa2tAscqV+Zlag8NU0yzUWiPeH7rp53UfFs328DX3sPyDOPao9XVN4VAFhWthMlHJJASXSkyv4jdTy8PTmaON159O1UNeXmHBpalOyy/X0p6t2zNe8u4yKiOhg1zcFAG0SLg0V6+hlcz7i9u6FbBl9dcbg9ASeeeGLsAq4TBpQ9Dd3krH3sGZiut25gyoKo91/loFITPgpCU7xL7W0hWmXEyh4VqSJY+V3C5aTB1/VBFK0YwyZrRmzquIqoVH312RFCgRaMjJw3JXbSBGgEs8xaxZYqxUSxPSNiHuuyuQhDYGt1KARvM4gVMvhy8FQcaMDkMAjB9lp8hGpS+1T+G3yXssoPZMWwsuysuUT7ziwqiiJLUcUT0xjMWxkjyibDaIFjziGpnPh/suFR/ObAF8F66XK8cmkBp980itvPfSHUbvF3traQxvOtuVUAQ9l23k2wEHnrHpOfXlImqMgXMqf0EMZJbgVF+mgP7aQSSbISNg62jm5r34poWf85eeC/rMezKMdgjMslLl2cEgObK8lFf/KGjnjqCPacQ7G1aqJACTbNRUcbHLl4Lnd9L2HwaX/giBp7FhXP1hrkrnp4CrexvVs6V5r0Ph3UexelqSaOH/7u0R3X49EdfgOG7ghR47xKOHVSDmmwvWqC8WypmL7FlVmIfPccrtdGUvfvhLZcnpjv9N1e0TglhLT16aOPXkZemo97Itodo1xOfB8d8opuC+LO524GAEy0UPSlJRDqW0C3wpN0c5KsvC75YZArrx4VGUSqAauduS0vGRnZHp3zFoCvaE4S2ikOpXIplXfurFEtD1Wd8BTivqtGPPnvpACDrZV0OrjdhO65Jhl9XE5Sv0NJ44XLm++7z2iquZedGhckCrQpJSB1iCUOGLkUB4zoM/MkdEVS6277BZlaGTfIgasBAGuPOxq/21HF7ee+IL6P0TglhIoAvYR1NqHi00tZZH3Omow9xnCaiLiwLhIWLwbCAyULGKn8Brf5X0z2EQ+Wk+Fqd4bUB2U8OpU5Xkem99JuglpBqoB4lv4wYCLS2GqzWug7STqLRnxVT5aC48h77vJk7aMgrhx/HmcNbE/cbq9BIezZ7kKZEu6TMWkVwWcTNAoHheWFzmnzb2mw1RnV0zi+pCbWEUqhKkJoSyL8KrEq0HLiYqaX5xKLinCDqDbmXUGac4ZB6625HjM3ENpMfcr66euu99HHHoVOOHyyGkmyFEWdaTP7JA6eTI1ifNLNKXnMhVHXvHbq2p5xwgWRZ7vaMZ6q3FNiUcpI0qQgizhM1bOtJeaTM2V9B1uJdlU5qy5AopNyRjIIRU3NdxReLQuq+tqj6XNRz3xJ6UIUjDKKdLCtvhqHiRLTZytZYt1z9tf2x6c/vQhD778DQD6RkIbJYfRaun6fsyZiz7jKCKRNh1RfkGCIe831D0bNiultNq6P3RppSE+QVKjRfWmj/FqNfG6Sofj+HPzeVgyrKqmu58xashIRSrIRzWB71X3Vf7vcTxDi4DJHO+nXXKptm8uTJWN05665JJROTwjFztqtAIDJ+u2YrN/u/Vb56s/g/uf/aI9fc2kq6YIsSPsc0mwnqvyKe0ojKnAGMdAgKu0s+saKLqyY6PHt1ZuxvXqz0s70aUecs4gCVy00tAfg8mxacVkg5+NZ+zu+77sd2R+JVgloOzpTffTRJWQxsvXRXWRd2Lcyv3R6Tioag+IfjQV5mkwLafzo1BqskxHWRy6ua49fcSh+sWFN7P3OYhiTfUNyjbT76jQrddhWDW9ICU+VoRNVSV2Cc47FpeSiMGPFeM4VxS+zFAvO4gRW73FsoESXDPWdjjrNirhoxTTFgNtFZHaqK9Y/Izuq+MzHt6H4yhW+nylUSQTW0LwV9zZYcyQIQjlIr82hfc6aiD3jKgHM2eFLTVvB2L+Pf1AvGuHjFmlvDUh95BtJ2uqEEyRE7bZpomRhW3UNtlXXtHWcJHRL06qTCGoFqQUY5G9xxmhJWFXiKifaNORJ7TM7a9H6qFkWIsGFgY7UxmkZiaqaBPanLsCGM17tE7mX7UiqApoHdPe81cVJGm+0KKzV1KLOe/EfRfyT2kaJAc4ZbB6OTg5iobyTDM1+3q1Z0cjoJOmjjz5axyuWXDjfTViw6MY41akILUBUKG8XqvFONS7l1e48DKjzLUehu89RXFFNcyYgkfexWXiyM/c57X3XFVRN06bRQkMzPsJBEKxpoPK+JKhrs7j1XlLQRJq14vZqvKG41IJ/n8YULpL3loB2dGwARB9dUnbwiw3Ja9QkR08wVb+Vtsc9jRlb/yynh0XEaa0sntN9r3t94JhhLdt22thH72NhrL46hNQRpzGvWzDi1H98/7/7Uajdgxpx5HICR2ec6WaD1PM22pbWYBM1OW+v+vuvLqpNZ5zzvGJgqSb2JAQJnCSZQxk8t91EFnH7oAZmkEDnaaSJM5pGtVVtT80NGwE9iZGIiAIOjr+808LmihXaJ3huDo7NFSuk96WTIfnWU7dGXwyaUZ9S3qTbmtDyHQxGJkpjuDpeB++9mnYk7/+O2i3YUbsl0sMcSkFyFB3TRjSNy5rvs45wqWQ+Thd2vmGz8LwqteKyRGjvFpAikK1++uijjwWP3cGRo7uGGdvoTiZETApoXBRqGo6X1XG6augdoe9Uo0/BSK8vGkRcPzlx5fk4ceX5vu/isl4AYLRwpu/vqFTotA7nuL+D/cBzmGoO7TASufKIkzpqZb0Sx/dP3/+c8JdI3yeCQRMyGCuunZxzlE2W6r2R97DdIJtOpukDzaCNYN2IOpPfJ7efEGHkVw2RXuRmTDSqP+Iz38HomKUXYsiaACAMp598zxDueEo842CAhBwD4ozWQXBGwHuND/c5ayL2WMMp59wfjdWiNkPRoL4BmfqMCntGJ1oIUKOAVYHysUL+4va6lPosfeHN+56LN+97bqptF5fOx+LS+ZG/tzqORVWalEShHSfAsvIlre/cITBOYDO/Qaoac5EPbBkMfZfWEL2oyEP9IY/UYovyWIKyqHi2lljc/hrg5b/670znYpzgno1rQt9FIarSrUmb90JHYjs1D0tCGjTiDZjMK3wWdHYFryGKzLrcwUTpPEyUhIE1eM85OEBoYhqPb59AJHAvw6KW796oqfqzgcyPPLRugxD8rUduVD/tqY8+9mi0wpXy1IHuhNGk67UANOuzTkpVhc/V/Pczu66J2EYYflopYiOP/9vt8VmQQc4FxBuVoqDyVJla3C63ULna4oZeZBJsJoqwBo1Noj3pAy9afc7fXXeL9vus98JNeMfaeQermtuwEIKw5hyCAZOnLtDsl0QkIgNLiY6dL2ypPA0A+KNXb8bsSBEfP1pkhEUZ+LMY9zkTn55Cn7MmYs+4ygikmnCsUzrfkD56Bkaj4EsatFIExq+VmW4fSaLV6D7Go1P11eOmMSDkFXna60jSPApCRjI4jHikMO6ZxekWWbQU+k4lP+VGZGtWZ4vqGXe5+DvKW76zdqtI3QrM1JN/93XQE16XeC7OGRbHVADV9TV5v4IyAtJgJg2X8l68bOIi75MWqrFYvbYo4q0a61xOfM/U5QSzgUs0iJ68qpG348VzMF48J9fiZ0kRHQsNjBOMl1yfUWAgQRj/lxvSHVs1TlPCU2uxdRx9730fffShQTfG8zwKmCShU0Yczhlq7qz4d8ZIsnYz/HRsOG9jcZCnxRn/gg5xlxO4nMDmJPYZq1r2QJgTebrqMfd32UDrwSVpnoHLmbeWymR0SthW8n2RFdb8PiooREXWqdeICLzq1Due1VBMItrXyrqvWcclvhFFg2PAZNgZkEx4evpaPD2dn+a9jFBNcy1R66u4fiqlFP75MANL3lLH6HX/kb2RETAKHEahx4h9n7MmoleWFx3HgCVeKrVgR2xItRxobP9L4vC6ZuP0GExXv6SPDiA4aDIAO2r6B8J4k9i4XEQitjsJWp4BNP3gUnGifW1bK82UWMZdz2g0aDIUDY5Z28BEKb0hx2HNvj0QSCVppt2E215X5iuVDG6YDXvPCSg2V65L3aYsYKz5+fbTYUNlUPNIh5pLvfR83fOmBFg1VIdJOYoGx1jB8Uity4EVA5dpjztd3xV73k1z8QNDFFHSRZgyTjyB+2Dv4eBYVDwbY4W3e9/VvvDn4M+vbfyebMCNIkyqqP7bDjw7cn/AbzBTU/Uf3n6D96Ge9qz+GE5An/SBrVvF9bA5ANFkUUI9btI7qTPERd2HYAoPEf5zf4SpGS5uoFu86L7bZRuexmkvGlODqfoGafZfNfogTVTVCSvjf+dgoefcbdmHWFDShve+ly6kjz76aBXjMQ5HCXUOSiNnwgIfmxFvXshajJM1DHFxyEsehgf+C8KiJTDPkCYNe+LccdFrOuOHqg+p+12n4e5wPec2CI8dkinhicYbadB95xmbMa5w8zgdy2CWhpo9p/5CCAXnHCVjyLe92qboVP3kdgcR18V0xaEYJ6g1+vWLF10CCrFe0BkdO6ENyZj/OnTOcAChwqpJqLmCb4pMGxscHBYt+QKzovp61F1X7+2zs83jyPfbZgRFgwvjOSOgRGSbcc5xyFhVpLw3jOQWLYFzP0+yaAkcDAPmWKZrzYKaSzBdj9FaVYIcHKY36EvOHNU/k/rtSGE49F2WofHXW270xoi1fBrX/t+/ovKOt4q2aQLvOBfPWbyLyeNladBFadDFgFnsoSypPmdNwh5jOFWRKkXS91LrjaVJfaRfcbT30NQ2FH+PFx3tgBV8tt0sxvKj9d/Aj9Z/w5sco7CkHJ3WIwf7GU1RtCgxfoNYGDD1BjxRTCm5P6fRspkPqIsC1bCialrKe616pOcc6jPwMA48O1MA4wRzDsVk3fTe8yGLYePc17XnlxM4B8NUPf09WjXIsaQcvu9B7VUJmxG4PB35c5hIORk0F+GPf/YqAMLQGiyaF3QuRBGPyXp6r1AwRdvl0WlTaeZixglesWQJAKBAhcaYOs6vGIjWs1bJnewPBgHKhkjPl4XEohYPj+y4XmmrAZc72FFrXgtvKDf5oj1cxyvOhfocOJhncDVJAYy7GCuaYNzFB/97ke+cw5abiyOnG5Dj5gEjl6LiUIzlUExEhW6J2zMEtI8++uijS1DXGwVKYNLkyuNZEZxzhiy37YjTJEOqOK+LdbuewrAVdoi3K2sQ5PamMn+sHr0UlAgDFSWdc1RW3eiot7LJfM+2xqjIjIPf8CaMY2GyFJwjZcEolzsN3pGuSPJkzYTNgF0NKjWdrkSIB0o4ilRk9AUjDoP1RiruNABxTVHGXon1M3qCmCZQIg5pHbBFY8D3t2fs49xbd6gFu6KgK0ArUXOJr3/I/mAQkWHGvPNwPDHZfEc4Z7BZNeRctlkVADBr70xsVxCDjQAJuQZRNWQpAdbPUMw6Yj1lUo5FRddXF+CAkUtxwIi/IFhUxG7zOvw3RfYJGaksI9Ol4VpisiYCVmRGn3QuTdUJDOJ/9wcSli+rvvJjsMkarrhXtlm8N2oAHiHEe/5JgRsAwBgB69E1cx/R2CMNp0A2XRiDhieWiVK6yaaPfCBTU9J+oiLIWknhnM8IpmaKePpGyIm3FQOCzWzP+DnYmGxkpIEkqPJ39V6WjXCa+MpBPxnKO9UpSSphW9X0zllzCUYKLoxGNsG0LQydEpYvfVh8H2ew0zlFdEWSdGBc3MMjJtQIX46Jon77F2ZJ7OJEjU5hXBjbB01BbpaWmynvi4png4Bgsn57KIXrK2c/B0AYdl1uo2gwL3JhrOBiut7aVJFk9Gxn0WNqNF2jyMoLs5b3zGS061hRGCBHCq72XdGl7OtwxPjF3r8Zd0MRp1pwBgOmIHkFQbxlNoPD6+I51UQDPnncpG/XhSiqITVOX5i1ctX+lhEHWfRiu4q+XlQfffShQZAP5eHwUXmCDPjg4I1IqHwkmdyAgacT/JgQKgw+IKizSsOpLwxQZZNhrOBgpOBipOBium5g7yHBNSfrsnq6+OglduLvta6QLJDM7bLMa/+9iWJrRfCEpOycuOOmnSHUAImgcdrltufU1fWOzUo2lEWBYUvc1xEL2C5875jMEAyQ2FZlTtfxOfn7ZE08x7GC4zm3ha4mw0hBfJYPOL53Qo1YTuq3Os69rHyJ76NCzbQJRhtWnRk4rI5Zm2L9DPFkvSZrJiZKDoYshiVlwffqDKgo/fbA4eRxgWaQmBMBM62PNbMJQRnB+7azZuDu52/WbxyBKA4dHL+igtqi4Jfl8v82F7GcrDHxrKxjVoHbDOufHmnsn9FzoAGlHLSFTNSOos9ZE7FnXCWAakDXJPXAEbEQr7lVMJ5dQyi4GO9jfsB4e52/XcH9PDzXaqq+BOcMNUYxYxsomyxVlGhaqAa6OmsWy/nFBupN9IyThoe+uZ+cEPJsS1YUDY7puuGR6pEUfo80ouZpoy10BQOC6Xjba37vbaHRQUspAzl1ToE4WQTpMa2407HvgpCtyJY+9a2nbo39XRovg/dA1fCVf2dB3HspjaxzjjBET9bUlHd/O+qaw6RdIEYZ9IOREy6SJwOVKMo2Mk66GgHfDoLpnUGd4byLQzUzCnok6rSvF9XHboyeec96EKphdEc1eRLPY+EclYmy0EBAYVLhSS7QMqbtLYqMUPeMDNLh1wmMNLIvkrhSWkgjY5zOuvqbNE4lrWHjJBDGCvL/3LdtlihkncEqSaueg2OsKPjjaEFGHwpeOedQTNdpyNkfbJPky0GOOWK5qTLnVG7tL7bFQ9+NFJakclro1kiiaG3ze10ACuPNOgzBdUvJGO5IgTidVmxeEdlFYzD03BlcL3paGi2LxgAICIpGuFivaE/8c0zTT6U0xuMveynuvvjtuOviApaU9vO1Cwj0gZT3uycjTvucNRF7jOJmcAFHCNEbAjpsMa+6PabBtgeDQYTq56XdlDfSSD0sLp3v/VumB+edThQ00oh2ZevEBUrgdqFQgYrFJQeVjAYmxsVkakKQlYqTT5sLRtkzno4VXdQYxf/tLGDlYJM1Rk3iTNM9deTJZsnFdlTI8e/8by3GD9g3sfVtfywcCqR5fEqAybqBosGwYY7l5mmbc9SCWzERFTHdLK1xNfh+q/coSFQFQW2etGRkLzJhEDO5cFxD45SDgcRobXejuEcSonR7o/DCrF6uIghpND99/3Mit1ElD6LQiUVBbmjHC7+HeO/7WLiouRQPbL0Rr1hy4Xw3BQBw1OKLkjfqEh7YemPs3CQNOzWX5mqADvKzrONjL8gtiXmRomgMwmF1FI1BDFuL8cyudai5BDOOAYs2U6Hb5bzqHG+28SzSGiF/+99LMHvAhlQZNzIFWodgqn4UCKGxju+kdgfXrFGyRXF87Yjxi/HE5HUoNK55ouSEnhvnHIQQlIwhzDlTsW1Kg01zZiQnFv3H/53LgdkUxaN0cBtBI1GwaAmD1hzGS8DmCoktJuvfL30WYdGgIXm3pMhIm/0EdXcOG+a2Y/XopbHb6qCzZ0jD+oDJUHPDxaEAYLTQTLETRkexXVRVDwrDi5qP2iaN7ETW9f60beDoX/4Sf7zhbHzlnOew/YLPgX3tzxIlJNLAMMNG9nlHn7MmYo8xnOaBVqqo95EPskYrOgHDnuqNG4oZW11OIs81H86UdglhK21eXGItGIuyn2e+QAmwsw6vH0iBdRVWIA1cfQ6UcC2BSZIiYNwFhRF6pjKCQncPCwnzkFrATBiixN+rRy/VRpsaxPI8pBI/fuN2AK8HUIs/2QJDcKFgUf1zA8T9Gym4DakP8V3Su+NEjBUudzBejDYGAgDsKogxKMhXbc43E5ukABd24xrChKrXtU1NasB10xHBpHEj6T7usr8V+i7qXeqjjz766BXI9OI8jwcIw2cSb4iCSTjsHpQ9adU5loXHSoNT8EyME1iUeYbBvOZflxPUNDUIsji/o1BjcyjH/N6uszFYqV4HGYQA5CvTxTmPjdtIUzndIBwVpndYiGJL+mNnLWwr71GW+x28rzaL/l1nrNVlyqXR29x7cCl+veVGHLM0vRNMd5+C7U8zxgUNoXPOFCwa1i5zvaJxwtBac+dCWs462SbRJ6K5fxxGLBcPnXgCSv9fHe/97nL85IRxbI/fJTVI4Nm1qxfdR3fQN5wGwZg/h9t8Azi7M7SZOmCIStxNQ8uMY0QOFnmTpT7CcDlB0WCwmQGTcjFJJkQeRk22smKh7pml0jJUEJzQ0pAJtZ/Fbb+9enOqyTEJNiOYdghGCqJ697AVTpNJG5Ew09DCUauNcjAsL8dHsKWJMhPHDaQ+Bw2SCfsHI2lrrjC47KiZGLLitXOypopFESemGN/U9i8uubEVKdN6q4NweD1036Y+eBvueM/5eMt+TcOpwwiq7ozXRko4Ht9RwmHj1UznM4hIe4+rGhuHpCiGIOQ74HLHu071OQf7bpyjhHmkP/m8ss8mRZtyzgBieBGnABpeWpZ5MZO3ZnAUogqeRSHqvTQp9/Vbk3IUDR5ZFEwiLiIVQOoKpvMC0ob3PofxvI8++uhNjBYYai7FeMlpu5CNiqJBM2cqCOOLmE+iMp3EPMowYDKPm2xPIUGQFbpiNrpoyem6kKMqGgwbZq3URocsxonVo5fiicnrlEyc9PumQVkTkQe0J0VQZ5XM0XCCn8efc6TgYnuKfprWaC8Mq81zDhijmHUmtdtatJRZU1LeQ1c5j0Wbcha6iNNWoRoLs3CRsaKDzXNW6BhAcl+ruf7iwbpMQKkVXAgUsJIYtBbBICfBokDF+X7qdkfB5cDqEY5ddrMdS8qOj3fLwlDbq2Hd0yitekIICkYZNquBgHrryeAaPHjv1XENCAfEpMG0bYASoF40gArFv5/6RhyDqgiCQb7FTnsCfc6aiD3jKhVMlM6L1+oLPngnbDTto/vIUhiqFURFolnUbzTthkfozfueizfve25L+6qEM60OYtqiRhJBYk2p3/DXMyLX8F/XiKaidzCtJepvKRAujhn28vaCp7CsRCo8vP0G7TYmKQjRfRCPfFT/6W04/+ChxOO/aFE4IjXuvSvQaF2pATO9mH1aqNGZ6sJBpsPtNZgsJK/z1kc5uqJS+qIcKnHaY0noqVSeBDjMTZUhENS3zRM9o73Y14vqo48+uohaymj/PJBGTqod5JGu3Q7WTl3rm0vScBaZTtzqnC012JOQB8/uphSQ5KR1Zd6XPCFNirWKPPhQkgFtPgKc0hj1kp57ORCxbNFSqnOXzbdkijZNAuMEOxuGdnWceHr6Wi9dXyL4PAvUHy/NOUfdrbTFoXXvbpZ3qD5q4cBDJnHVd5eLfQNG0yw1ICSoyUFziDDPFX3Omog9znAKtFaBt2cjWvrIHeq7rx9sWxskm8fvzkApvOT5nstm/rR2f/pLujZ1CzuqphfhFhaAT95fnezLAV0cxklm6kaI9ICTUHvGio53XADYVs0egaKm9IxoIoXFue0Q+fiXRweBj18T2rZkDCk6og0tMeX3V684P7Itar8o0GbbgmlHKpIiC7NAN8Y/s8uf+jNo+RsTFeGbxSjOuBuKOJVtyRoRzjgB5xwfu3800369gDQOrDTbnLBSRPNGfXoe/QqlffSxRyI4d8ZtA3SOF7bDVaPQSR6na2/2bIx083bWQIv5ketKf1JpCC1SfYRhnueKur/tBBFIhzdv/KeDXr5ItDtLscmhCI4cB86594ncJuZ9C8t0kdi/W2kfADy0babxN8tslE6LNI7vLMZn9bkG0+/F7zzE63XZXcH7365zQK6l1ly8DgcudvCr43/W1vFU9CTN63PWROyRqfocHIy76QYUzgDQ0KJ3ulEwBRAGljmHYKRRWXDIdLG1asV6Yy8//OyW278nIqvGqYy2lIN72WChdH0KIQQeFItW04PdWG2U1jRv1SrzaSZKhxMUSXwqzUTpvJAhoWwyzGg0lNIQabViYtFgXtq9QXhscaheifT68wNFSnlcCpyQcwhfx1gjMtVmBAeMXKqtrBokh0kEQVdpU8VkLTwU1xnwyA4SSnM/86Cz8e2nb/XaEVdJd1n5Eu/fO2u3euRjtHAmqu4PAQCfXjUN/M3pQIa0k3KK6r1Vt/keWY3oUxlxGiS4WQjWYeMXAwB+veXG0G+cx6e8q5XpHSaiUafrRqhIQ8loklyDNAy+OXMCqikKxcHhcH9k7KeOnQxtN9gC6e8WojROu+U06ZUxqI8++uguHtqmz7SYH6TLgIqT5MkTeYy/lLTf3qDxIy56cMAchcPCmSLqtajyL8OW4B1JYJyAcR4yhAoxgjBsJtKiU0Wc5hDFmdaApqMkarQe58xz2MefL23LgE0VYKyQfb+obcX6y/CkodJC3GeZOSX6pCqZl3T+GdvQcgWhhZ+pKSEEOZwK2e4g5FhRMoBKQh+WEnJRePniYd97lsSL80azmFW2/eS7zrksAOW/EZQYkfc27r2rOBTFQvP6RwvCZiP6XjSxP2bphfj9TqFre8h/3Y+DX/IaVPc7BrC3pryidJi1bQBhY3EfvYlMhtMnnngCt99+O/7rv/4LzzzzDObm5rBkyRIceeSReMMb3oAzzjgDxWJY0LfXQEA8z5Zaldy/UUBjJ2LQUQdtFZT49VN6IZV3ISOLZziNkVU1iOpSr9NoK2bVOJWgKQ2mWcG4C0qMluUKOFhAUzWnhmVEYmEdpBNpDxpNdYQ/qBPkcqDiUow0Juzf77wOpmZePXLxHKZtw7dfUm9QtXnkPgBSVVZVcceTt3oEMcnru6VyA5aW/ZWGFxX9TpvaNT/Gf130Nhw2WPF9HySyew8aeHSHMJq2qrE631CdWbpnVjQ4lpSADXPivlbdprFX4u7nb8ZYY5qT74vssztrwqC9o3aLrx9LzVXVAefCAeH6+qCqc0MWAFDfx16SwwgimCpqxGjDzTmkrWIYUdVVe+b+ENq67tMeohfVaewuvLVXwbjeiTUfoCmMRL2CqGgzVfe8u+1pbb9u8MQsUbN56laKYlCiOBSQrjhUmjTyl/5R64aXIm0GgQTPFDSScnDU2Fys5mnWtPfl5XTG6SCyGtGi1tZA2EiWp1NWFodqtR/lbaD0Z0CSRgBCtD5rUG6q6u5Kna7fDejaLXmcWL/qA5KKxoDIlgvs7zMQpxgnsnJDuZ6u3vcCjEMBdsUXgc+cmekYCwp9zpqIVFf5v//7vzjppJPw0pe+FPfccw9e8YpX4PLLL8cnP/lJnHPOOeCc40Mf+hBWrlyJz3zmM6jVer86cytaGboIofBxmy9lJzXc+mgPaYnpYeMXx6SktBZxqiJJFiQLIdClN2SFFGzXpWZL2Cycap4E1Qu8aS4cwbmQ0E5EW5ZohJKRLh1KfV5xCBpMJYwPvwuvf+HxxDZmIdhnHqQ/V1SqvssRWSQo2Nce2XE9Htlxvfe3LrJfJVAOa0b+uByYaQjXy/FZ1b7V9WsZKasrPhaMbqDE0Hr3pZPFm3fchAJSCxhFI0wrVo9eqt02jwrCKoQTLNdDtgdJQlv99NEydkfe2kcfnUSamUedB4NyN52Gjg+pju9d2eoHhRC8muC8FcV71eKnsmZAHEf+7X8vaaOV8QgaSXXVyVuRb4i7nsm6zKID9h1K7hNZgwVsVvUyRLsp99UqJIfOYqTLUoxURZTWvnzGJWMYNquGvhftbP39TfMM46S5giCgkXYZQghq7hxq7pz3HedSS7g7HYIOmFg3A9Dh/CJDGROfnkKfsyYiVcjcaaedhve973345je/ifHx8cjtfvWrX+Gf/umf8I//+I/44Ac/mFsj5xXWKQC7M/LljJogeybipY+OoB1xcrVvdIME5NkXKdFXb1Qne5nWJA1Sxyy9EM/OCA1Nkxq5CdInVdkcKfgr04uovWa7o6ImB83w5N3uc5IERVe9tFUHi8uTU9yD0aa6Nr33/h343O+eAQ7f33dsiWHLxWRdPLfxkoOKQ1Ol6quwmb8qbZ5RKrK/pUHcuzBScGEz4vPYU9KsEivv9Ul7nwdARCPL/iRlMuKi0H0k1WhPJWchLB4kXI6G3EXnlYEo4fMSrRWJdnSf9hC9qE5hj+atffTRBXRyrM3CsVvhuEEHm8g+aqbrq79n4RhZ8bYDz8Y3/nBr6u3VQqVRM4Rcr8ZFmmZBkgFsrOC/N25I7iwMNxBZbdICau4cCCE+riT+jj53mvVEuGJ9+2ui6ACDeEe+6Nf6J9cssJutLWowx+HjNTCUYTTOUXV3ZTtYDkjD78PyZQYMasFhdVTcXSjQcuhemrSgXfdFGYCD44L63LPIg334UxP44eoyHni6jJmPvA1oGHg559oo77QwCz3EVSX6nDURqVYya9euRaGQbGU/9thjceyxx6JeT65ePN9InFA408o4qoMli9G/jEKcZmYf3UGadBuJJyavayttQ3/+zqTqByFSvlozsgxZLrZW/cNDUiRXkFzqzisqbuczuKbRKC4avBEhq298FBleMXAZAHj6NhLtiLlP1V0MZdBpj3puZx50dmR0Ziv456OGMXn0W8DsaQBybHRRNAYATGmXLxWH4p6NazAekeF6x5PpFwJJiI/I1ms9udz2+of0jO83XAsViFKxs2ZgwOQoGrxB6sUzqDOEdGZ/veVGjFjhaNc40kwIRcWdxjBdLCJOTVO7nUVLcBWZhJ4yBKZA2qrOFuWhtLJWod53SgCjw9We++h97I68tdeQ5zvcR2eQxgBpEY4K0vGZsDEia3vS7zDr7ESRDqbeftgCZlMmgsXJcbWytpOIM8rF3atOSR5QGHDhBJz3wXOLNutqImQF4wQrBxg2zEUfy2HE42UuJ7AA2KwZ8R/XR+T27cCior/H/d5LiHsvHU5gNYzQHAyP7ijjVcuav5eMYbjc9klvcTCQFBm0ye0KB3Dk1Y+D/bRoDIT6SMkYypz52UrGIDMIZi99CzZ/vIzLCwyff+1k5mPoYHY5Yr+PfJBqlExDPtvZvhtIJATmG2J/1lVpVqEaYGYcMSBlTUfooztYSNFa7aSd5rWgqbk0MfXIIGGD8Fcfa4rUF5QLSSNW3wpkJdVQSnXK5y0LihkEeHo6LCcgi0ap16hOwkn3KK4tarp4Eu548lavDXKMUY+bNYJ157u/iLufa07gkrCoaTHtIqgTOmzxkDHy9P392rbBYm5ZoDOqPz3tN5rqxmeXA1urzftn0YyVQRNSnwaM0fCXZlh/Kkga1ec71+P6skWDxmZhyN9sRjJVwc2CnjE2E9JG2lPfINUOdgfe2kcfWdEKv1WjGBca2uHzvTBPfOupeCdz1PUxHi2tkLRezQrJ3xiPl0NwOfDMDIk1mvq3D0sdAYr0QU6yRUHuMR/OHt21tNJ3k2wZnYqM7hSkvqm6LlQLnEXvR1KvUXTG3CwGXkYJTr9xAiM7q7jyX24G0Ayii9LZTwNJ9XoqQ7nPWRPRUu7c//zP/+AXv/gFtmzZAhYQaPj85z+fS8N6BvZ/AAHNtjjR6j56G0kTVZBIqV7poIdapx2UFUmG0bj2Lh8wsa26BoCYRAihqVJz2iUjaSecU/cVxsBfb7kRq4YY9hq8DC/Mfr2tc0ssK1+CrdUbW95f9ZI2q6eLf2yvmVhSalMsS4ORgqjkHvdM5W9qVfe47AeHEViUe9diM4KyyXDAyKXaAloEBFP1OwA0yUnhK3+JM375c2xcfpi3nUW5F3Eqsanib/irV5yPRxWt0TQIGlAlJHE4arGQFnho2w0o0vgqtlHRpkG0QpJVY6lMU9P1e10FV0qMWA1tdVFDiQFw8Sx0VWXbkQTJC9nTxoCySVFpBALEFYcCwgZzFVICIS1kn8gjFS8X9IX2ewZ7FG/to+ewOxSIDTqHOzHOcs4AaUDjwXRePZYN2Ng1lez4aCcQIc+Ai8NftS2/gyngnKPqzqBsDHvfMbRQySkBUYYoSoB9BrnP+RwHIzBXNw2mHARUFNPkLixayrxuSSrOHBVxbFGu5XXx55Iar1aunM2NCcYoGk1ZoigeLIuRdksHFPAbATMZJ7kbXYRbjgOa39XaM7p7r4+wDp/D5YiMZOaUAM8wGDbD8h+dCwCoOO1LIPRkOYM+Z01EZsPpVVddhQ9/+MM45JBDsGzZMp+XoFORZJ0A51ybit8pyBd1xOKZBJP7yB9lg6WOZpvvQiOZK1EqI3FS4am480UR4jSEQqa57D3kT318YfbrMGl+Doc0qfrhfcJERF6zjEAcKzRTP1xOYAZIRyupHhw8k7Zr1Q1razbb1JzgTcoVw35r6WXvuIvhG2VZPInAhHjOM/YOuNzErB39zLIOZTYTBYF22aLAWDDqNCsoiY4aSUu0p+tG6D0pGeIZ2Cza2Bu3aJwonRf5m/RQM+6CwghFhwSJnt0wjgPzPx6lhUjXb9641aOXYlv1po6db8g6w/s3BWI10bqKPgntCewuvLXXsJCyd3oNwcV7O0Un/ceR/08/uYpzd+c9WFw63/d3xfl+7PYyrTgP40+a/uo05nWqGKUshWfFIS3H+939i3H6gRtTbZsFurEsKSIuy32tM8GJhhsEVGeAem6WJPK6qGxMqRkZFXEqDffyd5cT8BSG4bQRfa0Ud84rM4ulLPIadFwExw2b+Z+5w8U6rJvG026haAy0VTMjbb+44l07cPUNS3HoO2pw//om1L7w541CsLvfPe1z1mRkNpz+8z//M2644QZccMEFHWhO57G9erP+B/dugFC4cIT/QukAakW60G6caBfQUSTIotkqzfWRHZ2KNlKJE+ccLrJpqxQNjkqK1NQfrf8GANFXKg7BWFGkwBcN5qWTA8CmOQeHjV8MwN+vywbzafQkkUWv4nhKbcKsaBL5hrEogdBHvqMBkJhB+vYnS/iLA8PvbRp92R01E8vKNjbNXQuAettP1g3tAiNOKystJmuGloQaJD5V3MmhaMGtb5rA3c8fjZcoqk+CxIW33VE1UxeGGisA0xGBu8MWx1RdVECvufpK6PJZRfVfl4sJTJLHmjsLDo45d0prVDeVyNw4jFjA9oaUkjSa6gpxMQhtOKBJ8CkV591evdlnPBWGc9bYz4UBsbAlrg0Y/kiZoGbTJx8YwSeOaUb+DpgMszbNpd+lQebxlLm+dywq4rfVomg6zNrfwaD11mYTeiXitI+ewELnrb2KheLImQ+o92asmD7qr10DKuOiiEpc1kN4n+QHWTSaxqpOomAMoO7OwaDJjvHZBE3Oqqt3zkanvzckkBrPYO3UtaE07ziIbJPkdcElp2/GkrLjK14a1b4g3zIJRz0Qpakayop0wLd9MMNF6kR2ypBWMhDSOJXXIwNWpuuGV4yTkmTnlc2qbaVERwVLSMi+Lc6VnlM7jACGcN4bhMLlNkxSgEkLcFgzcKTmzqZuazBD58ldBC+fEF8EpcjkdUmebDKClyyqgkBEHPNGrRZKDFBiwOUMjLswST6yNME1i1r8tWwyME6xtWJiSTn8TugiQUWEMby2qn235s6BgIQKMgUjqtXjjpeGUHGmm9s22jdjk8iACBW/3nIjBk3glUttnH/mNtz5GQtjX38PNrONnnYw425oXRu3NlVBB4QJbtBKlz3XR28g80hEKcUf/dEfdaItPQGjC5V/++g+vLRnIiZvSf7GCu68Rk0k6WIWDe4zMBw2frHvo0L1zraSFlY0KIpG+iEhbtEUNIqIAk3Z29QO9hpkIaONzYjv3qi/S8PYkpIT2kdFO0YZlxPMaCI4//nfl4QMc3UGrB7lOHgk+cYVDZ5q4lXJspzsZ+wdOGnxIgCCAFJiJBpH0xpPg7BouG/o+qpM2c+CoiGKSJSNEd+7UDQ4DhypabYXJw7qyxYNjnpjd5uFjaZ3Px9t2CcgcJnfWizbIskUAQEME5wzcCN5cUhjSHyvRnwF35EnJoVshNpH1cXKbgtZobTVTx+5YHfnrX30LtJon0sMWm7L/CK4Hw2ku6dF2jRlxglmbZpJA7wdPD39DBYVwwafstk7k2AWY7VaiEkadyeK4cCaYMEmJ6Z/yFR9CZfZIQOplGhyGgZUiyRLjtlMFM9U26oW4ZqsN9s0UUSixmmQc6l9lIDCZjVhECY05AQP9vNnZ/RGQF3BIlHo17+/KHBHQ7w0qUaJaqCjBKgz6USXRs6oSu/x32XR4wyuwSzK8cRkqdEOcf8cVgvs09q4ICF5m7xfqvEWAJ6ZafbhQYthSdnxjSmrRy/F6tFLvb+l4V+2J+4dMql41rQRgS77eo3NavfdWpkB402uXwnUB6i5xDNUR93j2cY+t60Ra6S/+Im4nzLAQRpx1XO3ojHcM87+PmdNROar/Nu//Vt8+ctf7kRbOgr1xVUnEqkRKX5Iv5CThgPPkxZ4IaNegjhh7T7yhW6CivIkZk2R6EUQIjSBnEbKRyuVIWsuw6KimBBGCi6GTIaiwRqGOXh6mqoX/0/2Dr83vSBQvrnS9BxLD6iKosEV0fuwcbTamEmLGaQdoqCSrCFLeNoPGbNBibivf/umrRhT+N9ogXnE7/dT0X1TJXdJC5jp+r8CEBP8aOFM0V9A8JmHa5gzxaQvSaXDCEYK46gzgkHLRc0lWFpiHlGrOBT3bFyjPY+EjNqsuuG27bJFpIHNshVfUqGTXYgiLE81CkPV3Pg0MoP4i0PFOQey9AjhKZdVbUWjCaE9oWHabahjQ8kAvv30rZGfBY+WRfbbSJfqI4SFylv7WLhQi/fo5pG8F8pBx6ka8ZYFSbyxWzy47ooMmJo7B4NYsCjHnFND0eAYNBlGCi4GLYYZW2QFGSRsdMwqBaTeQ9WQJtePeUVYf+d/Rn3ZY3JO3F6LlgaKw/IBYYgihCRGuwU5R53F1ZcXoA3jkpQwAsS/Z53wPYnrH2WDwaQ8FGmrtinYPpeHF82q0W9VQxKMcYKaK9Y9QxbDoOVi+YDTOEZzX10wRTsoGNGFjOR5q24FVbeCadvAszNFWEToqE7XDYwVXYwUGFYM2iibLMSJDxoWB0nKPpOgxG/jMDW1ONrhnarhOcrY6PLoaPC1U9di7ZS/+C4HyyQtIqNMpb5pq9HIcQZTiUGT4dr/K8Gqi3M+/5AI0DBIDkF2rejpdRp9zpqIzFf53ve+F0888QQOPPBAnHrqqXjrW9/q+7SKq6++GoQQXH755d53nHNceeWVWLlyJcrlMk488UQ89thjLR1fTohx2nOtQEd+4io11nNMT+yjNaRNNQpOqPM1viV5PvOGep2ygndQaL2qOPZ+8jxVPLo8tL0KAopl5UtyaWeQUMnIDvlRia9Bms6NpIlyw5zwcFMijKbyHT9m6YWhbUUxmtavQR0/JpV1zlS9GcmRV1EJ9X5JI6rLHXzy0DJuf7KZShTniZakOEu0YHAhELxfZZOBEo7vrrsF310nigE9tO0G7bZJ7dJB7QdFg3t9V0fsdPe6ENjspL3FHKJGfkyUzst9btkdEHQoztq07YVKGvRMIZYuktB77rkHp556KlauXAlCCL73ve/5fs+TTy00LFTe2uuYj+rUCwW+ub0WbxSQ81ycnngnoc6f3Rifk2BQyzNIiSKV2ZDGIJIFqsbpfsPvyO/AKRFnZCegDVkpAZ22e/A7zhksWlKOn3R+/fcWFb8NW8k3OxiZmNUAH5fOLwpTcRQNjppLMGNT7bvUaZk8eU1Bw+RIYbyt47YT1R2MOFXRjlzDoJUuujoNhw/2hao7k6pt0oCq9uU8dUePWXohGIAPHbYIf3/FTlCX44Q3bQ9tF2X0TYo8JQYBMUhvaaV22XC6EHlrZpP5u9/9bvz85z/Ha17zGkxMTOQirP/AAw/gmmuuwRFHHOH7/rOf/Sw+//nP46abbsLBBx+MT33qUzjppJPwxBNPYHh4OOJoerQz8Fi0FKtzGoSOePR6tGKv442rzk297b8/+41U27U7h7bjcXI5iTWwA9m0diZK5wlt0MAA3m6/Y4CXxpJVU3H9rgKOWpz9nGkNUFurN8b+HmUgL1B4qdgSSekzze+CxvR0N1idGGU08P9uK2DVkJCKEKlLrS+aRPXN1vROZz/0FVz0NydhA0ZDvxWooIBFg2NL1T8pvnrF+Xhkx/WRx9WlSum2Ue/pvsN1z2gaBXV7WUU9T4wXm1VVVb2p4DWo/UPq8pq0AINaoXR9oBkRri5iCCjg1gGj+exNUkCdN6NAaECveM7JTk7mC3GSDp3UyuuZtKcuYnZ2Fi996Utx4YUX4owzzgj9niefWmhYqLy1j90XczJaz6YtS99EoZWIslaLS2Y1UPqy/AAMmmOJ+zisjr0H98W6Xc+i5lLsso1Mzts067/jl18Qy2c6aVCeqkcfO+tzKRqDntEpjU5s+FxhWLT5nJeWgIort09/7GYRU6AY6O+Mu15KvkEsEBA4vA7e0OQE1BT45HMNWQyztoFNc6aPE8+nQ7VklDFiVTFRFNq2FuWxOu8sgneqv1MiNG/T1G7IC7LNasS0NFzL+g8y0jtL/+BgDXkBfXYw425iFL3OgJkmQjYKv9p8EwYtoPZP1+B1r9of1+AYfHqfSWxBAS53InkEB/dMpgPmadEnCESVtBJtvtCxEHlrZsvPzTffjG9/+9t405velEsDZmZmcPbZZ+Paa6/Fpz71Ke97zjm+8IUv4EMf+pAXEbBmzRosW7YMt912Gy677LJczu9DhhSHikNh0eYCO0h8ujmQ9RGGqTwblxPYGl2bNIgzygSLuCSh1RQRSZxqLsWjAWKn6pyqKTrtGEy3Vk2MFVxPwD0KOu9tq+R7PhB1/+U1i8JF4j0fNBl+tfkmb5vHd5ax91Bd8Z6nu+5WngvT3mf5IWCce+2UWDt1LUYK/utbVDwbO2oionOk8OeYc74HACj+43tR/9zXgHf9CQAxztmMePpBstrnRNHB1op/ymh1jBswOWZsmf7GWzaiqdHY0rkVTvWCsk38eWTEgmhXeH8VgyYLPU9J9LJGn8Z51z961C7t/VkI80vFoSgWpAyE0KNTC+Tt9vNkFyuUnnLKKTjllFO0v80Ln+oh7Na8dZ7RS5mGCylAYcAU7V0xaCdGpGaFy9JzU1FMiqPmygry+u1qLgUlHPsO17FhNptBLgvSFoaasQ3veW+tmLlFE6qcf/XopZ4+t5GSp8TNZ8H+GczIqDORzRXMcmkVsjiQhMtsGIbgcFmiDSdKQl5qNoXTdmMlu0RCN/CqpRyMpzOiS54YLPKUtH1WjBRcbK+aYFy8X5J76jinzeLl19R+KyMdGXd9MlEq8pKJCo7/y8vNjMSpOsWQxbTtjoqy5JyjYBQzR8NK/VMV8lnXXIIhUxjUJXQFX3XFrhgneOTCP8VhX/gWauXj8cK7fwzrG6fHtkW8dz34EqRBFzkrsDB5a+arHB8fx4EHHphbA971rnfhTW96E17/+tf7vl+3bh02bdqEk08+2fuuWCzihBNOwH333Rd5vFqthunpad+n09B5PnfrxeBuDkmOLNrZRb1M845aeGTRKE1biT4JcR7QKNLIlOi83QUu198LYehpeHszHC9IUlSipXv+aYhz3II1TpN1UfFs398f/812TL37VO9vSWji0kdqKTRfVRKi9o2gMyK4eOgEohwAjDf7tWyvw8I6qLpFmSg05n8IukhTQESWysgJ6eAICtlzLjzuDhdEfVFRpLV/4qGwVzXN/e8F6CKg/VIgBGcccHbkZ+GjnZSn/J5xq3xqd0Gft/bRq+i1tUK3jc888F/cdq0iTaTZvZtuCn0njaZpkPW+deo+19zZUBX3tFW+kzAXY49PG82X5GhxebigVRBZjX6MA/dviTZKRqHu1rFioGmcWT5wqffJik7137hiYZ1AUDqOKbxZ/VtFnGFZ6pPKaNG4bJA4h4rNqpFrFn+AS2so/ekRWHV+FcOLm4b0pBR7Do4553tekMrCQG9wVqB3eWvmq7zyyivxsY99DHNzc22f/I477sBDDz2Eq6++OvTbpk2bAADLli3zfb9s2TLvNx2uvvpqjI6Oep999tknctu0g287A14fvQNdddMdNX8EXTAytY94jdU48rfvsJhgkiQJOoU0xFQa8eQ1Mk4wpI0eD+9rkHSV7IMIpn6rRrmglmwatFIETIISA5/Yv4qv/b4UaRiXhs3tNRNLyoI551ERXSXQOkKTluTIZ2OSQuRYPV03Uqf1m5SjzoLG3lRN0aYKySJQlBh6zaOIRc3OmrjHHz1qV6gd3dY9zgJDuZ68ZRSiMGj5dSp7JvIshwqlQYNarRatWRaFVvnU7oLdibf20UcvoZcd5pJDpWljkszRXoOXgXHgmV3XaH9vJfK6bLIQz8sjWrNoDHr/ziOycEsl3CjhdI7fr5V5WKbsE1CfwTeLvMqMTbVtC0p0JaFghKMY24Xk2a1EqUan7fuzeCR0kabtIpg5Gez3wTYGs9RWj16K1aOX+vqlQagvkMDW6LImFY9SdU7zxurREtaMHY4vHspgfvGvQr+r6w6aQXKNUALSSykbQM9wVqB3eWvmVP1/+Zd/wVNPPYVly5Zhv/32g2X5PQAPPfRQquM899xzeM973oO77roLpVJ0hw8Olpzz2AH0H/7hH3DFFVd4f09PT2OfffbJrm2S0JfLJvN0H21GG6n7Qq9w0GQLJiJod4RBROqyjCYzCIdFOByIqouLS8znpevmuKXqwBQNpp0837yv0HO987mbtftFIUmIOg+kIUKMC62WddPFkMapyxk2zV3bksc2iCWlC31/q8/x7QdVtYUrgsY4NcXe5f5jSALSjAzm3nlElVHSlgczzb18apqESH9wPzdAmhgHjhi/GJsr/mgJmaYfxOa/+RY+cvXr8BxGQr9VXKG/ZjeqoDJOUDaZNko0aoy1mUx5EfdNGjAl8R4whazG6fuf49vvicnrMuvq6t6BqAVRnK6czQAb8YsYNXVPpuZP1m+Pbd+MswPDVvOl4GAghglEyH7Ml9OhWygZwLefvjXy99fsFb9/1JjXM8WhckDQiPaxj30MV155ZUvHysqndhcsVN7ax8JH3FjkcmC63tpaoRORqknHNAjw/Eyhow6xPANV1AKbOuOpywkmaxTjpeb8K/mJ2wH9dInTXjGl/V5mGqWZv6T+fBCq0TQJWY2qAzkUEtdBNYq53PaMpyqiownTnycukyvPdWBSen9UgI5cg8jn34pkQ5STICobKo/jS55eoP6+O1oQa4VWHdlqv2Dc9QzBYj7V7xPXp+X9HS1w7LIbNSHs+AfPODB48w9w7XMX4OzlN+BU4wLcHii5QkBCARBpjNa8cWNkJHeni5d1C3lyVqD3eGvmYfC0007L5cS/+c1vsGXLFrz85S/3vnNdF/fccw++9KUv4YknngAgLM4rVqzwttmyZUvI+qyiWCyiWCzm0sZOYMTisBnwhd9FLxaDuPzw3SFlcX4RFU03XnQyG2cAOTi37hpOq7XTC0hrvAmSUxmdOJ/QGU+TvM5bqybGi6LtAyZDzSWR/aOV4lA6TNf1fakb/WT5N64Ae+A/gQlhOJUTUskYAtBM+RoruFg7VfTpBEXhzIPOxvX/d2tkYaUoqIWhBnMi6VGVnytOuChHxaGpn2lWXVZZ6EA19sk0JYfVYdJibAXU+UJe0ZuiEJj6d36L0ln7O76o015JfxUFwVqbJ2S0zXPPPYeRkaZToxV+s3z5cgDZ+dTugj5v7aPX0StjVi/AZbY2LTd4j8omSyyWGGU0zdSehGcj+F3ySSQPemizgVUHpbOSRMkM1RkJZZ5wzlFzZ1E2/U7wbgRV5AWd0TQIHS9mnMDNWJ08qTZB3a1j49zXfen6SchqjB4puJ7GsSxGGlWsVrcOMWN4VDBKMy/JBtmeKMh+PlWn2GfI8enaS3iSYGAeDw6fQ/T9peWLsKVyA6rujK9/lIwhpXgY076C7fBXOd4Yh61CbZsJNllDJbBWk22X53d4PXXhaDXatFeypHqFswK9y1szL00/9rGP5XLi173udfjd737n++7CCy/Ei170Irz//e/HAQccgOXLl+Puu+/GkUceCQCo1+v45S9/ic985jO5tAEAFpfOz7S9QUy43PaKQ/XRHfxo/TdSb5umMp2sWL+jZmKs0D0D30IixzJtfbJuoGjwWH0jHYIpGhJJ0aZp9VqDBXjSkuMCDRtPg/sWDY5VQ+/Aozuu9ww8aqq3nORE4aRmJGUcBKFq6udSIsTK5xyS66RpM4InJq/DWMq56or/2Yr3vfQAGFy0Kc0ioOZS3LNxDUZiMpmqbrp3MS6aOs6h4fL4CSxN5ErR4JisGb7zxOn8pkGcp3nImhDtYgycEqBxv1XyKFN9LMobUc3++zBgskhDey+gzvxFNKL6dqsFwRYUchDaHxkZ8ZHQVrD//vt3jE/Zto1jjjkGhBD85je/aetYncLuxlv76CMJSamtKtrhpZ1w7Mq5e9iaQJ1VxHeBeXXIcn3zICXArJMuCEI1OMp/11yCotGYrzTHeGH26/ofGmiXw0XtP103UjmrgabTu+bO+qJDuyk3N1EUz0FFu0Vj1QjDNH21W+usoJO9nahVNyB9YFHgXYeejZue0AdZyTWsCrUPSSNWrG5wG6n8Ufe4lWwflzOYUuM0wohKiQGXZ4uaDWYRtorHDz4Y97/SgfMpFy9//Tbfb6qhnHHXN+4SkPh3z+jBzOQe4axA7/LWjgTepwmjHR4exmGHHeb7bnBwEBMTE973l19+Oa666iqsXr0aq1evxlVXXYWBgQGcddZZmdsUfMnb0X1pZYLcnVIHex1pF+S6oYGie+mxvWo4YJx4qdiy30ZF7QEAi/ht/xF/9JxIcTewuXIdlpUvabudW6s3htL1fe3ixFclXUIXcaq+n+NFx7dPJ6Uc4qIh5PdRlR/lOCRTxoWGL0nUH91RuwXjRZEWP1Dn+MeD5sC+99/Y9JY/8m1XcacBGF5fmMzBWJdl7KwxgmIK55T6fDh4YnSvNOaalGsNkGbDYBm3IDxm6YV4YvI6rdQG4y62V28OGfbj21TyFXTgYBiyDFTd5gpk9eileHj7DbrdexLNoluk0UezH+PnLxC8Zq+MUSTZT9M5dLFC6czMDJ588knv73Xr1uHhhx/G+Pg4Vq1alSufUsEYw8MPP7zgU/57kbcuBPRKpEwf3cdgSoNep5Am4jQNnEb0plwnOpzERvLpkBdPrLrNbJusBkfOOQpmOZQqHhWNBwT0GWOumXGRUlxWKFPUnL5ygGHDXPxzUQMROOcAEYZfl9ue85hz1jCY6aM2dMFLSc+BcQKDtNZvN859PXSsdiGjTZvHFP+XmaljGWVWdc9QZ7xr15heNhl22fFrgmErfI61U9c2fhN/E1DQhOexpXJDpM1GlJRjcLmDYKxylmCaqj6wGwDwlcfL+MID14DbDF86ZgKbbb1Wuq6vDpinRR6XpIks6Ta6yFmBhclbU13li1/8Ytx2222o1+N1O9auXYu/+qu/ys2z/vd///e4/PLL8c53vhNHH300XnjhBdx1110YHg5XGU5CO9GhcV4ZuThMEhbvo/ege6pJ0+lCiRhtxSirGpzk5F1xaWa9Xkr0htZOL7AM0vzoIJ9dlG6QQfwaM1FFAAA/OUtzr3WTvkGiK8rLogGUeHrbmXDIWNgwPV48J5SyxV/4P1T+8dugr3gxgLBgvWqEHbHcxnfpH2Q7z7xI9UW5VERFhyaRQvU5Bxd/Dos3mkqIdLHweYIphtJIzcF93mhKDF+/UOeZKK/7QkAhsHJR71FwXIgjqwAyG00p4aDoXlGqXsKDDz6II4880vPMX3HFFTjyyCPx0Y9+FEC+fGohYHfgrX0sXPSDJVqHSYW1qOLuStgyGYtiDE9xQRLB3+J4Xiua/VHcZlm5PWN03a20tX83sHpU3C9JFbrhdHvV0s6+kHG1ByQm6/nHqjkZ1np5FouSXC5Ol3OXTTBj67ms5L4cTDEW1yINpJQYYNzfV+acqRZann1s/sTRNpzndwGMY9N5X/D9RkBbN0IHFqy9aEftNBYib031Fn/5y1/G+9//frzrXe/CySefjKOPPhorV65EqVTCzp078fjjj+Pee+/F448/jr/+67/GO9/5zpYa84tf/ML3NyEEV155ZVuispmRMAbpXhAGMXiUzebfffQ2ogzpunErbTXuXoBamTAuSrQTmG/N1jQGRouGI1BbMe61q9VopzTOxWHI4g1dJ3EgStI5iKQhDwD+s7wXXvGJ8zBQpQAmve/V61OLQ0m8eoWQOImKgLzjyWZ6kUX9Ht1g6rk01n776VuxfyC7Iyl6wGwYV9V7qSNeumfsML12rUjdi+8jv95yI0asJjlW5SUMakVGm4ZTeZKiMpop+7sDikbYGH7GAdEa3lEFzYJQ9U17Cl303p944omx0dbzwqfmEXsUb+2jp6HTqeykIzlLmn4QWeaaKMdvXuCcgRMOEXcZvmHq+XX3cyRCLlON5BwpuDh++QW4d9NNAOCLPFWPXTR4pAb65sp1uT3PzRUa0ndXjU8m4Zh1o6XiCkY44jRPbcvoyu767+OkjyQX5JzDhd1Wv82ChcCnKAF+vb6Ikw7S697HcX0GF4bCLaPuaysGv+Dzz7qOkUbzYPSuaA8DONUWfgpyG5VLy/7eaiZxkgN/4qn1IFdeCl6fxYZzvo2hQJtVgzRVap9wcMw53wMQEXkauJk9URyqyxGnC5G3pjKcvva1r8UDDzyA++67D9/85jdx22234ZlnnkGlUsHixYtx5JFH4rzzzsM555yDsbGxDjc5PySldCYhqEeSBtM2QbkfnZoZWSI9sxg5o7ZNU1EzrQB0Vkg913a9T9IoFCQJaSbLQYthaxUoGwyzthESoQ+2LS1pdJgLk7ZPjhwejiLSpbQHvzM1htOg8WxHTRSH0hn3gO6nJkal6meFzgj1+u1P4YuTB+O8gyHKyCuI0zq9Z+Maz3iaBrLNOkOluL7WLsog4UWODvK8ksQbRBiE1WhqvzE8rDkVbHvFpSikMFTvqN0Cg5iR44Ukewa14LLkxUMeqYnzgWBxqE6iZzIDKG0tZFzu2yO45557In9LiuicL+yuvLWPhYfpuuGr3N5HZzBsAbsUHuNyYLIez6XzmisokXN56+P2YeM21u8KW3tVjVOHk0YFc72ZKM26thuap3Fz/dqpaz1e6zCCAhVFoXwZOGAgEQV4xfqMwWZmohG0neeb5LjvxYAaXYagGlAj0amCYa0UWw6iaAyEjP8Ssn+rGVsyQj25bdm1dl1O8Nvle+PLDzlgbgnXfeN0bIkx0AqjdWdsA13BbsJZgc7x1kxP97jjjsNxxx3X8sl6AWkLz0RBDkDlRrXtrBixOGwGXH54dJRNH51DO5IK4Ui57lbALhp+Q8/yARPbqmt82wSNLlmMbDrSN+uI4yX19SAx1d1n2mHDSZLnkxLu837rJngREdfQuVK2VaNKKQEOG6+Eoi3i7rVaQMphBBblqTy1cdvMOQSlAK8Uxr4M49KiUbx7+//h/z3+Ypy3WnixRaq5n2gFn1uSjmoSspDZ+Oqd/uNEkUG58FAdALINat+2GVCMsFtqK51GN03TVrFw5pwBMSlTOpKrQhe1uZAgdWUX8jWkRpe9953CiSeeuGA1THcH3tpHH60irmp1EMEx+c37nuv9+9tP64vUdAtZosmC16HjUaoR5Rcb1sCk0YYwdc7tBadcXJYTB0PRGOx4GzwpqcDtyDKvq2sCxt3IOSbt3COLtepw/xaCVy7JIjOV/TkH1xTBY6iFiNNkh936pj9LVRwqVKQqwuDcDch+MWgxUIdi1qapI+4LtAyb1VBz5zIHJhnEDI1zLs9n3fkfz5Xw1I9HMLyjij+fGsOX/mQHgGa/FDICCWGrGvQ1TjuLTvHW3rrKXkCHFnMyeikYxdRH/khTFTuLMSYvFA2eyUMZ1JtMqzXaqhdUV+hGRbMYUeD7FPd7W7XzHjhKgJLBUTI4fvqCv6S8y5skRr5/wShaFUMWQ9lsEnXZJ1olzeq9DRLNdscDg3CPSDMujLJRKfSUGJiq34Gp+h0AgOrKA1H55oP4wOD6xv7Zzy+KUolq73HIu8jWkMUiDbjBRZZ6XZKrRKectS/lkAiv4qloZ91tis2rzo9gW3oxwiGIunLD1PbL+y2fWdHgKBliQR71SYKMnJm1v+N9163ifnsaOOeRnz766MMP1TAyaKVbVJdN1vJ8I53cADDnNJx0KY2NSdwviDfvey4o6YwDr0DLSupt8wSch+9NOYFzyOru6lwv1wdRc2m7htE067yjlrkYKzb7hOQkj+6I0BZogBKOIhXXHNS2nCidB0KINlIvrbZlmsCSrHw1yLOZwsXV4pxe5g2Jvgdp1yg6pNU4jXv+kuvKTycLx0qsm2meRLe2lfez5tJMa1cO7itImgdk4V25RtQ9j7VT12Lt1LWZM6eSMrFkkagkPpL1/a44FK/fq4ZP/91WmI6L7b8qRm4rzy3HraSoXlIyQUom9rn1PzO1qY/06ARvXcDxxK0jU4g6oXB5NbM3IW4An28tyD0dlYY+EIWooB6cjGSV8iC6MUmqsALRccmFq1wYhKYqqqODQTgc5d3QeQnjII2TZYTJ1YoBG6wRDZnHoMM5h0H9RwpKYLBGNe+yyXyEyyB6TRtKxCSppkUVDebrH3Kx8OiOMvYbTh/qrz5LtS1q5LpOO2i/YY5NFX/HcwOETVYtt2jTMP+yiYuwuXIdNleuw7Kyv1AUB8dY4e2Ytb+DXc4ODHzyIhCnALBN4vfAhBKMrK04FDYjuGfjGgwpHDdIhCaKIk1OBeOCSM854gKqbnyEZ9w7N2NTn7GWgzeiFmhDsL352+KSgx01fc8T2mXiRCMF5l2vHKdp4P8AcMzSC/HQtrBxmhAauUjxET/mNPqnBcI5CsYAbFb1rkHqNw0XTHzqoSL+9vCZ0PG65YDbb/gdmbZ/duYaXzQvJQRWo1+q0b15LLqDc7k8b88Ua9xNvPc33njjfDehjx6E1H3sFSwEx5IOavRjnEM3DoNmk9SUDJK7XuSQ5XrO+x+t/4Y31tbbSz7pKHbZwIDpX3PpNExPXHk+7t10k/c99WUYcdiNLKGkqvN5Qs7vwcjEGqPe+YL8SFanb7ZJ9AlKDDD49dWls3YcizANfZVwFduq4rxVN176wOXAhrl0Y8JIwW1ozRteZJjLbRBQr+gOhWh7u7h/C8ER4xwDCQuQ8aKD2caYZtJCZMo4oEo/cQDEJ0PmL4rZvL9qP0lj6GSsyWtMylFvcNVgvwgXM7NhEpHCTkBgUAsOq/sYU8EoJ54/CLk+sqhwfE/Wxfs15zRrGajcdNBi2uuUHE1EifoHEYsWtTaXglEQaz9igoPDZQ4sCtisCkAvQVFzKcomw5KyhednCWouwYxNYFGRtSfHhig+XTYZfrW5gLcfVMfFn6jhFUtnvWfIOQchBC53fFzUX8cg+RlvOe+1oJt7pDjUbsJZgc7x1j3ScCoHYR+xME4C3LvDG5tvAHV/LP7N41MG0kQ69rEwoIta6paHUX9eMTFnRdrq4ALEI+3ynLIwVtEAaq64fmn4kxPNG/ZzMOska1W6nKBASccilJKeTdkURrGoCXJ71cCSsghRmLH9BtSs54qCy8UCZHPFwkGjNmZs6hGIkgEMmP7GlQ1gexX46Gq/ho+OpNtesSOOR3Zcj2UaTsQ58xUKGDQXgYPhR1umcdg48cgYJUDJHELNrcLl2SNSAGB7TfQJm4VJSckQRAuQBbvCE65c4MSlggUJmRzTg5E2z+wqYKTAlGgT0bYhy4XNRHrXaIFjuk595EWeS/e8ozTGksDBAWp6bWWEo+7OCaMviEitJATbqwwm5fi7I+yeShNMQoESyLq+sj+pzynLu/PzFwhes1f68YISDpfrC3jMC3YTEvrKV74SL37xi+e7GX30sWCxo2riT/c7x/edjos4jAAtGk9VSMODcMKl369XIvZlNBzjLmpsFjtqDJRQbK6YoMTvcB20XOyyTZ++KSA0T4P3WM6haVKl0yJOD16HhzYbOHSR4xV9spkwmhwyZuOJScsnwaSmZLeDqPTtHdjpFSv9zdYCXrHE/7uOu8064vtBKgznu2yCwQZ3nbaBA4YZnp9NP3+JoA/TM0QBTYkJh9dhEAsuFw+3xgiGCMf2qgmLcjw7U2hEXDadpiMFFxWHYvmAg01zJvYfsfHIDsGhs3KDFQOXpbwG/79VzkNAMOtUMVk3vQJjjBNUHIKRAoPLgS0VA6MFjqk68QVHvGgsaCDVn18GUDS3C0fuEhDh2Cfpo5CDkH225tLEokoAMF2nGCnEF2yV11pnldiIY29fuKG0fMmfg7Aa64itFRuMFzBoMQBGI9Cn2b/j1sqXvmgIb7imhF8ccRdqNzyB6fefFjp3u46qnpGu2k04K9A53tpbV9lBtLLwDyJOUNsfSRN9rlmn9xe+Cx1pPPbB/iAn06hoUx26VQEyChvmmno56oRRaaRs5EkMJaLeIzdAGoJ4diadeDcgUo6SPjoYxP9ptofEtj3Y3vGiuK+SMAU1i9rVzJmxRb+R98xmzZSzOc34MGIBN20Ie70ZFxXJg3225lKUG+nQwWhTwE+YKDFgffYWvPE3P4tcXA000gcZJ1hUdCOJp3rPw4sV/bEvOKR7Ws8rBpr3ULZHjtuUAFN1sUCZrIejaGY1dT2iaCfjrk9LW0tQCwMAmo64gjHg/URAfc6F4L3rGYIVgeUDl3r/Do6lSamVQWQxmqromawOKbTf6qdHcOihh+Lggw/G+9//ftx3333z3Zw+egQvm7gIlPCe+fQSai5VjHTZx76sYJx4460a4EGJkVrjFOh+xXHOme8DNB2fHAx1txJytqvZULLifRx0Buq00lfqedIYoIXOJkl0cs4FsptsJlL1g7r1wWMnQRdFKJ8/4642cEGuFVaPpitgVjKamVtBPhLXfgChgppR76009BJQz2gKAEUq+O5EyYHNCFYN1bXHKJvCIGlRYN100xiXdA8n6/4L0FV/D6KUELk561S9fzd5v78d+ww5yjq0+b2stN4s9iv+H7wOXcRpt9Fq9LnsnwUafx8rjg2LFnPVcDVIdKSnLID7jbUz+NaFz6H+sz9gw6/zGx+5y8Hd9DaHrmA34axA53jrHhNxqlts+uKFdNGmAODcKbwzAaNpq9GlIxZP5aXpw4+gpz4O//7sN1Jtp47xwUnIbURaqtCl+Mw3FpfEwK4reiaNQmkNLTpiKCNday4J/W4QUYj9P562cOzezUlapOMHyZH4f5ZCBXFYPnAptlb9YfhRxhLaMCzKNHGAaCf4RUU39Hwd5o94DKZPZTFiGcQC4wwWFWn1f5gsYGlZRIM8P0sbaevyuMLrXHGjU0iabWqmlwUXEbpUfRXlx/4XT/71m3HgL3+t/V1KFZiUY9qWRX2SjedBlAxBqmSBLNFe4I4nb4VBqHZBIoX+4xYrRsNzn0Q8yibDxrn0xvtCo4vKc5cDPO3XW27EoJmuOJSM8FXT5uDWwSMcG0HC2+miannj2ZlroPpkmTKWqmm9WReuadBr4/Pugttuuw3f//73cc011+Bzn/sclixZglNPPRWnnXYaXv/616NYjNb96mP3xa+33NhT71wvGU/Vtshslns33QQAOH75Bd46YKpOMWzlEFGonE9E7mXbvxl51TzOj9arXFpwkiDP6oSTyiQFEEpRZxWUzCFUnRlMlBbh+ZkpLC452GUbnla2yinahYwEZJwAhOOQsUvwxOR1UDOpskrXRCHvOX179WYQQlB3KyibwlAYF9xRMAbgOPVGW8T900UGRkEaJRkHhq1oebCKQ7GoqF/0yn0IaWaiqUaxYNEdkZ2kOw7xakgwLrRTZ2yKmks8o9irlnLMpbMLe3yy7tZbzi5T78dYYQx1VgHjNYwV4HHpKJmToByXCjW1XDXghNZuAeOidEpIPkrajA5UsyBdDp8EwqDy7+UDjlbPNOqd5WCwWa0Rgdx0oHDIAJiaVzhK9m8pSRAX3NYOjlxcxzIsQYVxrDpjGDsa36vR0VDut5RJSGoP6RkP/+6JTvHWlgynjDE8+eST2LJlCxjzD7SvfvWrW2pIp5GX5llUmnHa4/cLQ/U2ggYYqW0kkYbsdMvIsXLAxLbqGu9vOYlQ0loKcRBNnULq/R21MMnSr9WItDwRR3AkGZbe20HNyLezZmCi5KLiUq/6pTSgB6N3dbqXcXA5AeU2ECAzv91h4OWLndD922UnH1h3z2V7Vo9eis2V60K/c3CMFxUnxEAJT0yWcP+LXoMT0EyNi0o721kzMGQxvHrFBQCg1fkEgLNXn40vPyaK+1jUH10rIxKYZhGmQ5b3iXv0KgybRZ/PohwTJY6aSzBiAVuq/m3V53z38zdjJGCDVaOgdU4McQwjciFTd+dgUAsui48SaFWyo5cg3yWT8lwyQXoahLSR9tQ79+bMM8/EmWeeCcdx8LOf/Qzf//738cMf/hDXX389BgcH8YY3vAGnnXYa3vSmN2HRokXz3VwtFiJv7WPPQsWhkQUPexHdGr+DRV9aXUfJ9Nwgb/vFhjUwI4ZpyXml812HPCs3jxYYpurRc4Zsg5QKSsv20xiVsugVBzXg08LhBBa4ZxxMu78IuJDyE/HbBn/v9rq7lQjCvNvI4IKiyTkJoUBAN7TVdH0g3lmhXku25ytg0aLor0p71d9lIahgZH0nMfexr4IMmHjs9JOwIvDOpZEX0IIG7Q2tti5H7CacFegcb81sOL3//vtx1llnYf369SEjIiEErrtAwymNkwD+81SbSmOKqxTsUbXw0iz0//GR5IrBEn93RPfSWXsVP3jmltTbmhSN1C3ipTHnJWDfqnA/EI6wEtGM+c2WQrumOXmIwg3ZjqFGUk/XjdgCUerkaFER4Rp1f5aU7I5rZ0UZxdQJXt0mGE06ZLGG5pD4++npa6FGzqmRq4eMVbG1mm2ylFqa6jlfuSRsNE0DeYxvP30rymbzerLKMzw4thzHj5r43rpwFfqqMwPAX6lzpCDS9u/ZKAz2QxG34Na1zfEtSAZkVIeEKJCVfaIOXmuQBAbnJ/XZ11lTI62pIexHnfnTznQpaMFWT9Zvj2yvTuw+rujgeAmY1tQlmA+d5VbBOGAq97ZoNCNTHBa9EE2LKEN5zzgodyO9KAAwTRMnn3wyTj75ZHz5y1/Ggw8+iO9///v4wQ9+gPPOOw+maeKLX/wiLrssnS5ct7Db8tZ5xjFLL8SvNt80381YkJBZGMsHHMza7S/61QJT4u90fbpsMtQYbRTyi16/yDl676E6Ns91LllR6Bw2j09AMGCOag2E0tC3vWqANSIg44wPcY7a45dfgEd2XB/bNsYJnp6+FgeMdMb5DwCbKzTENdqdz1xuxxqWZCRxnJzEaIFjsh6+gZLTSqO0RJw2fRaozz3JUC8LwkYhSUZAIu1aJev6LRh8Mmgx7KgacBsararkXxA2iy6kGtcWxl0QTQp1O0ZTFbpU96oLzNrR9SSCcDnz9U+b1WBSf3RC0RjAnFMD0LimgJEuzoEg+43MGp0oMeysNRsd1c57Nq7x1lfv/dPz8OUVz+Ga35fwsZfPedHQ7ThNSKkHk753M84K5M9bMz+1v/zLv8TRRx+NH//4x1ixYkWunrb5wLbqGi/dGcwBGpW6vVQXpSOoA03NjS5A0Y5xrY/uQ5eWD4Qn6biIyzRQDUZx3ro373suAODO5/SRa9HH74zHzQpEhjWrjKbb/6jFF+GZXdcAQC5p+hJLShcmbhNMLUsbsbff8Dvw9PS1KBqsEakqtcqaz79sMJ8cQpJBq2SYmG2w+mDfitItiorKlIuDJP1L3f3eWbsVi4rCGXPookUgIDj3N9/GC3sd3xCYj7+OdtLiZJ+JItHrpovYf6SW6ljBaPAoyGjj4Lbinot3esamsBkw1EiZNEhYtzddtHn8YjVJRF6NCtk4R32VkkXKYPL4kTdE6n1+kO+MSUUhhLSLGR2ktvOg9VYA0e/RvGE3JKEqjj76aBx99NH45Cc/iXXr1uF73/sexsfH57tZIexuvLVX8OstN2KhR8DPF4KGpl7BYIIWK+OCo2YJZmgXwkGWTz8zKU8ttdacc0XWUScLAFuNiuQ6X3SWSFAAqLozidXjJdR1bdx54uZUNXBI5yiXOGTsEjwaY5xWx2UGFwao0HxHs5K7GgwiCv9EHi4EXQp8mHOTSENaVCRp1a0AIL7iVklIyuBrJYbR5URr/I4ykraS2j6gHF9KWsXJD26YNbUSEK06A0xagMM0EQUNqAZU1Zk0UaLYMCe+316lnrE/LZYPAJ+c2gdf3HgXtuF433hkEBMuzxilBABuL4SYBrCbc1agfd6a2XC6du1a/Nu//RsOOuigrLvOKzoRgdIzi7M+EhEkS9KjuKNmxhJFnWFmviK+ygZDJUVkXrsGXokhS2oyNo2NRozhMcph8NC2G7BiQBCcOuOJuptpsGnuWgD+tP8scjFJZGvt1LWh46nRNY9sH8ABI7W2xgB1TDpk1MVvdxjaaIl29LbTpHFxcJAxUZwo7vkC8fct2eCa7t05avFFAMQzSLq/cQ4s/3ZNDay4tuYxpicRO8ZdGNSCUAhuwmW2R8Y4GGquGZKUWAhzToESzGYYft52YHRGxY5a9xbnfSTj2WefjfxtaGgIf/u3f9vF1qTHQuWtfex50GnE99E08swGjHtp0rZVXUjd781/x8+vRSM+O6ZdQ/hLJ2w8MRk2mUljWLu8PsppmxSpqUOcce/5Wb1uver8DSLK4MjBYNFSLKeSaOX+typ/JPRW0+/XqoBaGtsFJRw1l6JouKg41GcQ7VYR48mIxxM0mq4eFWu2tVNiDcfBYBCa+f4QUDisHhvA49eZ9uuQSqS1Dd3721F886xJGIf/BeC8EGso5Zyn6lI80GHTBiP1kQ1589bMhtNjjjkGTz755G5BQDnnWFJuRJs2ikPFaeSpCE6gzUiXhbG43d0hC8u4DUIgn1TNJRi0gkWO9COn7vs8n60Z4S2VgvxyEFXbesT4xdpjbauuEQaZFB6fqAlK52nVkYqoeyCLCPUCXra4hulGdcyk9J4gwZNRfpRwzDlGhPE8e9+wmQ2Xm5nI77pdBHHZHG878Gzc+dzNWk94zWUoGuH+IKNNVVROOhmobUvVprLJUKulI2O6YhJBZH0+7cBhBHNOOGVrwBTPxG2M31LaI04XFdAXhyKgPs3T8eI5mKrf0fgt/cV0onhStxF8J4ILjZIBfOupaNma1+2d7jyz9ne8qNOewm7mvd9vv/1iI2pWrlyJT37yk7jgggu616gU2J14ay+hn6rfPipO+pTWJBiEZ+aoapShzQhqbvTcTgnH5rmmuSyrNFBW6GpKtMsH0tyfKI5mM9LRNH0dRgpuKi4wUTovVDC1G0iSpwvW/4gzj+kMTu1mqbVXHLe147byHkrUEzhn8xxqW4injbx6tApgCAaxwMFhNIyFUj9fSLq11DQA0BZ6kigo9QwGLX86fBoI+4vYJypKVi2eOmiNweWO0DyNqD+jew4DpoiSHbaA7TU0bAXxz/S2t2/D2KNrwQ98EdCoKaQWNWsFxBLPJosBvuPYzTgrkD9vTWU4feSRR7x/v/vd78bf/d3fYdOmTTj88MNhWX6f0xFHHJHqxPOF2MmF0NzSQfroXchK4QtJKxAITwBqYSj99q0dNyuYoh+jQr2/Nsvu0e4WdPdpyGLayUySAt+1cQIr4drUqIe8FhsGERqnqs6o2yAAa6euxUiBxkb2qk6in2+YxRET6nH8emkqKg5F2WSp0seyFo3cf6TmFZwyKU28r4A/wjqo8ws0F0GMN/uoMIwSGA1SbzOR4uS6zcrBqTz9jf/LglAGtdJ5zmszQERFR6Gd5E95W0jOuDpLF8HRifHAIOK4PVNdm6D1RUqPPvK4hcILL7yAiy++GEuWLMGb3vSmLrYqjN2Jt/YyeuZd6zEspDFbRRpeLJz788OhywaDRdvXxwaA8ZKLWZsmOvzTSvWYtPXoPjnfFxRaNVUnWDaQbn/JQQpGGTZLJ3eURxXyuPuSxKFayY6zOUE50x7ROOOAs71AlbT1SYKoubO5tCWP8aJACdbPWDh0kf979TmThnGL5GTkUp+xDDiQs6tBRGp/nLFVGkqTDOQVZxeAJv8I8uwsEatZn/N7btsbrztuKz581LGYvuiLwNf+LNsBUqI3ikNht+OsQL68NZXh9GUve1nIsn7RRRd5/5a/LWiRfeMkgP3U+zPJgKrzAPZMQYo+EiEJ32BMCkyU9qlEWvF9/fmzdxabEZ8+0PKUIkatTMiqUYwS4TWejS/47RmbrIYAt25yKlDSdpp+3PnjUDSYL7pRCoUHscsWlePV33TGznYMP1n1daIQnGidhvasaK//2saL50Qe5817L8ezlXWh74PjnNR7LRocJ6483zNyAv7rOXv12fjyY7eGfmMcqXXC0hhNg5Bk0CAWHF732iyfn4yqpiRs6N9epSFdMIs2SVawwByLaKPD6thevdmLOt1RuyVU7CIKHNyr0HnYuK0tDrVQoHs/RME6cf3dqsg8n+A8OhIizb69hn/6p3/Chz/8YRx99NE444wzwDnHd77zHTz44IP4wAc+gHvvvRd33nkn/umf/mneDad7BG/to4+cofI2qbcPCCftfIFzlsrQE+RDLgcGzfDcLZHVgJJUHMphLnTpwEE8t34YOHBHqnNO141Q1GZWkEYqtMhKCyfYp9NvT19cKQpNqbF85jbBRdNte/8WgpcvTnfebgd5BO9/qxqnUSAgoMSAyx2PfXLO2i4QFadtmhYcTGs0FW2N54hVdwYWLbV1foNEO4vkc/nauc/iiMIY7t64HfttKmBE2aYtvfSskSVdwO7GWYH8eWsqy8u6deEF9e6KtKn6QfRg/9+tkMXIFNepgwRk1qEYsaJHf5m+oRrR0mo1dhqb5hyf8TRILPNqo65AUZwWiyzaI1PlJdIUHkoLVds0CbLAUwUENZfCIEF1ySZMyjHs03YVYBxeSmKrRs8oYfkoJJFZlwMDNN1x4yILOGfgv/9vYP+Vvu8LRhllo+aR3UFT6CfJlKA43Lr2Vs/oqEpO6K7JUL5PUxwq6XqTyKCuD6qG5lkn/Hx171IxUDQtDaKeQ9kcQdWdgcPqsFk10zEXKjo5hi7UaK9exwMPPICJiQn89Kc/BW2IL7/zne/EAQccgMceeww//vGPcfDBB+Ohhx6a55buWbx1PtF/15IxkFBwqZPwCt22ABmNJzC/aZi6eb1sMszY+beLcQIQjkPGLmnocnYPddY0UI4WonlbPSCNJbMp624lt2jCINox6EXN9w4jKFCRoi+NUFE8KYr7ZV2TSb757advTW141R9n/sY+l4fXukIb35856/A6LCKMi+r3neojWeGl5oP52if+bj4codUaX4BJx53TOgXicNgjv8MVxVfic+Qx4O/2wdbA7y0VhgJAesGQsAcgb96a6s3Zd999vc/69eux1157+b7bd999sddee2H9+vWtX1mXkWd1b13UUT/6dP6QZaAcK0QbTZNSqlsV+84Ti0vne58gWiGUwzm4OeV9Gwnc2057cSlpfh7b4U+DFtpdyfcjqzg3461FRgLhMcLlxDu/NO4ZBGDMv+07XhzWKFX7vEU59ht+R+R5d9bCkSMPLt831Xsz14gWrDgUv9gQLxUhIb3SOnJ75kH+a0kymgYRlWKn6iCpiIqaCBpACzH94KS9z/P20Y0AE6XzfBqnKjxiqCGtSRHs8vn0YiVmFauGRN/bXhO03gksLrJEz/z0+QQjeY8XUeFgbX16Dd///vdRqVRQrTYXKPV6HbVaDT/84Q9BKcXhhx+Oubm5eWylwO7IW3sNasZBH/OPrM7ZILLOLboK3nlBajLmjahrfGDrjan2z1uaQuV2j+7IM85QgIC2HVmoIs3aduWAfqMRyw3dv6aUkp//6KLXDMIz821de/OyV1EiNDmLRmtRj3lyOZkNFkSwOFSefSEO03U9iV47da1XGCqIOIkJxl2UDL+pmKBpJM7DpiOlzoIghx6Gq145jB0vewl+fugrE4+TlrtxxsFZ63q4ncDuxlmB/Hlr5uJQr3nNa7Bx40YsXbrU9/3U1BRe85rX9GzKUzDKSDxgZUBx706lcapb3NqNAWvQYonpzH3MP9odpKhn1Mqf5KiQKdHptUpd3yRpEL1/Li6cvupyDJouLMqxtWphyHJb1v4JRpz2AiiJjxKUqV4zNoVFeUPkvfl706DZOuOZc2hqzSwgPJFf8/tbMRLR9bIYpdSx7uW/fQjPHnN4KCo4OA3KIkpJkBqdBvEbKm3mN0p+4w+3YrSQusla6BYyaqq+OK94l5IIc9lkmNQQvlkH4Qr3yr+loXSyfntie4kivi4yHPSNumdDGS9bPBfqJ72e4v7szDVwuYGJooPJurhph41fjHs33QQguxB+nMTEjP1t7fe9orvIG/+1um+vYXR0FBs3bsQRRxyBU045BYQQ3HXXXdiyZQtWrhQR65s2bcLExETCkbqLhcpb+9g9MOdQDFq9uajMFqnXG1r1MzbVch2LJusEqnx2spY+DV7K++h4m1gX5sN3dU5b9ZyUiDmUEsDUzBEFo4y6W/H+7qQxI47D6n6zmTBvqU50tf+lrUbeK9C9O51KV05TPd4g3Bfw04maLT/bUMB/bboNh44128U4MFYQhZZ00EXcy3V4VKq++K15LWVz2NM5bR7DVbb1R6hmQdIYWF20BBQUw9ZifPz7Jv71gmdBCDypn7yQNXCnE9jdOCuQP2/NbDiN6ijbt2/H4OBg1sP1LLyUfUJ9cixiEop+Udr1+PYxf6CNwiJJ6SB5pOq3IoqehKBnsWiw2AqpOtiMYNYxUKThiS5rFLUacWpFEM48oUvBrrkkthCYzeBL1XEYwS7bwLDlgnGRChXU5GznOhjiw/yzioPbDCGh/Fai3cnLjgQlTTN73OJIdTxM141QZHEQce0ZMCXp03nKYw/roZJiUWpRjmVlG1ureouzTNWvuQQlQ0TJygWM1EmLi0JVMV3/V4wU/jzdxg04rO6LBHA5QZ0BowUDc454Li9edAke3n5DxysZt4tC48HJcVRKoQQdVmneo9ftzbGjdkvk70Wqr5zRK/eoHR2xbkWGZMEHPvAB/M3f/A2efvppfOUrXwHQXCh+8IMfxPr16/Hggw/Ou75pEHsKb+1j4SMvniQigJIPFjxfFm4724E0eQmH10NGP1djuLUUyZyS0VqBFafhWI2DvE9x2TytYsBsSgTVGTBiAXElhyzKI7NtVKNpt6HruxWHYlGxyRHjuGVWI1Q7RvyyyVJloaU5/4wdthjmGUUo72s7685wRC8Db+H+vXq5jV9t8fPodjJs1eJQJi147bRoCQ7zi/wHjaxlc9iXJq/bB2g9SEVi49wWFA2GlX94HtW5E5ttJwQEFAYxxXkzPp9eTNXf3TgrkD9vTW04fetb3wpAdJQLLrgARaUisOu6eOSRR3DcccelvpBuQ/dCRKVz5oVejwzaE5B2wHRYo+hNBz0+WSdSufiPGluXD5jYVm2mSwcNp0A+khEOI16Kts6ozFJEkDUL7HTHoPGiRTVfxGsaQ4pFuRcNl1aLlRIRcZ4lfWjAZIpIvkBwrBgwOabq8Y0YtsKLhKTqsEHIic759l3A2a/FqqF3YNOcP41GLo6kATlo6DxqsSi4IiMK0yCqXwY1TpOcFOqCRxIoQigcVs0caTFa4F672tHiTTWvFN8EsJ94EQFRBRum6i6u+78hXPbiWfx+53WYb525hYIcgwD6UPDXf/3X2HffffH//X//Hx577DEAwGGHHYb3ve99ePOb3wzHcbBt2zaUSu0VbMgLC523LgT0kizVQqw10Etpmmnx5n3PxQ+eiXZozRfi6KUsXtoqBc2joOe7DhXSRN//nx9HbpPWQRvE9urN2u+F04gmRkKmubYsGqcqbzt22QV4eHuyrIcacapfz/hrTWTBq5Zy2Ky5X8WhkdyynfNkRdnksOv6YrppIGtwyEAcISHlgnKANO5h3lIN//Cys3zvf17jLgGJjUCNQtbry/Iez9oUBjGwbnoAbwVw//F3YQsOSrWvuJ70zqtWnD59JCNv3pracDo6OgpADGzDw8Mol5txToVCAa961atw6aXpC7Z0G+282KxF4d8+5hdpnTk6L7bOqy2Naq06iZpV3ZsHSDrWnEO9iD4RQRo9oXDOAGLAJBwOJ3A5QcXJzsLGi04okkAap+I8vIKURl+QJJ6bK9dhWfmSzO1SIY17apEo9R1fO1nEkrLTkDpIkt9o/l42mxHHRYNhxg6Tt70Gbbwwa2F7zcR40UllngsSG8D/7IN6tEHjpC99XnkEutSOpOtdVBTkXU0T337u60IMUZKRQYt5ekWyIr3ESMFVdO78jRmxgGk7Ov3E5cAZB5wdKEDRNMSunboWlCAU8atC3lOHCcLFOUOd1X2RC7rIbvVSay71IjhcjRMgau6gCEsZcM60RlAO7i0EOGeAe6fvdumMrZLcvevQGe8eMC7a20vGiiCqgcbNORSP7rgegOnr10WDo9KhqbVXinvujmlPb3zjG3HIIYdg8+bNvsX4Pffcg1e/+tUeV+wFLHTe2sfChZplk5SVAeRjoFEd1BbNZlAQvCE6MyiJf7YK3TiXttiKjutEzY3yezVVf6woCl6euPJ8AMAjO673jil5ICXct88zu66JjDo1MhTckecGmjrwkmvUlcdmUe67JpNw1JXrnrEpBkwRXSwNjyVjSHtOSgzUWWsRqWk5h+R78n4VDYYfrf8GVg42JJw4QZFKZzfQTnJIxaVt6+zK5+2X5OINualoaQq5brSZDdrgm3XGUaAiCCcqkyoN3Ma7CADPzhIcNhZug0GAssE8DXnWWPMdOFIFxTAYXBBQ0AbRpMSAyx0YJHOicSzU7CwJVdbqmV0m9huOf59dzkBIvJGx5mbXTZ8olbF5LrnYqnz2uj4+aDG4nOBP9injZ8WDcPC7/xWFW1f7tnG507i/NgihsKgwwCVyuMYLXzZZTxScBnZPzgrky1tTv0E33ngjAGC//fbDe9/73gWX3qS+EHHeDC9FPwE6EiENazri8TeHCWPFvzwaLszSR74Qk53/O3VqlfpABeUljxu0OqmXl0SWg9owh41f7P1bjTYF9FUShXEi/YhcNDh21EwUKcOQFSb7cVIUsjp6xaG+ieCoxRfhhdmvg3GgaHQuYi7uGdqsSS7itika3Fc13mYkJDOwcU4YxpaUHGyuWBgpuHCRvp8MWS6mGwbZKDIqDamrhjjGCk1iHURU/3lkx/VYFszh14AQCsZdDJijqNcn8ezMNShQgrLJGkLt1DuHjGbNQyM4XLU+u0C6+o5TwmGSAhzUUTDKoeqaew3a2r7rcmCi5GBnzfAZTV3ePH7UM9LJLkRVKiUg3mKQgwNGEYzNgRIDFAYANZXNgkU5TllVAUBQceQio2nQz0tPrRuoy6q5gM+Rk2dGxqD1Vt/fvRLFxTlvI+2p90jofffdh7POOgvPPfdc6DdCCBynt5zMC523LgQsxCjPbqFV6a4sWuU6FCiBSYtdWchmdeIFC5kGdaoLtAyX2yFn4qa5CpYNGNhW8ZOhON4ni0HWA0Ow3Gd71fRxbHXeiDKY6eYWuaYUGVXRDfryY2L995bk+jIemkY44PjlFzSckE3I9uv0LBl3YdICOBNBFRwcBVpGnVVQc4UYQNEYBFBv/Dt6rpptDO277PgislUXeG5WFDoNOs0pARy3aTiVUB3dDC4oDDC44Cnen41z6UTy799C8KIxHlkfQIV8b+MkxoL9Q/Q14sn5iWAb8VuNzQa2zTYu6OpMuFwYjtV2GIRj3a4ijpyItnO0OyaMFPR9ZHtN3LcC5aGaAHMtBPAEeVPRGMCcMwWDmB6XrrlzMIgJRsSNtlkVJm32B2k0NSnHoiLHul0UFmWwmbink0pWf1J224yzA5/+8V64iZNGFDe8/xMQMO7CoiUwhctnc1z1iMbpbsZZgfx5a+bH9LGPfQyDg4PYsmUL/uu//gv33nsvtmzZkvUw8wqZwulLBTBOEsWhNDl+VPHQqNFEcjLrgb7ehwa6CS9NYRIdYVLJYVsalxkmTNWwwLioCv/ojuu9z6a5/BepjIuIU8DvcWechNLd5YLpjQfXfPfEpH6B8jQpOnlARAY0P9LQVzSYF1FICfd0pISHNpthnDY80a0siOQ92lkzwTjwkkXNhcH2GlBWFktqdMSvtpDQ4kROsPJ76W2Oi86MAiUGzI/eiH22TnrfVRwKixY951Dz/4LEFw3uRWlIBI38s4Hu2Wxr87tb1zYdSWcccDbOOEA4mB7adgNYiuuxGfG9U9IQTAOGxWd2FRrb+9/losE9I7WMTtYZqSmJNl6rGCu8PbTg05KQ6rS30NFJCtRcgu+uK2OyoVrQyxGmSRhrRFu14oD66fOt9OfeKw7V6n+9hne+85149tlnG+Q6/OlV7A68tY8+ssBmVTDu5l4cqBtzkayuzTnHjD2FXfYsigbHI9vFXK3O+YwDi4qiiGmUgTQUSMH915FWZiivtO3v/8+Yz4mYtm5Cs8AihRPgPoAwAshoN4mocVn2C2lAlccFgG89FQ7wkfdr2BJcqGQ0eehsIDhjn0GxsUw9nij5yVPwPqptDHI3FerarGiU4HLiGXsrDm1wfBHNa1GOiZLre/YFGt1/m8WquPb7tJDXpgZWzdo2dtUdTNYNPD9bQMWhsJnICGRcGCNHCi4sKtqo3p/9h8LG2zTvoHy+Kh/No1jUtKZ4ahz2GfIvBFaPXorVo80sD9lOAhoKeEiDqGCFrJDG6ah3fGnpAPz00iKW/ttlIIQ0M8hSaklHnrRXQk0b2N04K5A/b80csz09PY13vetduOOOO7xKpIZh4C/+4i/w5S9/uafStFToDFY6DZW0CEbLWJSn8hJX3b6HvleRxcPcDtTjJY2ZSROk6r3fUbsFnDMRCUe4FwHajhEhjYHw3/9QxB/vXxP6R1QSJj+x1ckhtAM1RT8ONddv8GWNqvEytaQVPSn1WhgHipRlNqTKPuAwUYDKIMCsQvqHLaFxyni4mrvELttfsV6NFpCaq1sqN2Bp+aLIdkij3uYPvlUYnCPb2zhuzP0KepXrLDzWWbQZcSp/S4o8jNahCn/HOYNBLbgBY+V+w03XshyDiwb39Y/tVYohS6RaqUbS5nsU20wAwM5aeMGRhtip6XOS6KpGcaAR4Up6J5qyWxgvnhP526z9He//Muq0SzLKeySefPJJLFq0CN/61rdwwAEH5FpRtpNYqLy1j4ULNVJwum5gSTna0Z1nMTubEY8XpDWami1wM5d3ro6DRYvalPKgwVS0o5nWrMP2mp8ntdaepvEqL6dczU0uSKVDPXDPJfecKJ2HrdUbfb8F17iMu15AbMkYxqyzM2Ts+MRDt/nul9SGVVEyRLSe5M8lzXWknYebxm3LV8BI1TvlnKHqOo22iC9rbhVAAWMFF1srplfsySAM26uml0GWfH4eyWtlxlkcTGrAdfXvmewr48UxbKtO+X7T3R9ZpFRFWkdF8HhZdULTIiv/DGrJrp2SNRT8x4kbq4LXInlH0RgQafKKsd1l/nE2zdositufuPJ8PLBVvFNvuKmC75/r4IzbKW78M387fNfBGWxWRYGmSPkLoNrXOO0I8uatmQ2nl1xyCR5++GH86Ec/wrHHHgtCCO677z685z3vwaWXXop//dd/batB3YSu+poOfY3T3RNxY1QSGcutDZpTvHnfc71///SFZjp+Go0p1UiT1pG1uDQamtTVc4roQ56aiADRC4Go6sZ5IGikcyLS81UiQkk28i+PdchY1dOarDGaeeFhUo7fbStg3yG/J37ADB8nztGiS4WKw/bqzZgonRf6/p3fXYFrztjQMAg3D2JRjopDUTQ4Juv5aCNJ7Sepl2ooz6Cplypg0uwp/AB86TIA8MKshb0Gm553l4ejzydKLKQJrL6fQSO7o6Sgq4UZ4hxyM84ODFuLATRTplRSqJJHHWGej4KDq4ayVRF+Ztc13r/jFpl7goFTRCO0mPaUc6RYHjjhhBPwu9/9Dq9+9athmvlqpXUSuxNv7WNhIWn+mqoTDFlNzpSnY4xz3jEDSjcxZA0AAFYMhKuX62DRcKEV1VkrsajoouaGIzdbQRbn+dTz6dLLg5DtLBrCWa/Or1K6y2ZVGBqN07TzyUePOguf/e38Ssp53IhQgAMO16/Vh8zkNKA0hkebEQTNXJJLx/GUmktBiQudPEPwvIMWAeBivOg0uDT1cVCXNzPL4nh83PW4PNyXDWKBg2PQXIQZZ0f0zi1C8uKJonBS1AO6sEMWS0zVl9rAFi35ImSTgttq7pwvNV/KdemwrUojpSjinrH87bq3vYAHthbhPrgI/AwuNGQJieTvWdBLwRC7G2cF8uetmY/w4x//GHfeeSeOP/5477s3vOENuPbaa/Enf/InbTeoU0j0Erp3A9QUtrJAH6bEhMvt2DDk+VjQ9tE6WvHwpzVEdirynnHi0zjVwWUpKnprcMDIpXh6+trGeeLaoPlO0/e7kc61o3ZLbDSaRNBrLCMI0+Cw8Ysb1cybUElBWk0aaSS0CPcRbBltuvcgw+OTzYPtspWo5JTnEEWOxMT14kWXYHPlOi/aVE3RmazfDgAYNBeh7s6BwcV/nPQMnkOhEU3rPy4lXCMbQfCLDWsw0hr/95Am+j74rJKenRq1IJFmUaNLh9K17+7nb8ZIoan5qjt/lIGac5aYLhU3zxiEw8kh3SoLnp25JnmjGEzbBl42cRHu2bjG932PZSh1BJyzNvSieo+EXn/99TjxxBNx1FFH4eSTT8bIyIjv949+9KPz1LJ4LFTeuhDQSzIiu0s2VxpJKR26MaYGJXmyIqjNH1XISJVF45xlTsm9/PCz8bXHhQEwqY9SwvHrLTeiOE/S4QMmUEkhBRRE0rq21dTZv3/p2S3tpyJtX8ziQA3yOJsTFGOuMerYot4Cz7xu9xeQEhywbI7Aru+K2D76+HmNmzLFXAQh6NL6bRjEwqyzE0A+6foSJUNIcmUZd2Sa/hOT1zXaE/1eSy6vGuTUoAjGXXDOfMbSJEO3XCNlxT67HOy99v9Ajnqt9vdW3jXjbTeJf0xfG7tdN7G7cVYgf96a2XA6MTGhTWsaHR3FokWLsh6u90EomBL6LV9gdUB0Gp4/mfapCkv30X1YjSg1KR9iN9KhddBNnPL55Z1eXnH81bAdRpIN+g2I/kVDwvBBQ6pBLQCtGU+BdKkpUUi7aFlWvqSl4ych6V6m1f8cUhYGIq0kvN8TkyXsN1z3TdJpCKDNmzSBcdEmIyGKN819dbkYzGdsiiErPHklTerbP/RD4ItnKMcj2FatQ1VwtihHK/VYpR4WIKJAgs8hjkDGEU/G078/EhYVbZHp+lnIa0g/DeH3Lw6UGHCkUdcsAGAwiBnS2LFoEcCcttLnQjA2xj0zoSMrt0s+1uv25thRuyX6eHQga/O6it2tQulPfvITPPXUU2CM4bHHHgv93quG0z2Ot/bRE5BjYdwcvnzA9XS25wsVV0Z88UgnY82lLeu7Z0WdVXyGUxXNVG3qcdWdNSO1AU7r/G9kmDXT8bO2OFrqKy107ZqqE5QzrtLVCLw4ZDVyDJrpdN7TIsjfdA5vFSXDRNVtL/vTouJdpASoOMT3nE/a+zzc+dzN0TtHYNaeBkB8EhkSSX3SpBwOI5iu09D6UCKJo+rOQQgFgXjGJi36fpO8olV+keY9iyseFgQlhvfsE4MKeCPSs7EuKRlDXoSqTqvSpByuElEuI051BeOS8P82j+EZcjR+8hccm5R9ORgMUmxeQ06aq/OF3Y2zAvnz1sxP+MMf/jCuuOIKbNy40ftu06ZNeN/73oePfOQjmY515ZVXilBn5bN8+XLvd845rrzySqxcuRLlchknnnii9qJbAQHFioHLon+PSSdupQDLvzx6K/7l0Vvb1trpI3/0po8kGcsHTGyrrvE+OmQhuXGi6cEICN1CQG6jI5DzmZYryXWU8VxF0FglUnHC26n3tZjBg0nhd6iY1F9kaaqebWzRFzJKd7PVogBbP/8279rl2Dda4N6xDMJRjqm4mgXq/VT73LefvhXrpoux2+ugi85RNY9UjVB5jYOm/xmrqDP9uyBTkk7auxlJ+kjDkTFROg8TpfNAieH9OxauA4P4V0QyLUlKyPRSJFerYJxgrOBf7LQaTdXH/OPDH/4wXNddcMWh8uKt88lZ++gjKzqROqlyuU4Gh6gpu1ELcpFmH3+cXl1zBWWvpPZ7q1DrHeQJnSNeRVpjX1pjdLeNL5If3v38zYnrpf2G3+F9omC0YThrRfMW0BfE9AyKgTGgE1GBQVkMfzvi901bwK5dfjFRavLQcgtR82/Yu4qvHbgDWy79cux2vRp1uScjb96a+Q3/6le/ivvvvx/77rsvDjroIBx00EFYtWoV7rvvPnz961/HUUcd5X3S4NBDD8XGjRu9z+9+9zvvt89+9rP4/Oc/jy996Ut44IEHsHz5cpx00knYtUsfFp8FLmchIW3V2RG8merLEHzpZNVxoJ+y30uQFfKC5E6dnCou9b0EcROnLgWiHSQZuKT3cz6izMomA+PNKIM0E3pwm8ladxmrjDCmBNh7yNa2KQgd6Z5J0ONxOcFLFrUSe+k30svn+osNa/D8rP+cw5Zo2FPT4Yf/ly+JTqOSaXTByGSJKG/ovlf/W3MbiEgOq+GpZpz4xrUonaAgogpvxS109h/xa5hliSiN0sFKwlgxPopBR/wYJ9hl6/v3dD1aL3HYWqykH3FflIX8d9qIkYUASjhmbEPbH9OMaz99vrXBr1dqFsm0p1Y/aeE4Dj784Q9j//33R7lcxgEHHIBPfOITYCxfEj8zM4MVK1Zg7dq1sG0bjDHfp1eRJ2+dL87aqzBI73x6GayhP8i8jCbxfVBXOw/UW/RU24zEBoZk1YTPA0OWiBRPMx620gfsDJlfcZBrh9FC9wx/uuyOpNodWY3pSfqLnX7vOBhM4udEaTUhd2Zcgxgkm6a+X7aLe/c2jUMhOA5ItCLZAPgDujhnMIjl0wh157FWS9JwREBBQENGc7X9NTabuyNoJBAZ6/JoQ++ROzcDs7uw8clmcEeUhrQa1ZsmgjNpzdlNdIuzAguXt2ZO1T/ttNMynyS2Aabp89hLcM7xhS98AR/60Ifw1reKarlr1qzBsmXLcNttt+Gyy6KjRdOgHa+QCplukDQw/M1hwtjxL4/Or+j2ngJZgIZxApcTmBED15DpJnoZpX5Mu5o9wQFZatNEQW23bjLfNOdg+UD4FabwR9e1YnhVKyHKc6tkwOWtVaRvldDrkEbftOYSbcGlIHT3N6kQVx6QpDPcN0T/jXp2dqNiffAZUAIcv/wCLxJSIikF5qErzsTeDZ0gYcATqfo1N1iVNXuqXsnw93MZWSGKQsXvK+Qs4reRjixVGF7VQdItimYdYLTBxXdUzVTRyMHUnrGCAztwLwihkeTOl4pmiPdWECrWaKdIWZIEd3eIOAX8zgI12pRxv4yDDq/bO9tNkPesV4Ifu5X29JnPfAZf+9rXsGbNGhx66KF48MEHceGFF2J0dBTvec97Wjq/DhdffDFuueUWLF26FIbRo6FcGuTJW+eLs/YiupG23Ud7EPPRwnlX6yzslOZgIG1eQ1YDX6t9O23WUM1tFludc/zZTpLzDFnR/B/wc5tt1TW+SvQ6yCyXLAYoyUXTIIqzbK8a2HuIeZIQZTO50G0cRKFa9bxiHZ6ntFpamNSA66a/n8/PFiKjeNNk4wT7sevZIPT7RmmItqp1WlbWU2rG29ZqsF2ynoSfwwv5M9GC5rYslOVrs5oviKCdiFPGge1V05PkkJi20/PsxyaWYlHRweEf3xtblO852LwapfNGN1P1FypvzWw4/djHPtb2SVWsXbsWK1euRLFYxDHHHIOrrroKBxxwANatW4dNmzbh5JNP9rYtFos44YQTcN9993WdhMpILYe5iQNV0uCdVVuvj/aQZTJl8IdhRxk3ay5D0WjfsJa+4JSevKjpOTtqtyR6m7Og4lCUTebpq4p2pNuXceJLjegGop6zWtxI3sdKjMGm5lJMFJ1YYvf4zjIOHKn53uMkoj1gmpi2xQ4OI944oBIhWWxK1TwLjhVfe/xWjBWa379x1bn47rpoHcggxgpvb5zj2953x/3fw3j25S8BIA14zPesiwbHdCPCMovtOzjWBUmfRZsLiOB4yriQMkiKAIjSOo0iWrINIwUX03V5TaThIAm/Z1kWXKKIhb9jjRfPwc5awGFGKKAhGcE2jxY4dkUEtls0e3GDbmHAbFZSdRSN6aLBUXGabe5EGqWusux8oVsVSn/1q1/hLW95C970pjcBAPbbbz/cfvvtePDBB1s6dxS2bt2K6elprF69Gscff7xPZJ8Qguuv10e6zzfy5K0LhbP20fuIWgekLToZhW7WV+ikDJMcA5MMgouKLmbs+OVsVLHHpHsli2HGZS/x0MohHsMrWstWU3lOkO8SkEiJOeHQ5Y3tqGdMSxMhNmNTDFscU/VkWQR9m5v/9jvQow+mM+q1q2/aCligzzyzSy2UKQyCul4XxcuC7zvj8RHeQDL/1EXJcnBAw0WDyCOCs94I4lhSAnY2lp+zjp/bxfWbqDYUjLKv2HHJGMIue2co6I0SIxSRnAUGSY7ypQT4y1v3wT/+xQu4e9/j8CeYa/l8vY5ucVZg4fLWzIZTAJicnMS//du/4amnnsL73vc+jI+P46GHHsKyZcuw1157pT7OMcccg5tvvhkHH3wwNm/ejE996lM47rjj8Nhjj2HTpk0AgGXLlvn2WbZsGdavXx95zFqthlqtme45PT0NoDVdUomy+RbMOd8DoPcuUYgXS06sSQYUlwN/d0T7VQv7aB0yilSKR2dBq55oncE8vaA96YqhJOiRa34nvbzZmdNCi0qZSEjdln1HIl3FdoI5xwFgeM9QR4h0EZi6TAKLCm9v5MIro+edHnsSUH/B993iUgE1ZsNhYfKV1vEjoyfkR8pnBGEQ4PT9/WPi73de19K4TYkRKaMho10HzWa/Hi85mKyZmKoTyABu3bPRtTvr+tZbEHAGi5ZiPdVqv4oyBB6//IKMLegO5hzqUahBk+GQsUtwz8Y1HT9vrxhMu43jjz8eX/va1/CHP/wBBx98MH7729/i3nvvxRe+8IVcz3PLLbeAEIItW7bgu9/9rvc957ynDadAPry1E5wViOatfSx8nLT3efjBM3rH5mBLK7BoiPl14Y+BBVoORZ7moX0p53XJ33bWDE/eKA5qUcM4pOXzuzYmV8+JOlbNpZFySZxzmEYBc+4UBjWnaOUe5hHks6gYtkxJh7csqkQI8RzHunaqxaF2h8LLwXWE+n0rBurgOoTB9Wn9B9Hq+6Q6vvMA8XIkm/AcJoE2upwg2K3VbXRyXXFvt3SmFKj4t27VIJ+R41C859Z9UNhq408+7DecGsRMLG7WRxgLlbdmnrYfeeQRvP71r8fo6CieeeYZXHrppRgfH8d3v/tdrF+/HjffnL4q3SmnnOL9+/DDD8exxx6LAw88EGvWrMGrXvUqAOEiTfJCo3D11Vfj4x//eOj7qFTMbdU1iaLaNffHsb8D2Qe6f3wkfcp+38iaHSp5jEvVj4JBmtVFmynrzX+3Gm2aJnrtR+u/4Tuv+Ldo/2Hj+or026prQImRTmQ7YZvJuokRyz8JyArwkrBIMkUJwALGLR0Z6IZOa5ZzBN/XuPc3mJ5OCfCSRRVsrVrCY8wJzBSGSjXi1AzIHrSCoK6bRaPJPQfHVP0O7W8UBuY+9iXgQ6f7vrdZDTrTYLvPUne9cQ6Bds/HfAZI/W+6SFNJqmR7VQ96MFpie1XqEeuJatT3Sb9FodUiAt2GdPi0ip8+TzKn6/cS2imaJPcLGtGKxSKKRX8Rtfe///2YmprCi170IhiGAdd18elPfxpvf/vbW2t4BFatWhXLv3oVefHWTnBWIJq39rGwoc51aXQ0i0Z7KczyGDZrb9ztNUTJDRQNjhmNtcNmwBd+J4rx+rOCOtM+AppZHzMOcesEaTR1OYHuEeuyzkQmDBXGnYxNTCN1lQYvm7gID2+/IbcIZV3AgqsJ/AiizoDBFMfPo51pJKDSQPZbabDRZVnJCGSXC518m1XBweGwGkza5AuSb7aaqh8Ho2EIVx1CNTdZbksiqU3BKGsh4eHfp2DER5/K53r26rNxze/T2WEYB8wdDpa8sAs7l8b3nqg6EvHHF9dQ6gGp025xVmDh8tbMhtMrrrgCF1xwAT772c9ieHjY+/6UU07BWWed1VZjBgcHcfjhh2Pt2rWeJtWmTZuwYsUKb5stW7aEPPoq/uEf/gFXXHGF9/f09DT22WefzG2Ju8kW5T5B96AZSk6gutThXTZBaYEsencXRKVwq0L9eSJuklCJW9aJueZSX5EVnb6piryjU3UkIFwwCx5pj7q+TXPXYvnApbm2LQlRz7nOhGaPLrKxaDC4XB+t/vjOMpaUHVDCUxlNg8etBBZH+w4xPD6pnzUpTV+5VOL/Jks4bnk1eoMAXviHt8JSCKckoOoirl39KKnLqiJugSArhca9o1aKVH7veIhO10PjN/HMqW+7YJRKEqI8z1L8XhI9h9VjSVYnUyA7jQGTeYL3Mw5taO6K8UqOI2nuZ6tG0zyKfeSBPNKegvzlYx/7GK688krfd9/85jdxyy234LbbbsOhhx6Khx9+GJdffjlWrlyJ88+PdwxnwTPPPJPbsbqJTvHWPDgrkB9vnQ/0kuxULxaIuvv5m9FCHd5ckHUB3EvRqgVaxhymAPhT9XUG4agiQC5HKEINiI72M6nggizgR7VZcz0XVVHd5QRuCwaH4Dw/XuTYZad7DlEcv90K5CrmHH+Kfiu8ZGfNwEPbbvDd8xojKBu88TyjrzdKozMKcbyi6uYb5c14unudV1Ej1dGvyw5sbtcoQBqQYuCcgaM1Z71E0GkvozU3payXu3pUrP2emLxOtCni3qhtX1a+BNuqImNJjUwW+7fyzon7+I4XJwelvWLJhfj1lhtxz5HfxBkvvBE/e+N/YgteHLm9dFIsVHSLswILl7dmHkIeeOABfP3rXw99v9dee3mpSq2iVqvh97//Pf74j/8Y+++/P5YvX467774bRx55JACgXq/jl7/8JT7zmc9EHiPKst0plA2GWmDyyqtKYx/5IC7iVCUeuu0OGbvEG+DTIi+Dh5+spCe0qudbRxCTiMhYwQHjxCu6o4PNgHJg7lUXUBblXYkyVaHer81zJsaKLmZsGog4bHj2Am1X27q9ZmLlgN9rrzMaDpkupuvpJ0iZqq/TNVo/k22itRkwbIlrDqYB3rvpJsihfUvlBiwtXxR7LA6O/b71M7zwF6+J3CZrn3Z5U/tIt5iNWmw/tO0G799pCK7d0IoNIknfNC1EFeHo34M/qYZR33bcBYeDEobEF04dMEre7yVjCDV3NrRfVKGJNEUE8sKqIf1CMQpPT1/r/Ts4D9Zc/yKsl4wunUAeQvvPPfecT5NJx2/e97734QMf+ADOPPNMACIacv369bj66qtzJaALFZ3irXlwVqD7vLWP3sCsA1+Rmz7ikWY5HzentGpYD2pdtop3HSoMNTd/5+4W2+FvhGpE5kiObG8VowWu5SJxjmgdygbDbEQF8SjOxtEwRKWcRhkX0gCb5vQEMgvnSCPR4HKGzGG8DbSWkh/3W3I7pNE0D+mLKKh9IqoGgYq9Bi/D5kpznR23RqUw4MLpeubL8ycfi8++bhK/qR+OfRAtsSXWAAsX3eKswMLlrZkNp6VSSau/9MQTT2DJkiWZjvXe974Xp556KlatWoUtW7bgU5/6FKanp3H++eeDEILLL78cV111FVavXo3Vq1fjqquuwsDAQNuRre1CNbZVXOoNCv6Kwa0JafeRP5Ii5RjCC3w5AT264/qQUL9BeKr0uziolTPzAuMuLFoCIAww7RxfGjiSjuGPoI2eICXxLFDS9WjTKMhrC3rtVY1TXbRpmvuig5qqr0JXJMrl4hM3huyyow3Ap+9/jo+IAMBoQUxOO2u3YlGx6WklIDDfcIxybhu6qWHQZJiuG22Pa0Gt3yGr/fREFaqgPKCPPpTnZxyYtZs3UbZDtxhQK4gyTkSqXKuNNAtg3IUh0+cUSE/77m5UTIO7niM4eZ/WIwrmG5yzVAU4ovYFgJGRER8J1WFubg6U+nujYRhgOoHkPRB58daFylk7iV551wAxnu8OKepxzrpOIL3Wfv68NRjdFDWrthoFJblVkoHvmKUX4uHtTcdtJyq0f/kxkRo8vGJR5DY7agQW7cB9TjEPRWmnxiHJUD1rUww2qshHGU3j0ArLiopAjkLcmBH3HOKiPgH/+iEpMrVsMl9RWH1b4qNzm+dqPkeTFkGJ4Tn0GXebxtMWIpNVO0eaInYjBdcrFKrikLGw7JzNaonrarUugDTUyf+bpODTOc1zXfGh8wbwwp9M4E56M7af9Vrv+zZWAT2JbnFWYOHy1syG07e85S34xCc+gX/9138FIMKmn332WXzgAx/AGWeckelYzz//PN7+9rdj27ZtWLJkCV71qlfh/vvvx7777gsA+Pu//3tUKhW8853vxM6dO3HMMcfgrrvu8qVa5Y0ob0GWjtRLRLKPdBqncoKj8OubtkLCoybaNBOjimAachb9qyx9cFt1Ctuq18IgYQLdTLmXKSLi+05Uw5aQepFJmCid5/s76r5Lw6jjRYLH35sZpym+L1O38kaQbC4tAc/ONonIsMWxo5buvGqBs+DCJiradLJ+u1eJkoODr30a7OjDQQmHQazGt/4xb9ahsSQ5qshCcB+TctSVe9qqk0lqudVcgkGLw+a1yG2jjj9oMe/5jhd5o60iirXOEBviotbRlX1xqn4HHFbH9urNvv5JieFpjwnSGj6wTti+V+CvJpsE4qXpB8ehosG94gJORLRwEOPFcyJ/m7W/o/1+TzM6n3rqqfj0pz+NVatW4dBDD8X//u//4vOf/zwuuig+2nxPQV68tRc5ax+9CYvy0DiUJvqqVVRc2sj06czxiwbzSZTpip3mgQIt+4o7zthTPk7TqgRV1uhIFemLQ5FUPP30Y3fG/q7j4kByJfosj6NpdGKJaySbkehCpDTa0C/3eeOqc33ZRABQbNHBETzV9lrOFdYa0EVvBmUaZHaNbt0U1U9XDtiYtsMLqIpDG2nw0Z20nUwjSoxmCn8b0aY6fX3dWLCoyLyMPPX+rJ2S94zgkLFLQECxae7algOROGeRt0zKorkcmCg52DiXXJRNxS82CHmAsgnc/LU5bBicxZNvqmDFA99C/QtnttTePppYqLw184jzuc99Dm984xuxdOlSVCoVnHDCCdi0aROOPfZYfPrTn850rDvu0BcrkSCE4Morr9RqI2RFcMJ0OYMB+AtDuQ5Am54Y+R4neTqDU6ROC/ILvxOexkFzz1vUdRtR6bvq70CThDBOgMa/03qZ64xjwIwXoW4Vb973XADAnc/d7Bkum8WhLva2k5ovEpQYnoG/SBlsZmiJelR/FoYoA5N1E0XansfHZn5jmCS+9RzDsNOkoUtIA7iIFAz/LpslDHEUew1ehmdnrkHNpV6fGCs4mKybXnEolfyoRjQdyibDnMPAuImi4UYW95H9dq5hXDp0EccLc/7OrEZQtDKWqPo7vGEgpSecCjq3zvt+qFEcTCwCwiTPosCrV5zvI8NBr/KIBUzbQmNM3l9K0NQQQ3z7ZYXgOIO4pWqSxWC/YWGUNDWL2ZpLYFJhqB4tNH+Mu8fHLrsAj+y4PvQmSW++GkW6o3aL8PgT6iOsBaPc0Dk1UHNnhbccdZikAEpmcemLdnljVcXxE9BuRlVlM5qGMdTQOw3q1VLCUXVJrBPmtXu5sY6UkjHUVts6DY7WFylZ9vriF7+Ij3zkI3jnO9+JLVu2YOXKlbjsssvw0Y9+tKVz727Ii7d2k7P2kR29Gm1aNpkinxRvIGgl6g8QadAS0nBTSOmnHzRbz/rotiSThMrpWsVIwYXDCCoOxb2bbsJQw64i76WU6ZJcgxJhLDtgJJw1NWAyjz9GQabqv/66f8flJ233/UYJcOCIi01zhve3vM6sxuJBc0z7PSUGHF4HB8OssxOMu1jijGAzJmOPJ/XpKRGZN+qcLTmJypeem9X3vUFTn6ov0vHNhqQRAQFtFjFKMKhNFB1srZiNNohnZDQCJBYVXV/0aZ1lD/qI45ZmhCRZreHEkE75mjvXOBaBpVlbDVl+p0QQ0jhdNLhnPJXrOtXAK9cqKudg3GkUDuZgcEE1RdayYKwY1vCnRGbJifdk2gaWloEzDzobP3jmFt8aVGqc/n5nU+NURm2atACH1WHQcBtVTs3BQGGh5s6iaAw2+g1DzZ2DQZtmrZpLQSHu23TdACW8deOzXcWAOYElP30HdtY3eLZa4XhwfBJdBslmWiu3OOZ3At3irMDC5a2ZDacjIyO499578bOf/QwPPfQQGGM46qij8PrXv74T7csNqQwMhglEhK6rxoaogTROf6aP3oA0ai+UZyMJU6vkMEv0wVwj0jJYuEiHKMO00O+Mv7/dKg41XnQwYycbtw0CMIWkylT9qEhTxoEnJktYNZQtQnDANDHZ2KXmEq/wlGFwfOWuxXjzH20L7VN1gQOHBRFJAuOiv0RV8pQGvCAIKKZdfwREzaUoGvoiR4wT2Az46QtrABhYpCFScaANAp5k7Ky4NBOhMEkBLmwY1ILrhjWIDhu/GD99YU2swdmiHGWDoM6A/5+9d4+XpKrvRb9rVVX37v2a94PhDQ6IIKLRY4wvFFFjOCYSMcYBhqfmhsRjzDnmmMeNJ+cevXpuEm6unEQGGAYY5YSoiYeYKGKUayRK5CpCEJE3A/OePfvVj6pa6/6xelWtWrXq1V3du/fs+s6nP7O7u7pqVdWqtb7r9/j+/GKnFSCpOFQsa8HrwO6m7AMiTYmDwSIOGAf+6tEpXH3mfECoz117dWCobvsUbZ/ivhd34U3HbccoQh+zGCdBtKmKS05PFujPij5PyhAZmayPPtKeUOB3U1NTuP7663H99df3dqxjHMuVt1ZYOfC7BWXbPoVNe5x8FIzb9UiFdZ+TTL3qQWXYFIWaTux3nf/7Fhk2NTgONKPty5vJVSTatM0obBKN3s3j82/Y6QYwiW9c8y587bnbUosuyfdZVcnT2iWj8aRBCujyJO6CcwaL2Jit+UAGlXWZ0ONlPJk7qZ8XudYuI6hbXfkzUHDOQQmJGaN0yPPe13Rin0/XGBY9mpiyv6D1F5cRNFKOYcKehc/BFOrIu2EURYzdacEc+t9FgiWk3cKh7wRwR99GU8Ac8a22TzjDww+ma37q85kn1X1f86Zgu+naBsx2DgTfcc7AiTQmW+j4YWdmCLmg23WQCGmwzENG8NOZGv7TrVvx1f+yiIvv9ABsxC0XH4wY9VVjo1rMLg9GStZxSJwVWL68tecY97e+9a1461vfmr3hiCLLSxo8EEQ+2NEnTaZj1CkzenyAeAQWACx4wiPzsVdkV3OrMDjIlObR8fOEuPuZ2wFE9WOyqovraLPeogcYJ1hd8wLyp06SoYe/W43eEgTporOaWPCARQ8Yt8OIiaWKRJDY13SCyM4ksqF7xfOQnV7OS50Y5TFOn/YC7+fHfmk/npyjQXvH7VAu4pEjBCdOmk+gRkUa1JefihaIevTITVg7ZvxJBCK9i6PzoZuBvxApqz534TIbNdoA4AZtblgMs0R4bR0qjKfTNWZMaQJgNPa6msc/KyImzcAqDbh5IdNuVH1Tdd9r6+JN048fMylSIe9TZloAtIkHm4s9qKTLZa3EZ1169pcbzl17Nb71wq6u0Tw8gTELuOuJ3Ym/e+vxw2jd4FCG0H6F8rDceWuF5QO1SKzJkazOMfL7d5x4eazYY+/Hb4GABvryFuHYs/A5HD/xoVL2Pyi02YKIIOM8YjysWwwvLlpoWCxyPV1GujqKNpqaQcTnwMaamYsAxR1savaXjkWPBhGPSZAap//6oo1f3RpGscrz/OlRC9NO/3O8Onf43A1kmUxos7AoZR6jr8qDxizR1gUvaizb3AAOdZWTGjbD3c/cji0T8X2ZMuJ0577QgncimXLS2Mo4waaGiyNtC/MujchFOZRj3GY42Ar3V6MiGCFP4dFeIaSu/EjE6bzrd68TxYGWHTEsy/7S6EYsTznAkRJVmxj34XNzMbJedIN1o3MWZKRnGnzO4BAHBASEkO49j98knxPMdg502x3eV1NASJk4ddrFbR9/DhNHbcz/eLP48GLxn+yfKse3afFs1FHh9RVnzUah4YMxhltvvRVf+tKX8PTTT4MQglNPPRXvfei/DfUAAQAASURBVO97cdlllw29ylkR5J0gTQtc0+CiGlhUvT412stElibseKpohdGEnra/1IZAlxE8fPjmyGdq6v7hdki484qIm8A4QcNmRh0eHT4HvvJIAxec2cS4LY8dNUoJ4i7eWIRHordN0LVLk7C/GdVMMukMzXYsTDr5yAElgujMexTPzt8I9frJaBD1fRG0fRpcH9FW8Xs5Xjw5R9Hywyrqi156+nlSX6xbHG/YfEWQBqPDZy4IoTGise5T78F892/p2TVNgurYdcHx2/HAgZ2JbaxRYXBMij6Q+1r0zNIaEwmaqTqSZA9M0MXsKRH3YNEjmHLU+xtuYyoscf++W7G6xmP9QFR/zeHOJhRZbpssffReUvh6QdnRmzKVcWSiQisc01jOvHU5YKSiZUYUR9oW1o2lzwsW4fjyU3f0Vb29n6Kjkv/kgXDuD+65EU5bYAGzmK5NYaY91/O+jnTMBTjz4MzV1wTp+kB2psxERsq1DtO9WlXjmHN7yzTTI90IoUYjDgHFpLMOi95M8Fkv83HLF5xKGk2z+p6azdZmJKJzSghJLFbU8ZuJ47TkauO2dOLzQFsziafLyOBfPW1boqPCtH5XZYsklwzXOeLYJqwbm8L+ZrQPL3rUWBfA1L9UHp3Mp/P3mbRI3ixM1/KHa+5+fDemNFlRqXGqdlRTv9EjOE23v25NBNGRgyrS1Ojeow3/+13Y99/eh3/66PPYN0kgDbcEFBaxIzUKOqyJOh0vdByLAO1qLl0WyN3TOOd497vfjWuuuQZ79uzBy1/+cpx99tl45plncMUVV+A973nPINs5EPgsns5pQt6w5YbNugUvwsi8CqOFpCrpWTAZ5YaJIqQmnEDzbb9ubCqi2SRTGtT36v/hccxVFeVxi1a2HGVYgZ6QOL+XrWlGvncyPKoiIiI63jwxm89vRRNG6az0HiBuXJZYXfv1yPu5tWuDv3WCahHR3yXpzWus6xiGzbjWtIiuTUPRhaDLWjHD8NNzNZy/ZXtwTCCaESCNpjSBnOrvKeFwDc9kFiGddw+J1PzunGKaW4p4bUcxTX88pVvr46bP01/3PF98DAkL2i09OFhfrwr94VjkraOGrGd4mK9FgxTIqIJ2HXJ5i0CuZNQtjulaGJ2ocpAi0gJlBK3oBYIk8tZHyMKBVn/9wRR9F61EHp1beqmsrqLfudZkCMziQLoOsEW4McNztkP7ckTkxbgdkh61sJmKKUdoWZ4w0UHDZonFVNOQtQ6Uaz+dh6qSHf1GBerrOvlMbexmuI1ZHBM2cKSd35BJQIM+Kfsj437kPJL07GUgjvx90aCWvPjqb12Bd/+P0/B/vhBth7peSpLpyoNRCairOGs2ckec3nrrrbjvvvtw77334i1veUvku29+85v4lV/5Fdx22224/PJ80WLDhsnQpd9kobFCwr9Tnj9RoTtMiZ6uhZ5Gqcnj9pguXaE/yGr0MppMFpnpF/0SBL0iqRScz0LeiYBzBkqFe6/Xnifb1PaFyH2jwOSuV3Q37dc2iH4PCmki/WmTlPidb0wv6ZWEzXYsrKlTzLo8l4bsuM1xtCO0Nk2Rh6YUdV9JezprzTV4cfFzsJTo3rX1SxM1IxmSJ3x5rdRiBSaBdf0ZkxGnLgtT8ouSg7Q+ZQIHh0PH0PFDw7aMSH348M1gPDrlySICejSK6uEvenwda+uXYqbzheB7QihAkmvgOrQOQLQ/bcxxGRlpjVNAGJhnOmpKVfS7PFFLaRHoC+6XYp8NIwo3LzjnPS9M+13QVlj+vHU5YBQ0MSWma6O5cEvLujh+wu+rWraEnCtN+uRpC1pKgFlXFmdJHnN6LR5VBkw8QJ+z++Xnb9h8BX54yOxoBvLL5BRth7r9S6Z97G+q82X+nSUZxNR5JCkFOg/GLBFhmgYTL216FCdMCmNiwxLFoU6Z+iAePXJT5PzUdhKQ1PRr03oujDhNPwcJnwNffHJ3avCHeJbSx5RxexIuawe/S+OLavtk/2U8fLb6GQfqFguM93qBUhX9RJsmwefA/pb4W/CvaF+UBY+TIApEWVpRq+J91aF1tJT6BqK/WcF1LZKdBgDnb9mO7+3fCQD425/U8S/nfgmkfhz2YVPq72TE/HJExVmzkbtXfuELX8Dv//7vx8gnIHSj/vN//s/YvXv38iWg1oUA/2ZisQmJIh1DNYrJCXcY3q9jEe859dLc20qNUBPqFu8KRItJRU7AYSXGwXmsdOTtC3k92RwcLmv10aIQSQbTJAF7QFxbabTwOYGtTIJLLXNggi6+Lo3tKnk5Z+3VXYIHHG6L4ZKS4sWh6hbDosfAuA1buZ+yOJSEfp2yNEA7DPjqs7eDcQpJVr63fydeu/FKUGJhY+OqyPaqEcqmNfhMEFqVTIkxjsBlLbT9MM0rq1BZEsmX56QudHoVuy8CfbF4sGXHru+8a8GhoXyKvPe9jtOcM1GciiVX88oirjI6YFQ80P3CphwPHb4ZfUiqL1v044VfKd77QeKY560jgFFyVIwyXliwsWUinuVWVnR8egGh/JFQae2pW8OTGisaGedQoU8ujVESvczljAOWZkTuJTNNx3Vni9oWV774P43bP3bUwpou5eqFM+eRHUlLaS4SKGGCqfBmw2Y41LKwZaLYvlXDmUPr8HgnVQZBFLfN32fG7Wypo4bNIvdIjTYWxaGARW8eTjdgRWqvDhKhRn+yNMB39h7Fz29KNt6pEchlYeNYqCVsEWBVjeFop1jUqRoZa4Lp+ZIF0AaBb72wC40ubX3mXyZx0wd+Ae/+r11ph5svCdug3QeZqp+Xw/mKHWKpUXHWbOTu1Q899BDe+c53Jn7/i7/4i/jRj35USqMGAdNknzaBZE1AdsQoGt+2MpBWKAP9kup+BmKH8ojR1kQIVKOYRNunsUjapUidlceU5CjNey8NpowPR4ZB9WLLFHIgfp2yPPy6YTXpOqvGuiNtUaAgychOCAnSiNR2yusioumBe/fs0o6dv7Op/bKfsVKPfiUgsfR39Xs1IkLvz4fbUdKbtkB87cYrwTiJ0QSZNqQaqFXt4WlnQ/JODVCjvn946JZC+mlLhblkm3EsoiKrf7/9RI7D7TsSXzqKROhUOPax3HnrcgDjZGReowa9TW86brsxQ6DMaM6sCLl+IOfErAiyQSLL2GUR4CMv34aPvFwYKdWgFVOBx6KGYFXnUoKDlWIw26gU9OyFMycF9qicKEiJLmjkSLpOUiZDQuekKmeR52S6hoSQoE0MPgghIIRG1ulJht2i65x5l6bKesj9pd2D4yc+FHwvZbiy1g5qlfdeQAMZwOg+9Hb+wqZJTDmX9F4dPQfyPjfTNT8SzLR11bXYuura2HZ5DHam6ys59yA0TtVzPOXRQ/jg8TZeeMLBC08IQ7l83uT6atBFqiqMBnKHgBw+fBibNiWHJ2/atAlHjhwppVGDQN7FuSlVnxI7plsiU/UBQVQOtxw0bB5ELooqkNUirizoVcPToIp26wv1tk+wVhHpL3qf8kzQeQlP3kV+WIk6++AOHQOw2LPeUh6jYdI1EIUJRETCMDyvejSlDjUCFjAT7g4D6t25rulR1Os+Noxle2P7NUiruOf528C4aMSqmvhOFgfYs2A+kKlgkWzXazdemXjsw+07cqXqLHrJMg1JC5ciRiv9GUmPlknfV1I/MxEplXAuuDQ4riTRsqiAjJxIa1edMqPOaRaEdzr5d6KYw2LwXl14LLcoVJ3gmwpavf8l2xJ/nyQtsVxQpT0tLZY7b61w7GPRo7G5s4zAC0qsXGNIEQOdx0gQNDKsuWi2M5f7etRoGPVmgssAK8G28b39OwMuqM77Z66+JoguHDT2txBEnAK9GdkY97HoHcWkk71tGdCjTKW2vdqvLjr5Mjx4MC6DoPKBovNdVv9LM7CbCoWVGdxh96CzLnnegpcvI8vEt/NmS6al8heBqW2mNaSpQO9Za64J/jZJHJiMqD4ncBDl9jLilINlFh7uB7ffdRzQPIqTXtaGd8N7AZgD7CxiF46WzyPfNixUnDUbuQ2nvu/DtpM3tywLnld++HdZMD3gg/AOjEpRigrJ0I2Ko37Plqp9LiNBmoIKPcVdx6TDYgZrdVIsY3DduygqM24eDz2X+sSbZTRVwThw3ISLpkfhdhcHUofprDXX4OHDN0e2leet6mC6KaeVpJWkt/loJx/xUb387zrpMnzxyd3Bd9/ZeyvesPmKyPZZE7nzh7cCf3Sx2JaHhr24Z5vAoQyME6OelYoOy5Ya0KMVXrVeGMNNJNsEl5HgHgiPdbgznXhJJ4lcPKkVcKWmrNp2IEroBvUc9hIVMMzIyl4WyFJbCogutoeRijRKyUJV2tPSYrnz1uWAd5+SX0Zp0Lh/361L3YQAlPDI/Ll53MO3XhBZGmqWiYRq9OhlnJRzlYi+FUEccgwpy1CyVPA5gaXwEh0zbTvGJUyQQRU+jy5+8zj5KTFreALlR7slcY03bL4ikRutH9ueWAw0DaKPiOtaVkaLypsmHIavPns7NneLjPs8LD6r8jfzfvzudu3ULNAsfn/atIdHjjho+SLqeMrhmYXkTPfgydkdwd+hA4GgYVMsuDzyOyELp++TRP4uEuCi921Tqr7cn2pApMQycgnOGXgfPFK9b6Z7KNP0ZzsWpmvxseexmZtw5uprum2M/96hY0ZuTAjp9ou4/ca0fVm8nf/dbvzL696In//MJdiXsp7yWAcWHZLXYgCoOGs2chtOOee44oorUK/Xjd+32+3SGrUcQYlII2h6Vaj2qEFGbKZ5b6mib2oRPlCd06yBXKZBfe25YtFWZToC5l2r+384Abf9eDErdcJjSnEiADjQDIeXsiqORo/d3/m2/Gj71VR99R49euQmAASv23QFvrP31uBzn5PcRiWT0VRWq+9HI67DpKYvjRTpePTITVirpH3JKNO19UuDVH2b1AKto0f+069hHfdiBjmTgc5l2UZTibSoTUm2pCaZNP7+6mkiAnHBo2iUmHYoI5Dl4kka9yccH7NKAaOGJRZI+r01kruS+jXn6WRF9sdJh0WeyWGgaPSTz6Me9BrlOGft1fjWC7uGIoMxSlCdLL38tkJ/qHhrhaVCVrTgqD3faZqJS4Fe04wtAtzwyO5ATxQQDlx1Pk/jbb7GYyXyZ5Jlb/tv96/Fr27dqx1XtF11OOvtuO/FXYmRpAdboXSS0VCW495m8dkxq9xI4yQ+QGGJdP2SxCuLOprz3usyM+vyXtc8fMz07KifEZC+ozN9hduo3FgvDmUymgLma1yjDXg8u3ZEEUeFibcXL1JLMPeuC3EebeCOJ+dx4YTICBOZydED9HNd866rBomKs2Yjt+F0+/a4h1THchHYT4t4Y/B78h1SIooOCWOKeJDUBa6qs1Ppny4d9ElOTtwqyR2U0dTkMRw1TT5hWEpuE1WMXUUgDdJlhfJvHr+2kHfddE7RCt/h31kp2hLSGCx0i3I3JYJ4xfr4d3kneZla/4bNV3SNvSFU0rymHk+N/rn7/xnPvuXfAQjTT0TKOAueDRFFwGO6okmQixWWEAmSdZ0nuudTxmTMOMHaMQ/7FsNVh4gIIFhwowb4SYdj1iWZ0bIAYqn6q2u/jqOdOxO3n3UPYFVNpA4nESxZoVVKX8jrf966q/DgwVvAeKhBO+qghMPjpFut2MocX3rFhHOxdtzSD1FhGeJY4q0VsrHcpEwGiSIRphM2K6yzOqx1zKraNI52ZiOfZVUv17ftMNFemW2SZ26XePTITZiuZR+v7RM0bNEB1TTkPBizkiUGRNp3vpNNisokhIL3EXG8ps6wr0nR8qMcNf/vk4xnsr0cFrFjRjPJW2VxqDSM22xohX1VTDkT6LCm8Tu7BK5jEZVL6xlg5n5JCMWcexeoEpUp+kD/vDHpXpqQ1xBYxBDKOU8c2/IYXYvgguO343v7dwIA3nHDegCAfbiOz2EdvvT7L4TH7Ra14uCVzukKQG7D6c6dOwfZjiWB7pUTXpjeOr2nLAjlQn8UxepXOrIMPgwiiqyfCTgPofN5tp6oNDYWMQKoE2NS/8vjef6rRxt432khk0takJiMWjKCcvP48kyBFNFy5hk/abGQpXVZt6LGRpGmY9KAFP/L1HHTdb/u7G2482dhav5FJ4tUfdX77XKCTY2rY7+d6XwBnLOY8ZS+exsw9ziAMFX/cMuHmhpHlfZecLwwSDxwIHle0I3C8vwkmfI5kJTQ8qr1V+GxGWH8zbsIyWOUl9dHvY8uCx0YdUukcKm6XUVT9XVSJ6JJk59FAoKaNQ7P68AiTq6Kp/4Qo4OKGiOmHFHdOAnqdRyzEOnLOi48If1YPOHKjornW3Wk9vLbCv3hWOStFSpkISlqchRQNIpQ8lWxXitmtetnHuh1/GUcgeO6qAEVAFbXgMUMCpBUQZ5zDkqtgVGDImsR07XXtRz7caSWub52KA/WWyqSJLZ6hX5N8nIrafiXv9EzKPX7QokVq8uioqgGZxaSnjO5nikzS4oQ0lf/7sW5RgnHn3/gefzZd6ex8LP4udi0JuQkQEq/tsNGxVmzMTqKtCOAsjt8krep8oovLdIe7mE9EKo2ZtkoY5r/j+fOpxKaJD0pdTJfbfBMikqZozO4ysgDdeJv+xQO5diz8LmeiK8Jaip4HqKYFs1xwyO7g2tvqhJ734siZWtfM4w6NS1W1PGOfferyudR47veXvUev2bDlcErz3m4LCRT8trLQlgAcOp0Gw8evCXQ8TIRstduvDK1AJYJJ00le6IdyoN2ysVInjG6zeKjxUznC8ZtpTG1l9QzeQ1E1KZA01BQZJRgkliwc0Yq94IF90sD2W+/kGlPvb4qVKiwsmBTPtSUzTQ+fNHJlwWvJAx6nEqaMxknmHLMHjo1Tb8sjp0W5er3EMmnGj5bfr4I3jxzPuM+Juw1AIQ0U/T3vQUGHWnT7r57+nn32AiKJ5sKjzKE9zJNq75X/LsNPMaX1fNJkhM7fuJDPR0v7VqV9cyo/VGV6jJFZJoc+mUhrwwGADx+dAceP7ojMxpXb1/Tn41t47JW5L1NarFtTChidJdrjdet3oBNG1v4+08cDL4rey07CirUFWfNxoo2nOrh4eaH4C2Z+1EfQnXw9frQLqzQO7IGRXXxLqMjkyoUDmMgSCOleXGwtQuM+5H0X7+HgcyhHLPd1GV5bbIIHdOMIWmGwTKr7olU8vJgEsZ/SCkK1U/hiSydH9M1TrvuSd/Jvq0briQRXV379eAz6ZHmYHj8ZWdq+xfbq8+FqsUqi1z0AnnOHRb9TGqbqihj0SPHg8OtaIJF06No2CxC9NLuh4rv7d8pFlLd94dat+FQ6zb4zIVF4nG0sq+anHPqMxsW85DZC2FDzlt3Vey3bzpue3pDRwjy+SojfW25QBRq6f1VocIoI8lhVqF3eIoO97CwkFAU6O5nbg9eJgwyXT8pkMXLGBfz687zniLhyh6XLzsj5D0vmfYxlxwoGCBJqifJkCONUGVphibJCpQFAlJorWAyeup98/sHCFoDsEwl9dPFHgttTWQU5JVIM6L/897Z1LYB/WlxSqjj1ItmtYJEJGZEch7007KC2Xp9Zu/dsytY9/3eD4/ifae5IKuPx1dv+JWUY/kRiYQiqI0A5as4azZWtuFUnWT8e/renwzpZ91Q54kEb2gVcTp6UI3cecPNk1Ih8npiWNcwm0RKdaSljKwf216KtorPgemEflsWNjXKieLMg7zC7dIb3rBFVJw02FHE+wMlwJmro57OrCJBsx0LDVsMt/MKoZJGpJMnxb3VU7SSFiZyDFEjU0zGTokswnzGc88H/VF1KJkmiLzFrJKikvXPppxichQqiqR5nb9leyziselRtH0SM57mHaNNT6QeIbFuzKyhmOYdz0NARpmk6Cl5QHiv5FjLeP4iY3kxyEj+ChUqVCiKC08YroZu0UyEvIU7k2SZBr2ekfqmgkdHB/aDrbiVaVDG3DxzSpE5WXKR238al6rpZf5aP7ZdpOonVFEvA7Jd05pvOGvNdKSdvDYx8UlpMMta0+QJDDFpg6ahzEyeXvti2v2X+9TPSXVIv/G4Nb0dOAfUeyn5m2pA1Z0++r3fuupabF11beQzGbEtNULTDKYT9hpQYoESK3eEKZDsbMiLT59l4fGjNu47uD/I6ksCKxg7KvtxZRtaHsitcXrMg1BjhTQAYF3NubDyMQk0hOxu8Yu8kFFWn/lRsq6bjo+9Ih6JVSEZsjpl+jZRDShKpKZousC4MKoIslgvaKcct1lPXkhJGPMYrDhngbGrbnFM1+JVuPOkaMy7FhzKUbfiRQOyBnedzDBOsGehhuMnOvA5x97FHdg8fq35xwWgpyGZSFTbz1/1Ul1AWF2dW13z1ufAqVNtPH50DJvGXRxu2VhT9+FkHEMYvcV1nLQZFlwrch1fWBTfSdKx6IXHywtKQuOUTkw4OA637wCQkLb/4gHg5ONBiTD8+dzGujGCFxZDYutQnptUXnHmNtz62G7MuqGOqRS4l0Wh9AINdz2xG6evCt9L/atHj9yUKpkgizI8dHgRZ62msZQk2WYRJaumM2UTVJ8LctjQnvXXbrwyKNQEhMbRw+07jEL3kghOOUJgnltJ6q5x6Pq4LgMmB+zc6AdpETNqlI8g+gTvf0ny/HaodVvqsfS+7PPR8gYXMcKbfluhwijjgQM7q6jTBFDCh5p11mYUNhXzQtGxI09xqIbN0PQoGCe4+5nbe3ZO5Yki83gnMo+yHJxeogzDKeOARXk3pTjk/GmYcFj3uic34IZHxLrv8ovj3/kc+NmshTELSKKTjBPUKMdMR/DzrPss+IhoDwER0XB9BFiMWcUrfzMOrBvzwbjoZ0nRzRRWIYNTmfOjqA8g/m77NJASqFsMexY+Z0zXT3q21XWa7qhX15Ym/lm3OGY60Q+fniM4YxXv7jv7XF62pgmPTYBCGCA5OGwlC4qDw2UtERVZUiEj9V7Iv1u+6C+LHsGqWvxmnbk65PQWoSAQxatE5iQBUaI2KbFQt8bRVtL1k5wDdat8Bnj743V85sUa6N8BV/3Wj7Hv5ad3M84sEEKCugQcXKyviYWWP196VuQwUHHWbFSGUwWEc4CEk0weeCMswr5SkYc4hdF58c8sYi4OJYrjhNuaUnKLIE+/KZLWSkDgsnbEADjTtgqLm5sGzTzGxzRD1HHj5VY7LBvyvrZ9gk2GolZh3wCemK3jnLVNzLsW1o7lK4DV7hacYjzUpvS5IF9C9ynab8dtjsNtgpMmOV5sxi9qjcZJlCRs528xp2/H9K4QenYX3nI+0Jzp3kOr6501kyonh1blrY9FHUNjVnIEKmCecJMWBrLKpW4iO3ftuCCExIoVWLIjkgPi/6TKus1u5VhJ/NRiVpF9Gp7NtfVLcbRzZ+SzQ63bYNMaLOp0yZ4F0mnCdSxYxI5FVzi0joa9gA+fM4d5N34PHAp4Q9TA6xWhwyc06KsRwm1fpKT2UxxKYsIRK9FhVXrOi37Sl0Y5orhChQr58LXnbivkZO+1GE2dssj4V6ONxGrfKlSu67H86xnGCSgp3tY8aysRxCL+XlWbxpH2LNo+xaaGi33NkHevH/Mi+vF5ofJUllFo0esW3XQoTwxesAjFbCe/kx4QNQAWuk7EMSs5/V2fBzpKEVD1PExORs4ZbDoGn7sBz5AG6dnOAdi0hro1AWAxta0OFe2ziOBDVsIll+3Z38ofvBIUVYYvjGddgxghoaHXZe1MPcmkglkqOsxcF0CFnsWkPh8m/so5Q9MTAVXq7+sWx0w32rLpzaUfNAPyuqpOdP05lYbchw838OYtNfhMdCgCgo6/GBSMIqBw6FgswCAv1o0l/06skwhmXWBdXXw2bpvvyWMzN0WMp6ohVPZROVbE9FnBQGChw5qo0QYY9+EyAou0I9s1fYp5lwb3RHLOvLjg+O24f9+t2H5GGy/7n7egueMy/OAN/4YT7jvd6IAQBcblMz0Jj+db90pD/Sjw14qzZmOUgjOGBjkAxx7GHEK/BMLj2m/Yd4XB4VgKd8+KAlChe/L78f5MOj58Hur0hFXgw8FdRuT9yrmLmHVJxJCkk4/DbTswPpYRbWqCrAaoVgVs+wRtn3Qn1bDdQGjMk9GddtdQN5nj2X5sZizyPm/0haxMv+gRnLk6ZMoLmv1VLf707JF8CwOHChL6nb234qHDN0eKQ2VBNzQuehRH2ixYKPhcXEemRN7eu2cXHjiwM3jpkOekeqCB0GDZybjMLiOp15WS+EImTzSLJE42FUUKpmuiIapXXBpLe3mGkgipJLKcM8AWnmh53XWC6DKC6388BQD43KMT4T6WGTGhhGNdPexbevR7WZpjenGoUXFmVkL7FSpUyIK64Gz7tBQJkzxGU4mkKMA8KJtvy8hDWfjlaGc2yLg60LJBSVTax6Ycq7tzjMtEe/70od3404eSHXKMx6MB05BXziAvvr/HCYxql52xLTIPWkQ37JZ66Bja/kLubUVWkzCi1mhohJRtlP+vq5s58YKynkhCaDST25pJwtoxoeV/uB2P/5pwxAM06QhnwpOzNs5bx1Gjca6dBJ+T1AxBdY0zplm8dJ425wJH2gQW4Xh+oYa2T2FTHnBRh/LAwKhrnJ4yVV4H6FV7U8WBZnK8XRI/7beOh2qkJCDGrK6k52TSkTJovWvse4zgA7/w2wCAVevM26iG3xptFNr/KBkcK86ajRVjOO09Zeaf0LB/GUB0Ua6ThbyGk6QopwrDgzrhra7lnEWxdINCXk1JQDgFmj4t3cCiE3nZjy0C/O1D45h2wotDiWjzoVY42a2t57/OZULIDYQRnvJ/WTjLIuHEqo8RkizraeImbaEiWpvzHu0aocP9nDbFYmOK5GInrErz8IqIFkBc8yJ9RXj4TdIk4nir6+FnvY6fNSr7Q0iy0wymTxytR96nVyYlkfubBgYR4aHeJ8YJmh5NjfBJG9ezdG1T4XWC6yylMyzigBKrUCRAltbSqCMr+uOe5y2sG7s88aXjWHKaVahQYflCN4amoQh/SEOv41+vuvZlLPg7ftzAW6fjcOiYYWtTG+KfJc0rSVkv+j50/uyycgrFXnf2Nlx3drr0mmqD0yPQdIdgUpsWvaPB36aUZs45pmsb0hubgmlH8Dhp8M1a/6prgSToxaCSeJDscweaYq2ztu7F7tdCwaJfpuvKUEwXU+9XqpN4Y2OqUHv6xbdfOBJk4ZSNdUqWXVr0ZlKk6eNHd+Dxozsi1zyMMs4eJ+fcQ8H2JgNlr5G0WfjMOw/gQ3dP49TLVmH9l+4LPiegQnNVMUoXcVpVWH5YMan66sCeVK0vKYWk6f1d6vcVlh90jVP5mURSuv5ygOzrRaJV80BqUwKCNEnNyjy/GwbyRAVQwmF1I8uPdIA1NUFwdILa9kOD2sOHb+47hUInuHWL40eHHLx0tZdq7EyLyJtyejPmH27fEUvbl9AJcMMSumZ210BZROP0Lx7eHVw3te/ISGXA3P5XrRfV4x8/usNosE1brElCpS8Wnp2r4YRJNzCYS9mNPCL8Re+9nsJjJIPMA2ALIXzO0PYX4PGOMf3nijPCNLrl5tE13StV9iILF57gp+qcjlmT2r6LtW/QUKPfe/lthQoVljdUfXQTjnaEBmDRxdh5666KvH/0SDTDxCJOYgHTpDYWRVmR/VPOJcHfevaATNVv2BzNth2R3ZkzSNlI/O6523D9j3cHDnKf9x64IouHDoLL3v7T3bH9JskD5UEew1FW2nsSFj0E0lK9oGGxSOHIusUiHIGDgcuIQkUGwqH1xLTnMJtNj/oUUYaDXn/IgKos58fquo/ZeQsnTHQw07Ew27Ejv0lrp+zD6rUSKdU8IiGnYrbz14Ej3qZ1tNlit73hdc1T70LHIaUgmxpQc1wDeHaBo8NIxHGxpu7jWy/sSpQQA2CMIFWxsXFVTAJL/70pgEK9XuM2CzL+euHRx0+sAQC473+v+MA9BCBZa3W5ouKs2ViR8Y9y0tAXqUlpnpSkU5oVeRGXKdKi06xAezJ54Oi3WvMgQ/J7mQRVFNFnCrVeo5/nIdJ7F3cUaVapMF1/GXEq4TIhO2AShAcQSRWT558n0rNhR0cKuQ/TJC6JvkMBahhgfA7MdHnkO04MI+8cyvGGzVcktuFIO7soHQGNGKGlAbntk0Qvch6YBOSB/hYjLiNByl3aIlHe9yTCL+UaTEiKUmmz+I2Z6XwBHutkFjVKg889RYNZj4Qg3fYu31lnGORqVFKfWJ+vChUqrBwU4WBZyGs01ZE2dvbLf4sgdIKaDCL595PU5kBbM2VfapHNtFRUv0fubZrH8/AhU5CAzMAghKJhTQd/l4E06Qi/Ty4nOU6aMddloXalyonK5hLq/hzCM3lWeZHi5ZyHXIe8ecuaxG1UI2VZ/UOiw0KencXB+uVonPPY2BBq9sYxr9zLXsax8f91Nz742jn81n1NHO3sj7cnh0zYckDFWbOxgiJOlbDwhIjTImj7oeCw9KA1uw+mqLi+UrrQ6EEaR1TDlDpImwZNqkSYqtGmZRJFfRKWVcN13P3M7ZFjF2mDTWoA2pnbpWHOtbC6JrzWkw4L+rUJaWlPa+piH16GVuWgkURu1nQLHqpGT5tytBmBTACppxQEAMICT/USCJSvFCnIR57NkZv3vbgrkmZfBIzLBUtX1N6ngYdWptwXqW6rivF3Cvw2b1v1fiU0qOOVhU+Zbgc6aZTEI0/6MQgDYWEGizqwaQ0ei0ZHxEhVbRyU+GA8Lpdgkxp8nlysQR/PRh0zHStS3KCInERR+Hy0yBtDH0L7VYZLhREH46JY32s3XrnUTVm2OG7c78kR9tDhmyPvHSXTyLT+8DlJzMqxiMgmkTrvJugZTL06PE0SK9H9erGgFpZShJdxghlF51LlRYBIK5e6lj4Hxkj4uzRHv1wDnLXmGjw7f2Nqm4HetBPDY0X/TuJJ+lyi8p+DrcHK9jg05HRA2J+KcjrVSKj2ValtmxV9qF+DtXUv0IvNgknCwe/yqbKMl5SIIIO6xY0ZU+q9Fpq8gl8vemodhmJ9SURERyXDTIVHJfoNsjEdXyJLn1k6I9QIeVnsSQUhNNZOlxFYlgzuMJuvZjuLWNtd/0zYPhY8K+Cc/WgVd375Ynzm9wh8mwI/P9dtY/T+HgvG04qzZmP5hq30gTxpCuoDwLhXeKBJ6ngLKZFNFYYDEzHsZaDo1aNfFHkG+4OtXaUN2nISlJN+kp6vSavSZCSV6dEAcNLkB0tpYx7opDiJ4CV9/uRsGBnrZhje2zmNQfI6yGsqoyWfmRdDsR5xkkVCfA589dnbY21rGBZOh9t3RN7rBDWusRpWrxVFAcxRkGmwUtK6ytJ7zrNgeXauBsaTI3r0NspFQtL3gKhibAIBTVwcEtDAy29Kqcty6i1HDU/VASQKjC1teypUqFBhVDHIMT4piwYIOXBRLjwseZSgAJHyWVKBpywdUSA/j3lsJjTwlB0AIDU09YJAqnZklkGvaBXsIJK3B+OZ2jdN6xJTX1ADL5o+DYz0gAgwkgb5NF4k9hNtr3xnKg6VB0WqqyfB5ATWC2UtBdRrSImVuFYty4Aqi7JJLHihzNhsp/+CVHsXd2Sub4sUe8t7b+7dI5wRf/zVDfjnvYfhv8SG0wmvbRlBeBWWH1aM4dQ0sQxKRLjCsYNoSrHmXepj0BwEOS5Dg5dxggk7+bmQUYdJv7UpT53A9ix8rt8mFkZShNsRs2RSBJLgOYRj/ZggH4wDW1e1em5PWnSq6dqxFG6jGh+d7rV/03HJWkIAAn1ToSfVNYYq3l5KRITgoVacbMkUnAuO344Ljo8eJ2/akk5YF71iEcmv23QFXrfpikib0hAt0iH+7rBwEWSKqFa1ZU3P6v37bs3bXKytXxo8m6oekknPNAnHqnZQGdWjTShLe69fVBVKK1SoMCxYZGVku6XxBZ8DNzwiJInWJWTeSK1DFWnGR6+EiLU0JGnZz7vmNvUSodzPendVTQ0kKvbbhqHAkula61k6OtLveTY/+uGhfBxKLRhcpDiUCWnSG35GMEZRqNGtjPvwebQg74SdnL4/SPg8WijLBFOUcVGjbtr6Q/bZXq/z1877F/zhTccBAL5+7Y9628kyQcVZs7FiUvWLwmSESvJ4CKJioWEzLHrikrqMGAfNpUxZXmmQqbwyjYFxoYc4XSun8JNNa339Po+nvlei1st0X8RjlwT1nEKphMF0+v3NW7CxcZXxu03jXuZkva4u+wiHLizf9klMp6fXyvI61OhUme60cQyYNTiFn503H1PV3XzXSZfhi0/uhssIJh2G+/fdivX5CtIGaNjTsMjR7oLCBxA36rV9gkUvWefUZKBW+0NShOmUIwy+l5yeHSUCqEbL6PEIoQAP/5eghOOkqQ48RRojz7MnZQZM7ZaGOdMpMeRboFjEjpHbYB9K+295bBzbzzBX6cwyki8FphygqVwCtRiXCtl/3/+S5PueVyt2UBVk+0UltF+hwspG1mJyOelV6/I4embGUsOhgJ8y/VoBJzV/L7lgspbpaJzsuM1ibVk/th37m7fAYx3YllibcM4iNKnfrDSLAGXn2emG/qSM0LpF0fbLcwokyU7NdOxcjle5NjAVB5K/l2uq/c05TDqxzYxY8ASXrhWUfsjKvJpzDy5Jgeui44OUCjP1VXU9zOCDcoCkBCCo67dJm2FfsaYE6NzzMBh9E/7pld8CZgFgU+r2DhEem7zBVWWsvctCxVmzsXxm7BGHOtH266WqMDjoxuyZzrHjO6DEilSe7MX7QwlPrVSaZMht+cCcK/eRbCw9fuJD2Dx+rfG7MrFvMf991bW71AhEXf8UGIwh2OSVV6HfS4sAq7t2e5mqr8oAME7gsfwRBke2Xx/7bLqW/PtvvdC/npaUephLiKrIA9XLTEAKV7iUDhXd6GsRYTBl3CxJUQS6REJapKmp/b99znzw93LSNlUNAnoF6LIhKzGP0iIeAHgfnvsqC6zCckClb9ofyh7TzdF8yy+7ThodZOTZKMx9SZzaIjRX+254ZHcQDZsHaqQnEHeUqu2RTsYiAR15o/qOdsS5ycjYPBlzaeuPNEMRARXZUIYJUO5T/f1qjafqhVtNkOeTBinP1YveKBBm4OkYRD/Os9bTjaYEpO/iUDJ7zCLAfkMSnmzXRSdf1tdxVHCw1OjptOvbq77+3e99L773cQZy3hvxydq5uPkxcwEqeY1d3l+dkaVExVmzseIMp/1UOy4DKyWUebnAVGBmuUIUmpE6QcM9KYsAa+th4Ze6xRIF2/cu7jB+XjZMKdomqB7vtk8DI+Zp0/kMvDblcHKSq6y+ZiJ7SSR1RslsMhHK+L7tGFGSE/0L178vtr1DxyLHV50OPg/1f7IgybY0QKrp2ZSIiNNeIfubakA1LQaenasZvaG6I0Ua0eU56/9LSGOBadnhMzc2z+SN9CCggfNDGsAHlR44KKQZr/Xr7VDgzp/tTnxVqFBhdHGscKdjEVKjXC16WrZU0qCkVopERqrRgUWKV0qovCCJN+eLQMx/zJ/evzrxO7X9olBUuOP7XoxyLr9b4EpvnzkKsn+tyST0u65N+33eqL28ax6fxw3SKnot8iULTIVp4WFxqI2NqZ72KZHHUK0HgEzXQk7vs3iccK/Rx6vrZqPlRiXLTdfsNYFG+jkDJVZkDWuCfFZNUclJc5G8H7OupdRpyG6fihv+ajW+9uI+PN3Zgz84jeDqMxcS21Hh2MeSG0737NmDSy+9FOvWrcP4+DjOO+88/OAHPwi+55zjE5/4BLZs2YJGo4Hzzz8fjzzyyOAbRsLj54H6IKal3lREc+mRVM1eIivcvOf0+ZKNmZvHbRxs7QqqaYbi6uE2vWipTjnhxJhGaAIRdM2LJ7Q2Bz+05PWsq8ZxSnjmNZm0WUBeVaPqwZZciJjakn2hdXH7aBvTDJ75PgOiBZxsGhLlrBSde/eI1BJZvItxwGUtY5GpMqH3rwcP3hK8kq6JrnGq3w+TF/2kqdDKrArZL7g08nv1fndY1KOuQy0Ytm7s8sSCUJwz+MyNEVWfe8bKoDYJ+7XorwQMwA8P3bKsHG8y80IdTwYNeS9HJfJUFu7o9VVh9DCynLXCskYZY7vPzVFVKhcYdBsGgTTOpo+THWYuDqXLSBXhxowTHD/xocwxeVjFG1VjuI6yK6YDIQ8yVaVXoZ6/aa2rf+aycJ4zGaGKpJbn1fbN4gb9SnL5XKwvi6z15XMnHctF7QSURM//n/cuBFk4ADBmT8V4cb/9xCJRx0m0cFh027ufCQvYPn50Bx4/Gg2eERHbStGlnsTmxJolD4qMcz4H/tvvHsDbTzgBJ91zP47+3i3Bd7p9SOf4Jn5vbg8JjrXUqDhrNpbUcHrkyBG8/vWvh+M4+Id/+Af827/9G/70T/8Uq1evDrb5zGc+gz/7sz/DZz/7WTzwwAPYvHkzLrzwQszNzQ2tnQ37lzO3yZuqz/joLOpWMooMnMMmkxedfFkktUFOonmL7+goojvSz8Dnc2lwM++j1zSJvAj1bENd2zQsGuQl6xbDgZYNnwPPzt9o/J28D+pT3sxhKB6zhDdaTy1SkTRx5iVS8hrLVP39TTHJZ3mXf+fg9wCE5yz7TNJ55RnDTOfiFxj/kp67+/fdWqg4EyAiToF4H8wyeLssWZsVMD8vlFiJRlQdSRqnKtKIvB6BUmG0ILWIe30VQZZBr0L/WC6ctcLyxLtOKi+ltQhGXZuuV156KGfG7PlbtkecsUDcKFlGtO51Z28zGnUlXrpa8IFBRfL2ClN7kvpMr+tb1XAmow57iYoc9notLbhKv0ZMiUgtgrzXNGmN1fLmUtPbiyApk5BxBLqsKneZrvmYdLI7tB5pqkZI54mWFrqwjcztiuCC47cH1/71f+HjwC++Hk/8f/mPkYffjxqGyVmB5clbl1Tg8dOf/jROPPFE7Ny5M/jslFNOCf7mnOP666/HH/zBH+Dii0Xxh127dmHTpk34/Oc/jw996EO5j9Wr0WlQ+Ngr8hVCqVAO8hCv12y4Eo8euWkIrRFIMuxJ75zwikfbfc7aqxP3d6S9uxuFaS4kMwxQIginp3mKZXGYfc2bBpbeoBMSec/rVnKUqf65Q4Vh0yS+r+KJ2TrWJKSspIEStUJr8naLnk648u1fHeccmlONHkDzfz0KvPrlqdvMdqLk5YLjt+OBAzuN2976WJhm7QzBPZfHKN8roe4wYALh/brneZGGv2k8f/V20wKAcR8OrcPnnpBFYEIbSU2rEgZw8fd5664qRVt2WPjzf53Cb75yAQuehR8eugV6wTGhLTuY/jEKnnsAfXnhi/xOGvTe8pa34B/+4R+wceNGPPHEExGDXoX+MUzOWmHlgHVTrpcT9OKZgwRLWZRTwjFdY2g1rYFxjbzRjHlx/x+/PRKFJyE5hkNDiSMTmh416uIX4dYmTpKH04YaonEjmZUzktemHL6fL8qOEAKb1AIJI/05KRo9mAfyHBc9GpEX2roqlO96cjYuOSaz2/weDaQmRKN4OfSiqOpx0+wcMY1TQkuLTjZFcNe6fXi2Y2WObbIgVNjWeASq2lZTOv+gJK18LtaQ/+nd+7BxjmGPaRuDFMJyxbA4K7B8eeuSGk6/8pWv4B3veAcuueQSfPvb38bxxx+P3/zN38S114rB6amnnsLevXvx9re/PfhNvV7Hm9/8Znz3u9/tm4RSYuFAayc2jF0Z+45zDtMcJB7w9NnZlKovjTBVqv7Sou0TNLReLwf1Bw/egkaKY2tYWoMs6CvR47mM4OHDN0c+SzOkFoVFQhIyr/ThPN5Oh8YHTVULh/HRc16kQY241J/mXp5hcS3EnqSRT0zITDGkxq9PEtFLKljkMoLzt2yPpcKoONLejTV14biR5Pkvtl+JX8NCsI3eFpaDvKX1E1nt1iLR65dWeMlUiV2Fz5MnMEGswv63ZcI1Glcl0e9l0dr2qXFBleUd95kLCw4osYweaeH8yE45GpTRsSz8zqvn0PYpJmwfC17yNXn/S5KdiHk1ySeciwu371hClkGvQjlYas5aIR1v2HzFUjchgMwGWA7pi/1w21FxUg0S2fJeDD63kZfibv/6X+MDZ+Xb2DcY1ScdP+Coev9KitLME3GYV2JLRJeZ9dfL4CSyrZRY8FgnRjfrFofrpT9Xer88b534QDVOJ/FLxpG7boGeVm6RaK2HeLv6Hw+YwZ6g9oM3b1mDjt8MuKhFHZUOi3ZzllqRPgmmorEyM6vTR1ahNJ6qRlTd2Cv7G+N+RNJKosPSg4aynuM0/PgIxc2f2YA7zmvF2LlFHdFPKxTCcuWtS7rsevLJJ/GXf/mX2Lp1K772ta/hN37jN/DhD38Yt90mFkt79+4FAGzatCnyu02bNgXf6Wi325idnY28gNBYsW7s8sBQmjd0ve3/fe6UgeVWyGOlIMswIr9vs+gjcdaaa4K/5YS3FGlNw4pGSDuOnJhVA5n822UwitQPE35XnF2+TBDFdpL3IVOSJKGSGp/6/k6fbgdpKXlhigZIasu4LQlCoUME3nFTiv2q2vtz7cNk+GOcBIRJRMfEf5e2gNJTveS2NZpe0KpXoX5xjHC/LyyI6FuH8oDYN2yGti/6g7wPeRYOF55wuUg/svNHHFvETtTr0uch3Zi6dgyJ0KvsjiLmXAvnrbtqoMdQ9byA0TFW9FqdVL7y4itf+Qpe/epX45JLLsHGjRvxyle+Ejt2DKcI30rCIDgrkMxbKyxfqFwoy7hYNm9inEQMOh5Ln6tGPVVfwjQm6mO9z2GsXK+mkuYZW9VrIuWf0lDUIOMykloPQ8LsUI83hoMnpo0nrV+LpsLnMZKnRcrWqeiT0cwo8TcBBQFN1LdUawTIdqgcLO/1z0opXl0L+Vea7J6E6Zozzai9vxmVaUnqS2lcOPp7LaiGE7iMFJJDM9UCKIpogafk7VTpuXg71OcsI+hA08PV+6/JmCrRT/COxwj+yH0I+0+fxqpPR2W4CGiitioHC15pmHD8kXFADYuzAsuXty5pxCljDK9+9avxyU9+EgDwyle+Eo888gj+8i//EpdfHnZO3eAgokHNA8SnPvUp/Jf/8l96bpPL2pkes7yT76gs3lYasnQUHcqNXlzTZ48euSkS+dZP+sWk48fSnU149ymXAgC++uztwTFN1bU3NJygMFQADkzYDC4jqFs8VsU6DbIQTRbUKEH5LIxZYnKhJDQ+mRYDHvMzCxXEzimxvXrqb66fGfYj/leNdKZox/VjblAgKgnnJkQAt32CsYR7Ubc4nl8QjXh2wbhJpErldWdvi1UcLxIFK6NNJTjn+NjjX8eTp74eNoQhz+figA2Loe2HqTZ1SxjHXUZw755dmFZ4SlJfU3VCfWVylX3HpjxRxzNtDHWoeJZDXVc/IDFplTnVYmESsi2CWEUdBKax5LUbr8RDWvS3hGkxQggF1IqhnAVRFDatwWcuPN4BhdXt14vBbz3mg3Fzv7vvxV0jZzyddykaFsMcE89nUnGoQWmRjVLaa6+6T/K3AGJGtHq9jnq9HvlMGvQ++tGP4vd///fx/e9/Hx/+8IdRr9cjXKpCfxgEZwX6561LhddsiGdrLSW+s/fWpW5CBOdv2Y6vPH1Hbo1Cwfn6XzfIrJC8hpQ8Gu11iwXc7qKTL8NXnr6jnyYmQkYZqsaGsLin+F+fw+fdcmOAHBo1dUijQBJXkXzR5SR3pCIgDHPzrpXaP/R1SY1yNBUDW9snQYCH1LRXITkHJRY4Z3BZTuFXA0SAhPg7KUgoTRNe4pSpD8Y+27u4A5vHReS+zAQ92NqFzePX4sXFz6FhW2j7DOeuvRo/PHRL4IwtS17N6q5/Zjo2bMojxT/TwMFAQLuBI+HnKg9ReSxDMe6zZ5HgJVPdwB7lvlPC0fbFOi+pz+nOeqaHnfYAdQ3LAt5sLg4lU/jvfub2wHi6ddW1ePzojtg1MHH3XjRuVaypUywocQgm7p8X5BWvx32vXsRr/nQL7v6tJ4L77nMXFnEi15qiWCTvuWuvxrlrBde7GvFnY5gYFmcFli9vXVLD6XHHHYeXvexlkc/OOussfPGLXwQAbN68GYDw4h933HHBNvv374959CU+/vGP46Mf/WjwfnZ2FieeeGLwPjH1j14A8G/CoeLmppFcdVCoU2YcYHXPxsfP+wAA4Pof7x4Zz8JKhRquTwkw07bRGM8fZu8x0lesth9oiGR3hCIRzAQkNtHIiTUNR9qLONLegbyEfcwC5lzZPvG/akzVyaU6WeWp7rp+LJ8h6HA7StxNRraGHZ570iJCnfxdBsx0LDRsBkqiqfqhFzn6e2kwpoTjocM3G42n4h7EJRgkEZLXcZ0yt1gEeOlqjidmo+2+4ZHdwXaXnL4tMLDLtt2/71a8btPVRhKtQ3pD53/5nYDiFU8vcEcytayuOHMb/uJhYdyVjqiagVylperL80mCPsbKvu/QsVjazElTHSy4ccI34TA4lAcLL1fRnzX1bYn7992K1TVz4zzWwcHWrlg/1p9Nh1twiQ/GfaOx9yMvn0dTiUjRdUJHOU3ftBDvh5AVxagUYCxDL0rlLwDwx3/8x/jEJz4R3TanQa9CfxgEZwWyeWuFfBjFVP0ieNdJl+HLT/VvkGScoOmxCO/KijotCp8L/jKIMd2mtUgUFyUcT87WcdaaFma04IOGzXIZTk1zgjQGf+uFXTh/S5x3Csmj/ON3nfK+HIKPHLEjTnIgvgZQ06F9Lvj9k7M7cNr0tdCxbuxyHO3cCYvYQSaLNAnPuQdhEafrqM2OrJTn5TIpcRQN5pCc0OfA/lbcgPqq9VcFRk5Te6XRFECQFSo51HHjUYmTtAyWJMOYRYCZDjCVX/o/pnGqSmClcYy6JZ49aWScrvk41Ord3OJzwIFYR7R9Ehhl0yIoLWLHOGc/Rbck9EJPMptMjgMWAWa760OHCt1c/fncuuraiMFbtkvn7klZWoDoxz7zYFl2YK+ROrgSz3cDUeQ9NAVH5UZtHPVH/l9MHv53kTbLAJ5+jbyjgmFxVmD58tYlNZy+/vWvx2OPPRb57Kc//SlOPvlkAMCpp56KzZs345577sErX/lKAECn08G3v/1tfPrTnzbuM8myrUJOIIz7uaq1GY9jMbCElOBxm6HpUeMDuuAJo91nfhRPJUlCVUiqPOipv5bBI6hDepr9nGkUWcgyhkpPvq0RjyzNRyH27WPBo93Iz+LtVb2kdiSdJjy2nopz8XkLONIJt3e6htMDzXB42dd0sKnhLtmAY3UNmxaJG1Dl+wNNG6vroXsy6VrL7b0Ck8tM28KaetjXPEZwxiovuEerahz7W8Torfc5Il5TeT4AcNcTuzHhRLfNCxkFJb2mKto+wVSthgUv1CXV+5NeHEr/XiXaasSp2sY80QlJWPQI6lZ4LdJI1tOzdWxoRC9i06NwKMdshxqdCy1fOAnyGOFklLTQJ40jSYRfFj1w6Bh8fx4MfuCtvv7Hk/jfXpYQgjxEFCVRacTUoWHpukrvOx+ee+45TE9PB+9N/CbLoFehHAyCswL5eGuF5QV1HJxIiLrXUUbEqUNFVkjd4hGuM2Y10PL7KxyqR2zVrf4MhUnwWAeM+6hbYzjaWQDjFKdMdXC4bcNWrqtNOY4oVb7Lqkbvc4LaEAwhofxXb79PWkskGcwAoEYbaPthRovPPAAUjMeLkpqgrgU6jKChcCdpPF1Xj3PWQYJxoOlZQcGsusWx6Akj39FOeO6y6Na4HRqAdayueZj3LDgkX8Ye42p2Umigc1m4VpAGVJtyzLRtOJSjbjE4FGh3h4YxS4wZEzbBEcX+d/x4cnFbHUmGVCkHZQquKQo5rqljS96iYIBqfC42znFw1DTSKA2mnYxxrV/nzpTj4223tAH8O/zTJd/FPpzc3w6PceThrMDy5a1Lajj9nd/5HfzCL/wCPvnJT+J973sfvv/97+PGG2/EjTfeCEA8FB/5yEfwyU9+Elu3bsXWrVvxyU9+EuPj4/jABz7Q83EJIQDXUn35P0W2SSoOJcEyqubJVGmJT/3w8wCACZtnRllV6B9pA2XSgl0aw00oW3ahV6+XqrlqSmkXnmXWd6rqpM2MKRk6fA586YcTeEvXwKM+F1Et1MEQ7Dxo+6RrdA6jfNW2WARoKwsCSb4oEanqHiOYdS2srgkdmjKKXEk5CT06d8yKbmP6OwnCG00xnqK9ybgfFIcyRdWnieUDydVcxTbR/anPmSTbJn1c9fxftT6MJHhsplgKlkoI1UQ79X65WiQ0kCwxAEQNver5vG7TFXjgwE5jXzBFTCcVggrbFUbX6PelZtWQJzp9UOh1LFn0aCRy1wSHIiY7oeLCE7KPIxYDIZZaa1lFL7pP6m8BYHp6OkJCTcgy6FUoB0vFWSssP6jz4YJrpRpPhxUhf/xEOcXJBpWmr0LOmatqE9jfTDaMSLkedZy97ux8wSbyHrmM4Dt7b8VkRjRierHKfFlkALDr7e/D3c/cnvh9WQZgCT0SDwAm7bVo+nOGrdPR8sP+WqOhUU/VrTfhgQM7MTlAi8N0zQ/4nXTi97Jum+nYijQVxabGNRm/MIOSsDjU5vFJPDcfdYI3PQrk0FAFigcYfPuFI3jdprHEwDBpQO1F51SuC0XEa/L1lVGyeaAWhMoD6QiwiDiCTWtAn06hNJwwOY57LnhYHPuE1wPu86nblyGJsFQYFmcFli9vXVLD6Wte8xp8+ctfxsc//nH8yZ/8CU499VRcf/312LYtnPQ+9rGPodls4jd/8zdx5MgRvPa1r8XXv/51TE1N9XRMDp6qf1cUnhb6naURWRlNRxMO5Win6EFJYekyjX9la/HpVRKT5jRd43JN1xn05KxZlNlkOALCSuk6JHkRleTV7QdrzEi6lnUrJHd5PaNS4kASr4mcBCcPhLeZ4+HDDk6fzjfBmj3j0QkuS89MypTIPqLr7m0d24KnO3sAhMbECZthpmMl9iVV405NTbz1sd2xZyXpusv0o17R9gkaNodFbJgK/vUa2SiN2EW91Uc7dyYW4hK6SOEzqi5oOBgorMQCD+etuwrfeiG8xv3oNRVBrxGn412tZZlaaRGgqUW0uKx/yQHVYN5PmtEgkJSVkve3eZFl0KtQDpaCs1bIj9HSOM33/M65wJRD+iqE2A/UqMWsrCYd/czbaZCp+tIBKo2jB5o2No27ib+Tc/UNj+w2Gk91HpVXA1aM44OvW/HS1R6emw+X5fMuwXhJq/SkrJdBYKmCJCRkxGkSdAd+GOzRW8NFP4065XVutn6M4ak5C9M1v/t98WzXiFaqZqj3eahp/PrNE2DcD54fSiwQIjLLRAEu8bte+oQsEiuy90J9U9MaJa1QmApZFExvjyk6dsJeg0XvqHE/NqmhYZdvQF0128SO1vG4dNcduP+3N+GC46/NJYW2HDEszgosX966pIZTALjoootw0UUXJX5PCMEnPvEJoz5Cv+gnVT9I3+YcTZ8GWooW4VjspoCaUCSkvUJvCCLZICZQjxEwnnxPAEEA237yNmUYKObdaF/zEwwfenEoCcajQugbGlF/HgdPjWoriqSCPRKmVBepu9MPoe61OFQeuBF9KOERFSn8BJOOD8ZJV6dKkBKdAFokPjnYVIizZ4nJt7oP/rwntXHi2yQtnkzFjGZdYLrbBaSXUNcfUkEIDQoEmPBk+4WuVquFRY9gqgYsZFR9/d7+nco787ZqH+kwoTGVl1D1CuEcE+eZpy8uegTjtkpCRf9OStW/f9+tESkNGWU60/mC0XgbbyBFG6IYlC4x4LJW0Mc8RjDX8ZDkjR+1wlA6pHNI6rM2bA63Ez3f97+kdymaOfcuWEq/MxVjWEqU4b3PgzwGvQrlYCk5a4XliTTOv7HBIlrWw4YfMcYkbycLQ6nbiOyT/to+594VeZ9V2DHaptBYNAgn4tZV1+KxmZsi8lVJvFga3Yoan3VkFbdVi0MlnXOZRlL1XBwaBv8UNTL2apTMi9lubQLGQ86nSg/4vHdneBqkbqY0rqvnWYSHiEje5O2znMwOFWuvc9Y2Qcl0ZiX3XqHWA5DtUe0aPhfrEp+HkbJp6xKJIgFtegCCCnUsnbAZFjwaPLO99kHiNHDj323EB/+Pj+C2bx7FbY/8Nf77G7PauDwNPcPirMDy5a1LbjhdSvRqNAXEYNmL5mWHxaujV8jGe069NPe2pjQiVYtJTRmecvyYQVOFSoJc7d7pBWjKQpLGqY4DTTdmPBUai2Hab9EUMMaBBc+CTXlfERD6b9ePefA5GeqAQ4kguS6LRvbq14QZFg4yxSb8jRqV0SXRWqRG2jwp09t1CY+8KDIhvW7TFfjhoVuwZdz8PSEUM50vJFZ+FIY/cacmbIbD7fCuFYmQlhU1ZdEtAGhoUgRlpCiqfU14rc0kSZJpeVxBsuMNaFiCxMpFSXKkbPj7LI3TDmuiRhsAuvMOB+qowVVSemxSy5Xisxwcb/WEBabej7NS9YH+DKsrCVkGvQoVKoweDrVoEFXYj8NZ8KvoACsjNQFgwWthYf5GnDQZr9ocFsjsz+ldBtSAFs55JHDX1zIKJH+YdBgWPau7jXm/vXINNRoxLUJVXSuokloqbngknOtOnsx3/LwFbSQHocQKjDaHWrdFOEkZxpwxS/A5vTiURIcBYxmHGSUOk9YWj/nYs/C5QOJi66qwgJWaoRcWeeU9RevpPLRfG4FJ718a04umxeuQRlA5trgMsArsTl5DNQhIFKnNvm4tn8fkNGSfznPdey0OdeMLDN/86CHwR/8NOy98AwDgYGs+9TdpNRcqhFiOvHXFGU5lZNCLi59LjTiVKayEvBXA3wPAwDw4FZYWMvVAon8fejbKStOX/TktSnMp0mb0ib9IWrFJI9KEw+10nS1xjYsdW91O/o7x7Am36ZuLwaW3L35vdGOTy9Lbf8npwqh01xO7Ubd4sN2E7aMoOTJFQDcNUdgWEdHcWVAdFKrxNAl3PSEWFZecvg0PHrwFE3b+6A2deHKwgEiZDOOAdIREF6viXMP3en9Q4RCOtoGsMe7jUOs2rBtLrgrJKIHL2nBIPeKA4ZyjZjVASej8kIZhGbW53CAiE8KLV0Sy48IT/EBiwoQxy7z6HJWFWRkVSitUqLA8IaRVio3ZdYv3LV/SK4oafQY1RulBCYJbJUV6yrYky0cB6Y5afU5S53qRhZOn1fnx/T0OTj6zbfxObeOkYzJM5m9MLxqW/SBr3u01BXiQUPuwzwmmHFFgNyuDLPyt+aSzMvZM0Au66VCfgyRe/PDhBt68hYJwOnCbheT0ai0A0zMmo1SBeHEoKU2VJ+I0z3Oo12BIC4zKizv+aT2ueerLmHvbWzF+260AAP6+84M2iwhYOlQ5jEGh4qzZWLr8kCFDNWocaO1M2VJATbdkCenP0jjkUI6mF3a28e6Du1I60ShCDuJtX2hHqfdfJUmH20IIfJj6UpI85DEg+F3jHxCfNDY0HBxs7QqMpkSbUIsWSVFJz2SKpqepgJEw8KV74wHhwR0mdHKR14gs09JcQ4pHXGcoTzsIxixhQKorUR16v5PXU6YYPTqTTJJMBIVxRHQwVaytXwqfRfXB5MSfFCkpPOjxQkrnb4kbt019LS3KY1AFMfTFgmzX+Vu2R6531r1jXPTrJGH+IouAGm1EFoO0tWDczufR+2NTHnNCDKuQSK+YdFhEL3ra8XHeuquUsWLwJzAq10guKHp9VahQ4diE5FFjJfvCio6v+vySNe4MQ1c7iY+IOXnwDdC5uWoES+LUoUyMiKZTI+qKHz//touazAPjfsSAIwvolAHV+T2qmZNJ/fOHh+KRyibM9WBoU+soAIJbJhVRzcKCZ+7josCq2amvw2OdWMRjWanjatFgiSy+lcW19QC2JIMv40DLF5GeZdaqycLv/OIB0F/8NVBi4ck7ZvHkHbNDPf4wUXHWbKy4iFMVpglFFEzpL41fn8hM+NgrqvTDpUTekP1BRGv2QzjUFCA9yjRNvzJfu0Qk4VS3+iszROypxqIxS0zyWRDpVeFEn1T8ZlCQxjKTXqkJUqc1abJX+42UAyhrMVEkjX/KCaM0dWxdlSxevrr26wDi2mKAuNc64VKvQ9OjiYQwixyZIj70BcLpq9p48GDY7jNXX5NrAZLnWZYGZanHVLdYIJ1Q1Mn1uk1X4NEjN8Hr/k7VOHXoGFzWimzPuB8sBlWnnKpJ7HIRgaIaWJe7840SoQG+XKNl+4WIKu/Ve19yYypUqDAyGLTO97EA3YDCulxSx2xKActeYWI5aWN53kycLMiiO2lQeRgDcNr0tYmZGSrf6Dd9WBYCMiGv0WQUo07TkLe9Oredd6nRAJo2r5fB985Z2wQwUXohbB2DcmCIIqlOEMVZFIPQi/6VqQ5u/ekLuPepGn77kLiBq6FkJh9DRtSKs2ZjRRtO84ISu3DRHV0PU8dnfpSu66aiMrIOHhGP8hK2A+i9OBQgCwANtn2mwVGPmpARmyoG7aFWB/sTJjuYd60g4lh+J3U3TWjY+fW9npitY1MjHBPqlKWm9ojK7yJ9vm0gHM8tyEqGonFSRyoJsrCVaHf+4hIWdTDT+QJW1349cBIBZmM25yISO4vEp0Gm/8tFoprO0/SzPdW9Rm0w7mdO/rIYnKk/WEREmvo81OzS25pEqH3uGtP0PdZB3ZoQb6iYeimx4HMGm9bh+u3uscWd/fA58902Rp9zNQJ4GOhFgiL8O+zTA4swBsG4c/Fgdl6hQoUKyxxlOKtNc04ZclPF26E68rO3P9Q2FwWSxXSkAegNm6/oOviiOHP1NYGepSwCZMKiR3viuJedsQ23PhZdD8q5ct41a+JnRTOq0YVlpmuPWcBMSmkH6ZQeZuSZzsPycCO1fWn3NA2nTYvCYWWiH64NCE6r12dQQWFFdPR7kXLQr29S4doJxbqkyuHpGqdEKYilR8USLZ1fhzCuhgdyWVz+YtLx0fT6M3X93y/W8ZGXbcSvnjaDmVN0Z46PujU2sJonFUYPK85wqkfpbRi7svA++pkURjW9YSVBn2iLTh1LQRbzgIMDkRQdMakV1dphXdF3OYm7LCRyFuFGw6zpmZhpR62putZhvygSXaumUUn4HJGwghcWbGxoeBFjT91iaPsUDEBdq9gttaZkROu5a6/O3R6VDKfJRMh7qOK6s7dh9+O7MdMR1SvLMpQn638BXreNZfZ99Xhp1Wqzfu9p/Ur2i6zrohtNZTSLjKLudPu9fJlg93A9KLEAylCnY/C7MSqegfDJ9v/3H43h11/SipxPLwXGhgWZcSEWkvHv1bZnVYrNAw6OBfdLmHAuDp7NUUkZGmaF0goVKhwbUDUBk6DzjYcP35y6fS9rj4tOviz425Td4tDhpO6rkGO7Oj5O13y0mskZDTVDpKQwMgmDjkl6KH5c6Xwvb2BmHLj9p+F1/cmMjekeM+ul0Wn92PbIOrfs6t5pevV5591BZNIUSY3v1Ykb6nPKfYQR0CJ7qbf9SpShbfzw4QbeeJwViTROKgTbC1bXs0Plp53iHCyraNXa+qWY7dwY+cxjHdhWVNYjqR/0E+n8uk0dsO99HX+7/jxc+v+8AwBwAMPPnhwGKs6ajRVnOE0EeQvAvxn7mBs+UyFTNaXxQ3ovGR/txe1yw5efSi8EpEKdFJMm6DIM2KqnrAgGmarSiwdRrQ4JCGI4r0UwRg1M4v+kVDMZ1alPnGUaTfPAoRxNEHiM5NawjWoIiQqZalSC/NyEhw7fXMh4qi44Tpzg+MnReL9QI0vzotdxR6bS+1yUR3OZC8CGy2QEcf7cwivO3Ibrf7xb7NMQrSmPp/YRWehKIq83X7+3Hu90pVaiBOr8Ldtx755wQdH2Sbfwg/j9TAfYMMahFqFII9hNn6Jh8O6bnkERWSqMpHIh02aLoMQKZGEICDhCndPrfzyJD521aDz2MHTe+sG5a6/GgwdvMUaeq+RqEEVQRsmx1U/0zagYfytUqNA/ihiLZOXqflFknuhl0bsUC2XpYJ13w3T12Y5VeMFPSXohHiA0lDldrfF+DX7Xnb2t+z9w9zNhRpnKM1RJo/GEFXqaZJJqNF1bvxQznS/AIjY83jEaUblSDnfcHkxk8rqx0dKlMM2tbldySxaHyrMPyTXUTDWLcHhLVFG9bomiqN96YQ5vOm4cgIiITNK57UXaTQbEqIVU07jKkbaFNRnG1rRC3RImKQqb1sC7/waNL28+D5dtHsdfPS3ev3edl9juGm0E/3dYc+BtKxMVZ81GZThNgJrGqsO0mBaTeXKv+fh5HwAQpuhX6ffFUISwmIyi+u/VtGgVSYtuvcom0J+3aRCLe84Z+IAn7DSjr7hGJEZGpb6pz9PlK8rE8/M1rB3LL6/h86gRRzeWqttRApw+3caBVn6TZpIxU6bWiIJyNFc/v+GR3Vhtrp0Qw8bGVcHfh9t3gHOWWO09yUhYtzgWXPF/uwf+mxSRoh7PYySIaNENqEVhkxo8bk6byRvVqqacyXbq5zFp+7mdIKr3n3MGUAdAJ9AltqgTpOpLfPicebiMYPsZTXQYwXnrrgp0WqUT4lsv7MoVLTNMTDqsa/Q2Lz5WVHEo9EFCS21JhQoVlgvyRJw+pEWYqr8QWUM23FJUN7v7J9lpusOAzFxSjz1d87HoJRteOqz3OUGvnH7K1Ad725GCy/7xLvzaWebv8rQzO1W/N8O7LEqahDy6vKY+cahlYcuEaNNyybp0ctXASF7357mPOt9XI3nTqtSb95X8nV50tB8UDfzxGMnkqFIjNFZfwcCC9HMhIJkG4GhR2NRNY/AYwS9899v4zkveBgC487Y1AICL/3hvrt+vqr2/2AGXGBVnzcaKMZyaBh8OhgOtnSJdn/9T7n1ldSqTkeRTP/w8AKBhiUm8wtIibfIO/a9msqgWOur12IxTpBnae4Ua7daPcVaNpFNTcyzCY/2XaSnr8nqpXkZ5zawcEbEHWjtztVFPP+nlfJMi3to+zWVElyhCJiQhEyng2W02jV1pZEodn/Y3b4kYT/PAphasbrRtEvIa7JIq0ktYBLl1ZQcB2S9V77kJfsIz7/UQgUKJBXCgbo2namf/xcOTuPali115DJ1gE2OxrVGBquM77fiYVSrVFok8v+d5CxeekEzH+MBdRRUqVKgwXJQVcQqI+TVrHk6CGhVpcoTlMfD2AmkI4TyMJmM81PcWc184j5gqffcLCqHHWETHsozggKLz+qTN8OTsDkzX8nnTi0bnTToc8252g/So2ST4PB5cUSYkTytDDqCokVC9/3mz3LLw7ALBSRO8cHaOLK7UT6HrflF0nSz7JgfrBq+JHejZnQQ04hwQhVcXAKQXh2I9cGabcrz+x7+O+9/Nsd/dg/G5tcV2UOGYw1LXwVkSqJGCRTVOiyzyi2r2VVhe6DVVvxfQrrao+jrUinsRfWb4LGP+Pm36Wpw2fW3kM3VyUQ2IPu+dhA8TWyZc4wRJE8idRYDVdQ8ui1dtjUfQFr/vSeOGWrhKHEv8n+bZv+7sbT2lU6ytXxp5n9R/9UhqU/t8jkjaO5BuuK7RuFao/LssggmkR4F/Z++twd8dFu0L+j3WnQP9GigJoYE3XRpL236Yhi+fW4s4kYVN1rUZtWhTE9xutKw5PS79t2lG0+UAzkPNqKKvY1A+q0KFCikYhLxX3n3mNXKo/KhMA68JfkokmR5xOqjo1zNXXxP8zTiJSVv1gyxN7sU+A4ZN6c1JSOonSXzX5yRWFHaUUDSQYtBSYllRwEnX8qSJ/p7fXuTb8iDL+D1mhbz5K09nS+2plenzVKlXub6a0TUI/PNrvoTOX92MqU9+EU437S7tfsr0/EG3axCoOGs2VkzEqQqhNycWqkHEaRce78BRxgNC3grg7wFEH9TAq0R4LOoozePY9IeXrlxhsCiaqj/p+DjSzmYa4SRDlCjOuEEPEELwEofbd3SNM+FgLfpaOYwyjVhYRLRxqfUFJXnYu+jESL2MGswyOLqcYNryE4mByZhlEY5z1lxj2FpALwYVNUYS7G8KolDUq6yfi5sjLeZIe3e3HfEIBZuKCA+bioZIjUqbclDCY+R63qXBdVbP6eafRAtJ6O1U78OiJ4zxeop+VrXTuhUt7qQaHAXx6m9R5zKgljJD+pz0XhyKh2lJLmtFvtfTjnzl2V8OGkIyCmnRo0HlYhMaNsOiR0s5pwnnYgAYuetU6UVVqLAyoc5fRR1veaprFy0O1S+CQpndccki8QKgZSArIIEmcM1B6q0OWpJA7x+9GLFV9CIjluTcz5Oev5To13SfxDHdAgESSTJWKvc51Orf3JJnXJCQUZm96JiWgaToTqkbbGtrHYvY3Qwi8yJIj5SW44T++VQaaUfvNUbe9sKV+PbVD2HPXatx94efhLqudlkrl7F3OaDirNlYMYZT0w2NCPtyBgKhjwcoDyX/Jhj3YtobaccYZPGflYpfPS2/7mEe75Ys+rO27mHBs1C3GOoWyzS3CCOGIG0mw1MRZBka7UCQPt/+OGeg1EHdYt10cNpTX5xzLUw5ggXk/X3WgCkqmBN0GEdtQCzUZKCRhr7kImHh33KbOuVY9CjqFkfTp6h39U4Pt8VwKSPJ5X3xGAEtMGfmiUQfswRJOnsNx9Nz6W1/10mXBfqgDuW478VdeNNxcePp0c6dWDd2eWA4lbjumwQ3vJVj8rovYvF/XBz5rm4xND2xWFpwLbR9EjGepkWcTDkh0ZNyDz4X/zMuojonujOQNEY/ePCW4PcTdvp1km1R+54czzlY5Lk5ZbqN2Y6FhlL8wKE8cbEgo6oliZhAeC73PC+iOLra+0YcbO0KnBqCDJIowXNbgGN122yDEArfF+ElFnUAtHDtS0VE6rjN0DGkIg6isJIJW1ddm72RgseP7kBdcfjIayz/lo7Dpkf7XpCaKrFSjI6EQUVCK1SoYMKYBSwoEYVlGP4khxEZShaQU+N0w5iH5xey+azaxqWSipHztj53ZDnFfZ4tHSThMoJadw57bOYmNGx5jGRnbpa8kY5Jh2VKDEw66Z1CvQbrx7Zjf/MWUBJWVJfRhpJ7yHUsB8O8dxiM+/jG85N45fqo81aFy0LNd8nhAHOAkEXENoue4Cf69WYJvysLSfuW/XTOFbxU4pLTt+GLT+42/qZoZplcf8g+wHgYlTnvHoU0t/Qj56DKppkcBzLQ4c3HTShp74J/EhCjZmhRbB4PsxqldIalSdrNuoLb026W2btPuTS2H7kOUo38av9UwTk3xv94rAPLcsC4j6ZH4dR8eCysb7DgUcy7FhgnWF3zcKBZ3OTlMQL3Hf8eX37rAfyPJ07Av/6HeezVbp9uNJUych7v4GjnTgDLR+u04qzZWDGGU3UQlA+lrv3BEzydlNixkGuT9mWFwSFpcjOjt8jHdkKV7KVEkTRmQmjEu5hkFNINZ0fa0crdkjA6VIbgh+lEcsBQSfN7XzWPWU0hQBfvlxUrB2U0NUGSXHkN6xaPnIta2imskCm+142wssqmRXSh8fB8fnhIGP3OW2fWFJXjBe2Sy9OnvWCimenESZ/63e9vHYvtT37/1Wdvh1Rdybq8M50vAADW1Ldhzr0LHAz/4wLAYy5qN2/HYnsu2FYsUGjX0BkavyzCYRGRJv69/TsTjzXnhsRJ9ZSr5Hvb1m34ytN3oO2L4lCnr0pvvw6qLVZEBdH4tPbE0To2NDw0vXDB5XNgwmHBc7K2LhZkY1Y8yqLpmxddptGCcxaJBJftSoPPXDD4EQfdXz06jt84axF/+ZNxXLo1vrBhfDSLQwFRjVOb8u6zIe6LGsndr160Tlgrp2WFChVGBedv2Z7LkS/Rry6jathj3A+KXKalvAMiO6AXrK77wHz5y0iPdwJJG5e1uprzQjd/uubjqdk6GAc2NASHmu1YgQFHX7zncTDeu2cXLjhem7PV9jACy+Kp67482Uw3PCK5dw1tn0S29zlw9hoPexftYH9FYErL55wBBo1LGY3o0DG87YT51GhIuQ5Q37d8MdfOukBDy0KiJJ52vm4s5D9JhXl7xYJrgRLpSAeAcO1RtzgWvfA6O1Q4K8YSLP6Sg1MC1Gn8mVGfz6ygF8bjxlSb8q7DmMNjBON2yD8XPWDcFteuV05U765fRd6Y+FtySkIoCOcxo2RR7F0MV079OE78wMkTGvpDAz8Fhx/jd3WLwyKOyBjm+nfivPSApknHR9u3MdOxu20u3vd+eGg/fvd/Hg9+kGP7of8OfObXYm3LE1xX4djAsRFbXBBhBbd8p8/BAk+Nnqoqh6AiA91y0Ig81qBPcr16/CzCgwG6VxRZ3EsPYhE0PYo2C39XBhlXkVShVG5XtwRZH0QaVxp8TiKvJOjEV42IM22nalyZiHGe+yl/xzjQ9OP3RpBuEjHY1bqEdXUNuOPxuOFM3gM1gjUtlUf3eEpPr2rUM1WMVRceefXSrn5pGCHu0OTFy62PRY34Txyt59o/ICMg4tc+rfiBJLQNK36/D7fF+5YfapxaJByv9T5/jpIqebC1CwdbuyLebhPUOYeDGw2qPnMjbfvIy+dT9zmqyOoreYymhND0V5esLrhfivxuVDzf0nvf66tChQrLE4wTfOuFXQDEol7VgpPQ55QynnmVn4Zp9ck80uck4CRFg0GKpA4XgTqHN734Qebc6LWarpkdk3mupx5gYFobSG6bdH16CaJRuYsMRPjJjB1c00EF5qQ5cadr2TdUv+dJc3ha+8vsNhNO8vmoPOrsNfkuaL9tU42vEnrBokmHoWFHjzRe0P+Qtq4zBQ8MAjqv72VdXcSQq/LnpKJXc50+hYE1yMCEmy97Fv+04WY889AkAENU7ACKPS8FKs6ajcqElxN6Be80mCL9VMKkFx6pMFpQH4rB6iZl77yokbYMIXCRTiP+NhlupSFJTpp/86CYSNJS0ActvJ6Gtk8iKcP6ZJ9l4Hn48M2oWxyra2JCZhx4YraOCZt1dT/z3yPdyEpJsgakHCcOtc37UhddqhZu2rVWi4fpWmIHmvN4dv7GYD9pyIpyvPknuyPXWSXbKkE0GeBftf4qvGq9OWq3F6jnkpQeLosw6GQWEPdBdXZdeMLluPCEy/HDQ7cYr5PpGYyRvFqY5y9Jrkimiv9WTefLW7l2qVHX+qCMwraU/j6I4PNRm1p7FdnXDSwVKlRYvsiK6NQzdMqArOOQhX5Sp8uoXG6CQ+qgREQSrqpNBJ/rEZqDQJhqLf5XHefLGTovmbDX9LQfJ3Akc9Qojzj7o7JJ4d+HWtZAs0EYl9GIcQN3VlSkiS/nnXtN6fLyPMW6Q3y+eXwy1/6KzPn6sfXrGzUylmdIXTfmGY9vgkXyaeTmKbQcN1Qy2LQGzlmkb5s4PBC9tr2MtR/5ow14Z+1KLMx3ZTCU66sbqsuQRFgqVJw1GysmVV+F+gCqhaEi23AOQsJtl/ODUCEZc900DxUMw/Eo5CmmNChimgVJgESag7gaHgv1LfVUdwmVpOhRACdNfhB7F8urSKpDH7TzXjuhu2j+rt6NUPQ4wUzH7lvTy+kWWXIo8OPDNk6dYnBouo7turp5op+wo0TV7ab+ZFW7VCEmf3GfNjQmMaOk6gOhxqlE2083zCZBeiOTou2FuH7vFzftXicVkRC6rRQ25Ri3gU43WFSmmakOrqz7rqbm61IYKlRNTvm3qkXFuovdvFIjo5imL2ERDi8lfWmQJKvSOK1QocJSImt8k/qmCx5AiZAUEnJC/etXs5LTodPQ71g75VwSeS8khKJtr1sM866FmbaNNXU/xn10uAz404fCediUwl82pCwCAJyVUigUAH7+RHNmytlrPDw9l70sT8rW0A1Q0qA0yDRiiwCqiX7UMirlfX/kCMFLV6d3gn6Mu75yT1RZLol1XR3hRpej98t/9GdcdYBImYsk6MbGXo/vMkWOS/lu2hHXY8HLNz5wzuHDi9QoEMcw211Uo6V6HjXaCCrap7c9u02AkPAAgNOnXRzeOI7fOn8/Tru/A6/bxmOlIJSKirNmY8UYTvXFflLFNwl1AjJVpWsz0i3AIwwWdUtoljiKnmIRA0aF8kC7GoweBOES92Xp74UuBO8nkB8ppP3VZ2/P3YcOtnYFk07Wqa6pb9Pei/+fnN0BSgDPJ4AljGSTJuvogJHkzNChazqZjGeiyFP4/NYthlbXEDzdPTeb8iBaNsko2Itmrgo1GleNxgs1yNJ/r070NzyyG6tr+vfZCyUpUq5CEmpKrMhiRRW2NyGvtmaNirQ6vb0mXHJ6/gJwvULe31lXRL4mEShpNE019lIWq7x6qHUbOHikOFQaVH0nE5KIvDS+JxUCGwUselRUXu5IzTYRVZWnOJpE0YqweZxRFSpUqDBoZNVBkOuPVTWu6T6TvlPgBzEGSgfqsBfHkpeosmg+BzaPe4kRjkkwtT0p46joNezH8SvxyBEbE3b+SvZ6/0oqolMGdONYVpGjYUefZa3pk6A+e71GX5vOVS+YlHRsOU7Iglo68hZhS+r/JgNpP0ZTfV2Qdo6yyK0KWWz04cM3Fz62NKgKo2V2FvCEzTDrWpFgiV76yL6mg++ecQc+j7dj3Udfh305f5fXkFtheWHFGE519GpH0yfHXoafUYmGqRDFIKs9DgMEJNUIkwcmT7Ykm2ICN18j6V2khKABUQlcx7PzNw61OFQS5PM36wrjqV5dvc2kyHzUQVIWTETjpAngZ3PmbbJ00BY9gkmHlZLuFxZOiu9IRH1QLHrJEbp6O30uImPTts/yvheNAkiLrpCSBtMGh8CELY8XjVDpMID6QhdVhW40BYQhNMvbr4JzFjyzBASUOMH733n5PObd4eoEm/DYzE2FtlcLM3iMYNIW57MSjZqsD+/9Skl7qlBhJWO5RemUvX6Zc+9K/E4dA4s43FRMO+mGyLCokBmPzdyEhrJSNs1hOkd59IiYM7MiT8vArGth2vGxbuxy7G/eEnE2rq1fipnOF3KtC3rljsthPSsKb4mAGvU873pid1+cWUaIm2BTc/CUXGP5A+ZDjPsghMBlLdToeOx7EXVanF/2K7v2+FGZdWi2nqhGUV3iStQnmMK8dxgA4LEOLMsp7GDPC1kw7nv7d+L/feNbcemBn+Kb60/D2egkRpuq6w/G/VhtiVFHxVmzcezFGRdAXlHiNO+Mugfdc5k0wCw3orTckDWR90rAJAZdufkrT9+Brzx9R8xIWWSCr1OWO1X9ydkdeHI2PYU+rEafvM8Oi5JKPcJ20IZpEdEWvoC4ATep2JbsM5TwmD6jzweTkKH206f6qP8zXQvT6dMmLn0Ct4gTS4lLkzuQ127czn8f1WhNk+ec5tRAKgpZ+CoJecdgWRxKN5oC0clTFodKWqCYPtd7lUXSw7sfPHhLZntHEW1G8cNDYdsHMX5OOBcDGD3iVulFVahQoUL/UOeNosa6tO1NTn4VecfhMua1l672UtualF1y2vS1ib8xGZUY98HBImtgxoutjdKCKFQc7Zirnw8DMtox5PeDO5bKleXfsu8Mo3BQNHI2tPTbpGa0dfQadXqoFWYQpUFy/1U183ay/xRZXbmMBEZTCdVQ2fIHE91ZtziOtC3wI0fxyT9fl7idvM8OyV/kdtRQcdZsrGjDqQkeF9ozSQtvU1qHSLcNqzz3q9dXIY6iD66cvNu+0DCkhAfERq+QaRMOZqjELgf2QRlKs8hf2F7xvpdBqRdjZcNAbNRJMsnotEZJx9Y9rcOQraAk+gLMRRlMaXDqOe1rhgYsGW3KAKU4VBhxaeVMPbYpN7ZFFofS+5gcZx6die9b7zezHRqJCs6CLtUgcbg1Xyqx1HWe9HYnVauXyCs+H/1N+RGaZTi68hLnIhVGhwXdIZH1mnSW7hwG7dQqiqpCaYUKKxtSeskEn4uIR0pE5NpSrBv6HTMHVqSJRYtbCe1X88Gkk75IW/TAgu/t3xn8vdSJUUV0QqcdH0/O7sDB1q7U7YSxNHqBdKPVvJt94HCNlXyR1LXKqlrIByiSgxcGjUeOhLw9z1rKlFGUuG1J6xtZTKmXlHL5bIh18HBqskhpgaTnjnFgTd3Ht14I++bWVdcG6foAIgZ8UwEoANg8Hm6vBhjo/XfMahjboT/PRZ7v+17cBZcRvPv796D5+jdh+nDcODsMw/iwUHHWbKzYVP2ikIbUsojNZ36UXEBEx8deMXjtvwoh5FAsNXxMxsd+o1bLxvqx7TjS3h1439osnFD69QKZJnDdUKem+Ld9kkok1ElwkEgj2mmYrvmB9qgkTxRCq1Ho0nKcMtXGvGt1J4tsfVFARDYseKFhT+o9CnF1YTyVhLnIODPpsIDw5tE6Pdy+A2vrl8JjncDQSECxdmwSs505429UI6b4O1/7ZEV6hwJ+l8tJw3XLF5/L/nXXE2JM1LVOk4z/Iu0qanRm3I9VuJTbJkVgq1pUTYNxW+//9zwvtHVX12ksesKigtR5LFr8wSJ2IpnNU/1YjkUq4XNZ/0VEhgG3q/2tO6yktlcZi9QF90tB1GmFChUqjAq+8vQdQzlOkruq6VHUEqK+RhUmByLjBHWL5XKoOjTkGYfaoQyPicsuejRWyBQI1wGx4rEDdM79ZMaOyAhl8TnT3JlmxNFljPI4al2Wz4gn1wLLIXW/DOj3Jk8kba/FVUcVSVrMeXVZJdR1CHIW4k4KbjNx+H7xxNEa/tP/92v4m3/8v+GO/Qau+d31uOXPjgCQa44lKAZSYcmw4gyn68e240BrZ+L3NolWMUkLI09KHamiTUcDevElkwFmQqlCHktTBuAQs+FxGFp9RaJFpbc5LBBVbvv01BNAGL7yTI4XnXwZHjiwE5sabqmkat3Y5T39TvWK+Tw8t6ZH0bBZzPDrkHhEqIoyUo+kpmanhGC9tHuvF4FSifPh1jx8HiV24lpEFwuymNW9e3b1VDzMoaLvqFqYpjEzzwIlyUAvivtlPwMN5flXoXtOzUUlQjkMWQhqpvOFyHsTGPcBzw9mX4eOoeMvinbnSAJRSemoFoZqMyntAay2fZy15pqgQqkKhwLvf0myY1AvALfcUFUorVChwlIYk4o6zHvhjG0/n955L9CzR3weapTnwe+euw1/+tBurKsXlwPSuXfbJxi3eWrBr7rFckdTfvfpOk4+x5xWXNTolBcEBBwcBIPJzNGx1FG7JmTNqT4nWHAtkQmW43mQ/V/o/1toZMg+5IXIQitlV/B4BzZyVGctCLFOMN/kBQ+wHKWeRCe5v0kDqKzHLTmwWqB77+IOWFQQZj3QQHcUqPdALQqlopdgok9/dB+m/3oV/tfrH8S/v/FVXS3W6PMun7EOa2LMmoTHO0FR3uWidVpx1mwsg3iVIYFekGszPVVfLpwrY+noIQ/5mDEM6EH1zoTfDDPaNI0obmg4gbaiirJ1RvKmoRxqJ3+3qRFOdnsX0/VUe4WMDpavLOJmKhBECe8KvotI0IbFYkbTMiMOKAEuPCE0AEsPrlrV3QTGgSPdoMZ5lyZWhpVIKpgkJ3498kAaT9X9SgNxLx5zlxVLP8sL2RZ90ce4H7tPpudC9u2khVWaMbvt09hx9fRCE/R74bJW5L1c1CQVFpCwCCIpUIMC46TQS0XaGDxIPaRRKULldyVgen1VqFChQq8oMoaYeM1FJ18WvEyYrg1PlkVEnJY7rucNTpDHTZuz+q+dEH2fx/BYxhxaZB9pGS5Z662lLr579prw+GkGnglHkMEiqfplIOl+f/Cs4hmnJsN42QWUopqqSe0AjrSLGenToqAdyjFhrwEBBSVWYEyVSNM47Wfddup0B//jhxO49oz3gpzzC7j7L98TfDcMJ8QwUXHWbKy4iFOJpBRBj3fgZNx71i0WM3pqdMcu9PTdNMjUKD3itCzUDca0XlD24l4dwB2lQFJRLHgUU47ZkiTSysXfY5bZ4FS3RJr76rr48u5nbse56yRxWtqBNSl62CIyopZEtm36NDPiNE+18GxSKf6XKWU1Gk2DMfVji4htLjtjG+782W7Uuzupc4IfHroFW+KFNAGkV52XUK+TSpblvS0KGWVao8CiVnS+qNNJJb1JZEj1BDNOcNJUB7MdKa0gP49f17rFATeMrjbdN2noVgseqfBYBwdbuxKjToUof3YIjFyIral7aC5GIwbcrsTDqMMUJaTLDZQJK5ADGI2L049g/koR2q9QYaUjj8SOjocO35x72zwp2b3wxWGOUUJ6yfzddM1Hq2k2YMy6odNWzv/qvC7/lvUpTMgTcepzAgagVzOKRYAzVvnYs2ClHkfFMDiAQ81tEfJS4fXLE212LK+Zh1n0Kg2vXL8IjqnY53pkJucMlPaeYp61ppH9Zk3dT404JYQEUafqOMU5D6JON49fiwOtnXAZCTRReXcdI6M8JcxrvLxnlYxfe2kbb/7z23DX6VfgjcftyGUwtUktqJuzXFBx1mysGMOpujgvo0Y2A/oynla6pcUg9Q/zoN4dz/SB3WT8kvqSAPDajVfi4cM3B72DAThz9TV49MhNkd/IglODhs8JfJ8gychyoOliQyM68YnB3O1roohrOuX73bqMQoIuI/AJx0mTH0zdLk1KQ8WGsSvzNSwBUmNTGllkiodaHEtN11GJ4dNzdawf0yyAOWHqhydPcvzkKDFGN4qic+n7zIrEkMSCcT+QOCCEBEZUOSYmRZPKRVXbJ2jY4TbzLs1VDEga2H0OTDnAnLKY6RiiUR88eAsmbOReQKiGMp+L+zLrqnqyYidW1/DfYWLfUstWR41GnQJSSkHi/n23wqYkWMjJqO8so7Q699i0Bs5ZJBJAJY4NW6R/feZHU7h0axuvWn9VJMJ0lDVO65Sj3b1+c66FBw/eArmk1IuGHcuo0p4qVKhgwpglUlrLhstk+nyxAcRkvL37mduVd8OZbEIjiioZRAN9ecA8NmbxBLNWvyLJpHEfOROfufoaPH40f5aU1CMvA7ox+74Xk+WR1o9tx/6m2ZlLCAX6KBg0bnfTrwmg59Tknad8TmAPoIjO4VZ+M0ZZmupZCPtpkYjv8G+XEVgpnD7veaTZOgihfUeh6rUu5PlOO6K/NLoU3KQhfNaaa1L3LVLh48bJRe9oeHzmwbZEUIEcvxyDMZj1wcMkxm2G8Q+8Bu+dmMM+rV0RDs8ZSNeoutyMpkDFWfNgRJddgwUHSxx0dI3TXpBmxGiUnGpSIRmmhzgtneaBA1GDHQXw2MxNxm0H6Vl59ymXplZiVbF+bLsxsq3dR9pQEGnZg3E46fqWTVh85vWd8t/RRO9lgaWsyAtZHAoIf+/l1OM0pbd89dnbY58lvQ/bEH6nFp9wKC+se5m3ImRSas5rN16J127Mb8RO0xs7fVW7a2QLUYR8EkKC4lBSJN6hHB4jxmfWFJnY8rMLHVDCMWkbCkqkeKEdWg8No84YOGe5qp9+7BXmgl3AaGqcplXmHXQk6EowxlaoUGH5I00epkyUpbu4FIgWfuw9yyLtmiZx7aKLY9VYetaaa4yGoevO3obrzi4eNGPmLknbxjtWniyjPMdX+2wSL8vqv6o2fFnI6hfDMOjo+rZJxnMhadTfsUznq++Tg8HnrrFYalkY0+juoOQY9jXN63AJ1XCZp9hqL3josA3yyjdj8dNfHMj+KywfrEjDaRJM6Sz6ZyslFPlYxFJr7BSF2t4sY16eVKwykNX/bWou9LOv6YBxoEZJKRqnuraNjg0NEcqRZfxd8EJSpUdOJv22l1T1NK1SQHgzGQ+JaYdFf6Ma8K47exsYF2n9Y1a84v19L+7ChO1jY+Oq1DYFouwJpHrMMl9j2ZYLjt+OC45PN9zpkaS+IQ1kyuGJEdwiXT77uZXXSq20qd8nnycb9SQB1D3o+v5VtFl8XyIN3wyXCWM74z7gd0CJBUos2FSEaqve6TwLi+FpnBZ7paFseZK8Rv+lgox06OVVcY0KFSr0iqJGxqXShZ5yLom8eoGeCuwy4E8fEllqUsu+H+OZ5DyDGpNl2356NHoeRQyMeq2D6P7D0OaytC5NvEzKR+lYNyaILUXcwDhMqBldvWTrnLn6muAFpN+fvA5/tU+Z+uiNj+bLtqREXNsfHJgA436gA2pCWX1ArldCuYbwnHupaZAUIavy+rTPxqxG7BmVART94nvP1MEPPIGnfzCR+zdlBOINGxVnzcaSGk5POeUUkS6qva677joA4sH4xCc+gS1btqDRaOD888/HI4880tOx1CjQMlL1ixwPCDvWrFuFxAwaaZqJ/abYn7Xmmp73oacrJE26X3n6Dnzl6Tti3vY0BEV+OEPd4qhTDoeaCyTNdL4QeWVBnq+c1LMqvzuUYzwhysEvUaB88/i12r5Dgeq9i4ItL3q0EEEyRYv7nMDjBG/YfAUA4KWrW3h6ro59TRtrxzy4jMDuQ+P0XSddhucXBMGRBrw00nHDI7sj58Q4gcdEelgevdUj7SgRkxEKfoTAhQ2WRNihPLg+eRYhU465r+j342hHHEvXMZaTcBYBlVHODx9ugxACBh+EEDQ9EmtrUjaATgAlTBVu73k+rPQur7WM/OacoUYbkShwAhJZuNStX0JHGUNUD3meCFR53OWaFiPHpFHRBBskGOvvVWG0MEzOWmF5o4ghUpWS6RdbV12bvVEPUCNX1SjNQVSAB8zGHZOx7oXFNONV9nG+9txtsc/aPg2O9djMTZn7yWswuOGR3bjhkd34hVPakeuZxvf0ebJGOZoeDWSMpCSRdIBbxI44zR06FkQd9ht5qiKJl5nWHIPmKmUZbCzCseBawXory+imBy2oGXd5nf5ZeG4+zsXl8VQjNOOir/zchoXgM8k7CaFdLVCxAwa/9GJRgDhfld/L4lDnbwn58ONHdwQvINQylXqm8jPd6Cu58bi9qntOYnvdea5eE/mMyb7aa6TzR/7yeNz+rtVAbRzM5zhw4d1RPValDYRQ1Ggj+HxV7f1YVXt/T8ddClScNRtLajh94IEH8OKLLwave+65BwBwySXC6/iZz3wGf/Znf4bPfvazeOCBB7B582ZceOGFmJtLTl1Mgow+SvPKJaHoACMH26TBfBDVpSukQx0w5cROCTDt+GguoQc0Cw7lif1oQ8PBwdau1D5dhFDoBWdkarmefp/Vf00RmRvGvNwREBvGrsz10mERHnmZoLdBFmPyOXCoZaHtmyqDR/f1+NExnDLVxqaGhwNNO4hMzYq4c7rG7GgkcfL2AHDWao6zVpudMIAwTKqLGDVKVk9vOdSKLxAAobXJujq6sj1ZkbpZkaY6VIOwutCSBR88RnDXE7vxxNE6XrX+KrxqfUj89esvdUpFe0W0qjSIElBQWF3ila9tqpFf9l21j/s8bgCWBmoTEeuwZuSZjJAqULT9v0eNEbisHRBbh47BJrUYWXQox2JJHvNh4szV13SfBxK5n+qCNC2lv1eMmse7V899PzpTAPCpT30KhBB85CMfKe1cKgyXs1ZYOSg/dZnDoWMDb0Mv2Te9YrZjYd6NR9CVbZST81NobEFiIICKQdQ9oIQbjXcmB7DkGbohyWUtbZ/iGkqtyDyRkaoWbzMhMEXVge+wuK7kazbkl3MaBB45QozRsDpnmHD84F5myVzoz4ytrNfU72Y7xcb/JP6tOylMzucfHJjAN/c0A06vOuNlgA2FlZodlQYZACS1lCXPVouuzrrZATZBmwgxBrPpQQSy37b9xchv1e9afjPS5w60HDRsFjzTlPRW3Pb+P7Jw0W/No7VqDU5/Ywenv3H5aZfmxVJxVmD58NYlXZFt2LABmzdvDl533303Tj/9dLz5zW8G5xzXX389/uAP/gAXX3wxzjnnHOzatQuLi4v4/Oc/X/hYqmeIcT9XRTRAr84cPshOgmGmF13ICoOHGoWqGgIXPFpIQ7Es5F3gp213oJlPyyXLgLR2bDJyvAmbRSJWJYmQVUXlhCij9N7zyvlYFKEpWjZNX7YMqBGnftewNW6z4NmXbZTkQxI9lYwkTapZld+zPMvqhCJSaghOn/aC+zvTiW6jko7v7IsfOynKQ+5j66pr4bFour4kSmvq27TfeMHYJs9TXgdp2GScYNGjaPsE8y7NlSKuFoBSCauUIegw8Rq3zdcuJGTJ116202MEZ69xImO0Kr3w1GwdDg0XHKo2k2qYDKNcw+/1a33hCZfjdZuu6GmhGfVSqwbbVpCqnyfqlHFRmEr15I8SVG1ovbBGmYttUwTNcpNkKRsPPPAAbrzxRpx77rlL3ZRjDsPkrBVWJsqK4NQNZv2irJTXPFCzMGY7i6CE42VrmphpWxEeaRHgxAkeGHPUCu+S2w0jM0OmSefFvzxXi1zPNCNTHgfwadPRKGNZJEo6y3VOoV7frPlSXYOMWWGdDsbjGpcSww4OokT0T58L4yhVOL4Kh+YvyJZnvaJHlSet1xZcigMtGxu6GWpuV3Nf/f24LdqXJ0Mu6TiSW73thHBNJw3phNCYpFsvxlOTjSOarVZsfwQ01j/V6FMddWs88l79bZ5nsBcbzQOHnsX/+uwEvvrsPBr/8RI0/uMlRmOv7rTwuYujnTtxtHNn4WOuNCwn3joyoSydTgd33HEHrrrqKhBC8NRTT2Hv3r14+9vfHmxTr9fx5je/Gd/97ncT99NutzE7Oxt5mRBbnPJ/6qnd6sAnB9o0L5VD83tiKpQH1UMr0lzFvZro3it1IjLdnrKNq2lkKCR92QO8WhxKpgQ3PYo2I4XafNr0tbG0Ex2ShOik6G/+dSowjEljkm5o3Nd0uvsY7pAjjX2AMN6pXnBd13LSYZh0hKE1KY1YeFjj18akd6lj3lDlPSlKQb3G6+rR7z58TtTwqRaXkm3UYTIwSXKSZnwSJC/aTlOFzF4gnzmXkcTrIIpg5SM6jxyJOhL0e+gyYLYjLqxa5MAioi/ULRG5OmblJ3/nrYvqyHLwTDF+6bSjWmVOVQ+JKtdftDHeIFP0xChDX4j0ojG23OCjD+99D8ebn5/Htm3bsGPHDqxZs6bs06mgoCzOCuTnrRXSIQqvjM4LyBeJU2bARZEK8Fm46OTLgpcKtSDlIECJFRghpmuhoaQXI6jK7fMYpXXerHN13UgZ7js80MOHb8bDh2+ObdNLcSjdSNZR5lGZNffkbL57zsGDwKGGNZ27DabrRkl6oU8VM+2Q65QdXLS67nfT1HmQKp4nMIXxuDxUP0jrW8dNTIBxgplOesBWv5xOv7aSiyZlzfaSrn+oZRuPBcSfHYsA8xnyhNKYa9Isldg8fm1gswlrM4QE8mhHyBPYlGPKyTqD3rB38Ulc7BzAv/gU/6IZaMuUwFhqDJuzAsuPt47M0uVv//ZvMTMzgyuuuAIAsHfvXgDApk2bIttt2rQp+M6ET33qU1i1alXwOvHEE2Pb5I02BYZXdKfCYKEbu3RDxCDSbJYCgxjApcFjrjsBqoZ/E5E1pREdN95JJJyDgly4JEUG6qRPRoLqcDnBhM3wnb23ivc9RMx5jGDSEQSvzUS04E9mbHiM4J7nb8M5a/zUKFL1Ot/wyO5UgmVqHwfH2nq0eiznHAy+MQJfEqC6El0g2+cyAp8D9+7ZhXv3pEee6k4i3xClIAnYJadvS9Q51fdh6ncvWxM1WNaUZ9rJSL1q+aKfFFmYmXRtZcEnVeM0C/q1p8SK9VlVXiSrX48C2inPyErKyihaWKtIoS0TrrvuOvzSL/0S3va2t5V/MhUiKIuzAvl4a4VjC3KuafnROXuUtKvvfub24BXqBQ6/HQ7l2Nd0sGXCBSXF0kKT+CrVUvIBmX7c2wmO4hqi13RsE9KycFRYClcZlP5tXuh9RA/6uOuJfIWXkhBq/sdPtGGzyOcbxly4jASSXb1ANeKn8b+wbkHO8No+INcGlhLkMKFQ8bLGC3lOTT/uVJSRphP2GOYSEjH75cvf3z+B3352I/7of4mXyTYk198d1uzrWEuJYXNWYPnx1vTQmCHi5ptvxi/+4i9iy5Ytkc/1kG0pJJyEj3/84/joRz8avJ+dnTWSUBEm32ejDVBTXFXIwWNAzpAKCupW8cIpo2SEeM+pwsD1teduK9RHGfdhUQdAu6fjWgTod5pVDdQHmtHh5dn5G1HLcUIHWjtzHcukc5rVJhVJaUYqXJ6vlJxNODopfYgS4FDbjn0mNJEIHj6Srt2Vpz+HGrVi4+MnPhTbxkSk1c8cymMpKPftdfCa9T7qFovpUk46DN/bL+9X9pWySDg26hG/OpI0RHWIbeI7UcmpmtJvMt72iocP34xz1l4d+Syr0jvnDCAWTP5Z02+bPoXLCB48eAsYt4KIaIdyfOuFXSObrq/euwcP3gKbWvB9dZEqnoHdjycvXt5Z0H60FLIraehH90n+To8+rNfrqNfrse3vvPNOPPjgg3jggQd6O2CFQiiLswL5eWuF5Yci6eJLaTQtUsxqKSANk+EiPZ+R01TgMQmswLY6BiVF1cs6VRqZ1tYvjRUDTf9d+vd5IkyzrreepbPUkBxcIu9a8MzV1+DpuRsLH8/v2h76sT/IfYTvzc+CRWxMOr+KRe9vY9GlnDOQAkFk4T7TO4kpM/ErT98RqcVgQtocuXdxRzelP/xMGi7HrEm02Ux3H9lrkCKSGipesa6JV6wDfv+zBNffPA8oQUpZnH85YZicFVievHUkDKfPPPMMvvGNb+BLX/pS8NnmzZsBCC/+cccdF3y+f//+mEdfRdoNkigaRSofRkosyKrgqkGl6dHA8yS1VpIgJ+bP/Cj/ZPaxV5SXTrBcUSSl4stPhWlEdYvBYwROyiwVTeXJZ6zpBbNamsaiRzDpxEco2f66lV0hXYUcvMsgwPo1UAsgyYnRoUBCkfJI1OmoRFCYUoNdBtQ17iDP3WUEDuG5jadpEPckuV9lkXWTZtSRTtSzazIg7m/eEtE5BYAj7d0RnVPOmXHiF+MkxZs2u2h6NNACdSgPInPnXRrREjW1W7//+qPIurpUd/5sN85YHRr9k1Ju3rD5CgDAt17YFTHE/tsRD2esUo8TPye5+FrwQm1VaVRVDbXqfl1WLK3cYx0cbO2KRJ363I0apKkNcKnL5sCH2U3OADQsFiN7DuVB9MKgUdQYaWt9ac6NpunJ6+pQwC9H9SGASaN2uUM3oP3xH/8xPvGJT0Q+e+655/Af/sN/wNe//nWMjRUrClOhOMrkrEA+3lph+cI0v0uDqurEk+N6WceyFFmqfjFMjVOdj8joRRFtKs7HoSJA4rkFgrNWFz+G5EvSEPTajVfigQOh075o5Ck1+29XFIalKdsrfB5y5obN0PQoPKUobpmOV/05PtCKE1pRZFTwlpZvHidOmYpfUJ3rWyReDNUmtUA33yzVNZjn2eeCX49Z0UKuEltXxTMP89hkCCGwKYNcRwk+7UeiO+fdxciaetL2Me9Z3fsq+L2trF/y4E3HbccDB3biVNfB7B/sBqNXK8evYEIezgosX946EobTnTt3YuPGjfilX/ql4LNTTz0Vmzdvxj333INXvvKVAISm1Le//W18+tOfLnwM9eEts8OLQVcYReSEkWYkmbB5pXE6BOQ1fi540ihunu11D+yjR27CxBDDhkelSnQSmVf78qE2sCFl7Mt7LnkjSYtAEpO0SENphAqLSXGoCRfr6h5mOuGQqT7GVoZhVP5+X9OJGOd69X76HJh2xP8y0sHuLrrqFsfjR3cYCUpeWISj7QvDqQ792XrtRnG/7nsxPW3fRKotAix6oWHypzP1iPEUiJNZKZmgX+9z1tbR8ZtwWXLEtdp2jxGgmzbV0oiU3s6Gont6z/Oi4MJxUY36AA6tx9pAYUUXg8wLmq8WalCPTwlQp/EFpM+FXu66scGnYZUJuUApYhj4x+csvPPE/NZV1i0Mt9QpghJleO+fe+45TE+HenQmA9sPfvAD7N+/Hz/3cz8X/t73cd999+Gzn/0s2u02LKukMOsKQ+GsFY4dLJUxadQi8ItAN6bYVBg5XcXQlRe1lNoSPicxZ5++Hlj0KMYzK6wXa1MRmM5XHm/WtTDthHOket0OtW6DTWvg4OADTtuWfTyUdBpekShpfOwXqrG8X+kFi/DI/jaMuZh3w7lbby/jydcrb8aZhE1r8NhoVH4/cTK930kDqPnzEELSiqFhTWPROwpOWCBzJXnyhD2Gw+30jMtepThIbQKr/p+PYvHDLQBzmdsvekdh01rmdqOGYXFWYPny1iU3nDLGsHPnTmzfvh22HTaHEIKPfOQj+OQnP4mtW7di69at+OQnP4nx8XF84AMfKHwcdVCRaQx5qhf3glFZtK1k9JpyYxKGHxXjZRYosYJ0DBp8lv27w615HG4li8vbhigIi4iq6aZIPHm9dPI5CGmMoihyL9MMPM/O17G67gX7zFqgZKVx6ddGnbjS2qx/N24zvOm47cYCEUmVHW1aixj6BPG2+ur3V790G67/8W50WLTSrQmrahyLXngBXrX+Kjx48JZu23gkvVuHTtbFbwRpVD9T+6KqwQWo8irCCSZ0ztR+nHyeXsJ91zVOCaHgUtxeWaSZPO3q91JSRo3UXA6oU44F7TM9JS4v1o1dnvjdvPvFkZblZ32QUHm/p6enIyTUhAsuuAA//vGPI59deeWVeOlLX4rf+73fG0nyuVwxLM5aYeWhzGynQcwXWfNxWTAVrVELVhZFMyGazwQTl8v6bdnXOlpslWdmkZ02fS0OtoTjepiRcGNWckEjkwFGlzUqA0W1FeXaMCmCmmncW+V/j83cFNm2Ycv9cbR5skFf78/9Puem81UNgj4TzvjVtV/HgvulQnVd+oH67Mhn5lDLjjj55dqk7dOgPxDQrqSN2IZx39iPPUbQ9GdBCIlI4NQNWVll44HWPB7a08F//uMEEVWg66DoTQJhVDAszgosX9665IbTb3zjG3j22Wdx1VVx3ZOPfexjaDab+M3f/E0cOXIEr33ta/H1r38dU1NThY9jrhJeTuigGpnG+GiKhK8kWARANxy/7VNQ4gVpuCYD1mqtSrhp+C0z5UlCpgpnoajOaVkoSlDXKM61tk+wZUI6KIrtp2yNU4kxK044dMNv3co27jiU46TJNmaVFOQkA1oWZIqNTszl+0dnSKrX3qHAu0+5NJB3GERki0OBJoRRtki6nkxDLNKmM1a3A6OpNGQOCjLVDxDtnOkAa7uOUVVDyrRomnQYPEP7fObCofGwa4vYiWQwCX/+40n8xlmLqFscC4rTflBaamVh3GYxPV8VNCDHg9MaHxX0I5hf5HdTU1M455xzIp9NTExg3bp1sc8r9IdhcdYKKwM+H43aB0la4TrKDgyZc+9K/b7jNyOptWn8zMQ1JuyoNmeSBuf39u/scrF0Dvjk7I5SC51edsY23PyTdOm2tDl/2vHx5OwOTNfi0W1qOjYBKVWLMSlyT15fmaqt4sGDt+BV60dD45QS4FdP22YsECXn3rZPEwuKSvgpgRO9rBld1i1SpsidFX3mCKFwWRNz7l2wydJEParPoi5TZwIHi3GevGs8IXHCseC1oGai+Zyg6dGeo0xVbGq4+JVTLEx85ouY+Y/vzty+YU+Dcd+YUTbKGBZnBZYvb11yw+nb3/52cG6+2oQQfOITnzBqIxTFMIr/1C2OdneCbvsUdSt5wK10S0cfy01RgYCAEAuUpBtPTXo3Kpo+RcNiMcIwpemxmvRrJOoWjxWHAoAO47kKRPWCpEHboVlRm6I9+5tWkFay6NGYfqRM0y9jLEny0ufBdWdvw62PhWTv7mduh8cEQZZ6rVtXXYs9C5+DQ7OXZGpKj8sIxqzQcy4NpYyTmEf3guO34/59t+L+fbd2Pwmvi2khIFP1i0yuHiOJUQomBxUhJLF/X3D89iDNnnFZTEtEc3iMYHUtvLe6rIAaOQsIbVcToRY62FGiREBSq5vKaASpRyXxOy+fNxqqR90xl/R4e1qKZb8FEszHLqpgXqFCMQyLs1aoMGpYSqedzP4ycaeZttkwU7aRNy0DzeekJ2fv7T/tr7K7CZvHhWGXcwbebY+a9ZKEIoY+nxO0fB5cY/1/HUI/djS8pNJZIY2m6j3Tr8FJkx9M3E+aVma/WsX9gHEfDqmDGVLgBwmLcLjaPV435uUynALROjIAsK95EzY1rsHm8WtjATWEEPjMg2U5xuATFb7iFOo1AOr2xyfxG2d52Payq3ADDob7Zl6Qki+cE1Gsqr2/p+NVGF0sueF0KZBV4bQXtP1Q47Ttk5jRlHXfLnjDKehRIYq8xq5BRJZK5E2/7hUcvO+UDP3cZfVSSjjmXIL1Y8lmiSMdYF1d/L7pUThKJO+gowcBsxEmSZdK3ouWH0adHj/hGYmQbrpyGYmk6vcDX7suvUSMCl3H7MF8Ve39ONy+IzHqQC9MMW7baNgMX31yDK/daCZgatv1668SGRmFYCnGMlPkh0nj9NEjN+GsNdfEjp3Vp5KuZfQ5FA1o2AzzLsW4HT7/0vOaVBhK6snmQSz1kNpgPF2DinECl5NYnwx1tUcT6tjWbzvfeaKPQ63bEr8fsyYj70cterUMvahe8a1vfau/HVSoUGGo6OeZH0ZwiIpBS5JJ50TL5xi3OZo+BUAyz1PnHfL/flL188AivOfMo6LQq6pngXG/1Gw0n/emFVlG5F+8LYO75nWL4dn5G1ONpzpCA7+5XYyTQtfh6TmCEyeLRZ+qsm3A0lR9V1P1VZuHrL3w8OGbg88osSKyVaL93KBzylG3JtH2o0JQcrsJewxtP7p+kNy+X1x15hyu//EUavUolx+EPWkpsZScFVgevHXFGE7zLOB60YaxKQ+8sDLidNgEpkJ+JEVrZXnSBzE5z7kEq2qjZwBpdI3+ptQtlQyYDGVpzxnjwNgA2XZZpIwSHnNuMO37XgxCi0r0oNOtNl+3mHG8yFtATtX4HLeZputp/k1SRGYYJS++P9I2F4dKQp5xT59YTROtTOV6/OiOoYylDuVo+xS+gew6VES4yEJcgOjH0zVmvHeM+6nVSjmYmGeU4lBZqFscc90gVpeNnnFQh2yfrocnNU6lYdVl/S++GXxYWh8dpfmXMQLWY+RJr7+rUKHCaCHvOGeR/iLVVKOMLCQ4aJwwMdwYf9P16XVOzCsVk5Y9WAQ3PCIiHH++W3Q6qV9ECw2nQy8OtZTI6m/LqViZx0Sa94QT3vszV4cOfF3vVIIpnDwLg9Kt55zB5W1YJDTxDNp4qt77CcWylLeIaVbQz4axKzHX2QGPdYRThaRnmJWF7+y9FXULuPo/bcLn/7yJx06ezf1bn7tBbYnlEnlacdZsDE9FehmgSvKrMEzoqe9lYBAFz9TJPS1aWmpx+pygYTNsaEQnzEEbfOoWj7xkSpee2jXWnZ9n3fBvE06Z+mCE6L1u0xXG7XxOYOcguOM2MxLHNPLkc2DBi5ISSb6zkOQIkgRKekptWkslLReekE+jR11cXP3SbZE2qzqt8n7IKBC1MJSE1DnNgkpOox72+Fj+rRd2Ze6vlfPxme2IE9IXNhZ14HM3klakEtY055xFbGNRjJlumtOoaIPlhYyUnVCivtWFalIkbxFQRPvtICJa+gHzSV+vChUqLH+YDEr9jn/nrr068srCIKRRAOD5hf5OZMq5JPIC0o08RYxNacarNGOoMDpHtRLF/pIPbtPeHOpiv+Y+ktcJKDVXB7WGNfWbZF3P6Lkc7YT9o1GSAVpFmTrpfrcOBiXifmbpm44apJxWtAApH7hxMYzsJrHP8kDom4bkm3MuggyUaM49C58DgFilevV3c25rII5zdcw5d+3aoM1A1OArr7vexuWEirNmY0UaTjnnxoE2K+I0a1JSUyoHXeGtQm+44PjtuQbWtDtdhs7ToI2IDMnV7XWoRIcBWPD09Ih8x9SjZ1XdqWGkFsuFgWmBUPR6Z0V9qH0oj/SGiXgPwttcRoQJB+umxKgGLwI17c30DKlj3s0/2R1ZGHZYNG1O7DN+bLU4VBHIfSZpD0qY+qEatWvS8TVhulYeoU7TP9VRhrFx0DDdV5PRt4z+L4nqhHNx/zurUKFChQEgf5p4/1zJxF16HWsvOvmy4LVUmK6NR94znlwwU7/OefhQmjH08aM7IvfDTZHJKbIu+O7TdUM7xP+yqGav4GDYu7ij8O/SokGzqrhnQfaf5gDWxZKL9itz4bJiKfTqsYH4OqAsLfpTpsR+3v+SaF2UtHFi0IbSNFhEBHtIWa5DLTuicfr40R14/OgONH2Kh7rp+kmFU/VAILkmUQ2qhNDg/SDW1W/YfAUA4At/3sIXn2Sof+MfM3+j1o2ocOxhGSzDyoG+0I89pOQtEcNoXs9dL0a0tCrZFQYD08Qf1eIT/7tDSCUpQmLTyMyGhoODrV042BKRdKZotaIk3CE8l1fYRO6OdpI0fYaTXuxQHnnpyFuQiXES6PBIIpUnoiMNSYRMjksb44XYA0w50QXBdWeHBEp+rlaA/87eWwGEBQJUcM6wtn5p5DOPdWKRe7Jdav8Zt+NVL3tB3kVkUc9xVrT1+Vu2B3/LIlXyfOoWw4IXF/vPIuNF22iaV/RoXzW9yjH0G9qt+juMNMwyMOvqfWtwx0or3rEUkGlPvb4qVKhwbOBIQgEjCXUu6dU5X7aD+u5nbg9eOgY9/3CwRN4kjVJ5uMRCgl/SNHfL4zFuDp4YFI/t9VpmOfh12aB+DWqq49ZPMWAD4houBUcpe/7Psz99m0FEPd75s2imWdYxdE4/DIgaIeF7xpFaCyLpHEw8OU+h20Hi//oRww8OEhz6wlORz03rjqXQlC0LFWfNxorROFUNKaIaG8tVSIeSt4Hzv+vpmElGrw4DPvOj/JUUP/aKbdkbrQDoE0cSxgfcq4VW32CPIVHEA2rqz3km8I2NKexvzgXvmz6NpNeqUPt0y48S10lHklmORY9iy8RgdZf2N2/Bxkb+9GVTgQC1OJQJLhculu/t34nXbrwSgLimJ022A4OQywjsjCJBftejrUIl4S82o9vrFUpNBFStUC+Nwudv2R6kpO9vxiM3CaE43L4jYjwlhAbVN6WuLdPIj6nNabj6pdsSJQX04g2rbB6k65uKQ+mQHuD7XsxOvQfCAmF6qj4l4rrJ4UJ1BKhRqKBC1kHVbZrtUEyUrCsmI0/TvNWq8X/QxTn6hdTre82GKwAgSIFT4bL+omiXMrIiDyq9qAoVViaSOOI7Trw88TfvOfVSfPmpO0ptR9OjmBwRDcyiUPkmRWjMVOe+XqJMgeTijvK+qdz5pMkPYs/C58C4kHDKamsSpNP7u0//Tb5GZsAiHNOOjydnd2C6FqYHJ61t09K2LcJj8lo68gYfqFx7VY3h7mdux6bxwaTqFzXOJnFYPdjC5LRWcebqa/D03I2FNYmLGpSvfuk23PhofnuBKdJ1VA15IlBBtE0YS4sZe1WjZZ4Cuf3gNRsY/n37GfzbU2NYp3zeb0HmUUPFWbOxYgynEqonIy1CSUakMv4NNOxfhtv561KO3/IAp1YZQ4sir9EUEJqJadWu83rlRSETUWXbIhwuJ3358NbU/cyoAx2+UkwlC5IU1S0Gh3DMdsXNsyCNpvpkXiwyNvx70XDMJ2frOG1aGMRMkZCDhMlYmrXN03M3AgAcQgPN1qR9S8KVFe0miXidhgRBRg+OWcAhzV6Y5M2/4ZHdgRGPEuDdp1waeT7O37Idjx/dgVW19L7GOQ/E1SWxOm36Wry4+LlgG5l+nyftSE3tv/FRkaqfdj1kgSxd41SmdT82c1PXuGmejFWjm0M5KLHA4KPlN2ERGtzTLNkUi0R1uHS9MZcB6+pmsquPJZwzUFiBIRoA1o9tx/7mLaDEAgEFB4NHEdRdc+gYOv5iYvtufayBS7e2utuGUbE+F9IjowbT8y+h9odOn0ZTFQvulzDhXDxS0aZARUIrVFip0PnAmrqYE7723G2pxtMypKAGgYbNAj757lNCA2/ZxaE4GGxSg4tW4ja2wrnSkNdAdcHx2/G9/Tsjn1HCg8yjJ2d3oJ5Cp2RRLo9RIMf6YvcvvTcSxVujIS/VuSjTHP7qOfuc5CoORRAW0UkzoukZN2mwCEfHUOBR8qdRL2IJAJecvg13PbE7xuMYFwEkDZulnofk9OO2jXnXj+xHfY6PdhYSuY46Rpj6680/Ma991WPJNSoAnLO2CWACAIIiSmJ7Cz5nwWecM5ASjX46b5aBCDNt2xh12rAYzll7NfY3bwEBjRggKbFi6fvSdtP2FxKPH/+sf0L4rRd2oWEDFz35fVzhvQEfOnJ/xHAq20ZAu2spoEYbwXlI3eblgoqzZmNFJ43r4eAmjQ1K3oZF728jnwUeSUQNCnVreJGIFfoHJaJwyeG2HUxCag+widDCFekHSzMgqKlDOg4004v2sBSDXx6oBitJENSJaCLB7ZJH8zMNnPNcryyo3nNmmNDXKTJTJsOgXiAg/FwlLNHvkgr4nLP26uB3LicBQZVGvb/+5zWx33QYcMYqjrNWRw9y3dnbYhGpwghJcO+eXbmKIAEi8p5CGPMoLFDCAw+6Thal3IKqm3vvnnzHAUIjsEXEeY1ZYfSCJJTvf8m2mI6TWDSY77VaWErtq2NWI7Kdz4ETJt3u/qInZpHw3ifpiiUT3njfUKN3JQ62dqFuhTpt6jwj/7aoE6Toy/Q62h1/PvLy+cj+ZD+ySL6CV0sBNVrj4cM3G3VrazTUV056FcVyqtpboUKFChJyDhNFafpfSDg0Rf+nT3zl6Tu6gQX9F4cyQZ9DAeDxo3U0PdqNZix2fUxGFdXRq3IZlftIPca8KCKVkJcnm7iY+rluNI0Ym7ryXaqxVBqomv4sOC++tmn6cc6lIk3DflAap0nrbp1DqEET0ayq/nhDy/eCY4kaCzy1+JiKvAbm979kW+J5yjVq3WL44cGoJrAu4abqg/YCOTbp919wNhJ71tJS9YGuvmlGm2Qwh3pMYaikYNxHw5qGz4EJOzrmyazAMgyoT7/65fi5LS4mJuMLBZPtyCSdV+HYwIoxnKoPHOccFol6OACzrgbj34h9Rkk8jD/v5DNmVxqnSwFpHPnac7dFPm/6NKrJov2ufL2c4pNWWt9aP7Yd68fCqDMOjqZHRYp5D5OF+J34W43adSjHuB0lWVI76r2vnoNDox7WutV7hVFCSK6XqgUJxI0u+xaFJo4sFjVmCaOdxKF2aCxL87QzJA+UedOlH+6KoKvX79QpPyA87/75I4m/fWI2+SCy76opVEkGp5nOF2KfMfjBImVDYxKAuNeMAw2bwmOhlqZ6jbKKQwHAXNeub7pGUiLh6pduC9p+5892F4os93lo1LSIIGB66o7E8/NO4nWZ7dCgKJROYtOMdzJaGEBEa9ikLSXT8OUcY/sseO9zFz5zY84AuSBQxyBJxqmmJTXKkAtE3TnRycEr//G5fBERsjiUvFajcm046706KV8h3vsKFVYCsjIf6hYzaon2frzkiE0dRVKo1bF1UFGFnIuoUwCY7Sxi0aM4dboTZGwdaVtBO9L04dPWWi4jER4jpZgk5E+ZxqWfnDUbUosUA9r2938TWZPmmQtN0I2v0oBjkrBi8MHBYwYdi2RX9FCdxw0r5Epp/HdYEaehU58E/FoeW7//Dg3XLWkcIe86LW0f84q2e9Oj2Nd0uplR4f5FHxTbjFniek7YwFhCxmTeayoN5WKtVK7BoalliCW1KUnWYeuqa4NIbiCfIVcaSQGgboloWt3gOghdWQlKgFOfeBa/dnoTqzbmkz0p+7oPCxVnzcbyvLMlIDZV8H9K1KrQNWH6MaZNlOBJrrC8ISeaIobFUU57+Zt/nYrpYLb9KCk9ZUrkoXdyPDxlRZwC0YIMphR9dXKfd6PDoTQEy0/v33dr8N3zC4LU+zzfeFC3WBC97BCuGHjCa6RrfwaRBTSZoJnSpIqkP8vryMGwbzGeAhNEYisp8/KYWWniSfqsemRnEvnup9CFry0OTp7qZO6z5Yf6U2nasnmwYexK4+eS/HlWN9KUOBFD611PRucbtX88ePCWSBEwi0QLXo0SXE5iC0lhhA/PJ48D8Z0nFtPmK6o3NmhUQvsVKlSQkjTvOPHy1DT9fiE5V1EjQtOnmfOtzo8kBuGk4uDwuFnrWxZGtEh2NJsJJr6RxmX062K6Tj7PNoybkHTtTFzVhDzcMynybcyaDKuRZ+wjqZ15eemg4QXcNDlDT4dFgLueSE6DL2IIN0HVFd483jBuY8oI7NWILs9db3cg0RCLPC3H/KNea704VB7IqFEVSes76SiQMmOcC4mupj8LADjaSa+P0CvOWj2NAy89FdOf/ltsOV+kKqr2It2e5LIWOGdg3MfRzp042rlzIO0aBCrOmo0Vazg1V1nPnq3SFmZ59WF6HRgr9I9+J8N+MekUv/l50wzyFkrh2j8JlWzLfp5HQ+q9r54LJss7HwrTRMqu8NoLxm0GlyHi1VWrrKrnJxcGlPDU5zxJg+y8dcmFqto+DdrQZuI4z86HE28W0UsyMplIijQG5ymcRYkVGO70+3W4G7BikcHprt3+UzNxNaV2S3xn7634zt5bjd+ZUmYA4Jm5sHCCJPXyfMcVZ1ZeB8V0jWHBtQroJYu5RRKsKOkK9/G+06W2trkhco6pW2xkoiqToPYZk4RFme1fcL8EQEYHjU7hrIqEVqhQwQQ5T+uRWYyT3EV40lCGs/2iky8LXkkO2WHMQ+M2g004tky4oIRj83hI4no9flqq/KADFXb/0nsBZM9Ti5pd+E3HRQ28ejs5GDgY9i7mlxfIC+mU93n0M/36j8rcC0Tbdvaa8juq2of081YjTgFgU8OFy8SzLXljnhoUSchyjiQWCMsZdFIU6vlLGTe5rllwszOH8tpfPNYJjKa1riyX0EjlWFWrJ/62n4C3R2dm4dA6/D+4Es47Xxlpr67FutxRcdZsrLjiUEVBydsA/F3sc7c7aHlMVMt2NLFysbCNd6IFj/StAVkhHTLF3CLiPjBOEg0/DYtFPOkeI6gN6P7ohaHmXdqTIbVfZBlYGQfQjRpt2IbvNPzNv07hLS8XBabef665yI2a7rR3cUffBaIY92Op+iaE0b3Rz+UkL89HEsC0yfV1m66IRJ2K3+ebKPRnvm5FPbMnT3L8+Ei4rymHY86N6wVJqOL7X3n6DgAk08C+uvbrONS6LfA0C28t6ZKQ4ufQC+Q517opU2lRh0WiZvIunqRhTf4tZR2SjpV0/Wc7FNM1FtAlKZdhkkPQIY2nDh2LkUUCAq+b1q8bZV+1/irc96KQA5h3rZ6ibXrBOWuvLrS9rgknnymb8q4WCol8V+YitQyDQ4UKFSqUBbWQkgrpxFULTJaJooYCXTc9aX+643EpcaBpY6YDbEhI18/KvrFpssanOpUIfiDO95SpDxZvaEm478VdmHSK/84iNnyeXhMhDaZK8JJvWgRQ96xm7Kh4zQZzFk6/8Lm4j3myTSwyHKm8vNy1bvHAGS7lq3REpORyPHJ5gxz6LQ4lxiw1OyrMkFrwgOmMfqrySkqsiKFXX5NsHr+2W2AVQT/Ok+I/YbOuHF/4/PaKv3qU4CPn2GhtfTnQ2R9pe4WVhRVjOFWJSa/iyJxzOJSjmbJNVRxqeWMYEalZfeQ9p14KAPjqs8X0rjh4YBQV+ohm0XS9quaGxiQONKMFaKTOpURew9SdD41j+ytFyvfhVnx4KfP5SKsOKuFQHiMeE7aY2NV53efAujG/qykpimplEZDn52u5BeABs4FINxzJ6zPnRjfWr3/agkB+t695U2FP6ClTHwyE2IFo2+QYKoy2MiUq/1hao0DTD6MoZDttyuFr0fqvWn8VHpu5KVaZOA2UWInpfRLRgmfZ+0xaBADCkP5QV7s2DRwMFFa0QIPnokXjhs/QIWBe5IjrPlyv7sM5zlFF3QLqlEMKPzR92o0gNhPMbVu3GT8HgEOt2xK/M2HUKlIzJl69/rZChQoV+kFWgVD5rXTGjprcyXRtHE0vlBFS5+Os8b7lh7I2JngslJT53v6dEV5FgUCL8em5G4PPn5670Wg87XW41rmdzwVXSnMCsh4MQUlcMM/9NnFXaYwqEmH68OGbCzti86CXeV9yS/3c5l2K6Zof7DMPT5SGZXVfk46PI+1wDbSv2YPFW8GdP9udEkgRDZwQ1d0lR/cjafnS/lG2BqfetjTurEIGEpj6p541V7ei27isFWghA8CC10JaIrXPixm91KJxr9vo4ld+l+C635nFv9uY/BuZyUkI7ddWuySoOGs2jp344gz0ms6RVByqwugijzEnD1nQx4CleFiK9DWC3oXAVbHueBvEw5OHnLzv5cKtYLoHZVQ2DNuU7eVLWzDoGpaSMMt+octuMIQap+o9KUIa0wjYM/PJO8qajN59ijC0u91CTlnRK2vrYntCBLnyuQcOUejo8aM7Etu5aEgrEpXfzYXAKInKksi/5fVzGXDZGaHR7P0v2Yb3v0S8V1P1e62UHkYVa/eyYDc0LWCmaywWfZwG/bnsJNwjSqzMZ3iQIvhlQb3GSYVHBpHi2WtfGRR6FdmXrwoVKuSHLKY3Ci9AaFCLjBBgTd3H1567LVagFCjPWJkUBZpnXMzidyrvkZxjVKHrqAOhISes+p58vmrBpMdmbur+fjjjscopxxOsPEWjfQXH69+qUTSjQz2X7+3f2ffxk5D3eqicI8+5FNGtVc91KaOxw6AGv/s+KWW///6QxOEmlH6bxVeldIApIvpAS/SZfU3xDLZlUdXub+S5yb49YadUilNQNECKceD8tWvxf/zhIXzhxw38zr1ro+dQwrM1Kqg4azZWTMRp5mKTvAXg34DHO3BSNjVNntJLq1Yhb/t0yfU0VypklKEUbKfEg005PCajMEMvc9On2DCWnPJ61ppr8OgRMWgziJipLMNLXoKVlKYv07rq3fkuyXi6oeEElbzlwG2aDIsY9xzC4cEcqdphgCpxPmZFRezV/t6wGVbX45o1lKDvNP0kqM/4pOMbDX0dFpLnNP+v0EaNXzhJFE6Y6GC2ZuFAUwyhFuH44aFbUnVOVYNmXj3knx4lERIiEVYSje9/0Uvf95H27m6bHVAt+l5W/QTEPZw1aBPl9e6rqX3SaFqjot/MdISx+tbHdmNVLXkfJrxh8xUAQm9wkXRvPQJZb2tRmGi1TaMnpHrS5d81bqFFfFjESUyh0+csYUym3fMd3tzSb6o+ICKIVe/9oDB6Eae96z6tFL2oChXKwqgGNZg4mJyHymwz4wRnrr4msfK7CeoclrZOcln0PMpy4M25d/X827Rr97FXbMOfPhRqqKfx4Hv3RFPgfU5gFwwXo+gt6vSKM7fh5p8kFykyISniVI/aS3PCcsSLrJru6WVnbDNq0ctAiFHTWlfbk/Q3IPinifetrvvB5zq3lEZ0ibpCj0ODZfhZVn8wHb/lAy2fYMyKf5k3A8uUjSc/45wPLGnJIhxuDzsnoLmMjxbhcOgYOr4M0PFhUSfyKJQpZyCOKf6/4A8J/s/fA/Z/u6uj+jbxnyxUpSJvvZFRRMVZs7FiDKd5oYZ9A8kapxWWF8qM0lI1bZcSB5ouNjRCtpcndb0owmqV4WdJKRhq2pMKnyNIaR+mlEXTo5H7VKP5CrPNuhYmHT/SZyhEavZ39t4KxoEXF2uYcPJX/Ha7WsiATOtJNsoComDRnBtqcJow5wrP7t3P3A6TCS9Pmj5DeA4bGmOY7QiNWlUHVIV0ElHCY4sNFR88axuu//FujFlh6pl+jhLzLsnUIlMhC0PVrbB9aYsiSjhOne7gUEuwXP1YbV9oybZ8oS2rs0qnq8cqo1jeceLluH/frWjYzEj10q47BxPfEwqb1OCyVmRxo6dVpUlBjHLkqdQANy381DGAEmD34+ZFIwC888Rix5UyEqO2mKtQoUIFFYPSYy5iNFWR14Dr81BXfamkyZiWmpzUDp23qp/J93XDHJWUHZU255ZxO2WbJE+dd6MBOVkI07DzRfkBXVkuJAnphO2yCAAK+BrtlRqn+pwr09ePdihW1cQJdQZgWCnCg0w8UTeOel1+m5QpkwVp3DQVh3pqLrl4UVobdeTpExaxI/xeot9U/bIirx89chPOWnON8bukQlFWt8155RbnXKuUADZKgF++4ih2PlbHcU8fxf912yLkOoEQ0pXYil7PMiJ6K4wmVkyqfoUKSTjQ1eJMM4YWSTO3CDe++oXPSey1fmx7UJgGKM/TpU6ORYTO0/Z3/MSHAKC0ip/qeZvQSIga1eFQHixi6hbH6poXiVZliKbq25TjuPEOnlUqtbtdPdm0avBAnHTo10xNMSti/BHVTqP71j24h9vxAhWSQOv9Rl43k3E4SzNNRSvDtqye450/2407fyaMaGoV9rRnJ+2ZVff91Gwt6Mf6Iku9B6ZrXtQI12YLQYqRhEqi8qb1mIpDpX0/SnBS2lZmhJXuLBo1Y3JVobRChZWJLKNiEWfhoKEaiZLmVGnQ0TnLII2nFuHgnOGFxWhAi+586wd+NwtNOIR730+e2/kXD+/GXzy8G9v+/m+Cz9RozuPHo9tPOjIlOXmfelbQICt8q8Z+nW/K/mEqvnTRyZcNrE2DRFZ/UFP5TWn9ee6E6RhpxzXxURNHTtL7l/2jDMOeyTEBiEADwHwejx/dEclKosQKsq7CzEke+X9TQxhYWz6Hy1qR/XHOMG6vCt6r65Op7vql1/X3BceLNebdz9axZ4HgdRvN+9HlEAYRxDQsVJw1GyM0dQ8HG8auBFB8ss1a7BaJQCySOl1hMChTb7MXUMILa7GmGWMHRZakcSaPATIt/XzYkQnzrtVz2u5MRxjST5u+NvbU64UGknQ080JeX0rSq33qY4Ycvy47Y1uElIoKvWnHi8cViIqrHg61omXv1GJQgJAvMLUlCXqEh0S/kTZv2HwF3rD5itzXXMpziL+7Mg00GlUr/zb1GYvAKJcgf5sFDgab1iJziEv8gNhKAsvBjFEA6sKo7Yuo7lEzEJrg8+j1ERIZg41SGrXijL5P+npVqFDh2IDq8BbvB3u8ImucpmL0Udt19zO3By8JlecViYbsB3qhUr87Z0v+lHQtHS3TRUo1AeH/TY+ibnGFy0X3ceZqYbQ5aTJeECrSxlxnEoepanqRyu/TinObcR8cLDA0LQVUZ7lFgFU1Fuk/owITD5XPJiUiGCJv8dcxheQOWi7IIvG1VpEo0KAY04CLQwH5+ZhFwtQ1SixYNF8ytDSsytR9QDzPZeOPn7kHH3n5HF66poO/WJWvYGnZ13dYqDhrNlZsqn5eXTzGv9GT96BuscTBrEojXDpIfUBBvKI34rx1V+Wqkl23eOqEkGcS01ONygDjfsQw1k8F7ixHgKoRqnuZGI96X9//km14dv5G5IVeSTEJB1u7MqNOddSo+fmTBJvxkIiKSqpxQ6NqRO71WRZGSIqmR0FJqLsqSaeqU5pHk1O+1yt7qlhbvzTQN11T34bZzl+DEAKfJ2v8Sg3XMuBzsXCRRkiXZUfdmGQNZKp+Ut9OOp8LT7gc9+7ZBZ+LY8trpjoxbMrhUGIk1ZIYfu252zBdS3Z+6LphEkWdG02PwuUE046Pw+3lM1WP2wwHWiERbvoUDx68BYue+Eztn4xHC4TpONTKR1IlRm1uZbwPvahlYByvUKFCb0jikL1mEoxyBkKv0Of+5+fFHBLRkSxw2ibjjoxQS7p+j83chLoF7Fn4HAYZa1TG3CU5xt7FHaXXEpAOZz1VP2nbYQcIFekHLEf7pAFU3a80oqtQoyeZYV0JAHsXm5iuhduY9GmzuPD7X7INX3zSLGukryUJCCziKBXrh88lkq6vXog4kK/qgnEfBDTGlxn3g3VpUZ1WP+Ga58UP3vgmzBy2cMFD30VrA4U5ljeK5ZqqX3HWbCyf1diIgQLwlE7iMoLpGsOCm95xRkEbs0IUcoD/3v6daGhPhFpRMy39dFTQzwRpIh66EU6+n7DjRE/XkplpC6PjnT/bjV/YjELG034x6fiY7Vi5HSTSUFZUvycvOUx67usWh8sItoxzHGon7yyJVN/+09247IxtmiapTL8vRvLXjTUw21kMfjfbsbCh4eFA01Yq0RbaJSjpGksh/lcjKdKI4oMHb8GELe9d8kGLVCO+d8+uYGKXx1ajTMYsQZbzRMRSIorN1foYz21Sg8tbsGkdHX/RuE2dxlP1hl0A6eEcziQVdUtcXKt77xoWQ9OnXUmM4ejiVVkdFSqsPIxaxLmEz8tfbOVx8pcJkzEsb5HLNEw5l0TeH+3cGdvmhIkOjnSdh6xA1oLLACtFvHOp1mOvPbkd+8wiwItNYFrRjZd8Lu/5CiNUeMKqs7wMqDw0K/CDkjhv1eWGRg0W4Vj0CKZrYcPT1g8iuCK+QVDPoLR2FduewR+oZEOZkO1U26sbU19c/Fy0yGpX41TN4hqU0e78LdvxwIGd+PxP6th1yxux84IjAERkLOfcWByqwrGN5fFkjTDypsP819d8AP/1NR8otNCvsLIhitYUkYAo3w+iEraaYmxaMAT1RYopJbR7WERVCrPbgeGJo8OyU7p0nKtVFE+LCkgbC7Ke+xcWwxQhQBSHksfLQ5rV6Mk3HZcdhWsi0wQipb2T44BZJOXGR8P9y6JcjYQFzLjBCJ8GmaqfBEosWIRGyOZJU8JHbIo0YFwU4RoztE9uu+D1HhFCU8suxMG4j7rFRPEp7Zh1i3ejYkfUQtBFnYaE1ucEr1p/VWxMKMPIQbr/wmP1v88ywfvQiuIVV6hQ4ZiFzhekzmZZUNNfy0SSbNAwoY/z/TrKkgzAjx/dEZm30qJ6h7mYZgm8MDBCdQ05uq59Xn31XjBqc68JRduYlfat8mDJyU6ZSpd0SEKaw75ouyXn5JyDgxuLLZUZEWkqYpu3zbJthJCIEZWDJfbXqBGVBrJXRztxh0RZmGj4uPHkXbBOXhNpdxKWq85pxVmzUUWcavB4B07Oe2+KZstKl5mwea7K3hWiGPSkHKsejri3sKxqgoMCB48YEXohk/IcTQS+w4B693OTkWnPInDiRPhMrK7nrzo/KMgU+DRDn6tEGeoGKT3aTl7TfU2xKCniUc8j+N6LMUnoR1G0fYLxgiO6TCu3SS0QaJfXYO0YsK8pjMr6dbnwhMsBhAWzsiDvgypHID8HhKH4PadeGvlN1rVQU/3FPY72N/3eXHD8dnztuTD1W1Y/VdsBiH3qRa1MEdY1yiNZB2nwWDy5RxIrj0XJnq5Du/Onk3jPKVFBfJeRkY6qbDNqfO4sTd7AoQgKgplw4QnZx1IJ6qhFnPUjmL9ShPYrVDjWYRFgwaWYcNQIqcEcq2iatEnH3QS9Gj0wPI1TiRMmXTw+U0fePF2TQzzt+iTdkzDyc7Bj8rp6Pg14StB1rKa3p+yIUx2jwEHSniPJO7NACcc7TrwcX3vutqBPN3LqmyahbjG0Wcjlel0/PjdPcOJkseeMg8PjHVjEBudm7fwyNTgtAjBiXsfMtK2ex4lYlGmwfx82qcW2tykvJQrehO1nCJ5OTo2SUjXaVOWig3RSDBIVZ83Gio04pQQxAe28oe2Mh2TDZCht2Axtnw49pbKCwFyKXII0Xi1FcajpWn8DqVpcQC0yoGO2UyzC7UBzHo8f3QGb8sTrovfzlh8nLCdOhMRyjWY0/e7eieDvsrWXVEhPfBqZUo1iJqOgCapma5JzxGUEDxzYafzOJDKvtlNG80qDdNsnqYRP6kKq+pBFyMmaelxXcn9TCKyr46DelyQxuXfPLty7ZxcWPaHppF+TD561DVNO1DApz0cuZtT7sOgR7H58N3Y/HpJ8m/LMaBZ57ywSNTj6mjf92bkoyZIap0K3iwftSbqG6r14x4mXpzcqBxzEo4Ek6eKcxRwX560TBnl9TvnWC7v6bsswoY5Zkw4PjOlJr7yYcC7u7j9ZZ2wpwHzS16tChQr5IQoGjc5Lx7tOugzvOmmwFcaTjGl1a8L4eda+5EudG999yqVwKB+YlmVW9pTK70zX+cPnCH5jyoxKmldeu/HK2D6lHmPWXKReA/WapUHlnfL3MznEE+UcOtux4DKCWdfCadOinbqxRtcILzN9O6vIme58Xgqk3TfdqH73M7fH1lRqhXZASLepLwk9S8u0puh1zSmNpnf+bHdgVDfxVLXtBAScM3DO4xXfFQ3+soyn6nWWdRaSrv3jR3cEL9GGsN1JUZwEFIz7qcZnKZ+lY8Ht7xwlx97UEIEl2HRSrt8l1ToYdVScNRsrJuI0z0KqqIfApuYHVXo8dM1HAFjwyMinWa4EyOJQdcrQBDX2D324tbpFpRgvpq3YK+oWj0TF5QEhFJvGW6hTjvmCE0aSod90/DHLVKAo/P2hlh2JOH3jcfPBpDcI4fqkdgIhQZIp42MWMOvGCb9DORa11Jxz1l6Nhw7fjLrF8JoNV+eOsNTR9ikc6nfbETbUZcS4yBLEiOCs1RzPzsfvizQw3v7T3VhTj5KUe/fswkmT+dpFCAHhJDL2cTBMOhzqE0BJ1HgsMemYx8wbH92NOdcc8SHJnzQSmyIsXrX+qoBYJZElfd8i4trc50+dbuOe52/r7i96vVxDFLWlPHcySlb9nnGSO9oUAGxaQ4eFlT/BGTzeBiU2GPdAiQXCCRj38f39Ps5Zy4K+ofbTNEI6KJyjyVXkwQ8P3RJ5/+DBW8C4DUeJCPC6eqf9FIfyuWeMPFgpIvUVKlQYTTAuF91i4phwGL76rKgunmQ8tUi0MGQ/EAYTL2hL21/I9bs888tXnr5j4Bw4yfDQz/ynFjUFQt5FCcf39u8MHOkym/DxozvAeLhmsynHSZPxVOzTpq8trAVuwupayIdk2zxGYGmGMsYFR9TXkpL/5DHatP0FEFA41EFW4RyHir7pKnJXYj0UbqM6x/PWFigLeY/lKjr7LtMzjcT6rsj6XHC07O03jzew6M3n2mfWuchrLIuTyuPrhlmHjkUMkQQEHFqEZA/p+pvHhQFRBnfo7dWzt4C4ARqIrjd97sImNRBCoHZduS5R1ycWceDDjRRDbljTmOGzWFN3cKDpBtvOdAM/LBIGYRxp00ithSycv2U73vBH/4jfv/YAzgdwwd9swOcvfT71N6ZzqXDsYMUYTlXISWVf8yZQYmHD2JUA/6fud+kDSaAliGTh5yrSdPmg2TUGmRba+v11efly26bjypTlrz57+9BTT10eFryRhYsaNsO8KyYbm3K0/FCc3yLAr75mFgueeDaks8ChPCgO5XNhdBMRrcOrSiqvrfTOJhFu+blpISALMFDItH0r2PcJky4OtcR7SjgcGkYGmiAJmccJ5l2Kl672uuSDYNET19Ik47HgAdedOp6434tOvgx3PbE7OJcLjt8eqfSZBxwcGxsNHGkvgnGhETtmMVgEaHryOjLMu3aEoCXp2n7wrG3404d2R0iUJNbjNtDpCGOkKQXetO+80L3rEk/N1jFd85WIc/Pv06LV+4EpVR8AGA9DYnzugYDgVRt8dLp8t52Qkj/KzjdRfThcnsoubXI4UYJIlLGOd56YfiwZmbTgfimIOgVGR2+tSnuqUGF4yKPvPSzo2QBJXM5lUadc3swRXX9dLxYljSZNjxr1svvBu0+5FF9+6o7sDfuAcDa20WFN/GRmDG2fBhrls6FtBIueSHE3IclAkmbgk47aGji2rro2iCxMMxQLvkUzOYuMhH3bTV/FRy48FGmPbJOM4mW8e25j0RunGoEAYNrx8eTsDkzXarHiUCooLKPuostcSFNAWh/1Fc4v2ivWCrrxVF5T2aePtCnW1AeXtkxJ3Pkur48MlpBwKND0k/X2deNj26dGo19R7G82seA5wihvcSUiORp8JQ3UaYg60sP2mrIQp2vvQ9P7O+N+RAp/sexEADjQDM1GaluSOJcu2SajuB89clPkc9UQqhsdKbGC8SxLW1THhMPQ9q2gb6+ps8JRqH/+4Rfx9GwNzf92KX7lZ4dz/cZjncT1yCij4qzZWJGGU0AM7gQ8r1ROABkdZlMWGN1M2yShw4SxoMLw8cxcLRYhp3qcVTB0jeM8HvGW5REclLHTIhxnrbnG+J3wyFnwWAcLrgU4vefJyHPPixoFZjRukUQyO4yjNkRXdJRYxL+XXuekSV93kMhU4OPGO5jpRB/kNKOp+C2JtcllBBedfBnaT92Bf5tRU1bCvyds4IanFnHd2dH9TTlmknXfi7twXLKdNQIpHg+EqeIm47ZK7mzK0XZpLKI+adGQdG0tAlxx5raI4eysNW08eFBEK07Y+Z+lcCHkG8nK1tUtHGjaQRv1aFVJvsdtjkPtuLEyycBr95oSTmgQ5GERBy5rdat0Mjh0DD7z4HY3eO+pi3jo8M2RhbLLyMDSJHUUjaRZk7CIBYRRQEacDkLrO28xtWGBsd7JJFueElkVKiwZ7ntxV/ZGQ4KaLWSKzEpDUrHKfL+NDoDSaJo0V9QpR7sHupgnHb0fyCizphc1SJqyLqZrPha9+LxvmrPltSh6T+Sxy8Dci1GpntU14Ug+1I6uD4tq1kvuIzO6TKnY/RatUSNOk75TIY2mlAAPHNiJ12y4sq/j69DnezVbKP8+xI3N0iE9c3V0/aWm60s8O38jAGF0lVdfbU9SNK5DzdlXUuP0/S/ZFujBt31izGhVebrLWlhwv5RovOs1Tb+oVmvWvSCg3VjYdFjEgYu49gbnDJzEI1PLxO99eTP+/rnPgo47+JXffhcA0uXr5nYvV31ToOKsebCkGqee5+EP//APceqpp6LRaOC0007Dn/zJn4ApV59zjk984hPYsmULGo0Gzj//fDzyyCOFj6VOvP9/e+8eJ0dV5v9/TlX39Fwyl1xnEq4BYggERJBvRPkBrhJZZQVhVSAEwk1ZEGV1Zb/orsSfP0Cz+0VewK5AokkIAZEvsvJl+YFZroKBRSTcCbdAQsIkMZfpmemevlSd7x/Vp+pU9alL37tnnjevfpGuqa46der2nOc8z+eRQ9Wnt7sf4roWrRKlf1qzeACrf+edASPqR9BMvup8Bp2makZ8ffnAc8NXgvXCenX3L10fL15tqCgvuekd/nndcY27KkuKfpJf/Hc/11O0DPAvDlVLjVMvqvRygarYgYyojhmXDESdqbWpAMso9NM4BRwDIs44OmImXtsTs6/J94YtR5iIkIhyfQk9rAfejx754Z2tFc9Cw8xhZ3oMGuOul35X3Ci6b8Qz7nP7BEf3iL7Rmf+AY81b7mjDN/ZYXjd5/SBtKDkKIoi397YDKDbi3Cn7xcu90RSC4/qXIMY4sornRtRqoEEM54CbXnXuS/n5JP/7pFnNE2GlwjshlTFqO9huNsqtTlrJrD9RO+ppsxKtTTkTOI2IlM/YNp2181Kfz7Vqs2FaTpLetgQOm5y2+zNn+kcMCpa9tBbLXirOZJBtkaiZgbKzLOicljImOOToIdf3MG1TlZNMhdeRE5RB2aZ1RNqmF8duDtbhbxTy5Gk5Y+1kVq/a5KuwXQc6OzCtPV8oRKuuCxAFYYsn9OJCZSo7OcczAbqh1bEvVI7rrpg1lhE2tTwOk/VNAbeT0c8+7u+42C5e64UxDWOGJYOQzueqEiHs5f9ckMZlJ56HxLcWYWZnuMapwRXiyi0C2azhNNRx+rOf/Qy33norbrnlFrzxxhtYtmwZ/uVf/gU333yzvc6yZctwww034JZbbsHzzz+PgYEBnHzyyRgeHi57v6WI9mrs8/YDRhQckR8UqhdaR8yse7VJIhyhzSIjKicGFaIpVdRbFof3frxojBeqojvcv+lO3L/pzpKqAwY5ZKK8oEX6BOAYlF6jSL7WVYZFKh9udFfT4TytvTKnkRzVEeR4y/kcUznGlcnV29u/ULchaxsaXqPI0ybTPyolLF3RWxhKdrabnCFjMNc1LxeqKuWYvdePIQ18/NYBLH3TKKja4tZCUv9OZ8WFC8o1lKNEoJiwdha9+KDhuo8yphVdICJxBTpr7uJQKuNefi+WojPlh6VrOzGMNaLxNMpmJcY31XDUeJ+1Vgq2E7HpV7DK+xguxUYLK8RZKVG2XU3nXdCEbTVs15teXYubXg2ucq+yWyqZbPRGmJYbDRcWaCBjyfK4lx07/YKqR5s6+4sWMQqE2x09bY5xmNCDJS6CxlYJ3Sw5OjMIEW0ahNcfEWcJO5NJIPwflUYeJ3Ruj1dUKfulZkNpTI90bcY1J6XJe2wqqlEI+vW9Q7ju03ux4MY+xLa+CUAtGUC26MSgoY7T9evX47TTTsOXvvQlHHjggfjbv/1bLFy4EH/6058AWDf4jTfeiB/+8Ic444wzMH/+fKxevRqpVAp33XVXWfvcOeZEhMmRp2F4HzLC+ZE3mSXeLQk1C/0M1YxmM2vTjRc6Y24Hn8lZ2UL2cmp8wlPUp1SE6L94yVerCICXItmBEl7eQQ8E0d523T2Te8onkgCstCJ530LjtBnxam/KWHqlHO8ll6OzMHvpVwioVKPdSt9zb2vdh3fgnWH3spjGQyU9whyQUfHOjrbrzH6+jeZ0aIwXilZEf13c/oZj5IW1rV1xmQQVYHt6cBWeHlxVtN0wA8obIes1MkVaXJvmjpatZjq8yjA0YRTJJQga+oIuE7/rJKZxVzGFalTdtaJ7nT4T2mv1kDCIQr0qlF5//fU49thj0d3djRkzZuD000/Hxo0ba3hkE5NG2KxE6xP2PIoaUVgLxJgkrI0Zg9mOxVKyXCpB5eiVJ3HzJkNfm7+tqbItvMf5xf0X11x2IIglc52J7Bnt0X4T1Vk9tf28SOuVYme88pG7GKPfdVOJ3ES56AVb1fnu/bt72VcPLi5MWc51EHY+gpyU4t5Xpen7ESWoRmfxQtvc8lWl+D2iUops1JzeS1yBOoBwgPJA/dKZnd+0/y2cvyY3wJiGdl2dNdlXcIJXw4H92FZrH/yl133XqdQZ3QzUy2YFWtdubei47Pjjj8ejjz6Kt956CwDw0ksv4emnn8YXv/hFAMCmTZswODiIhQsX2r9JJBI48cQT8cc//rHs/YoHhyry1HvjGnyd9ZsqzSTkTFaVSBuidAZTahkGjfG6F/SytFOD16kkalm+xMpJCQlDNkh74uG6QvLAYDBVWuGiaiJe7qL9aqdd8bUQYzywung8pI/nT7nIrtYqEClFOZPh0F631ZT3FAWSr5V/e81xSuZM2I7NcvF7to0FXKAxjePRravtlKMo15hqJjqo3ao0eC9BRq7cfNE+b3pZWPEIgxcvKxUNOmJaceV3PyNLZzFXf/YU9IqjRuI2C7Jx79f2Wjk4myWF0OQVpD2VYOw/+eSTuPzyy/Hss89i3bp1yOfzWLhwIUZHo1XSJqLRKJuVaE2CnkMq26MSVO/gakRbyaicO4f01E97rKfN2VeleqPi9w9tXhO8IpwJOT+aZaIuCJH5AhRP4EY5g+JaPmYfS1cg7NpqlNa4n7ySClFUFXBP1MvXVh1LMrgIs2E0VpzRI49jZQepb7p+GTqnYqJFlhZTPRdK6TfLAcpsZ6+Kj1K3ub6La1gOmGjXq19ARkjinZN6C1ct2oHc6zvd7Sghg7kVqJfNCrSu3drQMkX/+I//iKGhIRx66KHQdR2GYeDaa6/F2WefDQAYHBwEAPT397t+19/fjw8++EC5zUwmg0wmY39PJq1oONmoUF7o3IxUKCosbL9RD1nCQUT+ehnozGHXmHXJ+730/V4jVkRxtVootlm9bYniUIxpRddg2DW5Mz2CnenlCLoBTM5ckbxjhvPSFMexKwP0B8gmNUvRljHD+fS1OQZKvBARJ9AYx0jOGt3IEac5k2F72qqQKY49Y4YbIFa0nfNd6G0Z3F9v67U9DN0RZJfLTY+Ri0NF2X4piLZ4jSqxLVWRB7k4VFuVo3Ae3boa4g4PGrRmTedaDXPslpKq7wfnJnQWszWc8maI4FmBehWHqgTVPS8bV2HX1cNbdCyaUxwVIhjJ3Vdu0+pCvSqUPvzww67vK1euxIwZM/DCCy/ghBNOKGv/RDG1sFkBf7uVGL8ERdxX01bqiJnIm8x3m5nC30p5n3z5wHNx33vhqcPlImfBDGUzSBTe13KxLUAu7hq+Te+xefvjuP4l2LDLLYdTClGy0L4933qXLfrgfyv/vmPMCkSQkeUQam1DhzvrSouMbEXE2DFtaKF6mUGFZU3OqloiyLsfkzPfcaywOQ2eL0zEV2+Wxu8697ZvNB+sRexX6DiMjJEqipoVGqdjRr7qkePTOzg2jwDPDszG4+8wnPhGCrHL/zeMf/9q6G9bUUqqXjYr0Lp2a0Mdp/fccw/uvPNO3HXXXTj88MOxYcMGXHnllZg1axbOP99Jq/TeJJxz33Dz66+/Hj/+8Y+LloubaXr7BfjL2GoAaqFhPzg4dKbZlY79EC82SyfQWf7Pz1tpWu0N7fGJQVzjLsNKpF5bWk/iWnBejkBpqVJhxkvQi9SJzmOYFI/2Wo3qjGdgRTOLOuOR0xSC1hPGhNVPDO260w93P9eDhUcFD/Te2NOOeZPHIrVjRzqa8TqjIzgCT/SziCgW1VTbdeul3tfmPpcGR+A5eWPPCgBWNGB/Rw67M7HIDsVXd/8Sk6LVnbNZMncRlswF/vE5/xRPVTrUE9tWY58u9fp+qVtWRKTlsMsWOqW9Cl45KyLWPUiMa5bTPV1YJs7TojmLinQ8w1DNugel+wDO+c8XKtNrzHGWinPkrYgs/x8A1m9fhY5Y6QOZdv1vMGb8H/u7yrCSjdxEQYP5SJ9o52YsDtVZGKiPeKahTM4Q12ob3R/F4T0RGBoaAgBMmTKlwS0ZX9TCZgX87VZi/NOIlOZykR1Ftchk8hJUzHFvRrcdW0HOPPGOLxVhD2/cuyLy71X2SBirNgY7oJW6tIVl5TpShd56KXqn4tyL/xsBjju5jYBVKFYUTq2VzilgtSkWIRAgrlkfU7qWrXGj0+i2wpixK+I4rRTka8RrD3nHFPtNin6SYxrHkVPTANqhQYfJjML+qqCLFEC7Xrn0kskN6D4RsNvTKwCIaFervxg0+/qNMWf8UitmdmZxk/4GNg1a2WP+JZUtLNse6G07q6btGk+0it3a0Ff297//ffzP//k/cdZZZ+GII47A4sWL8fd///e4/vrrAQADAwMAnFl8wY4dO4pm9AVXX301hoaG7M+WLVsARH/BWDdg+UR5aZZT6Y+ojJzJbCdE2duQzm2zadVaLxFe8cyiMISiHp/8kp8eoM8U1WlaCWGFuATJXHE6j86sapojBX3iA7u/YTnPFL/3OmUMnwhnVfuCtgNEL5jjHWw50Z3leYzkqFNx7v0KLZV67evMOi45rSetMLLWvr0Wb+xxhN/D9iP3gcqB7e1fr8apjLffvU5T1fb84Jz7pu/ITlNxr4ZF/N7x9iRs3LuiaPneTPPOwskFFkRFVZVubaURNOUWuqgXvAKtKF6QOkgmk66PHJmo3Cfn+O53v4vjjz8e8+fPr8dhThhqYbMC/nYrMTGJ4qh7efcvXR8Z1fvQrzhU1P35ceoBi8v/cQjedlm2nXV8MSll2Hu8IqNE5VAtJXvm7aHlRbbde0l/qalqRLsZPPoY0e+8eeWw5AKg3uJAqbwGDdF1IEXbTEm+QHPZh8W/qVe9AzF+Cbuew64B2S4JslGqIQnkF7QTZG+GybhpcPe337gwrC5AKcjtHc2H28tWIIqFS4MVWpGjV1yzYeObrlh7kf5rJfqmj25djVd3W9EUBwxn8anHTsbQboau+74c+ttWizQVNMJmBVrLbm2o4zSVSkHT3E3QdR2mad3Ms2fPxsDAANatW2f/PZvN4sknn8SnP/1p5TYTiQR6enpcHy/K2Rftc5HbnePF9ZHlm1M8COUH4k+OPQc/OfYcdMWq8KQlIqNylpbzsqtmdURR4bTaKQXeB3U5UVfiOFV6P6IQWlT6Es599saeiKr3VUT0b1CbvanzfsQk47mc60dchX5G2OYSJV1yphUxC7gHLhrjgVGIu8buKFrGwIoMLUFXXKT8uJer+tQ7wDC4ZUSLqFOZoBSeMC3P4weW4PiBJa5Bkc6K9Zr8zpNqMJU1neJQgDPwkrV75evjuP4lrmtCoDJEi98WFuI9pDG9qO2y09jgTmS8/Pep7Xk8sW21ctuNJJXXsHPMCa+OK96HgkqlbVR9W21dv0ooWytKSpfab7/90Nvba3+Ek86Pb33rW3j55Zdx99131+MQJxS1sFmBaHYrMXGoVkp2OXZruZOvtaKnzTJ0hNNUoEva6qr+uurjxRIvsk0gv48qqScgMBEehXvTq2tx06trfVNaRVaUIJVXrlYy3gKgMp0h6eiCSw9bZEsNCHTG8b0jrWXi/wBw5RGL8I15i3DRoc6yY6dfUNNoU6D4evdzQFuTuMHbss5nddoliBJ0EOXe90Z9W9r9xY01eL5Qrb5+NlGp405hw2lMh8FzyslwxpjL1mPQwBgrClAYzY8F3svljLmf2R6HzjjuSU2GnjMxlmruyfpKaYTNCrSW3drQkJW/+Zu/wbXXXov9998fhx9+OF588UXccMMNuPBCa+DMGMOVV16J6667DnPmzMGcOXNw3XXXobOzE+ecc05J+/I+AEutvCsiUVUP0oRuKkPMVQ/A0TxrumjF8Yh4QGaM6HMD8vnS4Di7quU0LTe1KcqLVCWUXS2C9i//bVfGijrVC2kvrYDc/q64UXS9yN92FSL85JdvJSnBKqdtlEiDyw9fhDVvWeld1SyC09/Zhe2pUXSGzKflTKZ0ggUZJWNGfdKnGbTC7LVbisXkzKVxKjtDNcbRJp2MNs3dr6oIivXbVym1Z1UGqjyhwblpOUmZ2wg0PQObsMFrPdIkq0U929p0GuOyQF05vwWwZcsWlyMtkUj4/QJXXHEFHnjgATz11FPYd999y9sv4Us9bVZifCPeMd4JwGoXtovy+Cn3EVWr563Kjj2oJ4PNI05GoLzvqPqs8jqiAGfGcMZkfprcmhTJeGD3JcUrwbIs8hWOFYrHqdF/O639fGxPrwCD7isL4hcFZyI4imrJXMcBKjukl73klhnwOlaB2kYk+xHlepZT9VW2a95kdmHOUth/0jfw/vDtJf+uUsSE8cu7OvDZWZbOqYg0thyS1XmwhE1Mq+otlJrt6SdtI84XhwkG3Y5UlaXGqs0L/57AqT8dw0BnHo//UwZ/+o3770ESPC1JnW1WoPXs1oY6Tm+++Wb88z//My677DLs2LEDs2bNwje/+U386Ec/ste56qqrkE6ncdlll2HPnj1YsGABfv/736O7u7ukfUUdvBk8h5jiPsjzLAxuQi6gY3LLgeB1toiXcNMN4ggbVXp10PmKaxyZKs3ExzxFiMKIch3Js3Hyi01VgMfL9I5J2JkecS2LErUl2vW1/5HE3qzzrFUdm0jVNzmwT5fa8KwVOdM9WdGmOXo8QX1jcqdglDCIhTEgikNViwMmcbyyh+HdYWsHURyoe7PFhQS8yDqwe7PqmTwODrNQmEgcU9yO5HAfdxCqZ6xqVj+uWak8QRw97UJlerofBrcGW6JImhdH29jNmAFM8owYsqZzvPKAbPHH3IMCVUSCNbtffNA5MzhVJc+z9j3sjQ45c3a6qO31jAqa76Ov6sfbQ06aoMasAYilXas+L5W8J/0GgtV2PjSSKBGInHNcccUVuP/++/HEE09g9uzZdWrdxKKeNisxvhFOUsuBE6wXWUtKSTv02pMmBx78YE1VnWNeB4/8PpVtLs2TBRRmo5QycSts2Tm9l7jskCB/QkI3YRpa1TPJKmHX2B2BldMrrQgunKhXH9XYSSGhk18p8j3YEcHZV4uJjiiERUiLe8jkRjW6pWRExlbWjB54FEWHVWOArsXs69bkRsFpWju+/WNrbPyp/ilI/Hk9NA14b8HvcPB/n247cL0wsMD7brwTNWumVe3WhjpOu7u7ceONN+LGG2/0XYcxhqVLl2Lp0qUV7atYX5BDY8WHr5qV8S5LKBxf1UzlJipDVX3Qz3EuXrj1NnbKndAJcmJ4NU79XugqZ8Oc3kvwqqSTZYTohKqY1ckLAwFepDNTC/4ythrT2v3T0v2I4pTcuHeFXcnVS1yzikPtHIvbfRzWV/GIg6KP9VjrRdU6FUQ13jSmY09mLSYniiMDdqTTruhKb+EsQbwMx79XPN6QJjX9pBTCCi2oIkGFYHzQ8ziuudvi3YfsWHcKIVhFHOTIi0qeGVkzDY3pLmNRVELVWcx2ZAu8zy+Ts5KqINeTSXETo3nr5vE+51TFoRbNKb4WoyIE+GXKeXbVCs3k0Mp82PMSfnf55Zfjrrvuwu9+9zt0d3fbGpu9vb3o6Ogoa/9EMfW0WYnxRb2fSTFNh2FUPwNJfufUOjhE9f6Q2yEXKwojelSq2+6Y23cx3h5aXrRc5qCeS1wThuUgH0NbQeJIldVSCsJ546RB+3dUM0nclIIsexYWzCBfAzkTOOuQRfj1O2sLEwKlT16orrv3h28vuk5EBLWwmyuV4sgYDAmd22Nbv3aL8aBKisvKfipde1a2reWxVKm1W+ZNvrhombCJ/QIQovRbtcee86fksHVUw//7wjD+v7ExTBtwZ4uFIQJW+trOrmq7akW9bFagde3WCekSt14i5d9cJncXjfFeKxRp2nyUGh0oUldKiXqLSt5kdU1xKucZKOtHyYgUbVUFxW2paAflFa6vFiLDwJtp0OHRcFJFaYqXvjuiwTKarX/X1uCMqjMlEFVBASviQ+apjxzdyx1pp0p90ItbduAZ3HQVQnPWYcp/q/jGvEWFNHjru3y9iChU8beYxtFZgvbz04Or8PTgqsB1vPf7gT1OGo+ftpV8zdSq0jFjGjg3YXgco0Cxcfvt+SPIGBomxUwcKU2YyDIJQXq2jSShOZ1scGbr1lbbqG324lDM4BV9ovKLX/wCQ0NDOOmkkzBz5kz7c88999Tw6AiCqCbNHikfpgtZK97c2473h9t87eZqaMKu375KuTzqGKBajvFKrwHDdDJWaiHd1cyEXQdex/m97651LatWAJTfOaw0G1Wu21DK9aaUkKpyRKToR52px4dhBBU2duoBWN+9dl/edOz7augVCz63z/mY/uJGAMA/fNzEutlH4cAvxtHzu78J/W2r3nv1slmB1rVbm7csbxNieMTJg7Bmg4qXxzXelFFCExn5JSZr/dT6sRdFPsKv4mJp+3BfcL1tZ7m+vz20HDvSy+GdR/FGhmVNoKvwbzki0krHsPRNAes+6YobrkqaeR9dzGZDvHTFuRFRuLKRUk6adI4zJCTjJZ3XXE7ecp8Jiz+2yOU4FZqdUWGMAdytEZQzrXnUnMmQzmt44IM4Tprp3A05Ux3B7TXkDC6iAazvY4aTwqNCjjz8819+FRptoUrzNrlRiNgM/i1g/ba3TZU9oP63XxtKhTEN7WjHGMacZdBgImfNtDeZwfWqp2JzGFN96sCJ66OaMgMMGhiYfWfpzH/SpxGwCmbvzRJ+V2nKJUEQ9aVdD5esKReVPeH3OGn022Y4d69yueVIcXeQXwCE9z09Zlj6m157w+CAbFbkTFY0se73fgpzqpUi5aUqDqWKnM2ZQFDcldzWv4ytDlhTDYeJkZzVSQZnVXU61QvVdR3FMSlrnAYRZVsJnWMkF143pV4SS8ImEqn61azwHiVQRHaihsFhWpqmYNBZHIBR5Bi17GLLp8KggfO8Pazl3ESeh+ubljshweYeDnATt72h4T/vm4aF3/sKgHTIMfGq9nk9qZfNCrSu3TohI06jEKXYjt81Mprz79acyZp+VrnVSeWjPbA0lxao0Eyxfms7TwurVOOFV45RIhxsYYiUdauKorO8lJnJMAFv4Sz1Rh38x5/cWiZ5k2Fvxj0nI5ymOZNhoLNyjVOVHk7OZK6P3B4/5Orp7u1baTvyoU5N5GFwYG7fGHaOxfHRaBzTO/KWwalFH35ojBcZ6xuHhPEa/vt/e80R5F/z1toip+7xA0t8f2tyI1Qkvr0EL+5IwLMuKn7XqOlTKVRGNDVvWppCGtORNdRG1Mn7nle0TDwr5HtTPgeqYgcAcFz/EmiMFxdzMHNFEc8iBR9w3icZZJXvFq+xZcKK0nx+50rX8mZxDKoYyWnImM51IZ4ros310ABvllR9giAmJt7iRV5KTW0tBdX+NFbZM7deTjVVWrH9N5/3XrljKq8jVqR9m5wpHcpB75WEFiwt5EWcC7f8T/F6QVkacY0jmXP3l67F0N9RnAYt8BazmVRGAaRmp9wIZNkpmONW4ED0fTLb1qlmcNSWEWdjKWkeIa7xojGbzjiOnJoGB3c5peTo0kqdVbJNLgfQiHtQSFtZk9jAjrS7D98eWm5/AElOwCc93zkGVtDMzwYeh3y/5CX5hXLPyWfvHQAA/OPHZ+APZ/03/vp3ffbfRHu949FWdZoS0ZgwjlN1tcTiF4aoQidrV3TGTgdgPajEy44GZq2LbCwlfGawTZ9/V4uoL3avYffq7l+6Pl50pnZYyuzN3u36CDKGFjibKF6MIo1ZvIhO/2TS1VbxMu9LFN9fCZ1XLVVfTs8ohaA0EuEIlA30PGeIMY5dmRh0Bmzc247p7TnM7MphZzoGnXFlarsfwjCX8b7UwwYCsvP6yweeG3nf/m0yCtu1GtIZMxHXLAfvVw600sr9DOwFMy7AghkXuJbd/sZadMed42rX1envqsrCAOzUbhXHDyyxncPi9wmd247INr0t0OFqcGfQmjODZTz+7bW1SoPLL61PhRgIypNxCa0TAKCzuCttXxSG6m0r3EsaLxqweosRNiuqdsvLStXxjYpWYtR1LdE4tzWjSv606Gw8QRBuSitMVN7YQv6dzoAYq37RlOIJ5qrvwtqPZsWFyo7ejKEhmS12qk5JqLP7gNJThuXAFpMzZZr+e0l/+zXqe+czB6ft9VdtVNsYgGUzqRzWJnckqFSV36PY2DlzrPD/iTOWVUlGyQi7UWOWc8Qb4OBFZ259VT/bbCgbXBw0CiLDyu2g9GZLMby8q8O2NYVTUp6kZ4yFBk8EIcZ3eZPZdrQ8XhHXcrrQ19PaTVfwypzeS+yP1TZ3bY5SHLtiEqBNU8dlj+SsZ4YY15ZjF+rv5PHT73RixZvbwTduQtszzrhT+IlUMgOW87rR8fylQzZrOBMyVd/Ryyi+2L0RewCQzv8OQCGdknMYBUdK1sfAkdNTvXTFeE1nmonSaYQoupjZVj3IvzLbcoQ9tHlN0d9qTcbU7GqSwmDriJm2wWpyx/iwnE7F2zA4w9T2PN4dSuCoqaW3Qa4E70cUw9Ca6HD3rzCW5PRxSxTeWSeoKJGfQ7OUwU5CM5ExGOb05m2DIsjA/8uohn263CuEVaaP0h5REZKBwSg8E4UTMZXXkNBN5EyG+9+3UvVHcjo0ZvWhkF7ojHHJieje53BOSAeUp3lkSRgEO/I1rwh/4Zh0hUTFo1tXA9DQrrt1VnMmw5hhtXFKwr89qqhkL346TXEtgZzpNp4Z05ROU/F/eUCj6gedAU9sW920OqfeSBmd1adoXDPBTA5Wpneh3N8RBNH8qBw3esDYwcuRnkKhG3b9yvU9SvpqqagcJLVAdjhYGSTtSOiW3dSuO+3IGBq2pRimJorbBxRHxAVN1rmzztTO2CDbsJTCP8+824GDjhq1t+Xt17CJc3mMmszpSuepICz6rdT6D82GM1HKXMuA4r6Ma5ZDr0P3v37FuCzPo5/PMDIGw65MDH1tRiHDytpPznQKfcY1x17u0HnoNaCzYgk0VXZdnmddUdyWo7L8m9fPOSwXUq02IoJ688jt9jLL1naOqxbX8aNbV+Oa71lj4GO7+vD+vscBD7vX4Zy7orjl+63aOrL1gGzWcFrvrFaBIBHiUmZpg4TK/WbxRiOmkRO1J4pzScw8NjtC34hLBl/eDNfcAdQRkF6syo3uZcIZ1lG4nQbTbkPj4N7KZ1krRX7Ja8xx9Ip7N67BVZjoi/svBuCeadY8Kfvi+IIqvgaR446ulqEwnL3f+ycVj7Bypvt4ZJ76aHXgzOqUhOWYF7Ol3tlnQxq0yI4ua9DgONQ/t0/lDrtKB1/BRbvc30V7VU7cNs1dNEye1fcriCH6IwpjxojPNpw0JZ3F7AHjsFQ7SpwDOV2/FTMerOtVLYlQLpaWl3ubYlDSDGgGoBm8zE+jW08QRLl43w3CqSCee3J172pGyJcTQVhqCv/9m+4s63cquuNfdX0AdzZgXHOLncvvjfIKnwb/XZbnEsVBG8VwcQ1JJQf1OPJXfhF7tr3HhWSOW4y8EQEk1UCdTVr9bXrZuHeF5MAXkk9uWSLBjA63X8HvvhHO/bThRD7vN6m4MTFb7shruzv/zvNsQTu0NiPYmMarkjXEGIPJDbudbiekteyj1G0YTC23HcNW1KxZFFmroitenUi1B3aM4rzr98O/bloVuF4l0bzNANms4bSCT6gqyOkO4qVcbkVevxeMeHjWUruNqA2uiuFovhujFEPA8NFnKgU5BcTSWWUFp4Ta0ScjovhqyUDnJaFaqaIN3kgAb8EA055ZZlj34R0ArHtcFEnyEnR/Hzv9At+/xQpSH3mTIWNoeDfpBPx/fErlb5xRhcxAKUzvcAxp8YxL6BxfPiAHXXJ6leuUEkaW19kbVjQsKO0+alveTxZPiMn95BcR6664Gr4flfxLVITBJeQ23E5GpzBhsw9wRAqWF425U9mqUaFZ1o8FRNQDvYAJgmhu5LRb+T1W7vtbTOTFNStarRSHSamOpihRkdVkTmESft9JOeRMdb9VA5P7bztIKx+w+j1sHXs/Ie8+0Qa/ApkuDXXFeRC2sUvbMmRUYEQIoGg1Sr1GS7Wt5P46qOeSQBml/o4c9mZ1ezyius/DnPry2CWnqA3QKQV8+AWBeTVuSyVKH7VpTkANoD5Wr9ScnH0lnl3Cnja5df12xkQhW3+qWYT4c/ucjxNmWgEXf73/NMz9wl78ZdB0jT1V/dnKxaGIcJrNP1QzqpEiaIToVbRiRcLxiBxBWAphxqPsYKsGzaLDJxPk8JQdHXJEnpCe8HtRimrpegkRetXCGwWqctZ4z4NbK6y4wRrj2J52W7SxgqPVW8RHhRx5521flBncyw9fZMuBnHWIU1ggqpG4O3MndmfutL+LKMed6bGidf2iaMMmh74xz11Uyeus9qJ6djrpVu6/PT24Ck8PrvJ1aoq0JG9/WKn6zvp+97ElEeBeJoTuy6WUQWzGSLm+t9p75e2h5Ygp7puog8pSUPWrtzhXIylbK6qCyqYEQTQ/frd31OKmQeis/MCQUlNeK30/DefudX28BB2H9x1fitSBF6997912LKT4k8Z4VZ02QWgMvoWLynGMtbojIOqYrJSJcJUN40W+V4K0b6Mij6cqJcr9X2l0pLettZ60zprcVdvCMIWsVcYeuxbb7t7xXXn7fm3PNiz/H50wzWhSca0aeUo2azgTRuNU9UIrJTrIK/Kbl16yTkSbo1nZ6roxzYZwvkXhvvfW2po3InUiZ1rV9b6w33l4bke4c0tFpY7OdF5zbWMkp2GSIo1ApEElXI7IaI6xSme5OnQTacPROQ2iO27pbIp2dQY8TUT6bDXvix3pX0XSQw1qk+bjEBvJ6ZbGp2QIHD+wBE8PrgJgzR5/lGqzI9zMEl6Scqq/11FditGkMeDX76y1v+sFrafjB5bYFSujYhVjyNrbNeznm7OOmE0X1eQf3bo68JwL2rTaO7Lkc+iNQrSXe4pn+DnYhI5ruaiMx6BUIus3zmx7TGuDyXO+fdbsGQ2dMROjefXxyhpx7XrlgwTV8y5nsqbpo0qMyYlihBLERKWSybiXFcVBK3nuibb42Zki+MTb5mrrVpswwJgG0wwfn/W0GdgyGsOeLDA5RGUtKEpW2OU50xrPdaDYXghi494VdX/nCC1WL4aZx/b0CvR3XIwpiXMxlP11qBOnGbPsqoH3nBsc6Io5dp+o/l4usraqvK0wR67Yv4gONwxWVDMiPNOquIaD/Bt5Utnv/Fc6XqxVgU8vTlFu9d8tZ6qVlZWSJhT62gxkTVboF+57zwTxxLbV6IpbtSlyd9yNjfedjUOQCv9hi0I2azgTxnEqHmhCC7II/rjvbztip2HMWOv7dy/CsRB0DS17Kfr2rvp4dKfheGXt29H7q12PPgOZaaJBdqkMdMZ8r+dqptx0xEzkCsWhYhpHXGP2C1NnwH/8qQef+3jSXl9nxSlLL+/qxFHT6v+yyZmlOWvldcV1ocEyLIXTVD42y1jiiDOOIEVXDerngc44vrj/eXhkyx2B7ZKNu5teXesaJPS0mUhmNXTFzaLzHtWxzBW6pnLakXfA4RWl93L7G9b9GtcKRZx8Bi1ejag//8UpcNEVCy60lzNZydEu8rbE+c2ZwKQ4x+4Mw5QECumOxc5T0dZHttyBnjb1PTa1/TyMSgL2gGW0ysWh/ATjGRgY0wqmrL+4mfV+aV4DJeUTCeNlNG/1c9izvZRJM1Hltln6h4T2CYJQEdcAwyh+L4ZlZ0QlbxrwFkiM1q7g545Xo7XeeG0J8b6uBNmhotKwN3j4YDlKRsW351vvsj+8/duiv5WaVi7ecX1tBt5LLkdPWxs0ptvFJQEru0hnsUhBQs0uAVQOQX0q23hB9kLQ+NBrAyZ00yWrJHBkmIrvL3/71n+/jUTl0FXpOdcavyyuhCfoxyr+W3mDDs2ZYEsW48LtG7Ed3SFtYy0bcUo2azjjcZIpMjM7v1m0zC9ayQ+hKeSlFmmJRDTkl2DGsKI85XMUlI5+1FTL0RT0zqrWoDyqpIDfi3swFVBWPYC+trNdH9X+ElJVx6D+8ntBjuTc1v+RU1OF9at3X3idgqLIlfhEdar5HYPJoaxWKs6HeyY73EErjKwo0bxRyJnuVH3BE9scZ/qO9K+K/j4lca5dIErg1Q1StXCSpy+iFofy9q+f5MPat9fijT3usvYmhyvq14v3XvQrjCCQrwnvb+XiUKKNQQZgrDBBJuM3kSGcplYbi3tXZ3FwcHBu2lEAQftu1KA1CrLOlky90hibacBBaU8EMXEJekc22gEpEyWjSdXeWmvZA9Y7PehRGNRub7V6wP/9cFz/Ett2HM1pChmA4A6qRgDG1ITYl7NMPvaTZgXbXCY3QrNb/Gh1bfAo/e93rznyDM6ka5gZ4Vc4TNbJjUvXjFiuume851tnHO0+4xdZjiKqDm899DZFEImXkZzazTR/ykX2v63iqI4B7pUZ8HOSytd6LSfLdcaR/eVDMF98Cmz/T2Cg85DQ37SqxinZrOFMmIhTwbT285XOBIHJjYoNmTCnaau/oCYCIsqwkai0Fr1Ma7cMKdlh4315eQ3Avdm7fbeXj5hiInPmsUnszQKpPDDJR8y+2Qh6vo/mNXT5OH+Kt2OlgeQL2wsrDiV4Y6+Odt16Fjy0eU2gqLxKx0v+fynvKsY07M7cWeQ4NbmB6R3t2JtJW87FXPGgw+sMD+Ib8xbhf728tlAxWH0sqtS5eZOL43bDHM3yNhhjLg0kGTlNHLDOXbvutC+ZA6YklD918YX9zsP67avCVxRtijD7bPCcbWjleXH79ULbRWpYPQtzyAZuFLaO3ub6njdZIZK4SqFUIegMyNI7liCIBmPpaqufe066bv3a44ecuuw3PlGlPddqAKmaXPTLojK4u11RHZixQpq0OIb121fB5KywnME7z1ePcduuDNAnzWEP5wCNOZPyT2xbjZ7C38tJO1Yh23Wt6vdI6CZyZjT7IuwY/STU/BAOuzm9l+C95HI7UEeMDcpF5WAdM9xjQj9nYYy1IcelyfrCdaJBLzk4rBS8x2twIJsHzjpkcaTfi8AHBq0sjeZJ8QT2ZIrtZ6PMe+XRravt/v7RX30NR07hOOlr/wIAiK0+w/d3VBxqfNMEr+z6I2Ypogj8huEVDBf/rld0DVFMFMe3n2C0XOkv6OYoJxW+3umjUXVRBX4Rk7KGlcooDdvHmresVFwRnS1XJFSxPb0i0ieImV3+GpGAe7BiGTj+0ROq1/fOsXiRZmtQcah8IV1EtOnwycXRwqWcK3EeZI1TQVhUggzn3DXT64fBnYjTcq5977no8exSFX2dKZwP70TU8QNLcPzAEmiMu+71V3Z772l1O6ckuK1zJUsFqJ4bfs+S4/qXIM+ZsoBAX1uf+kewHNeMaYAhCdzznGtG3Tu7/ovXu3y314zIqfoac65VVTGLag/UdFZ9zb1K0Axe0YcgiPFJrW7vcqJAozgbGylplTPVk4VbRmIlO6e8x5HOa0jolvyNwYvfU3P7Li6qnu5lbt/FyJms5ExDVUSst50quzzovektDtWqKcOlUI6D0i/yWJwHDdELn5mc2U5T1/KIvwXCJ1Dka0X4F/wnE5zxhSzTIJym1bwmxHUq650aHEgXdlvPiPpU3h14sTdbm8l6fdVXAFiRsWFZbq0G2azhTJiIU7cmjnh4lDajoTIcVC/Kjpjpq/Mm9P6IxvDIljvQVXDaRHFkVjMVyaub6I2Aq5Rq6KqU0iav4SG0uQzO0JfIY9dY8UuLQcNganmo87Qa5DxapDKq57swUC1nj5xiU9wf09tz2DySKGnwI4y7HGdFxrl3H2Gi68JwzpnAqQcsth2ocY3j6cFV6O+wpAyCous5zCInnV3crkZOfp1Z8gK/fmctLjp0ka2FClhalrLGaRTEORaRmP0dTvrUxr2Wc31u38WY2+f8RhRfE8Q1XnSfX3nEItz4itspvWRuuNbmtPbzkcz+BvtP+oa9bGr7ef7a2iVy/MCSqmynlszpde7tpz6yjvvoaRdi2+ganHpAceRBKRqmKjpjp1f0+1qi8QqE9seZQU4QROtiRdIxpPLAVw8+F/e9txbViHjsjn/V9T2Z/Q0M5AoBLpYDqFQ7WdSF+F8vO+9wr63mp4VtRQv6pxhXg3u/cgYe/GBNpHUrHS+WUgS5VYnqsI4rCpW+McQwr9cdANFR+Hepr+5y9dVV4wi/865yRKYNDW0ah7gf/XwbtY449RJUkE0wvd0/Sy8McZzWZIH/jnTGC0VDSzs3stTK0dMK//jNIlfQnckNMDDoUu0CK3O5Nd1rZLOG05pntkLkF7INNwFmhbh7Sed/ByCaE40co61DrYqI+Dk31n14R0n7K/c6Kvd38vWdymtFxoiYEfWbqRW6qEKce3qHc49pDNh/0jeqEuUNWJGSfxlbbUsVWPtw+nZ7KmbPFsvL45qV7uJHKq+hp82w06C8Dk5Z3F1VRCAIVcQdAHxx/8WFQUh0hDHiPdc5qWiTn77p7ozlOPQ6TXemx5Dw+LrVFeItJ6V6ucP3jix2iP3yTes4hTbrN+a51zl6mlu39o09KzBvslpL6nP7nG875jKGVhRp66dB9ZXZbpmCB96/U6kVe+URwQ49oYfspafta0XL5OtU0C7+r5gUn9bu/PtfPhXYjKbmhJnOcaucppXSFXenSy3+mHXOkskkgL+r+v5KpgKh/ZbNmyQIomyqodGsclak8xo6QiSIghwdwh4U7ythB9XiuS6TylvZJ7O6cnhhZ8KW/9kyEkPWtB6Tpo89BKCoWnkQeZMhoZvoiHHXxL+fLSFTqqSN6LdVG/1tv26fZKCoNj7npm8xSkFHzESmRpF59eAL+52HB96/E2cetMgusir3T7vu2PyW9IEVmBBVVUyeBI9KMqdjkude2zlm7THuihZ132y6lKHjff2Lift737WuF9m2EgEHB/VcgoN6gOHcvQDctuikOLBrzClCOyVxLvZkSht3ANZ4BSi2o1WseWttpICDMAY6L8FHqdtwYLf7XGxPr8DU9vOwPb3CNWEvEGNxcV1EaXPU9gjEmFaWzVPZ+y0D2ayhTEjHqZiBUxWHCkKXovGCIvNMbqULqlIseuIc6SZKJZwIqF5QRkSnqc647TyKS/+uRkR6NaNNBUJXxRY4V+zDWxBKaCrJMgUC7+9LSYN9e287jpzifN88cjviGvcV+q4FYc/xMcMyrLzribT0dOG7nJKtnh3mhYhi//4RzwMRzSlmji0dtJjdHtUxRLneklkNU9sNHD+wBG8PBTuoRbVVcS6CohJk4fwg5Gvl1tctg+zSwyozmvycpgJhPAoHKtFaaMwqChZEpRGpBEEQzUaQk7LcyW+TO+nFomClsNk0xgPHPGYZ1afrOU7eNWbZSAf3GHg3qSNtAHuzQNYEpvuMZL93pJU54p2gBYD73lvrcqQ8t2OlqwJ3tZws1eSkWedH0leXM28mAl8+0DpXX9jvPABWkMpXZp9r2xYXHWqd/1tfX2vb3arJci9evXYvQrbhveRyl4TDy7t/6fqeM8cwKaZDZxqSWR05kxXkJzTozLpnxX06ZliOXb8JlK8eXNxub8CBN4pbMLXd6h+RATU5UVvbSkxkVwPVs0tc52HXu7guaoE3e7KlnaZEJCaM47QaOhtRjZkg50kyx5pCDJ6wjL5yDdSgCur+TpzaOswNnldW1IzqoI1r3NaVjGJAxzXLaLXWhysVwiyk61vtAl7Y2YljpqcitSOq0Rcl/VkrGCWlOKk1ZgnmJxRFiQwe3J9BxaHEtlVYjtpY5OeUiJwVA5ezDlmEhzavCZ0M2DV2h28EglnQebUihxliAakvrRZV/9yOlVgwo/yUIKL6iLS5VruWSqGSSqMTpUIpQVSLZrplhFP0yweeiwfev1O5js6s93hnzMrWEc66KBOBRyoiHN/Y42i/d8XakTXTMDnDQT2X4P3h2323I7TZvWMX4ZAS3PvuWhjc0lY/65BzI6ebl4I3Y+O95HJsT1nRehcdugjrPrwDlx7myPz8+JhzcPsba32dNH6ZI2ce5F6+YMYFeGjzGnxhv/OaeiK2nNRnjekwuCV/YEvVKQpwjRdO3tdylHknXS89bBF++Wb0KMh9uqIFV3l1b1X3JuA4ONd96I6AfGjzGtuRe9Or7onkb8xzS1pVA3LuEX6QzRrOhHGcyihT9bXPAfy/om8DsCtpe0novOCsKbuJxDgmJmkqVlMqQGN61Sr5acxqp5X2rd5mzlRPSGQMDem8ZjtOAdhO04zBlKnJ5RBFu8ksODrF7K3BYad3AcXt74yZ2JvR0dEZblR60+VFcSg/52kyp1vOSVcxOSvlXKTqbx5VpcCHNkXanv/Ke7N32/+ekjgXyexvCseRi7x9Ec1S6rNt1UbLWBUz/wQhGM8RpZUI5k8UoX2CGK+ETYQu/pjlyPFGN8ppuKUwb/LFeC/pZJvIUVreNFeZsAlfgTfardZp+oCTfiwQTjE5ilQVUVoOIg253P6vBNXjPmfC1tsUdMZMjOTURrRfNtd4dpKWSiNs0Jmd38TMTue7uIYF4roDgG/PL25fta5vggiDbNZwJqTjVCmcbD4KMCukvk0XhVP8yXPmSuuQIxAzBiOnaQMZzjnOORE1mDP905A6dLOk86Wx8iIbEjovSb8qYzBltfEoaHBrP5WKt6K5vJ0wnVAA6EvkMbVdvVKUwlDb0ytC1yk15d/rgBTP+ITuFHNL5TV8cf/F2Lh3BeIaR1LhiDS5o1cUlQ7dRFzj2Gk4j1xZD3lrIRj34G6hy+r8Vldcb97v9723FmcetNieyR7N6+gtlmvG1PbzbI1TLxoLjqRWcVz/EvvfzRylQdGmzUk1U7maEVaBXlTZOlMEQTQckYrvF20qoMlEwo8xA5B8xnhi22r0KOw6AYeJ7ekVdtaWyC6qZhV1giDGL2SzhjNhksZlRziDBp3xokI1Gmf2i0Y4ZXjhPxUqJ0M1JAGI6iNXTBeIf6cNofPoPnl5ziwnaeG7iBTcWych9bjGIztpvakXJtyRreXgF70YpM1lcmfSIOnpJ51ZxxNWICqK0xSwqsaXgl+UqVy0yeTA20PLkdBNS3qgsDwv9YUj3s6gM0fWIKo+WDKr25GbYW0NQziecqaVPifoihU7rfvaznaJw6vIKaQaggpKrN++yv4EUQ2B+CAaESFCVMZ4jjQlCIIgiDCEbSTsUq9traoroLIPS0m/5jCR51nkTIZ2fULGTxEEQZTFhHxi+qX4mox7awgBADpjp8Pk92HMGLGXeYtDCW1AwHJ45Ux3cah/fv4u+9+kcdq8ZKWq5H5U8/RVUiBqoDPm0vm0dIyc9Hiz4PgthbzJ0Ka5Y7JljdCEzpHKuzfapgEpWM67hM4R16z1e9qctjy3vQsL+kcL7Q6POK0GGuNI6G6RdZMDXTGrumZXDBj1KnYw4KNUG/aflLHWV2xXNloNLrRdrd8ePU0d2ZiRngeT4pYcwME9eWQMDQ9tXoN9OjXszTrblo3n7SMarju2P/BYDQ70tlmtfXpwFfq9+V0KOExLtoQ7xyUXuLLOozvqOBfh/gCKi0KJVH2CmEhopgnNLC9NstzfEQRBEK2Fwa1CrV7HqWqSXWXXi7FAf8fFGEwtx0DnJeDcsvFE8I9I2RchATrjSOXzMHmsqrJhBEG0JmSzhjNhHKd5U44Y05Ez89ArCBxMaBxpaSbQW0im1JRXojZkDA1AuBamTJhjtKfNKDiUsmW1KV9BFKjMYCqPgU7nFja5AZ3FABg1CSUXBp0csSkmAQzuLLeciBzvDiVw1FRrmXCaRqHaFUHjhQqVnTEgJTlKvU5TLwd2fwMv7/6la5lecJBOb89h95heVno74DZ8VdEDch9P6zLxb69vw+WHq7f14AdroPsUfJKRNU53Z+4sXCuOw12cN8CpyCuKa1ntpHB6gigFEtonCEJVVHI8F8UjorNqo5UppDNgb9ZynlbCjvSvlMEJDBpMz1hIs212etcQBEE2axQmjONUppRiKOrfM0U6hYa4Zoa+gKa2ux2uRHMQ0zg0xnH0tAvxquQsa/bngEjP+cvY6kLRMwvhxi+3/fHCdRzTOAzpetUZx5hRKAylWxpMVrq6eyCweyyGOX2ZsvYdNVU/ioNVRILrzHKaqgYrlvPT+d7TZhQc7tHRGA90iJuuVH/1SSlFV9u7brma3Jyr5EYcWQuTu1PFmv1+IIhmgoT2CYKoJwf1XIL3kssxlM1ganujW0OUg9+j/6RZ5+P5nStdy/ZmdfS1uR2iIuKUBUyo6yweqcAqQRATB7JZw5mQSeM6swq7MBbNgZnK/0fRsnIDkkfz5DQlaoupiG6IQs5k6PBETudN5ip25udQNDyFqHra6m+QWfqqzgeIFg3qdQbKfRBXODnl9UvRNJZT3OMax7vJWKT2Cce04PLDrZR3g1vRCnJl26CJm762s13f/YpraQXdVuEwFan7YtsUeUoQBEE0GwZvnk+jeC8ZrCFPNDflXDsH9VyCae3nQ2O6rzOUBZY7Ln/fBEEQE4kJ4zj16sRUmiYjd5xcgMfkzFVshqg/7YXAS4M7jrOcpzp81EI+RsFJ5HWUZwwNMU2dUyOq2Xs/Oc9GvFqh1cLgDDmTlRUdmOPMVQhJhZye38wIB19YP3ifBfL6Kj1Pv2fH0dOCi1WpIlJzJnM5Pv3w9nWYw3ZOb7iOLA+Y/nGuIYYHNxcnJsQ0jke3rm6KgSJBNCuMc7tKackfRTQ4QRBEFHrbEo1uAlElxDjkiW2ri/7W12bYznJvBtGUxLnK7XGYgfYfQRATE7JZw5kwqfpu56Y1I6dK9Y2xcIEZE5ZTJmcypQMuoXOM5NzVun9y7DkAgGtfvKtofaJ+aMxKPe6MuaPz5EhKE45jXC8UAdPgOE8zBivStPXuQ0WpzqVynfulOkw37hWp8Qx50ykoVUla9khORz8cEdE/fNSF/2fmaNOmenud2oK0IsJWYxw7x+KuZSZndgrVsdPVBaLs3wN4a0hHu+7u43J0tWWJgZGcVpggKq2TvREKGUP9XJOLjTlRp1EnIEpqEkGMC0gviiAIgqgmqleDXChWBZdsNb9sI4IgJjZks4YzYZ6efimsO9K/KnlbCUUUmohs1Bi3nQQdsWJPCDkQ6kPQ/ZvQuT2DWwqqtO1yCLsGvjL7XHxl9rllOxlFqno511qUflE5Gb0ap30Jd+WlzwxELw5VLcoRvDc5sCvjP5+kKvIQZV/ec/mxXsdZ+dDmNaU1EkDWLI46nRQv1lie0eEfBcugRZIrOXV/51zmCtINYdz6+lrc+vra0PUIYjwjjNByPwRBtDZfPlAd9UcQfpQiAVX0Wy0WWYaOIAhChmzWcBrqOB0eHsaVV16JAw44AB0dHfj0pz+N559/3v475xxLly7FrFmz0NHRgZNOOgmvvfZa3dvZGTu9aJnsoIgXCgvJ30WaK9EYYp4UfZWWZNTzI0eb+m3LvV31B3AbRJ2xaA+ZUiNPDQ7X9Rf1WRbXuCNt4NM3Kgeh7Eg1OcNILvixMpiqjwaXOP6cIkU+ilN56+htmFSY/PAe9/T2ygrMqZyPQW2Sr5t/e22tvX7YufWbGJqSONc3Vcsra1Lq31VcdOiikn9TL2hgSxBEVFrFbiUIojUIsv1UNp7fmKDc9HsaqxIEQUSjoY7Tiy++GOvWrcOaNWvwyiuvYOHChfj85z+PrVu3AgCWLVuGG264Abfccguef/55DAwM4OSTT8bw8HBd25nK/wdy5pj9ApMdMTHNijBV6ReWE/FGVA+dlZ5u/uruX0ZeN29mlcs1pv5E5f5Nd+L+TXdG/0FRu1hBU7V8570cXeuuCK9eXxh+GuOYFPc33tormUqvAjlTbaTKKe9y+0cKchvy/V3ufS32K/dOQue27EOpEcJCy1dGnKuXS7iOnbaQ5hVBVBNRobTcD9F8tIrdSjQPjTB7eImSPURjWDJ3EXRWmv0nj2uSOcsQnNZ+Phg0cM5tGbrdGWscEVQYipymBEEIyGYNp2GO03Q6jfvuuw/Lli3DCSecgEMOOQRLly7F7Nmz8Ytf/AKcc9x444344Q9/iDPOOAPz58/H6tWrkUqlcNdd5euE+urAaJ8L/F1ca3d9NzlzRR5qEZ108QkjjtA4tIIuqcGDHZalOsDEtsKcoH4Rp+Wmz5eKKNYjrsewfc7tuxhz+4r1fgXydZ43WdE17P2uivAUfVZvQfqRnBYaIRzXuD2w6YiZ6IpZafQ5k9kRpzKyoVnO+RTPDhEZLLSQg54fQcWhHvzASvWP4pyf2n5e0TKNWYZ3b1sXACsa1uCVO4pbhQfeL3+SgiACMVG20D7V7mg+GmW3EuOPWmU1HtQTXhiSaD6CnOsqzXkhBdcTd2SfRNGn7ekVReurmCCZtQRBRIVs1lAa5sbL5/MwDAPt7W6HZEdHB55++mls2rQJg4ODWLhwof23RCKBE088EX/84x8r2rfQfxlMLQ/UAFQhO4VUDiKavWs9OiJE2mmo3MiopQNqWvv59r9NzgpRp9a1WEtnrco5K5Yls05IpIjYjKKPWS5yhXfhOJ6cMMJ/CKf9ckE3GSH9YGm58sJvHCkADZZxG1QYKizqxODRJlYuP9xKex8z3P2+J2P9+PiBJaHbEJEIAs6L7wFxzh74wF0Iq5bnkCDGE6QXNb5opN1KEMT4Y9VGR3pJEGaza8zfVvXiF3nMJ0gFbIIgokM2azj+VVBqTHd3N4477jj85Cc/wbx589Df34+7774bzz33HObMmYPBwUEAQH9/v+t3/f39+OCDD3y3m8lkkMlk7O9DQ0MAgNGRNJLJJIbH0uAwkc7n0KYxdOaT9romHy0UTEmC81EwlkTOHEXOzMDkBoazaaTzGjKGhjwYciZDTjMxltcxlNHRETORyuoYNXJIjeYR1ziSyaSrfWMjqZL7yrtRcH4ZAAASlklEQVSNiUiqhH7TY1ZK9pgJ5BkwauZhxEyYHBgdi8GMmcjpHDnNchYlwRADx0heB48ZMGE5SvNgyDHTdpCJ5azNgMmBIe6+fgSjw2llu3Img8Y4UlkdpsdJJp/jlPT7rriJjnweRqGtXmd9Mub8LoYvY0/mHgwNWZq7wrBKGdGuoZFkGmnT+k2OmRgdNaC3mcgYVkGgVEaDHgNSeWBsDMhrQN4EYnEglwVSsAy6jpgJU+OY0m4gmUwiPZLCcDLt6M5q6n4TDKfV/eelI+feRsrT7zxmIi/pcaZHdTAG5ACMpYF0QaZ0aMy6VtpzVnGlES0LkzNkdRMmZ0gV+nE0pyNvMiTTOobb0tizl6EvYYAVrieTA8k29XGNjaQwpJsYzcZg6CZGU3EMaBwjSWvbbw4xpFIMw+3WM2NsJGWfs8xICmnufpakR1JI5wEtBpww8+u45917oAMYzZv4/9+6FQMdWQwXUrjac0kkM2nEEtbvkxmrn3SmW6ldMGFwA7vSY2jTTcsoz4ljjuGzkzMYHdYwauTBDYY8c5ynphSRa3KGZFfSbh/QGs+u1HC6JdpJREecz0YPDnP5aM+yav+WqA31tlvpuVQafrZXIxDp18lkEqnhtEsLXthFtTq/w8k0WJuBtixdP81OeiQFgwNZw7GngUIAgAakchyxwljy6ElfwQt/uROpnGYVuY2ZYIUMqSSSGE6nYXIDGtPRkUsiOTYKMA0MgMEtg5dzbq+TM3PIGBpG8jpi4Dh2ynn0zCGIBtEMdivZrBHgDeSdd97hJ5xwAgfAdV3nxx57LF+0aBGfN28ef+aZZzgAvm3bNtdvLr74Yv6FL3zBd5vXXHMNB0Af+tCHPvShD30m8GfLli21NmOUpNNpPjAwUHH7BwYGeDqdbsgxEGrIbqUPfehDH/rQhz61+DTCbiWbNTqM88bH64+OjiKZTGLmzJn4+te/jpGREdx88804+OCD8ec//xmf+MQn7HVPO+009PX1YfVqtVapd+Z+7969OOCAA7B582b09vbW/FgmMslkEvvttx+2bNmCnp6eRjdn3EP9XT+or+sH9XX9GK99zTnH8PAwZs2aBU1rjCLR2NgYsll1AcGotLW1FaWFE81BLe1W0zSxe/duTJ061ZaWIqrDeH3mNRPUx7WF+rf2UB/XHupjN422W8lmjUbDUvVlurq60NXVhT179uCRRx7BsmXLMHv2bAwMDGDdunW2AZrNZvHkk0/iZz/7me+2EokEEolE0fLe3l66MetET08P9XUdof6uH9TX9YP6un6Mx75u9ERpe3v7uDcgJzK1tlv7+vpq2fwJz3h85jUb1Me1hfq39lAf1x7qY4dG2q1ks0ajoY7TRx55BJxzzJ07F++88w6+//3vY+7cubjgggvAGMOVV16J6667DnPmzMGcOXNw3XXXobOzE+ecc04jm00QBEEQBEFMMMhuJQiCIAiCmHg01HE6NDSEq6++Gh9++CGmTJmCM888E9deey3icUsd+6qrrkI6ncZll12GPXv2YMGCBfj973+P7u7uRjabIAiCIAiCmGCQ3UoQBEEQBDHxaKjj9Gtf+xq+9rWv+f6dMYalS5di6dKlZe8jkUjgmmuuUabvE9WF+rq+UH/XD+rr+kF9XT+orwmiNOphtxK1g555tYf6uLZQ/9Ye6uPaQ31MtCJNURyKIAiCIAiCIAiCIAiCIAiimWhMuVmCIAiCIAiCIAiCIAiCIIgmhhynBEEQBEEQBEEQBEEQBEEQHshxShAEQRAEQRAEQRAEQRAE4aHpHafXX389jj32WHR3d2PGjBk4/fTTsXHjRtc6nHMsXboUs2bNQkdHB0466SS89tprrnVuv/12nHTSSejp6QFjDHv37nX9/f3338dFF12E2bNno6OjAwcffDCuueYaZLPZWh9iU1Gv/pbJZDI46qijwBjDhg0banBUzUm9+/o///M/sWDBAnR0dGDatGk444wzanVoTUc9+/qtt97CaaedhmnTpqGnpwef+cxn8Pjjj9fy8JqKavT17t27ccUVV2Du3Lno7OzE/vvvj29/+9sYGhpybWfPnj1YvHgxent70dvbi8WLFwc+a8Yj9epvekcSBNFoyEatPWSb1h6ySWsL2aG1h2xPYiLS9I7TJ598EpdffjmeffZZrFu3Dvl8HgsXLsTo6Ki9zrJly3DDDTfglltuwfPPP4+BgQGcfPLJGB4ettdJpVI45ZRT8IMf/EC5nzfffBOmaeK2227Da6+9hp///Oe49dZbfdcfr9Srv2WuuuoqzJo1qybH08zUs6/vu+8+LF68GBdccAFeeuklPPPMMzjnnHNqenzNRD37+ktf+hLy+Twee+wxvPDCCzjqqKNw6qmnYnBwsKbH2CxUo6+3bduGbdu24V//9V/xyiuvYNWqVXj44Ydx0UUXufZ1zjnnYMOGDXj44Yfx8MMPY8OGDVi8eHFdj7fR1Ku/6R1JEESjIRu19pBtWnvIJq0tZIfWHrI9iQkJbzF27NjBAfAnn3ySc865aZp8YGCA//SnP7XXGRsb4729vfzWW28t+v3jjz/OAfA9e/aE7mvZsmV89uzZVWt7K1Lr/n7ooYf4oYceyl977TUOgL/44ou1OIyWoFZ9ncvl+D777MNXrFhR0/a3ErXq6507d3IA/KmnnrKXJZNJDoD/13/9V20OpsmptK8Fv/nNb3hbWxvP5XKcc85ff/11DoA/++yz9jrr16/nAPibb75Zo6NpfmrV3yroHUkQRCMhG7X2kG1ae8gmrS1kh9Yesj2JiUDTR5x6EeHbU6ZMAQBs2rQJg4ODWLhwob1OIpHAiSeeiD/+8Y8V70vsZ6JSy/7evn07LrnkEqxZswadnZ3Va3SLUqu+/vOf/4ytW7dC0zR84hOfwMyZM/HXf/3XRSk/E4la9fXUqVMxb9483HHHHRgdHUU+n8dtt92G/v5+HHPMMdU9iBahWn09NDSEnp4exGIxAMD69evR29uLBQsW2Ot86lOfQm9vb8XP/lamVv3tt85Ef0cSBNE4yEatPWSb1h6ySWsL2aG1h2xPYiLQUo5Tzjm++93v4vjjj8f8+fMBwE416O/vd63b399fURrCu+++i5tvvhmXXnpp+Q1ucWrZ35xzLFmyBJdeeik++clPVq/RLUot+/q9994DACxduhT/9E//hAcffBCTJ0/GiSeeiN27d1fpCFqHWvY1Ywzr1q3Diy++iO7ubrS3t+PnP/85Hn74YfT19VXtGFqFavX1rl278JOf/ATf/OY37WWDg4OYMWNG0bozZswY1yloQdSyv73QO5IgiEZCNmrtIdu09pBNWlvIDq09ZHsSEwV/d34T8q1vfQsvv/wynn766aK/McZc3znnRcuism3bNpxyyin46le/iosvvrisbYwHatnfN998M5LJJK6++uqK2zkeqGVfm6YJAPjhD3+IM888EwCwcuVK7Lvvvrj33nsDX1DjkVr2Neccl112GWbMmIE//OEP6OjowIoVK3Dqqafi+eefx8yZMytufytRjb5OJpP40pe+hMMOOwzXXHNN4DaCtjMRqHV/C+gdSRBEoyEbtfaQbVp7yCatLWSH1h6yPYmJQstEnF5xxRV44IEH8Pjjj2Pfffe1lw8MDABA0ezFjh07imY5orBt2zZ89rOfxXHHHYfbb7+9ska3MLXu78ceewzPPvssEokEYrEYDjnkEADAJz/5SZx//vlVOILWodZ9LQyjww47zF6WSCRw0EEHYfPmzZU0veWox3X94IMP4te//jU+85nP4Oijj8a///u/o6OjA6tXr67OQbQI1ejr4eFhnHLKKZg0aRLuv/9+xONx13a2b99etN+dO3eW9exvdWrd3wJ6RxIE0WjIRq09ZJvWHrJJawvZobWHbE9iItH0jlPOOb71rW/ht7/9LR577DHMnj3b9ffZs2djYGAA69ats5dls1k8+eST+PSnP13SvrZu3YqTTjoJRx99NFauXAlNa/ruqTr16u+bbroJL730EjZs2IANGzbgoYceAgDcc889uPbaa6tzME1Ovfr6mGOOQSKRwMaNG+1luVwO77//Pg444IDKD6QFqFdfp1IpACh6dmiaZkdXjHeq1dfJZBILFy5EW1sbHnjgAbS3t7u2c9xxx2FoaAj//d//bS977rnnMDQ0VPKzv5WpV38D9I4kCKKxkI1ae8g2rT1kk9YWskNrD9mexISkhoWnqsLf/d3f8d7eXv7EE0/wjz76yP6kUil7nZ/+9Ke8t7eX//a3v+WvvPIKP/vss/nMmTN5Mpm01/noo4/4iy++yJcvX25XGHzxxRf5rl27OOecb926lR9yyCH8r/7qr/iHH37o2tdEol797WXTpk0TrmJpPfv6O9/5Dt9nn334I488wt98801+0UUX8RkzZvDdu3fX9ZgbRb36eufOnXzq1Kn8jDPO4Bs2bOAbN27k//AP/8Dj8TjfsGFD3Y+7EVSjr5PJJF+wYAE/4ogj+DvvvOPaTj6ft7dzyimn8COPPJKvX7+er1+/nh9xxBH81FNPrfsxN5J69Te9IwmCaDRko9Yesk1rD9mktYXs0NpDticxEWl6xykA5WflypX2OqZp8muuuYYPDAzwRCLBTzjhBP7KK6+4tnPNNdcEbmflypW++5pI1Ku/vUwko1RQz77OZrP8e9/7Hp8xYwbv7u7mn//85/mrr75apyNtPPXs6+eff54vXLiQT5kyhXd3d/NPfepT/KGHHqrTkTaeavT1448/7rudTZs22evt2rWLL1q0iHd3d/Pu7m6+aNEivmfPnvodbBNQr/6mdyRBEI2GbNTaQ7Zp7SGbtLaQHVp7yPYkJiKMc85BEARBEARBEARBEARBEARB2JBIBEEQBEEQBEEQBEEQBEEQhAdynBIEQRAEQRAEQRAEQRAEQXggxylBEARBEARBEARBEARBEIQHcpwSBEEQBEEQBEEQBEEQBEF4IMcpQRAEQRAEQRAEQRAEQRCEB3KcEgRBEARBEARBEARBEARBeCDHKUEQBEEQBEEQBEEQBEEQhAdynBIEQRAEQRAEQRAEQRAEQXggxylBEC3L0qVLcdRRRzW6GQRBEARBEAQRCNmtBEEQrQnjnPNGN4IgCMILYyzw7+effz5uueUWZDIZTJ06tU6tIgiCIAiCIAg3ZLcSBEGMX8hxShBEUzI4OGj/+5577sGPfvQjbNy40V7W0dGB3t7eRjSNIAiCIAiCIGzIbiUIghi/UKo+QRBNycDAgP3p7e0FY6xomTflacmSJTj99NNx3XXXob+/H319ffjxj3+MfD6P73//+5gyZQr23Xdf/OpXv3Lta+vWrfj617+OyZMnY+rUqTjttNPw/vvv1/eACYIgCIIgiJaE7FaCIIjxCzlOCYIYVzz22GPYtm0bnnrqKdxwww1YunQpTj31VEyePBnPPfccLr30Ulx66aXYsmULACCVSuGzn/0sJk2ahKeeegpPP/00Jk2ahFNOOQXZbLbBR0MQBEEQBEGMV8huJQiCaH7IcUoQxLhiypQpuOmmmzB37lxceOGFmDt3LlKpFH7wgx9gzpw5uPrqq9HW1oZnnnkGAPDrX/8amqZhxYoVOOKIIzBv3jysXLkSmzdvxhNPPNHYgyEIgiAIgiDGLWS3EgRBND+xRjeAIAiimhx++OHQNGdOqL+/H/Pnz7e/67qOqVOnYseOHQCAF154Ae+88w66u7td2xkbG8O7775bn0YTBEEQBEEQEw6yWwmCIJofcpwSBDGuiMfjru+MMeUy0zQBAKZp4phjjsHatWuLtjV9+vTaNZQgCIIgCIKY0JDdShAE0fyQ45QgiAnN0UcfjXvuuQczZsxAT09Po5tDEARBEARBEErIbiUIgqg/pHFKEMSEZtGiRZg2bRpOO+00/OEPf8CmTZvw5JNP4jvf+Q4+/PDDRjePIAiCIAiCIACQ3UoQBNEIyHFKEMSEprOzE0899RT2339/nHHGGZg3bx4uvPBCpNNpmsknCIIgCIIgmgayWwmCIOoP45zzRjeCIAiCIAiCIAiCIAiCIAiimaCIU4IgCIIgCIIgCIIgCIIgCA/kOCUIgiAIgiAIgiAIgiAIgvBAjlOCIAiCIAiCIAiCIAiCIAgP5DglCIIgCIIgCIIgCIIgCILwQI5TgiAIgiAIgiAIgiAIgiAID+Q4JQiCIAiCIAiCIAiCIAiC8ECOU4IgCIIgCIIgCIIgCIIgCA/kOCUIgiAIgiAIgiAIgiAIgvBAjlOCIAiCIAiCIAiCIAiCIAgP5DglCIIgCIIgCIIgCIIgCILwQI5TgiAIgiAIgiAIgiAIgiAID+Q4JQiCIAiCIAiCIAiCIAiC8PB/AaVuyIAeFr0cAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "End of Plotting" + "f, axes = plt.subplots(3, 2, figsize=(14, 12)) # 3 rows, 2 columns\n", + "\n", + "# Plot Temperature subplots\n", + "sc1_1 = axes[0, 0].pcolor(date1, depth1, sst1, cmap=\"Spectral_r\", vmin=6.7,vmax=20)\n", + "axes[0, 0].set_title(\"Temperature (°C) - Orca3\")\n", + "axes[0, 0].set_xlabel(\"\")\n", + "axes[0, 0].set_ylabel(\"Depth (m)\")\n", + "axes[0, 0].invert_yaxis() # Invert y axis\n", + "axes[0, 0].set_xticklabels([])\n", + "axes[0, 0].set_ylim([90, 0]) # Set y-axis range\n", + "#axes[0, 0].set_clim([10, 22])\n", + "\n", + "sc1_2 = axes[0, 1].pcolor(date2, depth2, sst2, cmap=\"Spectral_r\", vmin=6.7,vmax=20)\n", + "axes[0, 1].set_title(\"Temperature (°C) - npby1\")\n", + "axes[0, 1].set_xlabel(\"\")\n", + "#axes[0, 1].set_ylabel(\"Depth (m)\")\n", + "axes[0, 1].invert_yaxis() # Invert y axis\n", + "axes[0, 1].set_xticklabels([])\n", + "axes[0, 1].set_ylim([90, 0]) # Set y-axis range\n", + "\n", + "# Plot Salinity subplots\n", + "sc2_1 = axes[1, 0].pcolor(date1, depth1, sss1, cmap=\"Spectral_r\", vmin=19,vmax=32.6)\n", + "axes[1, 0].set_title(\"Salinity (psu) - Orca3\")\n", + "axes[1, 0].set_xlabel(\"\")\n", + "axes[1, 0].set_ylabel(\"Depth (m)\")\n", + "axes[1, 0].invert_yaxis() # Invert y axis\n", + "axes[1, 0].set_xticklabels([])\n", + "axes[1, 0].set_ylim([90, 0]) # Set y-axis range\n", + "\n", + "sc2_2 = axes[1, 1].pcolor(date2, depth2, sss2, cmap=\"Spectral_r\", vmin=19,vmax=32.6)\n", + "axes[1, 1].set_title(\"Salinity (psu) - npby1\")\n", + "axes[1, 1].set_xlabel(\"\")\n", + "#axes[1, 1].set_ylabel(\"Depth (m)\")\n", + "axes[1, 1].invert_yaxis() # Invert y axis\n", + "axes[1, 1].set_xticklabels([])\n", + "axes[1, 1].set_ylim([90, 0]) # Set y-axis range\n", + "\n", + "# Plot Oxygen subplots\n", + "sc3_1 = axes[2, 0].pcolor(date1, depth1, oxy1, cmap=\"Spectral_r\",vmin=0.1,vmax=18)\n", + "axes[2, 0].set_title(\"Oxygen (mg/L) - Orca3\")\n", + "axes[2, 0].set_ylabel(\"Depth (m)\")\n", + "axes[2, 0].set_xlabel(\"Time\")\n", + "axes[2, 0].invert_yaxis() # Invert y axis\n", + "axes[2, 0].set_ylim([90, 0]) # Set y-axis range\n", + "\n", + "sc3_2 = axes[2, 1].pcolor(date2, depth2, oxy2, cmap=\"Spectral_r\",vmin=0.1,vmax=18)\n", + "axes[2, 1].set_title(\"Oxygen (mg/L) - npby1\")\n", + "axes[2, 1].set_ylabel(\"Depth (m)\")\n", + "axes[2, 1].set_xlabel(\"Time\")\n", + "axes[2, 1].invert_yaxis() # Invert y axis\n", + "axes[2, 1].set_ylim([90, 0]) # Set y-axis range\n", + "\n", + "# Add colorbars\n", + "cbar1_1 = f.colorbar(sc1_1, ax=axes[0, 0], orientation='vertical')\n", + "cbar1_1.ax.set_ylabel('°C', fontweight='bold')\n", + "cbar1_1.ax.yaxis.label.set_fontweight('bold') # Set colorbar label font weight\n", + "\n", + "cbar1_2 = f.colorbar(sc1_2, ax=axes[0, 1], orientation='vertical')\n", + "cbar1_2.ax.set_ylabel('°C', fontweight='bold')\n", + "cbar1_2.ax.yaxis.label.set_fontweight('bold') # Set colorbar label font weight\n", + "\n", + "cbar2_1 = f.colorbar(sc2_1, ax=axes[1, 0], orientation='vertical')\n", + "cbar2_1.ax.set_ylabel('psu', fontweight='bold')\n", + "cbar2_1.ax.yaxis.label.set_fontweight('bold') # Set colorbar label font weight\n", + "\n", + "cbar2_2 = f.colorbar(sc2_2, ax=axes[1, 1], orientation='vertical')\n", + "cbar2_2.ax.set_ylabel('psu', fontweight='bold')\n", + "cbar2_2.ax.yaxis.label.set_fontweight('bold') # Set colorbar label font weight\n", + "\n", + "cbar3_1 = f.colorbar(sc3_1, ax=axes[2, 0], orientation='vertical')\n", + "cbar3_1.ax.set_ylabel('mg/L', fontweight='bold')\n", + "cbar3_1.ax.yaxis.label.set_fontweight('bold') # Set colorbar label font weight\n", + "\n", + "cbar3_2 = f.colorbar(sc3_2, ax=axes[2, 1], orientation='vertical')\n", + "cbar3_2.ax.set_ylabel('mg/L', fontweight='bold')\n", + "cbar3_2.ax.yaxis.label.set_fontweight('bold') # Set colorbar label font weight\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "f.suptitle(\"Depth Comparison of Temp, Salinity, and Oxygen for Stations Orca3 and npby1\", fontsize=16, y=1.02)\n", + "plt.show()" ] } ], diff --git a/moorings/Puget_Sound2.ipynb b/moorings/Puget_Sound2.ipynb index 0bc6407..5465790 100644 --- a/moorings/Puget_Sound2.ipynb +++ b/moorings/Puget_Sound2.ipynb @@ -5,7 +5,7 @@ "id": "1086781d-4bb2-4828-8791-3bda6c144095", "metadata": {}, "source": [ - "Puget Sound Plotting2" + "# Puget Sound Plotting2" ] }, { @@ -271,6 +271,10 @@ "execution_count": 11, "id": "89e01634-8f22-4f4d-849e-9107721cabf5", "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, "tags": [] }, "outputs": [ diff --git a/moorings/index.md b/moorings/index.md index 6c46326..2dbbcd6 100644 --- a/moorings/index.md +++ b/moorings/index.md @@ -2,10 +2,10 @@ We put together python notebooks for the following moorings: -* DFO Mooring E01 Summary -* Historical Data from DFO Moorings -* NANOOS Puget Sound Mooring ORCA3 -* NANOOS Puget Sound Mooring NPBY1 +* [DFO Mooring E01 Summary](erddap_DFO_moorings_E01.ipynb) +* [Historical Data from DFO Moorings](dfo_mooring_plots_copy.ipynb) +* [Puget Sound Mooring Data Plots](Puget_Sound1.ipynb) +* [Puget Sound Mooring Climatologies](Puget_Climatology.ipynb) It would be very cool to be able to add more mooring pages automatically. @@ -16,5 +16,6 @@ It would be very cool to be able to add more mooring pages automatically. erddap_DFO_moorings_E01.ipynb dfo_mooring_plots_copy.ipynb -Puget_Sound.ipynb +Puget_Sound1.ipynb +Puget_Climatology.ipynb ```