-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_without_DA.py
385 lines (353 loc) · 19.2 KB
/
main_without_DA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
## Deep Active Lesion Segmention (DALS), Code by Ali Hatamizadeh ( http://web.cs.ucla.edu/~ahatamiz/ )
import os
import numpy as np
import tensorflow.compat.v1 as tf
import matplotlib.pyplot as plt
tf.disable_v2_behavior()
import DataGen
import glob
import architectures
from sklearn.metrics import f1_score,precision_recall_fscore_support,accuracy_score,recall_score
from utils import load_image,dice_hard,dice_soft,my_func,resolve_status,contoured_image
import pdb
import cv2
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--logdir', default='network', type=str)
parser.add_argument('--mu', default=0.2, type=float)
parser.add_argument('--nu', default=5.0, type=float)
parser.add_argument('--batch_size', default=10, type=int)
parser.add_argument('--train_sum_freq', default=150, type=int)
parser.add_argument('--train_iter', default=5000, type=int)
parser.add_argument('--acm_iter_limit', default=300, type=int)
parser.add_argument('--img_resize', default=64, type=int)
parser.add_argument('--f_size', default=15, type=int)
parser.add_argument('--train_status', default=1, type=int)
parser.add_argument('--narrow_band_width', default=1, type=int)
parser.add_argument('--save_freq', default=1000, type=int)
parser.add_argument('--demo_type', default=1, type=int)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--gpu', default='0', type=str)
args = parser.parse_args()
restore,is_training =resolve_status(args.train_status)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
input_location = './dataset/Train'
valid_location = './dataset/Valid'
test_location = './dataset/Test'
def re_init_phi(phi, dt):
D_left_shift = tf.cast(tf.manip.roll(phi, -1, axis=1), dtype='float32')
D_right_shift = tf.cast(tf.manip.roll(phi, 1, axis=1), dtype='float32')
D_up_shift = tf.cast(tf.manip.roll(phi, -1, axis=0), dtype='float32')
D_down_shift = tf.cast(tf.manip.roll(phi, 1, axis=0), dtype='float32')
bp = D_left_shift - phi
cp = phi - D_down_shift
dp = D_up_shift - phi
ap = phi - D_right_shift
an = tf.identity(ap)
bn = tf.identity(bp)
cn = tf.identity(cp)
dn = tf.identity(dp)
ap = tf.clip_by_value(ap, 0, 10 ^ 38)
bp = tf.clip_by_value(bp, 0, 10 ^ 38)
cp = tf.clip_by_value(cp, 0, 10 ^ 38)
dp = tf.clip_by_value(dp, 0, 10 ^ 38)
an = tf.clip_by_value(an, -10 ^ 38, 0)
bn = tf.clip_by_value(bn, -10 ^ 38, 0)
cn = tf.clip_by_value(cn, -10 ^ 38, 0)
dn = tf.clip_by_value(dn, -10 ^ 38, 0)
area_pos = tf.where(phi > 0)
area_neg = tf.where(phi < 0)
pos_y = area_pos[:, 0]
pos_x = area_pos[:, 1]
neg_y = area_neg[:, 0]
neg_x = area_neg[:, 1]
tmp1 = tf.reduce_max([tf.square(tf.gather_nd(t, area_pos)) for t in [ap, bn]], axis=0)
tmp1 += tf.reduce_max([tf.square(tf.gather_nd(t, area_pos)) for t in [cp, dn]], axis=0)
update1 = tf.sqrt(tf.abs(tmp1)) - 1
indices1 = tf.stack([pos_y, pos_x], 1)
tmp2 = tf.reduce_max([tf.square(tf.gather_nd(t, area_neg)) for t in [an, bp]], axis=0)
tmp2 += tf.reduce_max([tf.square(tf.gather_nd(t, area_neg)) for t in [cn, dp]], axis=0)
update2 = tf.sqrt(tf.abs(tmp2)) - 1
indices2 = tf.stack([neg_y, neg_x], 1)
indices_final = tf.concat([indices1, indices2], 0)
update_final = tf.concat([update1, update2], 0)
dD = tf.scatter_nd(indices_final, update_final, shape=[input_image_size, input_image_size])
S = tf.divide(phi, tf.square(phi) + 1)
phi = phi - tf.multiply(dt * S, dD)
return phi
def get_curvature(phi, x, y):
phi_shape = tf.shape(phi)
dim_y = phi_shape[0]
dim_x = phi_shape[1]
x = tf.cast(x, dtype="int32")
y = tf.cast(y, dtype="int32")
y_plus = tf.cast(y + 1, dtype="int32")
y_minus = tf.cast(y - 1, dtype="int32")
x_plus = tf.cast(x + 1, dtype="int32")
x_minus = tf.cast(x - 1, dtype="int32")
y_plus = tf.minimum(tf.cast(y_plus, dtype="int32"), tf.cast(dim_y - 1, dtype="int32"))
x_plus = tf.minimum(tf.cast(x_plus, dtype="int32"), tf.cast(dim_x - 1, dtype="int32"))
y_minus = tf.maximum(y_minus, 0)
x_minus = tf.maximum(x_minus, 0)
d_phi_dx = tf.gather_nd(phi, tf.stack([y, x_plus], 1)) - tf.gather_nd(phi, tf.stack([y, x_minus], 1))
d_phi_dx_2 = tf.square(d_phi_dx)
d_phi_dy = tf.gather_nd(phi, tf.stack([y_plus, x], 1)) - tf.gather_nd(phi, tf.stack([y_minus, x], 1))
d_phi_dy_2 = tf.square(d_phi_dy)
d_phi_dxx = tf.gather_nd(phi, tf.stack([y, x_plus], 1)) + tf.gather_nd(phi, tf.stack([y, x_minus], 1)) - \
2 * tf.gather_nd(phi, tf.stack([y, x], 1))
d_phi_dyy = tf.gather_nd(phi, tf.stack([y_plus, x], 1)) + tf.gather_nd(phi, tf.stack([y_minus, x], 1)) - \
2 * tf.gather_nd(phi, tf.stack([y, x], 1))
d_phi_dxy = 0.25 * (- tf.gather_nd(phi, tf.stack([y_minus, x_minus], 1)) - tf.gather_nd(phi, tf.stack(
[y_plus, x_plus], 1)) + tf.gather_nd(phi, tf.stack([y_minus, x_plus], 1)) + tf.gather_nd(phi, tf.stack(
[y_plus, x_minus], 1)))
tmp_1 = tf.multiply(d_phi_dx_2, d_phi_dyy) + tf.multiply(d_phi_dy_2, d_phi_dxx) - \
2 * tf.multiply(tf.multiply(d_phi_dx, d_phi_dy), d_phi_dxy)
tmp_2 = tf.add(tf.pow(d_phi_dx_2 + d_phi_dy_2, 1.5), 2.220446049250313e-16)
tmp_3 = tf.pow(d_phi_dx_2 + d_phi_dy_2, 0.5)
tmp_4 = tf.divide(tmp_1, tmp_2)
curvature = tf.multiply(tmp_3, tmp_4)
mean_grad = tf.pow(d_phi_dx_2 + d_phi_dy_2, 0.5)
return curvature, mean_grad
def get_intensity(image, masked_phi, filter_patch_size=5):
u_1 = tf.layers.average_pooling2d(tf.multiply(image, masked_phi), [filter_patch_size, filter_patch_size], 1,padding='SAME')
u_2 = tf.layers.average_pooling2d(masked_phi, [filter_patch_size, filter_patch_size], 1, padding='SAME')
u_2_prime = 1 - tf.cast((u_2 > 0), dtype='float32') + tf.cast((u_2 < 0), dtype='float32')
u_2 = u_2 + u_2_prime + 2.220446049250313e-16
return tf.divide(u_1, u_2)
def active_contour_layer(elems):
img = elems[0]
init_phi = elems[1]
map_lambda1_acl = elems[2]
map_lambda2_acl = elems[3]
wind_coef = 3
zero_tensor = tf.constant(0, shape=[], dtype="int32")
def _body(i, phi_level):
band_index = tf.reduce_all([phi_level <= narrow_band_width, phi_level >= -narrow_band_width], axis=0)
band = tf.where(band_index)
band_y = band[:, 0]
band_x = band[:, 1]
shape_y = tf.shape(band_y)
num_band_pixel = shape_y[0]
window_radii_x = tf.ones(num_band_pixel) * wind_coef
window_radii_y = tf.ones(num_band_pixel) * wind_coef
def body_intensity(j, mean_intensities_outer, mean_intensities_inner):
xnew = tf.cast(band_x[j], dtype="float32")
ynew = tf.cast(band_y[j], dtype="float32")
window_radius_x = tf.cast(window_radii_x[j], dtype="float32")
window_radius_y = tf.cast(window_radii_y[j], dtype="float32")
local_window_x_min = tf.cast(tf.floor(xnew - window_radius_x), dtype="int32")
local_window_x_max = tf.cast(tf.floor(xnew + window_radius_x), dtype="int32")
local_window_y_min = tf.cast(tf.floor(ynew - window_radius_y), dtype="int32")
local_window_y_max = tf.cast(tf.floor(ynew + window_radius_y), dtype="int32")
local_window_x_min = tf.maximum(zero_tensor, local_window_x_min)
local_window_y_min = tf.maximum(zero_tensor, local_window_y_min)
local_window_x_max = tf.minimum(tf.cast(input_image_size - 1, dtype="int32"), local_window_x_max)
local_window_y_max = tf.minimum(tf.cast(input_image_size - 1, dtype="int32"), local_window_y_max)
local_image = img[local_window_y_min: local_window_y_max + 1,local_window_x_min: local_window_x_max + 1]
local_phi = phi_level[local_window_y_min: local_window_y_max + 1,local_window_x_min: local_window_x_max + 1]
inner = tf.where(local_phi <= 0)
area_inner = tf.cast(tf.shape(inner)[0], dtype='float32')
outer = tf.where(local_phi > 0)
area_outer = tf.cast(tf.shape(outer)[0], dtype='float32')
image_loc_inner = tf.gather_nd(local_image, inner)
image_loc_outer = tf.gather_nd(local_image, outer)
mean_intensity_inner = tf.cast(tf.divide(tf.reduce_sum(image_loc_inner), area_inner), dtype='float32')
mean_intensity_outer = tf.cast(tf.divide(tf.reduce_sum(image_loc_outer), area_outer), dtype='float32')
mean_intensities_inner = tf.concat(axis=0, values=[mean_intensities_inner[:j], [mean_intensity_inner]])
mean_intensities_outer = tf.concat(axis=0, values=[mean_intensities_outer[:j], [mean_intensity_outer]])
return (j + 1, mean_intensities_outer, mean_intensities_inner)
if fast_lookup:
phi_4d = phi_level[tf.newaxis, :, :, tf.newaxis]
image = img[tf.newaxis, :, :, tf.newaxis]
band_index_2 = tf.reduce_all([phi_4d <= narrow_band_width, phi_4d >= -narrow_band_width], axis=0)
band_2 = tf.where(band_index_2)
u_inner = get_intensity(image, tf.cast((([phi_4d <= 0])), dtype='float32')[0], filter_patch_size=f_size)
u_outer = get_intensity(image, tf.cast((([phi_4d > 0])), dtype='float32')[0], filter_patch_size=f_size)
mean_intensities_inner = tf.gather_nd(u_inner, band_2)
mean_intensities_outer = tf.gather_nd(u_outer, band_2)
else:
mean_intensities_inner = tf.constant([0], dtype='float32')
mean_intensities_outer = tf.constant([0], dtype='float32')
j = tf.constant(0, dtype=tf.int32)
_, mean_intensities_outer, mean_intensities_inner = tf.while_loop(
lambda j, mean_intensities_outer, mean_intensities_inner:
j < num_band_pixel, body_intensity, loop_vars=[j, mean_intensities_outer, mean_intensities_inner],
shape_invariants=[j.get_shape(), tf.TensorShape([None]), tf.TensorShape([None])])
lambda1 = tf.gather_nd(map_lambda1_acl, [band])
lambda2 = tf.gather_nd(map_lambda2_acl, [band])
curvature, mean_grad = get_curvature(phi_level, band_x, band_y)
kappa = tf.multiply(curvature, mean_grad)
term1 = tf.multiply(tf.cast(lambda1, dtype='float32'),tf.square(tf.gather_nd(img, [band]) - mean_intensities_inner))
term2 = tf.multiply(tf.cast(lambda2, dtype='float32'),tf.square(tf.gather_nd(img, [band]) - mean_intensities_outer))
force = -nu + term1 - term2
force /= (tf.reduce_max(tf.abs(force)))
d_phi_dt = tf.cast(force, dtype="float32") + tf.cast(mu * kappa, dtype="float32")
dt = .45 / (tf.reduce_max(tf.abs(d_phi_dt)) + 2.220446049250313e-16)
d_phi = dt * d_phi_dt
update_narrow_band = d_phi
phi_level = phi_level + tf.scatter_nd([band], tf.cast(update_narrow_band, dtype='float32'),shape=[input_image_size, input_image_size])
phi_level = re_init_phi(phi_level, 0.5)
return (i + 1, phi_level)
i = tf.constant(0, dtype=tf.int32)
phi = init_phi
_, phi = tf.while_loop(lambda i, phi: i < iter_limit, _body, loop_vars=[i, phi])
phi = tf.round(tf.cast((1 - tf.nn.sigmoid(phi)), dtype=tf.float32))
return phi,init_phi, map_lambda1_acl, map_lambda2_acl
fast_lookup = True
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
config = tf.compat.v1.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)
print("Input shape - ", args.img_resize, args.batch_size)
input_shape = [args.batch_size, args.img_resize, args.img_resize, 3]
input_shape_dt = [args.batch_size, args.img_resize, args.img_resize]
iter_limit = args.acm_iter_limit
narrow_band_width = args.narrow_band_width
mu = args.mu
nu = args.nu
f_size = args.f_size
input_image_size = args.img_resize
x = tf.placeholder(shape=input_shape, dtype=tf.float32, name="x")
y = tf.placeholder(dtype=tf.float32, name="y")
phase = tf.placeholder(tf.bool, name='phase')
global_step = tf.Variable(0, name='global_step', trainable=False)
out_seg, map_lambda1, map_lambda2 = architectures.ddunet(x,is_training)
y_out_dl = tf.round(out_seg)
x_acm = x[:, :, :, 0]
rounded_seg_acl = y_out_dl[:, :, :, 0]
dt_trans = tf.py_func(my_func, [rounded_seg_acl], tf.float32)
dt_trans.set_shape([args.batch_size, input_image_size, input_image_size])
phi_out,_, lambda1_tr, lambda2_tr = tf.map_fn(fn=active_contour_layer, elems=(x_acm, dt_trans, map_lambda1[:, :, :, 0], map_lambda2[:, :, :, 0]))
Dice = dice_soft(out_seg, y)
seg_loss = 1 - Dice
l2_loss = tf.losses.get_regularization_loss()
seg_loss += l2_loss
total_loss = seg_loss
rounded_seg = tf.round(out_seg)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
Dice_hard = dice_hard(out_seg, y)
adaptive_lr = tf.train.exponential_decay(args.lr, global_step, 100000, 0.96, staircase=False, name=None)
with tf.control_dependencies(update_ops):
train_op = tf.train.AdamOptimizer(adaptive_lr).minimize(total_loss, global_step=global_step,
colocate_gradients_with_ops=True, name='train_op')
train_summary = []
train_summary.append(tf.summary.scalar('train/total_loss', total_loss))
train_summary.append(tf.summary.scalar('train/Dice_pipeline', Dice_hard))
train_summary.append(tf.summary.image('Output Segmentation', y_out_dl))
train_summary.append(tf.summary.image('Ground Truth', y))
train_summary_op = tf.summary.merge(train_summary)
saver = tf.train.Saver(tf.global_variables())
with tf.Session(config=config) as sess:
if is_training:
if restore:
saver.restore(sess, tf.train.latest_checkpoint(args.logdir))
graph = tf.get_default_graph()
globalstep = graph.get_tensor_by_name("global_step:0")
gb_step = sess.run([globalstep])[0]
print("Model restored at Global step %d :" % (gb_step))
summary_writer_train = tf.summary.FileWriter(args.logdir + '/train', graph=sess.graph)
summary_writer_valid = tf.summary.FileWriter(args.logdir + '/valid', graph=sess.graph)
else:
sess.run(tf.global_variables_initializer())
summary_writer_train = tf.summary.FileWriter(args.logdir + '/train', graph=sess.graph)
summary_writer_valid = tf.summary.FileWriter(args.logdir + '/valid', graph=sess.graph)
gb_step = 0
data_suffix = '_input.npy'
mask_suffix = '_label.npy'
data_provider_train = DataGen.ImageGen(input_location, data_suffix=data_suffix, mask_suffix=mask_suffix,shuffle_data=True, n_class=1)
data_provider_valid = DataGen.ImageGen(valid_location, data_suffix=data_suffix, mask_suffix=mask_suffix,shuffle_data=True, n_class=1)
try:
for iters in range(args.train_iter):
print("Global step %d :" % (gb_step))
gb_step = gb_step + 1
images, labels, _ = data_provider_train(args.batch_size)
if gb_step % args.train_sum_freq == 0:
summary_str_train = sess.run(train_summary_op, {x: images, y: labels, phase: True})
summary_writer_train.add_summary(summary_str_train, gb_step)
images, labels, _ = data_provider_valid(args.batch_size)
summary_str_valid = sess.run(train_summary_op, {x: images, y: labels, phase: False})
summary_writer_valid.add_summary(summary_str_valid, gb_step)
else:
_, Dicevalue = sess.run([train_op, Dice], {x: images, y: labels, phase: True})
print('Dice value train is {}'.format(Dicevalue))
if gb_step % args.save_freq == 0 and gb_step != 0:
ckpt_path = os.path.join(args.logdir, 'model.ckpt')
saver.save(sess, ckpt_path + '/_globalstep_%02d' % (gb_step), global_step=gb_step)
print('model saved for global step %02d' % (gb_step))
except KeyboardInterrupt:
print("Manual interruption occurred.")
saver.save(sess, args.logdir + '/model_globalstep_%02d' % (gb_step), global_step=gb_step)
print('model saved for global step %02d' % (gb_step))
else:
print("########### Inference ############")
saver = tf.train.Saver(tf.global_variables())
saver.restore(sess, tf.train.latest_checkpoint(args.logdir + "/model.ckpt"))
directory = test_location
img_ext = '*_input.npy'
label_ext = 'label.npy'
test_dice = []
test_precision = []
test_recall = []
test_accuracy = []
count = 0
images = []
labels = []
filenames = []
for fullpath in glob.glob(os.path.join(directory, img_ext)):
print('Processing Case {} '.format(count+1))
count+=1
filename = os.path.basename(fullpath)
print(filename)
label_name = filename.split('input')[0] + label_ext
label_path = fullpath.replace(filename, label_name)
images += [load_image(fullpath,1,False)]
labels += [load_image(label_path,1,True)]
labels[-1][labels[-1] != 0] = 1
filenames.append(filename)
images = np.stack(images)
labels = np.stack(labels)
images = images[:, 0, :, :]
labels = labels[:, 0, :, :]
tot = 0
denom = 0
iters = int(images.shape[0] - 10)
maxDice = 0
maxMask = None
maxLab = None
maxInput = None
maxName = None
for i in range(0, iters, 10):
print("Processing - ", i, " - ", i + 10)
ip = images[i:i + 10]
lab = labels[i:i + 10]
mask = sess.run(phi_out,{x: ip, y: lab, phase: False})
denom += mask.shape[0]
for j in range(mask.shape[0]):
f2 = f1_score(lab[j:j+1][0], mask[j:j+1][0], labels=None, average='micro', sample_weight=None)
if (f2>maxDice):
maxDice = f2
print(maxDice,i,j,np.count_nonzero(lab[j:j+1][0]),np.count_nonzero(mask[j:j+1][0]))
maxMask = mask[j:j+1][0]
maxLab = lab[j:j+1][0]
maxInput = ip[j:j+1][0]
maxName = filenames[i+j]
prfs = precision_recall_fscore_support(lab[j:j+1][0], mask[j:j+1][0], labels=None, average='micro', sample_weight=None)
acc = accuracy_score(lab[j:j+1][0], mask[j:j+1][0])
test_dice.append(f2)
test_precision.append(prfs[0])
test_recall.append(prfs[1])
test_accuracy.append(acc)
print("Avg Test Dice Score : {0:0.4f}".format(np.average(test_dice)))
print("Avg Test Precision Score : {0:0.4f}".format(np.average(test_precision)))
print("Avg Test Recall Score : {0:0.4f}".format(np.average(test_recall)))
print("Avg Test Accuracy Score : {0:0.4f}".format(np.average(test_accuracy)))
print(maxDice,maxLab.shape, np.count_nonzero(maxLab),np.size(maxLab), maxMask.shape, np.count_nonzero(maxMask),np.size(maxMask),maxName)
fig = plt.figure()
plt.title('Output without Domain Adaptation, Dice:{0:0.4f}'.format(maxDice))
seg_out_acm=contoured_image(maxMask, maxInput)
plt.imshow(seg_out_acm)
plt.savefig("withoutDA.png")
fig = plt.figure()
plt.title('Original Annotation')
gt_mask = contoured_image(maxLab, maxInput)
plt.imshow(gt_mask)
plt.savefig("label.png")