forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
70B_lora.yaml
91 lines (82 loc) · 2.46 KB
/
70B_lora.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Config for multi-device LoRA in lora_finetune_distributed.py
# using a Llama2 70B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-2-70b-hf --output-dir /tmp/Llama-2-70b-hf --hf-token <HF_TOKEN>
#
# This config needs 8 GPUs to run
# # tune run --nproc_per_node 8 lora_finetune_distributed --config llama2/70B_lora
#
# Model Arguments
model:
_component_: torchtune.models.llama2.lora_llama2_70b
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 16
lora_alpha: 32
lora_dropout: 0.0
tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: /tmp/Llama-2-70b-hf/tokenizer.model
max_seq_len: null
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-2-70b-hf
checkpoint_files: [
pytorch_model-00001-of-00015.bin,
pytorch_model-00002-of-00015.bin,
pytorch_model-00003-of-00015.bin,
pytorch_model-00004-of-00015.bin,
pytorch_model-00005-of-00015.bin,
pytorch_model-00006-of-00015.bin,
pytorch_model-00007-of-00015.bin,
pytorch_model-00008-of-00015.bin,
pytorch_model-00009-of-00015.bin,
pytorch_model-00010-of-00015.bin,
pytorch_model-00011-of-00015.bin,
pytorch_model-00012-of-00015.bin,
pytorch_model-00013-of-00015.bin,
pytorch_model-00014-of-00015.bin,
pytorch_model-00015-of-00015.bin,
]
recipe_checkpoint: null
output_dir: /tmp/Llama-2-70b-hf
model_type: LLAMA2
resume_from_checkpoint: False
save_adapter_weights_only: False
# Dataset and Sampler
dataset:
packed: False # Set to true for great speed ups
_component_: torchtune.datasets.alpaca_dataset
seed: null
shuffle: True
batch_size: 2
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 1
# Logging
output_dir: /tmp/lora_finetune_output
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True
# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True
enable_activation_offloading: False # True reduces memory