-
Notifications
You must be signed in to change notification settings - Fork 17
/
requirements-extra.txt
54 lines (46 loc) · 2.16 KB
/
requirements-extra.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
-r requirements.txt
# OPTIONAL DEPS INCLUDING
# - those referenced or imported in disent, but are optional.
# - those used in documentation examples
# - those used in experiment code or hydra config targets
# =============
# -- INPUT / OUTPUT -- #
GitPython>=3.0.0 # dataset downloads
imageio>=2.9.0 # required for wandb video logging
moviepy>=1.0.3 # required for wandb video logging
psutil>=5.8.0
# -- GRAPHING & LOGGING -- #
matplotlib>=3
wandb>=0.10.32
# -- CONFIGS -- #
omegaconf>=2.1.0 # only 2.1.0 supports nested variable interpolation eg. ${group.${group.key}}
hydra-core==1.1.1 # needs omegaconf
hydra-colorlog==1.1.0
hydra-submitit-launcher==1.1.6
# -- CONFIG TARGETS -- #
torch_optimizer>=0.3.0
# -- TORCH EXTENSIONS -- #
# requires pytorch to be installed first (duplicated in requirements-experiment.txt)
# - we need `nvcc` to be installed first, otherwise GPU kernel extensions will not be
# compiled and this error will silently be skipped. If you get an error such as
# $ conda install -c nvidia cuda-nvcc
# - Make sure that the version of torch corresponds to the version of `nvcc`, torch needs
# to be compiled with the same version! Install the correct version from:
# https://pytorch.org/get-started/locally/ By default torch compiled with 10.2 is installed,
# but `nvcc` will probably want to install 11.
# CUDA 10.2 (as of 2022-03-15) EITHER OF:
# $ pip3 install torch torchvision torchaudio
# $ conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
# CUDA 11.3 (as of 2022-03-15) EITHER OF:
# $ pip3 install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
# $ conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
# - I personally just manage my cuda version manually, installing the correct cudatoolkit from: https://developer.nvidia.com/cuda-toolkit-archive
# Then making sure that:
# PATH contains: "/usr/local/cuda/bin"
# LD_LIBRARY_PATH contains: "/usr/local/cuda/lib64"
torchsort>=0.1.4
# -- JIT -- #
numba>=0.50.0 # optimised sampling
# -- Gradient Boosting -- #
# lightgbm
# xgboost