-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_mlqa.py
563 lines (513 loc) · 23.8 KB
/
run_mlqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# coding=utf-8
from transformers import AutoTokenizer, AutoModelForCausalLM, BertTokenizerFast, AlbertTokenizerFast, DebertaTokenizerFast, AutoModel, get_linear_schedule_with_warmup, AutoConfig
import os
import random
import torch
from utils import save_dataset, set_seed, save_model, read_dataset
import json
import argparse
from torch import nn
import math
from collections import OrderedDict
import copy
import ast
import numpy as np
from deepspeed_config import get_train_ds_config
import deepspeed
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from eval_mlqa import evaluate_squad_mlqa
device = torch.device("cuda:0")
class MyDataset(Dataset):
def __init__(self, dataset) -> None:
super().__init__()
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
sample = self.dataset[idx]
return sample
class Dec2Enc(nn.Module):
def __init__(self, model_path, vanilla):
super(Dec2Enc, self).__init__()
config = AutoConfig.from_pretrained(model_path)
config._attn_implementation = 'eager'
self.model_path = model_path
if 'bert' in model_path.lower() or 'xlm' in model_path.lower():
self.model = AutoModel.from_pretrained(model_path, config=config)
else:
if vanilla:
self.model = AutoModel.from_pretrained(model_path, config=config)
else:
if 'qwen' in model_path.lower():
from models.modeling_qwen2 import Qwen2ForCausalLM
self.model = Qwen2ForCausalLM.from_pretrained(model_path, config=config)
elif 'gemma' in model_path.lower():
from models.modeling_gemma2 import Gemma2ForCausalLM
self.model = Gemma2ForCausalLM.from_pretrained(model_path, config=config)
elif 'mistral' in model_path.lower():
from models.modeling_mistral import MistralForCausalLM
self.model = MistralForCausalLM.from_pretrained(model_path, config=config)
else:
from models.modeling_llama import LlamaForCausalLM
self.model = LlamaForCausalLM.from_pretrained(model_path, config=config)
self. linear = nn.Linear(self.model.config.hidden_size, 2)
def forward(self, input_ids, attention_mask, labels=None):
if 'bert' in self.model_path.lower() or 'xlm' in self.model_path.lower():
outputs = self.model(input_ids=input_ids,
attention_mask=attention_mask,
# attn_implementation="eager",
output_hidden_states=True,
# use_cache=False,
output_attentions=True,
return_dict=True)
sequence_output = outputs.hidden_states[-1]
else:
outputs = self.model(input_ids=input_ids,
attention_mask=attention_mask,
# attn_implementation="eager",
output_hidden_states=True,
use_cache=False,
output_attentions=True,
return_dict=True)
sequence_output = outputs.hidden_states[-1]
logits = self.linear(sequence_output)
if labels is not None:
loss = 0
for i in range(2):
logits_item = logits[:, :, i]
labels_i = labels[:, :, i]
# print(torch.sum(labels_i, dim=1))
logits_item = torch.clamp(logits_item, -80, 80)
logits_pos = torch.exp(-logits_item)
logits_pos = torch.sum(logits_pos * labels_i * attention_mask, dim=-1)
loss_pos = torch.log(1 + logits_pos)
logits_neg = torch.exp(logits_item)
logits_neg = torch.sum(logits_neg * (1 - labels_i) * attention_mask, dim=-1)
loss_neg = torch.log(1 + logits_neg)
loss_i = loss_pos + loss_neg
loss_i = loss_i.mean()
loss += loss_i
return loss
else:
logits_s = logits[:, :, 0]
logits_e = logits[:, :, 1]
logits_s = logits_s.cpu().tolist()
logits_e = logits_e.cpu().tolist()
def get_result(logits_s, logits_e):
max_s = max(logits_s)
best_beg = logits_s.index(max_s)
max_e = max(logits_e[best_beg:])
best_end = logits_e[best_beg:].index(max_e) + best_beg
return best_beg, best_end
results = []
for logits_s_i, logits_e_i in zip(logits_s, logits_e):
best_beg, best_end = get_result(logits_s_i, logits_e_i)
results.append([best_beg, best_end])
return results
def get_input_feature(features, max_source_length):
input_texts, contexts = [], []
label_char_idxs_beg, label_char_idxs_end = [], []
for sample in features:
context = sample['context']
contexts.append(context)
answers_idx = sample['answers_idx']
answers_idx = sorted(answers_idx, key=lambda x: x[0])
beg_idxs, end_idxs = [], []
for beg, end in answers_idx:
beg_idxs.append(beg)
end_idxs.append(end)
# break
label_char_idxs_beg.append(beg_idxs)
label_char_idxs_end.append(end_idxs)
if tokenizer.eos_token is not None:
contexts = [item + tokenizer.eos_token for item in contexts]
# tokenizer.add_eos_token = True
encoding = tokenizer(contexts,
padding='longest',
max_length=max_source_length,
truncation=True,
return_tensors="pt",
return_offsets_mapping=True)
input_ids = encoding.input_ids.to(device)
attention_mask = encoding['attention_mask'].to(device)
offset_mapping = encoding['offset_mapping']
offset_mapping = offset_mapping.tolist()
bs, seq_len = input_ids.size()
labels = np.zeros([bs, seq_len, 2])
def label_tokens(offset_mapping, label_char_idxs, dim):
for b_i, (offset_mapping_item, label_char_idxs_item) in enumerate(
zip(offset_mapping, label_char_idxs)):
idx = 0
for seq_i, (token_beg, token_end) in enumerate(offset_mapping_item):
if idx >= len(label_char_idxs_item):
break
label_idx = label_char_idxs_item[idx]
if dim == 1:
if token_beg < label_idx and label_idx <= token_end:
labels[b_i][seq_i][dim] = 1
idx += 1
else:
if token_beg <= label_idx and label_idx < token_end:
labels[b_i][seq_i][dim] = 1
idx += 1
label_tokens(offset_mapping, label_char_idxs_beg, 0)
label_tokens(offset_mapping, label_char_idxs_end, 1)
input_ids = torch.tensor(input_ids, dtype=torch.long).cuda()
attention_mask = torch.tensor(attention_mask, dtype=torch.long).cuda()
labels = torch.tensor(labels, dtype=torch.long).cuda()
return input_ids, attention_mask, labels, offset_mapping, contexts
def subwordid_to_text(batch_example, spans_predict, token_idx_maps, results, golds_answers):
for sample, [beg, end], token_idx_map in zip(batch_example, spans_predict, token_idx_maps):
context = sample['context']
id = sample['id']
word_idx_beg, _ = token_idx_map[beg]
_, word_idx_end = token_idx_map[end]
answer = context[word_idx_beg: word_idx_end]
answer = answer.strip()
results[id] = answer#.replace(' ', '')
golds_answers[id] = sample['answers']
@torch.no_grad()
def evaluate(model, test_examples, max_len, lang):
model.eval()
golds_answers, results = {}, {}
step_trange = tqdm(test_examples)
for batch_example in step_trange:
# print(batch_example)
input_ids, attention_mask, labels, offset_mapping_contexts, contexts = get_input_feature(
batch_example, max_source_length=max_len)
spans_predict = model(input_ids, attention_mask, labels=None)
subwordid_to_text(batch_example, spans_predict, offset_mapping_contexts, results, golds_answers)
results_cp = {}
keys = results.keys()
for key in keys:
results_cp[key] = results[key]
results_output = []
for samples in test_examples:
for sample in samples:
id = sample['id']
results_output.append({
'id': id,
'context': sample['context'],
'answer': golds_answers[id],
'pred': results[id]
})
result_score = evaluate_fun(copy.deepcopy(golds_answers), copy.deepcopy(results),lang )
result_score = {
'em_f1': result_score['exact_match'],
'overlap_f1': result_score['f1']
}
return result_score, results_output
def read_msqa(path):
dataset = read_dataset(path)
dataset_new = []
for article in dataset:
for paragraph in article['paragraphs']:
context = paragraph['context']
for qa in paragraph['qas']:
question = qa['question']
answers = qa['answers']
id = qa['id']
offset_context = f'Question: {question} \n Context: '
offset = len(offset_context)
answers_idx_char = [(item['answer_start'] + offset,
item['answer_start'] + len(item['text']) + offset) for item in answers]
answers = [item['text'] for item in answers]
offset_context = offset_context + context
for (beg, end), answer in zip(answers_idx_char, answers):
assert offset_context[beg: end] == answer
dataset_new.append({
'id': id,
'context': offset_context,
'answers': answers,
'answers_idx': answers_idx_char
})
return dataset_new
def read_msqa_zh(path):
dataset = read_dataset(path)
dataset_new = []
for article in dataset:
for paragraph in article['paragraphs']:
context = paragraph['context']
context = ' '.join(list(context))
for qa in paragraph['qas']:
question = qa['question']
answers = qa['answers']
question = ' '.join(list(question))
for item in answers:
text = item['text']
item['text'] = ' '.join(list(text))
answer_start = item['answer_start']
item['answer_start'] += answer_start
id = qa['id']
offset_context = f'Question: {question} \n Context: '
offset = len(offset_context)
answers_idx_char = [(item['answer_start'] + offset,
item['answer_start'] + len(item['text']) + offset) for item in answers]
answers = [item['text'] for item in answers]
offset_context = offset_context + context
for (beg, end), answer in zip(answers_idx_char, answers):
assert offset_context[beg: end] == answer
dataset_new.append({
'id': id,
'context': offset_context,
'answers': answers,
'answers_idx': answers_idx_char
})
return dataset_new
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--gpu",
default='0',
type=str)
parser.add_argument("--model_name",
default='Qwen/Qwen2.5-0.5B',
type=str)
parser.add_argument("--dataset_name",
default='mlqa',
type=str)
parser.add_argument("--vanilla",
default=False,
type=ast.literal_eval)
parser.add_argument("--only_eval",
default=False,
type=ast.literal_eval)
parser.add_argument("--debug",
default=False,
type=ast.literal_eval)
parser.add_argument("--results_save_path",
default='./results/',
type=str)
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=4,
type=int,
help="Total batch size for eval.")
parser.add_argument('--train_micro_batch_size_per_gpu',
type=int,
default=8,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--output_dir",
default='./outputs/',
type=str,
help="The output dreader2ctory whretriever the model checkpoints will be written.")
parser.add_argument("--init_checkpoint",
default=False,
type=ast.literal_eval,
help="Initial checkpoint (usually from a pre-trained BERT model)")
parser.add_argument("--max_len",
default=512,
type=int)
parser.add_argument("--wo_auxilary_loss",
default=False,
type=ast.literal_eval,
help="Initial checkpoint (usually from a pre-trained BERT model)")
parser.add_argument("--gate_model",
default="zero_init",
# default="norm_init",
# default="sigmoid",
type=str)
parser.add_argument("--lr",
default=2e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--epoch_num",
default=20,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument('--seed',
type=int,
default=0,
help="random seed for initialization")
parser.add_argument(
"--local_rank",
type=int, default=0
)
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
os.environ["TOKENIZERS_PARALLELISM"] = "true"
only_eval = args.only_eval
debug = args.debug
if args.model_name.endswith('/'):
args.model_name = args.model_name[:-1]
model_name_abb = args.model_name.split('/')[-1]
config_name = f'{args.dataset_name}/{model_name_abb}/'
dataset_name = args.dataset_name
vanilla = args.vanilla
path_prefix = '.'
if 'bert' in str(model_name_abb).lower():
path_save_result = f'{path_prefix}/results/{dataset_name}/encoder-only/{model_name_abb}/'
output_model_path = f'{path_prefix}/outputs/{dataset_name}/encoder-only/{model_name_abb}/'
else:
if vanilla:
save_name = 'vanilla'
else:
save_name = 'enc2dec'
path_save_result = f'{path_prefix}/results/{dataset_name}/{save_name}/{model_name_abb}/'
output_model_path = f'{path_prefix}/outputs/{dataset_name}/{save_name}/{model_name_abb}/'
data_path_base = f'./datas/{args.dataset_name}/'
data_path_train = f'{data_path_base}/train.json'
data_path_dev = f'{data_path_base}/dev.json'
data_path_test = f'{data_path_base}/test.json'
os.makedirs(path_save_result, exist_ok=True)
set_seed(args.seed)
read_dataset_fun = read_msqa
evaluate_fun = evaluate_squad_mlqa
data_path_train = './datas/mlqa/train.json'
train_examples = read_dataset_fun(data_path_train)
random.shuffle(train_examples)
dev_examples = []
for lang in ['ar', 'de', 'en',
'es', 'hi', 'vi',
'zh']:
data_path_dev = f'./datas/mlqa/dev/dev-context-{lang}-question-{lang}.json'
dev_examples += read_dataset_fun(data_path_dev)
if debug:
train_examples = train_examples[:20]
dev_examples = dev_examples[:20]
train_batch_size = args.train_batch_size
eval_batch_size = args.eval_batch_size
lr = args.lr
train_micro_batch_size_per_gpu = args.train_micro_batch_size_per_gpu
gpu_num = torch.cuda.device_count()
gradient_accumulation = train_batch_size // (train_micro_batch_size_per_gpu * gpu_num)
assert train_micro_batch_size_per_gpu * gpu_num * gradient_accumulation == train_batch_size
ds_config = get_train_ds_config(train_batch_size, train_micro_batch_size_per_gpu, lr, gradient_accumulation)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
if 'llama' in args.model_name.lower() or 'mistral' in args.model_name.lower():
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
model = Dec2Enc(args.model_name, vanilla).to(device)
parameters = filter(lambda p: p.requires_grad, model.parameters())
for param in model.parameters():
if not param.is_contiguous():
param.data = param.data.contiguous()
model, optimizer, _, __ = deepspeed.initialize(
config=ds_config,
model=model,
model_parameters=parameters,
training_data=None)
train_examples = MyDataset(train_examples)
dev_examples = MyDataset(dev_examples)
train_sampler = DistributedSampler(train_examples)
dev_sampler = SequentialSampler(dev_examples)
train_set = torch.utils.data.DataLoader(
dataset=train_examples,
batch_size=train_micro_batch_size_per_gpu,
sampler=train_sampler,
collate_fn=lambda x: x
)
dev_set = torch.utils.data.DataLoader(
dataset=dev_examples,
batch_size=eval_batch_size,
shuffle=False,
sampler=dev_sampler,
num_workers=1,
drop_last=False,
collate_fn=lambda x: x)
global_rank = torch.distributed.get_rank()
print('# parameters:', sum(param.numel() for param in model.parameters()))
print(json.dumps({"lr": args.lr, "model": args.model_name, "seed": args.seed,
"bs": args.train_batch_size,
"vanilla": vanilla,
"epoch": args.epoch_num,
"train_path": data_path_train,
"dev_path": data_path_dev,
"test_path": data_path_test,
"train_size": len(train_examples),
"dev_size": len(dev_examples),
# "test_size": len(test_examples),
'max_len': args.max_len,
'output_model_path': output_model_path,
'path_save_result': path_save_result,
'init_checkpoint': args.init_checkpoint}, indent=2))
if args.init_checkpoint:
init_checkpoint = f'{output_model_path}/pytorch_model.bin'
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
new_state_dict = OrderedDict()
for k in list(model_dict.keys()):
name = k
if k.startswith('module.bert.bert.'):
name = k.replace("module.bert.", "")
new_state_dict[name] = model_dict[k]
del model_dict[k]
model.load_state_dict(new_state_dict, False)
print('init from:', init_checkpoint)
if only_eval:
for lang in ['ar', 'de', 'en',
'es', 'hi', 'vi',
'zh']:
if lang != 'en':
continue
data_path_test = f'./datas/mlqa/test/test-context-{lang}-question-{lang}.json'
test_examples = read_dataset_fun(data_path_test)
test_examples = MyDataset(test_examples)
test_sampler = SequentialSampler(test_examples)
test_set = torch.utils.data.DataLoader(
dataset=test_examples,
batch_size=eval_batch_size,
shuffle=False,
sampler=test_sampler,
num_workers=1,
drop_last=False,
collate_fn=lambda x: x)
result_score_test, results_test = evaluate(model, test_set, args.max_len, lang)
print(f'{lang}:', result_score_test)
save_dataset(path_save_result + f'/{lang}.json', results_test)
print('save in ', path_save_result)
exit(0)
warm_up_ratio = 0.05
if args.init_checkpoint:
result_score_dev, results_dev = evaluate(model, dev_set, args.max_len, lang='en')
print('best_dev_result:', result_score_dev)
best_dev_acc = result_score_dev['overlap_f1'] + result_score_dev['em_f1']
else:
best_dev_acc = 0
best_dev_result, best_test_result = None, None
count = 0
for epoch in range(args.epoch_num):
tr_loss, nb_tr_steps = 0, 0.1
step_trange = tqdm(train_set)
for batch_example in step_trange:
count += 1
input_ids, attention_mask, labels, offset_mapping_contexts, contexts = get_input_feature(
batch_example, max_source_length=args.max_len)
loss = model(input_ids, attention_mask, labels)
loss = loss.mean()
tr_loss += loss.item()
nb_tr_steps += 1
model.backward(loss)
model.step()
loss_show = ' Epoch:' + str(epoch) + " loss:" + str(
round(tr_loss / nb_tr_steps, 4)) #+ f" lr:{'%.2E' % scheduler.get_last_lr()[0]}"
step_trange.set_postfix_str(loss_show)
if count > 0 and count % 1000 == 0:
result_score_dev, results_dev = evaluate(model, dev_set, args.max_len,lang='en')
f1 = result_score_dev['overlap_f1'] + result_score_dev['em_f1']
print(result_score_dev)
if f1 >= best_dev_acc:
early_stop = 0
best_dev_result = result_score_dev
best_dev_acc = f1
save_model(output_model_path, model, optimizer)
save_dataset(path_save_result + '/dev.json', results_dev)
print('save new best')
result_score_dev, results_dev = evaluate(model, dev_set, args.max_len, lang='en')
f1 = result_score_dev['overlap_f1'] + result_score_dev['em_f1']
print(result_score_dev)
if f1 >= best_dev_acc:
early_stop = 0
best_dev_result = result_score_dev
best_dev_acc = f1
save_model(output_model_path, model, optimizer)
save_dataset(path_save_result + '/dev.json', results_dev)
print('save new best')
print('best_dev_result:', best_dev_result)