-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
137 lines (109 loc) · 5.05 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
import torch.nn.functional as F
class block(nn.Module):
def __init__(self,in_channels,out_channels,identity_downsample = None, stride = 1):
super(block,self).__init__()
self.expansion = 4
self.identity_downsample = identity_downsample
self.convblock1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels,kernel_size = 1, stride = 1, padding =0),
nn.BatchNorm2d(out_channels),
nn.Conv2d(out_channels, out_channels, kernel_size = 3, stride = stride, padding =1),
nn.BatchNorm2d(out_channels),
nn.Conv2d(out_channels, self.expansion*out_channels, kernel_size =1,stride = 1, padding = 0),
nn.BatchNorm2d(out_channels*self.expansion)
)
def forward(self,x):
identity = x
x = self.convblock1(x)
if self.identity_downsample is not None :
identity = self.identity_downsample(identity)
x += identity
x = F.relu(x)
return x
class ResNet(nn.Module):
def __init__(self, block, layers, image_channels, num_classes):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(image_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# Essentially the entire ResNet architecture are in these 4 lines below
self.layer1 = self._make_layer(
block, layers[0], intermediate_channels=64, stride=1
)
self.layer2 = self._make_layer(
block, layers[1], intermediate_channels=128, stride=2
)
self.layer3 = self._make_layer(
block, layers[2], intermediate_channels=256, stride=2
)
self.layer4 = self._make_layer(
block, layers[3], intermediate_channels=512, stride=2
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(in_features = 512*4, out_features = 1024)
self.DenseClassifier = nn.Sequential(
nn.Linear(in_features = 1024 + 12, out_features = 2000),
nn.Linear(in_features = 2000, out_features = 1000),
nn.Linear(in_features = 1000, out_features = 500),
nn.Linear(in_features = 500, out_features = 100),
nn.Linear(in_features = 100, out_features = 1)
)
def forward(self, x, x2):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x) # output shape = torch.Size([1, 2048, 1, 1])
x = x.reshape(x.shape[0], -1) # output shape = torch.Size([1, 2048])
x = self.fc(x) # output shape = torch.Size([1, 1024])
x = x.view(-1,1024) # output shape = torch.Size([1, 1024])
x = torch.cat((x,x2),axis = 1) # output shape = torch.Size([1, 1036])
x = self.DenseClassifier(x) # output shape =
x = x.view(-1,1) # output shape = torch.Size([1, 1])
return x
def _make_layer(self, block, num_residual_blocks, intermediate_channels, stride):
identity_downsample = None
layers = []
# Either if we half the input space for ex, 56x56 -> 28x28 (stride=2), or channels changes
# we need to adapt the Identity (skip connection) so it will be able to be added
# to the layer that's ahead
if stride != 1 or self.in_channels != intermediate_channels * 4:
identity_downsample = nn.Sequential(
nn.Conv2d(
self.in_channels,
intermediate_channels * 4,
kernel_size=1,
stride=stride,
bias=False
),
nn.BatchNorm2d(intermediate_channels * 4),
)
layers.append(
block(self.in_channels, intermediate_channels, identity_downsample, stride)
)
# The expansion size is always 4 for ResNet 50,101,152
self.in_channels = intermediate_channels * 4
# For example for first resnet layer: 256 will be mapped to 64 as intermediate layer,
# then finally back to 256. Hence no identity downsample is needed, since stride = 1,
# and also same amount of channels.
for i in range(num_residual_blocks - 1):
layers.append(block(self.in_channels, intermediate_channels))
return nn.Sequential(*layers)
def ResNet50(img_channel=3, num_classes=1000):
return ResNet(block, [3, 4, 6, 3], img_channel, num_classes)
def ResNet101(img_channel=3, num_classes=1000):
return ResNet(block, [3, 4, 23, 3], img_channel, num_classes)
def ResNet152(img_channel=3, num_classes=1000):
return ResNet(block, [3, 8, 36, 3], img_channel, num_classes)
def test():
net = ResNet101(img_channel=3, num_classes=1000)
y = net(torch.randn(4, 3, 224, 224)).to("cuda")
print(y.size())