From d9e3a4f90529766f50b376d6ded9978c2c4c5e41 Mon Sep 17 00:00:00 2001 From: Tom Close Date: Thu, 25 Jan 2024 07:26:16 +1100 Subject: [PATCH] updated to latest package generation version --- .github/workflows/pythonpackage.yml | 119 - README.md | 215 - README.rst | 158 +- nipype-auto-conv/specs/accuracy_tester.yaml | 10 +- nipype-auto-conv/specs/ar1_image.yaml | 2 +- nipype-auto-conv/specs/bedpostx5.yaml | 2 +- nipype-auto-conv/specs/cluster.yaml | 4 +- nipype-auto-conv/specs/fast.yaml | 10 +- nipype-auto-conv/specs/fnirt.yaml | 4 +- nipype-auto-conv/specs/melodic.yaml | 5 - nipype-auto-conv/specs/prob_track_x.yaml | 4 +- nipype-auto-conv/specs/prob_track_x2.yaml | 4 +- nipype-auto-conv/specs/smm.yaml | 2 +- nipype-auto-conv/specs/topup.yaml | 2 + nipype-auto-conv/specs/training.yaml | 2 +- nipype-auto-conv/specs/x_fibres_5.yaml | 4 +- pydra/tasks/fsl/_version.py | 4 - pydra/tasks/fsl/conftest.py | 48 - pydra/tasks/fsl/model/__init__.py | 0 pydra/tasks/fsl/model/cluster.py | 242 - pydra/tasks/fsl/model/feat.py | 62 - pydra/tasks/fsl/model/featmodel.py | 119 - pydra/tasks/fsl/model/filmgls.py | 396 - pydra/tasks/fsl/model/flameo.py | 336 - pydra/tasks/fsl/model/glm.py | 194 - pydra/tasks/fsl/model/melodic.py | 356 - pydra/tasks/fsl/model/tests/__init__.py | 0 .../tasks/fsl/model/tests/test_run_cluster.py | 64 - pydra/tasks/fsl/model/tests/test_run_feat.py | 72 - .../fsl/model/tests/test_run_featmodel.py | 72 - .../tasks/fsl/model/tests/test_run_filmgls.py | 62 - .../tasks/fsl/model/tests/test_run_flameo.py | 69 - pydra/tasks/fsl/model/tests/test_run_glm.py | 44 - .../tasks/fsl/model/tests/test_run_melodic.py | 72 - .../fsl/model/tests/test_spec_cluster.py | 51 - pydra/tasks/fsl/model/tests/test_spec_feat.py | 64 - .../fsl/model/tests/test_spec_featmodel.py | 64 - .../fsl/model/tests/test_spec_filmgls.py | 54 - .../tasks/fsl/model/tests/test_spec_flameo.py | 61 - pydra/tasks/fsl/model/tests/test_spec_glm.py | 36 - .../fsl/model/tests/test_spec_melodic.py | 64 - pydra/tasks/fsl/preprocess/__init__.py | 0 pydra/tasks/fsl/preprocess/applywarp.py | 129 - pydra/tasks/fsl/preprocess/bet.py | 306 - pydra/tasks/fsl/preprocess/fast.py | 280 - pydra/tasks/fsl/preprocess/first.py | 138 - pydra/tasks/fsl/preprocess/flirt.py | 348 - pydra/tasks/fsl/preprocess/fnirt.py | 363 - pydra/tasks/fsl/preprocess/mcflirt.py | 185 - pydra/tasks/fsl/preprocess/prelude.py | 155 - pydra/tasks/fsl/preprocess/slicetimer.py | 97 - pydra/tasks/fsl/preprocess/susan.py | 114 - pydra/tasks/fsl/preprocess/tests/__init__.py | 0 .../preprocess/tests/test_run_applywarp.py | 22 - .../fsl/preprocess/tests/test_run_bet.py | 42 - .../fsl/preprocess/tests/test_run_fast.py | 37 - .../fsl/preprocess/tests/test_run_first.py | 37 - .../fsl/preprocess/tests/test_run_flirt.py | 37 - .../fsl/preprocess/tests/test_run_fnirt.py | 52 - .../fsl/preprocess/tests/test_run_mcflirt.py | 22 - .../fsl/preprocess/tests/test_run_prelude.py | 37 - .../preprocess/tests/test_run_slicetimer.py | 25 - .../fsl/preprocess/tests/test_run_susan.py | 40 - .../preprocess/tests/test_spec_applywarp.py | 17 - .../fsl/preprocess/tests/test_spec_bet.py | 37 - .../fsl/preprocess/tests/test_spec_fast.py | 32 - .../fsl/preprocess/tests/test_spec_first.py | 32 - .../fsl/preprocess/tests/test_spec_flirt.py | 32 - .../fsl/preprocess/tests/test_spec_fnirt.py | 47 - .../fsl/preprocess/tests/test_spec_mcflirt.py | 17 - .../fsl/preprocess/tests/test_spec_prelude.py | 32 - .../preprocess/tests/test_spec_slicetimer.py | 20 - .../fsl/preprocess/tests/test_spec_susan.py | 35 - pydra/tasks/fsl/tests/data/anatomical.nii | 0 .../fsl/tests/data/confounds_regressors.tsv | 527 - pydra/tasks/fsl/tests/data/cope_merged.nii.gz | 3 - pydra/tasks/fsl/tests/data/design | 0 pydra/tasks/fsl/tests/data/design.con | 8 - pydra/tasks/fsl/tests/data/design.grp | 30 - pydra/tasks/fsl/tests/data/design.mat | 31 - .../tasks/fsl/tests/data/design_film_gls.mat | 151 - pydra/tasks/fsl/tests/data/dest.nii.gz | 0 pydra/tasks/fsl/tests/data/ev_1.txt | 12 - pydra/tasks/fsl/tests/data/ev_2.txt | 12 - pydra/tasks/fsl/tests/data/flirt.mat | 4 - pydra/tasks/fsl/tests/data/flirt_inv.mat | 4 - pydra/tasks/fsl/tests/data/mask.nii.gz | 3 - pydra/tasks/fsl/tests/data/struct2mni.nii | 0 pydra/tasks/fsl/tests/data/subjectDesign.con | 0 pydra/tasks/fsl/tests/data/subjectDesign.mat | 0 pydra/tasks/fsl/tests/data/test.fsf | 11836 ---------------- pydra/tasks/fsl/tests/data/test.nii.gz | 3 - pydra/tasks/fsl/tests/data/test2.nii | 0 pydra/tasks/fsl/tests/data/test3.nii | 0 .../tasks/fsl/tests/data/test_film_gls.nii.gz | 3 - .../tasks/fsl/tests/data/test_warpcoef.nii.gz | 3 - pydra/tasks/fsl/tests/data/timeDesign.con | 0 pydra/tasks/fsl/tests/data/timeDesign.mat | 0 .../fsl/tests/data/varcope_merged.nii.gz | 3 - pydra/tasks/fsl/tests/data/warpfield.nii | 0 pydra/tasks/fsl/tests/data/warpfield.nii.gz | 3 - pydra/tasks/fsl/tests/data/zstat1.nii.gz | 3 - pydra/tasks/fsl/utils/__init__.py | 0 pydra/tasks/fsl/utils/complex.py | 267 - pydra/tasks/fsl/utils/convertwarp.py | 169 - pydra/tasks/fsl/utils/convertxfm.py | 110 - pydra/tasks/fsl/utils/copygeom.py | 69 - pydra/tasks/fsl/utils/extractroi.py | 58 - pydra/tasks/fsl/utils/filterregressor.py | 91 - pydra/tasks/fsl/utils/imagemaths.py | 75 - pydra/tasks/fsl/utils/imagemeants.py | 105 - pydra/tasks/fsl/utils/imagestats.py | 77 - pydra/tasks/fsl/utils/invwarp.py | 111 - pydra/tasks/fsl/utils/slice.py | 44 - pydra/tasks/fsl/utils/smooth.py | 55 - pydra/tasks/fsl/utils/split.py | 72 - pydra/tasks/fsl/utils/swapdimensions.py | 48 - pydra/tasks/fsl/utils/tests/__init__.py | 0 .../tasks/fsl/utils/tests/test_run_complex.py | 72 - .../fsl/utils/tests/test_run_convertwarp.py | 72 - .../fsl/utils/tests/test_run_convertxfm.py | 43 - .../fsl/utils/tests/test_run_copygeom.py | 72 - .../fsl/utils/tests/test_run_extractroi.py | 44 - .../utils/tests/test_run_filterregressor.py | 72 - .../fsl/utils/tests/test_run_imagemaths.py | 41 - .../fsl/utils/tests/test_run_imagemeants.py | 41 - .../fsl/utils/tests/test_run_imagestats.py | 72 - .../tasks/fsl/utils/tests/test_run_invwarp.py | 72 - pydra/tasks/fsl/utils/tests/test_run_slice.py | 22 - .../tasks/fsl/utils/tests/test_run_smooth.py | 43 - pydra/tasks/fsl/utils/tests/test_run_split.py | 53 - .../utils/tests/test_run_swapdimensions.py | 72 - .../fsl/utils/tests/test_spec_complex.py | 64 - .../fsl/utils/tests/test_spec_convertwarp.py | 64 - .../fsl/utils/tests/test_spec_convertxfm.py | 35 - .../fsl/utils/tests/test_spec_copygeom.py | 64 - .../fsl/utils/tests/test_spec_extractroi.py | 36 - .../utils/tests/test_spec_filterregressor.py | 64 - .../fsl/utils/tests/test_spec_imagemaths.py | 33 - .../fsl/utils/tests/test_spec_imagemeants.py | 33 - .../fsl/utils/tests/test_spec_imagestats.py | 64 - .../fsl/utils/tests/test_spec_invwarp.py | 64 - .../tasks/fsl/utils/tests/test_spec_slice.py | 17 - .../tasks/fsl/utils/tests/test_spec_smooth.py | 35 - .../tasks/fsl/utils/tests/test_spec_split.py | 45 - .../utils/tests/test_spec_swapdimensions.py | 64 - .../extras/medimage_fsl/_version.py | 16 - .../fileformats-extras/pyproject.toml | 4 +- .../fileformats/medimage_fsl/__init__.py | 7 +- .../fileformats/medimage_fsl/_version.py | 16 - related-packages/fileformats/pyproject.toml | 4 +- 151 files changed, 180 insertions(+), 21250 deletions(-) delete mode 100644 .github/workflows/pythonpackage.yml delete mode 100644 README.md delete mode 100644 pydra/tasks/fsl/_version.py delete mode 100644 pydra/tasks/fsl/conftest.py delete mode 100644 pydra/tasks/fsl/model/__init__.py delete mode 100644 pydra/tasks/fsl/model/cluster.py delete mode 100644 pydra/tasks/fsl/model/feat.py delete mode 100644 pydra/tasks/fsl/model/featmodel.py delete mode 100644 pydra/tasks/fsl/model/filmgls.py delete mode 100644 pydra/tasks/fsl/model/flameo.py delete mode 100644 pydra/tasks/fsl/model/glm.py delete mode 100644 pydra/tasks/fsl/model/melodic.py delete mode 100644 pydra/tasks/fsl/model/tests/__init__.py delete mode 100644 pydra/tasks/fsl/model/tests/test_run_cluster.py delete mode 100644 pydra/tasks/fsl/model/tests/test_run_feat.py delete mode 100644 pydra/tasks/fsl/model/tests/test_run_featmodel.py delete mode 100644 pydra/tasks/fsl/model/tests/test_run_filmgls.py delete mode 100644 pydra/tasks/fsl/model/tests/test_run_flameo.py delete mode 100644 pydra/tasks/fsl/model/tests/test_run_glm.py delete mode 100644 pydra/tasks/fsl/model/tests/test_run_melodic.py delete mode 100644 pydra/tasks/fsl/model/tests/test_spec_cluster.py delete mode 100644 pydra/tasks/fsl/model/tests/test_spec_feat.py delete mode 100644 pydra/tasks/fsl/model/tests/test_spec_featmodel.py delete mode 100644 pydra/tasks/fsl/model/tests/test_spec_filmgls.py delete mode 100644 pydra/tasks/fsl/model/tests/test_spec_flameo.py delete mode 100644 pydra/tasks/fsl/model/tests/test_spec_glm.py delete mode 100644 pydra/tasks/fsl/model/tests/test_spec_melodic.py delete mode 100644 pydra/tasks/fsl/preprocess/__init__.py delete mode 100644 pydra/tasks/fsl/preprocess/applywarp.py delete mode 100644 pydra/tasks/fsl/preprocess/bet.py delete mode 100644 pydra/tasks/fsl/preprocess/fast.py delete mode 100644 pydra/tasks/fsl/preprocess/first.py delete mode 100644 pydra/tasks/fsl/preprocess/flirt.py delete mode 100644 pydra/tasks/fsl/preprocess/fnirt.py delete mode 100644 pydra/tasks/fsl/preprocess/mcflirt.py delete mode 100644 pydra/tasks/fsl/preprocess/prelude.py delete mode 100644 pydra/tasks/fsl/preprocess/slicetimer.py delete mode 100644 pydra/tasks/fsl/preprocess/susan.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/__init__.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_applywarp.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_bet.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_fast.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_first.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_flirt.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_fnirt.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_mcflirt.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_prelude.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_slicetimer.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_run_susan.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_applywarp.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_bet.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_fast.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_first.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_flirt.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_fnirt.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_mcflirt.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_prelude.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_slicetimer.py delete mode 100644 pydra/tasks/fsl/preprocess/tests/test_spec_susan.py delete mode 100644 pydra/tasks/fsl/tests/data/anatomical.nii delete mode 100644 pydra/tasks/fsl/tests/data/confounds_regressors.tsv delete mode 100644 pydra/tasks/fsl/tests/data/cope_merged.nii.gz delete mode 100644 pydra/tasks/fsl/tests/data/design delete mode 100644 pydra/tasks/fsl/tests/data/design.con delete mode 100644 pydra/tasks/fsl/tests/data/design.grp delete mode 100644 pydra/tasks/fsl/tests/data/design.mat delete mode 100644 pydra/tasks/fsl/tests/data/design_film_gls.mat delete mode 100644 pydra/tasks/fsl/tests/data/dest.nii.gz delete mode 100644 pydra/tasks/fsl/tests/data/ev_1.txt delete mode 100644 pydra/tasks/fsl/tests/data/ev_2.txt delete mode 100644 pydra/tasks/fsl/tests/data/flirt.mat delete mode 100644 pydra/tasks/fsl/tests/data/flirt_inv.mat delete mode 100644 pydra/tasks/fsl/tests/data/mask.nii.gz delete mode 100644 pydra/tasks/fsl/tests/data/struct2mni.nii delete mode 100644 pydra/tasks/fsl/tests/data/subjectDesign.con delete mode 100644 pydra/tasks/fsl/tests/data/subjectDesign.mat delete mode 100644 pydra/tasks/fsl/tests/data/test.fsf delete mode 100644 pydra/tasks/fsl/tests/data/test.nii.gz delete mode 100644 pydra/tasks/fsl/tests/data/test2.nii delete mode 100644 pydra/tasks/fsl/tests/data/test3.nii delete mode 100644 pydra/tasks/fsl/tests/data/test_film_gls.nii.gz delete mode 100644 pydra/tasks/fsl/tests/data/test_warpcoef.nii.gz delete mode 100644 pydra/tasks/fsl/tests/data/timeDesign.con delete mode 100644 pydra/tasks/fsl/tests/data/timeDesign.mat delete mode 100644 pydra/tasks/fsl/tests/data/varcope_merged.nii.gz delete mode 100644 pydra/tasks/fsl/tests/data/warpfield.nii delete mode 100644 pydra/tasks/fsl/tests/data/warpfield.nii.gz delete mode 100644 pydra/tasks/fsl/tests/data/zstat1.nii.gz delete mode 100644 pydra/tasks/fsl/utils/__init__.py delete mode 100644 pydra/tasks/fsl/utils/complex.py delete mode 100644 pydra/tasks/fsl/utils/convertwarp.py delete mode 100644 pydra/tasks/fsl/utils/convertxfm.py delete mode 100644 pydra/tasks/fsl/utils/copygeom.py delete mode 100644 pydra/tasks/fsl/utils/extractroi.py delete mode 100644 pydra/tasks/fsl/utils/filterregressor.py delete mode 100644 pydra/tasks/fsl/utils/imagemaths.py delete mode 100644 pydra/tasks/fsl/utils/imagemeants.py delete mode 100644 pydra/tasks/fsl/utils/imagestats.py delete mode 100644 pydra/tasks/fsl/utils/invwarp.py delete mode 100644 pydra/tasks/fsl/utils/slice.py delete mode 100644 pydra/tasks/fsl/utils/smooth.py delete mode 100644 pydra/tasks/fsl/utils/split.py delete mode 100644 pydra/tasks/fsl/utils/swapdimensions.py delete mode 100644 pydra/tasks/fsl/utils/tests/__init__.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_complex.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_convertwarp.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_convertxfm.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_copygeom.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_extractroi.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_filterregressor.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_imagemaths.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_imagemeants.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_imagestats.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_invwarp.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_slice.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_smooth.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_split.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_run_swapdimensions.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_complex.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_convertwarp.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_convertxfm.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_copygeom.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_extractroi.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_filterregressor.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_imagemaths.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_imagemeants.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_imagestats.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_invwarp.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_slice.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_smooth.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_split.py delete mode 100644 pydra/tasks/fsl/utils/tests/test_spec_swapdimensions.py delete mode 100644 related-packages/fileformats-extras/fileformats/extras/medimage_fsl/_version.py delete mode 100644 related-packages/fileformats/fileformats/medimage_fsl/_version.py diff --git a/.github/workflows/pythonpackage.yml b/.github/workflows/pythonpackage.yml deleted file mode 100644 index c139864..0000000 --- a/.github/workflows/pythonpackage.yml +++ /dev/null @@ -1,119 +0,0 @@ -#This workflow will install Python dependencies, run tests and lint with a variety of Python versions -# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions - -# For deployment, it will be necessary to create a PyPI API token and store it as a secret -# https://docs.github.com/en/actions/reference/encrypted-secrets - -name: Python package - -# Set once -env: - SUBPACKAGE: fsl - -on: - push: - branches: [ master ] - tags: [ '*' ] - pull_request: - branches: [ master ] - - -jobs: - devcheck: - runs-on: ubuntu-latest - strategy: - matrix: - python-version: [3.7, 3.9] # Check oldest and newest versions - pip-flags: ['', '--editable'] - pydra: - - 'pydra' - - '--editable git+https://github.com/nipype/pydra.git#egg=pydra' - - steps: - - uses: actions/checkout@v2 - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 - with: - python-version: ${{ matrix.python-version }} - - name: Install build dependencies - run: | - python -m pip install --upgrade pip - - name: Install Pydra - run: | - pip install ${{ matrix.pydra }} - python -c "import pydra as m; print(f'{m.__name__} {m.__version__} @ {m.__file__}')" - - name: Install task package - run: | - pip install ${{ matrix.pip-flags }} ".[dev]" - python -c "import pydra.tasks.$SUBPACKAGE as m; print(f'{m.__name__} {m.__version__} @ {m.__file__}')" - python -c "import pydra as m; print(f'{m.__name__} {m.__version__} @ {m.__file__}')" - - test: - runs-on: ubuntu-latest - strategy: - matrix: - python-version: [3.7, 3.8, 3.9] - - steps: - - uses: actions/checkout@v2 - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 - with: - python-version: ${{ matrix.python-version }} - - name: Install build dependencies - run: | - python -m pip install --upgrade pip - - name: Install task package - run: | - pip install ".[test]" - python -c "import pydra.tasks.$SUBPACKAGE as m; print(f'{m.__name__} {m.__version__} @ {m.__file__}')" - python -c "import pydra as m; print(f'{m.__name__} {m.__version__} @ {m.__file__}')" - - name: Test with pytest - run: | - pytest -sv --doctest-modules pydra/tasks/$SUBPACKAGE \ - --cov pydra.tasks.$SUBPACKAGE --cov-report xml - - uses: codecov/codecov-action@v1 - if: ${{ always() }} - - - deploy: - needs: [devcheck, test] - runs-on: ubuntu-latest - strategy: - matrix: - python-version: [3.9] - steps: - - uses: actions/checkout@v2 - with: - submodules: recursive - fetch-depth: 0 - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 - with: - python-version: ${{ matrix.python-version }} - - name: Install build tools - run: python -m pip install --upgrade pip build twine - - name: Build source and wheel distributions - run: python -m build - - name: Check distributions - run: twine check dist/* - - uses: actions/upload-artifact@v2 - with: - name: distributions - path: dist/ - # Deploy on tags if PYPI_API_TOKEN is defined in the repository secrets. - # Secrets are not accessible in the if: condition [0], so set an output variable [1] - # [0] https://github.community/t/16928 - # [1] https://docs.github.com/en/actions/reference/workflow-commands-for-github-actions#setting-an-output-parameter - - name: Check for PyPI token on tag - id: deployable - if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags') - env: - PYPI_API_TOKEN: "${{ secrets.PYPI_API_TOKEN }}" - run: if [ -n "$PYPI_API_TOKEN" ]; then echo ::set-output name=DEPLOY::true; fi - - name: Upload to PyPI - if: steps.deployable.outputs.DEPLOY - uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29 # v1.4.2 - with: - user: __token__ - password: ${{ secrets.PYPI_API_TOKEN }} diff --git a/README.md b/README.md deleted file mode 100644 index 77962ed..0000000 --- a/README.md +++ /dev/null @@ -1,215 +0,0 @@ -# Pydra FSL Tasks - -This repository aims to be the canonical set of Pydra tasks for incorporating -[FSL](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) tools into a Pydra workflow. - -Part of this effort is to establish a (mostly) declarative language for describing tasks that -potentially have intricate rules for determining the availability and names from the choice of -inputs. See [Converter](#Converter) for this aspect of the repository. - -## Installation -``` -pip install /path/to/pydra-fsl/ -``` - -### Installation for developers -``` -pip install -e /path/to/pydra-fsl/[dev] -``` - - -## Converter - -`FSLConverter` class (from `tools/converter.py`) requires three parts of information: - -- Nipype spec: converter loads nipype interface and reads `_cmd`, `input_spec` and `output_spec` -- yml file with additional spec: `specs/fsl_{module_name}_params.yml` contains additional spec that are written based -on additional functions from nipype (including `list_outputs`), each interface can have the following fields: - - inputs_metadata: additional metadata for fields from input_spec - (it will be included in `metadata` in pydra spec), - e.g., used in `specs/fsl_preprocess_params.yml` for `FAST` to set default value for `number_classes` - (it's not part of nipype's spec, but it's set in `list_output`, see [here](https://github.com/nipy/nipype/blob/f4343d6ddaee814aa16b197cc729a10d437990bf/nipype/interfaces/fsl/preprocess.py#L403)) - - - output_requirements: providing required fields for the output to be created, - taken from `list_output` structure (e.g. requirements for tissue_class_files [here](https://github.com/nipy/nipype/blob/f4343d6ddaee814aa16b197cc729a10d437990bf/nipype/interfaces/fsl/preprocess.py#L418)); - it's a part of the `requires` field in metadata in pydra spec (e.g. [here](https://github.com/nipype/pydra-fsl/blob/ceae758f76bde81465e86cff029b40e334a7939a/pydra/tasks/fsl/preprocess/fast.py#L237)) - - - output_templates: providing template to create the output file name, - taken from `list_output` structure (e.g., [here](https://github.com/nipy/nipype/blob/f4343d6ddaee814aa16b197cc729a10d437990bf/nipype/interfaces/fsl/preprocess.py#L205)); - it is set as `output_file_template` in metadata (e.g. [here](https://github.com/nipype/pydra-fsl/blob/ceae758f76bde81465e86cff029b40e334a7939a/pydra/tasks/fsl/preprocess/bet.py#L204)) - - - output_callables: providing function name that should be used to gather output, - based on the `list_output` structure and used only for `FAST`; - it is set as `callable` in metadata (e.g. [here](https://github.com/nipype/pydra-fsl/blob/ceae758f76bde81465e86cff029b40e334a7939a/pydra/tasks/fsl/preprocess/fast.py#L237)) - - - tests_inputs, tests_outputs: specification for tests, - the fields should have the same length and each element should contain - the input fields values and list of the expected output fields names - - - doctests: specification for doctest, - should include values for input fields and the expected `cmdline` - -- python file with functions used as callables to gather the outputs: -`specs/callables.py` should contain all the functions from `output_callables`; -the source code of the functions is read and written again in the pydra interface file - - -### How to use the convert - -The converter can be used by running: - - python tools/converter.py --interface_name --module_name - -The pydra task will be created and saved in `pydra/tasks/fsl/{module_name}/{interface_name}.py`. -Note, that the spec file has to be present for the specific module name in order to run the converter. -If no `interface_name` is provided, the default value `all` will be used - and the converter will be run for all interfaces from the spec file. - -Tests are written based on the fields from the yml file: -`tests_inputs` and `tests_outputs` (the lengths should be the same). -One test, `test_specs_*` checks only the correctness of the spec based -on the `test_inputs/outputs` pairs, i.e. predicts which output fields -should be created based on the list of the input fields. -The second test, `test_run_*` should run the interfaces -(TODO: this is temporary, should be removed from the final repo). -Tests can be run using `pytest`: - - pytest -vs pydra/tasks/fsl/{module_name}/tests - -## Interface progress - -Below is a list of all planned interfaces, with completed interfaces checked. The list was copied from the nipype documentation at https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.html. - -### Preprocess - -- [x] ApplyWarp (`applywarp`) -- [ ] ApplyXFM (`flirt`) -- [x] BET (`bet`) -- [x] FAST (`fast`) -- [x] FIRST (`first`) -- [x] FLIRT (`flirt`) -- [x] FNIRT (`fnirt`) -- [ ] FUGUE (`fugue`) -- [x] MCFLIRT (`mcflirt`) -- [x] PRELUDE (`prelude`) -- [x] SUSAN (`susan`) -- [x] SliceTimer (`slicetimer`) - -### AROMA - -- [ ] ICA_AROMA (`ICA_AROMA.py`) - -### DTI - -- [ ] BEDPOSTX / BEDPOSTX5 (`bedpostx`) -- [ ] DTIFit (`dtifit`) -- [ ] DistanceMap (`distancemap`) -- [ ] FSLXCommand (`xfibres` and `bedpost`) -- [ ] FindTheBiggest (`find_the_biggest`) -- [ ] MakeDyadicVectors (`make_dyadic_vectors`) -- [ ] ProbTrackX (`probtrackx`) -- [ ] ProbTrackX2 (`probtrackx2`) -- [ ] ProjThresh (`proj_thresh`) -- [ ] TractSkeleton (`tbss_skeleton`) -- [ ] VecReg (`vecreg`) -- [ ] XFibres / XFibres5 (`xfibres`) - -## EPI - -- [ ] ApplyTOPUP (`applytopup`) -- [ ] EPIDeWarp (`epidewarp.fsl`; depreciated) -- [ ] Eddy (`eddy_openmp`) -- [ ] EddyCorrect (`eddy_correct`; depreciated) -- [ ] EddyQuad (`eddy_quad`) -- [ ] EpiReg (`epi_reg`) -- [ ] PrepareFieldmap (`fsl_prepare_fieldmap`) -- [ ] SigLoss (`sigloss`) -- [ ] TOPUP (`topup`) - -## FIX - -- [ ] Classifier (`fix -c`) -- [ ] Cleaner (`fix -a`) -- [ ] FeatureExtractor (`fix -f`) -- [ ] Training (`fix -t`) -- [ ] TrainingSetCreator - -## Utils - -- [ ] AvScale (`avscale`) -- [ ] Complex (`fslcomplex`) -- [ ] ConvertWarp (`convertwarp`) -- [ ] ConvertXFM (`convert_xfm`) -- [ ] CopyGeom (`fslcpgeom`) -- [ ] ExtractROI (`fslroi`) -- [ ] FilterRegressor (`fsl_regfilt`) -- [ ] ImageMaths (`fslmaths`) -- [ ] ImageMeants (`fslmeants`) -- [ ] ImageStats (`fslstats`) -- [ ] InvWarp (`invwarp`) -- [ ] Merge (`fslmerge`) -- [ ] MotionOutliers (`fsl_motion_outliers`) -- [ ] Overlay (`overlay`) -- [ ] PlotMotionParams (`fsl_tsplot`) -- [ ] PlotTimeSeries (`fsl_tsplot`) -- [ ] PowerSpectrum (`fslpspec`) -- [ ] Reorient2Std (`fslreorient2std`) -- [ ] RobustFOV (`robustfov`) -- [ ] SigLoss (`sigloss`) -- [ ] Slice (`fslslice`) -- [ ] Slicer (`slicer`) -- [ ] Smooth (`fslmaths`) -- [ ] Split (`fslsplit`) -- [ ] SwapDimensions (`fslswapdim`) -- [ ] Text2Vest (`text2vest`) -- [ ] Vest2Text (`vest2text`) -- [ ] WarpPoints (`img2imgcoord`) -- [ ] WarpPointsFromStd (`std2imgcoord`) -- [ ] WarpPointsToStd (`img2stdcoord`) -- [ ] WarpUtils (`fnirtfileutils`) - -### POSSUM - -- [ ] B0Calc (`b0calc`) - -### Model - -- [ ] Cluster (`cluster`) -- [ ] ContrastMgr (`contrast_mgr`) -- [ ] DualRegression (`dual_regression`) -- [ ] FEAT (`feat`) -- [ ] FEATModel (`feat_model`) -- [ ] FEATRegister -- [ ] FILMGLS (`film_gls`) -- [ ] FLAMEO (`flameo`) -- [ ] GLM (`fsl_glm`) -- [ ] L2Model -- [ ] Level1Design -- [ ] MELODIC (`melodic`) -- [ ] MultipleRegressDesign -- [ ] Randomise (`randomise`) -- [ ] SMM (`mm --ld=logdir`) -- [ ] SmoothEstimate (`smoothest`) - -### Maths - -- [ ] AR1Image (`fslmaths`) -- [ ] ApplyMask (`fslmaths`) -- [ ] BinaryMaths (`fslmaths`) -- [ ] ChangeDataType (`fslmaths`) -- [ ] DilateImage (`fslmaths`) -- [ ] ErodeImage (`fslmaths`) -- [ ] IsotropicSmooth (`fslmaths`) -- [ ] MathsCommand (`fslmaths`) -- [ ] MaxImage (`fslmaths`) -- [ ] MaxnImage (`fslmaths`) -- [ ] MeanImage (`fslmaths`) -- [ ] MedianImage (`fslmaths`) -- [ ] MinImage (`fslmaths`) -- [ ] MultiImageMaths (`fslmaths`) -- [ ] PercentileImage (`fslmaths`) -- [ ] SpatialFilter (`fslmaths`) -- [ ] StdImage (`fslmaths`) -- [ ] TemporalFilter (`fslmaths`) -- [ ] Threshold (`fslmaths`) -- [ ] UnaryMaths (`fslmaths`) diff --git a/README.rst b/README.rst index c78a403..60e7355 100644 --- a/README.rst +++ b/README.rst @@ -14,10 +14,12 @@ Pydra task package for fsl :alt: Latest Version -This package contains a collection of Pydra task interfaces for the fsl toolkit. -The basis of this collection has been formed by the semi-automatic conversion of -existing `Nipype `__ interfaces to Pydra using the -`Nipype2Pydra `__ tool +This repository aims to be the canonical set of Pydra tasks for incorporating +`FSL `__ tools into a Pydra workflow. + +Part of this effort is to establish a (mostly) declarative language for describing tasks that +potentially have intricate rules for determining the availability and names from the choice of +inputs. Automatically-generated vs manually-curated tasks @@ -152,3 +154,151 @@ docs `__ for instr new fileformat types, and see `fileformats-medimage-extras `__ for an example on how to implement methods to generate sample data for them. + + +Interface progress +================== + +Below is a list of all planned interfaces, with completed interfaces checked. The list was copied from the nipype documentation at https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.html. + +Preprocess +---------- + +- [x] ApplyWarp (`applywarp`) +- [ ] ApplyXFM (`flirt`) +- [x] BET (`bet`) +- [x] FAST (`fast`) +- [x] FIRST (`first`) +- [x] FLIRT (`flirt`) +- [x] FNIRT (`fnirt`) +- [ ] FUGUE (`fugue`) +- [x] MCFLIRT (`mcflirt`) +- [x] PRELUDE (`prelude`) +- [x] SUSAN (`susan`) +- [x] SliceTimer (`slicetimer`) + +AROMA +----- + +- [ ] ICA_AROMA (`ICA_AROMA.py`) + +DTI +--- + +- [ ] BEDPOSTX / BEDPOSTX5 (`bedpostx`) +- [ ] DTIFit (`dtifit`) +- [ ] DistanceMap (`distancemap`) +- [ ] FSLXCommand (`xfibres` and `bedpost`) +- [ ] FindTheBiggest (`find_the_biggest`) +- [ ] MakeDyadicVectors (`make_dyadic_vectors`) +- [ ] ProbTrackX (`probtrackx`) +- [ ] ProbTrackX2 (`probtrackx2`) +- [ ] ProjThresh (`proj_thresh`) +- [ ] TractSkeleton (`tbss_skeleton`) +- [ ] VecReg (`vecreg`) +- [ ] XFibres / XFibres5 (`xfibres`) + +EPI +--- + +- [ ] ApplyTOPUP (`applytopup`) +- [ ] EPIDeWarp (`epidewarp.fsl`; depreciated) +- [ ] Eddy (`eddy_openmp`) +- [ ] EddyCorrect (`eddy_correct`; depreciated) +- [ ] EddyQuad (`eddy_quad`) +- [ ] EpiReg (`epi_reg`) +- [ ] PrepareFieldmap (`fsl_prepare_fieldmap`) +- [ ] SigLoss (`sigloss`) +- [ ] TOPUP (`topup`) + +FIX +--- + +- [ ] Classifier (`fix -c`) +- [ ] Cleaner (`fix -a`) +- [ ] FeatureExtractor (`fix -f`) +- [ ] Training (`fix -t`) +- [ ] TrainingSetCreator + +Utils +----- + +- [ ] AvScale (`avscale`) +- [ ] Complex (`fslcomplex`) +- [ ] ConvertWarp (`convertwarp`) +- [ ] ConvertXFM (`convert_xfm`) +- [ ] CopyGeom (`fslcpgeom`) +- [ ] ExtractROI (`fslroi`) +- [ ] FilterRegressor (`fsl_regfilt`) +- [ ] ImageMaths (`fslmaths`) +- [ ] ImageMeants (`fslmeants`) +- [ ] ImageStats (`fslstats`) +- [ ] InvWarp (`invwarp`) +- [ ] Merge (`fslmerge`) +- [ ] MotionOutliers (`fsl_motion_outliers`) +- [ ] Overlay (`overlay`) +- [ ] PlotMotionParams (`fsl_tsplot`) +- [ ] PlotTimeSeries (`fsl_tsplot`) +- [ ] PowerSpectrum (`fslpspec`) +- [ ] Reorient2Std (`fslreorient2std`) +- [ ] RobustFOV (`robustfov`) +- [ ] SigLoss (`sigloss`) +- [ ] Slice (`fslslice`) +- [ ] Slicer (`slicer`) +- [ ] Smooth (`fslmaths`) +- [ ] Split (`fslsplit`) +- [ ] SwapDimensions (`fslswapdim`) +- [ ] Text2Vest (`text2vest`) +- [ ] Vest2Text (`vest2text`) +- [ ] WarpPoints (`img2imgcoord`) +- [ ] WarpPointsFromStd (`std2imgcoord`) +- [ ] WarpPointsToStd (`img2stdcoord`) +- [ ] WarpUtils (`fnirtfileutils`) + +POSSUM +------ + +- [ ] B0Calc (`b0calc`) + +### Model + +- [ ] Cluster (`cluster`) +- [ ] ContrastMgr (`contrast_mgr`) +- [ ] DualRegression (`dual_regression`) +- [ ] FEAT (`feat`) +- [ ] FEATModel (`feat_model`) +- [ ] FEATRegister +- [ ] FILMGLS (`film_gls`) +- [ ] FLAMEO (`flameo`) +- [ ] GLM (`fsl_glm`) +- [ ] L2Model +- [ ] Level1Design +- [ ] MELODIC (`melodic`) +- [ ] MultipleRegressDesign +- [ ] Randomise (`randomise`) +- [ ] SMM (`mm --ld=logdir`) +- [ ] SmoothEstimate (`smoothest`) + +Maths +----- + +- [ ] AR1Image (`fslmaths`) +- [ ] ApplyMask (`fslmaths`) +- [ ] BinaryMaths (`fslmaths`) +- [ ] ChangeDataType (`fslmaths`) +- [ ] DilateImage (`fslmaths`) +- [ ] ErodeImage (`fslmaths`) +- [ ] IsotropicSmooth (`fslmaths`) +- [ ] MathsCommand (`fslmaths`) +- [ ] MaxImage (`fslmaths`) +- [ ] MaxnImage (`fslmaths`) +- [ ] MeanImage (`fslmaths`) +- [ ] MedianImage (`fslmaths`) +- [ ] MinImage (`fslmaths`) +- [ ] MultiImageMaths (`fslmaths`) +- [ ] PercentileImage (`fslmaths`) +- [ ] SpatialFilter (`fslmaths`) +- [ ] StdImage (`fslmaths`) +- [ ] TemporalFilter (`fslmaths`) +- [ ] Threshold (`fslmaths`) +- [ ] UnaryMaths (`fslmaths`) diff --git a/nipype-auto-conv/specs/accuracy_tester.yaml b/nipype-auto-conv/specs/accuracy_tester.yaml index cdd03df..fb17bf4 100644 --- a/nipype-auto-conv/specs/accuracy_tester.yaml +++ b/nipype-auto-conv/specs/accuracy_tester.yaml @@ -23,13 +23,10 @@ inputs: # from the nipype interface, but you may want to be more specific, particularly # for file types, where specifying the format also specifies the file that will be # passed to the field in the automatically generated unittests. + mel_icas: generic/file+list-of + # type=inputmultiobject|default=[]: Melodic output directories trained_wts_file: generic/file # type=file|default=: trained-weights file - mel_icas: medimage-fsl/melodic-ica+list-of - # type=inputmultiobject|default=[]: Melodic output directories - output_directory: Path - # type=directory: Path to folder in which to store the results of the accuracy test. - # type=directory|default=: Path to folder in which to store the results of the accuracy test. metadata: # dict[str, dict[str, any]] - additional metadata to set on any of the input fields (e.g. out_file: position: 1) outputs: @@ -43,9 +40,6 @@ outputs: # from the nipype interface, but you may want to be more specific, particularly # for file types, where specifying the format also specifies the file that will be # passed to the field in the automatically generated unittests. - output_directory: generic/directory - # type=directory: Path to folder in which to store the results of the accuracy test. - # type=directory|default=: Path to folder in which to store the results of the accuracy test. callables: # dict[str, str] - names of methods/callable classes defined in the adjacent `*_callables.py` # to set to the `callable` attribute of output fields diff --git a/nipype-auto-conv/specs/ar1_image.yaml b/nipype-auto-conv/specs/ar1_image.yaml index ac9b296..2491268 100644 --- a/nipype-auto-conv/specs/ar1_image.yaml +++ b/nipype-auto-conv/specs/ar1_image.yaml @@ -56,7 +56,7 @@ tests: # dict[str, str] - values to provide to inputs fields in the task initialisation # (if not specified, will try to choose a sensible value) dimension: - # type=enum|default='T'|allowed['T','X','Y','Z']: dimension to find AR(1) coefficientacross + # type=enum|default='T'|allowed['T','X','Y','Z']: dimension to find AR(1) coefficient across in_file: # type=file|default=: image to operate on out_file: diff --git a/nipype-auto-conv/specs/bedpostx5.yaml b/nipype-auto-conv/specs/bedpostx5.yaml index b25f1b6..fbc86d5 100644 --- a/nipype-auto-conv/specs/bedpostx5.yaml +++ b/nipype-auto-conv/specs/bedpostx5.yaml @@ -73,7 +73,7 @@ outputs: mean_dsamples: generic/file # type=file: Mean of distribution on diffusivity d mean_S0samples: generic/file - # type=file: Mean of distribution on T2wbaseline signal intensity S0 + # type=file: Mean of distribution on T2w baseline signal intensity S0 callables: # dict[str, str] - names of methods/callable classes defined in the adjacent `*_callables.py` # to set to the `callable` attribute of output fields diff --git a/nipype-auto-conv/specs/cluster.yaml b/nipype-auto-conv/specs/cluster.yaml index 82f5aad..4e0e521 100644 --- a/nipype-auto-conv/specs/cluster.yaml +++ b/nipype-auto-conv/specs/cluster.yaml @@ -42,7 +42,7 @@ inputs: std_space_file: generic/file # type=file|default=: filename for standard-space volume warpfield_file: generic/file - # type=file|default=: file contining warpfield + # type=file|default=: file containing warpfield metadata: # dict[str, dict[str, any]] - additional metadata to set on any of the input fields (e.g. out_file: position: 1) outputs: @@ -132,7 +132,7 @@ tests: num_maxima: # type=int|default=0: no of local maxima to report warpfield_file: - # type=file|default=: file contining warpfield + # type=file|default=: file containing warpfield output_type: # type=enum|default='NIFTI'|allowed['NIFTI','NIFTI_GZ','NIFTI_PAIR','NIFTI_PAIR_GZ']: FSL output type args: diff --git a/nipype-auto-conv/specs/fast.yaml b/nipype-auto-conv/specs/fast.yaml index 2ffd753..1ccc66d 100644 --- a/nipype-auto-conv/specs/fast.yaml +++ b/nipype-auto-conv/specs/fast.yaml @@ -13,12 +13,12 @@ # Examples # -------- # >>> from nipype.interfaces import fsl -# >>> fastr = fsl.FAST() -# >>> fastr.inputs.in_files = 'structural.nii' -# >>> fastr.inputs.out_basename = 'fast_' -# >>> fastr.cmdline +# >>> fast = fsl.FAST() +# >>> fast.inputs.in_files = 'structural.nii' +# >>> fast.inputs.out_basename = 'fast_' +# >>> fast.cmdline # 'fast -o fast_ -S 1 structural.nii' -# >>> out = fastr.run() # doctest: +SKIP +# >>> out = fast.run() # doctest: +SKIP # # task_name: FAST diff --git a/nipype-auto-conv/specs/fnirt.yaml b/nipype-auto-conv/specs/fnirt.yaml index 506b06f..7e4569b 100644 --- a/nipype-auto-conv/specs/fnirt.yaml +++ b/nipype-auto-conv/specs/fnirt.yaml @@ -257,10 +257,8 @@ doctests: # '.mock()' method of the corresponding class is used instead. in_fwhm: '[8, 4, 2, 2]' # type=list|default=[]: FWHM (in mm) of gaussian smoothing kernel for input volume, default [6, 4, 2, 2] - subsampling_scheme: '[4, 2, 1, 1]' + subsampling_scheme: '[4, 2, 1, 1] Specify the resolution of the warps >>> fnirt_mprage.inputs.warp_resolution = (6, 6, 6)' # type=list|default=[]: sub-sampling scheme, list, default [4, 2, 1, 1] - warp_resolution: (6, 6, 6) - # type=tuple|default=(0, 0, 0): (approximate) resolution (in mm) of warp basis in x-, y- and z-direction, default 10, 10, 10 imports: *id001 # list[nipype2pydra.task.importstatement] - list import statements required by the test, with each list item # consisting of 'module', 'name', and optionally 'alias' keys diff --git a/nipype-auto-conv/specs/melodic.yaml b/nipype-auto-conv/specs/melodic.yaml index 9e355f6..fb02987 100644 --- a/nipype-auto-conv/specs/melodic.yaml +++ b/nipype-auto-conv/specs/melodic.yaml @@ -77,11 +77,6 @@ outputs: # from the nipype interface, but you may want to be more specific, particularly # for file types, where specifying the format also specifies the file that will be # passed to the field in the automatically generated unittests. - out_dir: generic/directory - # type=directory: - # type=directory|default=: output directory name - report_dir: generic/directory - # type=directory: callables: # dict[str, str] - names of methods/callable classes defined in the adjacent `*_callables.py` # to set to the `callable` attribute of output fields diff --git a/nipype-auto-conv/specs/prob_track_x.yaml b/nipype-auto-conv/specs/prob_track_x.yaml index 4e677d8..fcabdd5 100644 --- a/nipype-auto-conv/specs/prob_track_x.yaml +++ b/nipype-auto-conv/specs/prob_track_x.yaml @@ -141,7 +141,7 @@ tests: c_thresh: # type=float|default=0.0: curvature threshold - default=0.2 sample_random_points: - # type=bool|default=False: sample random points within seed voxels + # type=float|default=0.0: sample random points within seed voxels step_length: # type=float|default=0.0: step_length in mm - default=0.5 loop_check: @@ -155,7 +155,7 @@ tests: mod_euler: # type=bool|default=False: use modified euler streamlining random_seed: - # type=bool|default=False: random seed + # type=int|default=0: random seed s2tastext: # type=bool|default=False: output seed-to-target counts as a text file (useful when seeding from a mesh) verbose: diff --git a/nipype-auto-conv/specs/prob_track_x2.yaml b/nipype-auto-conv/specs/prob_track_x2.yaml index 045fc23..00abd71 100644 --- a/nipype-auto-conv/specs/prob_track_x2.yaml +++ b/nipype-auto-conv/specs/prob_track_x2.yaml @@ -192,7 +192,7 @@ tests: c_thresh: # type=float|default=0.0: curvature threshold - default=0.2 sample_random_points: - # type=bool|default=False: sample random points within seed voxels + # type=float|default=0.0: sample random points within seed voxels step_length: # type=float|default=0.0: step_length in mm - default=0.5 loop_check: @@ -206,7 +206,7 @@ tests: mod_euler: # type=bool|default=False: use modified euler streamlining random_seed: - # type=bool|default=False: random seed + # type=int|default=0: random seed s2tastext: # type=bool|default=False: output seed-to-target counts as a text file (useful when seeding from a mesh) verbose: diff --git a/nipype-auto-conv/specs/smm.yaml b/nipype-auto-conv/specs/smm.yaml index 1f19c69..f1d229b 100644 --- a/nipype-auto-conv/specs/smm.yaml +++ b/nipype-auto-conv/specs/smm.yaml @@ -42,7 +42,7 @@ outputs: # from the nipype interface, but you may want to be more specific, particularly # for file types, where specifying the format also specifies the file that will be # passed to the field in the automatically generated unittests. - _p_map: generic/file + _p_map: generic/file activation_p_map: generic/file # type=file: deactivation_p_map: generic/file diff --git a/nipype-auto-conv/specs/topup.yaml b/nipype-auto-conv/specs/topup.yaml index bfb37c4..d4c21ec 100644 --- a/nipype-auto-conv/specs/topup.yaml +++ b/nipype-auto-conv/specs/topup.yaml @@ -45,6 +45,8 @@ inputs: # type=file|default=: name of 4D file with images encoding_file: text/text-file # type=file|default=: name of text file with PE directions/times + readout_times: generic/file+list-of + # type=inputmultiobject|default=[]: readout times (dwell times by # phase-encode steps minus 1) out_base: generic/file # type=file|default=: base-name of output files (spline coefficients (Hz) and movement parameters) out_field: generic/file diff --git a/nipype-auto-conv/specs/training.yaml b/nipype-auto-conv/specs/training.yaml index 6491ff2..91531b1 100644 --- a/nipype-auto-conv/specs/training.yaml +++ b/nipype-auto-conv/specs/training.yaml @@ -22,7 +22,7 @@ inputs: # from the nipype interface, but you may want to be more specific, particularly # for file types, where specifying the format also specifies the file that will be # passed to the field in the automatically generated unittests. - mel_icas: generic/directory+list-of + mel_icas: generic/file+list-of # type=inputmultiobject|default=[]: Melodic output directories metadata: # dict[str, dict[str, any]] - additional metadata to set on any of the input fields (e.g. out_file: position: 1) diff --git a/nipype-auto-conv/specs/x_fibres_5.yaml b/nipype-auto-conv/specs/x_fibres_5.yaml index 1cbf74a..2884dd7 100644 --- a/nipype-auto-conv/specs/x_fibres_5.yaml +++ b/nipype-auto-conv/specs/x_fibres_5.yaml @@ -33,8 +33,6 @@ inputs: # type=file|default=: b vectors file bvals: generic/file # type=file|default=: b values file - logdir: generic/directory - # type=directory|default='.': metadata: # dict[str, dict[str, any]] - additional metadata to set on any of the input fields (e.g. out_file: position: 1) outputs: @@ -51,7 +49,7 @@ outputs: mean_dsamples: generic/file # type=file: Mean of distribution on diffusivity d mean_S0samples: generic/file - # type=file: Mean of distribution on T2wbaseline signal intensity S0 + # type=file: Mean of distribution on T2w baseline signal intensity S0 mean_tausamples: generic/file # type=file: Mean of distribution on tau samples (only with rician noise) callables: diff --git a/pydra/tasks/fsl/_version.py b/pydra/tasks/fsl/_version.py deleted file mode 100644 index c519089..0000000 --- a/pydra/tasks/fsl/_version.py +++ /dev/null @@ -1,4 +0,0 @@ -# file generated by setuptools_scm -# don't change, don't track in version control -__version__ = version = '0.1.dev123+gd6b46a1.d20230502' -__version_tuple__ = version_tuple = (0, 1, 'dev123', 'gd6b46a1.d20230502') diff --git a/pydra/tasks/fsl/conftest.py b/pydra/tasks/fsl/conftest.py deleted file mode 100644 index ba9f4d8..0000000 --- a/pydra/tasks/fsl/conftest.py +++ /dev/null @@ -1,48 +0,0 @@ -import os -import shutil -from tempfile import mkdtemp -import pytest - -# import numpy -import py.path as pp - -NIPYPE_DATADIR = os.path.realpath(os.path.join(os.path.dirname(__file__), "tests/data")) -temp_folder = mkdtemp() -data_dir = os.path.join(temp_folder, "data") -shutil.copytree(NIPYPE_DATADIR, data_dir) - - -@pytest.fixture(autouse=True) -def add_np(doctest_namespace): - # doctest_namespace["np"] = numpy - doctest_namespace["os"] = os - doctest_namespace["pytest"] = pytest - doctest_namespace["datadir"] = data_dir - - -@pytest.fixture(autouse=True) -def _docdir(request): - """Grabbed from https://stackoverflow.com/a/46991331""" - # Trigger ONLY for the doctests. - doctest_plugin = request.config.pluginmanager.getplugin("doctest") - if isinstance(request.node, doctest_plugin.DoctestItem): - # Get the fixture dynamically by its name. - tmpdir = pp.local(data_dir) - - # Chdir only for the duration of the test. - with tmpdir.as_cwd(): - yield - - else: - # For normal tests, we have to yield, since this is a yield-fixture. - yield - - -@pytest.fixture() -def test_data(): - return NIPYPE_DATADIR - - -def pytest_unconfigure(config): - # Delete temp folder after session is finished - shutil.rmtree(temp_folder) diff --git a/pydra/tasks/fsl/model/__init__.py b/pydra/tasks/fsl/model/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/model/cluster.py b/pydra/tasks/fsl/model/cluster.py deleted file mode 100644 index e45f144..0000000 --- a/pydra/tasks/fsl/model/cluster.py +++ /dev/null @@ -1,242 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def Cluster_output(inputs): - import os, attr - from pydra.engine.helpers_file import split_filename - - in_file = inputs.in_file - pth, fname, ext = split_filename(in_file) - - return os.path.join(pth, f"{fname}_localmax.txt") - - -input_fields = [ - ( - "in_file", - specs.File, - {"help_string": "input volume", "argstr": "--in={in_file}", "mandatory": True}, - ), - ( - "threshold", - float, - { - "help_string": "threshold for input volume", - "argstr": "--thresh={threshold:.10f}", - "mandatory": True, - }, - ), - ( - "out_index_file", - ty.Union[bool, str], - False, - { - "help_string": "output of cluster index (in size order)", - "argstr": "--oindex={out_index_file}", - "output_file_template": "{in_file}_index", - }, - ), - ( - "out_threshold_file", - ty.Union[bool, str], - False, - { - "help_string": "thresholded image", - "argstr": "--othresh={out_threshold_file}", - "output_file_template": "{in_file}_threshold", - }, - ), - ( - "out_localmax_txt_file", - ty.Union[bool, str], - False, - { - "help_string": "local maxima text file", - "argstr": "--olmax={out_localmax_txt_file}", - "output_file_template": Cluster_output, - }, - ), - ( - "out_localmax_vol_file", - ty.Union[bool, str], - False, - { - "help_string": "output of local maxima volume", - "argstr": "--olmaxim={out_localmax_vol_file}", - "output_file_template": "{in_file}_localmax", - }, - ), - ( - "out_size_file", - ty.Union[bool, str], - False, - { - "help_string": "filename for output of size image", - "argstr": "--osize={out_size_file}", - "output_file_template": "{in_file}_size", - }, - ), - ( - "out_max_file", - ty.Union[bool, str], - False, - { - "help_string": "filename for output of max image", - "argstr": "--omax={out_max_file}", - "output_file_template": "{in_file}_max", - }, - ), - ( - "out_mean_file", - ty.Union[bool, str], - False, - { - "help_string": "filename for output of mean image", - "argstr": "--omean={out_mean_file}", - "output_file_template": "{in_file}_mean", - }, - ), - ( - "out_pval_file", - ty.Union[bool, str], - False, - { - "help_string": "filename for image output of log pvals", - "argstr": "--opvals={out_pval_file}", - "output_file_template": "{in_file}_pval", - }, - ), - ( - "pthreshold", - float, - { - "help_string": "p-threshold for clusters", - "argstr": "--pthresh={pthreshold:.10f}", - "requires": ["dlh", "volume"], - }, - ), - ( - "peak_distance", - float, - { - "help_string": "minimum distance between local maxima/minima, in mm (default 0)", - "argstr": "--peakdist={peak_distance:.10f}", - }, - ), - ("cope_file", str, {"help_string": "cope volume", "argstr": "--cope={cope_file}"}), - ( - "volume", - int, - {"help_string": "number of voxels in the mask", "argstr": "--volume={volume}"}, - ), - ( - "dlh", - float, - { - "help_string": "smoothness estimate = sqrt(det(Lambda))", - "argstr": "--dlh={dlh:.10f}", - }, - ), - ( - "fractional", - bool, - False, - { - "help_string": "interprets the threshold as a fraction of the robust range", - "argstr": "--fractional", - }, - ), - ( - "connectivity", - int, - { - "help_string": "the connectivity of voxels (default 26)", - "argstr": "--connectivity={connectivity}", - }, - ), - ( - "use_mm", - bool, - False, - {"help_string": "use mm, not voxel, coordinates", "argstr": "--mm"}, - ), - ( - "find_min", - bool, - False, - {"help_string": "find minima instead of maxima", "argstr": "--min"}, - ), - ( - "no_table", - bool, - False, - { - "help_string": "suppresses printing of the table info", - "argstr": "--no_table", - }, - ), - ( - "minclustersize", - bool, - False, - { - "help_string": "prints out minimum significant cluster size", - "argstr": "--minclustersize", - }, - ), - ( - "xfm_file", - str, - { - "help_string": "filename for Linear: input->standard-space transform. Non-linear: input->highres transform", - "argstr": "--xfm={xfm_file}", - }, - ), - ( - "std_space_file", - str, - { - "help_string": "filename for standard-space volume", - "argstr": "--stdvol={std_space_file}", - }, - ), - ( - "num_maxima", - int, - {"help_string": "no of local maxima to report", "argstr": "--num={num_maxima}"}, - ), - ( - "warpfield_file", - str, - { - "help_string": "file contining warpfield", - "argstr": "--warpvol={warpfield_file}", - }, - ), -] -Cluster_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -Cluster_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class Cluster(ShellCommandTask): - """ - Example - ------- - >>> task = Cluster() - >>> task.inputs.in_file = "zstat1.nii.gz" - >>> task.inputs.out_localmax_txt_file = True - >>> task.inputs.threshold = 2.3 - >>> task.inputs.use_mm = True - >>> task.cmdline # doctest: +ELLIPSIS - 'cluster --in=zstat1.nii.gz --thresh=2.3000000000 --olmax=.../zstat1_localmax.txt --mm' - """ - - input_spec = Cluster_input_spec - output_spec = Cluster_output_spec - executable = "cluster" diff --git a/pydra/tasks/fsl/model/feat.py b/pydra/tasks/fsl/model/feat.py deleted file mode 100644 index 8f171d3..0000000 --- a/pydra/tasks/fsl/model/feat.py +++ /dev/null @@ -1,62 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def FEAT_output(fsf_file): - is_ica = False - with open(fsf_file, "rt") as fp: - text = fp.read() - if "set fmri(inmelodic) 1" in text: - is_ica = True - for line in text.split("\n"): - if line.find("set fmri(outputdir)") > -1: - try: - outputdir_spec = line.split('"')[-2] - if os.path.exists(outputdir_spec): - outputs = outputdir_spec - except: - pass - - if not outputs: - if is_ica: - outputs = glob(os.path.join(os.getcwd(), "*ica"))[0] - else: - outputs = glob(os.path.join(os.getcwd(), "*feat"))[0] - print("Outputs from FEATmodel:", outputs) - return outputs - - -input_fields = [ - ( - "fsf_file", - specs.File, - { - "help_string": "File specifying the feat design spec file", - "argstr": "{fsf_file}", - "mandatory": True, - "position": 0, - }, - ) -] -FEAT_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ("feat_dir", specs.Directory, {"requires": ["fsf_file"], "callable": FEAT_output}) -] -FEAT_output_spec = specs.SpecInfo(name="Output", fields=output_fields, bases=(specs.ShellOutSpec,)) - - -class FEAT(ShellCommandTask): - """ - Example - ------- - >>> task = FEAT() - >>> task.inputs.fsf_file = "test.fsf" - >>> task.cmdline - 'feat test.fsf' - """ - - input_spec = FEAT_input_spec - output_spec = FEAT_output_spec - executable = "feat" diff --git a/pydra/tasks/fsl/model/featmodel.py b/pydra/tasks/fsl/model/featmodel.py deleted file mode 100644 index 47663c6..0000000 --- a/pydra/tasks/fsl/model/featmodel.py +++ /dev/null @@ -1,119 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def FEATModel_output(field, fsf_file): - import os - - # TODO: figure out file names and get rid off the globs - outputs = {} - _, fname = os.path.split(fsf_file) - root = fname.split(".")[0] - name = field.name - if name == "design_file": - design_file = glob(os.path.join(os.getcwd(), "%s*.mat" % root)) - assert len(design_file) == 1, "No mat file generated by FEAT Model" - outputs = design_file[0] - elif name == "design_image": - design_image = glob(os.path.join(os.getcwd(), "%s.png" % root)) - assert len(design_image) == 1, "No design image generated by FEAT Model" - outputs = design_image[0] - elif name == "design_cov": - design_cov = glob(os.path.join(os.getcwd(), "%s_cov.png" % root)) - assert len(design_cov) == 1, "No covariance image generated by FEAT Model" - outputs = design_cov[0] - elif name == "con_file": - con_file = glob(os.path.join(os.getcwd(), "%s*.con" % root)) - assert len(con_file) == 1, "No con file generated by FEAT Model" - outputs = con_file[0] - elif name == "fcon_file": - fcon_file = glob(os.path.join(os.getcwd(), "%s*.fts" % root)) - if fcon_file: - assert len(fcon_file) == 1, "No fts file generated by FEAT Model" - outputs = fcon_file[0] - else: - raise Exception( - f"this function should be run only for design_file, design_image" - f"design_cov, con_file, or fcon_file, not for {name}" - ) - return outputs - - -input_fields = [ - ( - "fsf_file", - specs.File, - { - "help_string": "File specifying the feat design spec file", - "argstr": "{fsf_file}", - "copyfile": False, - "mandatory": True, - "position": 0, - }, - ), - ( - "ev_files", - specs.MultiInputFile, - { - "help_string": "Event spec files generated by level1design", - "argstr": "{ev_files}", - "copyfile": False, - "mandatory": True, - "position": 1, - }, - ), -] -FEATModel_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "design_file", - specs.File, - { - "help_string": "Mat file containing ascii matrix for design", - "callable": FEATModel_output, - }, - ), - ( - "design_image", - specs.File, - { - "help_string": "Graphical representation of design matrix", - "callable": FEATModel_output, - }, - ), - ( - "design_cov", - specs.File, - { - "help_string": "Graphical representation of design covariance", - "callable": FEATModel_output, - }, - ), - ( - "con_file", - specs.File, - { - "help_string": "Contrast file containing contrast vectors", - "callable": FEATModel_output, - }, - ), - ( - "fcon_file", - specs.File, - { - "help_string": "Contrast file containing contrast vectors", - "callable": FEATModel_output, - }, - ), -] -FEATModel_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class FEATModel(ShellCommandTask): - input_spec = FEATModel_input_spec - output_spec = FEATModel_output_spec - executable = "feat_model" diff --git a/pydra/tasks/fsl/model/filmgls.py b/pydra/tasks/fsl/model/filmgls.py deleted file mode 100644 index 75c0e19..0000000 --- a/pydra/tasks/fsl/model/filmgls.py +++ /dev/null @@ -1,396 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def FILMGLS_output(field, inputs): - import os, attr - - def _get_pe_files(design_file, pth): - files = None - if design_file not in [None, attr.NOTHING]: - fp = open(design_file, "rt") - for line in fp.readlines(): - if line.startswith("/NumWaves"): - numpes = int(line.split()[-1]) - files = [] - for i in range(numpes): - files.append(os.path.join(pth, ("pe%d.nii.gz" % (i + 1)))) - break - fp.close() - return files - - def _get_numcons(inputs): - numtcons = 0 - numfcons = 0 - if inputs.tcon_file not in [None, attr.NOTHING]: - fp = open(inputs.tcon_file, "rt") - for line in fp.readlines(): - if line.startswith("/NumContrasts"): - numtcons = int(line.split()[-1]) - break - fp.close() - if inputs.fcon_file not in [None, attr.NOTHING]: - fp = open(inputs.fcon_file, "rt") - for line in fp.readlines(): - if line.startswith("/NumContrasts"): - numfcons = int(line.split()[-1]) - break - fp.close() - return numtcons, numfcons - - name = field.name - pth = inputs.results_dir - if name == "results_dir": - return pth - elif name == "param_estimates": - design_file = inputs.design_file - pe_files = _get_pe_files(design_file, pth) - if pe_files: - return pe_files - elif name == "residual4d": - return os.path.join(pth, "res4d.nii.gz") - elif name == "dof_file": - return os.path.join(pth, "dof") - elif name == "sigmasquareds": - return os.path.join(pth, "sigmasquareds.nii.gz") - elif name == "thresholdac": - return os.path.join(pth, "threshac1.nii.gz") - elif name == "logfile": - return os.path.join(pth, "logfile") - - numtcons, numfcons = _get_numcons(inputs) - base_contrast = 1 - copes = [] - varcopes = [] - zstats = [] - tstats = [] - for i in range(numtcons): - copes.append(os.path.join(pth, ("cope%d.nii.gz" % (base_contrast + i)))) - varcopes.append(os.path.join(pth, ("varcope%d.nii.gz" % (base_contrast + i)))) - zstats.append(os.path.join(pth, ("zstat%d.nii.gz" % (base_contrast + i)))) - tstats.append(os.path.join(pth, ("tstat%d.nii.gz" % (base_contrast + i)))) - if copes: - if name == "copes": - return copes - elif name == "varcopes": - return varcopes - elif name == "zstats": - return zstats - elif name == "tstats": - return tstats - fstats = [] - zfstats = [] - for i in range(numfcons): - fstats.append(os.path.join(pth, ("fstat%d.nii.gz" % (base_contrast + i)))) - zfstats.append(os.path.join(pth, ("zfstat%d.nii.gz" % (base_contrast + i)))) - if fstats: - if name == "fstats": - return fstats - elif name == "zfstats": - return zfstats - - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input data file", - "argstr": "--in={in_file}", - "mandatory": True, - "position": -3, - }, - ), - ( - "design_file", - specs.File, - { - "help_string": "design matrix file", - "argstr": "--pd={design_file}", - "position": -2, - }, - ), - ( - "threshold", - float, - -1000.0, - {"help_string": "threshold", "argstr": "--thr={threshold}", "position": -1}, - ), - ( - "tcon_file", - specs.File, - { - "help_string": "contrast file containing T-contrasts", - "argstr": "--con={tcon_file}", - }, - ), - ( - "fcon_file", - specs.File, - { - "help_string": "contrast file containing F-contrasts", - "argstr": "--fcon={fcon_file}", - }, - ), - ( - "mode", - ty.Any, - {"help_string": "Type of analysis to be done", "argstr": "--mode={mode}"}, - ), - ( - "surface", - specs.File, - { - "help_string": "input surface for autocorr smoothing in surface-based analyses", - "argstr": "--in2={surface}", - }, - ), - ( - "smooth_autocorr", - bool, - {"help_string": "Smooth auto corr estimates", "argstr": "--sa"}, - ), - ( - "mask_size", - int, - {"help_string": "susan mask size", "argstr": "--ms={mask_size}"}, - ), - ( - "brightness_threshold", - ty.Any, - { - "help_string": "susan brightness threshold, otherwise it is estimated", - "argstr": "--epith={brightness_threshold}", - }, - ), - ("full_data", bool, {"help_string": "output full data", "argstr": "-v"}), - ( - "autocorr_estimate_only", - bool, - { - "help_string": "perform autocorrelation estimation only", - "argstr": "--ac", - "xor": [ - "autocorr_estimate_only", - "fit_armodel", - "tukey_window", - "multitaper_product", - "use_pava", - "autocorr_noestimate", - ], - }, - ), - ( - "fit_armodel", - bool, - { - "help_string": "fits autoregressive model - default is to use tukey with M=sqrt(numvols)", - "argstr": "--ar", - "xor": [ - "autocorr_estimate_only", - "fit_armodel", - "tukey_window", - "multitaper_product", - "use_pava", - "autocorr_noestimate", - ], - }, - ), - ( - "tukey_window", - int, - { - "help_string": "tukey window size to estimate autocorr", - "argstr": "--tukey={tukey_window}", - "xor": [ - "autocorr_estimate_only", - "fit_armodel", - "tukey_window", - "multitaper_product", - "use_pava", - "autocorr_noestimate", - ], - }, - ), - ( - "multitaper_product", - int, - { - "help_string": "multitapering with slepian tapers and num is the time-bandwidth product", - "argstr": "--mt={multitaper_product}", - "xor": [ - "autocorr_estimate_only", - "fit_armodel", - "tukey_window", - "multitaper_product", - "use_pava", - "autocorr_noestimate", - ], - }, - ), - ( - "use_pava", - bool, - {"help_string": "estimates autocorr using PAVA", "argstr": "--pava"}, - ), - ( - "autocorr_noestimate", - bool, - { - "help_string": "do not estimate autocorrs", - "argstr": "--noest", - "xor": [ - "autocorr_estimate_only", - "fit_armodel", - "tukey_window", - "multitaper_product", - "use_pava", - "autocorr_noestimate", - ], - }, - ), - ( - "output_pwdata", - bool, - { - "help_string": "output prewhitened data and average design matrix", - "argstr": "--outputPWdata", - }, - ), - ( - "results_dir", - str, - "results", - {"help_string": "directory to store results in", "argstr": "--rn={results_dir}"}, - ), -] -FILMGLS_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "results_dir", - specs.Directory, - { - "help_string": "Directory storing model estimation output", - "callable": FILMGLS_output, - }, - ), - ( - "param_estimates", - specs.MultiOutputFile, - { - "help_string": "Parameter estimates for each column of the design matrix", - "callable": FILMGLS_output, - }, - ), - ( - "residual4d", - specs.File, - { - "help_string": "Model fit residual mean-squared error for each time point", - "callable": FILMGLS_output, - }, - ), - ( - "dof_file", - specs.File, - {"help_string": "degrees of freedom", "callable": FILMGLS_output}, - ), - ( - "sigmasquareds", - specs.File, - { - "help_string": "summary of residuals, See Woolrich, et. al., 2001", - "callable": FILMGLS_output, - }, - ), - ( - "thresholdac", - specs.File, - { - "help_string": "The FILM autocorrelation parameters", - "callable": FILMGLS_output, - }, - ), - ( - "logfile", - specs.File, - {"help_string": "FILM run logfile", "callable": FILMGLS_output}, - ), - ( - "copes", - specs.MultiOutputFile, - { - "help_string": "Contrast estimates for each contrast", - "requires": ["tcon_file"], - "callable": FILMGLS_output, - }, - ), - ( - "varcopes", - specs.MultiOutputFile, - { - "help_string": "Variance estimates for each contrast", - "requires": ["tcon_file"], - "callable": FILMGLS_output, - }, - ), - ( - "zstats", - specs.MultiOutputFile, - { - "help_string": "z-stat file for each contrast", - "requires": ["tcon_file"], - "callable": FILMGLS_output, - }, - ), - ( - "tstats", - specs.MultiOutputFile, - { - "help_string": "t-stat file for each contrast", - "requires": ["tcon_file"], - "callable": FILMGLS_output, - }, - ), - ( - "fstats", - specs.MultiOutputFile, - { - "help_string": "f-stat file for each contrast", - "requires": ["fcon_file"], - "callable": FILMGLS_output, - }, - ), - ( - "zfstats", - specs.MultiOutputFile, - { - "help_string": "z-stat file for each F contrast", - "requires": ["fcon_file"], - "callable": FILMGLS_output, - }, - ), -] -FILMGLS_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class FILMGLS(ShellCommandTask): - """ - Example - ------- - >>> task = FILMGLS() - >>> task.inputs.in_file = "test_film_gls.nii.gz" - >>> task.inputs.design_file = "design_film_gls.mat" - >>> task.inputs.threshold = 10 - >>> task.inputs.results_dir = "stats" - >>> task.cmdline - 'film_gls --rn=stats --in=test_film_gls.nii.gz --pd=design_film_gls.mat --thr=10' - """ - - input_spec = FILMGLS_input_spec - output_spec = FILMGLS_output_spec - executable = "film_gls" diff --git a/pydra/tasks/fsl/model/flameo.py b/pydra/tasks/fsl/model/flameo.py deleted file mode 100644 index f5bb54d..0000000 --- a/pydra/tasks/fsl/model/flameo.py +++ /dev/null @@ -1,336 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def FLAMEO_output(field, inputs): - import os, glob, attr - - def human_order_sorted(l): - """ - Sorts string in human order (i.e. 'stat10' will go after 'stat2') - """ - - def atoi(text): - return int(text) if text.isdigit() else text - - def natural_keys(text): - import re - - if isinstance(text, tuple): - text = text[0] - return [atoi(c) for c in re.split(r"(\d+)", text)] - - return sorted(l, key=natural_keys) - - pth = inputs.log_dir - name = field.name - - if name == "pes": - pes = human_order_sorted(glob.glob(os.path.join(pth, "pe[0-9]*.*"))) - if len(pes) >= 1: - return pes - elif name == "res4d": - res4d = human_order_sorted(glob.glob(os.path.join(pth, "res4d.*"))) - if len(res4d) == 1: - return res4d[0] - elif name == "copes": - copes = human_order_sorted(glob.glob(os.path.join(pth, "cope[0-9]*.*"))) - if len(copes) >= 1: - return copes - elif name == "var_copes": - var_copes = human_order_sorted(glob.glob(os.path.join(pth, "varcope[0-9]*.*"))) - if len(var_copes) >= 1: - return var_copes - elif name == "zstats": - zstats = human_order_sorted(glob.glob(os.path.join(pth, "zstat[0-9]*.*"))) - if len(zstats) >= 1: - return zstats - elif name == "tstats": - tstats = human_order_sorted(glob.glob(os.path.join(pth, "tstat[0-9]*.*"))) - if len(tstats) >= 1: - return tstats - elif name == "mrefvars": - mrefs = human_order_sorted(glob.glob(os.path.join(pth, "mean_random_effects_var[0-9]*.*"))) - if len(mrefs) >= 1: - return mrefs - elif name == "tdof": - tdof = human_order_sorted(glob.glob(os.path.join(pth, "tdof_t[0-9]*.*"))) - if len(tdof) >= 1: - return tdof - elif name == "weights": - weights = human_order_sorted(glob.glob(os.path.join(pth, "weights[0-9]*.*"))) - if len(weights) >= 1: - return weights - elif name == "stats_dir": - return pth - elif inputs.f_con_file not in [None, attr.NOTHING]: - if name == "zfstats": - zfstats = human_order_sorted(glob.glob(os.path.join(pth, "zfstat[0-9]*.*"))) - if len(zfstats) >= 1: - return zfstats - elif name == "fstats": - fstats = human_order_sorted(glob.glob(os.path.join(pth, "fstat[0-9]*.*"))) - if len(fstats) >= 1: - return fstats - else: - raise Exception( - f"this function should be run only for pes, res4d, copes, var_copes, zfstats," - f"fstats, zstats, tstats, mrefs, tdof, weights, or stats_dir, not for {name}" - ) - - -input_fields = [ - ( - "cope_file", - specs.File, - { - "help_string": "cope regressor data file", - "argstr": "--copefile={cope_file}", - "mandatory": True, - }, - ), - ( - "var_cope_file", - specs.File, - { - "help_string": "varcope weightings data file", - "argstr": "--varcopefile={var_cope_file}", - }, - ), - ( - "dof_var_cope_file", - specs.File, - { - "help_string": "dof data file for varcope data", - "argstr": "--dofvarcopefile={dof_var_cope_file}", - }, - ), - ( - "mask_file", - specs.File, - { - "help_string": "mask file", - "argstr": "--maskfile={mask_file}", - "mandatory": True, - }, - ), - ( - "design_file", - specs.File, - { - "help_string": "design matrix file", - "argstr": "--designfile={design_file}", - "mandatory": True, - }, - ), - ( - "t_con_file", - specs.File, - { - "help_string": "ascii matrix specifying t-contrasts", - "argstr": "--tcontrastsfile={t_con_file}", - "mandatory": True, - }, - ), - ( - "f_con_file", - specs.File, - { - "help_string": "ascii matrix specifying f-contrasts", - "argstr": "--fcontrastsfile={f_con_file}", - }, - ), - ( - "cov_split_file", - specs.File, - { - "help_string": "ascii matrix specifying the groups the covariance is split into", - "argstr": "--covsplitfile={cov_split_file}", - "mandatory": True, - }, - ), - ( - "run_mode", - ty.Any, - { - "help_string": "inference to perform", - "argstr": "--runmode={run_mode}", - "mandatory": True, - }, - ), - ( - "n_jumps", - int, - {"help_string": "number of jumps made by mcmc", "argstr": "--njumps={n_jumps}"}, - ), - ( - "burnin", - int, - { - "help_string": "number of jumps at start of mcmc to be discarded", - "argstr": "--burnin={burnin}", - }, - ), - ( - "sample_every", - int, - { - "help_string": "number of jumps for each sample", - "argstr": "--sampleevery={sample_every}", - }, - ), - ("fix_mean", bool, {"help_string": "fix mean for tfit", "argstr": "--fixmean"}), - ( - "infer_outliers", - bool, - {"help_string": "infer outliers - not for fe", "argstr": "--inferoutliers"}, - ), - ( - "no_pe_outputs", - bool, - {"help_string": "do not output pe files", "argstr": "--nopeoutput"}, - ), - ( - "sigma_dofs", - int, - { - "help_string": "sigma (in mm) to use for Gaussian smoothing the DOFs in FLAME 2. Default is 1mm, -1 indicates no smoothing", - "argstr": "--sigma_dofs={sigma_dofs}", - }, - ), - ( - "outlier_iter", - int, - { - "help_string": "Number of max iterations to use when inferring outliers. Default is 12.", - "argstr": "--ioni={outlier_iter}", - }, - ), - ("log_dir", ty.Any, "stats", {"help_string": "", "argstr": "--ld={log_dir}"}), -] -FLAMEO_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "pes", - specs.MultiOutputFile, - { - "help_string": "Parameter estimates for each column of the design matrix for each voxel", - "callable": FLAMEO_output, - }, - ), - ( - "res4d", - specs.MultiOutputFile, - { - "help_string": "Model fit residual mean-squared error for each time point", - "callable": FLAMEO_output, - }, - ), - ( - "copes", - specs.MultiOutputFile, - { - "help_string": "Contrast estimates for each contrast", - "callable": FLAMEO_output, - }, - ), - ( - "var_copes", - specs.MultiOutputFile, - { - "help_string": "Variance estimates for each contrast", - "callable": FLAMEO_output, - }, - ), - ( - "zstats", - specs.MultiOutputFile, - { - "help_string": "z-stat file for each contrast", - "requires": ["t_con_file"], - "callable": FLAMEO_output, - }, - ), - ( - "tstats", - specs.MultiOutputFile, - { - "help_string": "t-stat file for each contrast", - "requires": ["t_con_file"], - "callable": FLAMEO_output, - }, - ), - ( - "zfstats", - specs.MultiOutputFile, - { - "help_string": "z stat file for each f contrast", - "requires": ["f_con_file"], - "callable": FLAMEO_output, - }, - ), - ( - "fstats", - specs.MultiOutputFile, - { - "help_string": "f-stat file for each contrast", - "requires": ["f_con_file"], - "callable": FLAMEO_output, - }, - ), - ( - "mrefvars", - specs.MultiOutputFile, - { - "help_string": "mean random effect variances for each contrast", - "callable": FLAMEO_output, - }, - ), - ( - "tdof", - specs.MultiOutputFile, - { - "help_string": "temporal dof file for each contrast", - "callable": FLAMEO_output, - }, - ), - ( - "weights", - specs.MultiOutputFile, - {"help_string": "weights file for each contrast", "callable": FLAMEO_output}, - ), - ( - "stats_dir", - specs.Directory, - { - "help_string": "directory storing model estimation output", - "callable": FLAMEO_output, - }, - ), -] -FLAMEO_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class FLAMEO(ShellCommandTask): - """ - Example - ------- - >>> task = FLAMEO() - >>> task.inputs.cope_file = "cope_merged.nii.gz" - >>> task.inputs.var_cope_file = "varcope_merged.nii.gz" - >>> task.inputs.cov_split_file = "design.grp" - >>> task.inputs.design_file = "design.mat" - >>> task.inputs.t_con_file = "design.con" - >>> task.inputs.mask_file = "mask.nii.gz" - >>> task.inputs.run_mode = "fe" - >>> task.cmdline - 'flameo --copefile=cope_merged.nii.gz --varcopefile=varcope_merged.nii.gz --maskfile=mask.nii.gz --designfile=design.mat --tcontrastsfile=design.con --covsplitfile=design.grp --runmode=fe --ld=stats' - """ - - input_spec = FLAMEO_input_spec - output_spec = FLAMEO_output_spec - executable = "flameo" diff --git a/pydra/tasks/fsl/model/glm.py b/pydra/tasks/fsl/model/glm.py deleted file mode 100644 index 7d42391..0000000 --- a/pydra/tasks/fsl/model/glm.py +++ /dev/null @@ -1,194 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input file name (text matrix or 3D/4D image file)", - "argstr": "-i {in_file}", - "mandatory": True, - "position": 1, - }, - ), - ( - "out_file", - str, - { - "help_string": "filename for GLM parameter estimates (GLM betas)", - "argstr": "-o {out_file}", - "position": 3, - "output_file_template": "{in_file}_glm", - }, - ), - ( - "design", - specs.File, - { - "help_string": "file name of the GLM design matrix (text time courses for temporal regression or an image file for spatial regression)", - "argstr": "-d {design}", - "mandatory": True, - "position": 2, - }, - ), - ( - "contrasts", - specs.File, - {"help_string": "matrix of t-statics contrasts", "argstr": "-c {contrasts}"}, - ), - ( - "mask", - specs.File, - { - "help_string": "mask image file name if input is image", - "argstr": "-m {mask}", - }, - ), - ( - "dof", - int, - {"help_string": "set degrees of freedom explicitly", "argstr": "--dof={dof}"}, - ), - ( - "des_norm", - bool, - { - "help_string": "switch on normalization of the design matrix columns to unit std deviation", - "argstr": "--des_norm", - }, - ), - ( - "dat_norm", - bool, - { - "help_string": "switch on normalization of the data time series to unit std deviation", - "argstr": "--dat_norm", - }, - ), - ( - "var_norm", - bool, - { - "help_string": "perform MELODIC variance-normalisation on data", - "argstr": "--vn", - }, - ), - ( - "demean", - bool, - { - "help_string": "switch on demeaining of design and data", - "argstr": "--demean", - }, - ), - ( - "out_cope", - str, - { - "help_string": "output file name for COPE (either as txt or image", - "argstr": "--out_cope={out_cope}", - }, - ), - ( - "out_z_name", - str, - { - "help_string": "output file name for Z-stats (either as txt or image", - "argstr": "--out_z={out_z_name}", - }, - ), - ( - "out_t_name", - str, - { - "help_string": "output file name for t-stats (either as txt or image", - "argstr": "--out_t={out_t_name}", - }, - ), - ( - "out_p_name", - str, - { - "help_string": "output file name for p-values of Z-stats (either as text file or image)", - "argstr": "--out_p={out_p_name}", - }, - ), - ( - "out_f_name", - str, - { - "help_string": "output file name for F-value of full model fit", - "argstr": "--out_f={out_f_name}", - }, - ), - ( - "out_pf_name", - str, - { - "help_string": "output file name for p-value for full model fit", - "argstr": "--out_pf={out_pf_name}", - }, - ), - ( - "out_res_name", - str, - { - "help_string": "output file name for residuals", - "argstr": "--out_res={out_res_name}", - }, - ), - ( - "out_varcb_name", - str, - { - "help_string": "output file name for variance of COPEs", - "argstr": "--out_varcb={out_varcb_name}", - }, - ), - ( - "out_sigsq_name", - str, - { - "help_string": "output file name for residual noise variance sigma-square", - "argstr": "--out_sigsq={out_sigsq_name}", - }, - ), - ( - "out_data_name", - str, - { - "help_string": "output file name for pre-processed data", - "argstr": "--out_data={out_data_name}", - }, - ), - ( - "out_vnscales_name", - str, - { - "help_string": "output file name for scaling factors for variance normalisation", - "argstr": "--out_vnscales={out_vnscales_name}", - }, - ), -] -GLM_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -GLM_output_spec = specs.SpecInfo(name="Output", fields=output_fields, bases=(specs.ShellOutSpec,)) - - -class GLM(ShellCommandTask): - """ - Example - ------- - >>> task = GLM() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.design = "confounds_regressors.tsv" - >>> task.cmdline # doctest: +SKIP - 'fsl_glm -i test.nii.gz -d confounds_regressors.tsv' - """ - - input_spec = GLM_input_spec - output_spec = GLM_output_spec - executable = "fsl_glm" diff --git a/pydra/tasks/fsl/model/melodic.py b/pydra/tasks/fsl/model/melodic.py deleted file mode 100644 index 5cecdb3..0000000 --- a/pydra/tasks/fsl/model/melodic.py +++ /dev/null @@ -1,356 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def MELODIC_output(field, inputs): - import os, attr - - name = field.name - if name == "out_dir": - if inputs.out_dir not in [None, attr.NOTHING]: - outputs = inputs.out_dir - else: - outputs = os.getcwd() - elif name == "report_dir": - if inputs.report not in [None, attr.NOTHING]: - if inputs.out_dir not in [None, attr.NOTHING]: - out_dir = inputs.out_dir - else: - out_dir = os.getcwd() - outputs = os.path.join(out_dir, "report") - return outputs - - -input_fields = [ - ( - "in_files", - specs.MultiInputFile, - { - "help_string": "input file names (either single file name or a list)", - "argstr": "-i {in_files}", - "mandatory": True, - "position": 0, - "sep": ",", - }, - ), - ( - "out_dir", - ty.Any, - {"help_string": "output directory name", "argstr": "-o {out_dir}"}, - ), - ( - "mask", - specs.File, - {"help_string": "file name of mask for thresholding", "argstr": "-m {mask}"}, - ), - ("no_mask", bool, {"help_string": "switch off masking", "argstr": "--nomask"}), - ( - "update_mask", - bool, - {"help_string": "switch off mask updating", "argstr": "--update_mask"}, - ), - ("no_bet", bool, {"help_string": "switch off BET", "argstr": "--nobet"}), - ( - "bg_threshold", - float, - { - "help_string": "brain/non-brain threshold used to mask non-brain voxels, as a percentage (only if --nobet selected)", - "argstr": "--bgthreshold={bg_threshold}", - }, - ), - ( - "dim", - int, - { - "help_string": "dimensionality reduction into #num dimensions (default: automatic estimation)", - "argstr": "-d {dim}", - }, - ), - ( - "dim_est", - str, - { - "help_string": "use specific dim. estimation technique: lap, bic, mdl, aic, mean (default: lap)", - "argstr": "--dimest={dim_est}", - }, - ), - ( - "sep_whiten", - bool, - {"help_string": "switch on separate whitening", "argstr": "--sep_whiten"}, - ), - ( - "sep_vn", - bool, - { - "help_string": "switch off joined variance normalization", - "argstr": "--sep_vn", - }, - ), - ( - "migp", - bool, - {"help_string": "switch on MIGP data reduction", "argstr": "--migp"}, - ), - ( - "migpN", - int, - {"help_string": "number of internal Eigenmaps", "argstr": "--migpN {migpN}"}, - ), - ( - "migp_shuffle", - bool, - { - "help_string": "randomise MIGP file order (default: TRUE)", - "argstr": "--migp_shuffle", - }, - ), - ( - "migp_factor", - int, - { - "help_string": "Internal Factor of mem-threshold relative to number of Eigenmaps (default: 2)", - "argstr": "--migp_factor {migp_factor}", - }, - ), - ( - "num_ICs", - int, - { - "help_string": "number of IC's to extract (for deflation approach)", - "argstr": "-n {num_ICs}", - }, - ), - ( - "approach", - str, - { - "help_string": "approach for decomposition, 2D: defl, symm (default), 3D: tica (default), concat", - "argstr": "-a {approach}", - }, - ), - ( - "non_linearity", - str, - { - "help_string": "nonlinearity: gauss, tanh, pow3, pow4", - "argstr": "--nl={non_linearity}", - }, - ), - ( - "var_norm", - bool, - {"help_string": "switch off variance normalization", "argstr": "--vn"}, - ), - ( - "pbsc", - bool, - { - "help_string": "switch off conversion to percent BOLD signal change", - "argstr": "--pbsc", - }, - ), - ( - "cov_weight", - float, - { - "help_string": "voxel-wise weights for the covariance matrix (e.g. segmentation information)", - "argstr": "--covarweight={cov_weight}", - }, - ), - ( - "epsilon", - float, - {"help_string": "minimum error change", "argstr": "--eps={epsilon}"}, - ), - ( - "epsilonS", - float, - { - "help_string": "minimum error change for rank-1 approximation in TICA", - "argstr": "--epsS={epsilonS}", - }, - ), - ( - "maxit", - int, - { - "help_string": "maximum number of iterations before restart", - "argstr": "--maxit={maxit}", - }, - ), - ( - "max_restart", - int, - { - "help_string": "maximum number of restarts", - "argstr": "--maxrestart={max_restart}", - }, - ), - ( - "mm_thresh", - float, - { - "help_string": "threshold for Mixture Model based inference", - "argstr": "--mmthresh={mm_thresh}", - }, - ), - ( - "no_mm", - bool, - {"help_string": "switch off mixture modelling on IC maps", "argstr": "--no_mm"}, - ), - ( - "ICs", - specs.File, - { - "help_string": "filename of the IC components file for mixture modelling", - "argstr": "--ICs={ICs}", - }, - ), - ( - "mix", - specs.File, - { - "help_string": "mixing matrix for mixture modelling / filtering", - "argstr": "--mix={mix}", - }, - ), - ( - "smode", - specs.File, - { - "help_string": "matrix of session modes for report generation", - "argstr": "--smode={smode}", - }, - ), - ( - "rem_cmp", - list, - {"help_string": "component numbers to remove", "argstr": "-f {rem_cmp}"}, - ), - ( - "report", - bool, - {"help_string": "generate Melodic web report", "argstr": "--report"}, - ), - ( - "bg_image", - specs.File, - { - "help_string": "specify background image for report (default: mean image)", - "argstr": "--bgimage={bg_image}", - }, - ), - ("tr_sec", float, {"help_string": "TR in seconds", "argstr": "--tr={tr_sec}"}), - ( - "log_power", - bool, - { - "help_string": "calculate log of power for frequency spectrum", - "argstr": "--logPower", - }, - ), - ( - "t_des", - specs.File, - {"help_string": "design matrix across time-domain", "argstr": "--Tdes={t_des}"}, - ), - ( - "t_con", - specs.File, - { - "help_string": "t-contrast matrix across time-domain", - "argstr": "--Tcon={t_con}", - }, - ), - ( - "s_des", - specs.File, - { - "help_string": "design matrix across subject-domain", - "argstr": "--Sdes={s_des}", - }, - ), - ( - "s_con", - specs.File, - { - "help_string": "t-contrast matrix across subject-domain", - "argstr": "--Scon={s_con}", - }, - ), - ("out_all", bool, {"help_string": "output everything", "argstr": "--Oall"}), - ( - "out_unmix", - bool, - {"help_string": "output unmixing matrix", "argstr": "--Ounmix"}, - ), - ( - "out_stats", - bool, - { - "help_string": "output thresholded maps and probability maps", - "argstr": "--Ostats", - }, - ), - ("out_pca", bool, {"help_string": "output PCA results", "argstr": "--Opca"}), - ( - "out_white", - bool, - {"help_string": "output whitening/dewhitening matrices", "argstr": "--Owhite"}, - ), - ("out_orig", bool, {"help_string": "output the original ICs", "argstr": "--Oorig"}), - ("out_mean", bool, {"help_string": "output mean volume", "argstr": "--Omean"}), - ( - "report_maps", - str, - { - "help_string": "control string for spatial map images (see slicer)", - "argstr": "--report_maps={report_maps}", - }, - ), - ( - "remove_deriv", - bool, - { - "help_string": "removes every second entry in paradigm file (EV derivatives)", - "argstr": "--remove_deriv", - }, - ), -] -MELODIC_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ("out_dir", specs.Directory, {"callable": MELODIC_output}), - ("report_dir", specs.Directory, {"callable": MELODIC_output}), -] -MELODIC_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class MELODIC(ShellCommandTask): - """ - Example - ------- - >>> task = MELODIC() - >>> task.inputs.approach = "tica" - >>> task.inputs.in_files = ['test.nii', 'test2.nii', 'test3.nii'] - >>> task.inputs.no_bet = True - >>> task.inputs.bg_threshold = 10 - >>> task.inputs.tr_sec = 1.5 - >>> task.inputs.out_stats = True - >>> task.inputs.t_des = "timeDesign.mat" - >>> task.inputs.t_con = "timeDesign.con" - >>> task.inputs.s_des = "subjectDesign.mat" - >>> task.inputs.s_con = "subjectDesign.con" - >>> task.inputs.out_dir = "groupICA.out" - >>> task.cmdline - 'melodic -i test.nii,test2.nii,test3.nii -o groupICA.out --nobet --bgthreshold=10 -a tica --tr=1.5 --Tdes=timeDesign.mat --Tcon=timeDesign.con --Sdes=subjectDesign.mat --Scon=subjectDesign.con --Ostats' - """ - - input_spec = MELODIC_input_spec - output_spec = MELODIC_output_spec - executable = "melodic" diff --git a/pydra/tasks/fsl/model/tests/__init__.py b/pydra/tasks/fsl/model/tests/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/model/tests/test_run_cluster.py b/pydra/tasks/fsl/model/tests/test_run_cluster.py deleted file mode 100644 index 5543fdc..0000000 --- a/pydra/tasks/fsl/model/tests/test_run_cluster.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..cluster import Cluster - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - { - "in_file": "zstat1.nii.gz", - "threshold": 2.3, - "use_mm": True, - "out_index_file": True, - }, - [ - "out_index_file", - "out_localmax_txt_file", - "out_localmax_vol_file", - "out_threshold_file", - "out_max_file", - "out_mean_file", - "out_pval_file", - "out_size_file", - "out_threshold_file", - ], - ) - ], -) -def test_Cluster(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Cluster(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Cluster(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/model/tests/test_run_feat.py b/pydra/tasks/fsl/model/tests/test_run_feat.py deleted file mode 100644 index abcf1e5..0000000 --- a/pydra/tasks/fsl/model/tests/test_run_feat.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..feat import FEAT - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_FEAT(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FEAT(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FEAT(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FEAT_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FEAT(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FEAT(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/model/tests/test_run_featmodel.py b/pydra/tasks/fsl/model/tests/test_run_featmodel.py deleted file mode 100644 index 1ec43ca..0000000 --- a/pydra/tasks/fsl/model/tests/test_run_featmodel.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..featmodel import FEATModel - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_FEATModel(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FEATModel(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FEATModel(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FEATModel_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FEATModel(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FEATModel(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/model/tests/test_run_filmgls.py b/pydra/tasks/fsl/model/tests/test_run_filmgls.py deleted file mode 100644 index ed5d1ff..0000000 --- a/pydra/tasks/fsl/model/tests/test_run_filmgls.py +++ /dev/null @@ -1,62 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..filmgls import FILMGLS - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - { - "in_file": "test_film_gls.nii.gz", - "design_file": "design_film_gls.mat", - "threshold": 10, - "results_dir": "stats", - }, - [ - "dof_file", - "logfile", - "param_estimates", - "residual4d", - "results_dir", - "sigmasquareds", - "thresholdac", - ], - ) - ], -) -def test_FILMGLS(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FILMGLS(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FILMGLS(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/model/tests/test_run_flameo.py b/pydra/tasks/fsl/model/tests/test_run_flameo.py deleted file mode 100644 index c7e11d9..0000000 --- a/pydra/tasks/fsl/model/tests/test_run_flameo.py +++ /dev/null @@ -1,69 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..flameo import FLAMEO - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - { - "cope_file": "cope_merged.nii.gz", - "var_cope_file": "varcope_merged.nii.gz", - "cov_split_file": "design.grp", - "design_file": "design.mat", - "t_con_file": "design.con", - "mask_file": "mask.nii.gz", - "run_mode": "fe", - "log_dir": "stats", - }, - [ - "copes", - "var_copes", - "mrefvars", - "pes", - "res4d", - "tdof", - "weights", - "tstats", - "zstats", - "stats_dir", - ], - ) - ], -) -def test_FLAMEO(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FLAMEO(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FLAMEO(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/model/tests/test_run_glm.py b/pydra/tasks/fsl/model/tests/test_run_glm.py deleted file mode 100644 index 49b585e..0000000 --- a/pydra/tasks/fsl/model/tests/test_run_glm.py +++ /dev/null @@ -1,44 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..glm import GLM - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [({"in_file": "test.nii.gz", "design": "confounds_regressors.tsv"}, ["out_file"])], -) -def test_GLM(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = GLM(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = GLM(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/model/tests/test_run_melodic.py b/pydra/tasks/fsl/model/tests/test_run_melodic.py deleted file mode 100644 index a5b333c..0000000 --- a/pydra/tasks/fsl/model/tests/test_run_melodic.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..melodic import MELODIC - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_MELODIC(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = MELODIC(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = MELODIC(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_MELODIC_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = MELODIC(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = MELODIC(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/model/tests/test_spec_cluster.py b/pydra/tasks/fsl/model/tests/test_spec_cluster.py deleted file mode 100644 index 2ed7387..0000000 --- a/pydra/tasks/fsl/model/tests/test_spec_cluster.py +++ /dev/null @@ -1,51 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..cluster import Cluster - - -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - {"in_file": "zstat1.nii.gz", "threshold": 2.3, "use_mm": True, "out_index_file": True}, - [ - "out_index_file", - "out_localmax_txt_file", - "out_localmax_vol_file", - "out_threshold_file", - "out_max_file", - "out_mean_file", - "out_pval_file", - "out_size_file", - "out_threshold_file", - ], - ) - ], -) -def test_Cluster(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Cluster(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Cluster(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/model/tests/test_spec_feat.py b/pydra/tasks/fsl/model/tests/test_spec_feat.py deleted file mode 100644 index 403f6e2..0000000 --- a/pydra/tasks/fsl/model/tests/test_spec_feat.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..feat import FEAT - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_FEAT(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FEAT(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FEAT(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FEAT_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FEAT(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FEAT(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/model/tests/test_spec_featmodel.py b/pydra/tasks/fsl/model/tests/test_spec_featmodel.py deleted file mode 100644 index aead2e6..0000000 --- a/pydra/tasks/fsl/model/tests/test_spec_featmodel.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..featmodel import FEATModel - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_FEATModel(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FEATModel(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FEATModel(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FEATModel_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FEATModel(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FEATModel(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/model/tests/test_spec_filmgls.py b/pydra/tasks/fsl/model/tests/test_spec_filmgls.py deleted file mode 100644 index 08f56db..0000000 --- a/pydra/tasks/fsl/model/tests/test_spec_filmgls.py +++ /dev/null @@ -1,54 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..filmgls import FILMGLS - - -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - { - "in_file": "test_film_gls.nii.gz", - "design_file": "design_film_gls.mat", - "threshold": 10, - "results_dir": "stats", - }, - [ - "dof_file", - "logfile", - "param_estimates", - "residual4d", - "results_dir", - "sigmasquareds", - "thresholdac", - ], - ) - ], -) -def test_FILMGLS(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FILMGLS(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FILMGLS(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/model/tests/test_spec_flameo.py b/pydra/tasks/fsl/model/tests/test_spec_flameo.py deleted file mode 100644 index 0186889..0000000 --- a/pydra/tasks/fsl/model/tests/test_spec_flameo.py +++ /dev/null @@ -1,61 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..flameo import FLAMEO - - -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - { - "cope_file": "cope_merged.nii.gz", - "var_cope_file": "varcope_merged.nii.gz", - "cov_split_file": "design.grp", - "design_file": "design.mat", - "t_con_file": "design.con", - "mask_file": "mask.nii.gz", - "run_mode": "fe", - "log_dir": "stats", - }, - [ - "copes", - "var_copes", - "mrefvars", - "pes", - "res4d", - "tdof", - "weights", - "tstats", - "zstats", - "stats_dir", - ], - ) - ], -) -def test_FLAMEO(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FLAMEO(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FLAMEO(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/model/tests/test_spec_glm.py b/pydra/tasks/fsl/model/tests/test_spec_glm.py deleted file mode 100644 index 6ac9d78..0000000 --- a/pydra/tasks/fsl/model/tests/test_spec_glm.py +++ /dev/null @@ -1,36 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..glm import GLM - - -@pytest.mark.parametrize( - "inputs, outputs", - [({"in_file": "test.nii.gz", "design": "confounds_regressors.tsv"}, ["out_file"])], -) -def test_GLM(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = GLM(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = GLM(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/model/tests/test_spec_melodic.py b/pydra/tasks/fsl/model/tests/test_spec_melodic.py deleted file mode 100644 index e6aa73a..0000000 --- a/pydra/tasks/fsl/model/tests/test_spec_melodic.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..melodic import MELODIC - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_MELODIC(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = MELODIC(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = MELODIC(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_MELODIC_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = MELODIC(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = MELODIC(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/__init__.py b/pydra/tasks/fsl/preprocess/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/preprocess/applywarp.py b/pydra/tasks/fsl/preprocess/applywarp.py deleted file mode 100644 index 6480289..0000000 --- a/pydra/tasks/fsl/preprocess/applywarp.py +++ /dev/null @@ -1,129 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "image to be warped", - "argstr": "--in={in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "out_file", - str, - { - "help_string": "output filename", - "argstr": "--out={out_file}", - "position": 2, - "output_file_template": "{in_file}_warp", - }, - ), - ( - "ref_file", - specs.File, - { - "help_string": "reference image", - "argstr": "--ref={ref_file}", - "mandatory": True, - "position": 1, - }, - ), - ( - "field_file", - specs.File, - {"help_string": "file containing warp field", "argstr": "--warp={field_file}"}, - ), - ( - "abswarp", - bool, - { - "help_string": "treat warp field as absolute: x' = w(x)", - "argstr": "--abs", - "xor": ["relwarp"], - }, - ), - ( - "relwarp", - bool, - { - "help_string": "treat warp field as relative: x' = x + w(x)", - "argstr": "--rel", - "position": -1, - "xor": ["abswarp"], - }, - ), - ( - "datatype", - ty.Any, - { - "help_string": "Force output data type [char short int float double].", - "argstr": "--datatype={datatype}", - }, - ), - ( - "supersample", - bool, - { - "help_string": "intermediary supersampling of output, default is off", - "argstr": "--super", - }, - ), - ( - "superlevel", - ty.Any, - { - "help_string": "level of intermediary supersampling, a for 'automatic' or integer level. Default = 2", - "argstr": "--superlevel={superlevel}", - }, - ), - ( - "premat", - specs.File, - { - "help_string": "filename for pre-transform (affine matrix)", - "argstr": "--premat={premat}", - }, - ), - ( - "postmat", - specs.File, - { - "help_string": "filename for post-transform (affine matrix)", - "argstr": "--postmat={postmat}", - }, - ), - ( - "mask_file", - specs.File, - { - "help_string": "filename for mask image (in reference space)", - "argstr": "--mask={mask_file}", - }, - ), - ( - "interp", - ty.Any, - { - "help_string": "interpolation method", - "argstr": "--interp={interp}", - "position": -2, - }, - ), -] -ApplyWarp_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -ApplyWarp_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class ApplyWarp(ShellCommandTask): - input_spec = ApplyWarp_input_spec - output_spec = ApplyWarp_output_spec - executable = "applywarp" diff --git a/pydra/tasks/fsl/preprocess/bet.py b/pydra/tasks/fsl/preprocess/bet.py deleted file mode 100644 index 2674cc2..0000000 --- a/pydra/tasks/fsl/preprocess/bet.py +++ /dev/null @@ -1,306 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input file to skull strip", - "argstr": "{in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "out_file", - str, - { - "help_string": "name of output skull stripped image", - "argstr": "{out_file}", - "position": 1, - "output_file_template": "{in_file}_brain", - }, - ), - ("outline", bool, {"help_string": "create surface outline image", "argstr": "-o"}), - ("mask", bool, {"help_string": "create binary mask image", "argstr": "-m"}), - ("skull", bool, {"help_string": "create skull image", "argstr": "-s"}), - ( - "no_output", - bool, - {"help_string": "Don't generate segmented output", "argstr": "-n"}, - ), - ( - "frac", - float, - {"help_string": "fractional intensity threshold", "argstr": "-f {frac:.2f}"}, - ), - ( - "vertical_gradient", - float, - { - "help_string": "vertical gradient in fractional intensity threshold (-1, 1)", - "argstr": "-g {vertical_gradient:.2f}", - }, - ), - ("radius", int, {"help_string": "head radius", "argstr": "-r {radius}"}), - ( - "center", - list, - {"help_string": "center of gravity in voxels", "argstr": "-c {center}"}, - ), - ( - "threshold", - bool, - { - "help_string": "apply thresholding to segmented brain image and mask", - "argstr": "-t", - }, - ), - ( - "mesh", - bool, - {"help_string": "generate a vtk mesh brain surface", "argstr": "-e"}, - ), - ( - "robust", - bool, - { - "help_string": "robust brain centre estimation (iterates BET several times)", - "argstr": "-R", - "xor": ( - "functional", - "reduce_bias", - "robust", - "padding", - "remove_eyes", - "surfaces", - "t2_guided", - ), - }, - ), - ( - "padding", - bool, - { - "help_string": "improve BET if FOV is very small in Z (by temporarily padding end slices)", - "argstr": "-Z", - "xor": ( - "functional", - "reduce_bias", - "robust", - "padding", - "remove_eyes", - "surfaces", - "t2_guided", - ), - }, - ), - ( - "remove_eyes", - bool, - { - "help_string": "eye & optic nerve cleanup (can be useful in SIENA)", - "argstr": "-S", - "xor": ( - "functional", - "reduce_bias", - "robust", - "padding", - "remove_eyes", - "surfaces", - "t2_guided", - ), - }, - ), - ( - "surfaces", - bool, - { - "help_string": "run bet2 and then betsurf to get additional skull and scalp surfaces (includes registrations)", - "argstr": "-A", - "xor": ( - "functional", - "reduce_bias", - "robust", - "padding", - "remove_eyes", - "surfaces", - "t2_guided", - ), - }, - ), - ( - "t2_guided", - str, - { - "help_string": "as with creating surfaces, when also feeding in non-brain-extracted T2 (includes registrations)", - "argstr": "-A2 {t2_guided}", - "xor": ( - "functional", - "reduce_bias", - "robust", - "padding", - "remove_eyes", - "surfaces", - "t2_guided", - ), - }, - ), - ( - "functional", - bool, - { - "help_string": "apply to 4D fMRI data", - "argstr": "-F", - "xor": ( - "functional", - "reduce_bias", - "robust", - "padding", - "remove_eyes", - "surfaces", - "t2_guided", - ), - }, - ), - ( - "reduce_bias", - bool, - { - "help_string": "bias field and neck cleanup", - "argstr": "-B", - "xor": ( - "functional", - "reduce_bias", - "robust", - "padding", - "remove_eyes", - "surfaces", - "t2_guided", - ), - }, - ), -] -BET_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "mask_file", - specs.File, - { - "help_string": "path/name of binary brain mask (if generated)", - "requires": [[("mask", True)], [("reduce_bias", True)]], - "output_file_template": "{out_file}_mask", - }, - ), - ( - "outline_file", - specs.File, - { - "help_string": "path/name of outline file (if generated)", - "requires": [("outline", True)], - "output_file_template": "{out_file}_overlay", - }, - ), - ( - "meshfile", - specs.File, - { - "help_string": "path/name of vtk mesh file (if generated)", - "requires": [[("mesh", True)], [("surfaces", True)]], - "output_file_template": "{out_file}_mesh.vtk", - }, - ), - ( - "inskull_mask_file", - specs.File, - { - "help_string": "path/name of inskull mask (if generated)", - "requires": [("surfaces", True)], - "output_file_template": "{out_file}_inskull_mask", - }, - ), - ( - "inskull_mesh_file", - specs.File, - { - "help_string": "path/name of inskull mesh outline (if generated)", - "requires": [("surfaces", True)], - "output_file_template": "{out_file}_inskull_mesh", - }, - ), - ( - "outskull_mask_file", - specs.File, - { - "help_string": "path/name of outskull mask (if generated)", - "requires": [("surfaces", True)], - "output_file_template": "{out_file}_outskull_mask", - }, - ), - ( - "outskull_mesh_file", - specs.File, - { - "help_string": "path/name of outskull mesh outline (if generated)", - "requires": [("surfaces", True)], - "output_file_template": "{out_file}_outskull_mesh", - }, - ), - ( - "outskin_mask_file", - specs.File, - { - "help_string": "path/name of outskin mask (if generated)", - "requires": [("surfaces", True)], - "output_file_template": "{out_file}_outskin_mask", - }, - ), - ( - "outskin_mesh_file", - specs.File, - { - "help_string": "path/name of outskin mesh outline (if generated)", - "requires": [("surfaces", True)], - "output_file_template": "{out_file}_outskin_mesh", - }, - ), - ( - "skull_mask_file", - specs.File, - { - "help_string": "path/name of skull mask (if generated)", - "requires": [("surfaces", True)], - "output_file_template": "{out_file}_skull_mask", - }, - ), - ( - "skull_file", - specs.File, - { - "help_string": "path/name of skull file (if generated)", - "requires": [("skull", True)], - "output_file_template": "{out_file}_skull", - }, - ), -] -BET_output_spec = specs.SpecInfo(name="Output", fields=output_fields, bases=(specs.ShellOutSpec,)) - - -class BET(ShellCommandTask): - """ - Example - ------- - >>> task = BET() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.out_file = "test_brain.nii.gz" - >>> task.inputs.frac = 0.7 - >>> task.cmdline - 'bet test.nii.gz test_brain.nii.gz -f 0.70' - """ - - input_spec = BET_input_spec - output_spec = BET_output_spec - executable = "bet" diff --git a/pydra/tasks/fsl/preprocess/fast.py b/pydra/tasks/fsl/preprocess/fast.py deleted file mode 100644 index 732fbc2..0000000 --- a/pydra/tasks/fsl/preprocess/fast.py +++ /dev/null @@ -1,280 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def FAST_output(field, in_files, out_basename): - import attr - - if out_basename in [None, attr.NOTHING]: - out_basename = in_files[-1] - name = field.name - if name == "tissue_class_map": - return f"{out_basename}_seg" - elif name == "mixeltype": - return f"{out_basename}_mixeltype" - elif name == "partial_volume_map": - return f"{out_basename}_pveseg" - else: - raise Exception( - f"this function should be run only for issue_class_map, " - f"or mixeltype, not for {name}" - ) - - outputs = [] - if len(in_files) > 1: - # for multi-image segmentation there is one corrected image - # per input - for val, f in enumerate(in_files): - # image numbering is 1-based - outputs.append(f"{out_basename}_restore_{val+1}") - else: - # single image segmentation has unnumbered output image - outputs.append(f"{out_basename}_restore") - return outputs - - -def FAST_output_infile(field, in_files, out_basename): - import attr - - if out_basename in [None, attr.NOTHING]: - out_basename = in_files[-1] - name = field.name - if name == "restored_image": - suffix = "restore" - elif name == "bias_field": - suffix = "bias" - else: - raise Exception( - f"this function should be run only for restored_image, " - f"or bias_field, not for {name}" - ) - - outputs = [] - if len(in_files) > 1: - # for multi-image segmentation there is one corrected image - # per input - for val, f in enumerate(in_files): - # image numbering is 1-based - outputs.append(f"{out_basename}_{suffix}_{val+1}") - else: - # single image segmentation has unnumbered output image - outputs.append(f"{out_basename}_{suffix}") - return outputs - - -def FAST_output_nclass(field, in_files, nclasses, out_basename): - import attr - - if out_basename in [None, attr.NOTHING]: - out_basename = in_files[-1] - name = field.name - - if name == "tissue_class_files": - suffix = "seg" - elif name == "partial_volume_files": - suffix = "pve" - elif name == "probability_maps": - suffix = "prob" - else: - raise Exception( - f"this function should be run only for tissue_class_files, " - f"partial_volume_files or probability_maps, not for {name}" - ) - - outputs = [] - for ii in range(nclasses): - outputs.append(f"{out_basename}_{suffix}_{ii}") - return outputs - - -input_fields = [ - ( - "in_files", - specs.MultiInputFile, - { - "help_string": "image, or multi-channel set of images, to be segmented", - "argstr": "{in_files}", - "copyfile": False, - "mandatory": True, - "position": -1, - }, - ), - ( - "out_basename", - str, - {"help_string": "base name of output files", "argstr": "-o {out_basename}"}, - ), - ( - "number_classes", - ty.Any, - 3, - { - "help_string": "number of tissue-type classes", - "argstr": "-n {number_classes}", - }, - ), - ( - "output_biasfield", - bool, - {"help_string": "output estimated bias field", "argstr": "-b"}, - ), - ( - "output_biascorrected", - bool, - {"help_string": "output restored image (bias-corrected image)", "argstr": "-B"}, - ), - ( - "img_type", - ty.Any, - { - "help_string": "int specifying type of image: (1 = T1, 2 = T2, 3 = PD)", - "argstr": "-t {img_type}", - }, - ), - ( - "bias_iters", - ty.Any, - { - "help_string": "number of main-loop iterations during bias-field removal", - "argstr": "-I {bias_iters}", - }, - ), - ( - "bias_lowpass", - ty.Any, - { - "help_string": "bias field smoothing extent (FWHM) in mm", - "argstr": "-l {bias_lowpass}", - }, - ), - ( - "init_seg_smooth", - ty.Any, - { - "help_string": "initial segmentation spatial smoothness (during bias field estimation)", - "argstr": "-f {init_seg_smooth:.3f}", - }, - ), - ( - "segments", - bool, - { - "help_string": "outputs a separate binary image for each tissue type", - "argstr": "-g", - }, - ), - ( - "init_transform", - specs.File, - { - "help_string": " initialise using priors", - "argstr": "-a {init_transform}", - }, - ), - ( - "other_priors", - specs.MultiInputFile, - {"help_string": "alternative prior images", "argstr": "-A {other_priors}"}, - ), - ( - "no_pve", - bool, - { - "help_string": "turn off PVE (partial volume estimation)", - "argstr": "--nopve", - }, - ), - ("no_bias", bool, {"help_string": "do not remove bias field", "argstr": "-N"}), - ("use_priors", bool, {"help_string": "use priors throughout", "argstr": "-P"}), - ( - "segment_iters", - ty.Any, - { - "help_string": "number of segmentation-initialisation iterations", - "argstr": "-W {segment_iters}", - }, - ), - ( - "mixel_smooth", - ty.Any, - { - "help_string": "spatial smoothness for mixeltype", - "argstr": "-R {mixel_smooth:.2f}", - }, - ), - ( - "iters_afterbias", - ty.Any, - { - "help_string": "number of main-loop iterations after bias-field removal", - "argstr": "-O {iters_afterbias}", - }, - ), - ( - "hyper", - ty.Any, - {"help_string": "segmentation spatial smoothness", "argstr": "-H {hyper:.2f}"}, - ), - ("verbose", bool, {"help_string": "switch on diagnostic messages", "argstr": "-v"}), - ( - "manual_seg", - specs.File, - {"help_string": "Filename containing intensities", "argstr": "-s {manual_seg}"}, - ), - ( - "probability_maps", - bool, - {"help_string": "outputs individual probability maps", "argstr": "-p"}, - ), -] -FAST_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "tissue_class_files", - specs.MultiOutputFile, - {"requires": [("segments", True)], "callable": "FAST_output_nclass"}, - ), - ( - "partial_volume_map", - specs.File, - { - "help_string": "path/name of partial volume file _pveseg", - "requires": [("no_pve", False)], - "callable": "FAST_output", - }, - ), - ( - "partial_volume_files", - specs.MultiOutputFile, - {"requires": [("no_pve", False)], "callable": "FAST_output_nclass"}, - ), - ( - "bias_field", - specs.MultiOutputFile, - {"requires": [("output_biasfield", True)], "callable": "FAST_output_infile"}, - ), - ( - "probability_maps", - specs.MultiOutputFile, - {"requires": [("probability_maps", True)], "callable": "FAST_output_nclass"}, - ), -] -FAST_output_spec = specs.SpecInfo(name="Output", fields=output_fields, bases=(specs.ShellOutSpec,)) - - -class FAST(ShellCommandTask): - """ - Example - ------- - >>> task = FAST() - >>> task.inputs.in_files = "test.nii.gz" - >>> task.inputs.out_basename = "fast_" - >>> task.cmdline - 'fast -o fast_ -n 3 test.nii.gz' - """ - - input_spec = FAST_input_spec - output_spec = FAST_output_spec - executable = "fast" diff --git a/pydra/tasks/fsl/preprocess/first.py b/pydra/tasks/fsl/preprocess/first.py deleted file mode 100644 index 26d824c..0000000 --- a/pydra/tasks/fsl/preprocess/first.py +++ /dev/null @@ -1,138 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input data file", - "argstr": "-i {in_file}", - "copyfile": False, - "mandatory": True, - "position": -2, - }, - ), - ( - "out_file", - str, - { - "help_string": "output data file", - "argstr": "-o {out_file}", - "mandatory": True, - "position": -1, - }, - ), - ( - "verbose", - bool, - {"help_string": "Use verbose logging.", "argstr": "-v", "position": 1}, - ), - ( - "brain_extracted", - bool, - { - "help_string": "Input structural image is already brain-extracted", - "argstr": "-b", - "position": 2, - }, - ), - ( - "no_cleanup", - bool, - { - "help_string": "Input structural image is already brain-extracted", - "argstr": "-d", - "position": 3, - }, - ), - ( - "method", - ty.Any, - "auto", - { - "help_string": "Method must be one of auto, fast, none, or it can be entered using the 'method_as_numerical_threshold' input", - "argstr": "-m {method}", - "position": 4, - "xor": ["method_as_numerical_threshold"], - }, - ), - ( - "method_as_numerical_threshold", - float, - { - "help_string": "Specify a numerical threshold value or use the 'method' input to choose auto, fast, or none", - "argstr": "-m {method_as_numerical_threshold:.4f}", - "position": 4, - }, - ), - ( - "list_of_specific_structures", - list, - { - "help_string": "Runs only on the specified structures (e.g. L_Hipp, R_HippL_Accu, R_Accu, L_Amyg, R_AmygL_Caud, R_Caud, L_Pall, R_PallL_Puta, R_Puta, L_Thal, R_Thal, BrStem", - "argstr": "-s {list_of_specific_structures}", - "position": 5, - "sep": ",", - }, - ), - ( - "affine_file", - specs.File, - { - "help_string": "Affine matrix to use (e.g. img2std.mat) (does not re-run registration)", - "argstr": "-a {affine_file}", - "position": 6, - }, - ), -] -FIRST_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "vtk_surfaces", - specs.MultiOutputFile, - { - "help_string": "VTK format meshes for each subcortical region", - "requires": ["in_file"], - "output_file_template": "{in_file}_vtk_surfaces", - }, - ), - ( - "bvars", - specs.MultiOutputFile, - { - "help_string": "bvars for each subcortical region", - "requires": ["in_file"], - "output_file_template": "{in_file}_bvars", - }, - ), - ( - "original_segmentations", - specs.File, - { - "help_string": "3D image file containing the segmented regions as integer values. Uses CMA labelling", - "requires": ["in_file"], - "output_file_template": "{in_file}_original_segmentations", - }, - ), - ( - "segmentation_file", - specs.File, - { - "help_string": "4D image file containing a single volume per segmented region", - "requires": ["in_file"], - "output_file_template": "{in_file}_segmentation_file", - }, - ), -] -FIRST_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class FIRST(ShellCommandTask): - input_spec = FIRST_input_spec - output_spec = FIRST_output_spec - executable = "run_first_all" diff --git a/pydra/tasks/fsl/preprocess/flirt.py b/pydra/tasks/fsl/preprocess/flirt.py deleted file mode 100644 index 9da52c7..0000000 --- a/pydra/tasks/fsl/preprocess/flirt.py +++ /dev/null @@ -1,348 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input file", - "argstr": "-in {in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "reference", - specs.File, - { - "help_string": "reference file", - "argstr": "-ref {reference}", - "mandatory": True, - "position": 1, - }, - ), - ( - "out_file", - str, - { - "help_string": "registered output file", - "argstr": "-out {out_file}", - "position": 2, - "output_file_template": "{in_file}_flirt", - }, - ), - ( - "out_matrix_file", - str, - { - "help_string": "output affine matrix in 4x4 asciii format", - "argstr": "-omat {out_matrix_file}", - "position": 3, - "output_file_template": "{in_file}_flirt.mat", - }, - ), - ( - "out_log", - str, - { - "help_string": "output log", - "requires": ["save_log"], - "output_file_template": "{in_file}_flirt.log", - }, - ), - ( - "in_matrix_file", - str, - {"help_string": "input 4x4 affine matrix", "argstr": "-init {in_matrix_file}"}, - ), - ( - "apply_xfm", - bool, - { - "help_string": "apply transformation supplied by in_matrix_file or uses_qform to use the affine matrix stored in the reference header", - "argstr": "-applyxfm", - }, - ), - ( - "apply_isoxfm", - float, - { - "help_string": "as applyxfm but forces isotropic resampling", - "argstr": "-applyisoxfm {apply_isoxfm}", - "xor": ["apply_xfm"], - }, - ), - ( - "datatype", - ty.Any, - {"help_string": "force output data type", "argstr": "-datatype {datatype}"}, - ), - ("cost", ty.Any, {"help_string": "cost function", "argstr": "-cost {cost}"}), - ( - "cost_func", - ty.Any, - {"help_string": "cost function", "argstr": "-searchcost {cost_func}"}, - ), - ( - "uses_qform", - bool, - {"help_string": "initialize using sform or qform", "argstr": "-usesqform"}, - ), - ( - "display_init", - bool, - {"help_string": "display initial matrix", "argstr": "-displayinit"}, - ), - ( - "angle_rep", - ty.Any, - { - "help_string": "representation of rotation angles", - "argstr": "-anglerep {angle_rep}", - }, - ), - ( - "interp", - ty.Any, - { - "help_string": "final interpolation method used in reslicing", - "argstr": "-interp {interp}", - }, - ), - ( - "sinc_width", - int, - {"help_string": "full-width in voxels", "argstr": "-sincwidth {sinc_width}"}, - ), - ( - "sinc_window", - ty.Any, - {"help_string": "sinc window", "argstr": "-sincwindow {sinc_window}"}, - ), - ( - "bins", - int, - {"help_string": "number of histogram bins", "argstr": "-bins {bins}"}, - ), - ( - "dof", - int, - { - "help_string": "number of transform degrees of freedom", - "argstr": "-dof {dof}", - }, - ), - ( - "no_resample", - bool, - {"help_string": "do not change input sampling", "argstr": "-noresample"}, - ), - ( - "force_scaling", - bool, - { - "help_string": "force rescaling even for low-res images", - "argstr": "-forcescaling", - }, - ), - ( - "min_sampling", - float, - { - "help_string": "set minimum voxel dimension for sampling", - "argstr": "-minsampling {min_sampling}", - }, - ), - ( - "padding_size", - int, - { - "help_string": "for applyxfm: interpolates outside image by size", - "argstr": "-paddingsize {padding_size}", - }, - ), - ( - "searchr_x", - list, - { - "help_string": "search angles along x-axis, in degrees", - "argstr": "-searchrx {searchr_x}", - }, - ), - ( - "searchr_y", - list, - { - "help_string": "search angles along y-axis, in degrees", - "argstr": "-searchry {searchr_y}", - }, - ), - ( - "searchr_z", - list, - { - "help_string": "search angles along z-axis, in degrees", - "argstr": "-searchrz {searchr_z}", - }, - ), - ( - "no_search", - bool, - { - "help_string": "set all angular searches to ranges 0 to 0", - "argstr": "-nosearch", - }, - ), - ( - "coarse_search", - int, - { - "help_string": "coarse search delta angle", - "argstr": "-coarsesearch {coarse_search}", - }, - ), - ( - "fine_search", - int, - { - "help_string": "fine search delta angle", - "argstr": "-finesearch {fine_search}", - }, - ), - ( - "schedule", - specs.File, - {"help_string": "replaces default schedule", "argstr": "-schedule {schedule}"}, - ), - ( - "ref_weight", - specs.File, - { - "help_string": "File for reference weighting volume", - "argstr": "-refweight {ref_weight}", - }, - ), - ( - "in_weight", - specs.File, - { - "help_string": "File for input weighting volume", - "argstr": "-inweight {in_weight}", - }, - ), - ( - "no_clamp", - bool, - {"help_string": "do not use intensity clamping", "argstr": "-noclamp"}, - ), - ( - "no_resample_blur", - bool, - { - "help_string": "do not use blurring on downsampling", - "argstr": "-noresampblur", - }, - ), - ( - "rigid2D", - bool, - {"help_string": "use 2D rigid body mode - ignores dof", "argstr": "-2D"}, - ), - ("save_log", bool, {"help_string": "save to log file"}), - ( - "verbose", - int, - {"help_string": "verbose mode, 0 is least", "argstr": "-verbose {verbose}"}, - ), - ( - "bgvalue", - float, - { - "help_string": "use specified background value for points outside FOV", - "argstr": "-setbackground {bgvalue}", - }, - ), - ( - "wm_seg", - str, - { - "help_string": "white matter segmentation volume needed by BBR cost function", - "argstr": "-wmseg {wm_seg}", - }, - ), - ( - "wmcoords", - str, - { - "help_string": "white matter boundary coordinates for BBR cost function", - "argstr": "-wmcoords {wmcoords}", - }, - ), - ( - "wmnorms", - str, - { - "help_string": "white matter boundary normals for BBR cost function", - "argstr": "-wmnorms {wmnorms}", - }, - ), - ( - "fieldmap", - str, - { - "help_string": "fieldmap image in rads/s - must be already registered to the reference image", - "argstr": "-fieldmap {fieldmap}", - }, - ), - ( - "fieldmapmask", - str, - { - "help_string": "mask for fieldmap image", - "argstr": "-fieldmapmask {fieldmapmask}", - }, - ), - ( - "pedir", - int, - { - "help_string": "phase encode direction of EPI - 1/2/3=x/y/z & -1/-2/-3=-x/-y/-z", - "argstr": "-pedir {pedir}", - }, - ), - ( - "echospacing", - float, - { - "help_string": "value of EPI echo spacing - units of seconds", - "argstr": "-echospacing {echospacing}", - }, - ), - ( - "bbrtype", - ty.Any, - { - "help_string": "type of bbr cost function: signed [default], global_abs, local_abs", - "argstr": "-bbrtype {bbrtype}", - }, - ), - ( - "bbrslope", - float, - {"help_string": "value of bbr slope", "argstr": "-bbrslope {bbrslope}"}, - ), -] -FLIRT_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -FLIRT_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class FLIRT(ShellCommandTask): - input_spec = FLIRT_input_spec - output_spec = FLIRT_output_spec - executable = "flirt" diff --git a/pydra/tasks/fsl/preprocess/fnirt.py b/pydra/tasks/fsl/preprocess/fnirt.py deleted file mode 100644 index f1a565f..0000000 --- a/pydra/tasks/fsl/preprocess/fnirt.py +++ /dev/null @@ -1,363 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "ref_file", - specs.File, - { - "help_string": "name of reference image", - "argstr": "--ref={ref_file}", - "mandatory": True, - }, - ), - ( - "in_file", - specs.File, - { - "help_string": "name of input image", - "argstr": "--in={in_file}", - "mandatory": True, - }, - ), - ( - "affine_file", - specs.File, - { - "help_string": "name of file containing affine transform", - "argstr": "--aff={affine_file}", - }, - ), - ( - "inwarp_file", - specs.File, - { - "help_string": "name of file containing initial non-linear warps", - "argstr": "--inwarp={inwarp_file}", - }, - ), - ( - "in_intensitymap_file", - specs.MultiInputFile, - { - "help_string": "name of file/files containing initial intensity mapping usually generated by previous fnirt run", - "argstr": "--intin={in_intensitymap_file}", - "copyfile": False, - }, - ), - ( - "fieldcoeff_file", - str, - { - "help_string": "name of output file with field coefficients or true", - "argstr": "--cout={fieldcoeff_file}", - "output_file_template": "{in_file}_fieldwarp", - }, - ), - ( - "warped_file", - str, - { - "help_string": "name of output image", - "argstr": "--iout={warped_file}", - "output_file_template": "{in_file}_warped", - }, - ), - ( - "field_file", - str, - { - "help_string": "name of output file with field or true", - "argstr": "--fout={field_file}", - "output_file_template": "{in_file}_field", - }, - ), - ( - "jacobian_file", - str, - { - "help_string": "name of file for writing out the Jacobian of the field (for diagnostic or VBM purposes)", - "argstr": "--jout={jacobian_file}", - "output_file_template": "{in_file}_field_jacobian", - }, - ), - ( - "modulatedref_file", - str, - { - "help_string": "name of file for writing out intensity modulated --ref (for diagnostic purposes)", - "argstr": "--refout={modulatedref_file}", - "output_file_template": "{in_file}_modulated", - }, - ), - ( - "out_intensitymap_file", - str, - { - "help_string": "name of files for writing information pertaining to intensity mapping", - "argstr": "--intout={out_intensitymap_file}", - }, - ), - ( - "log_file", - str, - { - "help_string": "Name of log-file", - "argstr": "--logout={log_file}", - "output_file_template": "{in_file}_log.txt", - }, - ), - ( - "config_file", - ty.Any, - { - "help_string": "Name of config file specifying command line arguments", - "argstr": "--config={config_file}", - }, - ), - ( - "refmask_file", - specs.File, - { - "help_string": "name of file with mask in reference space", - "argstr": "--refmask={refmask_file}", - }, - ), - ( - "inmask_file", - specs.File, - { - "help_string": "name of file with mask in input image space", - "argstr": "--inmask={inmask_file}", - }, - ), - ( - "skip_refmask", - bool, - { - "help_string": "Skip specified refmask if set, default false", - "argstr": "--applyrefmask=0", - "xor": ["apply_refmask"], - }, - ), - ( - "skip_inmask", - bool, - { - "help_string": "skip specified inmask if set, default false", - "argstr": "--applyinmask=0", - "xor": ["apply_inmask"], - }, - ), - ( - "apply_refmask", - list, - { - "help_string": "list of iterations to use reference mask on (1 to use, 0 to skip)", - "argstr": "--applyrefmask={apply_refmask}", - "sep": ",", - "xor": ["skip_refmask"], - }, - ), - ( - "apply_inmask", - list, - { - "help_string": "list of iterations to use input mask on (1 to use, 0 to skip)", - "argstr": "--applyinmask={apply_inmask}", - "sep": ",", - "xor": ["skip_inmask"], - }, - ), - ( - "skip_implicit_ref_masking", - bool, - { - "help_string": "skip implicit masking based on value in --ref image. Default = 0", - "argstr": "--imprefm=0", - }, - ), - ( - "skip_implicit_in_masking", - bool, - { - "help_string": "skip implicit masking based on value in --in image. Default = 0", - "argstr": "--impinm=0", - }, - ), - ( - "refmask_val", - float, - { - "help_string": "Value to mask out in --ref image. Default =0.0", - "argstr": "--imprefval={refmask_val}", - }, - ), - ( - "inmask_val", - float, - { - "help_string": "Value to mask out in --in image. Default =0.0", - "argstr": "--impinval={inmask_val}", - }, - ), - ( - "max_nonlin_iter", - list, - { - "help_string": "Max # of non-linear iterations list, default [5, 5, 5, 5]", - "argstr": "--miter={max_nonlin_iter}", - "sep": ",", - }, - ), - ( - "subsampling_scheme", - list, - { - "help_string": "sub-sampling scheme, list, default [4, 2, 1, 1]", - "argstr": "--subsamp={subsampling_scheme}", - "sep": ",", - }, - ), - ( - "warp_resolution", - ty.Any, - { - "help_string": "(approximate) resolution (in mm) of warp basis in x-, y- and z-direction, default 10, 10, 10", - "argstr": "--warpres={warp_resolution},{warp_resolution},{warp_resolution}", - }, - ), - ( - "spline_order", - int, - { - "help_string": "Order of spline, 2->Qadratic spline, 3->Cubic spline. Default=3", - "argstr": "--splineorder={spline_order}", - }, - ), - ( - "in_fwhm", - list, - { - "help_string": "FWHM (in mm) of gaussian smoothing kernel for input volume, default [6, 4, 2, 2]", - "argstr": "--infwhm={in_fwhm}", - "sep": ",", - }, - ), - ( - "ref_fwhm", - list, - { - "help_string": "FWHM (in mm) of gaussian smoothing kernel for ref volume, default [4, 2, 0, 0]", - "argstr": "--reffwhm={ref_fwhm}", - "sep": ",", - }, - ), - ( - "regularization_model", - ty.Any, - { - "help_string": "Model for regularisation of warp-field [membrane_energy bending_energy], default bending_energy", - "argstr": "--regmod={regularization_model}", - }, - ), - ( - "regularization_lambda", - list, - { - "help_string": "Weight of regularisation, default depending on --ssqlambda and --regmod switches. See user documetation.", - "argstr": "--lambda={regularization_lambda}", - "sep": ",", - }, - ), - ( - "skip_lambda_ssq", - bool, - { - "help_string": "If true, lambda is not weighted by current ssq, default false", - "argstr": "--ssqlambda=0", - }, - ), - ( - "jacobian_range", - ty.Any, - { - "help_string": "Allowed range of Jacobian determinants, default 0.01, 100.0", - "argstr": "--jacrange={jacobian_range},{jacobian_range}", - }, - ), - ( - "derive_from_ref", - bool, - { - "help_string": "If true, ref image is used to calculate derivatives. Default false", - "argstr": "--refderiv", - }, - ), - ( - "intensity_mapping_model", - ty.Any, - { - "help_string": "Model for intensity-mapping", - "argstr": "--intmod={intensity_mapping_model}", - }, - ), - ( - "intensity_mapping_order", - int, - { - "help_string": "Order of poynomial for mapping intensities, default 5", - "argstr": "--intorder={intensity_mapping_order}", - }, - ), - ( - "biasfield_resolution", - ty.Any, - { - "help_string": "Resolution (in mm) of bias-field modelling local intensities, default 50, 50, 50", - "argstr": "--biasres={biasfield_resolution},{biasfield_resolution},{biasfield_resolution}", - }, - ), - ( - "bias_regularization_lambda", - float, - { - "help_string": "Weight of regularisation for bias-field, default 10000", - "argstr": "--biaslambda={bias_regularization_lambda}", - }, - ), - ( - "skip_intensity_mapping", - bool, - { - "help_string": "Skip estimate intensity-mapping default false", - "argstr": "--estint=0", - "xor": ["apply_intensity_mapping"], - }, - ), - ( - "apply_intensity_mapping", - list, - { - "help_string": "List of subsampling levels to apply intensity mapping for (0 to skip, 1 to apply)", - "argstr": "--estint={apply_intensity_mapping}", - "sep": ",", - "xor": ["skip_intensity_mapping"], - }, - ), - ( - "hessian_precision", - ty.Any, - { - "help_string": "Precision for representing Hessian, double or float. Default double", - "argstr": "--numprec={hessian_precision}", - }, - ), -] -FNIRT_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - - -class FNIRT(ShellCommandTask): - input_spec = FNIRT_input_spec - executable = "fnirt" diff --git a/pydra/tasks/fsl/preprocess/mcflirt.py b/pydra/tasks/fsl/preprocess/mcflirt.py deleted file mode 100644 index 136fde7..0000000 --- a/pydra/tasks/fsl/preprocess/mcflirt.py +++ /dev/null @@ -1,185 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "timeseries to motion-correct", - "argstr": "-in {in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "out_file", - str, - { - "help_string": "file to write", - "argstr": "-out {out_file}", - "output_file_template": "{in_file}_mcf", - }, - ), - ( - "cost", - ty.Any, - {"help_string": "cost function to optimize", "argstr": "-cost {cost}"}, - ), - ( - "bins", - int, - {"help_string": "number of histogram bins", "argstr": "-bins {bins}"}, - ), - ( - "dof", - int, - { - "help_string": "degrees of freedom for the transformation", - "argstr": "-dof {dof}", - }, - ), - ( - "ref_vol", - int, - {"help_string": "volume to align frames to", "argstr": "-refvol {ref_vol}"}, - ), - ( - "scaling", - float, - {"help_string": "scaling factor to use", "argstr": "-scaling {scaling:.2f}"}, - ), - ( - "smooth", - float, - { - "help_string": "smoothing factor for the cost function", - "argstr": "-smooth {smooth:.2f}", - }, - ), - ( - "rotation", - int, - { - "help_string": "scaling factor for rotation tolerances", - "argstr": "-rotation {rotation}", - }, - ), - ( - "stages", - int, - { - "help_string": "stages (if 4, perform final search with sinc interpolation", - "argstr": "-stages {stages}", - }, - ), - ( - "init", - specs.File, - {"help_string": "inital transformation matrix", "argstr": "-init {init}"}, - ), - ( - "interpolation", - ty.Any, - { - "help_string": "interpolation method for transformation", - "argstr": "-{interpolation}_final", - }, - ), - ( - "use_gradient", - bool, - {"help_string": "run search on gradient images", "argstr": "-gdt"}, - ), - ( - "use_contour", - bool, - {"help_string": "run search on contour images", "argstr": "-edge"}, - ), - ( - "mean_vol", - bool, - {"help_string": "register to mean volume", "argstr": "-meanvol"}, - ), - ( - "stats_imgs", - bool, - {"help_string": "produce variance and std. dev. images", "argstr": "-stats"}, - ), - ( - "save_mats", - bool, - {"help_string": "save transformation matrices", "argstr": "-mats"}, - ), - ( - "save_plots", - bool, - {"help_string": "save transformation parameters", "argstr": "-plots"}, - ), - ( - "save_rms", - bool, - { - "help_string": "save rms displacement parameters", - "argstr": "-rmsabs -rmsrel", - }, - ), - ( - "ref_file", - specs.File, - { - "help_string": "target image for motion correction", - "argstr": "-reffile {ref_file}", - }, - ), -] -MCFLIRT_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "variance_img", - specs.File, - { - "help_string": "variance image", - "requires": ["in_file", ("stats_imgs", True)], - "output_file_template": "{out_file}_variance.ext", - }, - ), - ( - "std_img", - specs.File, - { - "help_string": "standard deviation image", - "requires": ["in_file", ("stats_imgs", True)], - "output_file_template": "{out_file}_sigma.ext", - }, - ), - ( - "mean_img", - specs.File, - { - "help_string": "mean timeseries image (if mean_vol=True)", - "requires": ["in_file", ("mean_vol", True)], - "output_file_template": "{out_file}_mean_reg.ext", - }, - ), - ( - "par_file", - specs.File, - { - "help_string": "text-file with motion parameters", - "requires": ["save_plots"], - "output_file_template": "{out_file}.par", - }, - ), -] -MCFLIRT_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class MCFLIRT(ShellCommandTask): - input_spec = MCFLIRT_input_spec - output_spec = MCFLIRT_output_spec - executable = "mcflirt" diff --git a/pydra/tasks/fsl/preprocess/prelude.py b/pydra/tasks/fsl/preprocess/prelude.py deleted file mode 100644 index b5b8520..0000000 --- a/pydra/tasks/fsl/preprocess/prelude.py +++ /dev/null @@ -1,155 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "complex_phase_file", - specs.File, - { - "help_string": "complex phase input volume", - "argstr": "--complex={complex_phase_file}", - "mandatory": True, - "xor": ["magnitude_file", "phase_file"], - }, - ), - ( - "magnitude_file", - specs.File, - { - "help_string": "file containing magnitude image", - "argstr": "--abs={magnitude_file}", - "mandatory": True, - "xor": ["complex_phase_file"], - }, - ), - ( - "phase_file", - specs.File, - { - "help_string": "raw phase file", - "argstr": "--phase={phase_file}", - "mandatory": True, - "xor": ["complex_phase_file"], - }, - ), - ( - "unwrapped_phase_file", - str, - { - "help_string": "file containing unwrapepd phase", - "argstr": "--unwrap={unwrapped_phase_file}", - "output_file_template": "{phase_file}_unwrapped", - }, - ), - ( - "num_partitions", - int, - { - "help_string": "number of phase partitions to use", - "argstr": "--numphasesplit={num_partitions}", - }, - ), - ( - "labelprocess2d", - bool, - { - "help_string": "does label processing in 2D (slice at a time)", - "argstr": "--labelslices", - }, - ), - ( - "process2d", - bool, - { - "help_string": "does all processing in 2D (slice at a time)", - "argstr": "--slices", - "xor": ["labelprocess2d"], - }, - ), - ( - "process3d", - bool, - { - "help_string": "forces all processing to be full 3D", - "argstr": "--force3D", - "xor": ["labelprocess2d", "process2d"], - }, - ), - ( - "threshold", - float, - { - "help_string": "intensity threshold for masking", - "argstr": "--thresh={threshold:.10f}", - }, - ), - ( - "mask_file", - specs.File, - { - "help_string": "filename of mask input volume", - "argstr": "--mask={mask_file}", - }, - ), - ( - "start", - int, - { - "help_string": "first image number to process (default 0)", - "argstr": "--start={start}", - }, - ), - ( - "end", - int, - { - "help_string": "final image number to process (default Inf)", - "argstr": "--end={end}", - }, - ), - ( - "savemask_file", - str, - { - "help_string": "saving the mask volume", - "argstr": "--savemask={savemask_file}", - }, - ), - ( - "rawphase_file", - str, - { - "help_string": "saving the raw phase output", - "argstr": "--rawphase={rawphase_file}", - }, - ), - ( - "label_file", - str, - { - "help_string": "saving the area labels output", - "argstr": "--labels={label_file}", - }, - ), - ( - "removeramps", - bool, - { - "help_string": "remove phase ramps during unwrapping", - "argstr": "--removeramps", - }, - ), -] -PRELUDE_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -PRELUDE_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class PRELUDE(ShellCommandTask): - input_spec = PRELUDE_input_spec - output_spec = PRELUDE_output_spec - executable = "prelude" diff --git a/pydra/tasks/fsl/preprocess/slicetimer.py b/pydra/tasks/fsl/preprocess/slicetimer.py deleted file mode 100644 index 28177bb..0000000 --- a/pydra/tasks/fsl/preprocess/slicetimer.py +++ /dev/null @@ -1,97 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "filename of input timeseries", - "argstr": "--in={in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "out_file", - str, - { - "help_string": "filename of output timeseries", - "argstr": "--out={out_file}", - "output_file_template": "{in_file}_st", - }, - ), - ( - "index_dir", - bool, - {"help_string": "slice indexing from top to bottom", "argstr": "--down"}, - ), - ( - "time_repetition", - float, - { - "help_string": "Specify TR of data - default is 3s", - "argstr": "--repeat={time_repetition}", - }, - ), - ( - "slice_direction", - ty.Any, - { - "help_string": "direction of slice acquisition (x=1, y=2, z=3) - default is z", - "argstr": "--direction={slice_direction}", - }, - ), - ( - "interleaved", - bool, - {"help_string": "use interleaved acquisition", "argstr": "--odd"}, - ), - ( - "custom_timings", - specs.File, - { - "help_string": "slice timings, in fractions of TR, range 0:1 (default is 0.5 = no shift)", - "argstr": "--tcustom={custom_timings}", - }, - ), - ( - "global_shift", - float, - { - "help_string": "shift in fraction of TR, range 0:1 (default is 0.5 = no shift)", - "argstr": "--tglobal", - }, - ), - ( - "custom_order", - specs.File, - { - "help_string": "filename of single-column custom interleave order file (first slice is referred to as 1 not 0)", - "argstr": "--ocustom={custom_order}", - }, - ), -] -SliceTimer_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "slice_time_corrected_file", - specs.File, - { - "help_string": "slice time corrected file", - "requires": ["out_file"], - "output_file_template": "{out_file}", - }, - ) -] -SliceTimer_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class SliceTimer(ShellCommandTask): - input_spec = SliceTimer_input_spec - output_spec = SliceTimer_output_spec - executable = "slicetimer" diff --git a/pydra/tasks/fsl/preprocess/susan.py b/pydra/tasks/fsl/preprocess/susan.py deleted file mode 100644 index 53fa617..0000000 --- a/pydra/tasks/fsl/preprocess/susan.py +++ /dev/null @@ -1,114 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def format_usans(field: ty.Sequence[ty.Tuple[str, float]]) -> str: - """Format usans argument to its appropriate argstr. - - Examples - -------- - >>> format_usans([]) - '0' - >>> format_usans([('/path/to/file', 2.5)]) - '1 /path/to/file 2.5' - >>> format_usans([('/path/to/file1', 10.5), ('/path/to/file2', 22.1)]) - '2 /path/to/file1 10.5 /path/to/file2 22.1' - """ - return " ".join([f"{len(field)}"] + [f"{usan} {bt}" for usan, bt in field]) - - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "filename of input timeseries", - "argstr": "{in_file}", - "mandatory": True, - "position": 1, - }, - ), - ( - "brightness_threshold", - float, - { - "help_string": "brightness threshold and should be greater than noise level and less than contrast of edges to be preserved.", - "argstr": "{brightness_threshold:.10f}", - "mandatory": True, - "position": 2, - }, - ), - ( - "fwhm", - float, - { - "help_string": "fwhm of smoothing, in mm, gets converted using sqrt(8*log(2))", - "argstr": "{fwhm:.10f}", - "mandatory": True, - "position": 3, - }, - ), - ( - "dimension", - ty.Any, - 3, - { - "help_string": "within-plane (2) or fully 3D (3)", - "argstr": "{dimension}", - "position": 4, - }, - ), - ( - "use_median", - ty.Any, - 1, - { - "help_string": "whether to use a local median filter in the cases where single-point noise is detected", - "argstr": "{use_median}", - "position": 5, - }, - ), - ( - "usans", - ty.Sequence[ty.Tuple[str, float]], - [], - { - "help_string": "determines whether the smoothing area (USAN) is to be found from secondary images (0, 1 or 2). A negative value for any brightness threshold will auto-set the threshold at 10% of the robust range", - "formatter": format_usans, - "position": 6, - }, - ), - ( - "out_file", - str, - { - "help_string": "output file name", - "argstr": "{out_file}", - "position": -1, - "output_file_template": "{in_file}_smooth", - }, - ), -] -SUSAN_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "smoothed_file", - specs.File, - { - "help_string": "smoothed output file", - "requires": ["out_file"], - "output_file_template": "{out_file}", - }, - ) -] -SUSAN_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class SUSAN(ShellCommandTask): - input_spec = SUSAN_input_spec - output_spec = SUSAN_output_spec - executable = "susan" diff --git a/pydra/tasks/fsl/preprocess/tests/__init__.py b/pydra/tasks/fsl/preprocess/tests/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_applywarp.py b/pydra/tasks/fsl/preprocess/tests/test_run_applywarp.py deleted file mode 100644 index f87ef98..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_applywarp.py +++ /dev/null @@ -1,22 +0,0 @@ -import os, pytest -from pathlib import Path -from ..applywarp import ApplyWarp - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", [({"ref_file": 'f"{in_file}"'}, ["out_file"])]) -def test_ApplyWarp(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = ApplyWarp(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_bet.py b/pydra/tasks/fsl/preprocess/tests/test_run_bet.py deleted file mode 100644 index 5ca0fb6..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_bet.py +++ /dev/null @@ -1,42 +0,0 @@ -import os, pytest -from pathlib import Path -from ..bet import BET - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [ - (None, ["out_file"]), - ({"mask": True}, ["out_file", "mask_file"]), - ( - {"surfaces": True}, - [ - "out_file", - "meshfile", - "inskull_mask_file", - "inskull_mesh_file", - "outskull_mask_file", - "outskull_mesh_file", - "outskin_mask_file", - "outskin_mesh_file", - "skull_mask_file", - ], - ), - ], -) -def test_BET(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = BET(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_fast.py b/pydra/tasks/fsl/preprocess/tests/test_run_fast.py deleted file mode 100644 index 0b25fc9..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_fast.py +++ /dev/null @@ -1,37 +0,0 @@ -import os, pytest -from pathlib import Path -from ..fast import FAST - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_FAST(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FAST(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FAST_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FAST(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_first.py b/pydra/tasks/fsl/preprocess/tests/test_run_first.py deleted file mode 100644 index e8bcab9..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_first.py +++ /dev/null @@ -1,37 +0,0 @@ -import os, pytest -from pathlib import Path -from ..first import FIRST - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_FIRST(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FIRST(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FIRST_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FIRST(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_flirt.py b/pydra/tasks/fsl/preprocess/tests/test_run_flirt.py deleted file mode 100644 index 5c968c0..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_flirt.py +++ /dev/null @@ -1,37 +0,0 @@ -import os, pytest -from pathlib import Path -from ..flirt import FLIRT - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_FLIRT(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FLIRT(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FLIRT_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FLIRT(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_fnirt.py b/pydra/tasks/fsl/preprocess/tests/test_run_fnirt.py deleted file mode 100644 index a706054..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_fnirt.py +++ /dev/null @@ -1,52 +0,0 @@ -import os, pytest -from pathlib import Path -from ..fnirt import FNIRT - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - {"ref_file": 'f"{in_file}"'}, - [ - "warped_file", - "field_file", - "jacobian_file", - "modulatedref_file", - "log_file", - "fieldcoeff_file", - ], - ) - ], -) -def test_FNIRT(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FNIRT(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FNIRT_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FNIRT(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_mcflirt.py b/pydra/tasks/fsl/preprocess/tests/test_run_mcflirt.py deleted file mode 100644 index 13525ff..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_mcflirt.py +++ /dev/null @@ -1,22 +0,0 @@ -import os, pytest -from pathlib import Path -from ..mcflirt import MCFLIRT - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", [(None, ["out_file"])]) -def test_MCFLIRT(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = MCFLIRT(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_prelude.py b/pydra/tasks/fsl/preprocess/tests/test_run_prelude.py deleted file mode 100644 index 9c6b66f..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_prelude.py +++ /dev/null @@ -1,37 +0,0 @@ -import os, pytest -from pathlib import Path -from ..prelude import PRELUDE - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_PRELUDE(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = PRELUDE(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_PRELUDE_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = PRELUDE(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_slicetimer.py b/pydra/tasks/fsl/preprocess/tests/test_run_slicetimer.py deleted file mode 100644 index f03a0c1..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_slicetimer.py +++ /dev/null @@ -1,25 +0,0 @@ -import os, pytest -from pathlib import Path -from ..slicetimer import SliceTimer - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [({"ref_file": 'f"{in_file}"'}, ["out_file", "slice_time_corrected_file"])], -) -def test_SliceTimer(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = SliceTimer(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() diff --git a/pydra/tasks/fsl/preprocess/tests/test_run_susan.py b/pydra/tasks/fsl/preprocess/tests/test_run_susan.py deleted file mode 100644 index bdb8e42..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_run_susan.py +++ /dev/null @@ -1,40 +0,0 @@ -import os, pytest -from pathlib import Path -from ..susan import SUSAN - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [({"brightness_threshold": 0.01, "fwhm": 2}, ["out_file", "smoothed_file"])], -) -def test_SUSAN(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = SUSAN(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_SUSAN_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = SUSAN(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_applywarp.py b/pydra/tasks/fsl/preprocess/tests/test_spec_applywarp.py deleted file mode 100644 index ad2b138..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_applywarp.py +++ /dev/null @@ -1,17 +0,0 @@ -import os, pytest -from pathlib import Path -from ..applywarp import ApplyWarp - - -@pytest.mark.parametrize("inputs, outputs", [({"ref_file": 'f"{in_file}"'}, ["out_file"])]) -def test_ApplyWarp(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = ApplyWarp(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_bet.py b/pydra/tasks/fsl/preprocess/tests/test_spec_bet.py deleted file mode 100644 index 09dd23a..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_bet.py +++ /dev/null @@ -1,37 +0,0 @@ -import os, pytest -from pathlib import Path -from ..bet import BET - - -@pytest.mark.parametrize( - "inputs, outputs", - [ - (None, ["out_file"]), - ({"mask": True}, ["out_file", "mask_file"]), - ( - {"surfaces": True}, - [ - "out_file", - "meshfile", - "inskull_mask_file", - "inskull_mesh_file", - "outskull_mask_file", - "outskull_mesh_file", - "outskin_mask_file", - "outskin_mesh_file", - "skull_mask_file", - ], - ), - ], -) -def test_BET(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = BET(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_fast.py b/pydra/tasks/fsl/preprocess/tests/test_spec_fast.py deleted file mode 100644 index 61ec166..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_fast.py +++ /dev/null @@ -1,32 +0,0 @@ -import os, pytest -from pathlib import Path -from ..fast import FAST - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_FAST(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FAST(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FAST_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FAST(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_first.py b/pydra/tasks/fsl/preprocess/tests/test_spec_first.py deleted file mode 100644 index e48756b..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_first.py +++ /dev/null @@ -1,32 +0,0 @@ -import os, pytest -from pathlib import Path -from ..first import FIRST - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_FIRST(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FIRST(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FIRST_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FIRST(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_flirt.py b/pydra/tasks/fsl/preprocess/tests/test_spec_flirt.py deleted file mode 100644 index e806cf4..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_flirt.py +++ /dev/null @@ -1,32 +0,0 @@ -import os, pytest -from pathlib import Path -from ..flirt import FLIRT - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_FLIRT(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FLIRT(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FLIRT_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FLIRT(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_fnirt.py b/pydra/tasks/fsl/preprocess/tests/test_spec_fnirt.py deleted file mode 100644 index 1097d04..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_fnirt.py +++ /dev/null @@ -1,47 +0,0 @@ -import os, pytest -from pathlib import Path -from ..fnirt import FNIRT - - -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - {"ref_file": 'f"{in_file}"'}, - [ - "warped_file", - "field_file", - "jacobian_file", - "modulatedref_file", - "log_file", - "fieldcoeff_file", - ], - ) - ], -) -def test_FNIRT(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FNIRT(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FNIRT_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = FNIRT(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_mcflirt.py b/pydra/tasks/fsl/preprocess/tests/test_spec_mcflirt.py deleted file mode 100644 index 075cc33..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_mcflirt.py +++ /dev/null @@ -1,17 +0,0 @@ -import os, pytest -from pathlib import Path -from ..mcflirt import MCFLIRT - - -@pytest.mark.parametrize("inputs, outputs", [(None, ["out_file"])]) -def test_MCFLIRT(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = MCFLIRT(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_prelude.py b/pydra/tasks/fsl/preprocess/tests/test_spec_prelude.py deleted file mode 100644 index 7212865..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_prelude.py +++ /dev/null @@ -1,32 +0,0 @@ -import os, pytest -from pathlib import Path -from ..prelude import PRELUDE - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_PRELUDE(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = PRELUDE(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_PRELUDE_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = PRELUDE(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_slicetimer.py b/pydra/tasks/fsl/preprocess/tests/test_spec_slicetimer.py deleted file mode 100644 index 2125884..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_slicetimer.py +++ /dev/null @@ -1,20 +0,0 @@ -import os, pytest -from pathlib import Path -from ..slicetimer import SliceTimer - - -@pytest.mark.parametrize( - "inputs, outputs", - [({"ref_file": 'f"{in_file}"'}, ["out_file", "slice_time_corrected_file"])], -) -def test_SliceTimer(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = SliceTimer(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/preprocess/tests/test_spec_susan.py b/pydra/tasks/fsl/preprocess/tests/test_spec_susan.py deleted file mode 100644 index aca65a1..0000000 --- a/pydra/tasks/fsl/preprocess/tests/test_spec_susan.py +++ /dev/null @@ -1,35 +0,0 @@ -import os, pytest -from pathlib import Path -from ..susan import SUSAN - - -@pytest.mark.parametrize( - "inputs, outputs", - [({"brightness_threshold": 0.01, "fwhm": 2}, ["out_file", "smoothed_file"])], -) -def test_SUSAN(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = SUSAN(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_SUSAN_exception(test_data, inputs, error): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = SUSAN(in_file=in_file, **inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/tests/data/anatomical.nii b/pydra/tasks/fsl/tests/data/anatomical.nii deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/confounds_regressors.tsv b/pydra/tasks/fsl/tests/data/confounds_regressors.tsv deleted file mode 100644 index abb2b36..0000000 --- a/pydra/tasks/fsl/tests/data/confounds_regressors.tsv +++ /dev/null @@ -1,527 +0,0 @@ -csf white_matter global_signal std_dvars dvars framewise_displacement t_comp_cor_00 t_comp_cor_01 t_comp_cor_02 t_comp_cor_03 t_comp_cor_04 t_comp_cor_05 a_comp_cor_00 a_comp_cor_01 a_comp_cor_02 a_comp_cor_03 a_comp_cor_04 a_comp_cor_05 cosine00 cosine01 cosine02 cosine03 cosine04 cosine05 cosine06 trans_x trans_y trans_z rot_x rot_y rot_z -428.8565979003906 352.93707275390625 346.7164611816406 n/a n/a n/a 0.0537686856 -0.0015589024 0.0256904886 -0.055431638600000006 0.0334041688 -0.045645886 -0.0254605165 0.0048484609000000005 -0.040182257799999996 -0.00840419 0.028837367000000003 -0.0429884066 0.061662366600000004 0.0616615418 0.061660167 0.0616582424 0.0616557679 0.061652743499999996 0.061649169299999994 -0.0473566 0.07976039999999998 -0.119026 0.00304888 -0.000650074 0.000562989 -423.5132446289063 352.6452331542969 345.640625 1.039311 62.641384 0.2022724 0.062349405499999996 -0.0022176462 0.0345898154 -0.0170098117 0.028544711099999998 -0.0453725769 -0.018702046200000003 -0.0057048807 -0.044379064100000004 -0.0006186997 0.0348451634 -0.0065644783 0.061660167 0.061652743499999996 0.0616403716 0.0616230524 0.0616007872 0.0615735779 0.0615414265 -0.0394607 0.143454 -0.0792087 0.00159675 -0.000862004 0.000409737 -421.8155822753906 352.5387268066406 345.3033752441406 1.001764 60.378342 0.07977654999999999 0.052621478099999994 -0.024067204300000002 0.023976866800000003 -0.0034115172 0.020885618600000003 -0.0105915573 -0.016908982 -0.0029474502000000004 -0.0496521325 0.016617866499999998 0.0331314209 0.0023508823 0.0616557679 0.0616351482 0.0616007872 0.0615526926 0.061490875 0.0614153483 0.061326129199999996 -0.0474473 0.142576 -0.13041100000000003 0.0013054 -0.0008713459999999998 0.000503238 -421.94580078125 352.53643798828125 345.1815185546875 1.034929 62.377281 0.34043935 0.0546193864 -0.0085628441 0.0251114206 0.0089886654 0.0472215468 -0.0388199627 -0.0151842025 -0.0052130304 -0.0459949178 0.0050819396 0.0482500117 0.0124924463 0.061649169299999994 0.0616087584 0.0615414265 0.06144720309999999 0.061326129199999996 0.061178257800000004 0.061003653600000006 -0.0450416 -0.0219745 -0.10445 0.00348336 -0.000295167 0.000306934 -421.6714782714844 352.55206298828125 345.7688903808594 0.984481 59.336678 0.1350055 0.053351830999999995 -0.0129630161 0.01933137 0.0093967082 0.0199816272 -0.013670688799999999 -0.013729844 -0.005543737900000001 -0.0410041867 -0.0028430989 0.0371352979 0.0232120496 0.0616403716 0.0615735779 0.06146230849999999 0.061306644 0.0611066967 0.060862611100000005 0.060574563399999996 -0.0474075 0.035851 -0.0622828 0.00322295 -0.000635691 0.000358938 -421.7160339355469 353.1280212402344 346.5439453125 1.044161 62.933681 0.30546834999999994 0.0491227798 -0.0347523588 0.0275142878 0.014662727 -0.0021947441000000002 -0.0037473461 -0.0233749851 -0.0001679766 -0.04227085690000001 0.0110727573 0.025359982000000003 0.0325656202 0.061629375099999995 0.0615296116 0.0613634587 0.061131095700000006 0.0608327732 0.060468813200000006 0.0600396084 -0.0350914 0.146502 -0.100252 0.000399393 -0.0005856 0.000375931 -422.0044860839844 352.8157043457031 346.26373291015625 1.043894 62.917583 0.3683706 0.051076075 -0.019145380400000002 0.027904492000000003 0.014245225700000001 0.0139551647 -0.0289754181 -0.0163075221 0.0021952172 -0.057152487 -0.0011384181 0.032963130800000004 0.0175916103 0.061616180199999995 0.0614768659 0.0612449087 0.060920658200000005 0.060504603 0.05999737 0.0593997236 -0.0473819 -0.0489117 -0.116 0.0030016 -0.000321411 0.000343959 -421.9078369140625 353.349609375 346.627197265625 0.984202 59.319859 0.1142548 0.0557874392 -0.0176886541 0.019926881 0.017280086200000003 0.0154755351 -0.0015848789000000002 -0.0187503826 0.0042999105 -0.0514848333 -0.007117820600000001 0.0375336971 0.023369584500000002 0.0616007872 0.0614153483 0.0611066967 0.060675451799999995 0.0601224786 0.0594488867 0.058656027300000003 -0.0445358 0.030952 -0.0907497 0.0030545 -0.000303749 0.000288627 -423.7535095214844 352.76971435546875 347.08319091796875 1.041885 62.796497 0.24610505 0.041001723399999995 -0.0329021056 0.0241082723 0.0280948068 -0.0124210021 -0.00035472870000000003 -0.0156891539 -0.00190658 -0.0453808136 0.0013530182000000002 0.0307899465 0.0246374027 0.061583196900000005 0.0613450675 0.060948867000000004 0.060395616299999996 0.059686740999999995 0.058824067699999996 0.057809819299999995 -0.0439007 0.154855 -0.0935258 0.00132579 -0.000880095 0.000359388 -421.46575927734375 352.84381103515625 346.3697204589844 1.022636 61.63633 0.33807078 0.0339742969 -0.0209763399 0.0080653242 0.031088961499999998 -0.0089892564 0.053482818 -0.0198270894 -0.0039345466999999995 -0.0451115432 -0.0056682597 0.0331161027 0.025915474100000002 0.061563409699999995 0.061266033600000006 0.0607714702 0.0600813114 0.0591977785 0.058123715199999995 0.0568625783 -0.0379304 -0.00866658 -0.11276000000000003 0.00374655 -0.0004332 0.000240149 -420.7928161621094 352.7812805175781 346.3152160644531 1.023381 61.681225 0.19639038 0.0188112805 -0.0385910818 -0.011891090600000001 0.0513098766 -0.015556511 0.0644882221 -0.0165915746 0.0008219536 -0.0450252247 0.00041603230000000004 0.024071836800000003 0.0367681956 0.0615414265 0.061178257800000004 0.060574563399999996 0.0597327166 0.058656027300000003 0.057348728499999994 0.05581596 -0.0473786 0.0879448 -0.0859926 0.00291274 -0.000635691 0.000475116 -421.4585876464844 352.84234619140625 346.48553466796875 0.992451 59.817059 0.150551 0.022704300099999998 -0.0338238752 -0.020676612900000002 0.0361390234 -0.0082521286 0.044257989299999995 -0.0169017771 -0.0029269592 -0.029943540600000002 0.0160998063 0.0158351577 0.0326194083 0.061517248 0.0610817528 0.0603582097 0.0593500308 0.0580619705 0.0565001029 0.0546717934 -0.0428669 0.150998 -0.0954755 0.00147358 -0.000635691 0.000444212 -419.8441162109375 352.70477294921875 346.0199279785156 1.0102 60.886803 0.30138802 0.0121409076 -0.0273844306 -0.020543481699999998 0.038220342000000004 0.0089782532 0.0738032034 -0.016070717800000002 -0.0082920227 -0.042922151500000005 -0.0043682968 0.0195660682 0.023063640899999998 0.061490875 0.060976532199999996 0.0601224786 0.0589334724 0.057416137699999995 0.055578927800000004 0.053432078200000004 -0.0402938 0.00294458 -0.113888 0.00370674 -0.000347448 0.000318635 -419.6357421875 352.89276123046875 346.4696960449219 1.005331 60.593327 0.30593151999999996 0.0080609827 -0.028165880600000002 -0.0428730964 0.039591141499999996 0.006099671700000001 0.0412882162 -0.015807618 -0.006021654 -0.0362715204 0.0058374459 0.006954896800000001 0.0316654202 0.06146230849999999 0.060862611100000005 0.0598674458 0.0584832792 0.056719105 0.0545863863 0.052098980999999996 -0.0378821 0.151582 -0.09914750000000003 0.00126458 -0.000635691 0.0002462 -421.9593811035156 352.7574768066406 346.8318786621094 1.026059 61.842636 0.2979096265 0.0198073138 -0.032301819700000005 -0.026579866400000002 0.030936274700000002 0.0014158785000000001 0.0619500371 -0.0174697914 -0.0059961181 -0.0457277961 0.0021469561 0.0067888101 0.0121129255 0.0614315496 0.0607400057 0.059593193200000005 0.057999708 0.0559714938 0.053523752699999996 0.050674831600000005 -0.0319609 0.0190501 -0.134484 0.00350584 -0.000635691 5.05947e-06 -420.6251831054688 352.7864074707031 346.70928955078125 0.975088 58.770504 0.0701924765 0.0160915406 -0.0354456936 -0.0186905975 0.040895061 0.0005614441000000001 0.0579349405 -0.0131619995 -0.0039251202 -0.047525683 0.0008730146000000001 0.015449289 0.027326357599999997 0.0613985992 0.0606087335 0.0592998088 0.0574830349 0.0551739708 0.052392391600000005 0.0491621191 -0.0319432 0.0404246 -0.107731 0.00342707 -0.000454141 0.000185685 -424.9055480957031 352.82977294921875 347.3736572265625 1.057406 63.73201 0.28658500000000003 0.0118732582 -0.06779053639999999 -0.0240485873 0.0191050782 0.008052877 -0.0295202877 -0.0171288314 -0.0017573574 -0.0483553418 0.0153628106 0.0053415358 0.0209976612 0.0613634587 0.060468813200000006 0.0589873867 0.0569335547 0.054327247300000006 0.0511937557 0.047563487 -0.035625 0.126491 -0.182642 0.00138752 -0.000635691 0.000403101 -423.4905700683594 347.3473205566406 343.6858215332031 1.429247 86.143631 1.01910365 -0.1022827734 -0.0474509013 0.0326234375 -0.013203429499999999 0.0635159984 -0.052519164199999996 0.0519471864 -0.0529280342 -0.0578015326 0.05777697230000001 -0.09890198310000001 -0.0313843345 0.061326129199999996 0.060320264900000004 0.058656027300000003 0.056351581 0.053432078200000004 0.0499293841 0.0458817293 -0.0444593 -0.247091 -0.662699 -0.00127977 -0.00108247 0.000384563 -417.0805358886719 350.4700927734375 344.9083251953125 1.76582 106.429535 1.040049655 -0.013605852600000001 -0.0557343939 -0.0017400832 -0.0058479165000000005 0.0225796371 0.0297208929 0.013912976799999999 -0.0026512423 0.035373041699999996 0.10219857689999999 -0.1773525384 0.0702475355 0.0612866121 0.060163109699999995 0.058305837 0.055737446100000004 0.05248926190000001 0.0486009003 0.0441197852 -0.06377090000000002 0.00637318 -0.222933 -0.00548047 -1.50595e-05 -0.000897484 -415.3163757324219 352.7156982421875 345.59564208984375 1.247697 75.20121799999998 0.401132795 0.0094559329 -0.049341345099999996 -0.010199398 0.0032057815 -0.0009929884 0.0598669591 -0.0051992248999999996 0.007276668199999999 -0.0045212240999999995 0.0392568501 -0.054685968200000004 0.032555336000000004 0.0612449087 0.05999737 0.0579369282 0.0550915004 0.05149963900000001 0.04721001019999999 0.042280734 -0.0550415 0.03651 0.00631375 -0.00372069 -0.000214771 -0.000196579 -419.47216796875 352.7251281738281 346.4576110839844 1.080105 65.100143 0.41858265 0.025813557 -0.0377546422 -0.0011280455 0.0032204269 -0.0089464002 0.0289313254 -0.0164287725 -0.0046135459 -0.0228354537 0.0063972364 0.0021225244 0.010151818 0.061201020700000004 0.0598230695 0.0575494194 0.0544141125 0.050464092099999996 0.0457584997 0.0403677898 -0.0457497 -0.0767672 0.07715769999999998 9.54066e-05 -0.000730162 -2.46726e-05 -421.4810791015625 353.1749267578125 346.563720703125 1.071692 64.593079 0.33040096 0.0077320123 -0.054674985999999995 -0.0065563106 0.0193986012 0.0007480275 7.75396e-05 -0.017688266499999997 0.0017400876000000002 -0.0172017285 0.029327895899999998 -0.0063180142 0.0330795564 0.061154949400000005 0.059640233 0.057143434800000004 0.053705669000000004 0.0493835445 0.0442482328 0.0383842957 -0.0311852 0.103738 0.0519469 -0.0014082700000000003 -0.0012479800000000003 0.000156242 -419.31378173828125 352.78167724609375 345.8904724121094 1.041467 62.771336 0.14350323000000004 -0.0178676366 -0.0449070646 -0.0320796904 0.026965532 -0.0031668111 0.0495382303 -0.0137813548 0.0019540808 -0.016928535800000002 0.0157095403 0.0031698915000000004 0.0307664177 0.0611066967 0.0594488867 0.056719105 0.0529665744 0.0482589599 0.042681148499999995 0.0363337182 -0.0406102 0.0749191 0.0909968 -0.000655001 -0.0008579749999999998 -2.46726e-05 -422.8047790527344 352.604736328125 346.1974792480469 1.055401 63.611164 0.07445132999999998 -0.0142758577 -0.0432600812 -0.0699937293 0.0244232171 0.023965530899999997 -0.0510595659 -0.0125283464 0.0003246777 -0.0117045255 0.017569212600000002 -0.0081520177 0.0179983371 0.0610562642 0.059249057800000005 0.05627656599999999 0.052197250300000005 0.0470913411 0.041059259300000005 0.0342196412 -0.0364433 0.101577 0.111208 -0.000476084 -0.000706535 0.000113277 -420.7060241699219 350.52545166015625 343.35455322265625 1.372377 82.715958 0.5722636000000001 -0.0744274488 -0.0074701433999999995 -0.047068429800000006 -0.0173755697 0.034343122000000004 -0.0376298668 0.0223343425 0.01634942 0.0276490393 0.0556881186 0.044624588 -0.051700614299999996 0.061003653600000006 0.0590407749 0.05581596 0.051398136 0.0458817293 0.039384647599999996 0.032045759300000004 -0.177749 -0.0180122 0.22425 -0.00386358 -0.000500808 -0.000260034 -420.1304016113281 349.28533935546875 341.61187744140625 1.717919 103.542458 1.5768292 -0.1203087953 0.061222523200000004 -0.0103574369 -0.0671542308 -0.1656955096 -0.0248116825 0.08135555629999999 0.1108777782 0.053629350199999995 -0.0648930502 -0.0518459153 -0.040079954 0.060948867000000004 0.058824067699999996 0.0553374348 0.050569687300000006 0.044631203099999996 0.0376594638 0.0298158718 -0.594501 -0.123645 0.549579 -0.0129923 -0.00312881 -0.00308562 -420.0106201171875 350.4721984863281 341.4777526855469 1.189683 71.704628 0.8598327 -0.0766104331 -0.0011321699 -0.0171281904 -0.0842365336 -0.1322071649 -0.0391631577 0.0612840931 0.1153356112 0.062109298099999995 0.0223132797 -0.09018488599999999 -0.045105018899999995 0.0608919062 0.058598967 0.0548411441 0.049712377300000006 0.043340877699999995 0.0358859231 0.0275338758 -0.197552 -0.103441 0.401287 -0.0140042 -0.00469922 0.000219824 -420.8648681640625 352.74041748046875 346.4868469238281 1.175502 70.849884 0.44343045 -0.0590932687 0.0056311127 -0.0242823688 -0.049743768499999994 -0.09130462460000001 -0.047662057300000005 0.0162643853 0.0960500007 0.0839526051 0.0528457576 -0.0678838777 -0.0326066126 0.0608327732 0.0583655051 0.054327247300000006 0.0488266951 0.0420119037 0.034066302799999996 0.0252037594 -0.170904 -0.0789298 0.316497 -0.00920198 -0.00370526 0.000573269 -422.3285827636719 352.9872131347656 346.9273681640625 1.065876 64.242516 0.3102057 -0.044653840099999995 -0.0049897139000000005 -0.0584648942 -0.0314740389 -0.0624348944 -0.0613848693 0.0010178028 0.0667218101 0.0708351471 0.047145317400000004 -0.0626980809 -0.0255755202 0.0607714702 0.058123715199999995 0.0537959092 0.0479131463 0.0406454662 0.0322029395 0.0228295951 -0.159661 -0.0522662 0.225198 -0.00571034 -0.00358018 0.000576551 -423.484375 353.3213195800781 346.7541198730469 0.99789 60.144844 0.15635430999999997 -0.030048197999999998 -0.022438739 -0.0587792625 -0.0717754746 -0.0718904174 -0.0090266302 -0.005497474699999999 0.056706593 0.0572944617 0.0449399609 -0.07251513679999999 -0.0620536454 0.060707999400000004 0.0578736318 0.0532473004 0.0469722521 0.0392427837 0.030298225699999997 0.020415532 -0.157928 0.00961641 0.159951 -0.00591866 -0.00385606 0.000510917 -422.6296691894531 352.5272521972656 346.68585205078125 1.218467 73.439507 0.6499810400000001 0.015572802299999999 0.0038197293 -0.0405419556 -0.0759826957 0.0156560179 0.0629763753 -0.0182669232 -0.021118611699999998 -0.015509651200000002 -0.0067083703000000005 -0.0030548094 -0.1021812774 0.060642363 0.057615290599999994 0.0526815972 0.046004549699999994 0.0378051071 0.0283546073 0.0179657891 -0.130787 0.00327637 -0.0549245 0.00168537 -0.00356012 0.000378397 -421.4149475097656 352.7333984375 346.0684814453125 1.07985 65.084755 0.241332065 0.0209045278 0.0011166150999999999 -0.0104159162 -0.0825885704 0.0221189512 0.063141819 -0.0195401296 -0.0152460197 -0.0075687529000000005 0.0042409039 0.006294318399999999 -0.0916082194 0.060574563399999996 0.057348728499999994 0.052098980999999996 0.0450105913 0.0363337182 0.02637458 0.0154846479 -0.116168 0.0715134 0.011055 2.7343e-06 -0.00340434 0.000389912 -421.584716796875 353.0647888183594 346.3740234375 1.021754 61.583206 0.128318865 0.0325952896 -0.015737330900000002 0.0052867411 -0.0684415757 0.0177161657 0.042312542300000006 -0.0250786205 -0.0131969716 -0.014223595 0.0198133617 -0.0135185928 -0.0799757221 0.060504603 0.0570739836 0.05149963900000001 0.0439909442 0.0348299293 0.024360686200000002 0.0129764445 -0.117702 0.0848395 -0.007221799999999999 -0.00120561 -0.00386425 0.000625297 -420.8820495605469 352.388916015625 346.1412658691406 1.017181 61.307583 0.26043195 0.046300783600000006 -0.0138193137 0.0271737991 -0.064659733 0.0366652871 0.0376056794 -0.023186009100000002 -0.0260975862 -0.023854651600000002 0.0088141475 0.016341030700000002 -0.0686629118 0.0604324842 0.056791094900000005 0.0508837635 0.0429461904 0.0332950814 0.022315511899999998 0.0104455625 -0.127731 -0.0369069 -0.0206677 0.00087025 -0.00367072 0.00066012 -422.7683410644531 352.6333312988281 346.459228515625 1.086044 65.458061 0.24922650000000005 0.054704745 -0.011635776799999999 0.034030816 -0.046617276500000006 0.028861273700000002 -0.0600267943 -0.018493584 -0.0213040354 -0.0346088526 0.00048352059999999997 0.011412013700000001 -0.0220784731 0.0603582097 0.0565001029 0.0502515524 0.041876926 0.031730543 0.0202416832 0.007896425 -0.120646 0.0814662 0.0342868 -0.000492052 -0.00367072 0.000646144 -423.384765625 352.8699951171875 346.6176452636719 1.045051 62.987331 0.1679798 0.0574015149 -0.04572617019999999 0.036392041800000004 -0.018424803700000002 0.0049927445 -0.048185742999999996 -0.0164273839 -0.007311853399999999 -0.0375152985 0.0284772792 0.0045837666 0.0044404464 0.0602817821 0.056201049100000004 0.0496032084 0.0407837614 0.0301377094 0.0181418631 0.005333487099999999 -0.125901 0.0299356 0.024601 -0.00241004 -0.00361808 0.000586604 -422.10693359375 353.3209228515625 346.6868591308594 1.034287 62.338581 0.16245489999999999 0.0469631784 -0.0329227317 0.0281633687 0.0083475625 -0.00048329199999999997 -0.0141796619 -0.0236444559 -0.0034240401 -0.0348991242 0.0281253477 0.00769393 0.011555743200000001 0.0602032042 0.055893976100000006 0.0489389399 0.0396673204 0.0285180009 0.0160187477 0.0027612279999999997 -0.144605 0.0216047 0.0614511 -0.00165331 -0.00255512 0.000434896 -398.93359375 335.9974670410156 327.3197021484375 2.372919 143.02063 1.7024711 -0.1427911374 0.047946572800000004 0.1193466606 0.0544291915 0.1623886163 -0.0263057648 0.221133462 -0.10771889949999999 0.13227521539999998 0.0017588622 -0.0046823567 0.0931726563 0.0601224786 0.055578927800000004 0.0482589599 0.038528240299999995 0.0268728619 0.0138750634 0.0001841432 -0.0850468 0.352415 1.15167 -0.00345532 -0.00132072 0.00183616 -431.0296325683594 351.3997497558594 347.8903503417969 2.497537 150.531601 1.0051556 -0.06591874639999999 0.0765469858 0.0095970056 -0.0178579808 -0.1354692434 -0.0243402297 0.0276067227 0.068102204 0.0898778094 -0.075914126 -0.0438739834 0.006149240500000001 0.0600396084 0.0552559492 0.047563487 0.0373671711 0.0252037594 0.011713562700000001 -0.0023932635000000002 -0.0399239 0.0523428 0.694779 -0.00622349 -0.00199618 0.00245392 -419.92950439453125 352.5096740722656 347.37646484375 1.408989 84.922646 0.6610651000000001 -0.025038992200000002 0.0758815888 -0.0168802328 0.0013054832000000001 -0.0176771591 -0.047734745300000006 -0.0099677826 -0.0081084539 0.0800175586 -0.0452100625 -0.0072860112 0.0076167113 0.059954596500000006 0.0549250863 0.0468527442 0.0361847754 0.023512181899999998 0.0095370211 -0.0049664875 -0.0493701 0.0342794 0.351993 -0.00158095 -0.00193633 0.00134092 -419.6159362792969 352.8754577636719 347.1625671386719 1.087554 65.549065 0.1817865 -0.0222122365 0.081284435 -0.0233879573 -0.0060134726 -0.0247465624 -0.0339021706 -0.0105451511 -0.0037452589000000003 0.0901970535 -0.0379553977 -0.022177183 -0.0048742068 0.0598674458 0.0545863863 0.0461269599 0.0349817282 0.0217996377 0.0073482335 -0.0075310317 -0.0463575 0.126588 0.338763 -0.00236933 -0.00207881 0.0008070739999999999 -422.2381896972656 352.85284423828125 346.58770751953125 1.062381 64.031845 0.11410094999999998 0.0071009763 0.0851601353 -0.0074290737 -0.027577419 -0.0400239131 -0.003893772 -0.0183355596 -0.005928689599999999 0.0739623988 -0.0350165671 0.013235366 -0.044375791100000006 0.0597781596 0.054239897599999996 0.0453863669 0.033758716 0.020067654 0.0051500103000000005 -0.010082414100000001 -0.0492555 0.106455 0.313232 -0.00199062 -0.00265628 0.000452475 -420.8116455078125 352.6007385253906 345.61712646484375 1.011807 60.983639 0.09175215 0.021658197799999997 0.0967694036 0.0164264371 -0.0287854502 -0.0353801541 0.0036693646000000003 -0.015388752 -0.014942166299999999 0.0712594591 -0.0406792588 0.0261162648 -0.035990155499999996 0.059686740999999995 0.053885669500000004 0.044631203099999996 0.0325164369 0.0183177752 0.0029451740999999997 -0.012616175600000001 -0.0393361 0.0916108 0.344488 -0.00175217 -0.00227646 0.000548856 -422.9323120117188 352.4203796386719 345.6949768066406 1.059777 63.874928 0.09987395 0.0260364647 0.09381332869999999 0.025705270099999997 0.0045152457 -0.0281201 -0.0459503911 -0.0141642325 -0.014653931499999998 0.0794819558 -0.0379641987 0.020624369099999998 0.0040923684 0.059593193200000005 0.053523752699999996 0.043861710899999996 0.0312555998 0.0165515619 0.0007365563000000001 -0.0151278882 -0.0392628 0.133787 0.339265 -0.00238847 -0.00250708 0.0007299649999999998 -420.8698425292969 352.14141845703125 344.97369384765625 1.016259 61.251968 0.14305134999999997 0.0403816914 0.08101173589999999 0.0465354984 0.0348371691 -0.0185282176 -0.0314608136 -0.0147986393 -0.0246743783 0.053034382000000005 -0.0381648646 0.0415512989 0.0253855283 0.0594975196 0.053154198799999997 0.0430781374 0.029976924199999998 0.0147705889 -0.0014730073999999998 -0.0176131622 -0.0519379 0.08368119999999998 0.331422 -0.00109394 -0.00257144 0.000640306 -419.6549377441406 352.02508544921875 344.7625732421875 0.980091 59.072094 0.0865202 0.024214802400000002 0.068124497 0.0184677969 0.0677674363 -0.0561211904 0.0364049215 -0.0113373764 -0.0218900068 0.052820999400000006 -0.0478279063 0.0230809311 0.0567904983 0.0593997236 0.0527770605 0.042280734 0.0286811401 0.0129764445 -0.0036806797 -0.020067654 -0.046333 0.112999 0.345634 -0.00145787 -0.0022119 0.000616066 -419.5580139160156 351.7615661621094 344.95654296875 0.977007 58.886185 0.08806160000000002 0.0084624295 0.06577136110000001 -0.0008156749 0.0838519674 -0.0086116087 0.0357125007 -0.011538676000000001 -0.0301710611 0.06352220780000001 -0.0348161446 0.0099240873 0.0590846897 0.0592998088 0.052392391600000005 0.0414697568 0.0273689869 0.011170728500000001 -0.0058836257 -0.022487074 -0.0491731 0.139818 0.33718 -0.00183489 -0.0026047 0.0008452159999999998 -418.5008850097656 351.43280029296875 344.5787658691406 0.974061 58.708618 0.12656724999999996 -0.016421414 0.0651636451 -0.0194463884 0.086367444 -0.0015944016 0.047496738 -0.007705545899999999 -0.0310243167 0.05627512 -0.042952150700000004 0.0371919003 0.053349555300000004 0.0591977785 0.0520002471 0.0406454662 0.026041213599999998 0.0093550512 -0.0080790168 -0.0248671939 -0.0556319 0.099929 0.334977 -0.000686556 -0.00233067 0.000707251 -420.9892578125 351.54791259765625 345.009521484375 1.003108 60.459343 0.07933844999999998 -0.0164994482 0.0617951317 -0.048894435 0.0763371138 0.0193727231 -0.0279058335 -0.0062813855 -0.0340348075 0.0623236254 -0.0297092848 0.0046927951 0.0416852363 0.0590936366 0.0516006827 0.0398081268 0.0246985778 0.0075310317 -0.010264034 -0.027203854 -0.049199 0.137466 0.339039 -0.00115688 -0.0023668 0.000587574 -420.02740478515625 352.0018005371094 345.2995910644531 0.984135 59.315811 0.07033299999999998 -0.0226097346 0.0694879792 -0.0554352651 0.057112466900000006 0.0241277383 0.006725675 -0.0115110718 -0.033804618 0.0619905498 -0.0190197189 0.0063840547 0.0102565166 0.0589873867 0.0511937557 0.0389580073 0.023341845899999998 0.0057002965 -0.012435871599999999 -0.0294929706 -0.0491411 0.132809 0.305769 -0.00142164 -0.0026515 0.000685076 -420.0936584472656 352.0654296875 345.16571044921875 0.957042 57.682842 0.13281205 -0.0285900512 0.0773623299 -0.06706773519999999 0.046439384400000006 0.0308971175 -0.0326689468 -0.0159388611 -0.0339291298 0.0665602976 -0.035628336600000005 0.0218685 0.0085294545 0.0588790326 0.050779524000000006 0.0380953808 0.021971792200000003 0.0038644781 -0.0145917409 -0.031730543 -0.0521226 0.0966436 0.330312 -0.000687571 -0.00211005 0.000578152 -420.8419494628906 351.9255065917969 345.1107177734375 1.074755 64.777657 0.14086359999999998 -0.0194845099 0.08939296029999999 -0.0719224272 0.0217078052 0.0193211646 -0.027653851899999998 -0.004147429 -0.035500839900000004 0.0582776025 -0.0666198221 -0.0075161073 -0.023371317599999997 0.058768578200000005 0.0503580468 0.0372205242 0.020589198700000002 0.0020252136 -0.0167288735 -0.0339126607 -0.056943 0.164878 0.329525 -0.00145408 -0.00230616 0.000200335 -421.6316223144531 352.25726318359375 345.7149963378906 1.050525 63.317265 0.10525315 -0.0108672556 0.07977497759999999 -0.0706419742 -0.0005168124 -0.0023040367 0.008923870300000001 -0.014216630400000001 -0.022347716400000002 0.0827686301 -0.0387851744 -0.0123695003 -0.0396643459 0.058656027300000003 0.0499293841 0.0363337182 0.019194854299999998 0.0001841432 -0.0188445253 -0.036035509900000005 -0.046556 0.173401 0.318929 -0.00230152 -0.00249998 0.000674018 -422.5867004394531 352.7898254394531 345.7652893066406 1.004552 60.54636 0.1451869 -0.0117407584 0.0833498846 -0.0438805796 -0.005164172 0.0397863951 -0.049954360999999996 -0.0183958325 -0.028527547400000002 0.06408507349999999 -0.0336385317 0.005388817299999999 -0.0388999162 0.0585413841 0.049493597199999996 0.0354352477 0.017789555 -0.0016570915 -0.020935979599999998 -0.0380953808 -0.0543704 0.10232500000000001 0.310844 -0.00140163 -0.00223564 0.000674018 -420.9111633300781 352.42889404296875 345.86029052734375 0.99781 60.140015 0.043292800000000006 -0.0149964254 0.089559924 -0.0596858254 0.009553058199999999 0.0212191985 0.012677600700000001 -0.0178423251 -0.0266844646 0.0701058886 -0.04581336900000001 0.0076488453 -0.0333499027 0.058424652599999995 0.0490507482 0.0345254011 0.0163741027 -0.0034968484000000005 -0.023000551 -0.0400886733 -0.0491631 0.100818 0.33726 -0.00131407 -0.00211995 0.000674018 -422.1372680664063 352.82208251953125 346.4076232910156 0.992392 59.813477 0.13316890000000003 -0.0063103494999999996 0.07559037910000001 -0.0564093232 -0.0113529032 -0.0004702771 0.0081464173 -0.0210727 -0.0209745732 0.0761021816 -0.050849091500000006 0.0016676946 -0.042464985 0.058305837 0.0486009003 0.0336044704 0.0149493052 -0.005333487099999999 -0.0250355883 -0.0420119037 -0.051959 0.152228 0.316758 -0.00207414 -0.0025291 0.000674018 -422.01220703125 352.0959167480469 345.8276062011719 0.992604 59.826241 0.14353344999999998 -0.0012500598 0.0938199256 -0.036478351400000004 -0.025344492000000003 0.0098315538 0.0326452235 -0.0204448392 -0.0429510079 0.0639378764 -0.041268719700000005 0.0069091149 -0.07418235150000001 0.058184941500000004 0.048144117699999996 0.0326727513 0.013515975800000002 -0.007165369699999999 -0.0270384785 -0.043861710899999996 -0.059927 0.0966176 0.307193 -0.000981214 -0.00228794 0.000600303 -421.3096923828125 351.9723815917969 345.3363037109375 0.99018 59.680157 0.10080695000000003 0.020632556399999998 0.1107013187 -0.0042676456 -0.028600071600000002 0.0053936869 0.0581724645 -0.015060127 -0.0415001583 0.070320965 -0.0450211627 0.030595126099999998 -0.056845413399999996 0.0580619705 0.0476804656 0.031730543 0.0120749325 -0.0089908627 -0.0290066498 -0.0456348621 -0.049109 0.130359 0.344162 -0.0011809 -0.00240011 0.000674018 -423.3329162597656 352.4549255371094 345.5524597167969 1.036358 62.463375 0.08394100000000003 0.0321221653 0.0821588092 0.0112712098 -0.0241307394 0.0094092558 0.0090994626 -0.0209235269 -0.0335143023 0.0544769421 -0.0458167459 0.022111012599999997 -0.0387157813 0.0579369282 0.04721001019999999 0.0307781479 0.010626997800000001 -0.010808338300000001 -0.0309375749 -0.0473282582 -0.0516745 0.14868 0.324001 -0.00203155 -0.00239289 0.000674018 -421.2816162109375 352.1495666503906 345.1146545410156 0.984695 59.349564 0.13054564999999999 0.049276664299999995 0.098600015 0.045764886500000004 -0.0026007236 0.0297581227 -0.0253809388 -0.0196968869 -0.049635215999999996 0.0475783343 -0.0535346671 0.0425155371 -0.012113746399999998 0.057809819299999995 0.046732818499999995 0.0298158718 0.0091729979 -0.012616175600000001 -0.032828774399999996 -0.0489389399 -0.0562372 0.102166 0.314577 -0.000720861 -0.00230268 0.000674018 -421.7989501953125 352.4520263671875 345.4519958496094 1.01417 61.12606 0.09187944999999997 0.0471833567 0.0775306207 0.0453196231 0.032335164900000005 0.0193860546 -0.0480464934 -0.018753318300000002 -0.0390848721 0.0405697037 -0.040324131 0.0439859162 0.023938551000000002 0.057680648099999995 0.0462489587 0.028844023599999997 0.0077137627000000005 -0.0144127627 -0.0346778198 -0.050464092099999996 -0.0562707 0.131836 0.33684 -0.00148306 -0.00226662 0.000674018 -421.82696533203125 351.92694091796875 345.33880615234375 0.984491 59.337288 0.090953 0.04884894769999999 0.057143655300000006 0.036861062 0.0558083891 0.010391676899999999 -0.0066740566000000005 -0.0153641154 -0.0516928866 0.0332340851 -0.0403141081 0.0337259373 0.0364109779 0.0575494194 0.0457584997 0.0278629153 0.0062501251 -0.0161964974 -0.036482337000000004 -0.0519010494 -0.0585374 0.145674 0.303843 -0.00122302 -0.00264945 0.000479862 -420.4350891113281 351.8567199707031 344.9952392578125 0.970668 58.504154 0.10880215 0.038339435299999995 0.06106300480000001 0.037040957299999996 0.0712971091 0.019802508 0.00498487 -0.0171071933 -0.055865911799999994 0.0221849333 -0.037471685299999995 0.046710996500000004 0.0362973912 0.057416137699999995 0.0452615117 0.0268728619 0.0047829204 -0.0179657891 -0.038240008799999996 -0.0532473004 -0.0562867 0.111549 0.314946 -0.000640772 -0.00216584 0.000319251 -411.7018432617188 343.9233703613281 336.9710388183594 2.315594 139.565567 1.0493242999999999 -0.140014633 0.0263660836 0.1527444433 -0.019366587 0.1276142973 -0.0339685631 0.1477971323 -0.06483377059999999 -0.022276556 0.0825939779 0.2615088252 -0.0525655451 0.0572808079 0.0447580654 0.025874181200000002 0.003312986 -0.0197190601 -0.0399485782 -0.0545004924 -0.34335 0.00579925 0.580768 -0.00451201 -0.000408454 -0.00186591 -406.6715393066406 337.8937072753906 328.2170715332031 3.021919 182.137177 4.63682895 -0.1512857521 -0.0405221311 0.12172312539999999 -0.0424288011 -0.0358941775 -0.0363868485 0.24780462050000002 -0.0267579577 -0.20872831649999998 -0.4869278987 -0.26469541879999997 0.0315440031 0.057143434800000004 0.0442482328 0.0248671939 0.0018411607000000001 -0.0214547469 -0.041605851299999996 -0.055658435199999995 -0.785518 -0.598966 0.124274 -0.0342055 0.0186851 -0.0157469 -426.7735900878906 353.6833801269531 349.4693298339844 2.737723 165.008102 2.5332849 -0.0602188473 -0.06905555070000001 0.0827582711 -0.0346816995 -0.0053623935 -0.0393583732 0.0442475612 0.134109126 -0.0977769148 0.09789014 0.11653050890000001 -0.0254722208 0.0570040233 0.0437320865 0.0238522233 0.0003682847 -0.023171301800000002 -0.04320970019999999 -0.056719105 -0.345343 -0.361124 0.0526061 -0.0186456 0.00785401 -0.00646589 -423.85748291015625 352.9365539550781 346.9892272949219 1.355973 81.72721099999998 1.3039016 -0.010290669 -0.1105192422 0.0698629266 -0.047344492 0.0201073664 0.0140158973 0.0150962047 0.0533928544 -0.0871943519 0.0893268112 -0.0278773912 -0.0027797946 0.0568625783 0.04320970019999999 0.0228295951 -0.0011048015 -0.0248671939 -0.0447580654 -0.057680648099999995 -0.198136 -0.126131 0.0313255 -0.0104505 0.00244788 -0.0020587 -421.3736267089844 351.91943359375 345.1015625 0.986294 59.445927 0.1167808 -0.013490106799999999 -0.0973536541 0.09162838039999999 -0.055564845700000004 0.0044217701 -0.026089552599999996 0.0322233682 0.044706223499999996 -0.0799900065 0.0781528511 -0.011253983 0.0017219964 0.056719105 0.042681148499999995 0.0217996377 -0.0025772572 -0.0265409112 -0.0462489587 -0.0585413841 -0.198155 -0.171326 0.0816158 -0.0105364 0.00278751 -0.0020587 -425.155029296875 352.4478759765625 345.5978698730469 1.075659 64.83215300000002 0.4580656499999999 0.0074858701 -0.1053277941 0.06825491040000001 -0.035462776099999996 -0.0421025007 -0.051882841 0.019173816899999998 0.058738713399999996 -0.0809222911 0.052828784299999994 -0.0391781207 0.026246303500000002 0.0565736083 0.0421465068 0.0207626817 -0.0040482420000000005 -0.0281909609 -0.0476804656 -0.0592998088 -0.144181 -0.0643765 0.182013 -0.0102576 0.000888942 -0.000301169 -422.0338134765625 352.4966125488281 345.1971740722656 1.048604 63.201485 0.09340305000000008 0.0008459817999999999 -0.08343886589999999 0.0710851889 0.0030720336 -0.0366290739 0.004945483 0.0192978559 0.055334574500000004 -0.0657208242 0.0634196843 -0.0165337258 0.0418577167 0.056426093600000005 0.041605851299999996 0.0197190601 -0.0055169164 -0.0298158718 -0.0490507482 -0.059954596500000006 -0.133104 -0.111184 0.171253 -0.0100454 0.000695615 -0.000390813 -422.3327026367188 352.5309753417969 344.9027404785156 0.976954 58.882984 0.1101332 -0.0010449014 -0.11094984779999999 0.0549021776 0.013715550900000002 -0.0335557518 0.0472933558 0.0153818674 0.0501034229 -0.0652949671 0.0659490225 -0.0249431474 0.0566696309 0.05627656599999999 0.041059259300000005 0.0186691079 -0.0069824421 -0.0314141948 -0.0503580468 -0.060504603 -0.138634 -0.0963438 0.148473 -0.00918632 0.000347823 -0.000523601 -423.12579345703125 352.14959716796875 344.9751892089844 0.974718 58.748241 0.09280588499999994 -0.009164399200000001 -0.1193736657 0.0352633273 0.0346495531 -0.007306515600000001 0.015210751100000001 0.010604373600000001 0.040092527200000005 -0.0582455717 0.0617013226 -0.04832178559999999 0.0619843492 0.0561250309 0.0405068086 0.0176131622 -0.0084439827 -0.0329845047 -0.0516006827 -0.060948867000000004 -0.138671 -0.0354011 0.151107 -0.009162890000000002 0.000264909 -4.61013e-05 -420.6154174804688 352.36676025390625 344.5677795410156 0.985531 59.399971 0.191710215 -0.021823414399999998 -0.083125815 0.0096157646 0.0317464067 -0.022184738500000002 0.0598005704 0.012138259299999999 0.034367673599999995 -0.0408439282 0.0531002897 -0.0316605711 0.050811753 0.0559714938 0.0399485782 0.0165515619 -0.0099007042 -0.0345254011 -0.0527770605 -0.0612866121 -0.11513300000000003 -0.0784964 0.210933 -0.00824821 0.000123522 0.00020285 -421.3871765136719 351.6932373046875 344.2662048339844 0.996876 60.083744 0.06981079999999998 -0.0435387141 -0.0896067772 -0.0100391779 0.0382412935 -0.010765718600000002 0.0097776887 0.0190488044 0.0439872049 -0.0336495534 0.0522168985 -0.041098047900000004 0.0626021572 0.05581596 0.039384647599999996 0.0154846479 -0.011351775 -0.036035509900000005 -0.053885669500000004 -0.061517248 -0.11696 -0.0484236 0.227956 -0.00848776 0.000301732 0.00020285 -420.5823669433594 352.1018371582031 344.6817932128906 0.987586 59.523834 0.09902055000000007 -0.0399608287 -0.0987900573 -0.0164352011 0.0291720993 0.029245059500000004 0.0135080397 0.0137511808 0.031064280299999997 -0.046117299199999996 0.0779014383 -0.042572051799999996 0.031308939 0.055658435199999995 0.038815097400000005 0.0144127627 -0.012796367099999999 -0.0375134847 -0.0549250863 -0.0616403716 -0.126945 -0.0452775 0.16998 -0.007987869999999998 0.000243353 0.00020285 -421.11663818359375 352.0289001464844 344.3695983886719 0.988543 59.581467 0.1015212 -0.0519278193 -0.0808235913 -0.0539017575 0.0079110811 0.0360284556 -0.0337369291 0.013846895900000001 0.0326332931 -0.030396788900000003 0.06924780900000001 -0.040652541699999996 0.0058117472 0.0554989249 0.038240008799999996 0.0133362505 -0.014233656 -0.0389580073 -0.055893976100000006 -0.0616557679 -0.122992 -0.092175 0.200805 -0.007710299999999998 0.000362697 0.00020285 -421.8263854980469 352.24920654296875 344.9517517089844 0.993521 59.881538 0.15708899999999998 -0.0513925392 -0.06611677980000001 -0.0697473975 -0.0284605222 0.0141361492 -0.030075356 0.012946848200000001 0.0417068195 -0.012562811100000001 0.054984658 -0.0493826808 -0.0243462438 0.0553374348 0.0376594638 0.012255456699999999 -0.0156628214 -0.0403677898 -0.056791094900000005 -0.061563409699999995 -0.10947 -0.0295423 0.230782 -0.008388879999999998 0.000123522 0.000101459 -412.33538818359375 345.93560791015625 338.9577941894531 1.414911 85.279579 1.30734705 -0.1609145862 -0.0006602997000000001 0.0217906127 -0.0284179267 0.0580589071 0.0200380702 0.1151009034 0.024335341899999998 -0.0016513557999999998 0.020284848 0.0769789823 -0.055700632800000004 0.0551739708 0.037073545299999996 0.011170728500000001 -0.0170830476 -0.0417415748 -0.057615290599999994 -0.0613634587 -0.600279 -0.15884799999999996 0.460186 -0.0119036 0.0011248400000000002 -0.00453907 -422.26361083984375 352.21002197265625 345.0701599121094 1.628014 98.123718 0.8224001 -0.0556032232 0.0076044111 -0.0383490161 -0.042735997000000005 -0.0806892439 -0.0077987622 0.0236245798 0.0701054165 0.012761761299999999 -0.030042388599999997 -0.011574696 -0.027771065299999998 0.055008538600000004 0.036482337000000004 0.010082414100000001 -0.018493524 -0.0430781374 -0.0583655051 -0.0610562642 -0.372361 -0.08851739999999998 0.378429 -0.00901273 -0.00244952 -0.00215641 -419.70654296875 352.1386413574219 344.7178039550781 1.148872 69.244812 0.649793823 -0.0316314017 -0.0059245074 -0.045988676799999996 -0.050562445 -0.0098425192 0.026574572400000003 0.0110040743 0.0329047992 0.0189949095 0.0229840498 -0.0291243716 -0.0489673327 0.0548411441 0.0358859231 0.0089908627 -0.0198934458 -0.044376285700000004 -0.0590407749 -0.060642363 -0.194562 0.000699273 0.287894 -0.00702926 -0.00116084 0.000416303 -421.6029052734375 352.6191101074219 345.4739685058594 1.001007 60.332726 0.16053932299999998 -0.0230571044 0.0040054329 -0.037859123599999996 -0.0595543309 -0.006473151999999999 0.030290801200000002 -0.0019553795000000003 0.0201338049 0.0183163278 0.015452433500000001 -0.026197428 -0.0640191682 0.0546717934 0.0352843888 0.007896425 -0.0212820138 -0.0456348621 -0.059640233 -0.0601224786 -0.166946 -0.017082199999999995 0.2657 -0.0060121 -0.000764249 0.000861509 -421.3460998535156 351.92645263671875 345.3215026855469 0.98042 59.091919 0.05068375000000004 -0.0095626285 0.0107966055 -0.006839978399999999 -0.0710822701 -0.0249390302 0.058705664000000005 0.0041221452 0.0158317552 0.0243756202 0.0139965473 -0.0219018265 -0.054577558899999996 0.0545004924 0.0346778198 0.006799452199999999 -0.022658435600000002 -0.0468527442 -0.060163109699999995 -0.0594975196 -0.162101 -0.0126845 0.289122 -0.00600269 -0.0007449839999999998 0.000529803 -422.08251953125 352.1204833984375 345.5599670410156 1.020867 61.529728 0.094746 0.0111026098 0.0027382465000000003 0.0424968238 -0.062038024500000004 -0.016072580700000002 0.0230514466 0.0017398342 0.0135934221 0.016300346299999997 0.0170587955 -0.014983705 -0.038680295 0.054327247300000006 0.034066302799999996 0.0057002965 -0.0240219257 -0.0480288462 -0.0606087335 -0.058768578200000005 -0.14863 0.0193024 0.286774 -0.00637674 -0.00122803 0.000611509 -423.6099243164063 352.4850769042969 345.4602966308594 1.021817 61.586975 0.09845851999999998 0.0326022333 -0.0018843774 0.054401008 -0.0395938994 0.0063552339 -0.0775646331 -0.0035065216999999997 0.0035503328 -0.0158895316 0.0314019293 -0.0021568734 -0.0127554307 0.0541520642 0.033449925 0.0045993107 -0.0253717058 -0.0491621191 -0.060976532199999996 -0.0579369282 -0.148625 -0.00932372 0.270622 -0.00571006 -0.00130709 0.000939277 -422.0148010253906 352.59234619140625 345.0855712890625 1.025261 61.794582 0.07011804999999999 0.03530306 -0.0052949603 0.0517087126 0.0324944294 -0.0201829015 -0.0139581524 -0.007947328299999999 0.0025202964 -0.026179402400000003 0.0164536396 0.013674565900000001 0.0393571142 0.05397494940000001 0.032828774399999996 0.0034968484000000005 -0.0267070056 -0.0502515524 -0.061266033600000006 -0.0570040233 -0.148652 0.00681013 0.259946 -0.00515821 -0.00116597 0.000766623 -419.9576110839844 352.22589111328125 344.8659362792969 1.017478 61.325474 0.15858056999999998 -0.0066042404 -0.015216674 0.0178103278 0.0667976788 -0.022552459599999998 0.0443864479 0.0051016187 0.0095032546 -0.0082688539 0.0197394979 -0.0029553319 0.0729415628 0.0537959092 0.0322029395 0.0023932635000000002 -0.0280270631 -0.0512961746 -0.0614768659 -0.0559714938 -0.131833 0.0442354 0.319501 -0.00589689 -0.00122803 0.000861509 -419.1692199707031 351.9072570800781 344.8193054199219 0.999974 60.270443 0.17284706999999996 -0.013523736599999999 -0.0316973263 -0.0183360914 0.0655494045 0.0207046488 0.047339624500000003 0.0022922893 0.0008444959 -0.0114018374 0.030239916800000002 -0.0168914584 0.0489900895 0.05361495 0.0315725097 0.0012889102 -0.0293311248 -0.052295054199999996 -0.0616087584 -0.0548411441 -0.14864 -0.00463002 0.26083 -0.00501378 -0.00122803 0.000774546 -422.2080993652344 351.77520751953125 345.0199890136719 1.0209990000000002 61.537674 0.04832348999999999 -0.029674133199999998 -0.0130227646 -0.0652469496 0.024245606099999997 0.036242947000000005 -0.0680246689 -8.74695e-05 -0.007513824200000001 0.002493322 0.0195387395 -0.0176419092 0.0109649026 0.053432078200000004 0.0309375749 0.0001841432 -0.030618446400000002 -0.0532473004 -0.0616615418 -0.05361495 -0.148639 0.00334912 0.273765 -0.00460119 -0.00122803 0.000910123 -421.1476745605469 352.0025634765625 345.3072204589844 1.011521 60.966393 0.13087913000000004 -0.0253533942 -0.0075364622999999995 -0.0520653275 -0.0298595659 -0.0055366024 0.0271307961 -0.0015108367999999998 0.0123181726 0.0081131835 0.0098232076 -0.0330897874 -0.038171439700000004 0.0532473004 0.030298225699999997 -0.000920683 -0.0318882933 -0.0541520642 -0.0616351482 -0.052295054199999996 -0.148659 0.0466931 0.273959 -0.00606827 -0.00111506 0.00074375 -422.443603515625 353.1455383300781 345.93023681640625 1.013024 61.056988 0.11047275 -0.0047724107 -0.004100558 -0.028383765699999997 -0.0331047151 0.0145684476 -0.0096712461 -0.0057066719999999994 0.0231407948 -0.0044196893 0.0176076219 -0.0178620323 -0.034342598700000004 0.053060623200000004 0.0296545534 -0.0020252136 -0.0331399408 -0.055008538600000004 -0.0615296116 -0.0508837635 -0.15298 0.0181712 0.247213 -0.00519017 -0.000976694 0.000744961 -423.72509765625 352.70269775390625 346.3428649902344 1.239178 74.687798 0.63970315 0.0100820409 -0.0100970238 -0.0181514204 -0.009900476 0.047882884400000006 -0.0085173117 -0.0154346176 -0.0387876704 -0.0670135483 -0.026783944700000003 0.026712436800000003 -0.030635157200000002 0.052872053200000005 0.0290066498 -0.0031290940000000002 -0.0343726744 -0.05581596 -0.0613450675 -0.0493835445 -0.255264 -0.0532813 0.155492 -0.000184466 0.000173296 -0.000584258 -424.0235900878906 353.2411804199219 348.4553527832031 1.18508 71.427155 0.4619082 0.0116415245 -0.015717168 -0.0075574978 -0.0008989042 -0.0137517773 0.0390175523 -0.0194846575 -0.0068618892 -0.0346567923 0.003789184 -0.012907359399999999 0.0054819002000000006 0.0526815972 0.0283546073 -0.0042319699 -0.0355857906 -0.0565736083 -0.0610817528 -0.047797019100000004 -0.164493 0.0668166 0.184002 -0.00331075 -0.00024928 0.000317468 -426.7287292480469 353.33331298828125 349.5809631347656 1.067668 64.350525 0.12247159999999997 0.0329395123 -0.0380657972 0.0284983517 -0.002208613 -0.0349453147 -0.044464301399999996 -0.0199671418 -0.0052670569 -0.0497692444 0.0009301260000000001 -0.0112891829 0.013866178 0.05248926190000001 0.027698518999999998 -0.005333487099999999 -0.0367785971 -0.0572808079 -0.0607400057 -0.0461269599 -0.147122 0.0918347 0.184067 -0.00433099 -0.000494035 0.000652823 -425.2648010253906 353.80419921875 349.080078125 1.087379 65.538528 0.1739615 -0.0025439508 -0.0645197586 0.0044449224 0.0196160725 -0.011476529499999999 0.0236914491 -0.029681967599999998 -0.0038229805 -0.050313753899999994 0.0333174243 -0.004880085399999999 0.0304541764 0.052295054199999996 0.0270384785 -0.0064332921 -0.0379504132 -0.0579369282 -0.060320264900000004 -0.044376285700000004 -0.147487 0.0111253 0.178028 -0.00399612 -0.0015237 0.00102525 -424.3199157714844 353.46234130859375 347.88885498046875 1.065323 64.209198 0.11361006 -0.019359129 -0.030299344199999998 -0.0324576533 0.0174173986 0.0207967768 -0.038853588599999996 -0.0228127766 -0.0012870534 -0.030859670099999997 0.0166370144 -0.0055382187 0.0176991012 0.052098980999999996 0.02637458 -0.0075310317 -0.0391005699 -0.0585413841 -0.0598230695 -0.0425480561 -0.144523 0.00122084 0.217871 -0.00346856 -0.00117411 0.000684428 -424.447265625 353.04541015625 347.0809631347656 1.044102 62.930126 0.12319001 -0.007949013000000001 -0.0157325317 -0.0546440931 -0.0284994912 0.0053424232 -0.014564523400000001 -0.0152612384 -0.0047259256 -0.0159998027 0.0038210345000000002 -0.018898113600000002 -0.033176218199999996 0.0519010494 0.025706918199999998 -0.0086263535 -0.0402284109 -0.0590936366 -0.059249057800000005 -0.0406454662 -0.136115 0.0699199 0.227507 -0.00390468 -0.00100735 0.000810487 -423.0267639160156 353.0918273925781 346.9169006347656 1.02029 61.494957 0.07468219999999999 0.0034204138 -0.0082671429 -0.0231595077 -0.049812618499999996 0.0191993818 0.0346481726 -0.0183531311 -0.0015581166 -0.0215650322 0.0173019094 -0.0017136954 -0.0507609716 0.0517012663 0.0250355883 -0.009718906 -0.0413332925 -0.059593193200000005 -0.058598967 -0.038671841299999996 -0.14455 0.0535372 0.206661 -0.00363215 -0.00106519 0.000560487 -420.7662963867188 352.67364501953125 346.5449523925781 1.032509 62.231434 0.11187555 0.0315689345 0.0005005732 0.0090839018 -0.055163859 0.024191062000000003 0.0688759226 -0.0214015533 -0.0260780576 -0.0288583213 0.0045324983 0.0205198012 -0.0564557695 0.05149963900000001 0.024360686200000002 -0.010808338300000001 -0.0424145842 -0.0600396084 -0.0578736318 -0.0366306304 -0.14456 0.0353493 0.191298 -0.0022169 -0.00100735 0.000467284 -423.93927001953125 352.5133056640625 346.2904052734375 1.121366 67.587013 0.13035599999999997 0.04733408769999999 0.0014156239999999999 0.0426647129 -0.0281864587 0.0436816138 -0.055045484400000004 -0.0168542044 -0.0198235189 -0.0301330254 0.0034365110999999998 0.0225717539 -0.007694141999999999 0.0512961746 0.0236823082 -0.0118943007 -0.0434716687 -0.0604324842 -0.0570739836 -0.0345254011 -0.128064 0.0706941 0.223599 -0.00304798 -0.00100735 0.000560488 -422.9907531738281 352.2771301269531 345.9111633300781 1.059446 63.854927 0.06807634999999995 0.0442387282 -0.0284216713 0.025997447200000003 0.0273458532 0.0077598147 0.013992617800000001 -0.0158320237 -0.0179919105 -0.0417256952 0.0108040882 0.0150001183 0.0402561939 0.0510908803 0.023000551 -0.0129764445 -0.0445039428 -0.0607714702 -0.056201049100000004 -0.0323598325 -0.139381 0.0585212 0.218982 -0.00361761 -0.00109559 0.000702007 -419.16290283203125 351.9938659667969 345.31610107421875 1.019405 61.441601 0.05480925 0.0150123446 -0.0270548918 0.0077729106 0.059490626 0.0148409418 0.072820679 -0.0107184326 -0.020377359299999998 -0.0480038273 -0.002207285 0.0071492234 0.052335488 0.0508837635 0.022315511899999998 -0.0140544224 -0.0455108174 -0.0610562642 -0.0552559492 -0.0301377094 -0.145269 0.0476894 0.216105 -0.00314312 -0.00100735 0.000560488 -420.52490234375 351.8774108886719 345.6357727050781 0.999323 60.231236 0.059066500000000015 -0.0107894136 -0.0372027549 -0.0268895183 0.0663575781 0.0234962714 0.030529397799999997 -0.0052345711999999996 -0.014752473600000001 -0.0299254003 0.0086204664 0.0013052941 0.0584147304 0.050674831600000005 0.0216272887 -0.0151278882 -0.046491717800000006 -0.0612866121 -0.054239897599999996 -0.0278629153 -0.135848 0.0685374 0.233604 -0.00336909 -0.00100735 0.000560488 -421.9220886230469 352.42132568359375 346.16473388671875 0.995017 59.971672 0.04684109999999999 -0.0122464302 -0.040987799 -0.0398151606 0.055075004500000004 0.0432028292 0.002654992 -0.011446894099999999 -0.0064407833 -0.013427454699999999 0.0138111577 0.0096921309 0.0349358148 0.050464092099999996 0.020935979599999998 -0.0161964974 -0.0474460842 -0.06146230849999999 -0.053154198799999997 -0.0255394259 -0.133894 0.0640341 0.233579 -0.00408037 -0.00100735 0.000464592 -423.655029296875 352.2032165527344 346.036865234375 1.022664 61.63802 0.10244109999999997 -0.0108924143 -0.0253291679 -0.059484086299999996 0.028498052000000003 0.0525746077 -0.06541205 -0.0124911596 -0.0142341454 -0.0016922448000000001 -0.0060012252 -0.0004682761 0.0039740597 0.0502515524 0.0202416832 -0.0172599069 -0.048373371799999995 -0.061583196900000005 -0.0520002471 -0.023171301800000002 -0.139211 0.0372603 0.233612 -0.00276992 -0.00100735 0.000560488 -422.8269348144531 351.8955078125 345.72015380859375 1.032901 62.255028 0.0628376 0.0031846202 0.0016965867000000002 -0.0647812814 -0.0371533884 0.013863221499999998 0.0237596798 -0.0114849906 -0.0128405735 -0.0009810438 -0.0067530767 -0.0004806187 -0.058595716299999996 0.050037220099999995 0.0195444986 -0.0183177752 -0.049273051500000005 -0.061649169299999994 -0.050779524000000006 -0.0207626817 -0.135747 0.0694379 0.260808 -0.00276992 -0.00100735 0.000560488 -422.3298034667969 352.5283508300781 345.53253173828125 1.020615 61.514542 0.07075455 0.028310892400000003 0.0079770818 -0.009284709300000001 -0.04194572269999999 0.0335758861 0.028091559900000004 -0.0169482192 -0.009203803 -0.0025219066 -0.0036709369 0.008990871899999999 -0.0511325767 0.0498211028 0.0188445253 -0.0193697628 -0.0501446098 -0.061660167 -0.049493597199999996 -0.0183177752 -0.133156 0.0794016 0.233624 -0.00313038 -0.0011925 0.000635195 -421.76397705078125 352.1412658691406 345.0396728515625 1.016233 61.250404 0.09796690000000002 0.0469079034 0.0065316156 0.0302794958 -0.0399010428 0.029765555099999997 -0.0041900644 -0.015813141 -0.0197245233 -0.0148329272 -0.010684626599999998 0.022028690899999998 -0.0380047714 0.0496032084 0.0181418631 -0.020415532 -0.0509875493 -0.061616180199999995 -0.048144117699999996 -0.0158408552 -0.145298 0.0511935 0.233596 -0.00255463 -0.000832047 0.000419622 -421.668212890625 352.4126281738281 345.1544189453125 1.045984 63.043587 0.08495395000000001 0.056014343 0.0065050339 0.042569275 0.0029886021000000004 0.0305112313 -0.0542951683 -0.0190169963 -0.0198410097 -0.023766057900000002 -0.0019867001 0.0425179317 0.0130088221 0.0493835445 0.0174366123 -0.0214547469 -0.0518013888 -0.061517248 -0.046732818499999995 -0.0133362505 -0.12381 0.064013 0.251332 -0.00289667 -0.00100735 0.000560488 -421.45733642578125 352.3363952636719 345.3581848144531 1.029687 62.061314 0.11506919999999997 0.0430590613 -0.017535858600000002 0.0227367471 0.04986738 -0.00021544389999999999 0.036789385200000004 -0.016639526 -0.0161129623 -0.0191894439 -0.0074022048 0.0092403925 0.0589014053 0.0491621191 0.0167288735 -0.022487074 -0.052585664000000004 -0.0613634587 -0.0452615117 -0.010808338300000001 -0.128126 0.0936919 0.233655 -0.00367163 -0.00119648 0.0008643439999999999 -418.5904541015625 352.453125 344.7914733886719 1.01177 60.981419 0.12501580000000004 0.022747450699999998 -0.0227798644 -0.0007045468 0.0713965647 0.0101405214 0.0707293147 -0.015597615700000001 -0.0205560827 -0.0209622727 0.0001307197 0.012972831499999999 0.0712868117 0.0489389399 0.0160187477 -0.023512181899999998 -0.0533399272 -0.061154949400000005 -0.0437320865 -0.008261536600000001 -0.139388 0.0469917 0.23284 -0.00267814 -0.00100735 0.0007221919999999998 -420.1970520019531 352.1481628417969 345.12286376953125 1.0163700000000002 61.258701 0.06638705000000002 -0.0115672437 -0.0187214364 -0.0363913226 0.0772506508 0.0304733467 0.0134410365 -0.0129747108 -0.012850633799999999 -0.014532846399999999 0.0015036911 0.0148998483 0.0623525065 0.048714014900000005 0.015306336299999999 -0.024529741400000003 -0.054063747800000006 -0.0608919062 -0.0421465068 -0.0057002965 -0.129702 0.0639967 0.248669 -0.00283088 -0.000844453 0.000560488 -421.1519470214844 352.2944030761719 345.677490234375 1.028679 62.000572 0.08387764999999998 -0.0191555198 -0.0113687279 -0.0740546282 0.0326278564 0.033587060499999995 -0.04848576809999999 -0.0153904427 -0.0097177639 0.0035198442 -0.0053295571 -0.005014884 0.0145594218 0.0484873523 0.0145917409 -0.0255394259 -0.0547567129 -0.060574563399999996 -0.0405068086 -0.0031290940000000002 -0.128796 0.0916396 0.244544 -0.00330199 -0.00124153 0.000716376 -420.250732421875 351.9621887207031 345.43682861328125 1.021072 61.54208 0.12908690000000003 -0.0100714281 0.0078229543 -0.0756675527 -0.0127729425 0.033883288399999996 0.0120054373 -0.014763998700000001 -0.0144829328 -0.0054237747 -0.0115784902 -0.0006444371 -0.0383104183 0.0482589599 0.0138750634 -0.0265409112 -0.055418427 -0.0602032042 -0.038815097400000005 -0.0005524229 -0.140138 0.048092 0.224358 -0.00233185 -0.0011525900000000002 0.00069523 -420.20587158203125 352.2241516113281 345.4471435546875 1.004652 60.552383 0.06247405000000001 0.0155805453 0.0206955664 -0.037445390099999996 -0.046230978 0.0278935853 0.06871978969999999 -0.016195846599999997 -0.0170747834 0.0057310854000000005 -0.0194562041 0.0012556731 -0.0625127771 0.0480288462 0.0131564061 -0.0275338758 -0.056048512300000006 -0.0597781596 -0.037073545299999996 0.0020252136 -0.131823 0.0750799 0.237256 -0.00247947 -0.00106181 0.000648167 -420.1483459472656 352.3724365234375 345.9701232910156 1.010679 60.915668 0.08034924999999998 0.0428934479 0.0249091123 0.0047707122 -0.0436802046 -0.0006592569 0.0430127964 -0.0195466625 -0.0125282939 0.006737321700000001 -0.011866213600000002 0.010091188000000001 -0.0478874401 0.047797019100000004 0.012435871599999999 -0.0285180009 -0.056646609199999996 -0.0592998088 -0.0352843888 0.0045993107 -0.137174 0.090847 0.241034 -0.00320294 -0.0013864 0.00070917 -422.59063720703125 351.7917175292969 345.74945068359375 1.052734 63.450413 0.12072649999999997 0.0608201066 0.010710332099999999 0.0371698071 -0.030235705800000002 0.0369771852 -0.0638726565 -0.0184212899 -0.0223792846 -0.011411773899999998 -0.0036626540000000004 0.0234727806 -0.016307429499999998 0.047563487 0.011713562700000001 -0.0294929706 -0.0572123765 -0.058768578200000005 -0.033449925 0.007165369699999999 -0.137594 0.0525486 0.224341 -0.00220331 -0.00115182 0.000637078 -421.29986572265625 351.9552917480469 345.8060302734375 1.047556 63.138294 0.10921329999999996 0.0576419067 0.0026029484 0.025511076299999998 0.0335547387 -0.0055348796 -0.0131980484 -0.015406261999999999 -0.0208065425 -0.0107481317 -0.0217062896 0.022369652 0.0380040641 0.0473282582 0.0109895824 -0.0304584719 -0.0577454912 -0.058184941500000004 -0.0315725097 0.009718906 -0.1307 0.0885306 0.247465 -0.0029793 -0.0011392 0.000712734 -420.73577880859375 352.3150634765625 345.733154296875 0.99917 60.222 0.07258354999999997 0.041706262200000004 -0.0184354864 0.0223997494 0.060025749 -0.0183994632 0.054697039100000004 -0.0161431204 -0.014500616000000001 -0.0241901799 -0.0057932007999999995 0.0292429917 0.0519678439 0.0470913411 0.010264034 -0.0314141948 -0.058245649000000004 -0.0575494194 -0.0296545534 0.012255456699999999 -0.133555 0.0733817 0.218638 -0.00256723 -0.00123053 0.0007243869999999998 -420.08306884765625 351.7671203613281 345.2939147949219 1.007793 60.741749 0.05333959999999999 0.0041891768 -0.0198254472 -0.0175932816 0.0756969538 0.0085742553 0.07434574769999999 -0.015336922099999999 -0.021096962200000003 -0.010582414699999999 -0.012598728200000001 0.0238587301 0.0611686637 0.0468527442 0.0095370211 -0.0323598325 -0.0587125645 -0.0568625783 -0.027698518999999998 0.0147705889 -0.131418 0.0657809 0.225155 -0.00207763 -0.00100897 0.000693851 -423.5035095214844 351.83343505859375 345.78704833984375 1.055552 63.620228 0.14582495 -0.0022212572 -0.0221618295 -0.06857367730000001 0.0524280401 0.031936897 -0.08536141960000002 -0.0120981647 -0.0079309727 -0.0012811015 -0.0092078352 -0.0135205056 0.039327342 0.04661247599999999 0.0088086474 -0.0332950814 -0.059145971299999996 -0.0561250309 -0.025706918199999998 0.0172599069 -0.131354 0.113338 0.236542 -0.00307468 -0.0014429899999999997 0.000999118 -420.44146728515625 352.1424255371094 345.2920227050781 1.025828 61.828732 0.15480639999999998 -0.009734274499999999 -0.0033179588 -0.0761535579 -0.0010935507 0.0418810987 -0.012085762199999999 -0.0173074398 -0.0125526141 0.0104438516 -0.0050322672 -0.0010668259 -0.026027195 0.046370545 0.0080790168 -0.0342196412 -0.059545621900000005 -0.0553374348 -0.0236823082 0.0197190601 -0.14636 0.0411022 0.222327 -0.00220048 -0.00130746 0.000941856 -421.156005859375 351.77032470703125 345.34906005859375 0.997059 60.094769 0.05751199999999997 -0.0017915813 0.0222328836 -0.0659835125 -0.0349563418 0.0141904167 0.0483168108 -0.0128353294 -0.0167858246 0.0134502323 -0.014430826599999998 0.014295206699999998 -0.052305559800000005 0.0461269599 0.0073482335 -0.0351332152 -0.059911288300000004 -0.0545004924 -0.0216272887 0.0221437508 -0.141406 0.0622067 0.229839 -0.00214055 -0.00106879 0.0007616259999999998 -419.8749084472656 352.1002502441406 346.0054016113281 0.991145 59.738308 0.1235847 0.0187830046 0.0270941066 -0.048787141799999996 -0.0478364564 0.001308069 0.06684412969999999 -0.0192428624 -0.0078237746 0.018825390600000002 -0.0105304061 -0.0106381323 -0.0510144708 0.0458817293 0.0066164016 -0.036035509900000005 -0.060242761799999996 -0.05361495 -0.0195444986 0.024529741400000003 -0.13136 0.0998262 0.229849 -0.00310297 -0.00138267 0.0010035100000000002 -420.2380676269531 352.2232360839844 345.88690185546875 0.988142 59.557339 0.15901319999999997 0.0352320536 0.0180660672 -0.0206930178 -0.05477329190000001 0.0099443012 0.051767195 -0.020777261 -0.015811713300000002 0.0042228475 -0.011487230900000001 0.0123809277 -0.0636190823 0.0456348621 0.0058836257 -0.0369262359 -0.0605398531 -0.0526815972 -0.0174366123 0.0268728619 -0.144141 0.0623446 0.20504 -0.00206782 -0.00118201 0.000560488 -421.3014831542969 352.3474426269531 346.1163024902344 0.989916 59.664249 0.14210615 0.043538395 0.0317309044 0.0102378228 -0.0487624504 -0.010808993400000001 0.031209129500000002 -0.0197088058 -0.0061556642 0.0148086964 -0.014702346299999999 0.0260625643 -0.0499614533 0.0453863669 0.0051500103000000005 -0.0378051071 -0.0608023928 -0.0517012663 -0.015306336299999999 0.029169017400000004 -0.121592 0.0897106 0.244455 -0.00257634 -0.00138801 0.000901491 -423.5082092285156 352.45684814453125 346.5848388671875 1.007349 60.714935 0.06765149999999999 0.050004422300000004 0.0128519024 0.0184041507 -0.0470810616 -0.0021615157 -0.0185358183 -0.024310150200000002 -0.0097524138 0.0065539677 -0.0097770711 0.0234881856 -0.043787389100000004 0.045136252800000005 0.00441566 -0.038671841299999996 -0.061030231 -0.050674831600000005 -0.0131564061 0.0314141948 -0.129537 0.0878117 0.207519 -0.00225687 -0.0014389200000000004 0.000948543 -421.98175048828125 352.4674377441406 346.48699951171875 0.984024 59.309135 0.07226484999999999 0.0659706736 0.0255153135 0.0346400304 -0.024407384700000003 0.0037840275 -0.04567679980000001 -0.021180083399999997 -0.011121165700000001 -0.012753838 -0.0226552331 0.0406522816 -0.014079683300000001 0.0448845285 0.0036806797 -0.0395261602 -0.061223237699999995 -0.0496032084 -0.0109895824 0.0336044704 -0.139404 0.0709347 0.210039 -0.00190666 -0.00111379 0.000763866 -421.91644287109375 352.5434875488281 347.06170654296875 0.979836 59.056713 0.13207965 0.0511720541 0.0247754577 0.0404636385 -0.0038592081 -0.0043677991999999995 -0.0362591308 -0.020074775700000002 -0.0028774296999999997 -0.0009055799000000001 -0.0180998293 0.0259114375 0.0206788938 0.044631203099999996 0.0029451740999999997 -0.0403677898 -0.061381302699999994 -0.0484873523 -0.0088086474 0.0357360162 -0.125705 0.0913252 0.236421 -0.00290738 -0.0013468000000000004 0.000962299 -424.5956726074219 353.0257873535156 347.49896240234375 0.98071 59.109394 0.13525779999999998 0.0548632208 -0.0032903804 0.0345516735 -0.0106383276 -0.017932566299999998 -0.032322239700000005 -0.0281461233 -0.0090072964 -0.0240157807 -0.006515952199999999 0.0448917342 0.013481965600000001 0.044376285700000004 0.0022092484 -0.0411964596 -0.0615043357 -0.0473282582 -0.0066164016 0.0378051071 -0.136125 0.0632198 0.185429 -0.00213393 -0.00143565 0.000909791 -423.4337158203125 351.0511169433594 346.9137268066406 1.2241050000000002 73.779297 0.75588715 0.053105325 -0.051482634299999996 0.0533746272 -0.0263710535 0.073343466 -0.034570880299999995 -0.0194396851 -0.0767557274 -0.0967289998 0.0204480105 -0.00023613720000000002 -0.014254611499999998 0.0441197852 0.0014730073999999998 -0.0420119037 -0.0615922667 -0.0461269599 -0.00441566 0.0398081268 -0.209025 -0.0640874 -0.180222 0.00115299 -0.00168165 0.00117745 -423.36016845703125 352.31549072265625 347.3530578613281 1.279965 77.146057 0.7079362 0.0488106375 -0.0740092487 0.055478573600000004 -0.0132529394 -0.0077959643 -0.028707068 -0.0234683633 -0.0042026457 -0.054213518200000005 0.0194330744 -0.026318547 0.0205494757 0.043861710899999996 0.0007365563000000001 -0.0428138604 -0.0616450454 -0.0448845285 -0.0022092484 0.0417415748 -0.183722 0.0479202 0.0779605 -0.00383844 -0.00104118 0.000560488 -421.776611328125 353.0386657714844 347.6093444824219 1.115311 67.222038 0.2461377 0.0415283392 -0.024650441800000002 0.0269411138 -0.001303686 0.008462173 0.0012100341 -0.031195321 -0.0106448976 -0.0287546604 0.010190751999999999 0.0249977378 -0.0006807941999999999 0.043602072 0.0 -0.043602072 -0.0616626416 -0.043602072 -0.0 0.043602072 -0.156998 0.0258659 0.154264 -0.0018317 -0.00132201 0.000694036 -422.5987854003906 352.61468505859375 347.6229553222656 1.022264 61.613914 0.13955905 0.0475939041 -0.013389565700000002 0.0287908345 -0.0147380645 -0.0239198597 0.027153790499999997 -0.0257270585 -0.0133116777 -0.0144547541 0.0011449723 0.0154432904 -0.0008908646000000001 0.043340877699999995 -0.0007365563000000001 -0.044376285700000004 -0.0616450454 -0.042280734 0.0022092484 0.0453863669 -0.13451 0.0802086 0.174842 -0.00218975 -0.00159915 0.000901853 -427.1851501464844 352.84423828125 347.3974914550781 1.082326 65.233986 0.05052445000000001 0.0491078215 -0.0157803929 0.015651703200000002 -0.0030897131 -0.021324849 -0.0639854846 -0.0327311224 -0.0151717324 -0.0193028815 -0.00851609 0.0035450101 0.0125782207 0.0430781374 -0.0014730073999999998 -0.045136252800000005 -0.0615922667 -0.0409216928 0.00441566 0.0470913411 -0.13269 0.072536 0.167481 -0.00241841 -0.0018716 0.00107416 -419.48223876953125 347.6390380859375 341.1233215332031 1.44651 87.184082 0.5044752000000001 -0.019203801399999998 0.046765963099999995 0.0594293788 0.0349410231 -0.0192411494 -0.0195017133 0.0452155049 -0.0100364884 0.0166977451 -0.010073003399999999 0.1048758047 -0.0040857441 0.0428138604 -0.0022092484 -0.0458817293 -0.0615043357 -0.0395261602 0.0066164016 0.048714014900000005 -0.228279 0.0697857 0.448684 -0.00413023 -0.00136517 0.000793752 -419.1417236328125 347.2120666503906 337.5389404296875 1.841203 110.97303 1.4824372 -0.05502935900000001 0.0267136498 0.07489594150000001 0.011400609499999999 -0.1360912319 -0.0483217735 0.1098562606 0.12148239949999999 -0.0206135956 -0.11107966710000002 0.0167155558 -0.0092070825 0.0425480561 -0.0029451740999999997 -0.04661247599999999 -0.061381302699999994 -0.0380953808 0.0088086474 0.0502515524 -0.235353 -0.0295037 0.7423889999999999 -0.0213236 -0.00485926 -0.000166164 -420.49713134765625 353.3000793457031 347.6824645996094 1.748108 105.361984 1.12480525 -0.0176827585 0.0361692655 0.0272465083 0.0488607996 -0.11479637529999999 -0.0010444564 -0.0023606739 0.0925013391 0.0619237999 0.015038494199999999 0.0210452825 0.062111926399999996 0.042280734 -0.0036806797 -0.0473282582 -0.061223237699999995 -0.0366306304 0.0109895824 0.0517012663 -0.145046 -0.0305184 0.467571 -0.00907012 -0.00290248 0.000796887 -417.9351501464844 352.1173095703125 345.0296325683594 1.061603 63.984955 0.33119735 -0.0041427598 0.0534190014 0.0158289934 0.0496063208 -0.08463287189999999 -0.0086600734 -0.0005150928 0.0422400353 0.0694249962 -0.0070432314 0.0090077151 0.0635416773 0.0420119037 -0.00441566 -0.0480288462 -0.061030231 -0.0351332152 0.0131564061 0.053060623200000004 -0.133051 0.0166828 0.407861 -0.00555546 -0.00248713 0.0011127 -419.62432861328125 351.81707763671875 345.2821960449219 0.9782090000000002 58.958622 0.20785619999999996 0.010336882 0.034207974700000005 0.013431401200000002 0.06367034690000001 -0.0829388836 0.013018621299999998 -0.0080108489 0.018207352 0.0620223901 -0.0058426155 -0.0031011603000000005 0.0761695229 0.0417415748 -0.0051500103000000005 -0.048714014900000005 -0.0608023928 -0.0336044704 0.015306336299999999 0.054327247300000006 -0.12483 0.103701 0.360968 -0.00447347 -0.00266038 0.00105346 -419.2793884277344 351.5086669921875 344.9368896484375 0.9436270000000002 56.874313 0.10590359999999996 0.0038737775 0.0474468904 0.0113542924 0.0767864601 -0.07373601910000001 0.0147486442 -0.0048971062 0.0135201385 0.06766060730000001 -0.0131480668 -0.0047792035 0.0813065539 0.0414697568 -0.0058836257 -0.0493835445 -0.0605398531 -0.032045759300000004 0.0174366123 0.0554989249 -0.118662 0.0658139 0.365455 -0.00395702 -0.00228322 0.00130708 -422.5331726074219 352.1214904785156 345.411865234375 0.994598 59.946453 0.05805619999999999 -0.0132485511 0.0239049621 -0.027214396000000002 0.07308669450000001 -0.061404889299999994 -0.0409484815 -0.007108525300000001 0.027448917200000002 0.0661398563 -0.0079355572 -0.0100719283 0.0768889316 0.0411964596 -0.0066164016 -0.050037220099999995 -0.060242761799999996 -0.0304584719 0.0195444986 0.0565736083 -0.121603 0.0845931 0.35236 -0.00414747 -0.00250512 0.00135955 -420.5591125488281 352.3153991699219 345.3928527832031 0.989638 59.647511 0.049286099999999985 -0.0261165281 0.0352267331 -0.0518468379 0.052470860599999995 -0.0288522 -0.0425686204 -0.0082149038 0.0361605607 0.07844623440000001 0.0013565006 -0.0241743635 0.048225897999999996 0.0409216928 -0.0073482335 -0.050674831600000005 -0.059911288300000004 -0.028844023599999997 0.0216272887 0.0575494194 -0.117411 0.0910577 0.341351 -0.00457876 -0.00260855 0.00137724 -420.8538818359375 351.761962890625 345.1949157714844 0.990924 59.724972 0.09462979999999997 -0.034232918 0.0641273601 -0.0727171938 0.02582455 -0.032460812400000004 -0.0862393421 -0.006406631800000001 0.026143427 0.09465700710000001 -0.0220991269 -0.011682726599999999 0.0040293177 0.0406454662 -0.0080790168 -0.0512961746 -0.059545621900000005 -0.027203854 0.0236823082 0.058424652599999995 -0.119174 0.0670379 0.36722 -0.00387323 -0.00251508 0.00131668 -421.5807800292969 351.71038818359375 345.1061706542969 0.991945 59.786514 0.08226339999999997 -0.010969500600000001 0.0690144107 -0.0752790087 -0.0239052366 -0.06046973940000001 0.0123430576 -0.0065658648 0.037534899100000005 0.0951308567 -0.0233743665 -0.0214610171 -0.027553254300000003 0.0403677898 -0.0088086474 -0.0519010494 -0.059145971299999996 -0.0255394259 0.025706918199999998 0.0591977785 -0.121249 0.0945728 0.352592 -0.00439605 -0.00260855 0.00117246 -421.98486328125 351.43084716796875 344.9309387207031 0.977981 58.944904 0.05250900000000003 0.0035815448999999997 0.07562464599999999 -0.0279477518 -0.0340343374 -0.0500115701 -0.0133699486 -0.0075526021999999995 0.0208858548 0.0950582344 -0.024865594900000003 -0.0048351959 -0.0407517608 0.0400886733 -0.0095370211 -0.05248926190000001 -0.0587125645 -0.0238522233 0.027698518999999998 0.0598674458 -0.115948 0.07234129999999998 0.345431 -0.00417581 -0.00260855 0.00130853 -419.6445617675781 351.8945007324219 344.824951171875 0.989353 59.630318 0.062248299999999986 0.013701867099999999 0.09863174429999999 -0.0009302833000000001 -0.0329776995 -0.0491290622 0.0264491718 -0.0078268423 0.022080031 0.1006648616 -0.039635962000000004 0.014033177800000001 -0.0217804113 0.0398081268 -0.010264034 -0.053060623200000004 -0.058245649000000004 -0.0221437508 0.0296545534 0.0604324842 -0.120389 0.0642655 0.358305 -0.00376193 -0.00242135 0.00117246 -420.3621520996094 352.1670227050781 345.20892333984375 1.027115 61.906322 0.11939499999999997 0.0198336879 0.0768257307 0.0165001363 -0.034115407599999995 -0.0574503299 -0.0093596371 -0.0103679342 0.0367467085 0.0967823497 -0.0193439899 0.0065000488 -0.0050220867 0.0395261602 -0.0109895824 -0.05361495 -0.0577454912 -0.020415532 0.0315725097 0.0608919062 -0.119368 0.106769 0.364701 -0.00479984 -0.00240695 0.00150964 -421.5797424316406 351.4495849609375 344.98822021484375 0.973075 58.649216 0.09145819999999998 0.037697913199999995 0.0837219441 0.0398759446 0.000930913 -0.046664974500000005 -0.0784680812 -0.0052781029000000005 0.0197200828 0.0841707952 -0.025320864900000004 0.0229921663 0.0212022806 0.0392427837 -0.011713562700000001 -0.0541520642 -0.0572123765 -0.0186691079 0.033449925 0.0612449087 -0.122979 0.0624388 0.364371 -0.00421027 -0.00260855 0.00143707 -420.4116516113281 351.5838928222656 344.9733581542969 0.996178 60.041687 0.06491369999999996 0.043820576900000005 0.0728100706 0.027101428700000003 0.0445694885 -0.0728180773 -0.0374639761 -0.0081432496 0.019124061100000003 0.0852125102 -0.0368273096 0.0331443855 0.0597517625 0.0389580073 -0.012435871599999999 -0.0546717934 -0.056646609199999996 -0.0169060359 0.0352843888 0.061490875 -0.124342 0.08260499999999998 0.353241 -0.00367422 -0.00260855 0.00132803 -421.0395202636719 351.544921875 345.14874267578125 0.987114 59.495369 0.08192300000000002 0.014556900400000001 0.0551584402 3.1248e-05 0.0701555796 -0.0986551407 0.008468997800000001 -0.0036840351 0.027374709 0.07622668860000001 -0.0231944932 0.0049024996000000005 0.0759539063 0.038671841299999996 -0.0131564061 -0.0551739708 -0.056048512300000006 -0.0151278882 0.037073545299999996 0.061629375099999995 -0.126963 0.114593 0.35085 -0.00438206 -0.00260855 0.00151865 -418.25042724609375 351.6273193359375 344.78558349609375 0.980327 59.086285 0.08555980000000002 -0.010328235699999999 0.06565432730000001 -0.0101556374 0.0775104545 -0.07196956 0.0383008322 -0.0073131901 0.0256683023 0.08416575039999999 -0.0230530479 0.0231259491 0.0800698914 0.0383842957 -0.0138750634 -0.055658435199999995 -0.055418427 -0.0133362505 0.038815097400000005 0.061660167 -0.124044 0.0754857 0.356901 -0.00388878 -0.00252128 0.00134955 -419.4575805664063 351.6487731933594 345.09423828125 0.986188 59.439548 0.048152000000000014 -0.0260739149 0.05726497 -0.046342767800000004 0.0840485894 -0.0511862601 -0.012933463899999999 -0.0042413227 0.0223493802 0.0900996702 -0.0278557823 0.005765305 0.0697280064 0.0380953808 -0.0145917409 -0.0561250309 -0.0547567129 -0.0115327203 0.0405068086 0.061583196900000005 -0.114806 0.0873067 0.355092 -0.00351538 -0.00242015 0.0013184 -421.58831787109375 351.7852478027344 345.87432861328125 1.009516 60.845562 0.1262378 -0.0185013774 0.06655887190000001 -0.0779951131 0.0383424573 -0.0527735854 -0.0969095514 -0.0030888267 0.0368584241 0.1101801889 -0.0258630358 -0.0078068795 0.037544356800000005 0.0378051071 -0.015306336299999999 -0.0565736083 -0.054063747800000006 -0.009718906 0.0421465068 0.0613985992 -0.12057 0.121652 0.340379 -0.00450709 -0.00260855 0.0015666 -421.7759399414063 351.9810485839844 345.7310485839844 1.001103 60.338512 0.12806309999999999 -0.0232374117 0.092479576 -0.0837831392 0.00292924 -0.0626836058 -0.022470951099999997 -0.0123324719 0.026087216 0.11246701519999999 -0.0207844968 -0.0130843348 -0.0071272601 0.0375134847 -0.0160187477 -0.0570040233 -0.0533399272 -0.007896425 0.0437320865 0.0611066967 -0.122423 0.0597034 0.334443 -0.00378691 -0.00239843 0.00133039 -421.8748474121094 351.870361328125 345.957275390625 0.995423 59.996162 0.12857530000000003 0.0019898686 0.0948397663 -0.06803665589999999 -0.0304614736 -0.060040231500000006 0.0228883066 -0.0135771648 0.0152939257 0.1041015215 -0.044272621100000006 -0.0082723064 -0.0423675723 0.0372205242 -0.0167288735 -0.057416137699999995 -0.052585664000000004 -0.0060669025 0.0452615117 0.060707999400000004 -0.110223 0.0908212 0.308865 -0.00289224 -0.00225744 0.00117246 -420.8256530761719 352.49835205078125 346.4927673339844 1.105437 66.626953 0.2628535 0.0171351093 0.08457232449999999 -0.015610962800000001 -0.044062884000000004 -0.0849410561 0.026704057200000002 -0.0169552458 0.0338395762 0.07334408049999999 -0.041988968099999996 0.0085082976 -0.0418398454 0.0369262359 -0.0174366123 -0.057809819299999995 -0.0518013888 -0.0042319699 0.046732818499999995 0.0602032042 -0.143256 0.151593 0.26226 -0.0027699 -0.00260855 -0.0008029639999999998 -420.0455322265625 351.53558349609375 345.9622802734375 1.233448 74.34238399999998 0.40248775 0.0349089357 0.0407256221 0.0175790917 -0.0628559366 -0.0349492572 0.0214626033 -0.0027215177000000004 0.0086519935 0.043244582999999996 0.018371331299999998 0.042298605 -0.0561036209 0.0366306304 -0.0181418631 -0.058184941500000004 -0.0509875493 -0.0023932635000000002 0.048144117699999996 0.059593193200000005 -0.112935 0.008415149999999998 0.147193 -0.00340674 -0.00261427 0.000832914 -371.8408203125 319.4721374511719 317.13128662109375 2.695495 162.462921 4.5592784 -0.22982537649999998 0.0660880391 0.20263495969999998 -0.0304630009 0.1203307259 0.034400257000000004 0.4023250324 -0.29489698870000003 0.0102890986 -0.0337780382 -0.3993795026 0.057695294400000006 0.0363337182 -0.0188445253 -0.0585413841 -0.0501446098 -0.0005524229 0.049493597199999996 0.0588790326 -0.242945 -1.05812 -2.26129 -0.0175487 0.00130519 -0.000190671 -388.5560302734375 325.427978515625 323.8311767578125 2.978447 179.51705899999996 1.84074905 -0.2072273094 0.18541149640000001 0.1204360401 0.015630603899999998 0.20550099600000002 0.0627507547 0.3619995774 -0.23847223760000003 0.1085712506 0.1602848676 -0.08238694440000001 -0.10405390630000001 0.036035509900000005 -0.0195444986 -0.0588790326 -0.049273051500000005 0.0012889102 0.050779524000000006 0.0580619705 -0.189946 -0.561132 -1.45172 -0.0224386 -0.0021674 0.00107068 -446.2183837890625 358.96343994140625 356.27215576171875 3.0819 185.752365 2.19632375 -0.0170385669 -0.0969058071 0.0272631398 -0.0788873693 -0.0782021948 0.007906609 -0.060092058200000006 0.1392848764 -0.17949356579999998 0.0045532283 0.0456448692 -0.1357348719 0.0357360162 -0.0202416832 -0.0591977785 -0.048373371799999995 0.0031290940000000002 0.0520002471 0.057143434800000004 -0.077342 -0.17363 -0.432441 -0.0101056 -0.0019108 0.000121505 -426.2521362304688 352.3639221191406 349.082763671875 1.201052 72.38981599999998 0.2936817500000001 -0.034226029 -0.0970712113 0.0415512388 -0.0728341244 -0.0008469578999999999 0.0291118375 0.0048558405 0.0593840928 -0.07714488900000001 0.0621739332 -0.0484108211 -0.0580779885 0.0354352477 -0.020935979599999998 -0.0594975196 -0.0474460842 0.0049664875 0.053154198799999997 0.0561250309 -0.0823867 -0.148694 -0.279671 -0.00972644 -0.00296558 0.000906186 -422.6844482421875 352.3898620605469 347.7001953125 1.022394 61.62175 0.22604705 -0.0201318079 -0.089603122 0.0577608293 -0.0734382729 0.016965808 -0.0036360960999999997 0.0042130504 0.0423293985 -0.065783112 0.0808476196 -0.0272599543 -0.048523075199999995 0.0351332152 -0.0216272887 -0.0597781596 -0.046491717800000006 0.006799452199999999 0.054239897599999996 0.055008538600000004 -0.0835529 -0.179997 -0.222187 -0.00746464 -0.0028402 0.000571489 -424.8573303222656 351.83721923828125 347.0563049316406 1.033289 62.278442 0.12920795 -0.011289496100000001 -0.09116565119999999 0.0607617591 -0.0640008322 0.0122083214 -0.0791823033 0.0030361637 0.0333806716 -0.06789766929999999 0.0764826813 -0.0497500216 -0.0106133487 0.0348299293 -0.022315511899999998 -0.0600396084 -0.0455108174 0.0086263535 0.0552559492 0.0537959092 -0.0918004 -0.121509 -0.255577 -0.007469639999999999 -0.00340796 0.000580378 -424.8421936035156 352.13555908203125 347.1554870605469 1.007909 60.748692 0.12244779999999998 0.0025444573 -0.1019771853 0.049156763799999996 -0.0209229573 0.0061476887 -0.0285107711 -0.006291230500000001 0.0311930517 -0.0686275497 0.0752187262 -0.0397872454 0.012709487 0.0345254011 -0.023000551 -0.0602817821 -0.0445039428 0.0104455625 0.056201049100000004 0.05248926190000001 -0.0952568 -0.144071 -0.212203 -0.00694939 -0.00294291 0.000656186 -422.4728088378906 351.80108642578125 346.5733642578125 0.992611 59.826687 0.1030241 -0.0098025868 -0.0924194057 0.0319791472 -0.0055226976 -0.0019092552 0.0347978328 0.0011449789 0.024866761600000002 -0.0658331163 0.0695249133 -0.0294918819 0.0184346317 0.0342196412 -0.0236823082 -0.060504603 -0.0434716687 0.012255456699999999 0.0570739836 0.0510908803 -0.0953404 -0.12004600000000003 -0.218076 -0.00551143 -0.0029658 0.000656186 -422.5759582519531 351.4847106933594 346.56536865234375 0.984502 59.33794 0.14416359999999992 -0.010765733700000002 -0.1035114103 0.0173941424 0.0088542747 0.007404955699999999 0.0180018879 0.0037366757 0.025295633999999997 -0.0608298275 0.0700055811 -0.0563518125 0.0275643179 0.0339126607 -0.024360686200000002 -0.060707999400000004 -0.0424145842 0.0140544224 0.0578736318 0.0496032084 -0.0931421 -0.08417589999999998 -0.217778 -0.00678802 -0.00347359 0.00098775 -420.9371337890625 351.7113342285156 346.44708251953125 0.9767420000000002 58.870228 0.1839856 -0.01588401 -0.0912572111 0.015906652900000002 0.0032158040999999997 0.0130156692 0.056767869699999994 -0.0020004005 0.0219296762 -0.0617466614 0.0686505949 -0.0338214716 0.0237334751 0.0336044704 -0.0250355883 -0.0608919062 -0.0413332925 0.0158408552 0.058598967 0.0480288462 -0.104994 -0.144422 -0.207731 -0.00547704 -0.002963 0.000772508 -423.8532104492188 351.5809631347656 346.5943298339844 0.992221 59.80315 0.1289245 -0.0275264642 -0.107889165 -0.006779010699999999 0.0086406829 0.0099218627 0.010104832900000001 0.0012167211 0.0250443026 -0.054092663799999996 0.0544819145 -0.052155023099999996 0.0206710153 0.0332950814 -0.025706918199999998 -0.0610562642 -0.0402284109 0.0176131622 0.059249057800000005 0.046370545 -0.10504 -0.0841849 -0.179717 -0.00580597 -0.00331294 0.000906186 -422.5363464355469 351.7102355957031 346.67083740234375 0.983412 59.272236 0.08249860000000002 -0.034388189900000005 -0.0966847596 -0.018507543600000002 0.006575534300000001 0.0388053187 -0.0013669889999999999 -0.0043658928 0.0156729808 -0.04463154230000001 0.0550661487 -0.0430433917 0.015391821299999999 0.0329845047 -0.02637458 -0.061201020700000004 -0.0391005699 0.0193697628 0.0598230695 0.044631203099999996 -0.112126 -0.10412900000000001 -0.199566 -0.00513781 -0.00335717 0.000906186 -424.6297607421875 351.6400451660156 346.61871337890625 1.021613 61.574673 0.07801899999999995 -0.0312695573 -0.0867668339 -0.0518614853 -0.018042229099999998 0.056600449500000004 -0.0980467454 -0.0034487216 0.025869639 -0.0379895092 0.0581101521 -0.0379647537 -0.0199175245 0.0326727513 -0.0270384785 -0.061326129199999996 -0.0379504132 0.0211090908 0.060320264900000004 0.0428138604 -0.105061 -0.113356 -0.1821 -0.00455676 -0.003053 0.000906186 -424.0057067871094 351.641357421875 346.29254150390625 1.014974 61.174534 0.14543669999999992 -0.023366110899999997 -0.0751545073 -0.0481119238 -0.0579066158 0.0233885701 -0.016651642 -0.0038979473 0.021873633599999998 -0.021519916 0.0631843046 -0.0430295685 -0.0475350788 0.0323598325 -0.027698518999999998 -0.0614315496 -0.0367785971 0.0228295951 0.0607400057 0.0409216928 -0.105098 -0.059611 -0.185821 -0.00555472 -0.00339019 0.00132971 -423.8024597167969 351.4261474609375 345.0937194824219 1.173586 70.734413 0.55995755 -0.0134620972 -0.0434374304 -0.0207158982 -0.0646235605 0.044712007000000005 0.015809633400000002 -0.0005134006 0.0117718104 -0.0410361775 0.0232161703 -0.0089896232 -0.060399298399999996 0.032045759300000004 -0.0283546073 -0.061517248 -0.0355857906 0.024529741400000003 0.0610817528 0.0389580073 -0.160006 -0.08683169999999998 -0.310637 -0.000176446 -0.00222378 0.000814137 -423.8966674804688 352.117431640625 346.4755859375 1.265707 76.28675099999998 0.2610007 0.0020204745999999997 -0.0382612394 -0.0210711655 -0.0293188605 0.0558932503 -0.0321826733 -0.0151106858 -0.0021762998000000003 -0.0719529459 -0.002261629 -0.0067719543999999994 -0.0423707641 0.031730543 -0.0290066498 -0.061583196900000005 -0.0343726744 0.0262080137 0.0613450675 0.0369262359 -0.117865 0.0215905 -0.292692 0.000784101 -0.00197592 0.00145558 -424.9112854003906 352.21783447265625 347.5047302246094 1.073799 64.720024 0.25835995 -0.0088369365 -0.056155679800000004 -0.0103845381 -0.044445636399999995 0.0352619975 -0.014107638700000001 -0.0150569544 0.005299499599999999 -0.0432470249 0.005991164 -0.0216692546 -0.0227751879 0.0314141948 -0.0296545534 -0.061629375099999995 -0.0331399408 0.0278629153 0.0615296116 0.0348299293 -0.0978827 0.0264831 -0.265458 -0.0019666 -0.003002 0.00180382 -424.5313720703125 352.70330810546875 348.140625 1.08171 65.196838 0.17423700000000003 0.0096342635 -0.0650172923 0.00072536 -0.017175623799999998 0.0035691578999999998 0.042765554299999994 -0.020828586899999998 0.006742971899999999 -0.0635016733 0.0088991969 -0.0020432216000000002 -0.0161847361 0.031096726 -0.030298225699999997 -0.0616557679 -0.0318882933 0.0294929706 0.0616351482 0.0326727513 -0.100189 -0.0887781 -0.249987 -0.00133538 -0.00291596 0.00169711 -422.3537902832031 352.4111328125 347.2664794921875 1.00957 60.848808 0.11087464999999996 -0.0046294295 -0.0626231593 0.0023633305 0.0192921969 0.0176411146 0.0488911513 -0.0173293094 -0.005222608 -0.0615740913 0.0130575713 -0.0042309635 0.0181647551 0.0307781479 -0.0309375749 -0.061662366600000004 -0.030618446400000002 0.031096726 0.0616615418 0.0304584719 -0.0978289 -0.0979367 -0.229826 -0.000485801 -0.00243164 0.00144711 -425.0855407714844 352.34771728515625 347.18243408203125 1.058717 63.810993 0.39789085 -0.017565411 -0.060799221900000006 -0.0415021535 0.0167501043 0.0240358788 -0.0598611658 -0.0183302354 0.0027364575 -0.0313436832 0.024527518199999997 -0.0194046471 0.0120168996 0.0304584719 -0.0315725097 -0.061649169299999994 -0.0293311248 0.0326727513 0.0616087584 0.0281909609 -0.0893022 0.0409965 -0.173185 -0.00221824 -0.00398043 0.00204168 -421.9892578125 352.3133544921875 346.42840576171875 1.014923 61.17149 0.10958549999999996 -0.019776966200000003 -0.0396059068 -0.044169424900000004 0.0065530132999999996 0.049677442800000006 -0.0071229608 -0.0169455724 -0.0022990865 -0.031145808100000002 0.018515976899999998 -0.0022832476 -0.0202326522 0.0301377094 -0.0322029395 -0.061616180199999995 -0.0280270631 0.0342196412 0.0614768659 0.025874181200000002 -0.0979872 -0.0145015 -0.193463 -0.00179631 -0.00405489 0.00204778 -423.8751831054688 351.60650634765625 346.2781677246094 1.021762 61.583668 0.11621590000000002 -0.0101199052 -0.0372622187 -0.0668542423 -0.0349916222 0.050195645899999995 -0.046445779400000005 -0.0172424859 -0.0093788649 -0.0221878236 -0.002450315 -0.0192703353 -0.0461667125 0.0298158718 -0.032828774399999996 -0.061563409699999995 -0.0267070056 0.0357360162 0.061266033600000006 0.023512181899999998 -0.0979068 -0.0139641 -0.202865 -0.000771808 -0.00303685 0.00212916 -422.0880737304688 351.6440734863281 346.3509216308594 1.00375 60.498028 0.2349168 -0.0077274316 -0.0287179407 -0.04968493190000001 -0.0555592369 0.0315583796 0.0250690143 -0.0164157642 -0.007248081700000001 -0.0182552356 0.0029483324 -0.027057425 -0.051043318600000005 0.0294929706 -0.033449925 -0.061490875 -0.0253717058 0.0372205242 0.060976532199999996 0.0211090908 -0.0937063 0.0513641 -0.16982 -0.00215963 -0.00410835 0.00194162 -422.6476135253906 351.5140380859375 345.9818115234375 0.996538 60.063381 0.18880095 0.0054559386 -0.0131062597 -0.0223561998 -0.060367823 0.05616988480000001 0.0371567604 -0.0155241847 -0.0216681904 -0.0236113308 0.0009333467 -0.0025882881 -0.0678949463 0.029169017400000004 -0.034066302799999996 -0.0613985992 -0.0240219257 0.038671841299999996 0.0606087335 0.0186691079 -0.0935034 -0.00591445 -0.206831 -0.00103637 -0.00363977 0.00223595 -420.2033996582031 351.52252197265625 345.60125732421875 0.997148 60.100101 0.09428277999999997 0.011983648000000001 -0.0011753077 -0.0155850351 -0.056316245 0.0419143613 0.0711083567 -0.014318583000000001 -0.0246130181 -0.023210971299999997 -0.0092365638 -0.0062122674 -0.053827034100000004 0.028844023599999997 -0.0346778198 -0.0612866121 -0.022658435600000002 0.0400886733 0.060163109699999995 0.0161964974 -0.0979138 0.00816503 -0.209357 -0.000285002 -0.0030495 0.00211225 -420.6841735839844 351.7802429199219 346.08441162109375 1.002271 60.408901 0.26820586999999996 0.0209380038 -0.006810462 0.011523040600000001 -0.0536550391 0.0349658143 0.07163965679999999 -0.017780752900000002 -0.0178421674 -0.011088294399999999 0.007430624100000001 0.0138845689 -0.0570843086 0.0285180009 -0.0352843888 -0.061154949400000005 -0.0212820138 0.0414697568 0.059640233 0.013695580700000001 -0.08688089999999998 0.08296109999999998 -0.159058 -0.00171596 -0.00404077 0.00189292 -421.4260559082031 351.34722900390625 345.8697509765625 0.997961 60.149109 0.18633054 0.027952597000000003 -0.013184781699999999 0.0307975507 -0.0532364623 0.051519719900000004 0.0232240819 -0.0098676711 -0.0280273485 -0.030692753399999998 0.0043202779 0.0230849214 -0.0518366738 0.0281909609 -0.0358859231 -0.061003653600000006 -0.0198934458 0.0428138604 0.0590407749 0.011170728500000001 -0.0979368 0.00874246 -0.194395 -0.0010183 -0.00348613 0.001955 -422.3150634765625 351.6091003417969 345.9823303222656 1.011959 60.992813 0.08459588999999999 0.0439283797 -0.0148099047 0.0489802127 -0.0424390049 0.059420296399999996 -0.0565382715 -0.0121507608 -0.022295684700000002 -0.037552105 0.0042611439 0.034019372400000004 -0.0244058482 0.0278629153 -0.036482337000000004 -0.0608327732 -0.018493524 0.0441197852 0.0583655051 0.0086263535 -0.0979379 0.0601683 -0.175272 -0.0008633109999999999 -0.00359749 0.00196957 -422.8018798828125 351.4815673828125 346.05987548828125 1.025106 61.785191 0.07743475000000001 0.044449181500000004 -0.024852973900000002 0.0441605584 -0.012044073999999998 0.0477918442 -0.0548200347 -0.0172399741 -0.023714606000000003 -0.051128777300000004 -0.0100344076 0.0209731267 0.0044276048 0.0275338758 -0.037073545299999996 -0.060642363 -0.0170830476 0.0453863669 0.057615290599999994 0.0060669025 -0.0979781 0.0688394 -0.169723 -0.0015208 -0.00416387 0.00200919 -421.4130859375 351.9045104980469 345.7351989746094 0.990878 59.722214 0.1366389 0.0428110164 -0.0208371795 0.0486993857 0.017308966999999998 0.0405193698 -0.0247940268 -0.0194296388 -0.0226295869 -0.04770863 -0.0146526985 0.0285268514 0.0185153052 0.027203854 -0.0376594638 -0.0604324842 -0.0156628214 0.04661247599999999 0.056791094900000005 0.0034968484000000005 -0.097946 0.016423199999999995 -0.179682 -0.0008448779999999998 -0.00343447 0.0020885 -421.0196228027344 351.72174072265625 346.04754638671875 0.997698 60.133293 0.11708410000000002 0.046634374000000006 -0.018130558600000003 0.0372039938 0.0396095414 0.010542983799999999 0.0272720729 -0.0165808055 -0.027307909900000003 -0.0414866421 -0.016381121000000002 0.0324867895 0.0438015833 0.0268728619 -0.038240008799999996 -0.0602032042 -0.014233656 0.047797019100000004 0.055893976100000006 0.000920683 -0.0979415 0.0670117 -0.141974 -0.00122366 -0.00357062 0.00202777 -421.4193115234375 351.4181823730469 345.9225158691406 1.007482 60.72298 0.10243845 0.0232310957 -0.0360561301 0.0196652834 0.051050268200000005 0.022884451099999998 0.0420647933 -0.012879491699999999 -0.0275002011 -0.041010233199999996 -0.0151841028 0.0168696551 0.0325580484 0.0265409112 -0.038815097400000005 -0.059954596500000006 -0.012796367099999999 0.0489389399 0.0549250863 -0.0016570915 -0.0939676 0.0796652 -0.191883 -0.000572849 -0.00359342 0.00198334 -419.16650390625 351.9150390625 345.5081481933594 0.986818 59.477516 0.13402215 0.0167236996 -0.0165595864 0.004435298 0.048532786200000004 0.0059336078 0.0612036542 -0.014108946499999999 -0.0234068803 -0.0406376717 -0.012138823799999999 0.031367512599999994 0.033083182 0.0262080137 -0.039384647599999996 -0.059686740999999995 -0.011351775 0.050037220099999995 0.053885669500000004 -0.0042319699 -0.0983398 0.0210847 -0.175271 -0.000939398 -0.00314015 0.00225267 -420.06427001953125 351.91522216796875 345.9388732910156 0.974281 58.721912 0.1831128 0.0213552913 -0.0161051913 -0.012788989399999999 0.053905654299999994 0.0045942387 0.0416618223 -0.0175791825 -0.0202333947 -0.0172551651 -0.0044477053 0.019185091100000003 0.037581111800000004 0.025874181200000002 -0.0399485782 -0.0593997236 -0.0099007042 0.0510908803 0.0527770605 -0.006799452199999999 -0.0993679 0.0755338 -0.11843 -0.00156367 -0.00383019 0.00215109 -418.86944580078125 351.7622985839844 346.0969543457031 0.9888650000000002 59.600891 0.1386867 0.006226570799999999 -0.0144626319 -0.004429177 0.057197238399999996 0.0158663996 0.049112549000000005 -0.0135825373 -0.0279540406 -0.0234131004 -0.0156103574 0.027723295499999998 0.040027528799999997 0.0255394259 -0.0405068086 -0.0590936366 -0.0084439827 0.052098980999999996 0.0516006827 -0.0093550512 -0.102261 0.0653096 -0.181053 -0.000725032 -0.00355907 0.00200192 -419.2788391113281 352.1996154785156 346.2226257324219 0.970639 58.502384 0.08818175000000002 0.0040933279 -0.005643300699999999 -0.0119869722 0.052544139000000004 0.0106335412 0.058115428399999995 -0.0187126665 -0.0316683569 -0.0273974818 -0.0240820695 0.023157892200000002 0.036345007400000004 0.0252037594 -0.041059259300000005 -0.058768578200000005 -0.0069824421 0.053060623200000004 0.0503580468 -0.0118943007 -0.101391 0.0225561 -0.172906 -0.000601997 -0.00311965 0.00216769 -422.3112182617188 352.235107421875 346.813720703125 1.003327 60.472576 0.22410545 -0.0039162877 -0.0158253332 -0.039360043 0.0606922411 0.0052133778 -0.0017137435999999998 -0.021749364 -0.0225440815 -0.0118048892 -0.017586881699999998 0.0044711055 0.0407604931 0.0248671939 -0.041605851299999996 -0.058424652599999995 -0.0055169164 0.05397494940000001 0.0490507482 -0.0144127627 -0.0899385 0.0986779 -0.128795 -0.0013519 -0.00416563 0.00211517 -420.5513916015625 352.23455810546875 346.8238220214844 0.983902 59.301788 0.17272380000000004 -0.0078055305 -0.0104412852 -0.029775232999999998 0.0433006666 0.030872658799999998 0.0426146366 -0.0193255684 -0.0302616359 -0.02386947 -0.0100758059 0.0208563193 0.0210815874 0.024529741400000003 -0.0421465068 -0.0580619705 -0.0040482420000000005 0.0548411441 0.0476804656 -0.0169060359 -0.0906523 0.0430298 -0.17394 -0.000667012 -0.00370378 0.00239277 -422.8477478027344 351.93603515625 346.871826171875 0.993878 59.903023 0.09734886499999998 -0.019065979 -0.009418314399999999 -0.0369988694 0.050810347900000004 0.0450666434 -0.021428536499999998 -0.0165772304 -0.027827252900000002 -0.018063672700000002 -0.0029267685 0.0199271688 0.031070478199999998 0.0241914138 -0.042681148499999995 -0.057680648099999995 -0.0025772572 0.055658435199999995 0.0462489587 -0.0193697628 -0.097145 0.0534703 -0.179467 6.92013e-05 -0.00308518 0.00224981 -423.6578369140625 351.89031982421875 347.078125 1.028198 61.971561 0.213494365 -0.0079924236 -0.010467770999999999 -0.043437965599999996 0.0351692472 0.0426682801 -0.06768680690000001 -0.0173991763 -0.0275578017 -0.0059331529000000004 -0.0134814331 0.0060418965 0.011379178500000002 0.0238522233 -0.04320970019999999 -0.0572808079 -0.0011048015 0.056426093600000005 0.0447580654 -0.0217996377 -0.0901059 0.10022 -0.133417 -0.00120738 -0.00399535 0.00216345 -421.5909423828125 352.0312805175781 346.44940185546875 1.010465 60.90279 0.233848502 -0.018988345 0.0075105909 -0.056996379699999995 0.0104285614 0.0707207768 -0.035727597400000005 -0.0181501643 -0.0315426596 0.0027320756 -0.0082031421 0.0238144098 -0.0117490142 0.023512181899999998 -0.0437320865 -0.0568625783 0.0003682847 0.057143434800000004 0.04320970019999999 -0.0241914138 -0.0981038 0.0241496 -0.168326 9.26404e-06 -0.00318944 0.00243832 -422.1461791992188 351.7137451171875 346.37445068359375 1.016089 61.241753 0.193018952 -0.0113091626 0.0212366934 -0.0620492184 -0.0213935994 0.0410174458 0.0127283346 -0.018338563000000002 -0.0314527411 -0.0005377416 -0.012851893400000002 0.0113963927 -0.041663478999999996 0.023171301800000002 -0.0442482328 -0.056426093600000005 0.0018411607000000001 0.057809819299999995 0.041605851299999996 -0.0265409112 -0.0936131 0.0883674 -0.121257 -0.000749305 -0.00368793 0.00215055 -421.1915283203125 352.3005065917969 346.2352600097656 0.991681 59.770592 0.0689275 0.0021453077999999998 0.025261975099999997 -0.0457860187 -0.0355744166 0.0559366899 0.0081743036 -0.024218786000000003 -0.0365534107 -0.0037880759999999996 -0.0219948602 0.008709355 -0.0495849237 0.0228295951 -0.0447580654 -0.0559714938 0.003312986 0.058424652599999995 0.0399485782 -0.028844023599999997 -0.0934163 0.0797497 -0.159274 -0.0009183450000000002 -0.00378511 0.00232625 -421.8989868164063 351.7101135253906 346.1007385253906 0.99133 59.749489 0.10970357499999998 -0.00037756370000000005 0.0280387235 -0.0484059064 -0.0456048841 0.037888938399999995 0.0570989518 -0.0188422279 -0.0359994341 -0.0033002228999999997 -0.038290958300000004 0.0227541677 -0.0695258677 0.022487074 -0.0452615117 -0.0554989249 0.0047829204 0.0589873867 0.038240008799999996 -0.031096726 -0.0933916 0.0395275 -0.159303 -8.590149999999998e-05 -0.00333879 0.00243604 -421.0643310546875 352.281982421875 346.2794494628906 0.99785 60.142418 0.181458875 0.019755148700000003 0.039561813599999995 -0.0222871537 -0.0398664622 0.0423408678 0.072756141 -0.0257199859 -0.0429269284 0.0116810141 -0.035326259900000004 0.0335479931 -0.054743069000000005 0.0221437508 -0.0457584997 -0.055008538600000004 0.0062501251 0.0594975196 0.036482337000000004 -0.0332950814 -0.0894043 0.108057 -0.13228100000000004 -0.0008826129999999998 -0.00399425 0.00224981 -421.2106323242188 351.82904052734375 345.9365539550781 0.993903 59.90453 0.19137607 0.0224605944 0.035569854500000005 7.868e-06 -0.0469302428 0.053187272599999995 0.0553340731 -0.021601498599999998 -0.0448099514 -0.012984470900000001 -0.0349708722 0.035010204100000004 -0.057474907699999994 0.0217996377 -0.0462489587 -0.0545004924 0.0077137627000000005 0.059954596500000006 0.0346778198 -0.0354352477 -0.0934032 0.050352 -0.174009 8.596039999999998e-05 -0.00345394 0.00249981 -422.6008605957031 351.6798095703125 346.0926208496094 1.020569 61.511738 0.11545716999999997 0.0443057905 0.0421902104 0.0273883029 -0.0391200583 0.048825785499999996 0.015916538 -0.0208291249 -0.0475315154 -0.011822358100000001 -0.032614427 0.052265043 -0.039580505099999996 0.0214547469 -0.046732818499999995 -0.05397494940000001 0.0091729979 0.0603582097 0.032828774399999996 -0.0375134847 -0.0934184 0.0912663 -0.1377 -8.951299999999998e-05 -0.00379284 0.00224981 -422.640380859375 351.410888671875 345.8951110839844 1.046788 63.09206 0.09617099999999998 0.0413968392 0.0324033059 0.0345564698 -0.0330001924 0.0624924455 -0.0659391079 -0.0182127504 -0.052187339400000005 -0.005900954599999999 -0.0357695209 0.045933985 -0.0244660064 0.0211090908 -0.04721001019999999 -0.053432078200000004 0.010626997800000001 0.060707999400000004 0.0309375749 -0.0395261602 -0.0934309 0.0993467 -0.118793 -0.000753525 -0.00439106 0.002371 -420.9017028808594 351.4735107421875 345.5483703613281 1.021847 61.588802 0.16460514999999998 0.0573194032 0.026875347 0.046981658200000005 0.0087816004 0.057997775599999996 -0.0425989243 -0.0197826566 -0.0499876892 -0.0170227118 -0.0345115088 0.0578974887 0.0042791229 0.0207626817 -0.0476804656 -0.052872053200000005 0.0120749325 0.061003653600000006 0.0290066498 -0.0414697568 -0.110118 0.0447392 -0.146089 -0.000235854 -0.00370963 0.00224981 -420.91143798828125 351.27850341796875 345.8308410644531 1.0019650000000002 60.39045 0.15107305 0.0547965641 0.0300509383 0.044849274800000005 0.048834196600000004 0.040883339500000004 -0.004001709 -0.0146951942 -0.0550336663 -0.0313041217 -0.0483818906 0.0425699894 0.035760641600000004 0.020415532 -0.048144117699999996 -0.052295054199999996 0.013515975800000002 0.0612449087 0.0270384785 -0.043340877699999995 -0.100232 0.0888884 -0.110721 -0.000959531 -0.00409264 0.00237652 -421.18096923828125 351.7684020996094 345.97088623046875 0.9805910000000002 59.102196 0.06165 0.0459281581 0.0175686366 0.0349558566 0.0642166546 0.029880529399999998 0.0194120419 -0.0178887381 -0.0484858393 -0.034810578599999996 -0.0382573361 0.0522929209 0.0398187996 0.020067654 -0.0486009003 -0.0517012663 0.0149493052 0.0614315496 0.0250355883 -0.045136252800000005 -0.0934274 0.0785719 -0.136119 -0.0007746129999999998 -0.00411645 0.00255041 -420.58203125 351.601318359375 345.96722412109375 0.98439 59.331211 0.1353011 0.0409700965 0.0179135298 0.0213988443 0.0763914057 0.0107000395 0.052761634 -0.0176066402 -0.0563738575 -0.0413642112 -0.0428915557 0.0386115671 0.042052087 0.0197190601 -0.0490507482 -0.0510908803 0.0163741027 0.061563409699999995 0.023000551 -0.0468527442 -0.090569 0.047357 -0.152871 0.000112723 -0.00359613 0.00283227 -417.2941284179688 345.3746337890625 338.2203674316406 1.784158 107.534798 1.20907865 -0.0244726194 0.0093742151 0.035897461 0.07777163200000001 -0.0303684668 0.0071617827 0.1040713297 -0.0240124576 -0.044294756500000004 -0.0333279632 0.16387961339999998 -0.020172699 0.0193697628 -0.049493597199999996 -0.050464092099999996 0.017789555 0.0616403716 0.020935979599999998 -0.0484873523 -0.103549 -0.162898 0.120828 -0.0123284 -0.00331471 0.00131192 -424.7168273925781 351.8787841796875 346.9467468261719 1.899814 114.505653 0.46324965 -0.047295163 4.48162e-05 0.0220492181 0.0365253393 -0.1283501825 0.029243329 0.0414085373 0.1143861293 0.0176700199 -0.012257761200000002 -0.0162649261 0.0550814901 0.0190197746 -0.0499293841 -0.0498211028 0.019194854299999998 0.061662366600000004 0.0188445253 -0.050037220099999995 -0.0773709 -0.244581 0.152006 -0.0182037 -0.0035371 0.000925399 -421.4012756347656 351.4746398925781 345.48040771484375 1.028646 61.998592 0.29885175 -0.051966765899999996 -0.0071256712 -0.0012379977 0.039429626 -0.1028233958 0.0049518201000000005 0.0402705124 0.0905400982 0.0419800318 0.0036049604999999997 -0.0167499971 0.0645163332 0.0186691079 -0.0503580468 -0.0491621191 0.020589198700000002 0.061629375099999995 0.0167288735 -0.05149963900000001 -0.0818451 -0.167259 0.168046 -0.0147047 -0.00317771 0.00108732 -423.1089477539063 351.7129821777344 345.75860595703125 0.968234 58.357426 0.18166439999999998 -0.0471293475 -0.0112730129 -0.0099505788 0.0433757125 -0.0763654375 -0.016315737099999998 0.0298493525 0.0709356074 0.0451183215 0.0178954715 -0.0363432324 0.0646190379 0.0183177752 -0.050779524000000006 -0.0484873523 0.021971792200000003 0.0615414265 0.0145917409 -0.052872053200000005 -0.08502999999999998 -0.121696 0.140409 -0.0130288 -0.00334613 0.00134859 -423.0423889160156 351.5523376464844 345.71624755859375 0.956474 57.648624 0.13263110000000009 -0.0615120205 -0.004930438499999999 -0.0217314196 0.0241467473 -0.0627655343 -0.021971764700000004 0.026169980699999998 0.0660052543 0.048049134800000004 0.023897136800000003 -0.0267778734 0.045540051500000005 0.0179657891 -0.0511937557 -0.047797019100000004 0.023341845899999998 0.0613985992 0.012435871599999999 -0.0541520642 -0.0881566 -0.153154 0.134861 -0.0114513 -0.00316229 0.00143722 -426.3393859863281 351.7640380859375 346.1451416015625 1.020152 61.48661 0.13517539999999997 -0.0403398221 0.0022675158999999998 -0.0636538128 -0.0075901047 -0.0465500789 -0.10176338509999999 0.018648545 0.059232743600000005 0.0651620576 0.019608566100000002 -0.0363461798 0.0066964791000000004 0.0176131622 -0.0516006827 -0.0470913411 0.0246985778 0.061201020700000004 0.010264034 -0.0553374348 -0.08487269999999998 -0.08651799999999998 0.141238 -0.0105728 -0.00329765 0.00160093 -423.4654541015625 351.7749938964844 346.0797119140625 0.993894 59.903992 0.12247720000000002 -0.0341961546 0.0133512097 -0.0421187369 -0.0326078888 -0.0362158423 -0.0275064365 0.011337238999999999 0.0473662702 0.0654131779 0.008802183 -0.0341876644 -0.029068193500000002 0.0172599069 -0.0520002471 -0.046370545 0.026041213599999998 0.060948867000000004 0.0080790168 -0.056426093600000005 -0.0797419 -0.0724393 0.08841079999999998 -0.010183 -0.00370348 0.00181411 -423.8712463378906 352.0328369140625 346.2323913574219 0.994781 59.957493 0.1598977 -0.023220433999999998 0.0286381 -0.040912017599999996 -0.0540266615 -0.0466986219 0.0423915454 0.0070449811 0.0367662968 0.0460822625 0.0052590282 -0.025611222000000003 -0.0543224698 0.0169060359 -0.052392391600000005 -0.0456348621 0.0273689869 0.060642363 0.0058836257 -0.057416137699999995 -0.0876595 -0.115471 0.0786899 -0.008288659999999998 -0.00367054 0.00187138 -421.52813720703125 351.5581359863281 345.9969177246094 0.982469 59.215405 0.1993312 -0.0020146135 0.044557184699999995 -0.0093184571 -0.0630931085 -0.0623296234 0.058509373499999996 0.0088499414 0.033816361499999996 0.0746768547 0.0018906545 -0.034695650099999996 -0.0308188992 0.0165515619 -0.0527770605 -0.0448845285 0.0286811401 0.0602817821 0.0036806797 -0.058305837 -0.0745547 -0.0217697 0.131954 -0.008884559999999998 -0.00376485 0.00196639 -424.36614990234375 351.9421691894531 346.2874450683594 1.0263350000000002 61.859291 0.1964816 0.017362050900000002 0.0327483045 0.025601837599999996 -0.052947338600000005 -0.0112390287 -0.0057812624 -0.0023575676000000003 0.0141540424 0.0444799277 0.0049808671 -0.0019177547 -0.039960696000000004 0.0161964974 -0.053154198799999997 -0.0441197852 0.029976924199999998 0.0598674458 0.0014730073999999998 -0.0590936366 -0.07942019999999998 -0.0681896 0.0692983 -0.007538119999999999 -0.00403607 0.00199954 -423.3648681640625 351.61138916015625 345.8852844238281 0.994223 59.923851 0.09422880000000003 0.0315013476 0.0272749264 0.0462887229 -0.0354235913 -0.0014099557 -0.045145552199999994 0.0005759388 0.0070887046 0.0323585742 -0.0043356243 0.018714535600000002 -0.0120754401 0.0158408552 -0.053523752699999996 -0.043340877699999995 0.0312555998 0.0593997236 -0.0007365563000000001 -0.0597781596 -0.0918848 -0.0602115 0.0591302 -0.00677487 -0.00369122 0.00183528 -423.40228271484375 351.9134826660156 346.06304931640625 1.039104 62.628887 0.194276 0.0328661099 0.029443089500000002 0.0537095122 -0.006629089 -0.0202112416 -0.0723990082 0.0047721402 0.0179099644 0.0384570677 -0.016193028300000002 0.0119897496 0.0277432541 0.0154846479 -0.053885669500000004 -0.0425480561 0.0325164369 0.0588790326 -0.0029451740999999997 -0.0603582097 -0.08445379999999998 -0.01113 0.0964447 -0.008022899999999998 -0.00411934 0.00216811 -423.3897399902344 351.6880798339844 345.78656005859375 0.988752 59.594078 0.15253169999999996 0.045402413600000004 0.025410369500000002 0.0476353602 0.0333954418 -0.0215123975 -0.0335446102 -0.0025440534 0.0014290379 0.0195097245 -0.0018649439 0.014256956000000001 0.0411759325 0.0151278882 -0.054239897599999996 -0.0417415748 0.033758716 0.058305837 -0.0051500103000000005 -0.0608327732 -0.0902044 -0.0719686 0.0699242 -0.00703126 -0.00392905 0.0021616 -422.7668762207031 351.4952392578125 345.99603271484375 0.9755720000000002 58.799713 0.09536039999999997 0.025201566 0.0171973013 0.0280993198 0.0483696895 -0.059364945 0.025616817000000004 0.0026399909000000004 0.0040565251 0.0247700931 -0.0120644462 0.008000493000000001 0.051159029800000005 0.0147705889 -0.0545863863 -0.0409216928 0.0349817282 0.057680648099999995 -0.0073482335 -0.061201020700000004 -0.0917033 -0.0278846 0.0798142 -0.00651845 -0.00375262 0.00227011 -424.080322265625 351.4493713378906 346.17706298828125 0.992622 59.827328 0.11118245 0.014840133 0.0086544572 0.012217308400000002 0.0595060734 -0.0687002662 0.0213362999 0.0024970962 0.0108179537 0.032458341200000004 0.0016845879999999999 0.00104682 0.0484065117 0.0144127627 -0.0549250863 -0.0400886733 0.0361847754 0.0570040233 -0.0095370211 -0.06146230849999999 -0.0919712 -0.00416325 0.0957754 -0.00752283 -0.00411934 0.00221657 -417.5284729003906 348.4391174316406 341.1147155761719 1.580422 95.255257 1.445874345 -0.0790233671 0.0314003006 0.0489106264 0.0443080946 -0.0509156609 0.0189071722 0.0817259511 0.0172028724 0.00035558650000000003 -0.0166687705 0.09875713119999999 0.0370810799 0.0140544224 -0.0552559492 -0.0392427837 0.0373671711 0.05627656599999999 -0.011713562700000001 -0.061616180199999995 -0.438044 -0.247257 0.146285 -0.0128594 9.95139e-05 -0.00435197 -418.19091796875 348.2479248046875 339.64501953125 1.880119 113.318604 0.9360719049999998 -0.1109426106 0.030597105299999997 0.0355856374 0.0367447243 -0.0724148784 0.0169703295 0.10202465039999999 0.0825147918 -0.0582945687 -0.1734329634 -0.073767431 0.0588038653 0.013695580700000001 -0.055578927800000004 -0.0383842957 0.038528240299999995 0.0554989249 -0.0138750634 -0.061662366600000004 -0.390372 -0.326547 0.0556109 -0.0226449 0.00144462 -0.00759008 -424.94091796875 352.2395935058594 347.3620300292969 1.559419 93.989342 1.1128402499999999 -0.0792304399 -0.0242622273 -0.0018140702 0.0257119977 -0.0388553289 -0.0603107957 0.033887173199999995 0.0824656954 -0.0022610285 0.0307639394 0.028266095800000002 0.030548457200000004 0.0133362505 -0.055893976100000006 -0.0375134847 0.0396673204 0.0546717934 -0.0160187477 -0.0616007872 -0.25822 -0.160444 0.0142407 -0.0137564 -0.000676261 -0.00313516 -421.6093444824219 351.98199462890625 346.223388671875 1.024628 61.756397 0.37193627000000007 -0.069063072 -0.0065112223 -0.008524024 0.006548840699999999 -0.0308709598 0.0036452315000000002 0.0166342935 0.0514752556 0.0032358711 0.024863652000000003 0.0022249138 0.011267113799999999 0.0129764445 -0.056201049100000004 -0.0366306304 0.0407837614 0.0537959092 -0.0181418631 -0.0614315496 -0.221457 -0.16666 0.00168588 -0.00982569 -0.00145083 -0.00151239 -422.35382080078125 352.2723388671875 346.2593078613281 0.972845 58.635365 0.17737693000000002 -0.06318649309999999 -0.0069691785 -0.0404669607 -6.15042e-05 -0.0225879446 -0.02120398 0.0162400143 0.04619489 0.0115332741 0.020731117 -0.0210893988 0.0200870344 0.012616175600000001 -0.0565001029 -0.0357360162 0.041876926 0.052872053200000005 -0.0202416832 -0.061154949400000005 -0.189513 -0.12929 0.00700116 -0.00936539 -0.00225015 -0.000717057 -424.7076110839844 352.8108215332031 347.04071044921875 1.03486 62.373127 0.23513748999999995 -0.041279871 -0.0158013198 -0.0345595492 0.010057102 -0.0232909723 -0.04506566730000001 0.0061182703 0.044376871 0.0243955783 0.0209189102 -0.022134108599999997 0.014762108500000001 0.012255456699999999 -0.056791094900000005 -0.0348299293 0.0429461904 0.0519010494 -0.022315511899999998 -0.0607714702 -0.1253 -0.091163 0.0106486 -0.00918997 -0.00336622 0.000574454 -424.1550598144531 352.6535949707031 346.78173828125 0.986096 59.433998 0.14767120000000003 -0.0530107915 0.0014335181 -0.043869512 0.0113073676 -0.0047418153000000005 -0.0639371577 0.0028142119 0.0321738869 0.0219080758 0.0157849263 -0.0174264049 0.0057008584 0.0118943007 -0.0570739836 -0.0339126607 0.0439909442 0.0508837635 -0.024360686200000002 -0.0602817821 -0.139926 -0.115312 0.0373337 -0.008045049999999998 -0.00300062 0.000440752 -424.0668640136719 352.33819580078125 346.44195556640625 1.0070960000000002 60.699738 0.10894034999999996 -0.043764011 0.0095077361 -0.055993126500000004 -0.0389070675 -0.0330319588 -0.0364280065 0.0048033953 0.0328917434 0.036890122000000004 -0.0020304148 -0.030578072799999998 -0.0225901649 0.0115327203 -0.057348728499999994 -0.0329845047 0.0450105913 0.0498211028 -0.02637458 -0.059686740999999995 -0.139912 -0.0597373 0.0451467 -0.008779749999999998 -0.0030263 0.000591145 -424.81427001953125 352.2562255859375 346.2680969238281 1.005395 60.597179 0.1207324 -0.016634396699999998 0.0245449987 -0.0351348135 -0.0551324978 -0.023535043999999998 0.015581861499999999 -0.0029063514000000003 0.019695968 0.030668974300000002 -0.0016384833 -0.0103057548 -0.0517783618 0.011170728500000001 -0.057615290599999994 -0.032045759300000004 0.046004549699999994 0.048714014900000005 -0.0283546073 -0.0589873867 -0.139914 -0.0938236 0.0373613 -0.007752239999999999 -0.00340638 0.000760729 -422.05657958984375 352.1700134277344 345.8394775390625 1.004128 60.520805 0.06196264999999996 -0.0051074901 0.0426428254 0.0029461911 -0.06260347200000001 -0.0107359058 0.0503716549 0.00017778310000000002 0.0208265643 0.031235145 -1.67866e-05 -0.0043443327 -0.059382320999999995 0.010808338300000001 -0.0578736318 -0.031096726 0.0469722521 0.047563487 -0.030298225699999997 -0.058184941500000004 -0.139928 -0.07565439999999998 0.0566884 -0.00765562 -0.00311962 0.0008663959999999999 -422.1356201171875 352.1509704589844 346.02471923828125 1.013172 61.065945 0.09017365 0.0005078042 0.0338096632 0.0255557172 -0.055044300899999996 -0.0191295571 0.035163219 0.0001789774 0.0191552577 0.040011024 -0.0143766945 -0.0017187985999999999 -0.0336436133 0.0104455625 -0.058123715199999995 -0.0301377094 0.0479131463 0.046370545 -0.0322029395 -0.0572808079 -0.139882 -0.0422079 0.0666327 -0.00826958 -0.00333473 0.000760729 -423.0480346679688 352.432861328125 345.9150695800781 0.994727 59.954189 0.12457345 0.0168576369 0.0283689547 0.0458419426 -0.0467421792 0.0173151995 -0.0147536723 -0.0051258326000000005 0.010918133100000001 0.0122718123 0.0040361265 0.0166511349 -0.0331144979 0.010082414100000001 -0.0583655051 -0.029169017400000004 0.0488266951 0.045136252800000005 -0.034066302799999996 -0.05627656599999999 -0.139882 -0.102134 0.0541894 -0.0072255 -0.00333473 0.000760728 -423.0245361328125 351.4356994628906 345.81500244140625 0.981028 59.128548 0.09885295000000002 0.0229049619 0.0275829859 0.0580657096 -0.0309894851 0.0120718393 -0.045163619 0.0036244445000000003 0.0016662813 0.0099794702 0.0003019519 0.0175682356 0.0039418668 0.009718906 -0.058598967 -0.0281909609 0.049712377300000006 0.043861710899999996 -0.0358859231 -0.0551739708 -0.139882 -0.0557233 0.07391209999999998 -0.00787989 -0.00333473 0.000760729 -425.8929443359375 352.049560546875 346.0365295410156 1.022274 61.614555 0.07602049999999991 0.0281748873 0.0019910404 0.0511038937 0.0038703767 -0.0117534851 -0.07182500139999999 -0.0011808922 0.0071077747 -0.0132773886 0.0023438021 0.0109371375 0.0279793742 0.0093550512 -0.058824067699999996 -0.027203854 0.050569687300000006 0.0425480561 -0.0376594638 -0.05397494940000001 -0.146812 -0.0524673 0.0403272 -0.00794319 -0.00373216 0.000944991 -421.2095642089844 351.776611328125 345.5497741699219 0.989831 59.659138 0.12880155 0.0290451071 0.016655511799999998 0.054114432000000004 0.0338961096 -0.0105474724 -0.0007520843 -0.0005066492 -0.0030560644 -0.0003386763 0.006854194 0.0127307835 0.044577704100000004 0.0089908627 -0.0590407749 -0.0262080137 0.051398136 0.0411964596 -0.039384647599999996 -0.0526815972 -0.144347 -0.105569 0.0555291 -0.00702109 -0.00358736 0.00103875 -422.1073303222656 352.2035217285156 345.9828796386719 0.9997990000000002 60.259895 0.14915840000000002 0.0105781406 -8.877e-07 0.032017690099999996 0.0594295998 -0.0419285448 0.0261311088 -0.0036693878000000004 0.0076564526 0.0031731805 -0.0026860795000000002 0.019973951299999997 0.062792141 0.0086263535 -0.059249057800000005 -0.0252037594 0.052197250300000005 0.0398081268 -0.041059259300000005 -0.0512961746 -0.13993 -0.0411533 0.08632779999999998 -0.0074634 -0.00333473 0.00133435 -420.1533203125 351.8241271972656 345.6193542480469 0.985431 59.393944 0.1133233 -0.0036475565000000003 -0.0035924693 0.0195532126 0.0634018384 -0.013870218799999999 0.07490759030000001 -0.0022980046 -0.003375367 0.009495073 -0.0056338174 0.0091184499 0.0612307694 0.008261536600000001 -0.0594488867 -0.0241914138 0.0529665744 0.0383842957 -0.042681148499999995 -0.0498211028 -0.148517 -0.0782892 0.0624944 -0.00695459 -0.00364104 0.00127413 -421.9633483886719 351.81988525390625 345.7237854003906 1.00546 60.601082 0.07361039999999999 -0.0139059176 -0.0073569058 -0.0184929164 0.0696343915 0.0166994205 -0.0107983508 0.0022909904000000003 -0.0022764995 0.0153074193 0.0156275915 -0.0124444305 0.06663919509999999 0.007896425 -0.059640233 -0.023171301800000002 0.053705669000000004 0.0369262359 -0.0442482328 -0.0482589599 -0.15215 -0.0568948 0.0822684 -0.00668472 -0.00333473 0.00127413 -424.2965087890625 351.56085205078125 345.83709716796875 1.003746 60.497784 0.10487530000000003 -0.030254825699999998 -0.0056435636 -0.0431778134 0.040154926699999996 0.0322793283 -0.09062475769999999 0.0037399202000000004 0.0042248381 0.0354233479 0.010486508200000001 -0.0071166361 0.0401991452 0.0075310317 -0.0598230695 -0.0221437508 0.0544141125 0.0354352477 -0.0457584997 -0.04661247599999999 -0.144784 -0.0224411 0.0801703 -0.00790387 -0.00333473 0.00127413 -422.2561340332031 352.03302001953125 345.5464172363281 0.997692 60.132896 0.14641510000000002 -0.0284321891 0.0191379649 -0.0644608032 0.0068671501 0.0397403621 -0.0343684524 -0.0013267062 -0.000839966 0.0221413069 0.0061532712 0.0034484659000000003 -0.0181531915 0.007165369699999999 -0.05999737 -0.0211090908 0.0550915004 0.0339126607 -0.04721001019999999 -0.0448845285 -0.152293 -0.08534859999999998 0.0679727 -0.00662785 -0.00333473 0.00127413 -422.4893798828125 351.54461669921875 345.3058776855469 1.013685 61.096817 0.0530353 -0.0168435102 0.0295242741 -0.055421379800000004 -0.04849598 0.0091537535 0.0379827129 -0.0030656595000000003 -0.0090239335 0.018157121000000002 -0.0101408437 -0.0189606584 -0.0586017456 0.006799452199999999 -0.060163109699999995 -0.020067654 0.055737446100000004 0.0323598325 -0.0486009003 -0.0430781374 -0.14835 -0.067322 0.0504075 -0.006459 -0.00323357 0.00127413 -421.2701416015625 351.62396240234375 345.5201721191406 1.002561 60.426357 0.14919729999999998 0.0071914035 0.0392955731 -0.0064449432 -0.060810755999999994 -0.0009298527 0.0611106487 0.0020865948 0.0030022984999999998 0.0398691345 -0.011479557900000001 -0.014858703999999999 -0.05409250559999999 0.0064332921 -0.060320264900000004 -0.0190197746 0.056351581 0.0307781479 -0.0499293841 -0.0411964596 -0.146068 -0.0287711 0.0972094 -0.007589089999999999 -0.00333473 0.00127413 -423.9424743652344 351.7538146972656 345.59564208984375 1.035838 62.432076 0.11697359999999997 0.0227044779 0.0250585396 0.0252282669 -0.0507769229 0.0253156247 -0.0071299534 -0.0035962576 -0.0072132989 0.014479565500000001 0.0022321204 -0.006930486800000001 -0.045635389400000004 0.0060669025 -0.060468813200000006 -0.0179657891 0.0569335547 0.029169017400000004 -0.0511937557 -0.0392427837 -0.15213 -0.0638625 0.0657622 -0.00708433 -0.00371743 0.00127413 -421.79791259765625 351.64263916015625 345.25250244140625 0.98693 59.484264 0.06247239999999996 0.039199561699999996 0.0251434323 0.0485003339 -0.0241995272 0.0313294155 -0.0457119578 -0.0021932328 -0.0172731525 0.008723049 -0.0052449575 0.0154686873 -0.009607239 0.0057002965 -0.0606087335 -0.0169060359 0.0574830349 0.0275338758 -0.052392391600000005 -0.0372205242 -0.147224 -0.0663918 0.0676908 -0.00640486 -0.00333473 0.00127413 -421.93072509765625 352.1482849121094 345.708740234375 1.026816 61.888298 0.1272926 0.0470898203 0.0207069948 0.0610288358 0.0146292004 0.0031783196000000004 -0.0333325724 -0.0061132941000000005 -0.0073838742 -0.001646058 -0.0054390672 0.023915826299999998 0.0397765263 0.005333487099999999 -0.0607400057 -0.0158408552 0.057999708 0.025874181200000002 -0.053523752699999996 -0.0351332152 -0.152643 -0.0101424 0.0783385 -0.00714534 -0.00369378 0.00127413 -423.099853515625 351.7292785644531 345.8302307128906 0.990612 59.7062 0.1305567 0.0469942033 0.008852149 0.0428985004 0.0405635142 -0.0064250910999999996 0.0076453484999999995 -0.0069496159 -0.017051946499999998 -0.0171191389 -0.0058363784 0.0185908797 0.043179329800000006 0.0049664875 -0.060862611100000005 -0.0147705889 0.0584832792 0.0241914138 -0.0545863863 -0.0329845047 -0.147397 -0.0658508 0.0696422 -0.00614075 -0.00348025 0.00127413 -421.5107421875 352.27752685546875 346.03955078125 0.989419 59.634304 0.0531963 0.020022476 -0.0036083053 0.0310779838 0.0671342506 -0.023294095299999998 0.0523726357 -0.009906657 -0.015509258500000001 -0.0105998873 -0.0183705534 0.0199972097 0.0616241134 0.0045993107 -0.060976532199999996 -0.013695580700000001 0.0589334724 0.022487074 -0.055578927800000004 -0.0307781479 -0.150358 -0.0380616 0.0813828 -0.00611743 -0.0034356 0.00142027 -422.28912353515625 351.97943115234375 346.1861877441406 0.999593 60.247524 0.08907579999999998 0.0032203551000000003 -0.013936120900000001 0.0085176652 0.0704002095 -0.0102516257 0.0275278861 -0.0058939463 -0.0046106728 0.009313088800000001 0.0027355609000000005 -0.0086485306 0.0769878695 0.0042319699 -0.0610817528 -0.012616175600000001 0.0593500308 0.0207626817 -0.0565001029 -0.0285180009 -0.150482 -0.0177823 0.0608183 -0.00675984 -0.00360921 0.00127413 -420.774658203125 351.58770751953125 345.85504150390625 1.003311 60.471558 0.10080179999999998 -0.0196344023 -0.0064488235999999996 -0.0433020962 0.061712373499999994 0.0466474791 -0.0070087343000000005 -0.0012070985000000002 -0.0202283669 0.0011430699000000001 0.0144320524 -5.71065e-05 0.0274773977 0.0038644781 -0.061178257800000004 -0.0115327203 0.0597327166 0.0190197746 -0.057348728499999994 -0.0262080137 -0.153062 -0.0648663 0.054811 -0.00589529 -0.00357115 0.00127413 -422.6864929199219 351.8775634765625 346.20751953125 1.033639 62.299541 0.1168921 -0.026893925899999997 0.0107180713 -0.0731417439 0.017215149199999998 0.022736507599999997 -0.0677866313 -0.0054545991000000005 -0.0071645738 0.027143106099999998 -0.0006317544 -0.0108997546 -0.008140302 0.0034968484000000005 -0.061266033600000006 -0.0104455625 0.0600813114 0.0172599069 -0.058123715199999995 -0.0238522233 -0.146675 -0.0134394 0.0925847 -0.00627281 -0.00352258 0.00127413 -422.8456115722656 352.4344787597656 346.22808837890625 0.994814 59.959465 0.08209830000000001 -0.010621235900000001 0.021378302400000004 -0.052403482300000005 -0.024496937799999997 0.030314101200000002 0.0064703908 -0.0122472211 -0.0053087295 0.0217521445 0.0021283870000000002 -0.0151414997 -0.040866952000000005 0.0031290940000000002 -0.0613450675 -0.0093550512 0.060395616299999996 0.0154846479 -0.058824067699999996 -0.0214547469 -0.150762 -0.0247122 0.0462732 -0.00630376 -0.00390017 0.00127413 -422.9660339355469 352.00299072265625 346.23626708984375 0.9918 59.777802 0.09859279999999998 0.0033584942999999997 0.0287212617 -0.0472375124 -0.048790541900000005 0.0084625901 0.0406435552 -0.0117558295 -0.0152058781 0.0047684817 -0.0067508376 -0.0115114222 -0.06563714820000001 0.0027612279999999997 -0.0614153483 -0.008261536600000001 0.060675451799999995 0.013695580700000001 -0.0594488867 -0.0190197746 -0.150703 -0.0395441 0.0623171 -0.00564199 -0.00337131 0.00143666 -422.44915771484375 351.9327697753906 346.5376281738281 0.989137 59.617283 0.12046626999999997 0.018384969299999998 0.039892994 -0.0054338065 -0.0537514678 -0.001585472 0.06653288019999999 -0.0072107003 -0.0074497122999999995 0.025523831 -0.0028616592 -0.0084084583 -0.0664157242 0.0023932635000000002 -0.0614768659 -0.007165369699999999 0.060920658200000005 0.0118943007 -0.05999737 -0.0165515619 -0.14666499999999996 -0.008350329999999998 0.0906711 -0.00668082 -0.00345629 0.00145046 -423.9931335449219 352.3074951171875 346.7554626464844 1.011729 60.978962 0.10625807 0.024933695 0.021902189300000003 0.0333136702 -0.062121087 0.0106012578 0.0043502983 -0.010044719399999999 -0.011308383799999999 -0.0015908532 -0.0125697599 0.0036901995 -0.057059823200000005 0.0020252136 -0.0615296116 -0.0060669025 0.061131095700000006 0.010082414100000001 -0.060468813200000006 -0.0140544224 -0.152155 -0.032254 0.0564882 -0.0061437 -0.00372816 0.00140582 -423.6745910644531 352.1184387207031 346.8763427734375 0.98844 59.575275 0.07847870000000003 0.0447592452 0.0255725063 0.0537008268 -0.035567461099999996 0.0194432168 -0.0402978534 -0.0107025817 -0.0209731744 0.0010398476 -0.0125732225 0.0182753466 -0.011926136399999999 0.0016570915 -0.0615735779 -0.0049664875 0.061306644 0.008261536600000001 -0.060862611100000005 -0.0115327203 -0.146409 -0.0485833 0.0650126 -0.00566166 -0.00334158 0.00149478 -424.34906005859375 352.42840576171875 347.3380126953125 1.042073 62.807858 0.12424978000000003 0.0488040451 0.0089761566 0.052543589800000005 0.002944869 -0.0199920901 -0.0530406286 -0.0098403771 -0.0092902134 -0.0094402303 -0.0057109295 0.0119313315 0.0186552891 0.0012889102 -0.0616087584 -0.0038644781 0.06144720309999999 0.0064332921 -0.061178257800000004 -0.0089908627 -0.145747 -0.00454162 0.0908037 -0.00644768 -0.00354873 0.00141285 -423.4538269042969 352.07965087890625 347.1715087890625 1.017207 61.309105 0.11093467999999997 0.035279282200000005 -0.0099449915 0.0268605023 0.0468246833 -0.0358520774 0.045555255 -0.0094717593 -0.0177346076 -0.02287013 -0.0052841443999999994 0.0152549147 0.054979404800000006 0.000920683 -0.0616351482 -0.0027612279999999997 0.0615526926 0.0045993107 -0.0614153483 -0.0064332921 -0.145745 -0.0317784 0.0468788 -0.00586563 -0.00374777 0.00139852 -422.6480712890625 352.08612060546875 346.703125 1.014634 61.154064 0.037242899999999995 0.0033816905 -0.0233172889 -0.0066642587 0.0656518367 -0.0027511182 0.032191565299999995 -0.0083457415 -0.0152698077 -0.024685920099999998 0.0022264366000000002 0.0003469703 0.0541358792 0.0005524229 -0.061652743499999996 -0.0016570915 0.0616230524 0.0027612279999999997 -0.0615735779 -0.0038644781 -0.145772 -0.0358861 0.0550545 -0.00595598 -0.00335771 0.00138028 -425.5208740234375 351.64764404296875 347.0054626464844 1.044097 62.929871 0.11216687 -0.0180362575 -0.010253023100000001 -0.055090863600000005 0.027054304100000003 0.0231150246 -0.083615245 -0.00351559 -0.0060941651 0.0094704862 0.0242820773 -0.0166484252 0.0144462064 0.0001841432 -0.0616615418 -0.0005524229 0.0616582424 0.000920683 -0.061652743499999996 -0.0012889102 -0.145743 0.00108797 0.0803908 -0.00650628 -0.00363701 0.00154723 -423.056396484375 351.6148376464844 346.5876770019531 1.034194 62.33297 0.09589186999999998 0.0016956422 0.0032560717 -0.0482294484 -0.0370651803 0.0156615799 0.021735155 -0.007353035799999999 -0.0186052074 0.0129778098 0.010067210600000001 -0.017737501699999998 -0.05009777940000001 -0.0001841432 -0.0616615418 0.0005524229 0.0616582424 -0.000920683 -0.061652743499999996 0.0012889102 -0.145747 -0.042523 0.0563679 -0.00622338 -0.00362793 0.00127413 -423.0142211914063 351.8645935058594 346.55059814453125 1.008234 60.768295 0.08314669999999999 0.0241448692 0.014098157 -0.007604683399999999 -0.056266075199999994 0.015186296100000002 0.0551742581 -0.010641140700000001 -0.016262713 0.0028514632 -0.0076045986999999995 -0.017857669 -0.06778292849999999 -0.0005524229 -0.061652743499999996 0.0016570915 0.0616230524 -0.0027612279999999997 -0.0615735779 0.0038644781 -0.151153 -0.0469808 0.08058329999999998 -0.0056934 -0.00347605 0.00157362 -424.0895385742188 351.9103698730469 346.6689453125 1.091821 65.806252 0.11193832000000005 0.0363140147 0.0180340179 0.0407674153 -0.048622809 0.0153853476 -0.0503740466 -0.0085678722 -0.0116771003 0.0028042871000000004 0.0029113337 -0.0049580244 -0.022957021600000002 -0.000920683 -0.0616351482 0.0027612279999999997 0.0615526926 -0.0045993107 -0.0614153483 0.0064332921 -0.14575 0.00393002 0.0833273 -0.00642673 -0.00367341 0.00170054 -423.2201843261719 351.49432373046875 346.393310546875 1.03575 62.426769 0.12321862000000003 0.0660591741 0.0010317133 0.0523422112 0.0003475424 0.015706557700000002 -0.0607401239 -0.0099515447 -0.029016688500000002 -0.0229334363 -0.0001448073 0.0150579 0.0192092267 -0.0012889102 -0.0616087584 0.0038644781 0.06144720309999999 -0.0064332921 -0.061178257800000004 0.0089908627 -0.153091 -0.0436701 0.06585480000000002 -0.00561298 -0.00360936 0.0015622399999999997 -421.7550659179688 351.44525146484375 346.4691467285156 1.01372 61.098969 0.06358719999999998 0.03991794 -0.0167302547 0.0339420531 0.04879327730000001 -0.0224715214 0.061852524900000004 -0.0079213945 -0.0199438373 -0.0220940869 -0.0049164514 0.0049871574 0.0536179506 -0.0016570915 -0.0615735779 0.0049664875 0.061306644 -0.008261536600000001 -0.060862611100000005 0.0115327203 -0.14577 -0.0255227 0.08472359999999998 -0.00579584 -0.00349337 0.00164839 -421.45635986328125 352.1016845703125 346.6666259765625 0.996851 60.082253 0.09657218 0.0067522789 -0.0163490636 0.0028501807 0.055377361900000005 -0.0185816307 0.034071564900000004 -0.007544854 -0.012234094 -0.0060462588 0.0015124323 -0.0149976616 0.041548512200000005 -0.0020252136 -0.0615296116 0.0060669025 0.061131095700000006 -0.010082414100000001 -0.060468813200000006 0.0140544224 -0.145759 0.00169778 0.0755389 -0.00673733 -0.00367341 0.0015668 -420.78070068359375 352.3178405761719 346.60931396484375 0.9817570000000002 59.172493 0.12888128 -0.0082579993 -0.010545012900000001 -0.0106295156 0.0603809941 0.007689063 0.041915391499999996 -0.012972514499999999 -0.012361843899999999 -0.0053890872999999995 0.0082497868 -0.0118962461 0.05040502400000001 -0.0023932635000000002 -0.0614768659 0.007165369699999999 0.060920658200000005 -0.0118943007 -0.05999737 0.0165515619 -0.151568 -0.0476931 0.0751275 -0.00547346 -0.00359273 0.00168765 -423.9154357910156 352.0771789550781 347.07659912109375 1.039327 62.642365 0.11952255999999997 -0.0216324404 -0.0142949083 -0.0628127964 0.041317104 0.0213775059 -0.060973049800000005 -0.0094777205 -0.0139018346 0.0055140706000000005 0.0120257388 -0.0218017902 0.017972361200000002 -0.0027612279999999997 -0.0614153483 0.008261536600000001 0.060675451799999995 -0.013695580700000001 -0.0594488867 0.0190197746 -0.145759 0.00283246 0.104202 -0.00599235 -0.00367341 0.00177035 -423.5655822753906 351.8409423828125 347.0753479003906 1.024534 61.750759 0.07703055999999998 -0.0176274877 -0.0089197872 -0.0669768304 -0.0164901895 0.011178166699999999 -0.0165854421 -0.010543627 -0.0157270396 0.0072771764 0.000917608 -0.035881979 -0.0304492454 -0.0031290940000000002 -0.0613450675 0.0093550512 0.060395616299999996 -0.0154846479 -0.058824067699999996 0.0214547469 -0.15458 -0.0311391 0.0852925 -0.00574857 -0.00367341 0.0017075599999999997 -423.7508850097656 352.0266418457031 346.920654296875 1.006564 60.667675 0.039044800000000005 -0.0008721005000000001 0.0208999401 -0.0509749696 -0.059626320700000006 -0.0135086782 0.0365194986 -0.0118750665 -0.0143820142 0.0052321532 -0.0062634497 -0.0261125069 -0.0746038392 -0.0034968484000000005 -0.061266033600000006 0.0104455625 0.0600813114 -0.0172599069 -0.058123715199999995 0.0238522233 -0.145751 -0.0440656 0.0882948 -0.00558059 -0.00367341 0.0015898 -422.8259582519531 351.642578125 347.02508544921875 0.9935790000000002 59.885006 0.10655752 0.0090213507 0.0173016 -0.0150729829 -0.0686909738 -0.019873698000000002 0.059805524699999994 -0.0100660838 -0.0120027288 0.0203194708 0.012105850900000001 -0.0262434077 -0.0644347867 -0.0038644781 -0.061178257800000004 0.0115327203 0.0597327166 -0.0190197746 -0.057348728499999994 0.0262080137 -0.145728 -0.00417308 0.0861038 -0.00655807 -0.00384264 0.00144749 -423.8187561035156 352.1510925292969 346.9847106933594 1.023226 61.671879 0.08029502000000001 0.025017043 0.0081184106 0.0288706673 -0.0719204809 0.0095984751 0.0051992176 -0.014214818999999998 -0.0134285701 -0.0034634064 -0.0005935768 -0.0013883398000000002 -0.0679039268 -0.0042319699 -0.0610817528 0.012616175600000001 0.0593500308 -0.0207626817 -0.0565001029 0.0285180009 -0.150071 -0.0415857 0.0826374 -0.00597614 -0.00394541 0.00143073 -423.77154541015625 352.24627685546875 346.7822265625 1.025837 61.8293 0.09809249999999997 0.0462542136 0.0045895963 0.0528750234 -0.0337791264 0.014640639399999999 -0.0826769938 -0.014960761699999998 -0.019683888400000002 -0.0163221432 0.0003089843 0.0162794878 -0.013701072 -0.0045993107 -0.060976532199999996 0.013695580700000001 0.0589334724 -0.022487074 -0.055578927800000004 0.0307781479 -0.155761 -0.0316946 0.0970898 -0.00535261 -0.00354894 0.00177191 -424.74017333984375 351.98748779296875 347.145263671875 1.055362 63.60878 0.15959460000000003 0.038639568199999995 -0.0221509825 0.039015003 0.015586193 -0.0216206435 -0.0067438341 -0.011418741699999999 -0.0076103907 -0.0189863249 0.005863291 -0.007974851 0.023153043999999998 -0.0049664875 -0.060862611100000005 0.0147705889 0.0584832792 -0.0241914138 -0.0545863863 0.0329845047 -0.14574 0.0195532 0.0761805 -0.006566 -0.00385949 0.00174752 -424.1434020996094 352.32257080078125 347.3174743652344 1.009025 60.81599 0.11422493999999997 0.023327357200000003 -0.0472761317 0.0227958246 0.0381810159 -0.0056383471 0.0327575389 -0.0154189558 -0.012063331299999999 -0.0408557636 0.0172012801 -0.0008544442 0.0393667154 -0.005333487099999999 -0.0607400057 0.0158408552 0.057999708 -0.025874181200000002 -0.053523752699999996 0.0351332152 -0.145694 -0.00341794 0.0165542 -0.00675019 -0.00427144 0.00171203 -420.5997924804688 352.46820068359375 346.83648681640625 1.0157600000000002 61.221905 0.23348786 0.0230027377 -0.026321017999999998 0.0073961525 0.0481740687 -0.0258750672 0.0570177761 -0.0190412917 -0.0189156865 -0.0337267949 0.0056392796999999995 -0.0018588097 0.0378277006 -0.0057002965 -0.0606087335 0.0169060359 0.0574830349 -0.0275338758 -0.052392391600000005 0.0372205242 -0.153047 -0.0749817 0.0791918 -0.00538721 -0.00381492 0.00169286 -421.5812683105469 351.8645324707031 347.01214599609375 1.016085 61.241528 0.11568909999999998 -0.0054021876 -0.036047570099999995 -0.0241367298 0.0647287272 0.0027367992 0.025964602799999997 -0.0086185152 -0.017722553500000002 -0.0178451891 0.0159175127 -0.0092236977 0.0483897796 -0.0060669025 -0.060468813200000006 0.0179657891 0.0569335547 -0.029169017400000004 -0.0511937557 0.0392427837 -0.145791 -0.0174313 0.101565 -0.00545372 -0.00331124 0.00169286 -424.6976318359375 352.34686279296875 347.7719421386719 1.046371 63.066868 0.08850182000000002 -0.0169693845 -0.031527144900000005 -0.059322451 0.0237630808 0.019130016200000002 -0.07052876940000001 -0.0116476029 -0.0035495692 -0.0020103394 0.0179923372 -0.036666341 -0.0010285908 -0.0064332921 -0.060320264900000004 0.0190197746 0.056351581 -0.0307781479 -0.0499293841 0.0411964596 -0.145762 0.007672919999999998 0.0871884 -0.00590856 -0.00367341 0.00185569 -424.1856384277344 351.9267272949219 347.33856201171875 1.034116 62.328259 0.10547602000000003 0.0070415302 -0.0138493196 -0.0503529284 -0.0439065488 0.0023470018 0.0031596439 -0.0145304 -0.0149719259 -0.0031095309000000004 0.0014870031 -0.01944538 -0.0637206926 -0.006799452199999999 -0.060163109699999995 0.020067654 0.055737446100000004 -0.0323598325 -0.0486009003 0.0430781374 -0.14575 -0.056337 0.09365250000000003 -0.00537159 -0.00367341 0.00169286 -423.38916015625 351.97882080078125 347.2102966308594 1.023629 61.696205 0.08362345999999996 0.033392038 -0.0016165898000000001 0.0032592431 -0.06263700929999999 0.0018841526999999999 0.0281980177 -0.0080398172 -0.0168520058 -0.0080411059 0.0033164558 -0.0088972508 -0.0556316124 -0.007165369699999999 -0.05999737 0.0211090908 0.0550915004 -0.0339126607 -0.04721001019999999 0.0448845285 -0.14574 -0.00815854 0.109331 -0.00541879 -0.00383285 0.00188135 -424.82818603515625 351.9365234375 347.30462646484375 1.092296 65.834877 0.06538249 0.0476112853 -0.0126601705 0.0404942914 -0.043062602 0.0070755124 -0.0670686508 -0.011319074699999999 -0.010602446599999999 -0.0189241225 0.0133420657 -0.011950173 -0.0162473525 -0.0075310317 -0.0598230695 0.0221437508 0.0544141125 -0.0354352477 -0.0457584997 0.04661247599999999 -0.145762 0.00982145 0.101999 -0.00603963 -0.00367341 0.00190204 -422.53363037109375 352.3207702636719 347.1430969238281 1.039734 62.666893 0.15682205 0.05639283480000001 -0.0157825986 0.044799062699999996 0.0202534014 -0.0176818867 -0.0077057314000000005 -0.0177922968 -0.0252166545 -0.0480801009 0.017273620700000002 0.0020732161999999998 0.024072958300000002 -0.007896425 -0.059640233 0.023171301800000002 0.053705669000000004 -0.0369262359 -0.0442482328 0.0482589599 -0.145734 -0.0605666 0.0746975 -0.00516325 -0.00385766 0.00178058 -422.9571838378906 352.22271728515625 347.1920166015625 1.02439 61.742062 0.09931673999999997 0.010622128 -0.045723022599999996 0.009569438000000001 0.0531784314 -0.0062161276 0.046503306900000006 -0.0138414285 -0.0140305059 -0.0352662386 0.0095441368 -0.0192941482 0.050782990599999994 -0.008261536600000001 -0.0594488867 0.0241914138 0.0529665744 -0.0383842957 -0.042681148499999995 0.0498211028 -0.147987 -0.00296826 0.0985779 -0.00520297 -0.00367341 0.00169285 -424.906982421875 352.1824951171875 347.2353515625 1.038994 62.622253 0.11594815999999998 -0.0051423623 -0.050358807900000004 -0.0350585877 0.0295090925 0.0282228962 -0.0468504982 -0.0146681127 -0.006622089300000001 -0.008694141899999999 0.045584791 -0.0398838542 0.0228892271 -0.0086263535 -0.059249057800000005 0.0252037594 0.052197250300000005 -0.0398081268 -0.041059259300000005 0.0512961746 -0.145689 0.0355939 0.0945914 -0.0059103 -0.00417242 0.00190854 -423.4152526855469 351.8850402832031 346.5765075683594 1.033736 62.305393 0.122037 -0.003448004 -0.0284800076 -0.0632263175 -0.0208423459 0.021239447999999998 -0.029798318900000002 -0.013741626000000002 -0.015185738 -0.0124831997 0.020881561 -0.0246763623 -0.0350786415 -0.0089908627 -0.0590407749 0.0262080137 0.051398136 -0.0411964596 -0.039384647599999996 0.0526815972 -0.145691 -0.0314626 0.08619839999999998 -0.00504354 -0.00417242 0.00184359 -422.3483276367188 351.3887939453125 346.0973205566406 1.016984 61.295673 0.05798449999999999 0.020825352 -0.007977205400000001 -0.041685711 -0.0652662406 0.0204827338 0.04883233730000001 -0.011724732 -0.0250426273 -0.0126569267 0.0159793476 -0.0324552615 -0.07986357820000001 -0.0093550512 -0.058824067699999996 0.027203854 0.050569687300000006 -0.0425480561 -0.0376594638 0.05397494940000001 -0.145718 -0.0167102 0.0934285 -0.00484384 -0.00379368 0.00198465 -422.2748718261719 351.71759033203125 346.2295227050781 1.008756 60.799755 0.11634870000000003 0.0299340027 -0.011695148700000001 0.004381459 -0.0602362714 0.0081581148 0.043900467699999994 -0.0123940505 -0.0165054741 -0.0025180971 0.0244170522 -0.0246205027 -0.0583530781 -0.009718906 -0.058598967 0.0281909609 0.049712377300000006 -0.043861710899999996 -0.0358859231 0.0551739708 -0.145756 0.018509 0.117126 -0.00592362 -0.00376121 0.00202028 -422.718505859375 352.04962158203125 346.31982421875 1.017756 61.342197 0.1144385 0.045343036100000005 -0.0263671653 0.0412184963 -0.058902891299999996 0.021277525699999997 -0.0060841318999999994 -0.017678732 -0.0190525298 -0.0212998712 0.025238842200000004 -0.017160889 -0.047041514900000005 -0.010082414100000001 -0.0583655051 0.029169017400000004 0.0488266951 -0.045136252800000005 -0.034066302799999996 0.05627656599999999 -0.145703 -0.0295023 0.0982763 -0.00530639 -0.00408005 0.00200586 -422.1099243164063 351.9504699707031 346.4938659667969 0.984848 59.35881 0.0433124 0.060287010599999996 -0.0174425404 0.048151882699999995 -0.0274210729 0.018581709199999998 -0.058369866900000004 -0.017142591000000002 -0.0217055929 -0.027296614900000002 0.021584801600000002 -0.0089845655 -0.0106874843 -0.0104455625 -0.058123715199999995 0.0301377094 0.0479131463 -0.046370545 -0.0322029395 0.0572808079 -0.145737 -0.023353 0.0932532 -0.00492651 -0.00386643 0.00195724 -423.7091674804688 352.0915832519531 347.0028076171875 1.032212 62.213509 0.10736609999999996 0.0586275556 -0.0354025879 0.044459265199999994 0.0048383178 -0.011817707 -0.0289568589 -0.017851856399999998 -0.014880365900000001 -0.0279544681 0.0140970602 -0.0045805519 0.0228996648 -0.010808338300000001 -0.0578736318 0.031096726 0.0469722521 -0.047563487 -0.030298225699999997 0.058184941500000004 -0.139365 0.0249503 0.102666 -0.00574148 -0.00387646 0.00191668 -421.5442199707031 352.4117126464844 346.8356628417969 0.989607 59.645592 0.1240591 0.0472242227 -0.0442042697 0.026575413 0.0401719722 -0.0224274486 0.0398233484 -0.0195155471 -0.0214943618 -0.0446623845 0.016171305 -0.0044929325 0.037657791499999996 -0.011170728500000001 -0.057615290599999994 0.032045759300000004 0.046004549699999994 -0.048714014900000005 -0.0283546073 0.0589873867 -0.132264 -0.031324 0.0918057 -0.00509904 -0.00400667 0.00169286 -420.6295776367188 350.8545837402344 345.02227783203125 1.168657 70.437317 0.25510549999999993 0.0148706421 -0.0554163036 0.0235735903 0.0476593143 -0.0366593026 0.0534355809 0.0124539124 -0.0061993434 -0.050260397400000004 0.0500016899 0.0249562616 0.0410605719 -0.0115327203 -0.057348728499999994 0.0329845047 0.0450105913 -0.0498211028 -0.02637458 0.059686740999999995 -0.129556 -0.0837447 0.14995 -0.0076283 -0.00417242 0.0018345 -422.6178588867188 351.5042419433594 345.54022216796875 1.358652 81.88868 0.37498197 -0.0014688322 -0.07695412459999999 -0.004849271 0.039514092599999995 -0.0635779209 0.00039524 0.0062495355 0.0350227281 -0.0251286543 0.0097157511 -0.053903538499999994 0.0503580432 -0.0118943007 -0.0570739836 0.0339126607 0.0439909442 -0.0508837635 -0.024360686200000002 0.0602817821 -0.0654082 0.00338597 0.135923 -0.009860130000000003 -0.00533363 0.00263499 -420.6769714355469 352.3966369628906 346.6168212890625 1.120178 67.515404 0.28085887 -0.0133455466 -0.0488771263 -0.0220569381 0.027313674 -0.0328615391 0.051491877 -0.0094324671 0.017665354299999998 -0.0130409728 0.051504332699999995 -0.0166837217 0.0338754846 -0.012255456699999999 -0.056791094900000005 0.0348299293 0.0429461904 -0.0519010494 -0.022315511899999998 0.0607714702 -0.08371499999999998 -0.07057860000000002 0.140476 -0.00703084 -0.00478372 0.0023335 -422.7582702636719 351.9284362792969 346.5043029785156 0.97896 59.003902 0.10698750000000001 -0.016422506599999998 -0.0549309717 -0.0433468909 0.0284524913 -0.022590903500000002 -0.0022184689000000002 -0.003498682 0.0167817936 0.0027847465999999996 0.0386297067 -0.03575692 0.030469596600000003 -0.012616175600000001 -0.0565001029 0.0357360162 0.041876926 -0.052872053200000005 -0.0202416832 0.061154949400000005 -0.102312 -0.0160031 0.155845 -0.0070238 -0.00448303 0.00227231 -422.84375 352.2189636230469 346.8207702636719 0.964336 58.122475 0.0774803 -0.0145992953 -0.058557927999999995 -0.0424643644 0.015744261699999998 -0.020013881100000002 0.0196514939 -0.014168373 0.0101208601 0.00022264150000000002 0.048837958099999995 -0.0391397556 0.011757996599999999 -0.0129764445 -0.056201049100000004 0.0366306304 0.0407837614 -0.0537959092 -0.0181418631 0.0614315496 -0.110227 -0.0290379 0.143161 -0.00619207 -0.00443783 0.00227231 -423.8365173339844 352.55279541015625 346.9889221191406 1.001551 60.365532 0.08324310000000003 -0.0098700877 -0.0529568599 -0.061541105 0.0200284701 0.017987659 -0.0554965717 -0.0169523745 0.0041132797 -0.0009852164999999999 0.034727085899999996 -0.0500017382 0.0043647567 -0.0133362505 -0.055893976100000006 0.0375134847 0.0396673204 -0.0546717934 -0.0160187477 0.0616007872 -0.105186 -0.032385 0.131572 -0.00511668 -0.0042479 0.00227231 -424.3617248535156 351.87579345703125 346.8218078613281 0.9938920000000002 59.903885 0.1365014 -0.012420121200000002 -0.0452155183 -0.0688329871 -0.0237948699 0.0078060239 -0.0689877966 -0.0145568198 0.0063200292000000005 0.0191307811 0.0390222379 -0.0373914738 -0.022765977799999997 -0.013695580700000001 -0.055578927800000004 0.0383842957 0.038528240299999995 -0.0554989249 -0.0138750634 0.061662366600000004 -0.107132 0.0300154 0.143111 -0.00602979 -0.00454711 0.00227231 -422.29010009765625 352.276123046875 346.68463134765625 0.974888 58.758476 0.1413646 -0.0034901336 -0.0368069848 -0.06949750240000001 -0.0403706286 0.013703283 -0.0226037608 -0.0189569937 -0.0077822803000000005 0.0038286287 0.0336041878 -0.0385197021 -0.0438986892 -0.0140544224 -0.0552559492 0.0392427837 0.0373671711 -0.05627656599999999 -0.011713562700000001 0.061616180199999995 -0.105689 -0.0266737 0.123571 -0.00487044 -0.00449451 0.00233421 -422.5505676269531 351.8749694824219 346.6341552734375 0.9847570000000002 59.353287 0.05286497399999997 -0.002167942 -0.028766027799999996 -0.07607462599999999 -0.062303696 0.0059415323999999995 0.020479888300000002 -0.016628863600000002 -0.0031687068 0.003857267 0.0257887107 -0.0379424954 -0.06564794110000001 -0.0144127627 -0.0549250863 0.0400886733 0.0361847754 -0.0570040233 -0.0095370211 0.06146230849999999 -0.10600200000000001 0.000830274 0.12144 -0.00450004 -0.00446847 0.00227231 -422.6456909179688 352.3600158691406 346.9045715332031 0.9853090000000002 59.386581 0.11083832599999996 0.0077365503000000006 -0.0240850261 -0.056410402400000004 -0.0717334884 0.0042848031 0.0458891525 -0.0208762657 -0.0021544422 -0.0041681425 0.025687652400000004 -0.0497983677 -0.0827506308 -0.0147705889 -0.0545863863 0.0409216928 0.0349817282 -0.057680648099999995 -0.0073482335 0.061201020700000004 -0.0922927 0.0384368 0.11277 -0.00541728 -0.00456828 0.00227231 -423.7093811035156 352.1448669433594 346.72174072265625 1.017677 61.337456 0.1199639 0.02461359 -0.0182305379 -0.032310691600000004 -0.0812785104 0.0141625643 0.0389227234 -0.0192172169 -0.0074533546 -0.019561557 0.029298173900000002 -0.0202829003 -0.0858611032 -0.0151278882 -0.054239897599999996 0.0417415748 0.033758716 -0.058305837 -0.0051500103000000005 0.0608327732 -0.0993306 -0.0326072 0.115636 -0.00466176 -0.00454348 0.00227231 -421.2937316894531 352.0890808105469 346.230712890625 1.078237 64.987511 0.2223304 0.0250452419 -0.0074110574 -0.0082451319 -0.07068775 0.0109136174 0.0609189597 -0.0137984499 -0.018711523100000002 -0.0335353204 -0.0084279776 -0.0411021827 -0.0759983316 -0.0154846479 -0.053885669500000004 0.0425480561 0.0325164369 -0.0588790326 -0.0029451740999999997 0.0603582097 -0.114905 0.0444918 0.135491 -0.00598668 -0.00416994 0.00177473 -421.4561462402344 352.227783203125 346.6115417480469 1.049795 63.273277 0.09400490000000003 0.0385089746 -0.0144814374 -0.0058419611 -0.0687047625 -0.0034088853000000005 0.0615125967 -0.0151748193 0.0045066681 0.0030896777 0.0327425365 -0.0300551802 -0.056591387 -0.0158408552 -0.053523752699999996 0.043340877699999995 0.0312555998 -0.0593997236 -0.0007365563000000001 0.0597781596 -0.105755 0.0445967 0.126141 -0.00544197 -0.00466537 0.00224259 -423.6142578125 351.9715270996094 347.0666809082031 1.013613 61.092537 0.2177588 0.0167637999 -0.0117756175 -0.005412407199999999 -0.0620226625 -0.034436012099999996 0.030865654300000003 -0.0110315416 0.0164970131 0.0204331765 0.0231988043 -0.0505995215 -0.035057669799999996 -0.0161964974 -0.053154198799999997 0.0441197852 0.029976924199999998 -0.0598674458 0.0014730073999999998 0.0590936366 -0.103266 0.110771 0.201107 -0.00669981 -0.00465603 0.002458 -427.740234375 352.4847106933594 347.1923828125 1.05381 63.515274 0.2609612 0.024877446600000002 -0.0559776802 -0.0246304569 -0.0512546847 -0.0171045689 -0.0913772999 -0.018423078 0.0200505984 -0.0079608371 0.0401458068 -0.040262107400000004 -0.0402735102 -0.0165515619 -0.0527770605 0.0448845285 0.0286811401 -0.0602817821 0.0036806797 0.058305837 -0.108416 -0.0269597 0.145813 -0.00613822 -0.00523027 0.0025779 -423.3394775390625 353.0061950683594 346.8187561035156 1.234664 74.41567999999998 0.4004576 0.0063593151 -0.0325957304 -0.025438136899999998 -0.0193870761 0.0069204352 0.0119839502 -0.0264957321 -0.00017609439999999999 -0.0487983171 0.0147207082 -0.0122212533 -0.022759951 -0.0169060359 -0.052392391600000005 0.0456348621 0.0273689869 -0.060642363 0.0058836257 0.057416137699999995 -0.191272 -0.084914 0.0820212 -0.00257154 -0.00552273 0.00251993 -421.97845458984375 349.72161865234375 344.50994873046875 1.496215 90.179893 1.0792577 -0.0012798273 -0.046241961100000006 -0.0029049118 0.0199219524 0.0869564028 0.0356474281 0.0095975031 -0.0723173962 -0.1199444347 -0.0347604158 0.0510009564 -0.028026108799999998 -0.0172599069 -0.0520002471 0.046370545 0.026041213599999998 -0.060948867000000004 0.0080790168 0.056426093600000005 -0.284592 -0.0303675 -0.265353 0.00646376 -0.00289899 0.00249863 -424.1256713867188 353.44305419921875 349.127197265625 1.451313 87.473602 1.0715289 0.0445281501 -0.0699649765 -0.0196453693 -0.0046037047999999995 0.0057414096 0.041156126 -0.0372914667 -0.0168640065 -0.0787979162 0.013916442 -0.0261348623 0.009069177 -0.0176131622 -0.0516006827 0.0470913411 0.0246985778 -0.061201020700000004 0.010264034 0.0553374348 -0.166239 0.0730873 0.0551311 -0.00319971 -0.00264181 0.00183454 -425.1435241699219 353.13153076171875 348.6854553222656 1.051298 63.363842 0.059509599999999975 0.057746738799999996 -0.0718942896 0.013702285 -0.0044518692 0.0293604835 -0.0541616599 -0.032873114700000004 -0.016904306799999998 -0.0636160845 0.0171360495 -0.0216423856 0.011169146999999999 -0.0179657891 -0.0511937557 0.047797019100000004 0.023341845899999998 -0.0613985992 0.012435871599999999 0.0541520642 -0.153895 0.07285719999999998 0.0516151 -0.0033907 -0.00315692 0.00199683 -422.7452697753906 353.29705810546875 347.9543762207031 1.019454 61.444538 0.15587456 0.0420840797 -0.06346851 0.020126138000000002 0.0186987252 -0.0016357363000000001 0.040097863500000004 -0.033330087200000004 -0.013189423999999998 -0.07132720669999999 0.0276283368 -0.0079039478 0.0239118248 -0.0183177752 -0.050779524000000006 0.0484873523 0.021971792200000003 -0.0615414265 0.0145917409 0.052872053200000005 -0.152211 -0.00784506 0.0743409 -0.0024331 -0.00312874 0.0020263 -424.16485595703125 352.35308837890625 346.89385986328125 1.038503 62.592697 0.06613685999999999 0.0149720576 -0.0831111812 -0.0184594144 0.0287169178 0.026716054399999998 0.0087715771 -0.024333394700000004 -0.0232936969 -0.06290824610000001 0.0351210388 -0.0139469091 0.027704867 -0.0186691079 -0.0503580468 0.0491621191 0.020589198700000002 -0.061629375099999995 0.0167288735 0.05149963900000001 -0.152143 0.0313076 0.0769561 -0.0027276 -0.00326344 0.00208312 -381.43780517578125 328.59796142578125 318.6061706542969 3.266707 196.891068 4.998244499999999 -0.27949821329999996 0.0493168888 0.19188755870000002 -0.011588620800000001 0.27473458030000003 0.1383723112 0.3781581853 -0.1450526235 0.084602809 0.2117462949 0.31736477949999997 0.0833617164 -0.0190197746 -0.0499293841 0.0498211028 0.019194854299999998 -0.061662366600000004 0.0188445253 0.050037220099999995 -0.590689 -0.677089 1.46892 -0.0447741 0.00053772 0.00542222 -430.1203918457031 348.6003112792969 337.3504333496094 3.559375 214.530762 1.912353 -0.0821045373 -0.0365527078 0.032241907400000006 -0.0291464888 -0.0476142554 -0.1442313003 0.1142043246 0.1589983794 -0.13013242279999998 -0.2885125416 0.1279321592 -0.0699563358 -0.0193697628 -0.049493597199999996 0.050464092099999996 0.017789555 -0.0616403716 0.020935979599999998 0.0484873523 -0.238862 -0.263924 1.87262 -0.0368451 -0.00245278 0.0014685 -420.9122314453125 350.6184387207031 344.6624755859375 2.237752 134.873871 1.5853179499999999 -0.09660376539999999 0.0274469187 0.0335664597 0.0168789102 -0.0016264710999999998 -0.053468085 0.0829219735 0.145673912 0.0025913276000000002 -0.08234539910000001 0.0639192953 -0.023081462 -0.0197190601 -0.0490507482 0.0510908803 0.0163741027 -0.061563409699999995 0.023000551 0.0468527442 -0.139761 -0.284412 1.02678 -0.0261859 -0.0034299 0.000707041 -416.0423889160156 351.7149658203125 343.8774108886719 1.249672 75.32029 0.63827645 -0.08787958720000001 0.0469013786 0.0482506743 0.029953811 -0.0347097439 -0.0013538407999999999 0.0598150951 0.1241603616 0.0260196187 -0.024213616099999998 0.0354661675 0.029322807700000002 -0.020067654 -0.0486009003 0.0517012663 0.0149493052 -0.0614315496 0.0250355883 0.045136252800000005 -0.136732 -0.122598 0.9196820000000002 -0.0192144 -0.00338039 0.00101274 -416.6216430664063 351.4099426269531 343.5850524902344 1.147374 69.154549 0.7932158 -0.08651585619999999 0.0317053361 0.0278264586 0.0415710305 -0.0969107884 0.022814073100000002 0.0476876128 0.11132616599999999 0.033368533 -0.016538328300000002 -0.0039084546 0.061998104299999995 -0.020415532 -0.048144117699999996 0.052295054199999996 0.013515975800000002 -0.0612449087 0.0270384785 0.043340877699999995 -0.244915 -0.114362 0.665929 -0.0135094 -0.00219469 -0.000557436 -417.2756042480469 351.6089782714844 343.672119140625 1.072087 64.61685900000002 0.3013182 -0.0885339501 0.0393997498 0.0114484199 0.0334181996 -0.0750047499 -0.0174234578 0.04118784 0.1032295738 0.040453483 -0.011552347 0.0047513762 0.05622744440000001 -0.0207626817 -0.0476804656 0.052872053200000005 0.0120749325 -0.061003653600000006 0.0290066498 0.0414697568 -0.296138 -0.059247 0.623405 -0.0121936 -0.00251497 -0.00197048 -412.31427001953125 346.5185852050781 338.6865539550781 1.354589 81.643822 0.8741875 -0.17176138359999998 0.04558414400000001 0.0711636254 0.0179050913 0.060690622199999995 0.0036113513 0.11824592699999999 0.0817420278 0.0444737349 0.0203566862 0.1322736098 -0.0005133234999999999 -0.0211090908 -0.04721001019999999 0.053432078200000004 0.010626997800000001 -0.060707999400000004 0.0309375749 0.0395261602 -0.552367 -0.135477 0.811977 -0.0165198 -0.00423537 -0.00298701 -420.53814697265625 350.3009338378906 341.71527099609375 1.739488 104.842476 1.9515818 -0.1122973687 -0.0031921453999999997 0.0582734507 -0.0132743728 0.0728957074 -0.0660589099 0.0944983474 0.1399426479 -0.0149088518 -0.1169942427 0.1346583501 -0.012123116699999999 -0.0214547469 -0.046732818499999995 0.05397494940000001 0.0091729979 -0.0603582097 0.032828774399999996 0.0375134847 -1.32604 -0.193237 1.45057 -0.0218548 -0.00614497 -0.000600494 -403.7314147949219 345.10888671875 334.2265930175781 1.444173 87.043259 0.5011631999999997 -0.1424296957 0.0381241223 0.0989981752 -0.006750082199999999 0.0690426135 -0.0166578336 0.1531964284 0.0648963615 0.0247377528 -0.0849648059 0.1256678796 0.0080494822 -0.0217996377 -0.0462489587 0.0545004924 0.0077137627000000005 -0.059954596500000006 0.0346778198 0.0354352477 -1.32894 -0.202312 1.28201 -0.0191909 -0.00428106 0.00128426 -418.6464538574219 352.6941223144531 345.50244140625 1.808055 108.975136 2.1226263 -0.1138750332 0.0766725524 0.0600054884 0.0365209154 -0.0458939588 -0.0043352168 0.0320673433 0.0956600428 0.046863561100000006 -0.0370116257 0.052592152999999996 0.038859774900000005 -0.0221437508 -0.0457584997 0.055008538600000004 0.0062501251 -0.0594975196 0.036482337000000004 0.0332950814 -0.469324 -0.08129369999999998 0.789845 -0.0104851 -0.00765017 0.00220589 -415.0279235839844 351.4504699707031 344.04193115234375 0.942763 56.822212 0.30418820000000013 -0.1017150592 0.0786017312 0.048158628499999995 0.0417232721 -0.065068477 0.0112137188 0.0372076766 0.0765185736 0.0643926115 -0.0254301126 0.0104275035 0.0531444855 -0.022487074 -0.0452615117 0.0554989249 0.0047829204 -0.0589873867 0.038240008799999996 0.031096726 -0.390554 -0.028478 0.708189 -0.009544960000000003 -0.0073794 0.00281391 -418.3803405761719 351.62249755859375 344.8193664550781 0.9751050000000002 58.77153 0.3668353 -0.0801844635 0.0554067799 0.027544582 0.0340847507 -0.0657583232 -0.0022876656 0.022626427799999998 0.063638717 0.0638562263 -0.008382901199999999 -0.0042630786 0.058586199400000004 -0.0228295951 -0.0447580654 0.0559714938 0.003312986 -0.058424652599999995 0.0399485782 0.028844023599999997 -0.351145 0.0194848 0.564413 -0.00831807 -0.00629838 0.00321975 -416.8069763183594 351.5849609375 344.3423156738281 1.026259 61.854683 0.3547696000000001 -0.06968792730000001 0.0724468588 0.0043474851 0.046090084 -0.0314205399 -0.0028625911 0.013401146599999999 0.0337760604 0.0732611953 -0.0177494105 0.0061055216 0.0574833162 -0.023171301800000002 -0.0442482328 0.056426093600000005 0.0018411607000000001 -0.057809819299999995 0.041605851299999996 0.0265409112 -0.319167 0.0239209 0.51541 -0.00433552 -0.00536314 0.00275049 -423.1354675292969 352.40936279296875 346.1038513183594 1.244313 74.99726099999998 0.6488629 -0.0149252484 0.0126746327 -0.053155308899999996 0.0386578883 0.056841211100000004 -0.057410986100000005 -0.019337585 -0.018540563700000002 0.0025758523 0.0042235889 -0.0339061309 0.033533104700000003 -0.023512181899999998 -0.0437320865 0.0568625783 0.0003682847 -0.057143434800000004 0.04320970019999999 0.0241914138 -0.273208 0.022326 0.240882 -0.00111602 -0.00265059 0.00214692 -418.4499206542969 352.0712890625 345.3442687988281 1.017885 61.350006 0.17379210000000003 -0.023854337000000003 0.0299966751 -0.0658393642 0.0114561618 0.0209044326 -0.0352460602 -0.018403136100000002 -0.0164089256 0.0342071832 -0.008356224399999999 -0.0194982112 0.0018115726 -0.0238522233 -0.04320970019999999 0.0572808079 -0.0011048015 -0.056426093600000005 0.0447580654 0.0217996377 -0.271391 0.0955996 0.244251 -0.0018335 -0.00337606 0.00261062 -419.1112365722656 352.1437072753906 345.2984619140625 0.976786 58.872883 0.15570490000000003 -0.0119107696 0.0438664187 -0.0724635387 -0.014711053799999999 0.0166800691 0.0004672146 -0.0179805687 -0.012364441100000002 0.0289318161 -0.0248313827 -0.019431400300000002 -0.0382879047 -0.0241914138 -0.042681148499999995 0.057680648099999995 -0.0025772572 -0.055658435199999995 0.0462489587 0.0193697628 -0.273648 0.0363352 0.265147 -0.00107512 -0.00306929 0.00221002 -420.4413146972656 351.6837463378906 345.521240234375 0.9906 59.705498 0.1736448 -0.004422174 0.0680626179 -0.0481275741 -0.045184999299999994 -0.0095133037 0.049516363 -0.0159525451 -0.0157110527 0.0502104292 -0.0308175607 -0.022644120299999997 -0.051410701399999995 -0.024529741400000003 -0.0421465068 0.0580619705 -0.0040482420000000005 -0.0548411441 0.0476804656 0.0169060359 -0.247245 0.103608 0.29487 -0.00135959 -0.00358014 0.00241962 -419.6473388671875 351.62896728515625 345.6497802734375 0.967 58.283031 0.07151610000000004 0.0189618504 0.06766151320000001 -0.022233211099999997 -0.043993692300000005 0.0002666888 0.0357006199 -0.0167969886 -0.015423474 0.0391091991 -0.0257199105 0.0077114674 -0.0536105537 -0.0248671939 -0.041605851299999996 0.058424652599999995 -0.0055169164 -0.05397494940000001 0.0490507482 0.0144127627 -0.23772 0.0786209 0.287076 -0.0010534 -0.00379233 0.00248544 -418.9615478515625 351.8234558105469 345.80267333984375 0.967743 58.327808 0.06568415000000001 0.0301487805 0.0703560798 -0.0069774165 -0.0393003124 0.0061570858999999995 0.057461163499999995 -0.0186964214 -0.0247389319 0.042906738300000004 -0.0369381559 0.0054517433999999995 -0.052482956 -0.0252037594 -0.041059259300000005 0.058768578200000005 -0.0069824421 -0.053060623200000004 0.0503580468 0.0118943007 -0.23909 0.0757087 0.298645 -0.000304101 -0.00358014 0.00252061 -419.6753234863281 351.7593078613281 346.1188659667969 1.009272 60.830894 0.11859274999999997 0.0276107927 0.06866515549999999 0.021092530699999997 -0.028276063799999997 -0.0248488284 0.019408708 -0.0177545523 -0.0201570228 0.0414372242 -0.0329587837 0.0129256875 -0.0314004408 -0.0255394259 -0.0405068086 0.0590936366 -0.0084439827 -0.052098980999999996 0.0516006827 0.0093550512 -0.239019 0.112943 0.316532 -0.00111388 -0.00379241 0.00276657 -422.27276611328125 351.53399658203125 346.1166687011719 0.99742 60.116497 0.09682470000000003 0.044067184599999996 0.066210256 0.0447473251 -0.0193339788 -0.002002235 -0.0551286987 -0.013770552 -0.020730941200000002 0.0386171194 -0.0263255869 0.0169869058 -0.0050380914 -0.025874181200000002 -0.0399485782 0.0593997236 -0.0099007042 -0.0510908803 0.0527770605 0.006799452199999999 -0.239134 0.0751837 0.329917 -0.000782472 -0.00349075 0.00248833 -422.04248046875 351.7495422363281 345.74310302734375 1.009807 60.86314 0.035670499999999994 0.0495643625 0.051569550199999994 0.0411217369 0.0310298427 -0.026947155499999997 -0.0432072606 -0.0180884813 -0.0225546896 0.0136109412 -0.0429351579 0.0267300836 0.0383393096 -0.0262080137 -0.039384647599999996 0.059686740999999995 -0.011351775 -0.050037220099999995 0.053885669500000004 0.0042319699 -0.239099 0.0962352 0.333524 -0.000782472 -0.003588 0.00261062 -421.6839599609375 351.4595642089844 345.8724670410156 0.999159 60.221348 0.1157992 0.017132814099999998 0.027773046000000003 0.027932422999999998 0.063342975 -0.06338024639999999 0.0227716881 -0.013739878799999999 -0.007751890500000001 0.026026464 -0.0215084302 0.0112781667 0.06580490230000001 -0.0265409112 -0.038815097400000005 0.059954596500000006 -0.012796367099999999 -0.0489389399 0.0549250863 0.0016570915 -0.244236 0.118076 0.341341 -0.00191486 -0.00396659 0.00271973 -417.738037109375 351.3692626953125 345.33258056640625 0.96524 58.17696 0.13038679999999997 -0.000270669 0.0312168344 0.0037762311999999998 0.07441905160000001 -0.010850259499999999 0.057639717800000004 -0.014111835500000001 -0.0266302828 0.029569029700000003 -0.0278649781 0.0176900778 0.0656814815 -0.0268728619 -0.038240008799999996 0.0602032042 -0.014233656 -0.047797019100000004 0.055893976100000006 -0.000920683 -0.244722 0.0766613 0.336405 -0.000793038 -0.00352652 0.00261062 -419.8628845214844 351.568359375 345.51226806640625 0.960336 57.881405 0.060819449999999976 -0.01070881 0.0281359439 -0.0244137148 0.0777633915 -0.0091804062 0.0044453755 -0.0130626528 -0.015988826499999997 0.0339401093 -0.0201823184 0.0067077535 0.0732611837 -0.027203854 -0.0376594638 0.0604324842 -0.0156628214 -0.04661247599999999 0.056791094900000005 -0.0034968484000000005 -0.239189 0.0995235 0.327475 -0.0008354929999999998 -0.00326034 0.00244937 -422.4987487792969 351.3699645996094 346.0322570800781 0.994591 59.946003 0.11540434999999998 -0.014313031499999998 0.0185412544 -0.0387777866 0.0580043118 0.011305381000000001 -0.0708969293 -0.0086500406 -0.010106941099999999 0.0399708752 -0.012745536799999999 -0.0166379345 0.0526798053 -0.0275338758 -0.037073545299999996 0.060642363 -0.0170830476 -0.0453863669 0.057615290599999994 -0.0060669025 -0.23901 0.127879 0.336526 -0.00167625 -0.00381471 0.00261062 -419.77490234375 351.44244384765625 345.6802673339844 0.981476 59.155567 0.11940634999999995 -0.028755087599999996 0.0394407414 -0.0603907303 0.0281335252 0.0144500952 -0.0327123158 -0.0123311932 -0.0168627979 0.048842275899999996 -0.0198487369 -0.0171848882 0.010335123199999999 -0.0278629153 -0.036482337000000004 0.0608327732 -0.018493524 -0.0441197852 0.0583655051 -0.0086263535 -0.23906 0.0774393 0.330282 -0.000603147 -0.00363436 0.00261062 -421.48577880859375 351.2916564941406 345.5426940917969 0.990654 59.708748 0.04891735000000005 -0.0190920045 0.0655958814 -0.07128014490000001 -0.023667556 -0.0060796043 0.0079269932 -0.0139786079 -0.0191278401 0.0533322608 -0.0333970323 -0.0140409817 -0.044440648099999994 -0.0281909609 -0.0358859231 0.061003653600000006 -0.0198934458 -0.0428138604 0.0590407749 -0.011170728500000001 -0.239145 0.106642 0.329783 -0.00072408 -0.00337268 0.00261062 -420.5012512207031 351.2781982421875 345.6613464355469 0.969045 58.40633 0.108104 0.0059798062 0.058926953600000005 -0.025717250299999998 -0.04403736230000001 -0.014884317 0.0439250403 -0.0111031498 -0.0108040105 0.0587366876 -0.0263536079 -0.0187305097 -0.045449246299999996 -0.0285180009 -0.0352843888 0.061154949400000005 -0.0212820138 -0.0414697568 0.059640233 -0.013695580700000001 -0.238982 0.131304 0.336535 -0.00171888 -0.00390842 0.00261062 -421.4539794921875 351.36175537109375 345.560791015625 0.960475 57.889786 0.14115905 0.0283283069 0.060085735 0.0006942722 -0.0449613669 -0.0211546235 0.0396752889 -0.014757578200000001 -0.0174069405 0.0444395266 -0.0388275309 0.0044987638 -0.0453782116 -0.028844023599999997 -0.0346778198 0.0612866121 -0.022658435600000002 -0.0400886733 0.060163109699999995 -0.0161964974 -0.239088 0.0888294 0.328379 -0.000377261 -0.0035485 0.00250371 -422.3851623535156 351.499755859375 345.82940673828125 1.029197 62.031773 0.06255749999999997 0.044296603899999995 0.049730095300000006 0.0363155293 -0.0456064928 0.0008636684 -0.0315394366 -0.0146453347 -0.0196351105 0.0274457405 -0.0197615486 0.0100781716 -0.029350047 -0.029169017400000004 -0.034066302799999996 0.0613985992 -0.0240219257 -0.038671841299999996 0.0606087335 -0.0186691079 -0.239108 0.109027 0.319032 -0.000855789 -0.00347408 0.00261062 -422.9940185546875 351.74468994140625 345.89935302734375 1.0179 61.350899 0.058277549999999914 0.044980719599999996 0.0388065309 0.0314733021 0.0102872676 -0.0160080667 -0.07114038240000001 -0.0159623464 -0.0183381406 0.0186001831 -0.01911889 -0.0022809312 0.0241486519 -0.0294929706 -0.033449925 0.061490875 -0.0253717058 -0.0372205242 0.060976532199999996 -0.0211090908 -0.239021 0.1278 0.314715 -0.00124426 -0.00378762 0.00261062 -420.0005493164063 351.4852294921875 345.6397705078125 0.9854520000000002 59.395176 0.11547944999999996 0.049970423 0.0409867702 0.0415755323 0.0446576617 -0.015918626 -0.011482043999999999 -0.0138804619 -0.0230172463 0.0142293099 -0.0217899453 0.0241337044 0.0407006636 -0.0298158718 -0.032828774399999996 0.061563409699999995 -0.0267070056 -0.0357360162 0.061266033600000006 -0.023512181899999998 -0.23909 0.0831601 0.324432 -0.000268039 -0.00354277 0.00261062 -419.77874755859375 351.7409362792969 345.9888000488281 0.9620820000000002 57.986626 0.15881895000000001 0.0257785591 0.030920624700000003 0.036847313300000004 0.0623546788 -0.04241853190000001 0.019138481399999997 -0.0144525498 -0.0128197185 0.0163072796 -0.026480350899999998 0.009546998499999999 0.052247860800000004 -0.0301377094 -0.0322029395 0.061616180199999995 -0.0280270631 -0.0342196412 0.0614768659 -0.025874181200000002 -0.232227 0.12533200000000003 0.362065 -0.00109217 -0.00390842 0.00286386 -421.4137878417969 351.4993591308594 346.0808410644531 0.948517 57.169018 0.13293990000000008 0.0241768774 0.0216466076 0.0267440806 0.0632782305 -0.032641542200000005 0.0319893767 -0.0153144977 -0.0196070669 0.009989455999999999 -0.023494488900000002 0.0096383724 0.0611890787 -0.0304584719 -0.0315725097 0.061649169299999994 -0.0293311248 -0.0326727513 0.0616087584 -0.0281909609 -0.239098 0.102255 0.320878 -0.000592462 -0.00351614 0.00251975 -419.7642211914063 351.5432434082031 345.8372497558594 0.955116 57.566761 0.03203845 0.0118799146 0.011933361799999999 0.0194238104 0.0819066423 -0.0290689906 0.052364873099999994 -0.0121584906 -0.0207505289 0.008646064200000001 -0.015994832 0.0020155634 0.0765288251 -0.0307781479 -0.0309375749 0.061662366600000004 -0.030618446400000002 -0.031096726 0.0616615418 -0.0304584719 -0.23592 0.0999434 0.319537 -0.000260585 -0.00343473 0.00261062 -421.5929260253906 351.73516845703125 346.27178955078125 0.966336 58.243 0.15059984999999998 0.000633771 0.007841551700000001 -0.0163623639 0.0679138036 -0.0269585205 -0.0194229671 -0.016341434 -0.0103828397 0.0248953853 -0.0079488724 0.0020822947 0.062367779000000005 -0.031096726 -0.030298225699999997 0.0616557679 -0.0318882933 -0.0294929706 0.0616351482 -0.0326727513 -0.23897 0.144208 0.326903 -0.00147626 -0.00390842 0.00283964 -420.1165771484375 351.8448181152344 345.89190673828125 0.953413 57.464108 0.15674035000000003 -0.009511133599999999 0.0112226854 -0.026039204700000002 0.0668771873 0.0012041023 0.017780471000000003 -0.015233263700000001 -0.0151531919 0.0256219338 -0.008693718100000001 0.0054927089000000005 0.0629778146 -0.0314141948 -0.0296545534 0.061629375099999995 -0.0331399408 -0.0278629153 0.0615296116 -0.0348299293 -0.239051 0.0925071 0.311498 -0.000116481 -0.00363435 0.00268242 -422.8116149902344 351.4920654296875 346.3127136230469 1.015889 61.229706 0.06385375000000003 -0.011790484399999999 0.013517756899999999 -0.05815406 0.047572385700000004 0.0192631501 -0.0745543775 -0.0096448552 -0.0075579220999999995 0.029073036099999998 -0.0096387113 -0.0036768126 0.032135140699999995 -0.031730543 -0.0290066498 0.061583196900000005 -0.0343726744 -0.0262080137 0.0613450675 -0.0369262359 -0.239078 0.121337 0.32677 -0.000438048 -0.00358347 0.00270447 -422.470947265625 352.1724548339844 346.3076171875 1.001201 60.344433 0.06401160000000002 -0.0089600835 0.020398033700000002 -0.0707835758 0.0033972628 0.0121933124 -0.035735455 -0.020784874 -0.005040052 0.0401812994 -0.020351656399999998 -0.020245731200000002 -0.0180856577 -0.032045759300000004 -0.0283546073 0.061517248 -0.0355857906 -0.024529741400000003 0.0610817528 -0.0389580073 -0.238882 0.126617 0.309776 -0.00050901 -0.00424884 0.00279897 -420.9900817871094 351.466796875 345.5939025878906 0.992423 59.815353 0.10382825000000001 0.008642125 0.0356348545 -0.052470708399999996 -0.0479489541 0.005393960600000001 0.0386035891 -0.0129710153 -0.0167328304 0.0291945921 -0.023454275099999998 -0.0085552651 -0.0645480718 -0.0323598325 -0.027698518999999998 0.0614315496 -0.0367785971 -0.0228295951 0.0607400057 -0.0409216928 -0.234075 0.0974146 0.298531 0.000222187 -0.0038151 0.00279243 -420.85333251953125 351.18255615234375 345.5420837402344 1.010029 60.876503 0.11520325000000002 0.0238616994 0.0478588095 0.0032307022 -0.0543540157 -0.0040707380999999996 0.0441912279 -0.0139804593 -0.0189388388 0.03168946 -0.0074028259 -0.0123741256 -0.0516129656 -0.0326727513 -0.0270384785 0.061326129199999996 -0.0379504132 -0.0211090908 0.060320264900000004 -0.0428138604 -0.233282 0.11846400000000003 0.325979 -0.00084999 -0.00391347 0.00294014 -420.587646484375 351.61083984375 345.6195373535156 1.018208 61.369457 0.07042115 0.0480965005 0.0343151731 0.0342079119 -0.0314828169 0.0132165532 -0.048292319900000005 -0.0143470376 -0.0184863023 0.011768637700000001 -0.0197600065 0.017382806 -0.0179098045 -0.0329845047 -0.02637458 0.061201020700000004 -0.0391005699 -0.0193697628 0.0598230695 -0.044631203099999996 -0.238921 0.120498 0.304895 -0.000333807 -0.00413634 0.00303437 -420.0545349121094 351.0417785644531 345.4137878417969 0.99185 59.780785 0.07814894999999998 0.0534678335 0.0308075246 0.0532008375 0.0132956749 0.0156859619 -0.061138613499999994 -0.009399479300000001 -0.029313592000000003 0.008779002 -0.0204073434 0.0185584784 0.0182615811 -0.0332950814 -0.025706918199999998 0.0610562642 -0.0402284109 -0.0176131622 0.059249057800000005 -0.046370545 -0.238962 0.09501200000000003 0.314811 0.000216932 -0.00392023 0.0029471 -419.06982421875 351.9185791015625 346.1664123535156 0.987348 59.509464 0.1546751 0.0392982427 0.0170774649 0.0574791096 0.026759553 0.0029394838 -0.0239683507 -0.0167098779 -0.0159033403 0.0087853367 0.0015374256 0.0194066355 0.0507207215 -0.0336044704 -0.0250355883 0.0608919062 -0.0413332925 -0.0158408552 0.058598967 -0.0480288462 -0.266087 0.10709 0.299248 -0.00105132 -0.00450458 0.00309268 -418.26556396484375 349.0462341308594 343.4554443359375 1.436316 86.569702 1.4229131 -0.0427083697 -0.0464129349 0.0996567479 -0.025932069199999998 -0.0622545584 -0.056743373 0.0537379838 0.058069927400000006 -0.0341438924 0.0293938108 0.019196724499999998 0.0161411588 -0.0339126607 -0.024360686200000002 0.060707999400000004 -0.0424145842 -0.0140544224 0.0578736318 -0.0496032084 -0.8630799999999998 -0.0970921 0.341567 -0.00682284 -0.00975399 0.00366013 -421.3774719238281 351.5942077636719 346.9112548828125 1.568912 94.561485 1.4925633999999999 0.045151076799999995 -0.0481377521 0.035285227200000005 0.0056501936 0.0311654002 -0.0245838443 -0.012504237 -0.043940126399999994 -0.0627044912 0.0085711408 -0.0777075185 0.0510852912 -0.0342196412 -0.0236823082 0.060504603 -0.0434716687 -0.012255456699999999 0.0570739836 -0.0510908803 -0.339639 0.0410516 0.0332948 0.00264788 -0.00967867 0.00275204 -420.4640808105469 352.61004638671875 348.0830993652344 1.110303 66.92023500000002 0.5170956499999999 0.0280117584 -0.0312860258 0.0214475091 -0.0116762011 -0.0036325454999999998 0.035240392999999995 -0.0180002156 -0.009877961 -0.0265741096 0.0385922851 -0.0134685953 -0.006011544200000001 -0.0345254011 -0.023000551 0.0602817821 -0.0445039428 -0.0104455625 0.056201049100000004 -0.05248926190000001 -0.29743 0.11095600000000001 0.152784 -0.000329981 -0.00762056 0.00342593 -420.7907409667969 352.89971923828125 348.29644775390625 0.993989 59.909744 0.2323024 0.028079520299999997 -0.016826168 0.028160857 -0.0282361845 -0.0312581787 0.0534924395 -0.0252868346 -0.0111549777 -0.0184126066 0.027341874199999998 -0.0027492488 -0.0269027943 -0.0348299293 -0.022315511899999998 0.0600396084 -0.0455108174 -0.0086263535 0.0552559492 -0.0537959092 -0.28358 0.0257528 0.221097 9.1163e-05 -0.00686975 0.0035527 -426.1314086914063 353.28369140625 348.26312255859375 1.062628 64.046722 0.13964239999999997 0.044758226799999995 -0.0141650696 0.037351755699999996 -0.0186145734 -0.022651257799999998 -0.0918327185 -0.029208951 -0.0027196233 -0.045858729400000006 0.0185695111 0.018519311200000003 -0.0094021441 -0.0351332152 -0.0216272887 0.0597781596 -0.046491717800000006 -0.006799452199999999 0.054239897599999996 -0.055008538600000004 -0.323266 0.0588256 0.196565 0.000184775 -0.00629649 0.00373286 -423.09552001953125 352.0726623535156 345.57373046875 1.187228 71.55661 0.52537445 0.034151144700000004 -0.0287410289 0.0500722962 -0.0158047363 0.0357959251 -0.020956825 -0.013804329399999999 -0.0464800134 -0.0937738173 -0.0171423639 0.0223064898 0.0046543436 -0.0354352477 -0.020935979599999998 0.0594975196 -0.0474460842 -0.0049664875 0.053154198799999997 -0.0561250309 -0.372226 0.0783868 0.0387735 0.00549274 -0.00573658 0.0036195 -422.4729919433594 352.69287109375 347.9078674316406 1.154509 69.58457900000002 0.46285275 0.0306520525 -0.0345743506 0.0266529138 -0.027237978599999997 0.0157238044 0.0251656874 -0.022939702000000003 -0.006732343199999999 -0.060804915099999995 0.0171744536 0.0159458586 -0.027209941600000002 -0.0357360162 -0.0202416832 0.0591977785 -0.048373371799999995 -0.0031290940000000002 0.0520002471 -0.057143434800000004 -0.30472 0.15937 0.111606 0.000892309 -0.00557319 0.0035527 -424.6060791015625 353.07427978515625 348.17266845703125 1.011044 60.937695 0.18611735000000001 0.0262122463 -0.0360970358 -0.0113536629 -0.0348832011 -0.0169344164 0.038087568100000004 -0.0302962085 -0.0013875878 -0.0402574375 0.026791249 -0.0105860456 -0.0343758943 -0.036035509900000005 -0.0195444986 0.0588790326 -0.049273051500000005 -0.0012889102 0.050779524000000006 -0.0580619705 -0.29082 0.145254 0.17105 -0.000321398 -0.0061735 0.00371183 -422.3190307617188 352.7900390625 347.19244384765625 1.013808 61.104256 0.26793710000000004 0.0368386929 0.0073427868999999995 0.0105617704 -0.0454859374 -0.0070162127 0.0507766016 -0.0322779495 -0.022536824 -0.0231848076 -0.0008651514999999999 0.013295710300000001 -0.047037525 -0.0363337182 -0.0188445253 0.0585413841 -0.0501446098 0.0005524229 0.049493597199999996 -0.0588790326 -0.273138 0.0614688 0.225539 0.00151493 -0.00595564 0.00389726 -424.8175354003906 351.9634094238281 346.4662780761719 1.089061 65.63990800000002 0.16388470000000002 0.061596839800000004 0.0032109389000000003 0.0315267531 -0.030533694500000003 0.0096191929 -0.0849268532 -0.0233790778 -0.023355925299999997 -0.0180870753 -0.0028433409999999997 0.0106175024 -0.0116614878 -0.0366306304 -0.0181418631 0.058184941500000004 -0.0509875493 0.0023932635000000002 0.048144117699999996 -0.059593193200000005 -0.255587 0.137606 0.241498 0.00078356 -0.00617676 0.00402952 -422.3478393554688 351.45587158203125 345.76385498046875 1.032182 62.211716 0.108923 0.0497413094 -0.018536565300000002 0.0258010407 0.031364411 0.0040120957 -0.0055225437 -0.0149559864 -0.030149668199999997 -0.0310847456 0.009740357600000001 0.0026189696 0.021750458900000002 -0.0369262359 -0.0174366123 0.057809819299999995 -0.0518013888 0.0042319699 0.046732818499999995 -0.0602032042 -0.242794 0.127156 0.244011 0.00147122 -0.0068248 0.00435716 -419.2281494140625 350.97857666015625 344.7453918457031 0.992692 59.831581 0.08466749999999998 0.0348095276 -0.0223317969 0.014574410800000001 0.0557634912 0.0145039634 0.06632855780000001 -0.0135319455 -0.0378466331 -0.0365551147 -0.0027290113 0.00944728 0.0398581441 -0.0372205242 -0.0167288735 0.057416137699999995 -0.052585664000000004 0.0060669025 0.0452615117 -0.060707999400000004 -0.245449 0.110229 0.232639 0.00217939 -0.00646389 0.00436235 -420.5752868652344 351.4612731933594 344.791748046875 0.999825 60.261452 0.14300600000000002 0.0025642931 -0.037649743 -0.0268968861 0.0661978361 0.0376993979 0.005742578199999999 -0.010249352199999999 -0.0266560759 -0.0210126958 0.0097272178 -0.0305091848 0.0441610808 -0.0375134847 -0.0160187477 0.0570040233 -0.0533399272 0.007896425 0.0437320865 -0.0611066967 -0.23995 0.170372 0.225857 0.00154999 -0.00712563 0.00448285 -418.60986328125 351.2239074707031 344.4762878417969 1.025423 61.804321 0.148962 -0.0009187987 -0.023025967400000003 -0.050645346699999996 0.0490300254 0.0416764938 0.0161001392 -0.0050857817999999996 -0.025063035499999997 -0.0171083651 0.0100724818 -0.018180431 0.021308102599999997 -0.0378051071 -0.015306336299999999 0.0565736083 -0.054063747800000006 0.009718906 0.0421465068 -0.0613985992 -0.25152 0.108281 0.228501 0.00279199 -0.00704796 0.00434938 -419.7780151367188 351.1497497558594 344.9977722167969 1.035685 62.422844 0.1653135 -0.0171334409 -0.0193118284 -0.0735812729 0.0321877783 0.0411381562 -0.0234386461 -0.00507096 -0.023573141000000002 -0.0097287454 0.0135179942 -0.0341102842 0.015673116299999998 -0.0380953808 -0.0145917409 0.0561250309 -0.0547567129 0.0115327203 0.0405068086 -0.061583196900000005 -0.241149 0.174043 0.214126 0.00195127 -0.00671242 0.00402953 -420.9861755371094 351.3333435058594 345.7593994140625 0.983956 59.304993 0.136672 -0.0024900586 -0.0223691104 -0.0727932416 -0.0027539602000000002 0.0369786327 -0.028127392200000004 -0.0123517018 -0.0138327092 0.0093019138 0.0113528732 -0.0375805374 -0.0260857552 -0.0383842957 -0.0138750634 0.055658435199999995 -0.055418427 0.0133362505 0.038815097400000005 -0.061660167 -0.223141 0.154843 0.237888 0.0010068 -0.00712563 0.00418589 -419.4292907714844 351.51922607421875 345.7696228027344 0.95368 57.480202 0.154135 -0.0101363239 -0.0127263011 -0.07031522429999999 -0.0072413930000000005 0.0425477823 -0.0073646699 -0.010419418100000001 -0.0230755629 0.0015225877 0.0107984845 -0.017747227 -0.022089953399999997 -0.038671841299999996 -0.0131564061 0.0551739708 -0.056048512300000006 0.0151278882 0.037073545299999996 -0.061629375099999995 -0.225909 0.0755725 0.264686 0.00112226 -0.00637229 0.00414872 -422.5391540527344 351.5458984375 346.2972717285156 0.99331 59.868786 0.09324165000000002 0.0007435906 -0.0088808479 -0.0757722708 -0.0347146864 0.0139785137 0.006933953499999999 -0.015652088600000003 -0.0160425703 0.0090240766 0.0056818501 -0.032341437 -0.0517401876 -0.0389580073 -0.012435871599999999 0.0546717934 -0.056646609199999996 0.0169060359 0.0352843888 -0.061490875 -0.221808 0.124771 0.279832 0.000790097 -0.00628739 0.00422758 -421.4190979003906 351.8424072265625 346.0466003417969 0.996511 60.061737 0.0765191 0.030064459300000002 -0.006155646999999999 -0.0373002673 -0.0550091264 0.0214321863 0.0295048204 -0.021355703599999998 -0.0187099967 -0.0092493245 0.0091634614 -0.026237026 -0.0653853502 -0.0392427837 -0.011713562700000001 0.0541520642 -0.0572123765 0.0186691079 0.033449925 -0.0612449087 -0.228247 0.152528 0.247296 0.000875979 -0.00636969 0.00425514 -421.8249206542969 351.82293701171875 345.6173095703125 0.999066 60.215744 0.12351005 0.0484127316 0.0026190826 0.011435261799999999 -0.061812575 0.015167535800000001 0.0191599877 -0.0201692643 -0.022996419700000003 -0.015206345100000001 0.0089799062 0.0006207575 -0.0565394255 -0.0395261602 -0.0109895824 0.05361495 -0.0577454912 0.020415532 0.0315725097 -0.0608919062 -0.22861 0.113153 0.250784 0.00218733 -0.00630097 0.00402953 -422.38189697265625 351.6009216308594 345.6668395996094 1.068634 64.40873000000002 0.20110165 0.0502104756 -0.016926644299999998 0.0293313488 -0.0029377792 -0.000763488 -0.0328569291 -0.0168848136 -0.0168748812 -0.016550026000000002 0.0148851466 -0.0098609422 0.0165083531 -0.0398081268 -0.010264034 0.053060623200000004 -0.058245649000000004 0.0221437508 0.0296545534 -0.0604324842 -0.226211 0.15643399999999996 0.296272 0.000364827 -0.00624478 0.00434951 -420.5960998535156 351.8451843261719 345.13677978515625 1.005516 60.604469 0.14845314999999992 0.0453497663 -0.0268260464 0.004736679000000001 0.0441332887 0.005874332800000001 0.057393618 -0.0195650265 -0.0182916666 -0.0349230533 0.0050343259999999996 0.00015551469999999998 0.030493763700000003 -0.0400886733 -0.0095370211 0.05248926190000001 -0.0587125645 0.0238522233 0.027698518999999998 -0.0598674458 -0.217145 0.116774 0.264919 0.00134365 -0.00617611 0.00402952 -418.92388916015625 350.9462890625 344.8148498535156 0.980357 59.088093 0.038522499999999925 0.0008725984 -0.0372175938 -0.025676630099999997 0.0611059294 0.0233144034 0.0478309214 -0.0090596712 -0.0247666761 -0.0269856633 0.0162297117 -0.0191241619 0.050967423399999996 -0.0403677898 -0.0088086474 0.0519010494 -0.059145971299999996 0.0255394259 0.025706918199999998 -0.0591977785 -0.217133 0.1392 0.275022 0.00134365 -0.00618397 0.00414129 -421.0126647949219 351.3471374511719 345.2958068847656 1.007184 60.705044 0.11184080000000003 -0.0044028034 -0.031975289500000004 -0.0503804201 0.0409745181 0.0449501271 -0.051447616200000004 -0.0091018651 -0.0154957931 -0.0038214097 0.0288008711 -0.0233231025 0.0203564759 -0.0406454662 -0.0080790168 0.0512961746 -0.059545621900000005 0.027203854 0.0236823082 -0.058424652599999995 -0.217081 0.171392 0.285344 0.000274624 -0.00644871 0.00419302 -418.8890686035156 351.1061706542969 344.8015441894531 1.004064 60.516964 0.15524329999999997 -0.0065468733 -0.0121623551 -0.0809509144 -0.007167575799999999 0.0468455658 -0.0080833911 -0.009949921 -0.0201346004 -0.0112972908 0.0231072113 -0.0200708415 -0.0371693415 -0.0409216928 -0.0073482335 0.050674831600000005 -0.059911288300000004 0.028844023599999997 0.0216272887 -0.0575494194 -0.227216 0.114658 0.271802 0.00152863 -0.00631574 0.00408335 -419.6065673828125 350.95562744140625 344.63525390625 0.991268 59.74575 0.11072160000000003 0.0192430509 0.0039507801 -0.044900701900000006 -0.055385047400000005 0.0218977405 0.0590743412 -0.0093862173 -0.0183916295 0.0091995774 0.0063495805 -0.0406411064 -0.0744813919 -0.0411964596 -0.0066164016 0.050037220099999995 -0.060242761799999996 0.0304584719 0.0195444986 -0.0565736083 -0.233222 0.14483 0.300829 0.000706698 -0.00629628 0.00415229 -418.7110290527344 350.68426513671875 344.7242736816406 0.964481 58.131241 0.044644100000000124 0.039812858300000004 0.005251949499999999 -0.007741430600000001 -0.052619886 0.0130840808 0.025501270299999997 -0.006842773199999999 -0.0256415212 -0.0063694469 0.0045377694 -0.0197844854 -0.060714192800000004 -0.0414697568 -0.0058836257 0.0493835445 -0.0605398531 0.032045759300000004 0.0174366123 -0.0554989249 -0.233199 0.14629 0.289967 0.00124514 -0.00639681 0.0041593 -418.6997375488281 351.148681640625 344.94659423828125 0.99062 59.706665 0.05613050000000005 0.0412848583 0.0014078870999999998 0.032436012 -0.0455369565 0.0279453094 -0.0096363213 -0.010562241299999999 -0.0255451166 -0.0193122599 0.0147107041 -0.0015934738 -0.044646205099999996 -0.0417415748 -0.0051500103000000005 0.048714014900000005 -0.0608023928 0.0336044704 0.015306336299999999 -0.054327247300000006 -0.233317 0.124756 0.296371 0.00124514 -0.00596509 0.00402953 -419.0224914550781 351.0936279296875 345.2769775390625 1.027432 61.925388 0.11839174999999998 0.0582157607 -0.012772509 0.0319409587 0.0138603634 0.007021778100000001 -0.030281242599999997 -0.011617181200000002 -0.023789615299999997 -0.030129748199999997 0.010243732 -0.0148066699 0.0162929617 -0.0420119037 -0.00441566 0.0480288462 -0.061030231 0.0351332152 0.0131564061 -0.053060623200000004 -0.233165 0.171355 0.306573 0.0008256249999999998 -0.00653892 0.00426496 -418.2469787597656 350.9664306640625 345.1755065917969 0.988829 59.598732 0.13786774999999998 0.0340829522 -0.023045924500000002 0.016516708 0.0460921739 -0.013266734799999999 0.0630742309 -0.0107308124 -0.032822774900000004 -0.0282865274 0.0044267445 -0.003509633 0.038559604 -0.042280734 -0.0036806797 0.0473282582 -0.061223237699999995 0.0366306304 0.0109895824 -0.0517012663 -0.229438 0.117038 0.291345 0.0020276 -0.00647699 0.00429297 -418.1385803222656 350.6510314941406 345.1667785644531 0.979582 59.041409 0.08105250000000001 -0.0035727810999999997 -0.0368758521 -0.017105248400000002 0.061312665499999995 0.0148426596 0.0529483066 -0.0048930208 -0.0240924404 -0.0108586098 0.0163893037 -0.0107602254 0.0562844112 -0.0425480561 -0.0029451740999999997 0.04661247599999999 -0.061381302699999994 0.0380953808 0.0088086474 -0.0502515524 -0.226519 0.163823 0.301648 0.00176881 -0.00632974 0.0042781 -419.322021484375 351.18682861328125 345.56072998046875 0.993489 59.879604 0.07241714999999997 -0.0093124935 -0.034069369 -0.048402084000000005 0.0446600806 0.0504304331 -0.0399630012 -0.0070483306 -0.0241159562 -0.0006526168 0.0196752687 -0.0154985517 0.022789805 -0.0428138604 -0.0022092484 0.0458817293 -0.0615043357 0.0395261602 0.0066164016 -0.048714014900000005 -0.22113 0.162831 0.299115 0.000946107 -0.00676698 0.00428822 -419.9136352539063 351.31787109375 345.41162109375 0.990019 59.670471 0.17392715 -0.0112979201 -0.0204441241 -0.0815903172 0.0011651585 0.050291491699999996 -0.0304086059 -0.013733061599999999 -0.0222996827 -0.011413415900000001 0.0159576776 -0.0213265696 -0.0204163805 -0.0430781374 -0.0014730073999999998 0.045136252800000005 -0.0615922667 0.0409216928 0.00441566 -0.0470913411 -0.228975 0.112168 0.28106 0.00220493 -0.00624096 0.00412578 -419.70892333984375 351.0538635253906 345.2958679199219 0.986719 59.471577 0.13666300000000003 -0.0009325541000000001 -0.0015074815 -0.0613914222 -0.0482198104 0.007936186500000001 0.0440378064 -0.0084014763 -0.0173103418 0.0097364924 0.0055182669999999994 -0.029953057400000004 -0.0616718932 -0.043340877699999995 -0.0007365563000000001 0.044376285700000004 -0.0616450454 0.042280734 0.0022092484 -0.0453863669 -0.22543 0.164314 0.31439 0.00135024 -0.00623906 0.00402953 -420.0083312988281 351.2267150878906 345.305908203125 0.9790430000000002 59.008919 0.103757 0.0268821644 0.0051051718 -0.0238664991 -0.0626708349 0.0191489225 0.0361193922 -0.015676752 -0.0207469631 -0.0124191631 0.0090439435 -0.0142302434 -0.0663185574 -0.043602072 -0.0 0.043602072 -0.0616626416 0.043602072 0.0 -0.043602072 -0.225589 0.14021800000000004 0.287831 0.00180337 -0.00666753 0.00420679 -418.4749450683594 351.2902526855469 345.12713623046875 0.9876760000000002 59.529247 0.1174825 0.0495170609 0.0026280007 0.0092119516 -0.0551579143 0.0407852449 0.027633895099999996 -0.0164207235 -0.035568266200000004 -0.0199298595 0.0125735665 -0.0104662604 -0.0560686604 -0.043861710899999996 0.0007365563000000001 0.0428138604 -0.0616450454 0.0448845285 -0.0022092484 -0.0417415748 -0.228376 0.1406 0.261194 0.00273639 -0.00608168 0.00397213 -419.9822998046875 351.1683349609375 345.458740234375 1.031149 62.149441 0.16495350000000003 0.0579179976 -0.0080757247 0.0346984465 -0.0120215375 0.0382898554 -0.0415236092 -0.010280294799999999 -0.0200808536 -0.0234720399 0.0019612633 0.0033117848999999998 -0.0041778690999999995 -0.0441197852 0.0014730073999999998 0.0420119037 -0.0615922667 0.0461269599 -0.00441566 -0.0398081268 -0.228359 0.175024 0.30103 0.00125473 -0.00613095 0.00425473 -419.8565673828125 351.4289245605469 345.59130859375 0.991043 59.732185 0.10123850000000001 0.056805089100000004 -0.0300167971 0.0308545096 0.0170885045 0.0063566079 0.0009942288 -0.017101996100000003 -0.0304237276 -0.034941276800000004 0.0045263993 0.0021113754999999997 0.023876295699999998 -0.044376285700000004 0.0022092484 0.0411964596 -0.0615043357 0.0473282582 -0.0066164016 -0.0378051071 -0.228218 0.162516 0.275531 0.00192908 -0.00666753 0.00430561 -418.25531005859375 351.2121887207031 345.2544860839844 0.969216 58.416641 0.10383699999999998 0.0407484892 -0.0358791065 0.0256597637 0.0482668486 0.0035554942 0.0539125237 -0.016464828799999998 -0.0299553754 -0.0416126972 0.0016582820999999999 0.0040142905 0.04312978940000001 -0.044631203099999996 0.0029451740999999997 0.0403677898 -0.061381302699999994 0.0484873523 -0.0088086474 -0.0357360162 -0.226484 0.13593400000000003 0.282081 0.00245506 -0.0060047 0.004115 -418.1759338378906 351.1607971191406 345.63568115234375 0.952877 57.431824 0.14715649999999997 0.028701872000000003 -0.0351265023 0.0010249777999999999 0.052648460599999995 0.0011090207 0.0446112924 -0.0098325896 -0.0227445068 -0.0231141064 0.009336607 -0.0060287843 0.0462650494 -0.0448845285 0.0036806797 0.0395261602 -0.061223237699999995 0.0496032084 -0.0109895824 -0.0336044704 -0.217435 0.169559 0.322811 0.00158545 -0.00627431 0.00425083 -419.2726135253906 351.5273742675781 346.0040588378906 0.939488 56.624874 0.10519800000000001 0.0182229409 -0.0338687055 -0.0108501648 0.0579869982 -0.0034503828000000004 0.0622162856 -0.0131962843 -0.0200389621 -0.0397974513 0.015384211200000001 -0.0016659834 0.0444134672 -0.045136252800000005 0.00441566 0.038671841299999996 -0.061030231 0.050674831600000005 -0.0131564061 -0.0314141948 -0.22445 0.13193 0.301197 0.00204656 -0.00644401 0.00410284 -420.8453674316406 351.4837951660156 346.1204833984375 0.9762900000000002 58.842968 0.05280699999999996 -0.006793975799999999 -0.0517230571 -0.0363095045 0.0583973322 0.0127460116 0.0222390729 -0.0130555854 -0.0226491013 -0.043096626500000006 0.0171374152 -0.0054351101 0.039511206800000004 -0.0453863669 0.0051500103000000005 0.0378051071 -0.0608023928 0.0517012663 -0.015306336299999999 -0.029169017400000004 -0.2254 0.134249 0.284992 0.00266992 -0.00647163 0.00411852 -423.1495666503906 351.3755187988281 346.8636779785156 0.999244 60.226471 0.16088785 0.00044232129999999996 -0.0407450782 -0.06797435660000001 0.020936735 0.0262064889 -0.0797020017 -0.0098704903 -0.012224295500000001 -0.0096882827 0.0265693889 -0.0287361013 0.0075319943999999995 -0.0456348621 0.0058836257 0.0369262359 -0.0605398531 0.0526815972 -0.0174366123 -0.0268728619 -0.215104 0.177588 0.3028 0.000951953 -0.00650979 0.00415129 -420.6086120605469 351.677001953125 346.87945556640625 0.994784 59.957638 0.10820585 -0.0056418377 -0.0292997571 -0.07544255230000001 -0.0263560917 0.0151979122 -0.0117712867 -0.015842258600000002 -0.013487238300000001 -0.0171775725 0.015481478600000001 -0.0192596417 -0.0532682268 -0.0458817293 0.0066164016 0.036035509900000005 -0.060242761799999996 0.05361495 -0.0195444986 -0.024529741400000003 -0.224103 0.127543 0.305769 0.00169338 -0.0065379 0.00430561 -417.4042053222656 345.8686828613281 339.31640625 1.815561 109.427567 1.4955414499999997 -0.11251557539999998 -0.0319293507 0.0384494658 -0.08004535509999999 0.0138116003 0.0154164325 0.0995342205 0.013283488000000001 -0.0146936464 0.0569853408 0.1381705775 -0.0880710751 -0.0461269599 0.0073482335 0.0351332152 -0.059911288300000004 0.0545004924 -0.0216272887 -0.0221437508 -0.762541 0.0473839 0.608691 -0.000616837 0.00182493 0.00511301 -401.0535888671875 334.28424072265625 328.3331298828125 2.575937 155.256927 2.88368305 -0.17067805 -0.0718612143 0.1256120224 -0.08663171630000001 -0.045284629800000004 0.1150823816 0.28378178579999996 0.0850674557 -0.1532921886 -0.047339258200000005 0.17780082649999998 -0.1862327669 -0.046370545 0.0080790168 0.0342196412 -0.059545621900000005 0.0553374348 -0.0236823082 -0.0197190601 -0.905875 -0.370703 1.10652 -0.0302639 0.00415559 0.00962395 -425.2228088378906 355.01593017578125 350.12860107421875 2.592037 156.227341 2.73717 -0.0631876168 -0.0367112126 0.0375583492 -0.08489829550000001 -0.1203590783 -0.030600706600000003 0.0200725275 0.1991905382 -0.0259916984 0.0187745629 0.0290272092 -0.048963395 -0.04661247599999999 0.0088086474 0.0332950814 -0.059145971299999996 0.0561250309 -0.025706918199999998 -0.0172599069 -0.427198 -0.113192 0.719928 -0.0111408 -0.00221785 0.00283269 -418.3553466796875 352.34033203125 346.60186767578125 1.045631 63.022274 0.28534877 -0.0573264199 -0.0166716833 0.048244563399999996 -0.0617467501 -0.11541549970000001 0.0002953114 0.04103142 0.1445303319 -0.0035610747 0.0153524409 -0.006951460600000001 -0.009903948499999999 -0.0468527442 0.0095370211 0.0323598325 -0.0587125645 0.0568625783 -0.027698518999999998 -0.0147705889 -0.417668 0.00112527 0.677739 -0.00938627 -0.00263223 0.00261535 -423.639892578125 351.9698791503906 346.49847412109375 1.013276 61.072227 0.34659593000000005 -0.042291536399999996 -0.0134743655 0.0470948822 -0.049094894800000004 -0.0801538021 -0.088309666 0.0279944798 0.1099328259 0.0166073222 0.0181485594 0.0087418062 0.0017438274 -0.0470913411 0.010264034 0.0314141948 -0.058245649000000004 0.0575494194 -0.0296545534 -0.012255456699999999 -0.360807 0.0320167 0.657141 -0.00669935 -0.00403342 0.00329215 -419.926513671875 351.51007080078125 345.4720458984375 0.915439 55.175354 0.16992030000000002 -0.0424826175 -0.001135014 0.0740451466 -0.0415815099 -0.0655700278 -0.0848999075 0.0312413879 0.09372581449999999 0.014617131200000001 0.011020733500000001 0.0119122864 0.0307375119 -0.0473282582 0.0109895824 0.0304584719 -0.0577454912 0.058184941500000004 -0.0315725097 -0.009718906 -0.34151 0.061943 0.678027 -0.00511095 -0.00376925 0.0031485 -422.8182678222656 351.62860107421875 345.5771484375 0.942178 56.786961 0.13373820000000008 -0.030593648199999997 -0.01709482 0.0468818349 0.0027989356 -0.0854532959 -0.0417944135 0.0219287457 0.0898018914 0.0098331649 0.0099747337 0.0023751913 0.0547919597 -0.047563487 0.011713562700000001 0.0294929706 -0.0572123765 0.058768578200000005 -0.033449925 -0.007165369699999999 -0.334897 0.0999337 0.624597 -0.00492425 -0.00420071 0.00324443 -420.1407775878906 351.92596435546875 345.08807373046875 0.933395 56.257614 0.14430920000000003 -0.046250888399999995 -0.0104052451 0.0418692257 0.027629508900000002 -0.0698781673 0.029967650699999997 0.0155130674 0.0766410858 0.0177124903 0.006694430899999999 -0.0023744721 0.0651697684 -0.047797019100000004 0.012435871599999999 0.0285180009 -0.056646609199999996 0.0592998088 -0.0352843888 -0.0045993107 -0.324179 0.079351 0.642793 -0.0033767 -0.00394794 0.0031485 -419.969482421875 351.41015625 344.58746337890625 0.937462 56.502728 0.05003750000000005 -0.0597244308 -0.0174657837 0.0205170324 0.0269800332 -0.0288500662 -0.0334259043 0.0218315533 0.0753971016 0.0236579162 0.014848971499999999 -0.0007724815 0.049795287199999996 -0.0480288462 0.0131564061 0.0275338758 -0.056048512300000006 0.0597781596 -0.037073545299999996 -0.0020252136 -0.321165 0.111542 0.64354 -0.0033315 -0.00379147 0.00322854 -419.63848876953125 351.3443298339844 344.4804992675781 0.9451250000000002 56.964588 0.09698099999999997 -0.0702521775 -0.008285513199999999 -0.0160535626 0.0122015653 -0.0204324544 -0.0839466698 0.024480403300000002 0.0758313641 0.0313017635 0.0126319972 -0.0156306957 0.027322829500000003 -0.0482589599 0.0138750634 0.0265409112 -0.055418427 0.0602032042 -0.038815097400000005 0.0005524229 -0.318907 0.123564 0.619648 -0.00372831 -0.0044908 0.0031485 -419.18048095703125 351.6879577636719 344.4288330078125 0.939796 56.643387 0.18094659999999999 -0.050443025 0.005534635600000001 -0.037074899700000004 -0.028419983 -0.042817195 -0.0182192523 0.011159026499999999 0.0684213087 0.027278775699999997 0.0095198262 -0.0216319788 -0.0044323109999999995 -0.0484873523 0.0145917409 0.0255394259 -0.0547567129 0.060574563399999996 -0.0405068086 0.0031290940000000002 -0.323167 0.07629289999999998 0.57046 -0.00252792 -0.00419752 0.00303762 -414.00384521484375 349.22418212890625 342.68914794921875 1.070049 64.494019 0.21908610000000006 -0.052708152 0.0079182766 0.006513110600000001 -0.0498609782 0.0098148278 0.046777630199999996 0.0403207359 0.020822224 0.0502541846 0.036897208 0.0047291051 -0.035526673700000004 -0.048714014900000005 0.015306336299999999 0.024529741400000003 -0.054063747800000006 0.0608919062 -0.0421465068 0.0057002965 -0.348077 0.1267 0.587486 -0.00220837 -0.00530706 0.00414339 -418.7090759277344 349.62359619140625 343.7303161621094 1.170467 70.546387 0.27178749999999996 -0.0023893981 -0.0012341646 0.0010100944 -0.0599368187 -0.042336403099999996 -0.0149318939 0.0170941302 0.0335885442 0.061626487 0.0642324026 -0.0651830978 -0.0364550176 -0.0489389399 0.0160187477 0.023512181899999998 -0.0533399272 0.061154949400000005 -0.0437320865 0.008261536600000001 -0.33583 0.120377 0.482186 -0.00366936 -0.00653068 0.00441713 -418.1610107421875 351.3200378417969 344.73492431640625 1.027613 61.936337 0.3126884999999999 -0.00497006 0.0126512642 0.0092579247 -0.048705720099999995 -0.0238414612 0.0185339692 0.0021065032 0.0396825623 0.0408272371 0.0154864176 -0.026147606299999997 -0.0342736809 -0.0491621191 0.0167288735 0.022487074 -0.052585664000000004 0.0613634587 -0.0452615117 0.010808338300000001 -0.267649 0.07413999999999998 0.510834 -0.00239147 -0.00558849 0.00324476 -417.489990234375 351.2864990234375 345.44915771484375 0.958321 57.759937 0.2731505 -0.005074735 0.0048890231 0.0100420673 -0.0439744171 -0.0401060691 0.0436617433 0.0065404204 0.0432167931 0.0451264027 0.0184506455 -0.0308237434 -0.0192929216 -0.0493835445 0.0174366123 0.0214547469 -0.0518013888 0.061517248 -0.046732818499999995 0.0133362505 -0.228217 0.12664 0.503393 -0.0033686 -0.007427279999999999 0.00390439 -420.375 351.4151611328125 345.7641296386719 0.941575 56.750648 0.13407300000000003 0.0029069583 0.0006707944 0.01951861 -0.0424534078 -0.043066507999999996 -0.003712255 0.00037523389999999997 0.0292738718 0.030870213799999997 0.0151870187 -0.0236009473 -0.0233004292 -0.0496032084 0.0181418631 0.020415532 -0.0509875493 0.061616180199999995 -0.048144117699999996 0.0158408552 -0.229209 0.110662 0.509117 -0.00173758 -0.00692563 0.00380948 -421.5080261230469 351.2952575683594 345.37066650390625 0.944269 56.913033 0.10424134999999994 0.006769233100000001 0.0107000132 0.0462590807 -0.036804540499999996 -0.0186319823 -0.0682190437 -0.0005088801999999999 0.016836226200000002 0.0270132743 0.0115917556 -0.0050701923 -0.0025186732 -0.0498211028 0.0188445253 0.0193697628 -0.0501446098 0.061660167 -0.049493597199999996 0.0183177752 -0.229202 0.132987 0.531374 -0.0007804529999999999 -0.006979 0.00399203 -422.3573303222656 351.1561584472656 345.1759033203125 0.9709120000000002 58.518856 0.08516925000000002 0.011782864399999999 -0.0104401049 0.0295348583 0.0134491946 -0.0446254108 -0.035952914100000004 -0.0047222736 0.0117259652 0.011107481 0.0125608466 -0.0122373499 0.029286481200000002 -0.050037220099999995 0.0195444986 0.0183177752 -0.049273051500000005 0.061649169299999994 -0.050779524000000006 0.0207626817 -0.237238 0.153295 0.494315 -0.000455538 -0.00701308 0.00402836 -418.3320007324219 350.81591796875 344.63946533203125 0.948377 57.160614 0.07644943699999998 -0.0015822092999999999 -0.0080473671 0.0187765725 0.0407474619 -0.0472832754 0.0504368258 -0.0013037927 0.0024553631 0.0043466603 0.006777021899999999 -0.0062910506000000005 0.049837899000000005 -0.0502515524 0.0202416832 0.0172599069 -0.048373371799999995 0.061583196900000005 -0.0520002471 0.023171301800000002 -0.234322 0.12175 0.501665 -9.44926e-06 -0.00684928 0.00394548 -419.0291442871094 350.73736572265625 344.4247131347656 0.950617 57.295597 0.09088003700000002 -0.027714285 -0.024207819300000002 -0.0129071285 0.055317900700000006 -0.0104183468 0.0112526458 0.0035382645 0.0069669703 0.0124798852 0.012185829799999999 -0.021004904799999998 0.0581835422 -0.050464092099999996 0.020935979599999998 0.0161964974 -0.0474460842 0.06146230849999999 -0.053154198799999997 0.0255394259 -0.218651 0.152611 0.492772 -0.00021678 -0.00645179 0.00404976 -419.9078369140625 350.88800048828125 344.8514709472656 0.969725 58.447292 0.09394499999999993 -0.025154659500000003 -0.017485806899999998 -0.0391330298 0.024779842200000003 0.0154465992 -0.0712701306 0.0027627305 0.012742018700000001 0.023055723900000002 0.0103685167 -0.0312163181 0.0202162335 -0.050674831600000005 0.0216272887 0.0151278882 -0.046491717800000006 0.0612866121 -0.054239897599999996 0.0278629153 -0.230683 0.183195 0.484036 -0.00089585 -0.00658135 0.00409299 -418.627685546875 350.71728515625 344.50482177734375 0.961652 57.960705 0.16299870000000002 -0.0337426801 0.0005515402 -0.0530740027 -0.0105213819 0.0256303583 -0.0109153564 0.0006183795999999999 0.0035179946 0.033717347200000004 0.0192872366 -0.0312738584 -0.0221996944 -0.0508837635 0.022315511899999998 0.0140544224 -0.0455108174 0.0610562642 -0.0552559492 0.0301377094 -0.230936 0.123349 0.478599 0.000327734 -0.00616933 0.00377934 -419.7203674316406 350.65936279296875 344.578369140625 0.952331 57.398903 0.07777364999999999 -0.0186221546 0.0160508994 -0.053826232800000005 -0.056643099 -0.0029074471 0.0379722769 -0.000575173 0.0015488459 0.0431091012 0.0088690742 -0.025336368199999997 -0.0631064853 -0.0510908803 0.023000551 0.0129764445 -0.0445039428 0.0607714702 -0.056201049100000004 0.0323598325 -0.231985 0.148855 0.466632 0.000442607 -0.00556147 0.00371704 -418.13525390625 350.9497985839844 344.756103515625 0.937633 56.513058 0.12380815000000002 0.00036187510000000003 0.0187234394 -0.0083638586 -0.0507183005 -0.0059237790000000005 0.0458637684 0.0010292075999999999 0.0078310507 0.031556403399999995 -0.0012147421 -0.0161701065 -0.045829792599999995 -0.0512961746 0.0236823082 0.0118943007 -0.0434716687 0.0604324842 -0.0570739836 0.0345254011 -0.236237 0.177375 0.479539 -0.000426376 -0.00616443 0.00380768 -418.9403076171875 351.10467529296875 345.0097961425781 0.938392 56.558765 0.10957804999999998 0.0143785644 0.0216160915 0.0199830614 -0.0524627204 -0.0049021993 0.0007415027 -0.0026392271 -0.0009759616999999999 0.024780247400000004 0.0096317733 -0.0023311529000000003 -0.0352944101 -0.05149963900000001 0.024360686200000002 0.010808338300000001 -0.0424145842 0.0600396084 -0.0578736318 0.0366306304 -0.23638 0.149087 0.47627 0.000798465 -0.00592235 0.00371704 -419.78643798828125 350.8863830566406 345.4639892578125 1.001771 60.378754 0.05696884999999996 0.0208170322 0.0168423264 0.0371791512 -0.0323974846 0.0082724806 -0.0662129578 -0.0008615541000000001 2.0941300000000002e-05 0.018568343799999998 -0.0022218392000000003 -0.0055745462 -0.0083415891 -0.0517012663 0.0250355883 0.009718906 -0.0413332925 0.059593193200000005 -0.058598967 0.038671841299999996 -0.22889 0.168904 0.477898 0.000267158 -0.00589298 0.00371704 -420.4014587402344 350.7684631347656 345.54400634765625 0.971542 58.556782 0.05882003000000001 0.0277686364 -0.0062234356000000005 0.0302384151 0.0190729319 -0.0204543746 -0.0262468795 -0.0012848293 -0.0034238502 6.77657e-05 0.0058437004 -0.0060586560999999995 0.030137306099999997 -0.0519010494 0.025706918199999998 0.0086263535 -0.0402284109 0.0590936366 -0.059249057800000005 0.0406454662 -0.241789 0.175635 0.46773 -9.46626e-05 -0.0061116 0.00371704 -418.5499267578125 351.0373840332031 345.298583984375 0.944894 56.950672 0.10593753000000004 0.0147674458 -0.012813442 0.0227944074 0.043499028099999996 -0.029141160699999998 0.0392172895 -0.0031365529 -0.0040708296 -0.0098617518 -0.005541515 -0.0017562951999999998 0.0371923318 -0.052098980999999996 0.02637458 0.0075310317 -0.0391005699 0.0585413841 -0.0598230695 0.0425480561 -0.242714 0.13504 0.473003 0.000674008 -0.00575616 0.00365826 -418.80108642578125 350.8735656738281 345.5841369628906 0.947787 57.125031 0.1226045 -0.0035168126 -0.013847573 0.0031612231 0.0504453708 -0.0268678526 0.0238292827 0.001502356 0.0023336695 0.0022684587 -0.009782470500000001 -0.006127095999999999 0.0519638242 -0.052295054199999996 0.0270384785 0.0064332921 -0.0379504132 0.0579369282 -0.060320264900000004 0.044376285700000004 -0.24345 0.18418 0.479026 -0.000250792 -0.00610669 0.00371704 -416.5093078613281 350.900390625 345.2369689941406 0.919721 55.43346 0.09366540000000002 -0.0206116948 -0.012135233300000001 -0.0004889139 0.046414383200000006 -0.0143984892 0.0525787595 -0.0025428385999999997 -0.0029410406 0.007639293 0.0072782911 -0.0071778373999999995 0.047803121100000005 -0.05248926190000001 0.027698518999999998 0.005333487099999999 -0.0367785971 0.0572808079 -0.0607400057 0.0461269599 -0.235468 0.151361 0.47156 0.000657176 -0.00610669 0.00371704 -420.34857177734375 351.2936096191406 345.578857421875 0.939917 56.650684 0.04103350000000004 -0.023809936099999998 -0.0223178375 -0.026657696 0.0381799834 0.0231826352 -0.0173189653 -0.0032868319 0.003843613 0.0039814033 0.0169849896 -0.0144150316 0.045490514800000006 -0.0526815972 0.0283546073 0.0042319699 -0.0355857906 0.0565736083 -0.0610817528 0.047797019100000004 -0.232791 0.156093 0.475802 0.000515596 -0.00572694 0.00365072 -421.6963806152344 351.34075927734375 346.02294921875 0.962 57.981709 0.14948014999999998 -0.014243899499999999 -0.0208441785 -0.037484076 0.0150072219 0.017831583300000002 -0.07287896099999999 -0.0068843119 0.0064787648 0.0217066118 -0.0037820347 -0.0192081433 0.0202706589 -0.052872053200000005 0.0290066498 0.0031290940000000002 -0.0343726744 0.05581596 -0.0613450675 0.0493835445 -0.235539 0.193061 0.452102 -0.000595207 -0.00610669 0.00388145 -420.2373352050781 351.41107177734375 345.3829345703125 0.938735 56.579456 0.14608935 -0.029496871400000003 -0.0022655346 -0.050290697599999996 -0.0046379595 0.026824814300000003 -0.0440001675 -0.0072219632 -0.002942738 0.0118555014 0.0035415177000000003 -0.0127555841 -0.0113043046 -0.053060623200000004 0.0296545534 0.0020252136 -0.0331399408 0.055008538600000004 -0.0615296116 0.0508837635 -0.234946 0.145817 0.451785 0.00107338 -0.00603379 0.00366423 -420.4018249511719 350.7237548828125 345.14306640625 0.945062 56.960773 0.1317968 -0.0248406847 0.007390821 -0.058046083600000006 -0.0271540311 -0.0047840873999999995 -0.009177106800000001 -0.0041129113 0.0036086683000000003 0.030896833199999998 7.32259e-05 -0.0313543862 -0.0379862376 -0.0532473004 0.030298225699999997 0.000920683 -0.0318882933 0.0541520642 -0.0616351482 0.052295054199999996 -0.233642 0.188947 0.48118 0.000292084 -0.00615622 0.00391986 -420.4996948242188 351.0235290527344 345.00054931640625 0.936354 56.435978 0.10370185 -0.0099958689 0.0101450884 -0.04644595 -0.0355689447 0.017335723600000002 0.0080697349 -0.0071041714 -0.0038586634 0.0083178916 -0.001035605 -0.0045829191 -0.0460206149 -0.053432078200000004 0.0309375749 -0.0001841432 -0.030618446400000002 0.0532473004 -0.0616615418 0.05361495 -0.233016 0.157022 0.457933 0.000927371 -0.00627619 0.00371704 -418.3293151855469 350.9952392578125 344.46368408203125 0.929517 56.023869 0.0657309500000001 -0.0085167705 0.0185832579 -0.0341031294 -0.046043016900000004 0.0022058807999999997 0.061454807699999996 -0.0038451576000000003 -0.0046459831 0.0210879889 -0.0107168249 -0.010137572099999999 -0.062043925300000004 -0.05361495 0.0315725097 -0.0012889102 -0.0293311248 0.052295054199999996 -0.0616087584 0.0548411441 -0.233521 0.16364 0.466021 0.00128669 -0.00562511 0.00371704 -418.609375 351.0707092285156 344.86260986328125 0.923501 55.661251 0.14297440000000003 -0.0027537563 0.0239166568 -0.0241012665 -0.046316755099999996 -0.0087363102 0.04550461150000001 -0.0044019625 0.0013603428 0.0237606227 -0.0079498313 -0.0240934769 -0.051645349800000004 -0.0537959092 0.0322029395 -0.0023932635000000002 -0.0280270631 0.0512961746 -0.0614768659 0.0559714938 -0.234697 0.201324 0.465396 -0.000165108 -0.00601961 0.00394053 -420.8558654785156 350.8556823730469 344.8001708984375 0.946771 57.06382 0.2094704 0.0142182691 0.0242970813 -0.0077691094 -0.054337204699999996 0.0116205875 0.0276887015 -0.009252251 -0.0108242174 0.0149181212 -0.0095388171 0.0059968905 -0.04910397440000001 -0.05397494940000001 0.032828774399999996 -0.0034968484000000005 -0.0267070056 0.0502515524 -0.061266033600000006 0.0570040233 -0.241815 0.135914 0.444418 0.00146751 -0.00563199 0.00364148 -421.1351623535156 351.05596923828125 344.61041259765625 0.964176 58.112869 0.099838 0.0238255938 0.024206378799999997 0.016603949 -0.0455188128 0.017970810900000002 -0.025425427400000002 -0.0072379811 -0.0118383954 0.0090632207 -0.0089094013 0.012243144499999999 -0.0359534059 -0.0541520642 0.033449925 -0.0045993107 -0.0253717058 0.0491621191 -0.060976532199999996 0.0579369282 -0.235632 0.177827 0.45725 0.00119967 -0.00533627 0.00342684 -420.9743041992188 350.8965759277344 344.7628173828125 0.97974 59.050896 0.11035405 0.0254472446 0.0181669663 0.030478510299999997 -0.0098339056 0.0188232229 -0.0874599695 -0.0060933977 -0.009365655799999999 0.012551516100000002 -0.010360599100000001 0.0021919187 0.006212776 -0.054327247300000006 0.034066302799999996 -0.0057002965 -0.0240219257 0.0480288462 -0.0606087335 0.058768578200000005 -0.232209 0.205919 0.460147 0.000380749 -0.00566583 0.0037972 -419.68548583984375 350.9368591308594 344.4881591796875 0.962718 58.024979 0.15981954999999992 0.0434572326 0.0134759953 0.037873003599999996 0.0109859485 0.0180881336 -0.039286185099999996 -0.008815724799999999 -0.021841643100000002 -0.014021918700000002 -0.012062503600000002 0.0138476726 0.0177594111 -0.0545004924 0.0346778198 -0.006799452199999999 -0.022658435600000002 0.0468527442 -0.060163109699999995 0.0594975196 -0.236723 0.148684 0.436459 0.00175251 -0.00570949 0.00372497 -418.70587158203125 350.9047546386719 344.5514831542969 1.049567 63.259548 0.16711535 0.023814825 0.0051243257 0.0191002847 0.0457761137 -0.0121058055 0.026883402200000003 0.000464457 -0.0161672608 -0.0308687895 -0.029595094500000002 0.0005034041000000001 0.034157695099999996 -0.0546717934 0.0352843888 -0.007896425 -0.0212820138 0.0456348621 -0.059640233 0.0601224786 -0.243096 0.208144 0.422123 0.000486943 -0.0054139 0.0035472 -418.9501647949219 350.9698181152344 344.9352722167969 1.0275 61.929497 0.10446839999999996 0.013359122900000001 -0.0084664833 0.0142170582 0.053813224400000005 -0.0108142877 0.0376673987 -0.0028023717 -0.0098832801 -0.0086836869 -0.0053336152 -0.00037888669999999996 0.0504345777 -0.0548411441 0.0358859231 -0.0089908627 -0.0198934458 0.044376285700000004 -0.0590407749 0.060642363 -0.231841 0.230889 0.426822 -0.000108395 -0.00578491 0.00389624 -418.6065673828125 350.62451171875 344.8167419433594 0.950138 57.26672 0.19757625000000004 0.0014676821 0.00033405580000000004 0.0037159314 0.052614851 -0.0072145574 0.0430347696 -0.0055474726 -0.0145364942 -0.0053052224 -0.007678050600000001 0.008603279 0.0496174681 -0.055008538600000004 0.036482337000000004 -0.010082414100000001 -0.018493524 0.0430781374 -0.0583655051 0.0610562642 -0.226127 0.14031 0.444392 0.00142433 -0.00574241 0.0037972 -419.5608825683594 350.93426513671875 345.4009094238281 0.928062 55.936207 0.1280148 0.006617082 0.0095160877 0.006912648299999999 0.0469731565 -0.0033011570000000003 0.0055851971 -0.0061310895999999995 -0.006444045600000001 0.0078789092 -0.0171830522 0.0112116717 0.045875762 -0.0551739708 0.037073545299999996 -0.011170728500000001 -0.0170830476 0.0417415748 -0.057615290599999994 0.0613634587 -0.233619 0.168842 0.458099 0.000238534 -0.00606261 0.00373752 -421.56353759765625 351.1623229980469 345.9136047363281 0.929007 55.993153 0.05451605000000001 0.0062619 0.0038774378000000003 0.021524089500000003 0.051602081200000004 -0.0259531202 0.0120703967 -0.011335819099999998 -0.0049119498999999995 0.010206333100000001 -0.0140928123 0.0162336436 0.043055429000000006 -0.0553374348 0.0376594638 -0.012255456699999999 -0.0156628214 0.0403677898 -0.056791094900000005 0.061563409699999995 -0.233186 0.167694 0.466401 0.000513275 -0.00662085 0.0037972 -418.6884460449219 351.4188537597656 345.4598388671875 0.9300020000000002 56.053116 0.09262725000000004 -0.0008469192999999999 0.0012237684 0.017422336200000003 0.0576475607 -0.015412991000000001 0.043030307000000004 -0.0102514627 -0.0097602064 0.0044168268 -0.022661770699999997 0.0085294904 0.0686948294 -0.0554989249 0.038240008799999996 -0.0133362505 -0.014233656 0.0389580073 -0.055893976100000006 0.0616557679 -0.228782 0.140409 0.466145 0.0013179 -0.00621183 0.0037972 -420.4953918457031 351.1655578613281 345.89141845703125 0.952693 57.420715 0.19139110000000006 -0.0016481431 -0.0012536873 -0.0077198943 0.057626763 -0.0087953567 0.003950844199999999 -0.007971773 -0.002523514 0.005435338499999999 -0.0141757374 -0.0089111857 0.061926227 -0.055658435199999995 0.038815097400000005 -0.0144127627 -0.012796367099999999 0.0375134847 -0.0549250863 0.0616403716 -0.228748 0.202497 0.417083 -0.000163272 -0.0062817 0.0038503 -418.4041442871094 351.3333435058594 345.490966796875 0.941253 56.731255 0.19445760000000006 -0.036773567 0.0092110578 -0.0151368622 0.0560736692 0.0021053977 0.0256899487 -0.0085122316 -0.0103731562 0.0128539192 -0.013549044599999999 0.012443520500000001 0.048915449400000005 -0.05581596 0.039384647599999996 -0.0154846479 -0.011351775 0.036035509900000005 -0.053885669500000004 0.061517248 -0.22148 0.143168 0.465195 0.00123664 -0.00626739 0.00366955 -422.4244384765625 350.6268310546875 345.5655212402344 0.993748 59.895184 0.09019299999999998 -0.0231102212 0.0035809207000000003 -0.0452504986 0.026553689900000003 0.0415271452 -0.0957326783 -0.0017414879999999998 -0.012663555600000001 0.012218587 -0.0087979731 -0.0009847838 0.0182880853 -0.0559714938 0.0399485782 -0.0165515619 -0.0099007042 0.0345254011 -0.0527770605 0.0612866121 -0.222802 0.184889 0.485259 0.0008659199999999998 -0.00622404 0.0037972 -421.0320739746094 351.03155517578125 345.2795715332031 0.973408 58.669277 0.05855755000000003 -0.0246530772 0.022827351800000003 -0.048461986799999995 -0.0090033544 0.0245669865 -0.0282077367 -0.0072880161 -0.014112999499999999 0.023742194700000004 -0.0178799526 -0.0017767958 -0.025849704100000002 -0.0561250309 0.0405068086 -0.0176131622 -0.0084439827 0.0329845047 -0.0516006827 0.060948867000000004 -0.217076 0.186647 0.460301 0.000927601 -0.00638611 0.00409576 -419.76055908203125 350.7131042480469 344.8580627441406 0.954479 57.528362 0.11808145000000007 -0.0107272027 0.0428483884 -0.045481765300000004 -0.0395386344 0.0123920571 0.044547691699999996 -0.0067430624 -0.0289708958 0.0312878724 -0.0322022835 0.0071923484 -0.0563508233 -0.05627656599999999 0.041059259300000005 -0.0186691079 -0.0069824421 0.0314141948 -0.0503580468 0.060504603 -0.228744 0.155322 0.45063 0.00187688 -0.00620342 0.00391938 -418.66314697265625 350.2662658691406 344.6717224121094 0.936714 56.457645 0.10684300000000004 0.0011296417999999999 0.046707636799999994 -0.0062487343 -0.0370799233 0.0205338354 0.0442839259 -0.0048249126 -0.023222726699999998 0.0339542146 -0.025052172 -0.0066333016000000005 -0.046475883499999995 -0.056426093600000005 0.041605851299999996 -0.0197190601 -0.0055169164 0.0298158718 -0.0490507482 0.059954596500000006 -0.22393 0.183965 0.471994 0.00118574 -0.00636046 0.00411164 -420.3843078613281 350.7799072265625 344.6791687011719 0.990563 59.703217 0.037690000000000015 0.0213719622 0.0439354704 0.0208558883 -0.03019639 0.0298511021 -0.0201951203 -0.0089042551 -0.0210983904 0.0219319308 -0.015570004699999999 0.0177801638 -0.030808651800000003 -0.0565736083 0.0421465068 -0.0207626817 -0.0040482420000000005 0.0281909609 -0.0476804656 0.0592998088 -0.222283 0.188286 0.450505 0.00120411 -0.00648859 0.00405348 -417.90380859375 350.1667175292969 344.4388732910156 0.94024 56.670155 0.10437000000000003 0.0215020898 0.05221095059999999 0.0323387697 -0.0092074466 0.033127428 -0.0165281522 -0.0029364513 -0.0301447474 0.0155110163 -0.0291634435 0.0206836127 -0.004924322 -0.056719105 0.042681148499999995 -0.0217996377 -0.0025772572 0.0265409112 -0.0462489587 0.0585413841 -0.210677 0.163251 0.482466 0.00143984 -0.00602168 0.0040662 -418.4532775878906 350.86175537109375 345.35711669921875 0.9386310000000002 56.573166 0.15345229999999999 0.0222181219 0.0496605008 0.0384308481 0.0015176109 0.0261619014 -0.0261713166 -0.0065568624 -0.0189467135 0.0224226032 -0.021934032599999997 0.022899531600000002 0.0075194284 -0.0568625783 0.04320970019999999 -0.0228295951 -0.0011048015 0.0248671939 -0.0447580654 0.057680648099999995 -0.201905 0.197146 0.475432 0.000317284 -0.00668689 0.00435346 -419.7340393066406 351.2686462402344 345.7000732421875 0.951528 57.350525 0.08760885000000003 0.0298966145 0.0363880967 0.0401888235 0.0360609977 0.0011340438 -0.0405455731 -0.0071559843 -0.0112678654 0.001278756 -0.0293992369 0.0304581556 0.0380530225 -0.0570040233 0.0437320865 -0.0238522233 0.0003682847 0.023171301800000002 -0.04320970019999999 0.056719105 -0.213971 0.160457 0.45798 0.000640961 -0.00671358 0.00427579 -419.6258239746094 350.8326110839844 345.3352966308594 1.32808 80.046074 1.10770195 0.0466338755 -0.0045629455 0.0452108857 0.028510273 0.058606711900000004 0.0045383437 -0.0083821446 -0.054121162800000004 -0.1264120008 -0.0656220055 0.06444425940000001 0.0047237487 -0.057143434800000004 0.0442482328 -0.0248671939 0.0018411607000000001 0.0214547469 -0.041605851299999996 0.055658435199999995 -0.387708 0.0698633 0.0623497 0.007730919999999999 -0.00513288 0.00455995 -421.9286804199219 351.986572265625 346.7840881347656 1.448526 87.305611 0.94662975 0.0368767433 -0.015569886100000001 0.0311879778 0.028801254199999998 0.0274019442 -0.027637689700000002 -0.016795151100000003 -0.0071492946 -0.0642753924 -0.0170580415 0.0252961734 0.0374730659 -0.0572808079 0.0447580654 -0.025874181200000002 0.003312986 0.0197190601 -0.0399485782 0.0545004924 -0.245279 0.221022 0.252796 0.000195535 -0.00358566 0.00439064 -420.03265380859375 352.2621765136719 346.7864074707031 1.111261 66.977974 0.23146905 0.0191965423 0.0097517223 -0.0021952819 0.0209932689 0.0169289039 0.0187509875 -0.015195520300000001 -0.0051002724 -0.0246458913 -0.0109813553 0.023263653500000002 -0.0015841612 -0.057416137699999995 0.0452615117 -0.0268728619 0.0047829204 0.0179657891 -0.038240008799999996 0.0532473004 -0.223133 0.198169 0.325596 -0.000575956 -0.00494457 0.00424764 -422.753662109375 352.4790954589844 347.1820373535156 1.009739 60.85902 0.2499303 0.026419751499999998 0.025557087200000002 -0.006157446600000001 -0.0090072802 -0.006250615 0.029137866800000002 -0.02606233 -0.013988417 -0.0151362763 -0.020045925 0.035447221099999995 -0.0202722798 -0.0575494194 0.0457584997 -0.0278629153 0.0062501251 0.0161964974 -0.036482337000000004 0.0519010494 -0.212825 0.115584 0.363372 0.00106699 -0.00565255 0.00421334 -419.8230285644531 351.4459228515625 345.6559143066406 1.001595 60.368179 0.10223 0.0289880059 0.0390068096 0.027997977900000002 -0.0199245626 0.0186179868 -0.0107020125 -0.017171006699999998 -0.030160222599999998 -0.014044333 -0.043868965999999995 0.0356601789 -0.0241504561 -0.057680648099999995 0.0462489587 -0.028844023599999997 0.0077137627000000005 0.0144127627 -0.0346778198 0.050464092099999996 -0.197908 0.153006 0.386041 0.00143232 -0.00561038 0.00435028 -423.03448486328125 351.24542236328125 345.2484436035156 1.000253 60.287277 0.15513215000000002 0.0367041818 0.029105649900000002 0.0245257011 0.0230138311 0.0080292213 -0.0420305281 -0.019953838 -0.0336568406 -0.0120179757 -0.0314411617 0.0310006404 0.0185384528 -0.057809819299999995 0.046732818499999995 -0.0298158718 0.0091729979 0.012616175600000001 -0.032828774399999996 0.0489389399 -0.194464 0.195997 0.38152 0.000452407 -0.00630131 0.00476296 -419.1816711425781 351.166259765625 344.3555908203125 0.995545 60.003525 0.19836814999999997 0.027648154900000003 0.0301338907 0.0249665414 0.048947349800000005 0.0191485594 0.017560491299999998 -0.0165534844 -0.046195669 -0.0132254031 -0.0359686566 0.0389417911 0.021391857200000003 -0.0579369282 0.04721001019999999 -0.0307781479 0.010626997800000001 0.010808338300000001 -0.0309375749 0.0473282582 -0.200427 0.137941 0.392725 0.00239329 -0.00603125 0.00451102 -417.5675354003906 351.25360107421875 344.0668029785156 0.956024 57.621502 0.11819599999999998 0.0093625379 0.024069096499999998 0.013754298 0.07187192790000001 0.025998836299999998 0.0738661556 -0.011686357 -0.0379132279 -0.0075740437 -0.0445936254 0.0341324834 0.055332433099999995 -0.0580619705 0.0476804656 -0.031730543 0.0120749325 0.0089908627 -0.0290066498 0.0456348621 -0.195696 0.169642 0.416252 0.00162573 -0.00572778 0.00460473 -419.3764953613281 351.1673583984375 344.31573486328125 0.969483 58.432682 0.14335944999999997 -0.0028825808000000003 0.019986181999999998 -0.0173452084 0.077460527 0.0425219647 0.0370680435 -0.0125187718 -0.0356233431 0.0038834740999999996 -0.0055530331 0.0227306586 0.052377327800000005 -0.058184941500000004 0.048144117699999996 -0.0326727513 0.013515975800000002 0.007165369699999999 -0.0270384785 0.043861710899999996 -0.197584 0.204598 0.370641 0.000908461 -0.0061093 0.00448543 -418.8160705566406 350.8041687011719 343.9140319824219 0.96527 58.178772 0.16764395000000007 -0.017383794299999998 0.0273567436 -0.044172028700000004 0.0723362385 0.0728134148 -0.0077585569 -0.0084262882 -0.0433164951 0.0006381074 -0.0115533248 0.0235729796 0.0333206038 -0.058305837 0.0486009003 -0.0336044704 0.0149493052 0.005333487099999999 -0.0250355883 0.0420119037 -0.186189 0.137163 0.377149 0.00238318 -0.00625496 0.00445969 -418.76995849609375 350.42877197265625 344.1031494140625 0.982813 59.236111 0.128046 -0.0275793277 0.048098307 -0.0674074776 0.0382466502 0.0678989285 -0.049976339800000005 -0.0014587448000000002 -0.0364533561 0.025377378199999998 -0.0345086177 0.0056784812 -0.0030724006 -0.058424652599999995 0.0490507482 -0.0345254011 0.0163741027 0.0034968484000000005 -0.023000551 0.0400886733 -0.184043 0.176029 0.419343 0.00178977 -0.00603658 0.0045447 -418.3017272949219 350.4978332519531 344.22613525390625 0.9847570000000002 59.353317 0.08960550000000009 -0.0213826042 0.060300545700000006 -0.066825354 0.0029250694 0.0547781526 0.0170630264 -0.005137094 -0.0401032998 0.0243981892 -0.0371756133 0.0155075424 -0.0423874614 -0.0585413841 0.049493597199999996 -0.0354352477 0.017789555 0.0016570915 -0.020935979599999998 0.0380953808 -0.183926 0.198566 0.387664 0.00174422 -0.00634493 0.00489625 -418.2889404296875 350.47552490234375 344.2760009765625 0.9813130000000002 59.145706 0.12374200000000002 -0.0144046673 0.0696317737 -0.051166482199999995 -0.0210428538 0.0379278269 0.056864703899999994 -0.0071204068 -0.0450028846 0.0276242041 -0.0469800857 -0.0032818954999999997 -0.045813282999999996 -0.058656027300000003 0.0499293841 -0.0363337182 0.019194854299999998 -0.0001841432 -0.0188445253 0.036035509900000005 -0.202301 0.186852 0.396058 0.00127278 -0.00587845 0.00412899 -418.7112731933594 350.6602478027344 344.6427307128906 0.9646960000000002 58.14418 0.09461300000000009 0.0105099789 0.07063700889999999 -0.02338341 -0.027180998199999997 0.037205915299999996 0.06802220769999999 -0.0097115083 -0.0442782503 0.0325937378 -0.0522096879 0.0137305242 -0.0395487712 -0.058768578200000005 0.0503580468 -0.0372205242 0.020589198700000002 -0.0020252136 -0.0167288735 0.0339126607 -0.182861 0.199 0.387547 0.00170721 -0.0059569 0.00470639 -419.8245544433594 350.76495361328125 345.0623779296875 0.959747 57.845882 0.062120000000000036 0.0214366228 0.0713033158 -0.0042520129 -0.024328547000000002 0.030119767999999998 0.0280687181 -0.0137978933 -0.049619034299999996 0.0288504286 -0.0586228936 0.017954090500000002 -0.042073201399999996 -0.0588790326 0.050779524000000006 -0.0380953808 0.021971792200000003 -0.0038644781 -0.0145917409 0.031730543 -0.185551 0.181325 0.377505 0.00165562 -0.00621217 0.00437899 -419.5951232910156 351.09197998046875 345.2314453125 0.965823 58.212086 0.11128800000000001 0.021386477999999997 0.0767072062 0.0145596267 -0.0198973203 0.0364604719 0.0316911778 -0.014736906499999999 -0.0520747749 0.023880753199999997 -0.0527391952 0.0427320471 -0.0295623265 -0.0589873867 0.0511937557 -0.0389580073 0.023341845899999998 -0.0057002965 -0.012435871599999999 0.0294929706 -0.199058 0.161935 0.399456 0.00252915 -0.0059569 0.00437899 -419.8625793457031 351.43450927734375 345.784423828125 1.009441 60.841042 0.13779949999999994 0.0260563418 0.072221724 0.0362160536 -0.006813435600000001 0.022996133 0.004486493 -0.0144637117 -0.043146937 0.0226597094 -0.047775877300000005 0.0471784288 -0.013007228899999999 -0.0590936366 0.0516006827 -0.0398081268 0.0246985778 -0.0075310317 -0.010264034 0.027203854 -0.187294 0.220903 0.398073 0.00179703 -0.00632036 0.0045971 -422.2482604980469 351.4603576660156 345.68243408203125 0.968674 58.383938 0.1139495 0.0342689078 0.0654799495 0.0425336424 0.017369392 0.0250797425 -0.06331440440000001 -0.0197799308 -0.04837699559999999 0.0032208269 -0.050572310499999995 0.0504082208 -0.0028729896 -0.0591977785 0.0520002471 -0.0406454662 0.026041213599999998 -0.0093550512 -0.0080790168 0.0248671939 -0.182697 0.179165 0.381958 0.00248897 -0.0064403 0.00437899 -420.7378234863281 351.1676025390625 345.3408508300781 0.948902 57.192253 0.0394925 0.040160190400000004 0.0614438863 0.05066816019999999 0.0340669967 0.022389577999999997 -0.0507508325 -0.013051144399999999 -0.0478650914 -0.0045321797 -0.0526932226 0.061173578 0.028930331200000003 -0.0592998088 0.052392391600000005 -0.0414697568 0.0273689869 -0.011170728500000001 -0.0058836257 0.022487074 -0.186873 0.180908 0.395487 0.00237201 -0.00615637 0.00437899 -421.2898864746094 351.5527038574219 345.8719787597656 0.942634 56.81448 0.07079299999999994 0.0332596226 0.051119302 0.0452601574 0.0627745902 0.0125202051 -0.0202914722 -0.018572023400000002 -0.0484164595 0.0049989381 -0.0450878492 0.0513066233 0.053063832400000004 -0.0593997236 0.0527770605 -0.042280734 0.0286811401 -0.0129764445 -0.0036806797 0.020067654 -0.184936 0.19256 0.374865 0.00196341 -0.00628361 0.00457479 -421.4818420410156 351.624755859375 346.1165771484375 0.962598 58.017754 0.12456899999999994 0.0254547686 0.058762414000000006 0.0359049132 0.054239398499999994 0.039904488700000004 -0.0537941309 -0.0206714856 -0.0529402495 -0.010225448 -0.042448392 0.06821294160000001 0.029656297999999998 -0.0594975196 0.053154198799999997 -0.0430781374 0.029976924199999998 -0.0147705889 -0.0014730073999999998 0.0176131622 -0.182875 0.149502 0.375563 0.00293504 -0.005876 0.00437899 -421.2866516113281 350.93756103515625 346.57965087890625 1.313785 79.184486 0.5838386 0.0442127008 -0.028747438900000002 0.045673888200000005 0.032807444500000005 0.0411461188 -0.0015565267000000002 -0.012219836999999999 -0.0711013184 -0.0850286923 0.0320860685 0.0434996003 0.027728736099999998 -0.059593193200000005 0.053523752699999996 -0.043861710899999996 0.0312555998 -0.0165515619 0.0007365563000000001 0.0151278882 -0.199108 0.0946779 0.0262147 0.0007942859999999998 -0.00612699 0.00350207 -399.9601745605469 335.7095947265625 334.87237548828125 2.126 128.13833600000004 2.1411364 -0.1280517782 -0.0692234734 0.1297085093 0.0264703913 0.20212647620000002 0.044718956399999996 0.21649608760000003 -0.1438987491 -0.051908612 0.2725837175 0.007131560699999999 -0.025822702599999997 -0.059686740999999995 0.053885669500000004 -0.044631203099999996 0.0325164369 -0.0183177752 0.0029451740999999997 0.012616175600000001 -0.163138 -0.46237 -0.502026 -0.0160769 -0.00448637 0.00161632 -416.7155456542969 347.0284423828125 338.27484130859375 2.508385 151.18544 1.7217067499999998 -0.0876704714 -0.1231097427 0.0534457667 -0.060056381799999996 -0.1566820157 0.0864498344 0.13066259800000002 0.1058735392 -0.2528589296 -0.232073235 -0.19043857670000003 -0.018399076 -0.0597781596 0.054239897599999996 -0.0453863669 0.033758716 -0.020067654 0.0051500103000000005 0.010082414100000001 -0.144593 -0.347792 0.439702 -0.0276709 -0.00409947 0.000660105 -428.805908203125 353.9019470214844 350.6581726074219 2.028446 122.25853 0.82655815 -0.025629405600000002 -0.1064844145 0.0269844066 -0.0160835322 -0.1352069099 -0.0231695152 0.017747449499999998 0.1532806933 -0.0676913361 0.1067419941 0.0548928012 0.0101125145 -0.0598674458 0.0545863863 -0.0461269599 0.0349817282 -0.0217996377 0.0073482335 0.0075310317 -0.120055 -0.217439 0.356161 -0.0167047 -0.00357945 0.000936408 -422.5929870605469 352.3768005371094 347.3529968261719 1.057573 63.742081 0.2869126 -0.0372934543 -0.09791113060000001 0.036765779 -0.0063169666000000005 -0.1288141408 0.0077413280000000004 0.0305317305 0.1157251464 -0.038638307999999996 0.0627373336 -0.0134890024 0.0426632396 -0.059954596500000006 0.0549250863 -0.0468527442 0.0361847754 -0.023512181899999998 0.0095370211 0.0049664875 -0.115114 -0.132311 0.389803 -0.0140428 -0.00391794 0.00120005 -422.9916687011719 352.130859375 346.5309143066406 0.968452 58.370586 0.1658033 -0.039889662 -0.0954367281 0.0088103091 0.0076124083999999995 -0.1049339936 -0.020610409099999998 0.026262106299999997 0.1070203303 -0.013517774299999999 0.0688715981 -0.0396257408 0.0390798219 -0.0600396084 0.0552559492 -0.047563487 0.0373671711 -0.0252037594 0.011713562700000001 0.0023932635000000002 -0.11942 -0.0676117 0.382854 -0.0127377 -0.00408757 0.0015223 -421.4900817871094 352.22509765625 346.1685485839844 0.982176 59.197731 0.14192439999999998 -0.0558046851 -0.0706098276 -0.023420474500000003 0.0216604435 -0.0701943269 -0.008550604100000001 0.015222325900000002 0.09060300630000001 -0.009311135600000001 0.0550243019 -0.0284520563 0.04716321440000001 -0.0601224786 0.055578927800000004 -0.0482589599 0.038528240299999995 -0.0268728619 0.0138750634 -0.0001841432 -0.11260800000000003 -0.0702246 0.382847 -0.0104295 -0.00405328 0.00182966 -423.6424255371094 352.2194519042969 345.86810302734375 1.0034630000000002 60.480724 0.14448749999999996 -0.0460940505 -0.0553105019 -0.0583586232 -0.0067716065 -0.0416513841 -0.1040707858 0.0110042441 0.08629297289999999 0.0157615186 0.0561222629 -0.0426516391 0.0102182914 -0.0602032042 0.055893976100000006 -0.0489389399 0.0396673204 -0.0285180009 0.0160187477 -0.0027612279999999997 -0.102392 -0.0102651 0.38287 -0.00991538 -0.00466158 0.00219302 -421.90277099609375 351.81500244140625 345.2787170410156 0.984481 59.336681 0.1268682 -0.0547948474 -0.0463257384 -0.0478135479 -0.0486826822 -0.0419529335 -0.028883373900000002 0.0124696545 0.07729747 0.024601654700000003 0.046521195700000004 -0.0487214722 -0.0333964588 -0.0602817821 0.056201049100000004 -0.0496032084 0.0407837614 -0.0301377094 0.0181418631 -0.005333487099999999 -0.0982034 -0.0398787 0.366004 -0.0103043 -0.00533279 0.00265689 -421.8422546386719 352.50921630859375 345.8283386230469 1.024073 61.722923 0.344535486 -0.0216504798 -0.0154094171 -0.0597656716 -0.0671998619 -0.032011793999999996 0.036236968599999995 -0.0034610566 0.055602965899999995 0.021241660899999997 0.0345453264 -0.0236405249 -0.055816234299999996 -0.0603582097 0.0565001029 -0.0502515524 0.041876926 -0.031730543 0.0202416832 -0.007896425 -0.119415 -0.000321314 0.303257 -0.00710248 -0.00432866 0.00244245 -422.1711730957031 351.5225830078125 344.93341064453125 1.268932 76.481079 0.6198898860000001 0.026784846400000003 -0.0228160246 -0.0432289897 -0.0515553051 0.045481266799999996 0.0564727018 -0.013377770800000001 -0.019454991499999998 -0.059468798600000004 0.0038591721999999998 0.023136595899999998 -0.0793468359 -0.0604324842 0.056791094900000005 -0.0508837635 0.0429461904 -0.0332950814 0.022315511899999998 -0.0104455625 -0.21151 -0.0260087 0.159813 -0.0007924899999999998 -0.00378812 0.00211971 -424.112548828125 352.7214050292969 346.77642822265625 1.290278 77.767685 0.5486042 0.0224473533 -0.05523145 -0.0240807644 -0.057226968600000004 0.0151649193 -0.0425916499 -0.0154371995 0.0281335394 -0.0162452477 0.0225942359 -0.0413965209 -0.0431882898 -0.060504603 0.0570739836 -0.05149963900000001 0.0439909442 -0.0348299293 0.024360686200000002 -0.0129764445 -0.117572 0.124869 0.193596 -0.0055711 -0.00430915 0.00222018 -424.0768432617188 352.3007507324219 346.93017578125 1.076316 64.871735 0.2404377 0.0065282913 -0.037076371600000005 -0.0284498335 -0.0145296266 -0.0002060113 -0.0348300385 -0.0174873787 0.006020318199999999 -0.0015273763 0.038327232999999995 -0.028334303999999998 -0.0149453701 -0.060574563399999996 0.057348728499999994 -0.052098980999999996 0.0450105913 -0.0363337182 0.02637458 -0.0154846479 -0.124961 0.0273768 0.238283 -0.00445776 -0.00475034 0.00248304 -423.2519836425781 352.6043701171875 346.9412536621094 1.070907 64.545761 0.07287609999999994 0.0010400405999999999 -0.0363212014 -0.05121451269999999 -0.0100911294 0.0220208294 -0.024530569900000004 -0.0206159411 0.0010494503999999999 0.0006442926000000001 0.0323686035 -0.0188277518 -0.011472773799999999 -0.060642363 0.057615290599999994 -0.0526815972 0.046004549699999994 -0.0378051071 0.0283546073 -0.0179657891 -0.1169 0.0394639 0.232831 -0.00395279 -0.00431941 0.00247342 -422.2267761230469 351.9680480957031 346.0373840332031 1.043865 62.91584 0.16281079999999998 0.0072036109999999995 -0.0148172754 -0.0413669625 -0.0550342285 0.0104536319 0.0463244349 -0.0114889456 0.0082549427 0.0195629699 0.020824224199999998 -0.0293326794 -0.0471719384 -0.060707999400000004 0.0578736318 -0.0532473004 0.0469722521 -0.0392427837 0.030298225699999997 -0.020415532 -0.11221 0.08817719999999998 0.265771 -0.00482867 -0.00491323 0.00253307 -423.38409423828125 352.0017395019531 345.3860778808594 1.021042 61.54026 0.0575217 0.0380783666 -0.0014998632999999998 0.0100344352 -0.055189355499999995 0.0275531334 -0.013140171 -0.0152467991 -0.0028645473 0.011986636 0.0181232865 -0.0057148884 -0.0400035199 -0.0607714702 0.058123715199999995 -0.0537959092 0.0479131463 -0.0406454662 0.0322029395 -0.0228295951 -0.118267 0.0698375 0.260366 -0.00448459 -0.00476633 0.00259649 -420.6625061035156 351.26953125 344.8603210449219 1.02904 62.022346 0.09730379999999997 0.053374200499999996 0.0058280643000000005 0.038593734500000004 -0.0196502383 0.0373108902 -0.054177921500000004 -0.0088971954 -0.0103554784 -0.010358443299999999 0.0126805955 0.007087885699999999 -0.0131216874 -0.0608327732 0.0583655051 -0.054327247300000006 0.0488266951 -0.0420119037 0.034066302799999996 -0.0252037594 -0.125135 0.0474352 0.244845 -0.00393455 -0.00431456 0.00254805 -419.7892150878906 351.7342224121094 344.9761962890625 1.046973 63.103176 0.1949898 0.0348268222 -0.0071921639 0.0222846597 0.038177168 -0.007666212800000001 0.0315534524 -0.0102283949 0.0020103927 0.0078154554 0.0038825555 -0.0054931089 0.051992141799999995 -0.0608919062 0.058598967 -0.0548411441 0.049712377300000006 -0.043340877699999995 0.0358859231 -0.0275338758 -0.112126 0.10774 0.275304 -0.00479333 -0.00498764 0.00284053 -418.7413024902344 351.1280212402344 344.80572509765625 0.997383 60.114265 0.15845739999999997 0.013482196200000001 -0.018684654 -0.0048283247999999996 0.0649365866 0.0094822091 0.0618010524 -0.0078076848 -0.0132017193 -0.0048834025 0.0107021479 -0.0017909292000000002 0.06266650480000001 -0.060948867000000004 0.058824067699999996 -0.0553374348 0.050569687300000006 -0.044631203099999996 0.0376594638 -0.0298158718 -0.126718 0.0593756 0.244366 -0.00396714 -0.00459401 0.00276909 -420.9377746582031 351.9564514160156 345.2381286621094 1.040242 62.697521 0.06017419999999999 -0.011314081699999999 -0.0278842001 -0.0477065966 0.0688739096 0.060157833200000004 -0.0240738002 -0.0118185596 -0.0057897978000000004 0.0011005910000000002 0.0162354137 -0.0062478229 0.0474022611 -0.061003653600000006 0.0590407749 -0.05581596 0.051398136 -0.0458817293 0.039384647599999996 -0.032045759300000004 -0.111431 0.0758303 0.241882 -0.00384966 -0.00473658 0.00251017 -421.99810791015625 351.0489196777344 345.5321044921875 1.033145 62.26973 0.1209072 -0.0147406323 0.0019164622 -0.07832891809999999 0.0007858286999999999 0.0245240442 -0.0313982364 -0.0095381006 -0.0138418155 0.0264993474 -0.00039530809999999996 -0.024030364900000004 -0.011574345500000001 -0.0610562642 0.059249057800000005 -0.05627656599999999 0.052197250300000005 -0.0470913411 0.041059259300000005 -0.0342196412 -0.111476 0.124043 0.266333 -0.00445542 -0.00480476 0.0028002 -420.36517333984375 351.1342468261719 345.2734375 1.008703 60.796574 0.16074429999999998 0.0104759351 0.0085441607 -0.052527981200000004 -0.050008154299999996 0.014420084 0.054802933899999996 -0.0093308946 -0.017644979499999998 0.0224587853 -0.010171875300000001 -0.0189921052 -0.068499219 -0.0611066967 0.0594488867 -0.056719105 0.0529665744 -0.0482589599 0.042681148499999995 -0.0363337182 -0.112557 0.0624852 0.241435 -0.00342674 -0.00437992 0.00278957 -420.7155456542969 350.9720764160156 345.3565368652344 1.008094 60.759869 0.058259700000000025 0.0415136324 0.0125072425 0.0069699213 -0.044191524 0.0202096811 0.0118389709 -0.0106788653 -0.022302747400000003 0.0107642662 -0.0026232565 -0.015773281599999998 -0.0336852052 -0.061154949400000005 0.059640233 -0.057143434800000004 0.053705669000000004 -0.0493835445 0.0442482328 -0.0383842957 -0.12578 0.0808674 0.238196 -0.00368899 -0.0044243 0.00262789 -420.4479370117188 351.3194885253906 345.677001953125 1.0813100000000002 65.172768 0.15503460000000002 0.047682265599999996 0.0175540487 0.0489314856 -0.0101481014 0.0139244733 -0.0756840656 -0.006811980699999999 -0.0101218017 0.0130763145 -0.0064996524 0.0070456124 0.01049434 -0.061201020700000004 0.0598230695 -0.0575494194 0.0544141125 -0.050464092099999996 0.0457584997 -0.0403677898 -0.111499 0.110419 0.271664 -0.00480817 -0.00465371 0.00283398 -419.498046875 351.53302001953125 345.9704895019531 1.029841 62.070583 0.09417479999999998 0.0470628254 0.007376436700000001 0.0361783563 0.0318275237 -0.0161019607 0.00337993 -0.0105687204 -0.0228434812 -0.0004417203 -0.0075867415 0.0120447149 0.0435731803 -0.0612449087 0.05999737 -0.0579369282 0.0550915004 -0.05149963900000001 0.04721001019999999 -0.042280734 -0.11524400000000003 0.0749852 0.250632 -0.0043111 -0.00473658 0.00293332 -417.7709655761719 351.4949951171875 346.0661926269531 1.00018 60.282906 0.08305440000000006 0.0164367723 -0.0004995701 0.013952514099999999 0.066492379 -0.021701244900000003 0.06762079110000001 -0.0110603679 -0.0254391371 -0.008274535500000001 -0.0113863292 0.0027926934000000003 0.0530494656 -0.0612866121 0.060163109699999995 -0.058305837 0.055737446100000004 -0.05248926190000001 0.0486009003 -0.0441197852 -0.12570300000000004 0.0699593 0.236253 -0.00387974 -0.00434618 0.00269127 -420.03070068359375 351.7759094238281 346.6172180175781 1.018497 61.386848 0.1691612 -0.0314743369 -0.0102726609 -0.02180923 0.0696488867 -0.011764894 0.0241853628 -0.0096268385 -0.0051703754 0.0094091357 -0.0048425501 -0.013219706999999999 0.0603396846 -0.061326129199999996 0.060320264900000004 -0.058656027300000003 0.056351581 -0.053432078200000004 0.0499293841 -0.0458817293 -0.111384 0.107338 0.273193 -0.00460122 -0.00498385 0.00294259 -421.60845947265625 352.45343017578125 347.2548828125 1.009959 60.872246 0.15057970000000007 -0.0256647037 0.0005163879 -0.0507417025 0.034918601699999996 0.011617632900000001 -0.0313109273 -0.0194350817 -0.015940431499999998 0.013334853999999998 0.0021401931 -0.0198508594 0.015688409599999998 -0.0613634587 0.060468813200000006 -0.0589873867 0.0569335547 -0.054327247300000006 0.0511937557 -0.047563487 -0.121452 0.0575558 0.230565 -0.00402311 -0.00473658 0.00280594 -422.3707580566406 352.4518737792969 347.8758544921875 1.012851 61.046562 0.0592844 -0.013647577099999999 0.006125055 -0.06887951 -0.012839508999999999 0.010887618 -0.0392331893 -0.022555605899999998 -0.0166405108 0.0201722734 0.0048147549 -0.0328312681 -0.032712656 -0.0613985992 0.0606087335 -0.0592998088 0.0574830349 -0.0551739708 0.052392391600000005 -0.0491621191 -0.12002 0.0707792 0.230593 -0.00359188 -0.00442055 0.00266118 -421.72943115234375 352.23681640625 347.91278076171875 1.00168 60.373264 0.1312348 -0.0026898913 0.0135188589 -0.029777488300000002 -0.0496757054 -0.0224497455 0.03261933 -0.0170265793 -0.0091950457 0.0192573991 0.000224868 -0.0204236831 -0.052530132599999994 -0.0614315496 0.0607400057 -0.059593193200000005 0.057999708 -0.0559714938 0.053523752699999996 -0.050674831600000005 -0.10506 0.10708 0.247001 -0.00459617 -0.0046683 0.00268046 -422.26556396484375 352.25299072265625 347.68084716796875 1.015506 61.206627 0.09617179999999997 0.026363765 0.0228187609 0.0097683903 -0.0552644821 -0.0100202481 0.0265584463 -0.022286539900000003 -0.0143782431 0.0147867239 0.0031726192 0.0055927768 -0.048099828399999996 -0.06146230849999999 0.060862611100000005 -0.0598674458 0.0584832792 -0.056719105 0.0545863863 -0.052098980999999996 -0.116538 0.0761012 0.227561 -0.00410443 -0.00473658 0.00280594 -421.0836791992188 352.23712158203125 347.4114990234375 0.993424 59.875683 0.0528107 0.0344300282 0.026865599900000002 0.0439509109 -0.031134814 0.020750702700000002 -0.0201194326 -0.0212483685 -0.024854825499999997 0.0024740129 -0.007875861999999999 0.0155869187 -0.0246105421 -0.061490875 0.060976532199999996 -0.0601224786 0.0589334724 -0.057416137699999995 0.055578927800000004 -0.053432078200000004 -0.11157 0.0772409 0.227499 -0.00382909 -0.00429321 0.00259183 -423.3153991699219 352.1808776855469 347.6640930175781 1.04036 62.70462 0.1723511 0.0314483635 0.0069168028 0.038593766200000004 0.014005086100000001 -0.0191369675 -0.0301891844 -0.0206926744 -0.0185820124 -0.0035260791999999997 -0.016039978700000002 0.0062774867 0.024999485499999998 -0.061517248 0.0610817528 -0.0603582097 0.0593500308 -0.0580619705 0.0565001029 -0.0546717934 -0.111399 0.127638 0.260449 -0.00475495 -0.00498421 0.00275163 -421.71282958984375 352.2409362792969 347.1488037109375 1.002166 60.402573 0.13683079999999997 0.0271744969 0.0015163845000000001 0.025763855699999998 0.0499472431 -0.0261006619 0.0402759187 -0.0169465364 -0.0250337745 -0.007249771800000001 0.0009704044 0.0063263352 0.0485999375 -0.0615414265 0.061178257800000004 -0.060574563399999996 0.0597327166 -0.058656027300000003 0.057348728499999994 -0.05581596 -0.111503 0.0696532 0.238549 -0.00412388 -0.00453274 0.00280593 -420.95794677734375 351.55804443359375 346.8887023925781 0.980891 59.120312 0.039432699999999966 0.018563746399999997 -0.0017437245999999999 0.015592283500000002 0.0699698942 -0.0189452991 0.06333085299999999 -0.0126904754 -0.0257302339 0.0020127883 -0.0005758355000000001 -0.0008228822 0.056738310099999995 -0.061563409699999995 0.061266033600000006 -0.0607714702 0.0600813114 -0.0591977785 0.058123715199999995 -0.0568625783 -0.111504 0.0859344 0.248921 -0.00396849 -0.00457196 0.00286689 -422.2423706054688 351.723876953125 347.05621337890625 0.994362 59.932224 0.10751260000000001 0.0022134376999999998 -0.0211319623 -0.014810129699999999 0.0659470958 0.0059990238 0.0126242008 -0.0148947101 -0.0227536138 0.013746433700000001 -0.000859843 -0.015347276299999999 0.054628272699999994 -0.061583196900000005 0.0613450675 -0.060948867000000004 0.060395616299999996 -0.059686740999999995 0.058824067699999996 -0.057809819299999995 -0.10703 0.120201 0.230786 -0.00440255 -0.00509613 0.0029214 -421.8899230957031 351.7915954589844 346.7508544921875 1.017657 61.336273 0.14446660000000003 -0.015388519 -0.022791758999999998 -0.041555322900000004 0.060412622400000004 0.0664526441 -0.0352038977 -0.0163509164 -0.0282916005 0.0054836228 0.0111122116 -0.006100890699999999 0.035625105899999995 -0.0616007872 0.0614153483 -0.0611066967 0.060675451799999995 -0.0601224786 0.0594488867 -0.058656027300000003 -0.110814 0.0622799 0.226982 -0.00342081 -0.00461419 0.00280593 -419.475341796875 346.569580078125 339.4344482421875 1.621333 97.721054 0.8422699 -0.060588875099999995 -0.025163469900000002 -0.0345421064 -0.0149674769 0.0055548147 -0.0705371986 0.0881760367 0.010057830799999999 -0.0277921859 0.0133373391 0.09058812179999999 -0.0635773054 -0.061616180199999995 0.0614768659 -0.0612449087 0.060920658200000005 -0.060504603 0.05999737 -0.0593997236 -0.104784 -0.089261 0.363692 -0.0133824 -0.00553932 0.00273287 -425.2885437011719 352.3264465332031 347.6260681152344 1.754944 105.77401 0.244977 -0.0617111459 -0.0424335949 -0.026480202 -0.061380522400000005 -0.054977903700000004 0.008906026800000001 0.0284929712 0.1055191519 -0.0043276145 0.0328242821 -0.0375287711 -0.0202048105 -0.061629375099999995 0.0615296116 -0.0613634587 0.061131095700000006 -0.0608327732 0.060468813200000006 -0.0600396084 -0.0938495 -0.152035 0.379953 -0.0159306 -0.00582372 0.00246532 -420.75860595703125 351.138671875 344.8719177246094 1.066348 64.270981 0.25311920000000004 -0.0369242793 -0.0033569290000000002 -0.0006735921 -0.0777995521 -0.0552759762 0.051621468200000006 0.0335690785 0.078022487 0.0250692512 0.017824441899999998 -0.0234486361 -0.0381334383 -0.0616403716 0.0615735779 -0.06146230849999999 0.061306644 -0.0611066967 0.060862611100000005 -0.060574563399999996 -0.0892588 -0.0874425 0.407397 -0.0135491 -0.0053038 0.00269374 -419.7999267578125 351.4358215332031 345.1805114746094 0.964989 58.16185 0.2307048 -0.023679175 0.0070704538 0.0202688006 -0.06289879450000001 -0.0569715155 0.0406695013 0.0251892076 0.061623254800000006 0.0299540123 0.014245055 -0.023699705 -0.0428694041 -0.061649169299999994 0.0616087584 -0.0615414265 0.06144720309999999 -0.061326129199999996 0.061178257800000004 -0.061003653600000006 -0.068303 -0.01901 0.394174 -0.0122135 -0.0061456 0.00307821 -421.88525390625 351.54473876953125 345.47784423828125 0.967501 58.313236 0.20407260000000002 -0.0112502858 0.0043324475 0.0352424739 -0.06106296 -0.048241136399999995 0.0193180422 0.013328851000000001 0.0471989272 0.0301798489 0.0153739543 -0.0136828072 -0.030833595499999998 -0.0616557679 0.0616351482 -0.0616007872 0.0615526926 -0.061490875 0.0614153483 -0.061326129199999996 -0.0772062 -0.0497254 0.367467 -0.0100973 -0.00551319 0.00307188 -421.8799743652344 351.5860900878906 345.7599182128906 0.981342 59.147472 0.13091309999999998 -0.00023811459999999998 0.0014113579000000001 0.0589832312 -0.05759092440000001 -0.0366861115 -0.010808996699999998 0.0170013236 0.0492634999 0.0243669302 0.008810704300000001 -0.0088384347 -0.015403706699999999 -0.061660167 0.061652743499999996 -0.0616403716 0.0616230524 -0.0616007872 0.0615735779 -0.0615414265 -0.0728679 0.0122509 0.385343 -0.0106585 -0.00574298 0.00321534 -424.6867980957031 351.6780090332031 346.01348876953125 0.975821 58.814686 0.11073759199999994 0.0081499757 -0.006383630899999999 0.0507607209 -0.027885499100000002 -0.044596878099999994 -0.0923937341 0.0100422214 0.040500660699999996 0.0224932248 0.0096666228 -0.019763769599999998 0.0127408286 -0.061662366600000004 0.0616615418 -0.061660167 0.0616582424 -0.0616557679 0.061652743499999996 -0.061649169299999994 -0.0761831 -0.000731992 0.362164 -0.0100236 -0.00628587 0.00346276 diff --git a/pydra/tasks/fsl/tests/data/cope_merged.nii.gz b/pydra/tasks/fsl/tests/data/cope_merged.nii.gz deleted file mode 100644 index d79c4dc..0000000 --- a/pydra/tasks/fsl/tests/data/cope_merged.nii.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ccdedd7aef55301fe634a494ca7df384d59bfab309e20cc042954d66b1774bbc -size 25232078 diff --git a/pydra/tasks/fsl/tests/data/design b/pydra/tasks/fsl/tests/data/design deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/design.con b/pydra/tasks/fsl/tests/data/design.con deleted file mode 100644 index 999adde..0000000 --- a/pydra/tasks/fsl/tests/data/design.con +++ /dev/null @@ -1,8 +0,0 @@ -/ContrastName1 group mean -/NumWaves 1 -/NumContrasts 1 -/PPheights 1 -/RequiredEffect 100 - -/Matrix -1 diff --git a/pydra/tasks/fsl/tests/data/design.grp b/pydra/tasks/fsl/tests/data/design.grp deleted file mode 100644 index b90612e..0000000 --- a/pydra/tasks/fsl/tests/data/design.grp +++ /dev/null @@ -1,30 +0,0 @@ -/NumWaves 1 -/NumPoints 26 - -/Matrix -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 diff --git a/pydra/tasks/fsl/tests/data/design.mat b/pydra/tasks/fsl/tests/data/design.mat deleted file mode 100644 index 03cce9e..0000000 --- a/pydra/tasks/fsl/tests/data/design.mat +++ /dev/null @@ -1,31 +0,0 @@ -/NumWaves 1 -/NumPoints 26 -/PPheights 1 - -/Matrix -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 diff --git a/pydra/tasks/fsl/tests/data/design_film_gls.mat b/pydra/tasks/fsl/tests/data/design_film_gls.mat deleted file mode 100644 index b65f2bd..0000000 --- a/pydra/tasks/fsl/tests/data/design_film_gls.mat +++ /dev/null @@ -1,151 +0,0 @@ -/NumWaves 2 -/NumPoints 146 -/PPheights 3.012332e-01 3.012332e-01 - -/Matrix --5.459164e-02 -1.321669e-01 --5.776502e-02 6.606531e-03 --6.080976e-02 1.543109e-01 --6.371286e-02 1.298120e-01 --6.647145e-02 3.844376e-02 --6.908718e-02 -3.150186e-02 --7.156363e-02 6.090263e-02 --7.390440e-02 1.853853e-01 --7.611377e-02 1.503911e-01 --7.819593e-02 5.456673e-02 --7.486357e-02 -2.261410e-02 -5.867573e-02 -6.685146e-02 -2.012061e-01 -8.703843e-02 -1.717945e-01 -9.469297e-02 -7.582675e-02 -9.654834e-02 -1.559045e-03 -9.605199e-02 -8.987555e-02 -9.498077e-02 -2.104731e-01 -9.314661e-02 -1.717227e-01 -9.140213e-02 -7.226508e-02 -8.973824e-02 --8.360482e-03 -8.285842e-02 --5.583817e-02 5.403689e-02 --7.907882e-02 1.997381e-01 --8.966740e-02 1.733180e-01 --9.433347e-02 8.016810e-02 --9.647567e-02 3.258706e-03 --9.258233e-02 -4.131708e-02 -4.231492e-02 -6.264655e-02 -1.861386e-01 -7.145020e-02 -1.579594e-01 -7.446427e-02 -6.316558e-02 -7.508158e-02 --1.527660e-02 -7.507187e-02 --5.598662e-02 -7.425640e-02 -5.674071e-02 -7.349584e-02 -1.909692e-01 -7.278683e-02 -1.590299e-01 -7.212842e-02 -6.292010e-02 -7.153127e-02 --1.615871e-02 -7.100015e-02 --6.194223e-02 -6.523060e-02 --8.438769e-02 7.058237e-02 --9.421868e-02 2.152288e-01 --9.817426e-02 1.877781e-01 --9.964602e-02 9.360361e-02 --1.004003e-01 1.566834e-02 --9.497193e-02 -2.991771e-02 -4.056806e-02 -5.223350e-02 -1.850072e-01 -6.200044e-02 -1.574158e-01 -6.595827e-02 -6.318250e-02 -6.749883e-02 --1.474421e-02 -6.838785e-02 --6.027821e-02 -6.845050e-02 --8.248644e-02 -6.326130e-02 --9.208075e-02 7.197718e-02 --9.579978e-02 2.160541e-01 --9.703767e-02 1.880415e-01 --9.756266e-02 9.332951e-02 --9.720187e-02 1.486645e-02 --9.682290e-02 -3.125984e-02 --9.113464e-02 -5.411225e-02 -4.465926e-02 -6.440030e-02 -1.893469e-01 -6.886134e-02 -1.619991e-01 -7.088827e-02 -6.800471e-02 -7.224792e-02 --9.690209e-03 -7.276583e-02 --5.499909e-02 -7.330789e-02 --7.169342e-02 -7.387266e-02 -5.431262e-02 -7.445841e-02 -1.950681e-01 -7.506335e-02 -1.662489e-01 -7.568549e-02 -7.147623e-02 -7.632279e-02 --8.176363e-04 -7.697310e-02 -8.937981e-02 -7.765713e-02 -2.117738e-01 -7.835313e-02 -1.747124e-01 -7.905909e-02 -7.684715e-02 -7.977294e-02 --2.244466e-03 -7.520110e-02 --4.825783e-02 5.945172e-02 --7.008473e-02 2.030005e-01 --7.931501e-02 1.745170e-01 --8.268742e-02 7.936397e-02 --8.359340e-02 5.028823e-04 --8.379921e-02 -4.596713e-02 --8.313134e-02 -6.381502e-02 --8.245759e-02 6.103882e-02 --8.177899e-02 2.006207e-01 --8.109666e-02 1.706052e-01 --8.041089e-02 7.462413e-02 --7.970375e-02 1.120672e-03 --7.897786e-02 9.012257e-02 --7.826208e-02 2.113333e-01 --7.756605e-02 1.731043e-01 --7.688548e-02 7.409003e-02 --7.090554e-02 -6.129659e-03 -6.517159e-02 -5.322669e-02 -2.101087e-01 -7.611373e-02 -1.829684e-01 -8.637799e-02 -8.914442e-02 -9.075484e-02 -1.161007e-02 -9.261644e-02 --2.824889e-02 -9.372844e-02 -8.527574e-02 -9.393906e-02 -2.202495e-01 -9.412025e-02 -1.890043e-01 -9.426583e-02 -9.353877e-02 -9.436847e-02 -1.506874e-02 -9.442292e-02 --3.014387e-02 -8.913434e-02 --5.207685e-02 4.629598e-02 --6.145878e-02 1.906580e-01 --6.502444e-02 1.630239e-01 --6.616014e-02 6.878507e-02 --6.661982e-02 -9.088744e-03 --6.623232e-02 -4.921326e-02 --6.587989e-02 6.412036e-02 --6.556584e-02 1.989795e-01 --6.528731e-02 1.676985e-01 --6.504170e-02 7.227823e-02 --6.482819e-02 -6.073926e-03 --6.464721e-02 -4.580406e-02 --6.449977e-02 6.792454e-02 --6.438708e-02 2.031816e-01 --6.431039e-02 1.723052e-01 --6.427118e-02 7.729824e-02 --6.427838e-02 -6.342129e-04 --6.434014e-02 -4.522484e-02 --5.915676e-02 -6.642826e-02 -7.607670e-02 -7.496560e-02 -2.201507e-01 -7.757353e-02 -1.921346e-01 -7.764146e-02 -9.741598e-02 -7.693452e-02 -1.896121e-02 -7.530513e-02 --2.713964e-02 -7.363015e-02 --4.997651e-02 -6.657981e-02 --6.027214e-02 7.066638e-02 --6.476492e-02 2.168997e-01 --6.684551e-02 1.911862e-01 --6.828164e-02 9.891084e-02 --6.896161e-02 2.303913e-02 --6.977084e-02 -2.033853e-02 --6.533284e-02 -4.031109e-02 -6.919543e-02 -4.759994e-02 -2.126028e-01 -4.894233e-02 -1.839457e-01 -4.772757e-02 -8.859665e-02 -4.571982e-02 -9.392948e-03 -4.274329e-02 --3.761005e-02 -3.966346e-02 --6.133499e-02 -3.647896e-02 --7.241645e-02 -3.318836e-02 diff --git a/pydra/tasks/fsl/tests/data/dest.nii.gz b/pydra/tasks/fsl/tests/data/dest.nii.gz deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/ev_1.txt b/pydra/tasks/fsl/tests/data/ev_1.txt deleted file mode 100644 index 64e7df8..0000000 --- a/pydra/tasks/fsl/tests/data/ev_1.txt +++ /dev/null @@ -1,12 +0,0 @@ -32.000000 2.000000 1.000000 -42.000000 2.000000 1.000000 -52.000000 2.000000 1.000000 -64.000000 2.000000 1.000000 -102.000000 2.000000 1.000000 -116.000000 2.000000 1.000000 -144.000000 2.000000 1.000000 -164.000000 2.000000 1.000000 -208.000000 2.000000 1.000000 -220.000000 2.000000 1.000000 -232.000000 2.000000 1.000000 -260.000000 2.000000 1.000000 diff --git a/pydra/tasks/fsl/tests/data/ev_2.txt b/pydra/tasks/fsl/tests/data/ev_2.txt deleted file mode 100644 index c992e50..0000000 --- a/pydra/tasks/fsl/tests/data/ev_2.txt +++ /dev/null @@ -1,12 +0,0 @@ -0.000000 2.000000 1.000000 -10.000000 2.000000 1.000000 -20.000000 2.000000 1.000000 -76.000000 2.000000 1.000000 -88.000000 2.000000 1.000000 -130.000000 2.000000 1.000000 -154.000000 2.000000 1.000000 -174.000000 2.000000 1.000000 -184.000000 2.000000 1.000000 -196.000000 2.000000 1.000000 -246.000000 2.000000 1.000000 -274.000000 2.000000 1.000000 diff --git a/pydra/tasks/fsl/tests/data/flirt.mat b/pydra/tasks/fsl/tests/data/flirt.mat deleted file mode 100644 index 080d687..0000000 --- a/pydra/tasks/fsl/tests/data/flirt.mat +++ /dev/null @@ -1,4 +0,0 @@ -1.06898439 0.04500452499 0.07609409025 -19.99484204 --0.04444970083 1.031806413 0.02891208633 17.8281428 --0.0452495497 -0.07397098198 1.22886291 -3.444566823 -0 0 0 1 diff --git a/pydra/tasks/fsl/tests/data/flirt_inv.mat b/pydra/tasks/fsl/tests/data/flirt_inv.mat deleted file mode 100644 index bc9b4b6..0000000 --- a/pydra/tasks/fsl/tests/data/flirt_inv.mat +++ /dev/null @@ -1,4 +0,0 @@ -0.9312133442 -0.04467547969 -0.05661182412 19.22094134 -0.03908945148 0.9656667535 -0.02514024676 -16.52105463 -0.03664238643 0.0564829259 0.8101625361 2.516332053 -0 0 0 1 diff --git a/pydra/tasks/fsl/tests/data/mask.nii.gz b/pydra/tasks/fsl/tests/data/mask.nii.gz deleted file mode 100644 index 1044603..0000000 --- a/pydra/tasks/fsl/tests/data/mask.nii.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:95cc283387609f9d0653014cbc9636f528135135041f639a17c19d88c3680db5 -size 21201 diff --git a/pydra/tasks/fsl/tests/data/struct2mni.nii b/pydra/tasks/fsl/tests/data/struct2mni.nii deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/subjectDesign.con b/pydra/tasks/fsl/tests/data/subjectDesign.con deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/subjectDesign.mat b/pydra/tasks/fsl/tests/data/subjectDesign.mat deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/test.fsf b/pydra/tasks/fsl/tests/data/test.fsf deleted file mode 100644 index d6e5976..0000000 --- a/pydra/tasks/fsl/tests/data/test.fsf +++ /dev/null @@ -1,11836 +0,0 @@ - -# FEAT version number -set fmri(version) 6.00 - -# Are we in MELODIC? -set fmri(inmelodic) 0 - -# Analysis level -# 1 : First-level analysis -# 2 : Higher-level analysis -set fmri(level) 2 - -# Which stages to run -# 0 : No first-level analysis (registration and/or group stats only) -# 7 : Full first-level analysis -# 1 : Pre-processing -# 2 : Statistics -set fmri(analysis) 2 - -# Use relative filenames -set fmri(relative_yn) 0 - -# Balloon help -set fmri(help_yn) 1 - -# Run Featwatcher -set fmri(featwatcher_yn) 1 - -# Cleanup first-level standard-space images -set fmri(sscleanup_yn) 0 - -# Output directory -set fmri(outputdir) "Flanker_2ndLevel" - -# TR(s) -set fmri(tr) 3 - -# Total volumes -set fmri(npts) 52 - -# Delete volumes -set fmri(ndelete) 0 - -# Perfusion tag/control order -set fmri(tagfirst) 1 - -# Number of first-level analyses -set fmri(multiple) 52 - -# Higher-level input type -# 1 : Inputs are lower-level FEAT directories -# 2 : Inputs are cope images from FEAT directories -set fmri(inputtype) 1 - -# Carry out pre-stats processing? -set fmri(filtering_yn) 0 - -# Brain/background threshold, % -set fmri(brain_thresh) 10 - -# Critical z for design efficiency calculation -set fmri(critical_z) 5.3 - -# Noise level -set fmri(noise) 0.66 - -# Noise AR(1) -set fmri(noisear) 0.34 - -# Motion correction -# 0 : None -# 1 : MCFLIRT -set fmri(mc) 1 - -# Spin-history (currently obsolete) -set fmri(sh_yn) 0 - -# B0 fieldmap unwarping? -set fmri(regunwarp_yn) 0 - -# GDC Test -set fmri(gdc) "" - -# EPI dwell time (ms) -set fmri(dwell) 0.0 - -# EPI TE (ms) -set fmri(te) 0.0 - -# % Signal loss threshold -set fmri(signallossthresh) 10 - -# Unwarp direction -set fmri(unwarp_dir) y- - -# Slice timing correction -# 0 : None -# 1 : Regular up (0, 1, 2, 3, ...) -# 2 : Regular down -# 3 : Use slice order file -# 4 : Use slice timings file -# 5 : Interleaved (0, 2, 4 ... 1, 3, 5 ... ) -set fmri(st) 0 - -# Slice timings file -set fmri(st_file) "" - -# BET brain extraction -set fmri(bet_yn) 1 - -# Spatial smoothing FWHM (mm) -set fmri(smooth) 5 - -# Intensity normalization -set fmri(norm_yn) 0 - -# Perfusion subtraction -set fmri(perfsub_yn) 0 - -# Highpass temporal filtering -set fmri(temphp_yn) 1 - -# Lowpass temporal filtering -set fmri(templp_yn) 0 - -# MELODIC ICA data exploration -set fmri(melodic_yn) 0 - -# Carry out main stats? -set fmri(stats_yn) 1 - -# Carry out prewhitening? -set fmri(prewhiten_yn) 1 - -# Add motion parameters to model -# 0 : No -# 1 : Yes -set fmri(motionevs) 0 -set fmri(motionevsbeta) "" -set fmri(scriptevsbeta) "" - -# Robust outlier detection in FLAME? -set fmri(robust_yn) 0 - -# Higher-level modelling -# 3 : Fixed effects -# 0 : Mixed Effects: Simple OLS -# 2 : Mixed Effects: FLAME 1 -# 1 : Mixed Effects: FLAME 1+2 -set fmri(mixed_yn) 3 - -# Higher-level permutations -set fmri(randomisePermutations) 5000 - -# Number of EVs -set fmri(evs_orig) 26 -set fmri(evs_real) 26 -set fmri(evs_vox) 0 - -# Number of contrasts -set fmri(ncon_orig) 1 -set fmri(ncon_real) 26 - -# Number of F-tests -set fmri(nftests_orig) 0 -set fmri(nftests_real) 0 - -# Add constant column to design matrix? (obsolete) -set fmri(constcol) 0 - -# Carry out post-stats steps? -set fmri(poststats_yn) 0 - -# Pre-threshold masking? -set fmri(threshmask) "" - -# Thresholding -# 0 : None -# 1 : Uncorrected -# 2 : Voxel -# 3 : Cluster -set fmri(thresh) 3 - -# P threshold -set fmri(prob_thresh) 0.05 - -# Z threshold -set fmri(z_thresh) 3.1 - -# Z min/max for colour rendering -# 0 : Use actual Z min/max -# 1 : Use preset Z min/max -set fmri(zdisplay) 0 - -# Z min in colour rendering -set fmri(zmin) 2 - -# Z max in colour rendering -set fmri(zmax) 8 - -# Colour rendering type -# 0 : Solid blobs -# 1 : Transparent blobs -set fmri(rendertype) 1 - -# Background image for higher-level stats overlays -# 1 : Mean highres -# 2 : First highres -# 3 : Mean functional -# 4 : First functional -# 5 : Standard space template -set fmri(bgimage) 1 - -# Create time series plots -set fmri(tsplot_yn) 1 - -# Registration to initial structural -set fmri(reginitial_highres_yn) 0 - -# Search space for registration to initial structural -# 0 : No search -# 90 : Normal search -# 180 : Full search -set fmri(reginitial_highres_search) 90 - -# Degrees of Freedom for registration to initial structural -set fmri(reginitial_highres_dof) 3 - -# Registration to main structural -set fmri(reghighres_yn) 0 - -# Search space for registration to main structural -# 0 : No search -# 90 : Normal search -# 180 : Full search -set fmri(reghighres_search) 90 - -# Degrees of Freedom for registration to main structural -set fmri(reghighres_dof) BBR - -# Registration to standard image? -set fmri(regstandard_yn) 1 - -# Use alternate reference images? -set fmri(alternateReference_yn) 0 - -# Standard image -set fmri(regstandard) "/usr/local/fsl/data/standard/MNI152_T1_2mm_brain" - -# Search space for registration to standard space -# 0 : No search -# 90 : Normal search -# 180 : Full search -set fmri(regstandard_search) 90 - -# Degrees of Freedom for registration to standard space -set fmri(regstandard_dof) 12 - -# Do nonlinear registration from structural to standard space? -set fmri(regstandard_nonlinear_yn) 0 - -# Control nonlinear warp field resolution -set fmri(regstandard_nonlinear_warpres) 10 - -# High pass filter cutoff -set fmri(paradigm_hp) 100 - -# Number of lower-level copes feeding into higher-level analysis -set fmri(ncopeinputs) 4 - -# Use lower-level cope 1 for higher-level analysis -set fmri(copeinput.1) 1 - -# Use lower-level cope 2 for higher-level analysis -set fmri(copeinput.2) 1 - -# Use lower-level cope 3 for higher-level analysis -set fmri(copeinput.3) 1 - -# Use lower-level cope 4 for higher-level analysis -set fmri(copeinput.4) 1 - -# 4D AVW data or FEAT directory (1) -set feat_files(1) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-01/run1.feat" - -# 4D AVW data or FEAT directory (2) -set feat_files(2) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-01/run2.feat" - -# 4D AVW data or FEAT directory (3) -set feat_files(3) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-02/run1.feat" - -# 4D AVW data or FEAT directory (4) -set feat_files(4) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-02/run2.feat" - -# 4D AVW data or FEAT directory (5) -set feat_files(5) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-03/run1.feat" - -# 4D AVW data or FEAT directory (6) -set feat_files(6) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-03/run2.feat" - -# 4D AVW data or FEAT directory (7) -set feat_files(7) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-04/run1.feat" - -# 4D AVW data or FEAT directory (8) -set feat_files(8) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-04/run2.feat" - -# 4D AVW data or FEAT directory (9) -set feat_files(9) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-05/run1.feat" - -# 4D AVW data or FEAT directory (10) -set feat_files(10) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-05/run2.feat" - -# 4D AVW data or FEAT directory (11) -set feat_files(11) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-06/run1.feat" - -# 4D AVW data or FEAT directory (12) -set feat_files(12) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-06/run2.feat" - -# 4D AVW data or FEAT directory (13) -set feat_files(13) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-07/run1.feat" - -# 4D AVW data or FEAT directory (14) -set feat_files(14) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-07/run2.feat" - -# 4D AVW data or FEAT directory (15) -set feat_files(15) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-08/run1.feat" - -# 4D AVW data or FEAT directory (16) -set feat_files(16) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-08/run2.feat" - -# 4D AVW data or FEAT directory (17) -set feat_files(17) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-09/run1.feat" - -# 4D AVW data or FEAT directory (18) -set feat_files(18) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-09/run2.feat" - -# 4D AVW data or FEAT directory (19) -set feat_files(19) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-10/run1.feat" - -# 4D AVW data or FEAT directory (20) -set feat_files(20) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-10/run2.feat" - -# 4D AVW data or FEAT directory (21) -set feat_files(21) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-11/run1.feat" - -# 4D AVW data or FEAT directory (22) -set feat_files(22) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-11/run2.feat" - -# 4D AVW data or FEAT directory (23) -set feat_files(23) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-12/run1.feat" - -# 4D AVW data or FEAT directory (24) -set feat_files(24) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-12/run2.feat" - -# 4D AVW data or FEAT directory (25) -set feat_files(25) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-13/run1.feat" - -# 4D AVW data or FEAT directory (26) -set feat_files(26) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-13/run2.feat" - -# 4D AVW data or FEAT directory (27) -set feat_files(27) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-14/run1.feat" - -# 4D AVW data or FEAT directory (28) -set feat_files(28) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-14/run2.feat" - -# 4D AVW data or FEAT directory (29) -set feat_files(29) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-15/run1.feat" - -# 4D AVW data or FEAT directory (30) -set feat_files(30) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-15/run2.feat" - -# 4D AVW data or FEAT directory (31) -set feat_files(31) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-16/run1.feat" - -# 4D AVW data or FEAT directory (32) -set feat_files(32) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-16/run2.feat" - -# 4D AVW data or FEAT directory (33) -set feat_files(33) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-17/run1.feat" - -# 4D AVW data or FEAT directory (34) -set feat_files(34) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-17/run2.feat" - -# 4D AVW data or FEAT directory (35) -set feat_files(35) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-18/run1.feat" - -# 4D AVW data or FEAT directory (36) -set feat_files(36) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-18/run2.feat" - -# 4D AVW data or FEAT directory (37) -set feat_files(37) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-19/run1.feat" - -# 4D AVW data or FEAT directory (38) -set feat_files(38) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-19/run2.feat" - -# 4D AVW data or FEAT directory (39) -set feat_files(39) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-20/run1.feat" - -# 4D AVW data or FEAT directory (40) -set feat_files(40) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-20/run2.feat" - -# 4D AVW data or FEAT directory (41) -set feat_files(41) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-21/run1.feat" - -# 4D AVW data or FEAT directory (42) -set feat_files(42) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-21/run2.feat" - -# 4D AVW data or FEAT directory (43) -set feat_files(43) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-22/run1.feat" - -# 4D AVW data or FEAT directory (44) -set feat_files(44) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-22/run2.feat" - -# 4D AVW data or FEAT directory (45) -set feat_files(45) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-23/run1.feat" - -# 4D AVW data or FEAT directory (46) -set feat_files(46) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-23/run2.feat" - -# 4D AVW data or FEAT directory (47) -set feat_files(47) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-24/run1.feat" - -# 4D AVW data or FEAT directory (48) -set feat_files(48) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-24/run2.feat" - -# 4D AVW data or FEAT directory (49) -set feat_files(49) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-25/run1.feat" - -# 4D AVW data or FEAT directory (50) -set feat_files(50) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-25/run2.feat" - -# 4D AVW data or FEAT directory (51) -set feat_files(51) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-26/run1.feat" - -# 4D AVW data or FEAT directory (52) -set feat_files(52) "/srv/scratch/yc/fsl/nipype_fsl_comp/gui/sub-26/run2.feat" - - -# Add confound EVs text file -set fmri(confoundevs) 0 - -# EV 1 title -set fmri(evtitle1) "" - -# Basic waveform shape (EV 1) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape1) 2 - -# Convolution (EV 1) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve1) 0 - -# Convolve phase (EV 1) -set fmri(convolve_phase1) 0 - -# Apply temporal filtering (EV 1) -set fmri(tempfilt_yn1) 0 - -# Add temporal derivative (EV 1) -set fmri(deriv_yn1) 0 - -# Custom EV file (EV 1) -set fmri(custom1) "dummy" - -# Orthogonalise EV 1 wrt EV 0 -set fmri(ortho1.0) 0 - -# Orthogonalise EV 1 wrt EV 1 -set fmri(ortho1.1) 0 - -# Orthogonalise EV 1 wrt EV 2 -set fmri(ortho1.2) 0 - -# Orthogonalise EV 1 wrt EV 3 -set fmri(ortho1.3) 0 - -# Orthogonalise EV 1 wrt EV 4 -set fmri(ortho1.4) 0 - -# Orthogonalise EV 1 wrt EV 5 -set fmri(ortho1.5) 0 - -# Orthogonalise EV 1 wrt EV 6 -set fmri(ortho1.6) 0 - -# Orthogonalise EV 1 wrt EV 7 -set fmri(ortho1.7) 0 - -# Orthogonalise EV 1 wrt EV 8 -set fmri(ortho1.8) 0 - -# Orthogonalise EV 1 wrt EV 9 -set fmri(ortho1.9) 0 - -# Orthogonalise EV 1 wrt EV 10 -set fmri(ortho1.10) 0 - -# Orthogonalise EV 1 wrt EV 11 -set fmri(ortho1.11) 0 - -# Orthogonalise EV 1 wrt EV 12 -set fmri(ortho1.12) 0 - -# Orthogonalise EV 1 wrt EV 13 -set fmri(ortho1.13) 0 - -# Orthogonalise EV 1 wrt EV 14 -set fmri(ortho1.14) 0 - -# Orthogonalise EV 1 wrt EV 15 -set fmri(ortho1.15) 0 - -# Orthogonalise EV 1 wrt EV 16 -set fmri(ortho1.16) 0 - -# Orthogonalise EV 1 wrt EV 17 -set fmri(ortho1.17) 0 - -# Orthogonalise EV 1 wrt EV 18 -set fmri(ortho1.18) 0 - -# Orthogonalise EV 1 wrt EV 19 -set fmri(ortho1.19) 0 - -# Orthogonalise EV 1 wrt EV 20 -set fmri(ortho1.20) 0 - -# Orthogonalise EV 1 wrt EV 21 -set fmri(ortho1.21) 0 - -# Orthogonalise EV 1 wrt EV 22 -set fmri(ortho1.22) 0 - -# Orthogonalise EV 1 wrt EV 23 -set fmri(ortho1.23) 0 - -# Orthogonalise EV 1 wrt EV 24 -set fmri(ortho1.24) 0 - -# Orthogonalise EV 1 wrt EV 25 -set fmri(ortho1.25) 0 - -# Orthogonalise EV 1 wrt EV 26 -set fmri(ortho1.26) 0 - -# Higher-level EV value for EV 1 and input 1 -set fmri(evg1.1) 1 - -# Higher-level EV value for EV 1 and input 2 -set fmri(evg2.1) 1.0 - -# Higher-level EV value for EV 1 and input 3 -set fmri(evg3.1) 0 - -# Higher-level EV value for EV 1 and input 4 -set fmri(evg4.1) 0 - -# Higher-level EV value for EV 1 and input 5 -set fmri(evg5.1) 0 - -# Higher-level EV value for EV 1 and input 6 -set fmri(evg6.1) 0 - -# Higher-level EV value for EV 1 and input 7 -set fmri(evg7.1) 0 - -# Higher-level EV value for EV 1 and input 8 -set fmri(evg8.1) 0 - -# Higher-level EV value for EV 1 and input 9 -set fmri(evg9.1) 0 - -# Higher-level EV value for EV 1 and input 10 -set fmri(evg10.1) 0 - -# Higher-level EV value for EV 1 and input 11 -set fmri(evg11.1) 0 - -# Higher-level EV value for EV 1 and input 12 -set fmri(evg12.1) 0 - -# Higher-level EV value for EV 1 and input 13 -set fmri(evg13.1) 0 - -# Higher-level EV value for EV 1 and input 14 -set fmri(evg14.1) 0 - -# Higher-level EV value for EV 1 and input 15 -set fmri(evg15.1) 0 - -# Higher-level EV value for EV 1 and input 16 -set fmri(evg16.1) 0 - -# Higher-level EV value for EV 1 and input 17 -set fmri(evg17.1) 0 - -# Higher-level EV value for EV 1 and input 18 -set fmri(evg18.1) 0 - -# Higher-level EV value for EV 1 and input 19 -set fmri(evg19.1) 0 - -# Higher-level EV value for EV 1 and input 20 -set fmri(evg20.1) 0 - -# Higher-level EV value for EV 1 and input 21 -set fmri(evg21.1) 0 - -# Higher-level EV value for EV 1 and input 22 -set fmri(evg22.1) 0 - -# Higher-level EV value for EV 1 and input 23 -set fmri(evg23.1) 0 - -# Higher-level EV value for EV 1 and input 24 -set fmri(evg24.1) 0 - -# Higher-level EV value for EV 1 and input 25 -set fmri(evg25.1) 0 - -# Higher-level EV value for EV 1 and input 26 -set fmri(evg26.1) 0 - -# Higher-level EV value for EV 1 and input 27 -set fmri(evg27.1) 0 - -# Higher-level EV value for EV 1 and input 28 -set fmri(evg28.1) 0 - -# Higher-level EV value for EV 1 and input 29 -set fmri(evg29.1) 0 - -# Higher-level EV value for EV 1 and input 30 -set fmri(evg30.1) 0 - -# Higher-level EV value for EV 1 and input 31 -set fmri(evg31.1) 0 - -# Higher-level EV value for EV 1 and input 32 -set fmri(evg32.1) 0 - -# Higher-level EV value for EV 1 and input 33 -set fmri(evg33.1) 0 - -# Higher-level EV value for EV 1 and input 34 -set fmri(evg34.1) 0 - -# Higher-level EV value for EV 1 and input 35 -set fmri(evg35.1) 0 - -# Higher-level EV value for EV 1 and input 36 -set fmri(evg36.1) 0 - -# Higher-level EV value for EV 1 and input 37 -set fmri(evg37.1) 0 - -# Higher-level EV value for EV 1 and input 38 -set fmri(evg38.1) 0 - -# Higher-level EV value for EV 1 and input 39 -set fmri(evg39.1) 0 - -# Higher-level EV value for EV 1 and input 40 -set fmri(evg40.1) 0 - -# Higher-level EV value for EV 1 and input 41 -set fmri(evg41.1) 0 - -# Higher-level EV value for EV 1 and input 42 -set fmri(evg42.1) 0 - -# Higher-level EV value for EV 1 and input 43 -set fmri(evg43.1) 0 - -# Higher-level EV value for EV 1 and input 44 -set fmri(evg44.1) 0 - -# Higher-level EV value for EV 1 and input 45 -set fmri(evg45.1) 0 - -# Higher-level EV value for EV 1 and input 46 -set fmri(evg46.1) 0 - -# Higher-level EV value for EV 1 and input 47 -set fmri(evg47.1) 0 - -# Higher-level EV value for EV 1 and input 48 -set fmri(evg48.1) 0 - -# Higher-level EV value for EV 1 and input 49 -set fmri(evg49.1) 0 - -# Higher-level EV value for EV 1 and input 50 -set fmri(evg50.1) 0 - -# Higher-level EV value for EV 1 and input 51 -set fmri(evg51.1) 0 - -# Higher-level EV value for EV 1 and input 52 -set fmri(evg52.1) 0 - -# EV 2 title -set fmri(evtitle2) "" - -# Basic waveform shape (EV 2) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape2) 2 - -# Convolution (EV 2) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve2) 0 - -# Convolve phase (EV 2) -set fmri(convolve_phase2) 0 - -# Apply temporal filtering (EV 2) -set fmri(tempfilt_yn2) 0 - -# Add temporal derivative (EV 2) -set fmri(deriv_yn2) 0 - -# Custom EV file (EV 2) -set fmri(custom2) "dummy" - -# Orthogonalise EV 2 wrt EV 0 -set fmri(ortho2.0) 0 - -# Orthogonalise EV 2 wrt EV 1 -set fmri(ortho2.1) 0 - -# Orthogonalise EV 2 wrt EV 2 -set fmri(ortho2.2) 0 - -# Orthogonalise EV 2 wrt EV 3 -set fmri(ortho2.3) 0 - -# Orthogonalise EV 2 wrt EV 4 -set fmri(ortho2.4) 0 - -# Orthogonalise EV 2 wrt EV 5 -set fmri(ortho2.5) 0 - -# Orthogonalise EV 2 wrt EV 6 -set fmri(ortho2.6) 0 - -# Orthogonalise EV 2 wrt EV 7 -set fmri(ortho2.7) 0 - -# Orthogonalise EV 2 wrt EV 8 -set fmri(ortho2.8) 0 - -# Orthogonalise EV 2 wrt EV 9 -set fmri(ortho2.9) 0 - -# Orthogonalise EV 2 wrt EV 10 -set fmri(ortho2.10) 0 - -# Orthogonalise EV 2 wrt EV 11 -set fmri(ortho2.11) 0 - -# Orthogonalise EV 2 wrt EV 12 -set fmri(ortho2.12) 0 - -# Orthogonalise EV 2 wrt EV 13 -set fmri(ortho2.13) 0 - -# Orthogonalise EV 2 wrt EV 14 -set fmri(ortho2.14) 0 - -# Orthogonalise EV 2 wrt EV 15 -set fmri(ortho2.15) 0 - -# Orthogonalise EV 2 wrt EV 16 -set fmri(ortho2.16) 0 - -# Orthogonalise EV 2 wrt EV 17 -set fmri(ortho2.17) 0 - -# Orthogonalise EV 2 wrt EV 18 -set fmri(ortho2.18) 0 - -# Orthogonalise EV 2 wrt EV 19 -set fmri(ortho2.19) 0 - -# Orthogonalise EV 2 wrt EV 20 -set fmri(ortho2.20) 0 - -# Orthogonalise EV 2 wrt EV 21 -set fmri(ortho2.21) 0 - -# Orthogonalise EV 2 wrt EV 22 -set fmri(ortho2.22) 0 - -# Orthogonalise EV 2 wrt EV 23 -set fmri(ortho2.23) 0 - -# Orthogonalise EV 2 wrt EV 24 -set fmri(ortho2.24) 0 - -# Orthogonalise EV 2 wrt EV 25 -set fmri(ortho2.25) 0 - -# Orthogonalise EV 2 wrt EV 26 -set fmri(ortho2.26) 0 - -# Higher-level EV value for EV 2 and input 1 -set fmri(evg1.2) 0 - -# Higher-level EV value for EV 2 and input 2 -set fmri(evg2.2) 0 - -# Higher-level EV value for EV 2 and input 3 -set fmri(evg3.2) 1.0 - -# Higher-level EV value for EV 2 and input 4 -set fmri(evg4.2) 1.0 - -# Higher-level EV value for EV 2 and input 5 -set fmri(evg5.2) 0 - -# Higher-level EV value for EV 2 and input 6 -set fmri(evg6.2) 0 - -# Higher-level EV value for EV 2 and input 7 -set fmri(evg7.2) 0 - -# Higher-level EV value for EV 2 and input 8 -set fmri(evg8.2) 0 - -# Higher-level EV value for EV 2 and input 9 -set fmri(evg9.2) 0 - -# Higher-level EV value for EV 2 and input 10 -set fmri(evg10.2) 0 - -# Higher-level EV value for EV 2 and input 11 -set fmri(evg11.2) 0 - -# Higher-level EV value for EV 2 and input 12 -set fmri(evg12.2) 0 - -# Higher-level EV value for EV 2 and input 13 -set fmri(evg13.2) 0 - -# Higher-level EV value for EV 2 and input 14 -set fmri(evg14.2) 0 - -# Higher-level EV value for EV 2 and input 15 -set fmri(evg15.2) 0 - -# Higher-level EV value for EV 2 and input 16 -set fmri(evg16.2) 0 - -# Higher-level EV value for EV 2 and input 17 -set fmri(evg17.2) 0 - -# Higher-level EV value for EV 2 and input 18 -set fmri(evg18.2) 0 - -# Higher-level EV value for EV 2 and input 19 -set fmri(evg19.2) 0 - -# Higher-level EV value for EV 2 and input 20 -set fmri(evg20.2) 0 - -# Higher-level EV value for EV 2 and input 21 -set fmri(evg21.2) 0 - -# Higher-level EV value for EV 2 and input 22 -set fmri(evg22.2) 0 - -# Higher-level EV value for EV 2 and input 23 -set fmri(evg23.2) 0 - -# Higher-level EV value for EV 2 and input 24 -set fmri(evg24.2) 0 - -# Higher-level EV value for EV 2 and input 25 -set fmri(evg25.2) 0 - -# Higher-level EV value for EV 2 and input 26 -set fmri(evg26.2) 0 - -# Higher-level EV value for EV 2 and input 27 -set fmri(evg27.2) 0 - -# Higher-level EV value for EV 2 and input 28 -set fmri(evg28.2) 0 - -# Higher-level EV value for EV 2 and input 29 -set fmri(evg29.2) 0 - -# Higher-level EV value for EV 2 and input 30 -set fmri(evg30.2) 0 - -# Higher-level EV value for EV 2 and input 31 -set fmri(evg31.2) 0 - -# Higher-level EV value for EV 2 and input 32 -set fmri(evg32.2) 0 - -# Higher-level EV value for EV 2 and input 33 -set fmri(evg33.2) 0 - -# Higher-level EV value for EV 2 and input 34 -set fmri(evg34.2) 0 - -# Higher-level EV value for EV 2 and input 35 -set fmri(evg35.2) 0 - -# Higher-level EV value for EV 2 and input 36 -set fmri(evg36.2) 0 - -# Higher-level EV value for EV 2 and input 37 -set fmri(evg37.2) 0 - -# Higher-level EV value for EV 2 and input 38 -set fmri(evg38.2) 0 - -# Higher-level EV value for EV 2 and input 39 -set fmri(evg39.2) 0 - -# Higher-level EV value for EV 2 and input 40 -set fmri(evg40.2) 0 - -# Higher-level EV value for EV 2 and input 41 -set fmri(evg41.2) 0 - -# Higher-level EV value for EV 2 and input 42 -set fmri(evg42.2) 0 - -# Higher-level EV value for EV 2 and input 43 -set fmri(evg43.2) 0 - -# Higher-level EV value for EV 2 and input 44 -set fmri(evg44.2) 0 - -# Higher-level EV value for EV 2 and input 45 -set fmri(evg45.2) 0 - -# Higher-level EV value for EV 2 and input 46 -set fmri(evg46.2) 0 - -# Higher-level EV value for EV 2 and input 47 -set fmri(evg47.2) 0 - -# Higher-level EV value for EV 2 and input 48 -set fmri(evg48.2) 0 - -# Higher-level EV value for EV 2 and input 49 -set fmri(evg49.2) 0 - -# Higher-level EV value for EV 2 and input 50 -set fmri(evg50.2) 0 - -# Higher-level EV value for EV 2 and input 51 -set fmri(evg51.2) 0 - -# Higher-level EV value for EV 2 and input 52 -set fmri(evg52.2) 0 - -# EV 3 title -set fmri(evtitle3) "" - -# Basic waveform shape (EV 3) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape3) 2 - -# Convolution (EV 3) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve3) 0 - -# Convolve phase (EV 3) -set fmri(convolve_phase3) 0 - -# Apply temporal filtering (EV 3) -set fmri(tempfilt_yn3) 0 - -# Add temporal derivative (EV 3) -set fmri(deriv_yn3) 0 - -# Custom EV file (EV 3) -set fmri(custom3) "dummy" - -# Orthogonalise EV 3 wrt EV 0 -set fmri(ortho3.0) 0 - -# Orthogonalise EV 3 wrt EV 1 -set fmri(ortho3.1) 0 - -# Orthogonalise EV 3 wrt EV 2 -set fmri(ortho3.2) 0 - -# Orthogonalise EV 3 wrt EV 3 -set fmri(ortho3.3) 0 - -# Orthogonalise EV 3 wrt EV 4 -set fmri(ortho3.4) 0 - -# Orthogonalise EV 3 wrt EV 5 -set fmri(ortho3.5) 0 - -# Orthogonalise EV 3 wrt EV 6 -set fmri(ortho3.6) 0 - -# Orthogonalise EV 3 wrt EV 7 -set fmri(ortho3.7) 0 - -# Orthogonalise EV 3 wrt EV 8 -set fmri(ortho3.8) 0 - -# Orthogonalise EV 3 wrt EV 9 -set fmri(ortho3.9) 0 - -# Orthogonalise EV 3 wrt EV 10 -set fmri(ortho3.10) 0 - -# Orthogonalise EV 3 wrt EV 11 -set fmri(ortho3.11) 0 - -# Orthogonalise EV 3 wrt EV 12 -set fmri(ortho3.12) 0 - -# Orthogonalise EV 3 wrt EV 13 -set fmri(ortho3.13) 0 - -# Orthogonalise EV 3 wrt EV 14 -set fmri(ortho3.14) 0 - -# Orthogonalise EV 3 wrt EV 15 -set fmri(ortho3.15) 0 - -# Orthogonalise EV 3 wrt EV 16 -set fmri(ortho3.16) 0 - -# Orthogonalise EV 3 wrt EV 17 -set fmri(ortho3.17) 0 - -# Orthogonalise EV 3 wrt EV 18 -set fmri(ortho3.18) 0 - -# Orthogonalise EV 3 wrt EV 19 -set fmri(ortho3.19) 0 - -# Orthogonalise EV 3 wrt EV 20 -set fmri(ortho3.20) 0 - -# Orthogonalise EV 3 wrt EV 21 -set fmri(ortho3.21) 0 - -# Orthogonalise EV 3 wrt EV 22 -set fmri(ortho3.22) 0 - -# Orthogonalise EV 3 wrt EV 23 -set fmri(ortho3.23) 0 - -# Orthogonalise EV 3 wrt EV 24 -set fmri(ortho3.24) 0 - -# Orthogonalise EV 3 wrt EV 25 -set fmri(ortho3.25) 0 - -# Orthogonalise EV 3 wrt EV 26 -set fmri(ortho3.26) 0 - -# Higher-level EV value for EV 3 and input 1 -set fmri(evg1.3) 0 - -# Higher-level EV value for EV 3 and input 2 -set fmri(evg2.3) 0 - -# Higher-level EV value for EV 3 and input 3 -set fmri(evg3.3) 0 - -# Higher-level EV value for EV 3 and input 4 -set fmri(evg4.3) 0 - -# Higher-level EV value for EV 3 and input 5 -set fmri(evg5.3) 1.0 - -# Higher-level EV value for EV 3 and input 6 -set fmri(evg6.3) 1.0 - -# Higher-level EV value for EV 3 and input 7 -set fmri(evg7.3) 0 - -# Higher-level EV value for EV 3 and input 8 -set fmri(evg8.3) 0 - -# Higher-level EV value for EV 3 and input 9 -set fmri(evg9.3) 0 - -# Higher-level EV value for EV 3 and input 10 -set fmri(evg10.3) 0 - -# Higher-level EV value for EV 3 and input 11 -set fmri(evg11.3) 0 - -# Higher-level EV value for EV 3 and input 12 -set fmri(evg12.3) 0 - -# Higher-level EV value for EV 3 and input 13 -set fmri(evg13.3) 0 - -# Higher-level EV value for EV 3 and input 14 -set fmri(evg14.3) 0 - -# Higher-level EV value for EV 3 and input 15 -set fmri(evg15.3) 0 - -# Higher-level EV value for EV 3 and input 16 -set fmri(evg16.3) 0 - -# Higher-level EV value for EV 3 and input 17 -set fmri(evg17.3) 0 - -# Higher-level EV value for EV 3 and input 18 -set fmri(evg18.3) 0 - -# Higher-level EV value for EV 3 and input 19 -set fmri(evg19.3) 0 - -# Higher-level EV value for EV 3 and input 20 -set fmri(evg20.3) 0 - -# Higher-level EV value for EV 3 and input 21 -set fmri(evg21.3) 0 - -# Higher-level EV value for EV 3 and input 22 -set fmri(evg22.3) 0 - -# Higher-level EV value for EV 3 and input 23 -set fmri(evg23.3) 0 - -# Higher-level EV value for EV 3 and input 24 -set fmri(evg24.3) 0 - -# Higher-level EV value for EV 3 and input 25 -set fmri(evg25.3) 0 - -# Higher-level EV value for EV 3 and input 26 -set fmri(evg26.3) 0 - -# Higher-level EV value for EV 3 and input 27 -set fmri(evg27.3) 0 - -# Higher-level EV value for EV 3 and input 28 -set fmri(evg28.3) 0 - -# Higher-level EV value for EV 3 and input 29 -set fmri(evg29.3) 0 - -# Higher-level EV value for EV 3 and input 30 -set fmri(evg30.3) 0 - -# Higher-level EV value for EV 3 and input 31 -set fmri(evg31.3) 0 - -# Higher-level EV value for EV 3 and input 32 -set fmri(evg32.3) 0 - -# Higher-level EV value for EV 3 and input 33 -set fmri(evg33.3) 0 - -# Higher-level EV value for EV 3 and input 34 -set fmri(evg34.3) 0 - -# Higher-level EV value for EV 3 and input 35 -set fmri(evg35.3) 0 - -# Higher-level EV value for EV 3 and input 36 -set fmri(evg36.3) 0 - -# Higher-level EV value for EV 3 and input 37 -set fmri(evg37.3) 0 - -# Higher-level EV value for EV 3 and input 38 -set fmri(evg38.3) 0 - -# Higher-level EV value for EV 3 and input 39 -set fmri(evg39.3) 0 - -# Higher-level EV value for EV 3 and input 40 -set fmri(evg40.3) 0 - -# Higher-level EV value for EV 3 and input 41 -set fmri(evg41.3) 0 - -# Higher-level EV value for EV 3 and input 42 -set fmri(evg42.3) 0 - -# Higher-level EV value for EV 3 and input 43 -set fmri(evg43.3) 0 - -# Higher-level EV value for EV 3 and input 44 -set fmri(evg44.3) 0 - -# Higher-level EV value for EV 3 and input 45 -set fmri(evg45.3) 0 - -# Higher-level EV value for EV 3 and input 46 -set fmri(evg46.3) 0 - -# Higher-level EV value for EV 3 and input 47 -set fmri(evg47.3) 0 - -# Higher-level EV value for EV 3 and input 48 -set fmri(evg48.3) 0 - -# Higher-level EV value for EV 3 and input 49 -set fmri(evg49.3) 0 - -# Higher-level EV value for EV 3 and input 50 -set fmri(evg50.3) 0 - -# Higher-level EV value for EV 3 and input 51 -set fmri(evg51.3) 0 - -# Higher-level EV value for EV 3 and input 52 -set fmri(evg52.3) 0 - -# EV 4 title -set fmri(evtitle4) "" - -# Basic waveform shape (EV 4) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape4) 2 - -# Convolution (EV 4) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve4) 0 - -# Convolve phase (EV 4) -set fmri(convolve_phase4) 0 - -# Apply temporal filtering (EV 4) -set fmri(tempfilt_yn4) 0 - -# Add temporal derivative (EV 4) -set fmri(deriv_yn4) 0 - -# Custom EV file (EV 4) -set fmri(custom4) "dummy" - -# Orthogonalise EV 4 wrt EV 0 -set fmri(ortho4.0) 0 - -# Orthogonalise EV 4 wrt EV 1 -set fmri(ortho4.1) 0 - -# Orthogonalise EV 4 wrt EV 2 -set fmri(ortho4.2) 0 - -# Orthogonalise EV 4 wrt EV 3 -set fmri(ortho4.3) 0 - -# Orthogonalise EV 4 wrt EV 4 -set fmri(ortho4.4) 0 - -# Orthogonalise EV 4 wrt EV 5 -set fmri(ortho4.5) 0 - -# Orthogonalise EV 4 wrt EV 6 -set fmri(ortho4.6) 0 - -# Orthogonalise EV 4 wrt EV 7 -set fmri(ortho4.7) 0 - -# Orthogonalise EV 4 wrt EV 8 -set fmri(ortho4.8) 0 - -# Orthogonalise EV 4 wrt EV 9 -set fmri(ortho4.9) 0 - -# Orthogonalise EV 4 wrt EV 10 -set fmri(ortho4.10) 0 - -# Orthogonalise EV 4 wrt EV 11 -set fmri(ortho4.11) 0 - -# Orthogonalise EV 4 wrt EV 12 -set fmri(ortho4.12) 0 - -# Orthogonalise EV 4 wrt EV 13 -set fmri(ortho4.13) 0 - -# Orthogonalise EV 4 wrt EV 14 -set fmri(ortho4.14) 0 - -# Orthogonalise EV 4 wrt EV 15 -set fmri(ortho4.15) 0 - -# Orthogonalise EV 4 wrt EV 16 -set fmri(ortho4.16) 0 - -# Orthogonalise EV 4 wrt EV 17 -set fmri(ortho4.17) 0 - -# Orthogonalise EV 4 wrt EV 18 -set fmri(ortho4.18) 0 - -# Orthogonalise EV 4 wrt EV 19 -set fmri(ortho4.19) 0 - -# Orthogonalise EV 4 wrt EV 20 -set fmri(ortho4.20) 0 - -# Orthogonalise EV 4 wrt EV 21 -set fmri(ortho4.21) 0 - -# Orthogonalise EV 4 wrt EV 22 -set fmri(ortho4.22) 0 - -# Orthogonalise EV 4 wrt EV 23 -set fmri(ortho4.23) 0 - -# Orthogonalise EV 4 wrt EV 24 -set fmri(ortho4.24) 0 - -# Orthogonalise EV 4 wrt EV 25 -set fmri(ortho4.25) 0 - -# Orthogonalise EV 4 wrt EV 26 -set fmri(ortho4.26) 0 - -# Higher-level EV value for EV 4 and input 1 -set fmri(evg1.4) 0 - -# Higher-level EV value for EV 4 and input 2 -set fmri(evg2.4) 0 - -# Higher-level EV value for EV 4 and input 3 -set fmri(evg3.4) 0 - -# Higher-level EV value for EV 4 and input 4 -set fmri(evg4.4) 0 - -# Higher-level EV value for EV 4 and input 5 -set fmri(evg5.4) 0 - -# Higher-level EV value for EV 4 and input 6 -set fmri(evg6.4) 0 - -# Higher-level EV value for EV 4 and input 7 -set fmri(evg7.4) 1.0 - -# Higher-level EV value for EV 4 and input 8 -set fmri(evg8.4) 1.0 - -# Higher-level EV value for EV 4 and input 9 -set fmri(evg9.4) 0 - -# Higher-level EV value for EV 4 and input 10 -set fmri(evg10.4) 0 - -# Higher-level EV value for EV 4 and input 11 -set fmri(evg11.4) 0 - -# Higher-level EV value for EV 4 and input 12 -set fmri(evg12.4) 0 - -# Higher-level EV value for EV 4 and input 13 -set fmri(evg13.4) 0 - -# Higher-level EV value for EV 4 and input 14 -set fmri(evg14.4) 0 - -# Higher-level EV value for EV 4 and input 15 -set fmri(evg15.4) 0 - -# Higher-level EV value for EV 4 and input 16 -set fmri(evg16.4) 0 - -# Higher-level EV value for EV 4 and input 17 -set fmri(evg17.4) 0 - -# Higher-level EV value for EV 4 and input 18 -set fmri(evg18.4) 0 - -# Higher-level EV value for EV 4 and input 19 -set fmri(evg19.4) 0 - -# Higher-level EV value for EV 4 and input 20 -set fmri(evg20.4) 0 - -# Higher-level EV value for EV 4 and input 21 -set fmri(evg21.4) 0 - -# Higher-level EV value for EV 4 and input 22 -set fmri(evg22.4) 0 - -# Higher-level EV value for EV 4 and input 23 -set fmri(evg23.4) 0 - -# Higher-level EV value for EV 4 and input 24 -set fmri(evg24.4) 0 - -# Higher-level EV value for EV 4 and input 25 -set fmri(evg25.4) 0 - -# Higher-level EV value for EV 4 and input 26 -set fmri(evg26.4) 0 - -# Higher-level EV value for EV 4 and input 27 -set fmri(evg27.4) 0 - -# Higher-level EV value for EV 4 and input 28 -set fmri(evg28.4) 0 - -# Higher-level EV value for EV 4 and input 29 -set fmri(evg29.4) 0 - -# Higher-level EV value for EV 4 and input 30 -set fmri(evg30.4) 0 - -# Higher-level EV value for EV 4 and input 31 -set fmri(evg31.4) 0 - -# Higher-level EV value for EV 4 and input 32 -set fmri(evg32.4) 0 - -# Higher-level EV value for EV 4 and input 33 -set fmri(evg33.4) 0 - -# Higher-level EV value for EV 4 and input 34 -set fmri(evg34.4) 0 - -# Higher-level EV value for EV 4 and input 35 -set fmri(evg35.4) 0 - -# Higher-level EV value for EV 4 and input 36 -set fmri(evg36.4) 0 - -# Higher-level EV value for EV 4 and input 37 -set fmri(evg37.4) 0 - -# Higher-level EV value for EV 4 and input 38 -set fmri(evg38.4) 0 - -# Higher-level EV value for EV 4 and input 39 -set fmri(evg39.4) 0 - -# Higher-level EV value for EV 4 and input 40 -set fmri(evg40.4) 0 - -# Higher-level EV value for EV 4 and input 41 -set fmri(evg41.4) 0 - -# Higher-level EV value for EV 4 and input 42 -set fmri(evg42.4) 0 - -# Higher-level EV value for EV 4 and input 43 -set fmri(evg43.4) 0 - -# Higher-level EV value for EV 4 and input 44 -set fmri(evg44.4) 0 - -# Higher-level EV value for EV 4 and input 45 -set fmri(evg45.4) 0 - -# Higher-level EV value for EV 4 and input 46 -set fmri(evg46.4) 0 - -# Higher-level EV value for EV 4 and input 47 -set fmri(evg47.4) 0 - -# Higher-level EV value for EV 4 and input 48 -set fmri(evg48.4) 0 - -# Higher-level EV value for EV 4 and input 49 -set fmri(evg49.4) 0 - -# Higher-level EV value for EV 4 and input 50 -set fmri(evg50.4) 0 - -# Higher-level EV value for EV 4 and input 51 -set fmri(evg51.4) 0 - -# Higher-level EV value for EV 4 and input 52 -set fmri(evg52.4) 0 - -# EV 5 title -set fmri(evtitle5) "" - -# Basic waveform shape (EV 5) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape5) 2 - -# Convolution (EV 5) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve5) 0 - -# Convolve phase (EV 5) -set fmri(convolve_phase5) 0 - -# Apply temporal filtering (EV 5) -set fmri(tempfilt_yn5) 0 - -# Add temporal derivative (EV 5) -set fmri(deriv_yn5) 0 - -# Custom EV file (EV 5) -set fmri(custom5) "dummy" - -# Orthogonalise EV 5 wrt EV 0 -set fmri(ortho5.0) 0 - -# Orthogonalise EV 5 wrt EV 1 -set fmri(ortho5.1) 0 - -# Orthogonalise EV 5 wrt EV 2 -set fmri(ortho5.2) 0 - -# Orthogonalise EV 5 wrt EV 3 -set fmri(ortho5.3) 0 - -# Orthogonalise EV 5 wrt EV 4 -set fmri(ortho5.4) 0 - -# Orthogonalise EV 5 wrt EV 5 -set fmri(ortho5.5) 0 - -# Orthogonalise EV 5 wrt EV 6 -set fmri(ortho5.6) 0 - -# Orthogonalise EV 5 wrt EV 7 -set fmri(ortho5.7) 0 - -# Orthogonalise EV 5 wrt EV 8 -set fmri(ortho5.8) 0 - -# Orthogonalise EV 5 wrt EV 9 -set fmri(ortho5.9) 0 - -# Orthogonalise EV 5 wrt EV 10 -set fmri(ortho5.10) 0 - -# Orthogonalise EV 5 wrt EV 11 -set fmri(ortho5.11) 0 - -# Orthogonalise EV 5 wrt EV 12 -set fmri(ortho5.12) 0 - -# Orthogonalise EV 5 wrt EV 13 -set fmri(ortho5.13) 0 - -# Orthogonalise EV 5 wrt EV 14 -set fmri(ortho5.14) 0 - -# Orthogonalise EV 5 wrt EV 15 -set fmri(ortho5.15) 0 - -# Orthogonalise EV 5 wrt EV 16 -set fmri(ortho5.16) 0 - -# Orthogonalise EV 5 wrt EV 17 -set fmri(ortho5.17) 0 - -# Orthogonalise EV 5 wrt EV 18 -set fmri(ortho5.18) 0 - -# Orthogonalise EV 5 wrt EV 19 -set fmri(ortho5.19) 0 - -# Orthogonalise EV 5 wrt EV 20 -set fmri(ortho5.20) 0 - -# Orthogonalise EV 5 wrt EV 21 -set fmri(ortho5.21) 0 - -# Orthogonalise EV 5 wrt EV 22 -set fmri(ortho5.22) 0 - -# Orthogonalise EV 5 wrt EV 23 -set fmri(ortho5.23) 0 - -# Orthogonalise EV 5 wrt EV 24 -set fmri(ortho5.24) 0 - -# Orthogonalise EV 5 wrt EV 25 -set fmri(ortho5.25) 0 - -# Orthogonalise EV 5 wrt EV 26 -set fmri(ortho5.26) 0 - -# Higher-level EV value for EV 5 and input 1 -set fmri(evg1.5) 0 - -# Higher-level EV value for EV 5 and input 2 -set fmri(evg2.5) 0 - -# Higher-level EV value for EV 5 and input 3 -set fmri(evg3.5) 0 - -# Higher-level EV value for EV 5 and input 4 -set fmri(evg4.5) 0 - -# Higher-level EV value for EV 5 and input 5 -set fmri(evg5.5) 0 - -# Higher-level EV value for EV 5 and input 6 -set fmri(evg6.5) 0 - -# Higher-level EV value for EV 5 and input 7 -set fmri(evg7.5) 0 - -# Higher-level EV value for EV 5 and input 8 -set fmri(evg8.5) 0 - -# Higher-level EV value for EV 5 and input 9 -set fmri(evg9.5) 1.0 - -# Higher-level EV value for EV 5 and input 10 -set fmri(evg10.5) 1.0 - -# Higher-level EV value for EV 5 and input 11 -set fmri(evg11.5) 0 - -# Higher-level EV value for EV 5 and input 12 -set fmri(evg12.5) 0 - -# Higher-level EV value for EV 5 and input 13 -set fmri(evg13.5) 0 - -# Higher-level EV value for EV 5 and input 14 -set fmri(evg14.5) 0 - -# Higher-level EV value for EV 5 and input 15 -set fmri(evg15.5) 0 - -# Higher-level EV value for EV 5 and input 16 -set fmri(evg16.5) 0 - -# Higher-level EV value for EV 5 and input 17 -set fmri(evg17.5) 0 - -# Higher-level EV value for EV 5 and input 18 -set fmri(evg18.5) 0 - -# Higher-level EV value for EV 5 and input 19 -set fmri(evg19.5) 0 - -# Higher-level EV value for EV 5 and input 20 -set fmri(evg20.5) 0 - -# Higher-level EV value for EV 5 and input 21 -set fmri(evg21.5) 0 - -# Higher-level EV value for EV 5 and input 22 -set fmri(evg22.5) 0 - -# Higher-level EV value for EV 5 and input 23 -set fmri(evg23.5) 0 - -# Higher-level EV value for EV 5 and input 24 -set fmri(evg24.5) 0 - -# Higher-level EV value for EV 5 and input 25 -set fmri(evg25.5) 0 - -# Higher-level EV value for EV 5 and input 26 -set fmri(evg26.5) 0 - -# Higher-level EV value for EV 5 and input 27 -set fmri(evg27.5) 0 - -# Higher-level EV value for EV 5 and input 28 -set fmri(evg28.5) 0 - -# Higher-level EV value for EV 5 and input 29 -set fmri(evg29.5) 0 - -# Higher-level EV value for EV 5 and input 30 -set fmri(evg30.5) 0 - -# Higher-level EV value for EV 5 and input 31 -set fmri(evg31.5) 0 - -# Higher-level EV value for EV 5 and input 32 -set fmri(evg32.5) 0 - -# Higher-level EV value for EV 5 and input 33 -set fmri(evg33.5) 0 - -# Higher-level EV value for EV 5 and input 34 -set fmri(evg34.5) 0 - -# Higher-level EV value for EV 5 and input 35 -set fmri(evg35.5) 0 - -# Higher-level EV value for EV 5 and input 36 -set fmri(evg36.5) 0 - -# Higher-level EV value for EV 5 and input 37 -set fmri(evg37.5) 0 - -# Higher-level EV value for EV 5 and input 38 -set fmri(evg38.5) 0 - -# Higher-level EV value for EV 5 and input 39 -set fmri(evg39.5) 0 - -# Higher-level EV value for EV 5 and input 40 -set fmri(evg40.5) 0 - -# Higher-level EV value for EV 5 and input 41 -set fmri(evg41.5) 0 - -# Higher-level EV value for EV 5 and input 42 -set fmri(evg42.5) 0 - -# Higher-level EV value for EV 5 and input 43 -set fmri(evg43.5) 0 - -# Higher-level EV value for EV 5 and input 44 -set fmri(evg44.5) 0 - -# Higher-level EV value for EV 5 and input 45 -set fmri(evg45.5) 0 - -# Higher-level EV value for EV 5 and input 46 -set fmri(evg46.5) 0 - -# Higher-level EV value for EV 5 and input 47 -set fmri(evg47.5) 0 - -# Higher-level EV value for EV 5 and input 48 -set fmri(evg48.5) 0 - -# Higher-level EV value for EV 5 and input 49 -set fmri(evg49.5) 0 - -# Higher-level EV value for EV 5 and input 50 -set fmri(evg50.5) 0 - -# Higher-level EV value for EV 5 and input 51 -set fmri(evg51.5) 0 - -# Higher-level EV value for EV 5 and input 52 -set fmri(evg52.5) 0 - -# EV 6 title -set fmri(evtitle6) "" - -# Basic waveform shape (EV 6) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape6) 2 - -# Convolution (EV 6) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve6) 0 - -# Convolve phase (EV 6) -set fmri(convolve_phase6) 0 - -# Apply temporal filtering (EV 6) -set fmri(tempfilt_yn6) 0 - -# Add temporal derivative (EV 6) -set fmri(deriv_yn6) 0 - -# Custom EV file (EV 6) -set fmri(custom6) "dummy" - -# Orthogonalise EV 6 wrt EV 0 -set fmri(ortho6.0) 0 - -# Orthogonalise EV 6 wrt EV 1 -set fmri(ortho6.1) 0 - -# Orthogonalise EV 6 wrt EV 2 -set fmri(ortho6.2) 0 - -# Orthogonalise EV 6 wrt EV 3 -set fmri(ortho6.3) 0 - -# Orthogonalise EV 6 wrt EV 4 -set fmri(ortho6.4) 0 - -# Orthogonalise EV 6 wrt EV 5 -set fmri(ortho6.5) 0 - -# Orthogonalise EV 6 wrt EV 6 -set fmri(ortho6.6) 0 - -# Orthogonalise EV 6 wrt EV 7 -set fmri(ortho6.7) 0 - -# Orthogonalise EV 6 wrt EV 8 -set fmri(ortho6.8) 0 - -# Orthogonalise EV 6 wrt EV 9 -set fmri(ortho6.9) 0 - -# Orthogonalise EV 6 wrt EV 10 -set fmri(ortho6.10) 0 - -# Orthogonalise EV 6 wrt EV 11 -set fmri(ortho6.11) 0 - -# Orthogonalise EV 6 wrt EV 12 -set fmri(ortho6.12) 0 - -# Orthogonalise EV 6 wrt EV 13 -set fmri(ortho6.13) 0 - -# Orthogonalise EV 6 wrt EV 14 -set fmri(ortho6.14) 0 - -# Orthogonalise EV 6 wrt EV 15 -set fmri(ortho6.15) 0 - -# Orthogonalise EV 6 wrt EV 16 -set fmri(ortho6.16) 0 - -# Orthogonalise EV 6 wrt EV 17 -set fmri(ortho6.17) 0 - -# Orthogonalise EV 6 wrt EV 18 -set fmri(ortho6.18) 0 - -# Orthogonalise EV 6 wrt EV 19 -set fmri(ortho6.19) 0 - -# Orthogonalise EV 6 wrt EV 20 -set fmri(ortho6.20) 0 - -# Orthogonalise EV 6 wrt EV 21 -set fmri(ortho6.21) 0 - -# Orthogonalise EV 6 wrt EV 22 -set fmri(ortho6.22) 0 - -# Orthogonalise EV 6 wrt EV 23 -set fmri(ortho6.23) 0 - -# Orthogonalise EV 6 wrt EV 24 -set fmri(ortho6.24) 0 - -# Orthogonalise EV 6 wrt EV 25 -set fmri(ortho6.25) 0 - -# Orthogonalise EV 6 wrt EV 26 -set fmri(ortho6.26) 0 - -# Higher-level EV value for EV 6 and input 1 -set fmri(evg1.6) 0 - -# Higher-level EV value for EV 6 and input 2 -set fmri(evg2.6) 0 - -# Higher-level EV value for EV 6 and input 3 -set fmri(evg3.6) 0 - -# Higher-level EV value for EV 6 and input 4 -set fmri(evg4.6) 0 - -# Higher-level EV value for EV 6 and input 5 -set fmri(evg5.6) 0 - -# Higher-level EV value for EV 6 and input 6 -set fmri(evg6.6) 0 - -# Higher-level EV value for EV 6 and input 7 -set fmri(evg7.6) 0 - -# Higher-level EV value for EV 6 and input 8 -set fmri(evg8.6) 0 - -# Higher-level EV value for EV 6 and input 9 -set fmri(evg9.6) 0 - -# Higher-level EV value for EV 6 and input 10 -set fmri(evg10.6) 0 - -# Higher-level EV value for EV 6 and input 11 -set fmri(evg11.6) 1.0 - -# Higher-level EV value for EV 6 and input 12 -set fmri(evg12.6) 1.0 - -# Higher-level EV value for EV 6 and input 13 -set fmri(evg13.6) 0 - -# Higher-level EV value for EV 6 and input 14 -set fmri(evg14.6) 0 - -# Higher-level EV value for EV 6 and input 15 -set fmri(evg15.6) 0 - -# Higher-level EV value for EV 6 and input 16 -set fmri(evg16.6) 0 - -# Higher-level EV value for EV 6 and input 17 -set fmri(evg17.6) 0 - -# Higher-level EV value for EV 6 and input 18 -set fmri(evg18.6) 0 - -# Higher-level EV value for EV 6 and input 19 -set fmri(evg19.6) 0 - -# Higher-level EV value for EV 6 and input 20 -set fmri(evg20.6) 0 - -# Higher-level EV value for EV 6 and input 21 -set fmri(evg21.6) 0 - -# Higher-level EV value for EV 6 and input 22 -set fmri(evg22.6) 0 - -# Higher-level EV value for EV 6 and input 23 -set fmri(evg23.6) 0 - -# Higher-level EV value for EV 6 and input 24 -set fmri(evg24.6) 0 - -# Higher-level EV value for EV 6 and input 25 -set fmri(evg25.6) 0 - -# Higher-level EV value for EV 6 and input 26 -set fmri(evg26.6) 0 - -# Higher-level EV value for EV 6 and input 27 -set fmri(evg27.6) 0 - -# Higher-level EV value for EV 6 and input 28 -set fmri(evg28.6) 0 - -# Higher-level EV value for EV 6 and input 29 -set fmri(evg29.6) 0 - -# Higher-level EV value for EV 6 and input 30 -set fmri(evg30.6) 0 - -# Higher-level EV value for EV 6 and input 31 -set fmri(evg31.6) 0 - -# Higher-level EV value for EV 6 and input 32 -set fmri(evg32.6) 0 - -# Higher-level EV value for EV 6 and input 33 -set fmri(evg33.6) 0 - -# Higher-level EV value for EV 6 and input 34 -set fmri(evg34.6) 0 - -# Higher-level EV value for EV 6 and input 35 -set fmri(evg35.6) 0 - -# Higher-level EV value for EV 6 and input 36 -set fmri(evg36.6) 0 - -# Higher-level EV value for EV 6 and input 37 -set fmri(evg37.6) 0 - -# Higher-level EV value for EV 6 and input 38 -set fmri(evg38.6) 0 - -# Higher-level EV value for EV 6 and input 39 -set fmri(evg39.6) 0 - -# Higher-level EV value for EV 6 and input 40 -set fmri(evg40.6) 0 - -# Higher-level EV value for EV 6 and input 41 -set fmri(evg41.6) 0 - -# Higher-level EV value for EV 6 and input 42 -set fmri(evg42.6) 0 - -# Higher-level EV value for EV 6 and input 43 -set fmri(evg43.6) 0 - -# Higher-level EV value for EV 6 and input 44 -set fmri(evg44.6) 0 - -# Higher-level EV value for EV 6 and input 45 -set fmri(evg45.6) 0 - -# Higher-level EV value for EV 6 and input 46 -set fmri(evg46.6) 0 - -# Higher-level EV value for EV 6 and input 47 -set fmri(evg47.6) 0 - -# Higher-level EV value for EV 6 and input 48 -set fmri(evg48.6) 0 - -# Higher-level EV value for EV 6 and input 49 -set fmri(evg49.6) 0 - -# Higher-level EV value for EV 6 and input 50 -set fmri(evg50.6) 0 - -# Higher-level EV value for EV 6 and input 51 -set fmri(evg51.6) 0 - -# Higher-level EV value for EV 6 and input 52 -set fmri(evg52.6) 0 - -# EV 7 title -set fmri(evtitle7) "" - -# Basic waveform shape (EV 7) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape7) 2 - -# Convolution (EV 7) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve7) 0 - -# Convolve phase (EV 7) -set fmri(convolve_phase7) 0 - -# Apply temporal filtering (EV 7) -set fmri(tempfilt_yn7) 0 - -# Add temporal derivative (EV 7) -set fmri(deriv_yn7) 0 - -# Custom EV file (EV 7) -set fmri(custom7) "dummy" - -# Orthogonalise EV 7 wrt EV 0 -set fmri(ortho7.0) 0 - -# Orthogonalise EV 7 wrt EV 1 -set fmri(ortho7.1) 0 - -# Orthogonalise EV 7 wrt EV 2 -set fmri(ortho7.2) 0 - -# Orthogonalise EV 7 wrt EV 3 -set fmri(ortho7.3) 0 - -# Orthogonalise EV 7 wrt EV 4 -set fmri(ortho7.4) 0 - -# Orthogonalise EV 7 wrt EV 5 -set fmri(ortho7.5) 0 - -# Orthogonalise EV 7 wrt EV 6 -set fmri(ortho7.6) 0 - -# Orthogonalise EV 7 wrt EV 7 -set fmri(ortho7.7) 0 - -# Orthogonalise EV 7 wrt EV 8 -set fmri(ortho7.8) 0 - -# Orthogonalise EV 7 wrt EV 9 -set fmri(ortho7.9) 0 - -# Orthogonalise EV 7 wrt EV 10 -set fmri(ortho7.10) 0 - -# Orthogonalise EV 7 wrt EV 11 -set fmri(ortho7.11) 0 - -# Orthogonalise EV 7 wrt EV 12 -set fmri(ortho7.12) 0 - -# Orthogonalise EV 7 wrt EV 13 -set fmri(ortho7.13) 0 - -# Orthogonalise EV 7 wrt EV 14 -set fmri(ortho7.14) 0 - -# Orthogonalise EV 7 wrt EV 15 -set fmri(ortho7.15) 0 - -# Orthogonalise EV 7 wrt EV 16 -set fmri(ortho7.16) 0 - -# Orthogonalise EV 7 wrt EV 17 -set fmri(ortho7.17) 0 - -# Orthogonalise EV 7 wrt EV 18 -set fmri(ortho7.18) 0 - -# Orthogonalise EV 7 wrt EV 19 -set fmri(ortho7.19) 0 - -# Orthogonalise EV 7 wrt EV 20 -set fmri(ortho7.20) 0 - -# Orthogonalise EV 7 wrt EV 21 -set fmri(ortho7.21) 0 - -# Orthogonalise EV 7 wrt EV 22 -set fmri(ortho7.22) 0 - -# Orthogonalise EV 7 wrt EV 23 -set fmri(ortho7.23) 0 - -# Orthogonalise EV 7 wrt EV 24 -set fmri(ortho7.24) 0 - -# Orthogonalise EV 7 wrt EV 25 -set fmri(ortho7.25) 0 - -# Orthogonalise EV 7 wrt EV 26 -set fmri(ortho7.26) 0 - -# Higher-level EV value for EV 7 and input 1 -set fmri(evg1.7) 0 - -# Higher-level EV value for EV 7 and input 2 -set fmri(evg2.7) 0 - -# Higher-level EV value for EV 7 and input 3 -set fmri(evg3.7) 0 - -# Higher-level EV value for EV 7 and input 4 -set fmri(evg4.7) 0 - -# Higher-level EV value for EV 7 and input 5 -set fmri(evg5.7) 0 - -# Higher-level EV value for EV 7 and input 6 -set fmri(evg6.7) 0 - -# Higher-level EV value for EV 7 and input 7 -set fmri(evg7.7) 0 - -# Higher-level EV value for EV 7 and input 8 -set fmri(evg8.7) 0 - -# Higher-level EV value for EV 7 and input 9 -set fmri(evg9.7) 0 - -# Higher-level EV value for EV 7 and input 10 -set fmri(evg10.7) 0 - -# Higher-level EV value for EV 7 and input 11 -set fmri(evg11.7) 0 - -# Higher-level EV value for EV 7 and input 12 -set fmri(evg12.7) 0 - -# Higher-level EV value for EV 7 and input 13 -set fmri(evg13.7) 1.0 - -# Higher-level EV value for EV 7 and input 14 -set fmri(evg14.7) 1.0 - -# Higher-level EV value for EV 7 and input 15 -set fmri(evg15.7) 0 - -# Higher-level EV value for EV 7 and input 16 -set fmri(evg16.7) 0 - -# Higher-level EV value for EV 7 and input 17 -set fmri(evg17.7) 0 - -# Higher-level EV value for EV 7 and input 18 -set fmri(evg18.7) 0 - -# Higher-level EV value for EV 7 and input 19 -set fmri(evg19.7) 0 - -# Higher-level EV value for EV 7 and input 20 -set fmri(evg20.7) 0 - -# Higher-level EV value for EV 7 and input 21 -set fmri(evg21.7) 0 - -# Higher-level EV value for EV 7 and input 22 -set fmri(evg22.7) 0 - -# Higher-level EV value for EV 7 and input 23 -set fmri(evg23.7) 0 - -# Higher-level EV value for EV 7 and input 24 -set fmri(evg24.7) 0 - -# Higher-level EV value for EV 7 and input 25 -set fmri(evg25.7) 0 - -# Higher-level EV value for EV 7 and input 26 -set fmri(evg26.7) 0 - -# Higher-level EV value for EV 7 and input 27 -set fmri(evg27.7) 0 - -# Higher-level EV value for EV 7 and input 28 -set fmri(evg28.7) 0 - -# Higher-level EV value for EV 7 and input 29 -set fmri(evg29.7) 0 - -# Higher-level EV value for EV 7 and input 30 -set fmri(evg30.7) 0 - -# Higher-level EV value for EV 7 and input 31 -set fmri(evg31.7) 0 - -# Higher-level EV value for EV 7 and input 32 -set fmri(evg32.7) 0 - -# Higher-level EV value for EV 7 and input 33 -set fmri(evg33.7) 0 - -# Higher-level EV value for EV 7 and input 34 -set fmri(evg34.7) 0 - -# Higher-level EV value for EV 7 and input 35 -set fmri(evg35.7) 0 - -# Higher-level EV value for EV 7 and input 36 -set fmri(evg36.7) 0 - -# Higher-level EV value for EV 7 and input 37 -set fmri(evg37.7) 0 - -# Higher-level EV value for EV 7 and input 38 -set fmri(evg38.7) 0 - -# Higher-level EV value for EV 7 and input 39 -set fmri(evg39.7) 0 - -# Higher-level EV value for EV 7 and input 40 -set fmri(evg40.7) 0 - -# Higher-level EV value for EV 7 and input 41 -set fmri(evg41.7) 0 - -# Higher-level EV value for EV 7 and input 42 -set fmri(evg42.7) 0 - -# Higher-level EV value for EV 7 and input 43 -set fmri(evg43.7) 0 - -# Higher-level EV value for EV 7 and input 44 -set fmri(evg44.7) 0 - -# Higher-level EV value for EV 7 and input 45 -set fmri(evg45.7) 0 - -# Higher-level EV value for EV 7 and input 46 -set fmri(evg46.7) 0 - -# Higher-level EV value for EV 7 and input 47 -set fmri(evg47.7) 0 - -# Higher-level EV value for EV 7 and input 48 -set fmri(evg48.7) 0 - -# Higher-level EV value for EV 7 and input 49 -set fmri(evg49.7) 0 - -# Higher-level EV value for EV 7 and input 50 -set fmri(evg50.7) 0 - -# Higher-level EV value for EV 7 and input 51 -set fmri(evg51.7) 0 - -# Higher-level EV value for EV 7 and input 52 -set fmri(evg52.7) 0 - -# EV 8 title -set fmri(evtitle8) "" - -# Basic waveform shape (EV 8) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape8) 2 - -# Convolution (EV 8) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve8) 0 - -# Convolve phase (EV 8) -set fmri(convolve_phase8) 0 - -# Apply temporal filtering (EV 8) -set fmri(tempfilt_yn8) 0 - -# Add temporal derivative (EV 8) -set fmri(deriv_yn8) 0 - -# Custom EV file (EV 8) -set fmri(custom8) "dummy" - -# Orthogonalise EV 8 wrt EV 0 -set fmri(ortho8.0) 0 - -# Orthogonalise EV 8 wrt EV 1 -set fmri(ortho8.1) 0 - -# Orthogonalise EV 8 wrt EV 2 -set fmri(ortho8.2) 0 - -# Orthogonalise EV 8 wrt EV 3 -set fmri(ortho8.3) 0 - -# Orthogonalise EV 8 wrt EV 4 -set fmri(ortho8.4) 0 - -# Orthogonalise EV 8 wrt EV 5 -set fmri(ortho8.5) 0 - -# Orthogonalise EV 8 wrt EV 6 -set fmri(ortho8.6) 0 - -# Orthogonalise EV 8 wrt EV 7 -set fmri(ortho8.7) 0 - -# Orthogonalise EV 8 wrt EV 8 -set fmri(ortho8.8) 0 - -# Orthogonalise EV 8 wrt EV 9 -set fmri(ortho8.9) 0 - -# Orthogonalise EV 8 wrt EV 10 -set fmri(ortho8.10) 0 - -# Orthogonalise EV 8 wrt EV 11 -set fmri(ortho8.11) 0 - -# Orthogonalise EV 8 wrt EV 12 -set fmri(ortho8.12) 0 - -# Orthogonalise EV 8 wrt EV 13 -set fmri(ortho8.13) 0 - -# Orthogonalise EV 8 wrt EV 14 -set fmri(ortho8.14) 0 - -# Orthogonalise EV 8 wrt EV 15 -set fmri(ortho8.15) 0 - -# Orthogonalise EV 8 wrt EV 16 -set fmri(ortho8.16) 0 - -# Orthogonalise EV 8 wrt EV 17 -set fmri(ortho8.17) 0 - -# Orthogonalise EV 8 wrt EV 18 -set fmri(ortho8.18) 0 - -# Orthogonalise EV 8 wrt EV 19 -set fmri(ortho8.19) 0 - -# Orthogonalise EV 8 wrt EV 20 -set fmri(ortho8.20) 0 - -# Orthogonalise EV 8 wrt EV 21 -set fmri(ortho8.21) 0 - -# Orthogonalise EV 8 wrt EV 22 -set fmri(ortho8.22) 0 - -# Orthogonalise EV 8 wrt EV 23 -set fmri(ortho8.23) 0 - -# Orthogonalise EV 8 wrt EV 24 -set fmri(ortho8.24) 0 - -# Orthogonalise EV 8 wrt EV 25 -set fmri(ortho8.25) 0 - -# Orthogonalise EV 8 wrt EV 26 -set fmri(ortho8.26) 0 - -# Higher-level EV value for EV 8 and input 1 -set fmri(evg1.8) 0 - -# Higher-level EV value for EV 8 and input 2 -set fmri(evg2.8) 0 - -# Higher-level EV value for EV 8 and input 3 -set fmri(evg3.8) 0 - -# Higher-level EV value for EV 8 and input 4 -set fmri(evg4.8) 0 - -# Higher-level EV value for EV 8 and input 5 -set fmri(evg5.8) 0 - -# Higher-level EV value for EV 8 and input 6 -set fmri(evg6.8) 0 - -# Higher-level EV value for EV 8 and input 7 -set fmri(evg7.8) 0 - -# Higher-level EV value for EV 8 and input 8 -set fmri(evg8.8) 0 - -# Higher-level EV value for EV 8 and input 9 -set fmri(evg9.8) 0 - -# Higher-level EV value for EV 8 and input 10 -set fmri(evg10.8) 0 - -# Higher-level EV value for EV 8 and input 11 -set fmri(evg11.8) 0 - -# Higher-level EV value for EV 8 and input 12 -set fmri(evg12.8) 0 - -# Higher-level EV value for EV 8 and input 13 -set fmri(evg13.8) 0 - -# Higher-level EV value for EV 8 and input 14 -set fmri(evg14.8) 0 - -# Higher-level EV value for EV 8 and input 15 -set fmri(evg15.8) 1.0 - -# Higher-level EV value for EV 8 and input 16 -set fmri(evg16.8) 1.0 - -# Higher-level EV value for EV 8 and input 17 -set fmri(evg17.8) 0 - -# Higher-level EV value for EV 8 and input 18 -set fmri(evg18.8) 0 - -# Higher-level EV value for EV 8 and input 19 -set fmri(evg19.8) 0 - -# Higher-level EV value for EV 8 and input 20 -set fmri(evg20.8) 0 - -# Higher-level EV value for EV 8 and input 21 -set fmri(evg21.8) 0 - -# Higher-level EV value for EV 8 and input 22 -set fmri(evg22.8) 0 - -# Higher-level EV value for EV 8 and input 23 -set fmri(evg23.8) 0 - -# Higher-level EV value for EV 8 and input 24 -set fmri(evg24.8) 0 - -# Higher-level EV value for EV 8 and input 25 -set fmri(evg25.8) 0 - -# Higher-level EV value for EV 8 and input 26 -set fmri(evg26.8) 0 - -# Higher-level EV value for EV 8 and input 27 -set fmri(evg27.8) 0 - -# Higher-level EV value for EV 8 and input 28 -set fmri(evg28.8) 0 - -# Higher-level EV value for EV 8 and input 29 -set fmri(evg29.8) 0 - -# Higher-level EV value for EV 8 and input 30 -set fmri(evg30.8) 0 - -# Higher-level EV value for EV 8 and input 31 -set fmri(evg31.8) 0 - -# Higher-level EV value for EV 8 and input 32 -set fmri(evg32.8) 0 - -# Higher-level EV value for EV 8 and input 33 -set fmri(evg33.8) 0 - -# Higher-level EV value for EV 8 and input 34 -set fmri(evg34.8) 0 - -# Higher-level EV value for EV 8 and input 35 -set fmri(evg35.8) 0 - -# Higher-level EV value for EV 8 and input 36 -set fmri(evg36.8) 0 - -# Higher-level EV value for EV 8 and input 37 -set fmri(evg37.8) 0 - -# Higher-level EV value for EV 8 and input 38 -set fmri(evg38.8) 0 - -# Higher-level EV value for EV 8 and input 39 -set fmri(evg39.8) 0 - -# Higher-level EV value for EV 8 and input 40 -set fmri(evg40.8) 0 - -# Higher-level EV value for EV 8 and input 41 -set fmri(evg41.8) 0 - -# Higher-level EV value for EV 8 and input 42 -set fmri(evg42.8) 0 - -# Higher-level EV value for EV 8 and input 43 -set fmri(evg43.8) 0 - -# Higher-level EV value for EV 8 and input 44 -set fmri(evg44.8) 0 - -# Higher-level EV value for EV 8 and input 45 -set fmri(evg45.8) 0 - -# Higher-level EV value for EV 8 and input 46 -set fmri(evg46.8) 0 - -# Higher-level EV value for EV 8 and input 47 -set fmri(evg47.8) 0 - -# Higher-level EV value for EV 8 and input 48 -set fmri(evg48.8) 0 - -# Higher-level EV value for EV 8 and input 49 -set fmri(evg49.8) 0 - -# Higher-level EV value for EV 8 and input 50 -set fmri(evg50.8) 0 - -# Higher-level EV value for EV 8 and input 51 -set fmri(evg51.8) 0 - -# Higher-level EV value for EV 8 and input 52 -set fmri(evg52.8) 0 - -# EV 9 title -set fmri(evtitle9) "" - -# Basic waveform shape (EV 9) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape9) 2 - -# Convolution (EV 9) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve9) 0 - -# Convolve phase (EV 9) -set fmri(convolve_phase9) 0 - -# Apply temporal filtering (EV 9) -set fmri(tempfilt_yn9) 0 - -# Add temporal derivative (EV 9) -set fmri(deriv_yn9) 0 - -# Custom EV file (EV 9) -set fmri(custom9) "dummy" - -# Orthogonalise EV 9 wrt EV 0 -set fmri(ortho9.0) 0 - -# Orthogonalise EV 9 wrt EV 1 -set fmri(ortho9.1) 0 - -# Orthogonalise EV 9 wrt EV 2 -set fmri(ortho9.2) 0 - -# Orthogonalise EV 9 wrt EV 3 -set fmri(ortho9.3) 0 - -# Orthogonalise EV 9 wrt EV 4 -set fmri(ortho9.4) 0 - -# Orthogonalise EV 9 wrt EV 5 -set fmri(ortho9.5) 0 - -# Orthogonalise EV 9 wrt EV 6 -set fmri(ortho9.6) 0 - -# Orthogonalise EV 9 wrt EV 7 -set fmri(ortho9.7) 0 - -# Orthogonalise EV 9 wrt EV 8 -set fmri(ortho9.8) 0 - -# Orthogonalise EV 9 wrt EV 9 -set fmri(ortho9.9) 0 - -# Orthogonalise EV 9 wrt EV 10 -set fmri(ortho9.10) 0 - -# Orthogonalise EV 9 wrt EV 11 -set fmri(ortho9.11) 0 - -# Orthogonalise EV 9 wrt EV 12 -set fmri(ortho9.12) 0 - -# Orthogonalise EV 9 wrt EV 13 -set fmri(ortho9.13) 0 - -# Orthogonalise EV 9 wrt EV 14 -set fmri(ortho9.14) 0 - -# Orthogonalise EV 9 wrt EV 15 -set fmri(ortho9.15) 0 - -# Orthogonalise EV 9 wrt EV 16 -set fmri(ortho9.16) 0 - -# Orthogonalise EV 9 wrt EV 17 -set fmri(ortho9.17) 0 - -# Orthogonalise EV 9 wrt EV 18 -set fmri(ortho9.18) 0 - -# Orthogonalise EV 9 wrt EV 19 -set fmri(ortho9.19) 0 - -# Orthogonalise EV 9 wrt EV 20 -set fmri(ortho9.20) 0 - -# Orthogonalise EV 9 wrt EV 21 -set fmri(ortho9.21) 0 - -# Orthogonalise EV 9 wrt EV 22 -set fmri(ortho9.22) 0 - -# Orthogonalise EV 9 wrt EV 23 -set fmri(ortho9.23) 0 - -# Orthogonalise EV 9 wrt EV 24 -set fmri(ortho9.24) 0 - -# Orthogonalise EV 9 wrt EV 25 -set fmri(ortho9.25) 0 - -# Orthogonalise EV 9 wrt EV 26 -set fmri(ortho9.26) 0 - -# Higher-level EV value for EV 9 and input 1 -set fmri(evg1.9) 0 - -# Higher-level EV value for EV 9 and input 2 -set fmri(evg2.9) 0 - -# Higher-level EV value for EV 9 and input 3 -set fmri(evg3.9) 0 - -# Higher-level EV value for EV 9 and input 4 -set fmri(evg4.9) 0 - -# Higher-level EV value for EV 9 and input 5 -set fmri(evg5.9) 0 - -# Higher-level EV value for EV 9 and input 6 -set fmri(evg6.9) 0 - -# Higher-level EV value for EV 9 and input 7 -set fmri(evg7.9) 0 - -# Higher-level EV value for EV 9 and input 8 -set fmri(evg8.9) 0 - -# Higher-level EV value for EV 9 and input 9 -set fmri(evg9.9) 0 - -# Higher-level EV value for EV 9 and input 10 -set fmri(evg10.9) 0 - -# Higher-level EV value for EV 9 and input 11 -set fmri(evg11.9) 0 - -# Higher-level EV value for EV 9 and input 12 -set fmri(evg12.9) 0 - -# Higher-level EV value for EV 9 and input 13 -set fmri(evg13.9) 0 - -# Higher-level EV value for EV 9 and input 14 -set fmri(evg14.9) 0 - -# Higher-level EV value for EV 9 and input 15 -set fmri(evg15.9) 0 - -# Higher-level EV value for EV 9 and input 16 -set fmri(evg16.9) 0 - -# Higher-level EV value for EV 9 and input 17 -set fmri(evg17.9) 1.0 - -# Higher-level EV value for EV 9 and input 18 -set fmri(evg18.9) 1.0 - -# Higher-level EV value for EV 9 and input 19 -set fmri(evg19.9) 0 - -# Higher-level EV value for EV 9 and input 20 -set fmri(evg20.9) 0 - -# Higher-level EV value for EV 9 and input 21 -set fmri(evg21.9) 0 - -# Higher-level EV value for EV 9 and input 22 -set fmri(evg22.9) 0 - -# Higher-level EV value for EV 9 and input 23 -set fmri(evg23.9) 0 - -# Higher-level EV value for EV 9 and input 24 -set fmri(evg24.9) 0 - -# Higher-level EV value for EV 9 and input 25 -set fmri(evg25.9) 0 - -# Higher-level EV value for EV 9 and input 26 -set fmri(evg26.9) 0 - -# Higher-level EV value for EV 9 and input 27 -set fmri(evg27.9) 0 - -# Higher-level EV value for EV 9 and input 28 -set fmri(evg28.9) 0 - -# Higher-level EV value for EV 9 and input 29 -set fmri(evg29.9) 0 - -# Higher-level EV value for EV 9 and input 30 -set fmri(evg30.9) 0 - -# Higher-level EV value for EV 9 and input 31 -set fmri(evg31.9) 0 - -# Higher-level EV value for EV 9 and input 32 -set fmri(evg32.9) 0 - -# Higher-level EV value for EV 9 and input 33 -set fmri(evg33.9) 0 - -# Higher-level EV value for EV 9 and input 34 -set fmri(evg34.9) 0 - -# Higher-level EV value for EV 9 and input 35 -set fmri(evg35.9) 0 - -# Higher-level EV value for EV 9 and input 36 -set fmri(evg36.9) 0 - -# Higher-level EV value for EV 9 and input 37 -set fmri(evg37.9) 0 - -# Higher-level EV value for EV 9 and input 38 -set fmri(evg38.9) 0 - -# Higher-level EV value for EV 9 and input 39 -set fmri(evg39.9) 0 - -# Higher-level EV value for EV 9 and input 40 -set fmri(evg40.9) 0 - -# Higher-level EV value for EV 9 and input 41 -set fmri(evg41.9) 0 - -# Higher-level EV value for EV 9 and input 42 -set fmri(evg42.9) 0 - -# Higher-level EV value for EV 9 and input 43 -set fmri(evg43.9) 0 - -# Higher-level EV value for EV 9 and input 44 -set fmri(evg44.9) 0 - -# Higher-level EV value for EV 9 and input 45 -set fmri(evg45.9) 0 - -# Higher-level EV value for EV 9 and input 46 -set fmri(evg46.9) 0 - -# Higher-level EV value for EV 9 and input 47 -set fmri(evg47.9) 0 - -# Higher-level EV value for EV 9 and input 48 -set fmri(evg48.9) 0 - -# Higher-level EV value for EV 9 and input 49 -set fmri(evg49.9) 0 - -# Higher-level EV value for EV 9 and input 50 -set fmri(evg50.9) 0 - -# Higher-level EV value for EV 9 and input 51 -set fmri(evg51.9) 0 - -# Higher-level EV value for EV 9 and input 52 -set fmri(evg52.9) 0 - -# EV 10 title -set fmri(evtitle10) "" - -# Basic waveform shape (EV 10) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape10) 2 - -# Convolution (EV 10) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve10) 0 - -# Convolve phase (EV 10) -set fmri(convolve_phase10) 0 - -# Apply temporal filtering (EV 10) -set fmri(tempfilt_yn10) 0 - -# Add temporal derivative (EV 10) -set fmri(deriv_yn10) 0 - -# Custom EV file (EV 10) -set fmri(custom10) "dummy" - -# Orthogonalise EV 10 wrt EV 0 -set fmri(ortho10.0) 0 - -# Orthogonalise EV 10 wrt EV 1 -set fmri(ortho10.1) 0 - -# Orthogonalise EV 10 wrt EV 2 -set fmri(ortho10.2) 0 - -# Orthogonalise EV 10 wrt EV 3 -set fmri(ortho10.3) 0 - -# Orthogonalise EV 10 wrt EV 4 -set fmri(ortho10.4) 0 - -# Orthogonalise EV 10 wrt EV 5 -set fmri(ortho10.5) 0 - -# Orthogonalise EV 10 wrt EV 6 -set fmri(ortho10.6) 0 - -# Orthogonalise EV 10 wrt EV 7 -set fmri(ortho10.7) 0 - -# Orthogonalise EV 10 wrt EV 8 -set fmri(ortho10.8) 0 - -# Orthogonalise EV 10 wrt EV 9 -set fmri(ortho10.9) 0 - -# Orthogonalise EV 10 wrt EV 10 -set fmri(ortho10.10) 0 - -# Orthogonalise EV 10 wrt EV 11 -set fmri(ortho10.11) 0 - -# Orthogonalise EV 10 wrt EV 12 -set fmri(ortho10.12) 0 - -# Orthogonalise EV 10 wrt EV 13 -set fmri(ortho10.13) 0 - -# Orthogonalise EV 10 wrt EV 14 -set fmri(ortho10.14) 0 - -# Orthogonalise EV 10 wrt EV 15 -set fmri(ortho10.15) 0 - -# Orthogonalise EV 10 wrt EV 16 -set fmri(ortho10.16) 0 - -# Orthogonalise EV 10 wrt EV 17 -set fmri(ortho10.17) 0 - -# Orthogonalise EV 10 wrt EV 18 -set fmri(ortho10.18) 0 - -# Orthogonalise EV 10 wrt EV 19 -set fmri(ortho10.19) 0 - -# Orthogonalise EV 10 wrt EV 20 -set fmri(ortho10.20) 0 - -# Orthogonalise EV 10 wrt EV 21 -set fmri(ortho10.21) 0 - -# Orthogonalise EV 10 wrt EV 22 -set fmri(ortho10.22) 0 - -# Orthogonalise EV 10 wrt EV 23 -set fmri(ortho10.23) 0 - -# Orthogonalise EV 10 wrt EV 24 -set fmri(ortho10.24) 0 - -# Orthogonalise EV 10 wrt EV 25 -set fmri(ortho10.25) 0 - -# Orthogonalise EV 10 wrt EV 26 -set fmri(ortho10.26) 0 - -# Higher-level EV value for EV 10 and input 1 -set fmri(evg1.10) 0 - -# Higher-level EV value for EV 10 and input 2 -set fmri(evg2.10) 0 - -# Higher-level EV value for EV 10 and input 3 -set fmri(evg3.10) 0 - -# Higher-level EV value for EV 10 and input 4 -set fmri(evg4.10) 0 - -# Higher-level EV value for EV 10 and input 5 -set fmri(evg5.10) 0 - -# Higher-level EV value for EV 10 and input 6 -set fmri(evg6.10) 0 - -# Higher-level EV value for EV 10 and input 7 -set fmri(evg7.10) 0 - -# Higher-level EV value for EV 10 and input 8 -set fmri(evg8.10) 0 - -# Higher-level EV value for EV 10 and input 9 -set fmri(evg9.10) 0 - -# Higher-level EV value for EV 10 and input 10 -set fmri(evg10.10) 0 - -# Higher-level EV value for EV 10 and input 11 -set fmri(evg11.10) 0 - -# Higher-level EV value for EV 10 and input 12 -set fmri(evg12.10) 0 - -# Higher-level EV value for EV 10 and input 13 -set fmri(evg13.10) 0 - -# Higher-level EV value for EV 10 and input 14 -set fmri(evg14.10) 0 - -# Higher-level EV value for EV 10 and input 15 -set fmri(evg15.10) 0 - -# Higher-level EV value for EV 10 and input 16 -set fmri(evg16.10) 0 - -# Higher-level EV value for EV 10 and input 17 -set fmri(evg17.10) 0 - -# Higher-level EV value for EV 10 and input 18 -set fmri(evg18.10) 0 - -# Higher-level EV value for EV 10 and input 19 -set fmri(evg19.10) 1.0 - -# Higher-level EV value for EV 10 and input 20 -set fmri(evg20.10) 1.0 - -# Higher-level EV value for EV 10 and input 21 -set fmri(evg21.10) 0 - -# Higher-level EV value for EV 10 and input 22 -set fmri(evg22.10) 0 - -# Higher-level EV value for EV 10 and input 23 -set fmri(evg23.10) 0 - -# Higher-level EV value for EV 10 and input 24 -set fmri(evg24.10) 0 - -# Higher-level EV value for EV 10 and input 25 -set fmri(evg25.10) 0 - -# Higher-level EV value for EV 10 and input 26 -set fmri(evg26.10) 0 - -# Higher-level EV value for EV 10 and input 27 -set fmri(evg27.10) 0 - -# Higher-level EV value for EV 10 and input 28 -set fmri(evg28.10) 0 - -# Higher-level EV value for EV 10 and input 29 -set fmri(evg29.10) 0 - -# Higher-level EV value for EV 10 and input 30 -set fmri(evg30.10) 0 - -# Higher-level EV value for EV 10 and input 31 -set fmri(evg31.10) 0 - -# Higher-level EV value for EV 10 and input 32 -set fmri(evg32.10) 0 - -# Higher-level EV value for EV 10 and input 33 -set fmri(evg33.10) 0 - -# Higher-level EV value for EV 10 and input 34 -set fmri(evg34.10) 0 - -# Higher-level EV value for EV 10 and input 35 -set fmri(evg35.10) 0 - -# Higher-level EV value for EV 10 and input 36 -set fmri(evg36.10) 0 - -# Higher-level EV value for EV 10 and input 37 -set fmri(evg37.10) 0 - -# Higher-level EV value for EV 10 and input 38 -set fmri(evg38.10) 0 - -# Higher-level EV value for EV 10 and input 39 -set fmri(evg39.10) 0 - -# Higher-level EV value for EV 10 and input 40 -set fmri(evg40.10) 0 - -# Higher-level EV value for EV 10 and input 41 -set fmri(evg41.10) 0 - -# Higher-level EV value for EV 10 and input 42 -set fmri(evg42.10) 0 - -# Higher-level EV value for EV 10 and input 43 -set fmri(evg43.10) 0 - -# Higher-level EV value for EV 10 and input 44 -set fmri(evg44.10) 0 - -# Higher-level EV value for EV 10 and input 45 -set fmri(evg45.10) 0 - -# Higher-level EV value for EV 10 and input 46 -set fmri(evg46.10) 0 - -# Higher-level EV value for EV 10 and input 47 -set fmri(evg47.10) 0 - -# Higher-level EV value for EV 10 and input 48 -set fmri(evg48.10) 0 - -# Higher-level EV value for EV 10 and input 49 -set fmri(evg49.10) 0 - -# Higher-level EV value for EV 10 and input 50 -set fmri(evg50.10) 0 - -# Higher-level EV value for EV 10 and input 51 -set fmri(evg51.10) 0 - -# Higher-level EV value for EV 10 and input 52 -set fmri(evg52.10) 0 - -# EV 11 title -set fmri(evtitle11) "" - -# Basic waveform shape (EV 11) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape11) 2 - -# Convolution (EV 11) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve11) 0 - -# Convolve phase (EV 11) -set fmri(convolve_phase11) 0 - -# Apply temporal filtering (EV 11) -set fmri(tempfilt_yn11) 0 - -# Add temporal derivative (EV 11) -set fmri(deriv_yn11) 0 - -# Custom EV file (EV 11) -set fmri(custom11) "dummy" - -# Orthogonalise EV 11 wrt EV 0 -set fmri(ortho11.0) 0 - -# Orthogonalise EV 11 wrt EV 1 -set fmri(ortho11.1) 0 - -# Orthogonalise EV 11 wrt EV 2 -set fmri(ortho11.2) 0 - -# Orthogonalise EV 11 wrt EV 3 -set fmri(ortho11.3) 0 - -# Orthogonalise EV 11 wrt EV 4 -set fmri(ortho11.4) 0 - -# Orthogonalise EV 11 wrt EV 5 -set fmri(ortho11.5) 0 - -# Orthogonalise EV 11 wrt EV 6 -set fmri(ortho11.6) 0 - -# Orthogonalise EV 11 wrt EV 7 -set fmri(ortho11.7) 0 - -# Orthogonalise EV 11 wrt EV 8 -set fmri(ortho11.8) 0 - -# Orthogonalise EV 11 wrt EV 9 -set fmri(ortho11.9) 0 - -# Orthogonalise EV 11 wrt EV 10 -set fmri(ortho11.10) 0 - -# Orthogonalise EV 11 wrt EV 11 -set fmri(ortho11.11) 0 - -# Orthogonalise EV 11 wrt EV 12 -set fmri(ortho11.12) 0 - -# Orthogonalise EV 11 wrt EV 13 -set fmri(ortho11.13) 0 - -# Orthogonalise EV 11 wrt EV 14 -set fmri(ortho11.14) 0 - -# Orthogonalise EV 11 wrt EV 15 -set fmri(ortho11.15) 0 - -# Orthogonalise EV 11 wrt EV 16 -set fmri(ortho11.16) 0 - -# Orthogonalise EV 11 wrt EV 17 -set fmri(ortho11.17) 0 - -# Orthogonalise EV 11 wrt EV 18 -set fmri(ortho11.18) 0 - -# Orthogonalise EV 11 wrt EV 19 -set fmri(ortho11.19) 0 - -# Orthogonalise EV 11 wrt EV 20 -set fmri(ortho11.20) 0 - -# Orthogonalise EV 11 wrt EV 21 -set fmri(ortho11.21) 0 - -# Orthogonalise EV 11 wrt EV 22 -set fmri(ortho11.22) 0 - -# Orthogonalise EV 11 wrt EV 23 -set fmri(ortho11.23) 0 - -# Orthogonalise EV 11 wrt EV 24 -set fmri(ortho11.24) 0 - -# Orthogonalise EV 11 wrt EV 25 -set fmri(ortho11.25) 0 - -# Orthogonalise EV 11 wrt EV 26 -set fmri(ortho11.26) 0 - -# Higher-level EV value for EV 11 and input 1 -set fmri(evg1.11) 0 - -# Higher-level EV value for EV 11 and input 2 -set fmri(evg2.11) 0 - -# Higher-level EV value for EV 11 and input 3 -set fmri(evg3.11) 0 - -# Higher-level EV value for EV 11 and input 4 -set fmri(evg4.11) 0 - -# Higher-level EV value for EV 11 and input 5 -set fmri(evg5.11) 0 - -# Higher-level EV value for EV 11 and input 6 -set fmri(evg6.11) 0 - -# Higher-level EV value for EV 11 and input 7 -set fmri(evg7.11) 0 - -# Higher-level EV value for EV 11 and input 8 -set fmri(evg8.11) 0 - -# Higher-level EV value for EV 11 and input 9 -set fmri(evg9.11) 0 - -# Higher-level EV value for EV 11 and input 10 -set fmri(evg10.11) 0 - -# Higher-level EV value for EV 11 and input 11 -set fmri(evg11.11) 0 - -# Higher-level EV value for EV 11 and input 12 -set fmri(evg12.11) 0 - -# Higher-level EV value for EV 11 and input 13 -set fmri(evg13.11) 0 - -# Higher-level EV value for EV 11 and input 14 -set fmri(evg14.11) 0 - -# Higher-level EV value for EV 11 and input 15 -set fmri(evg15.11) 0 - -# Higher-level EV value for EV 11 and input 16 -set fmri(evg16.11) 0 - -# Higher-level EV value for EV 11 and input 17 -set fmri(evg17.11) 0 - -# Higher-level EV value for EV 11 and input 18 -set fmri(evg18.11) 0 - -# Higher-level EV value for EV 11 and input 19 -set fmri(evg19.11) 0 - -# Higher-level EV value for EV 11 and input 20 -set fmri(evg20.11) 0 - -# Higher-level EV value for EV 11 and input 21 -set fmri(evg21.11) 1.0 - -# Higher-level EV value for EV 11 and input 22 -set fmri(evg22.11) 1.0 - -# Higher-level EV value for EV 11 and input 23 -set fmri(evg23.11) 0 - -# Higher-level EV value for EV 11 and input 24 -set fmri(evg24.11) 0 - -# Higher-level EV value for EV 11 and input 25 -set fmri(evg25.11) 0 - -# Higher-level EV value for EV 11 and input 26 -set fmri(evg26.11) 0 - -# Higher-level EV value for EV 11 and input 27 -set fmri(evg27.11) 0 - -# Higher-level EV value for EV 11 and input 28 -set fmri(evg28.11) 0 - -# Higher-level EV value for EV 11 and input 29 -set fmri(evg29.11) 0 - -# Higher-level EV value for EV 11 and input 30 -set fmri(evg30.11) 0 - -# Higher-level EV value for EV 11 and input 31 -set fmri(evg31.11) 0 - -# Higher-level EV value for EV 11 and input 32 -set fmri(evg32.11) 0 - -# Higher-level EV value for EV 11 and input 33 -set fmri(evg33.11) 0 - -# Higher-level EV value for EV 11 and input 34 -set fmri(evg34.11) 0 - -# Higher-level EV value for EV 11 and input 35 -set fmri(evg35.11) 0 - -# Higher-level EV value for EV 11 and input 36 -set fmri(evg36.11) 0 - -# Higher-level EV value for EV 11 and input 37 -set fmri(evg37.11) 0 - -# Higher-level EV value for EV 11 and input 38 -set fmri(evg38.11) 0 - -# Higher-level EV value for EV 11 and input 39 -set fmri(evg39.11) 0 - -# Higher-level EV value for EV 11 and input 40 -set fmri(evg40.11) 0 - -# Higher-level EV value for EV 11 and input 41 -set fmri(evg41.11) 0 - -# Higher-level EV value for EV 11 and input 42 -set fmri(evg42.11) 0 - -# Higher-level EV value for EV 11 and input 43 -set fmri(evg43.11) 0 - -# Higher-level EV value for EV 11 and input 44 -set fmri(evg44.11) 0 - -# Higher-level EV value for EV 11 and input 45 -set fmri(evg45.11) 0 - -# Higher-level EV value for EV 11 and input 46 -set fmri(evg46.11) 0 - -# Higher-level EV value for EV 11 and input 47 -set fmri(evg47.11) 0 - -# Higher-level EV value for EV 11 and input 48 -set fmri(evg48.11) 0 - -# Higher-level EV value for EV 11 and input 49 -set fmri(evg49.11) 0 - -# Higher-level EV value for EV 11 and input 50 -set fmri(evg50.11) 0 - -# Higher-level EV value for EV 11 and input 51 -set fmri(evg51.11) 0 - -# Higher-level EV value for EV 11 and input 52 -set fmri(evg52.11) 0 - -# EV 12 title -set fmri(evtitle12) "" - -# Basic waveform shape (EV 12) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape12) 2 - -# Convolution (EV 12) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve12) 0 - -# Convolve phase (EV 12) -set fmri(convolve_phase12) 0 - -# Apply temporal filtering (EV 12) -set fmri(tempfilt_yn12) 0 - -# Add temporal derivative (EV 12) -set fmri(deriv_yn12) 0 - -# Custom EV file (EV 12) -set fmri(custom12) "dummy" - -# Orthogonalise EV 12 wrt EV 0 -set fmri(ortho12.0) 0 - -# Orthogonalise EV 12 wrt EV 1 -set fmri(ortho12.1) 0 - -# Orthogonalise EV 12 wrt EV 2 -set fmri(ortho12.2) 0 - -# Orthogonalise EV 12 wrt EV 3 -set fmri(ortho12.3) 0 - -# Orthogonalise EV 12 wrt EV 4 -set fmri(ortho12.4) 0 - -# Orthogonalise EV 12 wrt EV 5 -set fmri(ortho12.5) 0 - -# Orthogonalise EV 12 wrt EV 6 -set fmri(ortho12.6) 0 - -# Orthogonalise EV 12 wrt EV 7 -set fmri(ortho12.7) 0 - -# Orthogonalise EV 12 wrt EV 8 -set fmri(ortho12.8) 0 - -# Orthogonalise EV 12 wrt EV 9 -set fmri(ortho12.9) 0 - -# Orthogonalise EV 12 wrt EV 10 -set fmri(ortho12.10) 0 - -# Orthogonalise EV 12 wrt EV 11 -set fmri(ortho12.11) 0 - -# Orthogonalise EV 12 wrt EV 12 -set fmri(ortho12.12) 0 - -# Orthogonalise EV 12 wrt EV 13 -set fmri(ortho12.13) 0 - -# Orthogonalise EV 12 wrt EV 14 -set fmri(ortho12.14) 0 - -# Orthogonalise EV 12 wrt EV 15 -set fmri(ortho12.15) 0 - -# Orthogonalise EV 12 wrt EV 16 -set fmri(ortho12.16) 0 - -# Orthogonalise EV 12 wrt EV 17 -set fmri(ortho12.17) 0 - -# Orthogonalise EV 12 wrt EV 18 -set fmri(ortho12.18) 0 - -# Orthogonalise EV 12 wrt EV 19 -set fmri(ortho12.19) 0 - -# Orthogonalise EV 12 wrt EV 20 -set fmri(ortho12.20) 0 - -# Orthogonalise EV 12 wrt EV 21 -set fmri(ortho12.21) 0 - -# Orthogonalise EV 12 wrt EV 22 -set fmri(ortho12.22) 0 - -# Orthogonalise EV 12 wrt EV 23 -set fmri(ortho12.23) 0 - -# Orthogonalise EV 12 wrt EV 24 -set fmri(ortho12.24) 0 - -# Orthogonalise EV 12 wrt EV 25 -set fmri(ortho12.25) 0 - -# Orthogonalise EV 12 wrt EV 26 -set fmri(ortho12.26) 0 - -# Higher-level EV value for EV 12 and input 1 -set fmri(evg1.12) 0 - -# Higher-level EV value for EV 12 and input 2 -set fmri(evg2.12) 0 - -# Higher-level EV value for EV 12 and input 3 -set fmri(evg3.12) 0 - -# Higher-level EV value for EV 12 and input 4 -set fmri(evg4.12) 0 - -# Higher-level EV value for EV 12 and input 5 -set fmri(evg5.12) 0 - -# Higher-level EV value for EV 12 and input 6 -set fmri(evg6.12) 0 - -# Higher-level EV value for EV 12 and input 7 -set fmri(evg7.12) 0 - -# Higher-level EV value for EV 12 and input 8 -set fmri(evg8.12) 0 - -# Higher-level EV value for EV 12 and input 9 -set fmri(evg9.12) 0 - -# Higher-level EV value for EV 12 and input 10 -set fmri(evg10.12) 0 - -# Higher-level EV value for EV 12 and input 11 -set fmri(evg11.12) 0 - -# Higher-level EV value for EV 12 and input 12 -set fmri(evg12.12) 0 - -# Higher-level EV value for EV 12 and input 13 -set fmri(evg13.12) 0 - -# Higher-level EV value for EV 12 and input 14 -set fmri(evg14.12) 0 - -# Higher-level EV value for EV 12 and input 15 -set fmri(evg15.12) 0 - -# Higher-level EV value for EV 12 and input 16 -set fmri(evg16.12) 0 - -# Higher-level EV value for EV 12 and input 17 -set fmri(evg17.12) 0 - -# Higher-level EV value for EV 12 and input 18 -set fmri(evg18.12) 0 - -# Higher-level EV value for EV 12 and input 19 -set fmri(evg19.12) 0 - -# Higher-level EV value for EV 12 and input 20 -set fmri(evg20.12) 0 - -# Higher-level EV value for EV 12 and input 21 -set fmri(evg21.12) 0 - -# Higher-level EV value for EV 12 and input 22 -set fmri(evg22.12) 0 - -# Higher-level EV value for EV 12 and input 23 -set fmri(evg23.12) 1.0 - -# Higher-level EV value for EV 12 and input 24 -set fmri(evg24.12) 1.0 - -# Higher-level EV value for EV 12 and input 25 -set fmri(evg25.12) 0 - -# Higher-level EV value for EV 12 and input 26 -set fmri(evg26.12) 0 - -# Higher-level EV value for EV 12 and input 27 -set fmri(evg27.12) 0 - -# Higher-level EV value for EV 12 and input 28 -set fmri(evg28.12) 0 - -# Higher-level EV value for EV 12 and input 29 -set fmri(evg29.12) 0 - -# Higher-level EV value for EV 12 and input 30 -set fmri(evg30.12) 0 - -# Higher-level EV value for EV 12 and input 31 -set fmri(evg31.12) 0 - -# Higher-level EV value for EV 12 and input 32 -set fmri(evg32.12) 0 - -# Higher-level EV value for EV 12 and input 33 -set fmri(evg33.12) 0 - -# Higher-level EV value for EV 12 and input 34 -set fmri(evg34.12) 0 - -# Higher-level EV value for EV 12 and input 35 -set fmri(evg35.12) 0 - -# Higher-level EV value for EV 12 and input 36 -set fmri(evg36.12) 0 - -# Higher-level EV value for EV 12 and input 37 -set fmri(evg37.12) 0 - -# Higher-level EV value for EV 12 and input 38 -set fmri(evg38.12) 0 - -# Higher-level EV value for EV 12 and input 39 -set fmri(evg39.12) 0 - -# Higher-level EV value for EV 12 and input 40 -set fmri(evg40.12) 0 - -# Higher-level EV value for EV 12 and input 41 -set fmri(evg41.12) 0 - -# Higher-level EV value for EV 12 and input 42 -set fmri(evg42.12) 0 - -# Higher-level EV value for EV 12 and input 43 -set fmri(evg43.12) 0 - -# Higher-level EV value for EV 12 and input 44 -set fmri(evg44.12) 0 - -# Higher-level EV value for EV 12 and input 45 -set fmri(evg45.12) 0 - -# Higher-level EV value for EV 12 and input 46 -set fmri(evg46.12) 0 - -# Higher-level EV value for EV 12 and input 47 -set fmri(evg47.12) 0 - -# Higher-level EV value for EV 12 and input 48 -set fmri(evg48.12) 0 - -# Higher-level EV value for EV 12 and input 49 -set fmri(evg49.12) 0 - -# Higher-level EV value for EV 12 and input 50 -set fmri(evg50.12) 0 - -# Higher-level EV value for EV 12 and input 51 -set fmri(evg51.12) 0 - -# Higher-level EV value for EV 12 and input 52 -set fmri(evg52.12) 0 - -# EV 13 title -set fmri(evtitle13) "" - -# Basic waveform shape (EV 13) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape13) 2 - -# Convolution (EV 13) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve13) 0 - -# Convolve phase (EV 13) -set fmri(convolve_phase13) 0 - -# Apply temporal filtering (EV 13) -set fmri(tempfilt_yn13) 0 - -# Add temporal derivative (EV 13) -set fmri(deriv_yn13) 0 - -# Custom EV file (EV 13) -set fmri(custom13) "dummy" - -# Orthogonalise EV 13 wrt EV 0 -set fmri(ortho13.0) 0 - -# Orthogonalise EV 13 wrt EV 1 -set fmri(ortho13.1) 0 - -# Orthogonalise EV 13 wrt EV 2 -set fmri(ortho13.2) 0 - -# Orthogonalise EV 13 wrt EV 3 -set fmri(ortho13.3) 0 - -# Orthogonalise EV 13 wrt EV 4 -set fmri(ortho13.4) 0 - -# Orthogonalise EV 13 wrt EV 5 -set fmri(ortho13.5) 0 - -# Orthogonalise EV 13 wrt EV 6 -set fmri(ortho13.6) 0 - -# Orthogonalise EV 13 wrt EV 7 -set fmri(ortho13.7) 0 - -# Orthogonalise EV 13 wrt EV 8 -set fmri(ortho13.8) 0 - -# Orthogonalise EV 13 wrt EV 9 -set fmri(ortho13.9) 0 - -# Orthogonalise EV 13 wrt EV 10 -set fmri(ortho13.10) 0 - -# Orthogonalise EV 13 wrt EV 11 -set fmri(ortho13.11) 0 - -# Orthogonalise EV 13 wrt EV 12 -set fmri(ortho13.12) 0 - -# Orthogonalise EV 13 wrt EV 13 -set fmri(ortho13.13) 0 - -# Orthogonalise EV 13 wrt EV 14 -set fmri(ortho13.14) 0 - -# Orthogonalise EV 13 wrt EV 15 -set fmri(ortho13.15) 0 - -# Orthogonalise EV 13 wrt EV 16 -set fmri(ortho13.16) 0 - -# Orthogonalise EV 13 wrt EV 17 -set fmri(ortho13.17) 0 - -# Orthogonalise EV 13 wrt EV 18 -set fmri(ortho13.18) 0 - -# Orthogonalise EV 13 wrt EV 19 -set fmri(ortho13.19) 0 - -# Orthogonalise EV 13 wrt EV 20 -set fmri(ortho13.20) 0 - -# Orthogonalise EV 13 wrt EV 21 -set fmri(ortho13.21) 0 - -# Orthogonalise EV 13 wrt EV 22 -set fmri(ortho13.22) 0 - -# Orthogonalise EV 13 wrt EV 23 -set fmri(ortho13.23) 0 - -# Orthogonalise EV 13 wrt EV 24 -set fmri(ortho13.24) 0 - -# Orthogonalise EV 13 wrt EV 25 -set fmri(ortho13.25) 0 - -# Orthogonalise EV 13 wrt EV 26 -set fmri(ortho13.26) 0 - -# Higher-level EV value for EV 13 and input 1 -set fmri(evg1.13) 0 - -# Higher-level EV value for EV 13 and input 2 -set fmri(evg2.13) 0 - -# Higher-level EV value for EV 13 and input 3 -set fmri(evg3.13) 0 - -# Higher-level EV value for EV 13 and input 4 -set fmri(evg4.13) 0 - -# Higher-level EV value for EV 13 and input 5 -set fmri(evg5.13) 0 - -# Higher-level EV value for EV 13 and input 6 -set fmri(evg6.13) 0 - -# Higher-level EV value for EV 13 and input 7 -set fmri(evg7.13) 0 - -# Higher-level EV value for EV 13 and input 8 -set fmri(evg8.13) 0 - -# Higher-level EV value for EV 13 and input 9 -set fmri(evg9.13) 0 - -# Higher-level EV value for EV 13 and input 10 -set fmri(evg10.13) 0 - -# Higher-level EV value for EV 13 and input 11 -set fmri(evg11.13) 0 - -# Higher-level EV value for EV 13 and input 12 -set fmri(evg12.13) 0 - -# Higher-level EV value for EV 13 and input 13 -set fmri(evg13.13) 0 - -# Higher-level EV value for EV 13 and input 14 -set fmri(evg14.13) 0 - -# Higher-level EV value for EV 13 and input 15 -set fmri(evg15.13) 0 - -# Higher-level EV value for EV 13 and input 16 -set fmri(evg16.13) 0 - -# Higher-level EV value for EV 13 and input 17 -set fmri(evg17.13) 0 - -# Higher-level EV value for EV 13 and input 18 -set fmri(evg18.13) 0 - -# Higher-level EV value for EV 13 and input 19 -set fmri(evg19.13) 0 - -# Higher-level EV value for EV 13 and input 20 -set fmri(evg20.13) 0 - -# Higher-level EV value for EV 13 and input 21 -set fmri(evg21.13) 0 - -# Higher-level EV value for EV 13 and input 22 -set fmri(evg22.13) 0 - -# Higher-level EV value for EV 13 and input 23 -set fmri(evg23.13) 0 - -# Higher-level EV value for EV 13 and input 24 -set fmri(evg24.13) 0 - -# Higher-level EV value for EV 13 and input 25 -set fmri(evg25.13) 1.0 - -# Higher-level EV value for EV 13 and input 26 -set fmri(evg26.13) 1.0 - -# Higher-level EV value for EV 13 and input 27 -set fmri(evg27.13) 0 - -# Higher-level EV value for EV 13 and input 28 -set fmri(evg28.13) 0 - -# Higher-level EV value for EV 13 and input 29 -set fmri(evg29.13) 0 - -# Higher-level EV value for EV 13 and input 30 -set fmri(evg30.13) 0 - -# Higher-level EV value for EV 13 and input 31 -set fmri(evg31.13) 0 - -# Higher-level EV value for EV 13 and input 32 -set fmri(evg32.13) 0 - -# Higher-level EV value for EV 13 and input 33 -set fmri(evg33.13) 0 - -# Higher-level EV value for EV 13 and input 34 -set fmri(evg34.13) 0 - -# Higher-level EV value for EV 13 and input 35 -set fmri(evg35.13) 0 - -# Higher-level EV value for EV 13 and input 36 -set fmri(evg36.13) 0 - -# Higher-level EV value for EV 13 and input 37 -set fmri(evg37.13) 0 - -# Higher-level EV value for EV 13 and input 38 -set fmri(evg38.13) 0 - -# Higher-level EV value for EV 13 and input 39 -set fmri(evg39.13) 0 - -# Higher-level EV value for EV 13 and input 40 -set fmri(evg40.13) 0 - -# Higher-level EV value for EV 13 and input 41 -set fmri(evg41.13) 0 - -# Higher-level EV value for EV 13 and input 42 -set fmri(evg42.13) 0 - -# Higher-level EV value for EV 13 and input 43 -set fmri(evg43.13) 0 - -# Higher-level EV value for EV 13 and input 44 -set fmri(evg44.13) 0 - -# Higher-level EV value for EV 13 and input 45 -set fmri(evg45.13) 0 - -# Higher-level EV value for EV 13 and input 46 -set fmri(evg46.13) 0 - -# Higher-level EV value for EV 13 and input 47 -set fmri(evg47.13) 0 - -# Higher-level EV value for EV 13 and input 48 -set fmri(evg48.13) 0 - -# Higher-level EV value for EV 13 and input 49 -set fmri(evg49.13) 0 - -# Higher-level EV value for EV 13 and input 50 -set fmri(evg50.13) 0 - -# Higher-level EV value for EV 13 and input 51 -set fmri(evg51.13) 0 - -# Higher-level EV value for EV 13 and input 52 -set fmri(evg52.13) 0 - -# EV 14 title -set fmri(evtitle14) "" - -# Basic waveform shape (EV 14) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape14) 2 - -# Convolution (EV 14) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve14) 0 - -# Convolve phase (EV 14) -set fmri(convolve_phase14) 0 - -# Apply temporal filtering (EV 14) -set fmri(tempfilt_yn14) 0 - -# Add temporal derivative (EV 14) -set fmri(deriv_yn14) 0 - -# Custom EV file (EV 14) -set fmri(custom14) "dummy" - -# Orthogonalise EV 14 wrt EV 0 -set fmri(ortho14.0) 0 - -# Orthogonalise EV 14 wrt EV 1 -set fmri(ortho14.1) 0 - -# Orthogonalise EV 14 wrt EV 2 -set fmri(ortho14.2) 0 - -# Orthogonalise EV 14 wrt EV 3 -set fmri(ortho14.3) 0 - -# Orthogonalise EV 14 wrt EV 4 -set fmri(ortho14.4) 0 - -# Orthogonalise EV 14 wrt EV 5 -set fmri(ortho14.5) 0 - -# Orthogonalise EV 14 wrt EV 6 -set fmri(ortho14.6) 0 - -# Orthogonalise EV 14 wrt EV 7 -set fmri(ortho14.7) 0 - -# Orthogonalise EV 14 wrt EV 8 -set fmri(ortho14.8) 0 - -# Orthogonalise EV 14 wrt EV 9 -set fmri(ortho14.9) 0 - -# Orthogonalise EV 14 wrt EV 10 -set fmri(ortho14.10) 0 - -# Orthogonalise EV 14 wrt EV 11 -set fmri(ortho14.11) 0 - -# Orthogonalise EV 14 wrt EV 12 -set fmri(ortho14.12) 0 - -# Orthogonalise EV 14 wrt EV 13 -set fmri(ortho14.13) 0 - -# Orthogonalise EV 14 wrt EV 14 -set fmri(ortho14.14) 0 - -# Orthogonalise EV 14 wrt EV 15 -set fmri(ortho14.15) 0 - -# Orthogonalise EV 14 wrt EV 16 -set fmri(ortho14.16) 0 - -# Orthogonalise EV 14 wrt EV 17 -set fmri(ortho14.17) 0 - -# Orthogonalise EV 14 wrt EV 18 -set fmri(ortho14.18) 0 - -# Orthogonalise EV 14 wrt EV 19 -set fmri(ortho14.19) 0 - -# Orthogonalise EV 14 wrt EV 20 -set fmri(ortho14.20) 0 - -# Orthogonalise EV 14 wrt EV 21 -set fmri(ortho14.21) 0 - -# Orthogonalise EV 14 wrt EV 22 -set fmri(ortho14.22) 0 - -# Orthogonalise EV 14 wrt EV 23 -set fmri(ortho14.23) 0 - -# Orthogonalise EV 14 wrt EV 24 -set fmri(ortho14.24) 0 - -# Orthogonalise EV 14 wrt EV 25 -set fmri(ortho14.25) 0 - -# Orthogonalise EV 14 wrt EV 26 -set fmri(ortho14.26) 0 - -# Higher-level EV value for EV 14 and input 1 -set fmri(evg1.14) 0 - -# Higher-level EV value for EV 14 and input 2 -set fmri(evg2.14) 0 - -# Higher-level EV value for EV 14 and input 3 -set fmri(evg3.14) 0 - -# Higher-level EV value for EV 14 and input 4 -set fmri(evg4.14) 0 - -# Higher-level EV value for EV 14 and input 5 -set fmri(evg5.14) 0 - -# Higher-level EV value for EV 14 and input 6 -set fmri(evg6.14) 0 - -# Higher-level EV value for EV 14 and input 7 -set fmri(evg7.14) 0 - -# Higher-level EV value for EV 14 and input 8 -set fmri(evg8.14) 0 - -# Higher-level EV value for EV 14 and input 9 -set fmri(evg9.14) 0 - -# Higher-level EV value for EV 14 and input 10 -set fmri(evg10.14) 0 - -# Higher-level EV value for EV 14 and input 11 -set fmri(evg11.14) 0 - -# Higher-level EV value for EV 14 and input 12 -set fmri(evg12.14) 0 - -# Higher-level EV value for EV 14 and input 13 -set fmri(evg13.14) 0 - -# Higher-level EV value for EV 14 and input 14 -set fmri(evg14.14) 0 - -# Higher-level EV value for EV 14 and input 15 -set fmri(evg15.14) 0 - -# Higher-level EV value for EV 14 and input 16 -set fmri(evg16.14) 0 - -# Higher-level EV value for EV 14 and input 17 -set fmri(evg17.14) 0 - -# Higher-level EV value for EV 14 and input 18 -set fmri(evg18.14) 0 - -# Higher-level EV value for EV 14 and input 19 -set fmri(evg19.14) 0 - -# Higher-level EV value for EV 14 and input 20 -set fmri(evg20.14) 0 - -# Higher-level EV value for EV 14 and input 21 -set fmri(evg21.14) 0 - -# Higher-level EV value for EV 14 and input 22 -set fmri(evg22.14) 0 - -# Higher-level EV value for EV 14 and input 23 -set fmri(evg23.14) 0 - -# Higher-level EV value for EV 14 and input 24 -set fmri(evg24.14) 0 - -# Higher-level EV value for EV 14 and input 25 -set fmri(evg25.14) 0 - -# Higher-level EV value for EV 14 and input 26 -set fmri(evg26.14) 0 - -# Higher-level EV value for EV 14 and input 27 -set fmri(evg27.14) 1.0 - -# Higher-level EV value for EV 14 and input 28 -set fmri(evg28.14) 1.0 - -# Higher-level EV value for EV 14 and input 29 -set fmri(evg29.14) 0 - -# Higher-level EV value for EV 14 and input 30 -set fmri(evg30.14) 0 - -# Higher-level EV value for EV 14 and input 31 -set fmri(evg31.14) 0 - -# Higher-level EV value for EV 14 and input 32 -set fmri(evg32.14) 0 - -# Higher-level EV value for EV 14 and input 33 -set fmri(evg33.14) 0 - -# Higher-level EV value for EV 14 and input 34 -set fmri(evg34.14) 0 - -# Higher-level EV value for EV 14 and input 35 -set fmri(evg35.14) 0 - -# Higher-level EV value for EV 14 and input 36 -set fmri(evg36.14) 0 - -# Higher-level EV value for EV 14 and input 37 -set fmri(evg37.14) 0 - -# Higher-level EV value for EV 14 and input 38 -set fmri(evg38.14) 0 - -# Higher-level EV value for EV 14 and input 39 -set fmri(evg39.14) 0 - -# Higher-level EV value for EV 14 and input 40 -set fmri(evg40.14) 0 - -# Higher-level EV value for EV 14 and input 41 -set fmri(evg41.14) 0 - -# Higher-level EV value for EV 14 and input 42 -set fmri(evg42.14) 0 - -# Higher-level EV value for EV 14 and input 43 -set fmri(evg43.14) 0 - -# Higher-level EV value for EV 14 and input 44 -set fmri(evg44.14) 0 - -# Higher-level EV value for EV 14 and input 45 -set fmri(evg45.14) 0 - -# Higher-level EV value for EV 14 and input 46 -set fmri(evg46.14) 0 - -# Higher-level EV value for EV 14 and input 47 -set fmri(evg47.14) 0 - -# Higher-level EV value for EV 14 and input 48 -set fmri(evg48.14) 0 - -# Higher-level EV value for EV 14 and input 49 -set fmri(evg49.14) 0 - -# Higher-level EV value for EV 14 and input 50 -set fmri(evg50.14) 0 - -# Higher-level EV value for EV 14 and input 51 -set fmri(evg51.14) 0 - -# Higher-level EV value for EV 14 and input 52 -set fmri(evg52.14) 0 - -# EV 15 title -set fmri(evtitle15) "" - -# Basic waveform shape (EV 15) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape15) 2 - -# Convolution (EV 15) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve15) 0 - -# Convolve phase (EV 15) -set fmri(convolve_phase15) 0 - -# Apply temporal filtering (EV 15) -set fmri(tempfilt_yn15) 0 - -# Add temporal derivative (EV 15) -set fmri(deriv_yn15) 0 - -# Custom EV file (EV 15) -set fmri(custom15) "dummy" - -# Orthogonalise EV 15 wrt EV 0 -set fmri(ortho15.0) 0 - -# Orthogonalise EV 15 wrt EV 1 -set fmri(ortho15.1) 0 - -# Orthogonalise EV 15 wrt EV 2 -set fmri(ortho15.2) 0 - -# Orthogonalise EV 15 wrt EV 3 -set fmri(ortho15.3) 0 - -# Orthogonalise EV 15 wrt EV 4 -set fmri(ortho15.4) 0 - -# Orthogonalise EV 15 wrt EV 5 -set fmri(ortho15.5) 0 - -# Orthogonalise EV 15 wrt EV 6 -set fmri(ortho15.6) 0 - -# Orthogonalise EV 15 wrt EV 7 -set fmri(ortho15.7) 0 - -# Orthogonalise EV 15 wrt EV 8 -set fmri(ortho15.8) 0 - -# Orthogonalise EV 15 wrt EV 9 -set fmri(ortho15.9) 0 - -# Orthogonalise EV 15 wrt EV 10 -set fmri(ortho15.10) 0 - -# Orthogonalise EV 15 wrt EV 11 -set fmri(ortho15.11) 0 - -# Orthogonalise EV 15 wrt EV 12 -set fmri(ortho15.12) 0 - -# Orthogonalise EV 15 wrt EV 13 -set fmri(ortho15.13) 0 - -# Orthogonalise EV 15 wrt EV 14 -set fmri(ortho15.14) 0 - -# Orthogonalise EV 15 wrt EV 15 -set fmri(ortho15.15) 0 - -# Orthogonalise EV 15 wrt EV 16 -set fmri(ortho15.16) 0 - -# Orthogonalise EV 15 wrt EV 17 -set fmri(ortho15.17) 0 - -# Orthogonalise EV 15 wrt EV 18 -set fmri(ortho15.18) 0 - -# Orthogonalise EV 15 wrt EV 19 -set fmri(ortho15.19) 0 - -# Orthogonalise EV 15 wrt EV 20 -set fmri(ortho15.20) 0 - -# Orthogonalise EV 15 wrt EV 21 -set fmri(ortho15.21) 0 - -# Orthogonalise EV 15 wrt EV 22 -set fmri(ortho15.22) 0 - -# Orthogonalise EV 15 wrt EV 23 -set fmri(ortho15.23) 0 - -# Orthogonalise EV 15 wrt EV 24 -set fmri(ortho15.24) 0 - -# Orthogonalise EV 15 wrt EV 25 -set fmri(ortho15.25) 0 - -# Orthogonalise EV 15 wrt EV 26 -set fmri(ortho15.26) 0 - -# Higher-level EV value for EV 15 and input 1 -set fmri(evg1.15) 0 - -# Higher-level EV value for EV 15 and input 2 -set fmri(evg2.15) 0 - -# Higher-level EV value for EV 15 and input 3 -set fmri(evg3.15) 0 - -# Higher-level EV value for EV 15 and input 4 -set fmri(evg4.15) 0 - -# Higher-level EV value for EV 15 and input 5 -set fmri(evg5.15) 0 - -# Higher-level EV value for EV 15 and input 6 -set fmri(evg6.15) 0 - -# Higher-level EV value for EV 15 and input 7 -set fmri(evg7.15) 0 - -# Higher-level EV value for EV 15 and input 8 -set fmri(evg8.15) 0 - -# Higher-level EV value for EV 15 and input 9 -set fmri(evg9.15) 0 - -# Higher-level EV value for EV 15 and input 10 -set fmri(evg10.15) 0 - -# Higher-level EV value for EV 15 and input 11 -set fmri(evg11.15) 0 - -# Higher-level EV value for EV 15 and input 12 -set fmri(evg12.15) 0 - -# Higher-level EV value for EV 15 and input 13 -set fmri(evg13.15) 0 - -# Higher-level EV value for EV 15 and input 14 -set fmri(evg14.15) 0 - -# Higher-level EV value for EV 15 and input 15 -set fmri(evg15.15) 0 - -# Higher-level EV value for EV 15 and input 16 -set fmri(evg16.15) 0 - -# Higher-level EV value for EV 15 and input 17 -set fmri(evg17.15) 0 - -# Higher-level EV value for EV 15 and input 18 -set fmri(evg18.15) 0 - -# Higher-level EV value for EV 15 and input 19 -set fmri(evg19.15) 0 - -# Higher-level EV value for EV 15 and input 20 -set fmri(evg20.15) 0 - -# Higher-level EV value for EV 15 and input 21 -set fmri(evg21.15) 0 - -# Higher-level EV value for EV 15 and input 22 -set fmri(evg22.15) 0 - -# Higher-level EV value for EV 15 and input 23 -set fmri(evg23.15) 0 - -# Higher-level EV value for EV 15 and input 24 -set fmri(evg24.15) 0 - -# Higher-level EV value for EV 15 and input 25 -set fmri(evg25.15) 0 - -# Higher-level EV value for EV 15 and input 26 -set fmri(evg26.15) 0 - -# Higher-level EV value for EV 15 and input 27 -set fmri(evg27.15) 0 - -# Higher-level EV value for EV 15 and input 28 -set fmri(evg28.15) 0 - -# Higher-level EV value for EV 15 and input 29 -set fmri(evg29.15) 1.0 - -# Higher-level EV value for EV 15 and input 30 -set fmri(evg30.15) 1.0 - -# Higher-level EV value for EV 15 and input 31 -set fmri(evg31.15) 0 - -# Higher-level EV value for EV 15 and input 32 -set fmri(evg32.15) 0 - -# Higher-level EV value for EV 15 and input 33 -set fmri(evg33.15) 0 - -# Higher-level EV value for EV 15 and input 34 -set fmri(evg34.15) 0 - -# Higher-level EV value for EV 15 and input 35 -set fmri(evg35.15) 0 - -# Higher-level EV value for EV 15 and input 36 -set fmri(evg36.15) 0 - -# Higher-level EV value for EV 15 and input 37 -set fmri(evg37.15) 0 - -# Higher-level EV value for EV 15 and input 38 -set fmri(evg38.15) 0 - -# Higher-level EV value for EV 15 and input 39 -set fmri(evg39.15) 0 - -# Higher-level EV value for EV 15 and input 40 -set fmri(evg40.15) 0 - -# Higher-level EV value for EV 15 and input 41 -set fmri(evg41.15) 0 - -# Higher-level EV value for EV 15 and input 42 -set fmri(evg42.15) 0 - -# Higher-level EV value for EV 15 and input 43 -set fmri(evg43.15) 0 - -# Higher-level EV value for EV 15 and input 44 -set fmri(evg44.15) 0 - -# Higher-level EV value for EV 15 and input 45 -set fmri(evg45.15) 0 - -# Higher-level EV value for EV 15 and input 46 -set fmri(evg46.15) 0 - -# Higher-level EV value for EV 15 and input 47 -set fmri(evg47.15) 0 - -# Higher-level EV value for EV 15 and input 48 -set fmri(evg48.15) 0 - -# Higher-level EV value for EV 15 and input 49 -set fmri(evg49.15) 0 - -# Higher-level EV value for EV 15 and input 50 -set fmri(evg50.15) 0 - -# Higher-level EV value for EV 15 and input 51 -set fmri(evg51.15) 0 - -# Higher-level EV value for EV 15 and input 52 -set fmri(evg52.15) 0 - -# EV 16 title -set fmri(evtitle16) "" - -# Basic waveform shape (EV 16) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape16) 2 - -# Convolution (EV 16) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve16) 0 - -# Convolve phase (EV 16) -set fmri(convolve_phase16) 0 - -# Apply temporal filtering (EV 16) -set fmri(tempfilt_yn16) 0 - -# Add temporal derivative (EV 16) -set fmri(deriv_yn16) 0 - -# Custom EV file (EV 16) -set fmri(custom16) "dummy" - -# Orthogonalise EV 16 wrt EV 0 -set fmri(ortho16.0) 0 - -# Orthogonalise EV 16 wrt EV 1 -set fmri(ortho16.1) 0 - -# Orthogonalise EV 16 wrt EV 2 -set fmri(ortho16.2) 0 - -# Orthogonalise EV 16 wrt EV 3 -set fmri(ortho16.3) 0 - -# Orthogonalise EV 16 wrt EV 4 -set fmri(ortho16.4) 0 - -# Orthogonalise EV 16 wrt EV 5 -set fmri(ortho16.5) 0 - -# Orthogonalise EV 16 wrt EV 6 -set fmri(ortho16.6) 0 - -# Orthogonalise EV 16 wrt EV 7 -set fmri(ortho16.7) 0 - -# Orthogonalise EV 16 wrt EV 8 -set fmri(ortho16.8) 0 - -# Orthogonalise EV 16 wrt EV 9 -set fmri(ortho16.9) 0 - -# Orthogonalise EV 16 wrt EV 10 -set fmri(ortho16.10) 0 - -# Orthogonalise EV 16 wrt EV 11 -set fmri(ortho16.11) 0 - -# Orthogonalise EV 16 wrt EV 12 -set fmri(ortho16.12) 0 - -# Orthogonalise EV 16 wrt EV 13 -set fmri(ortho16.13) 0 - -# Orthogonalise EV 16 wrt EV 14 -set fmri(ortho16.14) 0 - -# Orthogonalise EV 16 wrt EV 15 -set fmri(ortho16.15) 0 - -# Orthogonalise EV 16 wrt EV 16 -set fmri(ortho16.16) 0 - -# Orthogonalise EV 16 wrt EV 17 -set fmri(ortho16.17) 0 - -# Orthogonalise EV 16 wrt EV 18 -set fmri(ortho16.18) 0 - -# Orthogonalise EV 16 wrt EV 19 -set fmri(ortho16.19) 0 - -# Orthogonalise EV 16 wrt EV 20 -set fmri(ortho16.20) 0 - -# Orthogonalise EV 16 wrt EV 21 -set fmri(ortho16.21) 0 - -# Orthogonalise EV 16 wrt EV 22 -set fmri(ortho16.22) 0 - -# Orthogonalise EV 16 wrt EV 23 -set fmri(ortho16.23) 0 - -# Orthogonalise EV 16 wrt EV 24 -set fmri(ortho16.24) 0 - -# Orthogonalise EV 16 wrt EV 25 -set fmri(ortho16.25) 0 - -# Orthogonalise EV 16 wrt EV 26 -set fmri(ortho16.26) 0 - -# Higher-level EV value for EV 16 and input 1 -set fmri(evg1.16) 0 - -# Higher-level EV value for EV 16 and input 2 -set fmri(evg2.16) 0 - -# Higher-level EV value for EV 16 and input 3 -set fmri(evg3.16) 0 - -# Higher-level EV value for EV 16 and input 4 -set fmri(evg4.16) 0 - -# Higher-level EV value for EV 16 and input 5 -set fmri(evg5.16) 0 - -# Higher-level EV value for EV 16 and input 6 -set fmri(evg6.16) 0 - -# Higher-level EV value for EV 16 and input 7 -set fmri(evg7.16) 0 - -# Higher-level EV value for EV 16 and input 8 -set fmri(evg8.16) 0 - -# Higher-level EV value for EV 16 and input 9 -set fmri(evg9.16) 0 - -# Higher-level EV value for EV 16 and input 10 -set fmri(evg10.16) 0 - -# Higher-level EV value for EV 16 and input 11 -set fmri(evg11.16) 0 - -# Higher-level EV value for EV 16 and input 12 -set fmri(evg12.16) 0 - -# Higher-level EV value for EV 16 and input 13 -set fmri(evg13.16) 0 - -# Higher-level EV value for EV 16 and input 14 -set fmri(evg14.16) 0 - -# Higher-level EV value for EV 16 and input 15 -set fmri(evg15.16) 0 - -# Higher-level EV value for EV 16 and input 16 -set fmri(evg16.16) 0 - -# Higher-level EV value for EV 16 and input 17 -set fmri(evg17.16) 0 - -# Higher-level EV value for EV 16 and input 18 -set fmri(evg18.16) 0 - -# Higher-level EV value for EV 16 and input 19 -set fmri(evg19.16) 0 - -# Higher-level EV value for EV 16 and input 20 -set fmri(evg20.16) 0 - -# Higher-level EV value for EV 16 and input 21 -set fmri(evg21.16) 0 - -# Higher-level EV value for EV 16 and input 22 -set fmri(evg22.16) 0 - -# Higher-level EV value for EV 16 and input 23 -set fmri(evg23.16) 0 - -# Higher-level EV value for EV 16 and input 24 -set fmri(evg24.16) 0 - -# Higher-level EV value for EV 16 and input 25 -set fmri(evg25.16) 0 - -# Higher-level EV value for EV 16 and input 26 -set fmri(evg26.16) 0 - -# Higher-level EV value for EV 16 and input 27 -set fmri(evg27.16) 0 - -# Higher-level EV value for EV 16 and input 28 -set fmri(evg28.16) 0 - -# Higher-level EV value for EV 16 and input 29 -set fmri(evg29.16) 0 - -# Higher-level EV value for EV 16 and input 30 -set fmri(evg30.16) 0 - -# Higher-level EV value for EV 16 and input 31 -set fmri(evg31.16) 1.0 - -# Higher-level EV value for EV 16 and input 32 -set fmri(evg32.16) 1.0 - -# Higher-level EV value for EV 16 and input 33 -set fmri(evg33.16) 0 - -# Higher-level EV value for EV 16 and input 34 -set fmri(evg34.16) 0 - -# Higher-level EV value for EV 16 and input 35 -set fmri(evg35.16) 0 - -# Higher-level EV value for EV 16 and input 36 -set fmri(evg36.16) 0 - -# Higher-level EV value for EV 16 and input 37 -set fmri(evg37.16) 0 - -# Higher-level EV value for EV 16 and input 38 -set fmri(evg38.16) 0 - -# Higher-level EV value for EV 16 and input 39 -set fmri(evg39.16) 0 - -# Higher-level EV value for EV 16 and input 40 -set fmri(evg40.16) 0 - -# Higher-level EV value for EV 16 and input 41 -set fmri(evg41.16) 0 - -# Higher-level EV value for EV 16 and input 42 -set fmri(evg42.16) 0 - -# Higher-level EV value for EV 16 and input 43 -set fmri(evg43.16) 0 - -# Higher-level EV value for EV 16 and input 44 -set fmri(evg44.16) 0 - -# Higher-level EV value for EV 16 and input 45 -set fmri(evg45.16) 0 - -# Higher-level EV value for EV 16 and input 46 -set fmri(evg46.16) 0 - -# Higher-level EV value for EV 16 and input 47 -set fmri(evg47.16) 0 - -# Higher-level EV value for EV 16 and input 48 -set fmri(evg48.16) 0 - -# Higher-level EV value for EV 16 and input 49 -set fmri(evg49.16) 0 - -# Higher-level EV value for EV 16 and input 50 -set fmri(evg50.16) 0 - -# Higher-level EV value for EV 16 and input 51 -set fmri(evg51.16) 0 - -# Higher-level EV value for EV 16 and input 52 -set fmri(evg52.16) 0 - -# EV 17 title -set fmri(evtitle17) "" - -# Basic waveform shape (EV 17) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape17) 2 - -# Convolution (EV 17) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve17) 0 - -# Convolve phase (EV 17) -set fmri(convolve_phase17) 0 - -# Apply temporal filtering (EV 17) -set fmri(tempfilt_yn17) 0 - -# Add temporal derivative (EV 17) -set fmri(deriv_yn17) 0 - -# Custom EV file (EV 17) -set fmri(custom17) "dummy" - -# Orthogonalise EV 17 wrt EV 0 -set fmri(ortho17.0) 0 - -# Orthogonalise EV 17 wrt EV 1 -set fmri(ortho17.1) 0 - -# Orthogonalise EV 17 wrt EV 2 -set fmri(ortho17.2) 0 - -# Orthogonalise EV 17 wrt EV 3 -set fmri(ortho17.3) 0 - -# Orthogonalise EV 17 wrt EV 4 -set fmri(ortho17.4) 0 - -# Orthogonalise EV 17 wrt EV 5 -set fmri(ortho17.5) 0 - -# Orthogonalise EV 17 wrt EV 6 -set fmri(ortho17.6) 0 - -# Orthogonalise EV 17 wrt EV 7 -set fmri(ortho17.7) 0 - -# Orthogonalise EV 17 wrt EV 8 -set fmri(ortho17.8) 0 - -# Orthogonalise EV 17 wrt EV 9 -set fmri(ortho17.9) 0 - -# Orthogonalise EV 17 wrt EV 10 -set fmri(ortho17.10) 0 - -# Orthogonalise EV 17 wrt EV 11 -set fmri(ortho17.11) 0 - -# Orthogonalise EV 17 wrt EV 12 -set fmri(ortho17.12) 0 - -# Orthogonalise EV 17 wrt EV 13 -set fmri(ortho17.13) 0 - -# Orthogonalise EV 17 wrt EV 14 -set fmri(ortho17.14) 0 - -# Orthogonalise EV 17 wrt EV 15 -set fmri(ortho17.15) 0 - -# Orthogonalise EV 17 wrt EV 16 -set fmri(ortho17.16) 0 - -# Orthogonalise EV 17 wrt EV 17 -set fmri(ortho17.17) 0 - -# Orthogonalise EV 17 wrt EV 18 -set fmri(ortho17.18) 0 - -# Orthogonalise EV 17 wrt EV 19 -set fmri(ortho17.19) 0 - -# Orthogonalise EV 17 wrt EV 20 -set fmri(ortho17.20) 0 - -# Orthogonalise EV 17 wrt EV 21 -set fmri(ortho17.21) 0 - -# Orthogonalise EV 17 wrt EV 22 -set fmri(ortho17.22) 0 - -# Orthogonalise EV 17 wrt EV 23 -set fmri(ortho17.23) 0 - -# Orthogonalise EV 17 wrt EV 24 -set fmri(ortho17.24) 0 - -# Orthogonalise EV 17 wrt EV 25 -set fmri(ortho17.25) 0 - -# Orthogonalise EV 17 wrt EV 26 -set fmri(ortho17.26) 0 - -# Higher-level EV value for EV 17 and input 1 -set fmri(evg1.17) 0 - -# Higher-level EV value for EV 17 and input 2 -set fmri(evg2.17) 0 - -# Higher-level EV value for EV 17 and input 3 -set fmri(evg3.17) 0 - -# Higher-level EV value for EV 17 and input 4 -set fmri(evg4.17) 0 - -# Higher-level EV value for EV 17 and input 5 -set fmri(evg5.17) 0 - -# Higher-level EV value for EV 17 and input 6 -set fmri(evg6.17) 0 - -# Higher-level EV value for EV 17 and input 7 -set fmri(evg7.17) 0 - -# Higher-level EV value for EV 17 and input 8 -set fmri(evg8.17) 0 - -# Higher-level EV value for EV 17 and input 9 -set fmri(evg9.17) 0 - -# Higher-level EV value for EV 17 and input 10 -set fmri(evg10.17) 0 - -# Higher-level EV value for EV 17 and input 11 -set fmri(evg11.17) 0 - -# Higher-level EV value for EV 17 and input 12 -set fmri(evg12.17) 0 - -# Higher-level EV value for EV 17 and input 13 -set fmri(evg13.17) 0 - -# Higher-level EV value for EV 17 and input 14 -set fmri(evg14.17) 0 - -# Higher-level EV value for EV 17 and input 15 -set fmri(evg15.17) 0 - -# Higher-level EV value for EV 17 and input 16 -set fmri(evg16.17) 0 - -# Higher-level EV value for EV 17 and input 17 -set fmri(evg17.17) 0 - -# Higher-level EV value for EV 17 and input 18 -set fmri(evg18.17) 0 - -# Higher-level EV value for EV 17 and input 19 -set fmri(evg19.17) 0 - -# Higher-level EV value for EV 17 and input 20 -set fmri(evg20.17) 0 - -# Higher-level EV value for EV 17 and input 21 -set fmri(evg21.17) 0 - -# Higher-level EV value for EV 17 and input 22 -set fmri(evg22.17) 0 - -# Higher-level EV value for EV 17 and input 23 -set fmri(evg23.17) 0 - -# Higher-level EV value for EV 17 and input 24 -set fmri(evg24.17) 0 - -# Higher-level EV value for EV 17 and input 25 -set fmri(evg25.17) 0 - -# Higher-level EV value for EV 17 and input 26 -set fmri(evg26.17) 0 - -# Higher-level EV value for EV 17 and input 27 -set fmri(evg27.17) 0 - -# Higher-level EV value for EV 17 and input 28 -set fmri(evg28.17) 0 - -# Higher-level EV value for EV 17 and input 29 -set fmri(evg29.17) 0 - -# Higher-level EV value for EV 17 and input 30 -set fmri(evg30.17) 0 - -# Higher-level EV value for EV 17 and input 31 -set fmri(evg31.17) 0 - -# Higher-level EV value for EV 17 and input 32 -set fmri(evg32.17) 0 - -# Higher-level EV value for EV 17 and input 33 -set fmri(evg33.17) 1.0 - -# Higher-level EV value for EV 17 and input 34 -set fmri(evg34.17) 1.0 - -# Higher-level EV value for EV 17 and input 35 -set fmri(evg35.17) 0 - -# Higher-level EV value for EV 17 and input 36 -set fmri(evg36.17) 0 - -# Higher-level EV value for EV 17 and input 37 -set fmri(evg37.17) 0 - -# Higher-level EV value for EV 17 and input 38 -set fmri(evg38.17) 0 - -# Higher-level EV value for EV 17 and input 39 -set fmri(evg39.17) 0 - -# Higher-level EV value for EV 17 and input 40 -set fmri(evg40.17) 0 - -# Higher-level EV value for EV 17 and input 41 -set fmri(evg41.17) 0 - -# Higher-level EV value for EV 17 and input 42 -set fmri(evg42.17) 0 - -# Higher-level EV value for EV 17 and input 43 -set fmri(evg43.17) 0 - -# Higher-level EV value for EV 17 and input 44 -set fmri(evg44.17) 0 - -# Higher-level EV value for EV 17 and input 45 -set fmri(evg45.17) 0 - -# Higher-level EV value for EV 17 and input 46 -set fmri(evg46.17) 0 - -# Higher-level EV value for EV 17 and input 47 -set fmri(evg47.17) 0 - -# Higher-level EV value for EV 17 and input 48 -set fmri(evg48.17) 0 - -# Higher-level EV value for EV 17 and input 49 -set fmri(evg49.17) 0 - -# Higher-level EV value for EV 17 and input 50 -set fmri(evg50.17) 0 - -# Higher-level EV value for EV 17 and input 51 -set fmri(evg51.17) 0 - -# Higher-level EV value for EV 17 and input 52 -set fmri(evg52.17) 0 - -# EV 18 title -set fmri(evtitle18) "" - -# Basic waveform shape (EV 18) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape18) 2 - -# Convolution (EV 18) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve18) 0 - -# Convolve phase (EV 18) -set fmri(convolve_phase18) 0 - -# Apply temporal filtering (EV 18) -set fmri(tempfilt_yn18) 0 - -# Add temporal derivative (EV 18) -set fmri(deriv_yn18) 0 - -# Custom EV file (EV 18) -set fmri(custom18) "dummy" - -# Orthogonalise EV 18 wrt EV 0 -set fmri(ortho18.0) 0 - -# Orthogonalise EV 18 wrt EV 1 -set fmri(ortho18.1) 0 - -# Orthogonalise EV 18 wrt EV 2 -set fmri(ortho18.2) 0 - -# Orthogonalise EV 18 wrt EV 3 -set fmri(ortho18.3) 0 - -# Orthogonalise EV 18 wrt EV 4 -set fmri(ortho18.4) 0 - -# Orthogonalise EV 18 wrt EV 5 -set fmri(ortho18.5) 0 - -# Orthogonalise EV 18 wrt EV 6 -set fmri(ortho18.6) 0 - -# Orthogonalise EV 18 wrt EV 7 -set fmri(ortho18.7) 0 - -# Orthogonalise EV 18 wrt EV 8 -set fmri(ortho18.8) 0 - -# Orthogonalise EV 18 wrt EV 9 -set fmri(ortho18.9) 0 - -# Orthogonalise EV 18 wrt EV 10 -set fmri(ortho18.10) 0 - -# Orthogonalise EV 18 wrt EV 11 -set fmri(ortho18.11) 0 - -# Orthogonalise EV 18 wrt EV 12 -set fmri(ortho18.12) 0 - -# Orthogonalise EV 18 wrt EV 13 -set fmri(ortho18.13) 0 - -# Orthogonalise EV 18 wrt EV 14 -set fmri(ortho18.14) 0 - -# Orthogonalise EV 18 wrt EV 15 -set fmri(ortho18.15) 0 - -# Orthogonalise EV 18 wrt EV 16 -set fmri(ortho18.16) 0 - -# Orthogonalise EV 18 wrt EV 17 -set fmri(ortho18.17) 0 - -# Orthogonalise EV 18 wrt EV 18 -set fmri(ortho18.18) 0 - -# Orthogonalise EV 18 wrt EV 19 -set fmri(ortho18.19) 0 - -# Orthogonalise EV 18 wrt EV 20 -set fmri(ortho18.20) 0 - -# Orthogonalise EV 18 wrt EV 21 -set fmri(ortho18.21) 0 - -# Orthogonalise EV 18 wrt EV 22 -set fmri(ortho18.22) 0 - -# Orthogonalise EV 18 wrt EV 23 -set fmri(ortho18.23) 0 - -# Orthogonalise EV 18 wrt EV 24 -set fmri(ortho18.24) 0 - -# Orthogonalise EV 18 wrt EV 25 -set fmri(ortho18.25) 0 - -# Orthogonalise EV 18 wrt EV 26 -set fmri(ortho18.26) 0 - -# Higher-level EV value for EV 18 and input 1 -set fmri(evg1.18) 0 - -# Higher-level EV value for EV 18 and input 2 -set fmri(evg2.18) 0 - -# Higher-level EV value for EV 18 and input 3 -set fmri(evg3.18) 0 - -# Higher-level EV value for EV 18 and input 4 -set fmri(evg4.18) 0 - -# Higher-level EV value for EV 18 and input 5 -set fmri(evg5.18) 0 - -# Higher-level EV value for EV 18 and input 6 -set fmri(evg6.18) 0 - -# Higher-level EV value for EV 18 and input 7 -set fmri(evg7.18) 0 - -# Higher-level EV value for EV 18 and input 8 -set fmri(evg8.18) 0 - -# Higher-level EV value for EV 18 and input 9 -set fmri(evg9.18) 0 - -# Higher-level EV value for EV 18 and input 10 -set fmri(evg10.18) 0 - -# Higher-level EV value for EV 18 and input 11 -set fmri(evg11.18) 0 - -# Higher-level EV value for EV 18 and input 12 -set fmri(evg12.18) 0 - -# Higher-level EV value for EV 18 and input 13 -set fmri(evg13.18) 0 - -# Higher-level EV value for EV 18 and input 14 -set fmri(evg14.18) 0 - -# Higher-level EV value for EV 18 and input 15 -set fmri(evg15.18) 0 - -# Higher-level EV value for EV 18 and input 16 -set fmri(evg16.18) 0 - -# Higher-level EV value for EV 18 and input 17 -set fmri(evg17.18) 0 - -# Higher-level EV value for EV 18 and input 18 -set fmri(evg18.18) 0 - -# Higher-level EV value for EV 18 and input 19 -set fmri(evg19.18) 0 - -# Higher-level EV value for EV 18 and input 20 -set fmri(evg20.18) 0 - -# Higher-level EV value for EV 18 and input 21 -set fmri(evg21.18) 0 - -# Higher-level EV value for EV 18 and input 22 -set fmri(evg22.18) 0 - -# Higher-level EV value for EV 18 and input 23 -set fmri(evg23.18) 0 - -# Higher-level EV value for EV 18 and input 24 -set fmri(evg24.18) 0 - -# Higher-level EV value for EV 18 and input 25 -set fmri(evg25.18) 0 - -# Higher-level EV value for EV 18 and input 26 -set fmri(evg26.18) 0 - -# Higher-level EV value for EV 18 and input 27 -set fmri(evg27.18) 0 - -# Higher-level EV value for EV 18 and input 28 -set fmri(evg28.18) 0 - -# Higher-level EV value for EV 18 and input 29 -set fmri(evg29.18) 0 - -# Higher-level EV value for EV 18 and input 30 -set fmri(evg30.18) 0 - -# Higher-level EV value for EV 18 and input 31 -set fmri(evg31.18) 0 - -# Higher-level EV value for EV 18 and input 32 -set fmri(evg32.18) 0 - -# Higher-level EV value for EV 18 and input 33 -set fmri(evg33.18) 0 - -# Higher-level EV value for EV 18 and input 34 -set fmri(evg34.18) 0 - -# Higher-level EV value for EV 18 and input 35 -set fmri(evg35.18) 1.0 - -# Higher-level EV value for EV 18 and input 36 -set fmri(evg36.18) 1.0 - -# Higher-level EV value for EV 18 and input 37 -set fmri(evg37.18) 0 - -# Higher-level EV value for EV 18 and input 38 -set fmri(evg38.18) 0 - -# Higher-level EV value for EV 18 and input 39 -set fmri(evg39.18) 0 - -# Higher-level EV value for EV 18 and input 40 -set fmri(evg40.18) 0 - -# Higher-level EV value for EV 18 and input 41 -set fmri(evg41.18) 0 - -# Higher-level EV value for EV 18 and input 42 -set fmri(evg42.18) 0 - -# Higher-level EV value for EV 18 and input 43 -set fmri(evg43.18) 0 - -# Higher-level EV value for EV 18 and input 44 -set fmri(evg44.18) 0 - -# Higher-level EV value for EV 18 and input 45 -set fmri(evg45.18) 0 - -# Higher-level EV value for EV 18 and input 46 -set fmri(evg46.18) 0 - -# Higher-level EV value for EV 18 and input 47 -set fmri(evg47.18) 0 - -# Higher-level EV value for EV 18 and input 48 -set fmri(evg48.18) 0 - -# Higher-level EV value for EV 18 and input 49 -set fmri(evg49.18) 0 - -# Higher-level EV value for EV 18 and input 50 -set fmri(evg50.18) 0 - -# Higher-level EV value for EV 18 and input 51 -set fmri(evg51.18) 0 - -# Higher-level EV value for EV 18 and input 52 -set fmri(evg52.18) 0 - -# EV 19 title -set fmri(evtitle19) "" - -# Basic waveform shape (EV 19) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape19) 2 - -# Convolution (EV 19) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve19) 0 - -# Convolve phase (EV 19) -set fmri(convolve_phase19) 0 - -# Apply temporal filtering (EV 19) -set fmri(tempfilt_yn19) 0 - -# Add temporal derivative (EV 19) -set fmri(deriv_yn19) 0 - -# Custom EV file (EV 19) -set fmri(custom19) "dummy" - -# Orthogonalise EV 19 wrt EV 0 -set fmri(ortho19.0) 0 - -# Orthogonalise EV 19 wrt EV 1 -set fmri(ortho19.1) 0 - -# Orthogonalise EV 19 wrt EV 2 -set fmri(ortho19.2) 0 - -# Orthogonalise EV 19 wrt EV 3 -set fmri(ortho19.3) 0 - -# Orthogonalise EV 19 wrt EV 4 -set fmri(ortho19.4) 0 - -# Orthogonalise EV 19 wrt EV 5 -set fmri(ortho19.5) 0 - -# Orthogonalise EV 19 wrt EV 6 -set fmri(ortho19.6) 0 - -# Orthogonalise EV 19 wrt EV 7 -set fmri(ortho19.7) 0 - -# Orthogonalise EV 19 wrt EV 8 -set fmri(ortho19.8) 0 - -# Orthogonalise EV 19 wrt EV 9 -set fmri(ortho19.9) 0 - -# Orthogonalise EV 19 wrt EV 10 -set fmri(ortho19.10) 0 - -# Orthogonalise EV 19 wrt EV 11 -set fmri(ortho19.11) 0 - -# Orthogonalise EV 19 wrt EV 12 -set fmri(ortho19.12) 0 - -# Orthogonalise EV 19 wrt EV 13 -set fmri(ortho19.13) 0 - -# Orthogonalise EV 19 wrt EV 14 -set fmri(ortho19.14) 0 - -# Orthogonalise EV 19 wrt EV 15 -set fmri(ortho19.15) 0 - -# Orthogonalise EV 19 wrt EV 16 -set fmri(ortho19.16) 0 - -# Orthogonalise EV 19 wrt EV 17 -set fmri(ortho19.17) 0 - -# Orthogonalise EV 19 wrt EV 18 -set fmri(ortho19.18) 0 - -# Orthogonalise EV 19 wrt EV 19 -set fmri(ortho19.19) 0 - -# Orthogonalise EV 19 wrt EV 20 -set fmri(ortho19.20) 0 - -# Orthogonalise EV 19 wrt EV 21 -set fmri(ortho19.21) 0 - -# Orthogonalise EV 19 wrt EV 22 -set fmri(ortho19.22) 0 - -# Orthogonalise EV 19 wrt EV 23 -set fmri(ortho19.23) 0 - -# Orthogonalise EV 19 wrt EV 24 -set fmri(ortho19.24) 0 - -# Orthogonalise EV 19 wrt EV 25 -set fmri(ortho19.25) 0 - -# Orthogonalise EV 19 wrt EV 26 -set fmri(ortho19.26) 0 - -# Higher-level EV value for EV 19 and input 1 -set fmri(evg1.19) 0 - -# Higher-level EV value for EV 19 and input 2 -set fmri(evg2.19) 0 - -# Higher-level EV value for EV 19 and input 3 -set fmri(evg3.19) 0 - -# Higher-level EV value for EV 19 and input 4 -set fmri(evg4.19) 0 - -# Higher-level EV value for EV 19 and input 5 -set fmri(evg5.19) 0 - -# Higher-level EV value for EV 19 and input 6 -set fmri(evg6.19) 0 - -# Higher-level EV value for EV 19 and input 7 -set fmri(evg7.19) 0 - -# Higher-level EV value for EV 19 and input 8 -set fmri(evg8.19) 0 - -# Higher-level EV value for EV 19 and input 9 -set fmri(evg9.19) 0 - -# Higher-level EV value for EV 19 and input 10 -set fmri(evg10.19) 0 - -# Higher-level EV value for EV 19 and input 11 -set fmri(evg11.19) 0 - -# Higher-level EV value for EV 19 and input 12 -set fmri(evg12.19) 0 - -# Higher-level EV value for EV 19 and input 13 -set fmri(evg13.19) 0 - -# Higher-level EV value for EV 19 and input 14 -set fmri(evg14.19) 0 - -# Higher-level EV value for EV 19 and input 15 -set fmri(evg15.19) 0 - -# Higher-level EV value for EV 19 and input 16 -set fmri(evg16.19) 0 - -# Higher-level EV value for EV 19 and input 17 -set fmri(evg17.19) 0 - -# Higher-level EV value for EV 19 and input 18 -set fmri(evg18.19) 0 - -# Higher-level EV value for EV 19 and input 19 -set fmri(evg19.19) 0 - -# Higher-level EV value for EV 19 and input 20 -set fmri(evg20.19) 0 - -# Higher-level EV value for EV 19 and input 21 -set fmri(evg21.19) 0 - -# Higher-level EV value for EV 19 and input 22 -set fmri(evg22.19) 0 - -# Higher-level EV value for EV 19 and input 23 -set fmri(evg23.19) 0 - -# Higher-level EV value for EV 19 and input 24 -set fmri(evg24.19) 0 - -# Higher-level EV value for EV 19 and input 25 -set fmri(evg25.19) 0 - -# Higher-level EV value for EV 19 and input 26 -set fmri(evg26.19) 0 - -# Higher-level EV value for EV 19 and input 27 -set fmri(evg27.19) 0 - -# Higher-level EV value for EV 19 and input 28 -set fmri(evg28.19) 0 - -# Higher-level EV value for EV 19 and input 29 -set fmri(evg29.19) 0 - -# Higher-level EV value for EV 19 and input 30 -set fmri(evg30.19) 0 - -# Higher-level EV value for EV 19 and input 31 -set fmri(evg31.19) 0 - -# Higher-level EV value for EV 19 and input 32 -set fmri(evg32.19) 0 - -# Higher-level EV value for EV 19 and input 33 -set fmri(evg33.19) 0 - -# Higher-level EV value for EV 19 and input 34 -set fmri(evg34.19) 0 - -# Higher-level EV value for EV 19 and input 35 -set fmri(evg35.19) 0 - -# Higher-level EV value for EV 19 and input 36 -set fmri(evg36.19) 0 - -# Higher-level EV value for EV 19 and input 37 -set fmri(evg37.19) 1.0 - -# Higher-level EV value for EV 19 and input 38 -set fmri(evg38.19) 1.0 - -# Higher-level EV value for EV 19 and input 39 -set fmri(evg39.19) 0 - -# Higher-level EV value for EV 19 and input 40 -set fmri(evg40.19) 0 - -# Higher-level EV value for EV 19 and input 41 -set fmri(evg41.19) 0 - -# Higher-level EV value for EV 19 and input 42 -set fmri(evg42.19) 0 - -# Higher-level EV value for EV 19 and input 43 -set fmri(evg43.19) 0 - -# Higher-level EV value for EV 19 and input 44 -set fmri(evg44.19) 0 - -# Higher-level EV value for EV 19 and input 45 -set fmri(evg45.19) 0 - -# Higher-level EV value for EV 19 and input 46 -set fmri(evg46.19) 0 - -# Higher-level EV value for EV 19 and input 47 -set fmri(evg47.19) 0 - -# Higher-level EV value for EV 19 and input 48 -set fmri(evg48.19) 0 - -# Higher-level EV value for EV 19 and input 49 -set fmri(evg49.19) 0 - -# Higher-level EV value for EV 19 and input 50 -set fmri(evg50.19) 0 - -# Higher-level EV value for EV 19 and input 51 -set fmri(evg51.19) 0 - -# Higher-level EV value for EV 19 and input 52 -set fmri(evg52.19) 0 - -# EV 20 title -set fmri(evtitle20) "" - -# Basic waveform shape (EV 20) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape20) 2 - -# Convolution (EV 20) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve20) 0 - -# Convolve phase (EV 20) -set fmri(convolve_phase20) 0 - -# Apply temporal filtering (EV 20) -set fmri(tempfilt_yn20) 0 - -# Add temporal derivative (EV 20) -set fmri(deriv_yn20) 0 - -# Custom EV file (EV 20) -set fmri(custom20) "dummy" - -# Orthogonalise EV 20 wrt EV 0 -set fmri(ortho20.0) 0 - -# Orthogonalise EV 20 wrt EV 1 -set fmri(ortho20.1) 0 - -# Orthogonalise EV 20 wrt EV 2 -set fmri(ortho20.2) 0 - -# Orthogonalise EV 20 wrt EV 3 -set fmri(ortho20.3) 0 - -# Orthogonalise EV 20 wrt EV 4 -set fmri(ortho20.4) 0 - -# Orthogonalise EV 20 wrt EV 5 -set fmri(ortho20.5) 0 - -# Orthogonalise EV 20 wrt EV 6 -set fmri(ortho20.6) 0 - -# Orthogonalise EV 20 wrt EV 7 -set fmri(ortho20.7) 0 - -# Orthogonalise EV 20 wrt EV 8 -set fmri(ortho20.8) 0 - -# Orthogonalise EV 20 wrt EV 9 -set fmri(ortho20.9) 0 - -# Orthogonalise EV 20 wrt EV 10 -set fmri(ortho20.10) 0 - -# Orthogonalise EV 20 wrt EV 11 -set fmri(ortho20.11) 0 - -# Orthogonalise EV 20 wrt EV 12 -set fmri(ortho20.12) 0 - -# Orthogonalise EV 20 wrt EV 13 -set fmri(ortho20.13) 0 - -# Orthogonalise EV 20 wrt EV 14 -set fmri(ortho20.14) 0 - -# Orthogonalise EV 20 wrt EV 15 -set fmri(ortho20.15) 0 - -# Orthogonalise EV 20 wrt EV 16 -set fmri(ortho20.16) 0 - -# Orthogonalise EV 20 wrt EV 17 -set fmri(ortho20.17) 0 - -# Orthogonalise EV 20 wrt EV 18 -set fmri(ortho20.18) 0 - -# Orthogonalise EV 20 wrt EV 19 -set fmri(ortho20.19) 0 - -# Orthogonalise EV 20 wrt EV 20 -set fmri(ortho20.20) 0 - -# Orthogonalise EV 20 wrt EV 21 -set fmri(ortho20.21) 0 - -# Orthogonalise EV 20 wrt EV 22 -set fmri(ortho20.22) 0 - -# Orthogonalise EV 20 wrt EV 23 -set fmri(ortho20.23) 0 - -# Orthogonalise EV 20 wrt EV 24 -set fmri(ortho20.24) 0 - -# Orthogonalise EV 20 wrt EV 25 -set fmri(ortho20.25) 0 - -# Orthogonalise EV 20 wrt EV 26 -set fmri(ortho20.26) 0 - -# Higher-level EV value for EV 20 and input 1 -set fmri(evg1.20) 0 - -# Higher-level EV value for EV 20 and input 2 -set fmri(evg2.20) 0 - -# Higher-level EV value for EV 20 and input 3 -set fmri(evg3.20) 0 - -# Higher-level EV value for EV 20 and input 4 -set fmri(evg4.20) 0 - -# Higher-level EV value for EV 20 and input 5 -set fmri(evg5.20) 0 - -# Higher-level EV value for EV 20 and input 6 -set fmri(evg6.20) 0 - -# Higher-level EV value for EV 20 and input 7 -set fmri(evg7.20) 0 - -# Higher-level EV value for EV 20 and input 8 -set fmri(evg8.20) 0 - -# Higher-level EV value for EV 20 and input 9 -set fmri(evg9.20) 0 - -# Higher-level EV value for EV 20 and input 10 -set fmri(evg10.20) 0 - -# Higher-level EV value for EV 20 and input 11 -set fmri(evg11.20) 0 - -# Higher-level EV value for EV 20 and input 12 -set fmri(evg12.20) 0 - -# Higher-level EV value for EV 20 and input 13 -set fmri(evg13.20) 0 - -# Higher-level EV value for EV 20 and input 14 -set fmri(evg14.20) 0 - -# Higher-level EV value for EV 20 and input 15 -set fmri(evg15.20) 0 - -# Higher-level EV value for EV 20 and input 16 -set fmri(evg16.20) 0 - -# Higher-level EV value for EV 20 and input 17 -set fmri(evg17.20) 0 - -# Higher-level EV value for EV 20 and input 18 -set fmri(evg18.20) 0 - -# Higher-level EV value for EV 20 and input 19 -set fmri(evg19.20) 0 - -# Higher-level EV value for EV 20 and input 20 -set fmri(evg20.20) 0 - -# Higher-level EV value for EV 20 and input 21 -set fmri(evg21.20) 0 - -# Higher-level EV value for EV 20 and input 22 -set fmri(evg22.20) 0 - -# Higher-level EV value for EV 20 and input 23 -set fmri(evg23.20) 0 - -# Higher-level EV value for EV 20 and input 24 -set fmri(evg24.20) 0 - -# Higher-level EV value for EV 20 and input 25 -set fmri(evg25.20) 0 - -# Higher-level EV value for EV 20 and input 26 -set fmri(evg26.20) 0 - -# Higher-level EV value for EV 20 and input 27 -set fmri(evg27.20) 0 - -# Higher-level EV value for EV 20 and input 28 -set fmri(evg28.20) 0 - -# Higher-level EV value for EV 20 and input 29 -set fmri(evg29.20) 0 - -# Higher-level EV value for EV 20 and input 30 -set fmri(evg30.20) 0 - -# Higher-level EV value for EV 20 and input 31 -set fmri(evg31.20) 0 - -# Higher-level EV value for EV 20 and input 32 -set fmri(evg32.20) 0 - -# Higher-level EV value for EV 20 and input 33 -set fmri(evg33.20) 0 - -# Higher-level EV value for EV 20 and input 34 -set fmri(evg34.20) 0 - -# Higher-level EV value for EV 20 and input 35 -set fmri(evg35.20) 0 - -# Higher-level EV value for EV 20 and input 36 -set fmri(evg36.20) 0 - -# Higher-level EV value for EV 20 and input 37 -set fmri(evg37.20) 0 - -# Higher-level EV value for EV 20 and input 38 -set fmri(evg38.20) 0 - -# Higher-level EV value for EV 20 and input 39 -set fmri(evg39.20) 1.0 - -# Higher-level EV value for EV 20 and input 40 -set fmri(evg40.20) 1.0 - -# Higher-level EV value for EV 20 and input 41 -set fmri(evg41.20) 0 - -# Higher-level EV value for EV 20 and input 42 -set fmri(evg42.20) 0 - -# Higher-level EV value for EV 20 and input 43 -set fmri(evg43.20) 0 - -# Higher-level EV value for EV 20 and input 44 -set fmri(evg44.20) 0 - -# Higher-level EV value for EV 20 and input 45 -set fmri(evg45.20) 0 - -# Higher-level EV value for EV 20 and input 46 -set fmri(evg46.20) 0 - -# Higher-level EV value for EV 20 and input 47 -set fmri(evg47.20) 0 - -# Higher-level EV value for EV 20 and input 48 -set fmri(evg48.20) 0 - -# Higher-level EV value for EV 20 and input 49 -set fmri(evg49.20) 0 - -# Higher-level EV value for EV 20 and input 50 -set fmri(evg50.20) 0 - -# Higher-level EV value for EV 20 and input 51 -set fmri(evg51.20) 0 - -# Higher-level EV value for EV 20 and input 52 -set fmri(evg52.20) 0 - -# EV 21 title -set fmri(evtitle21) "" - -# Basic waveform shape (EV 21) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape21) 2 - -# Convolution (EV 21) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve21) 0 - -# Convolve phase (EV 21) -set fmri(convolve_phase21) 0 - -# Apply temporal filtering (EV 21) -set fmri(tempfilt_yn21) 0 - -# Add temporal derivative (EV 21) -set fmri(deriv_yn21) 0 - -# Custom EV file (EV 21) -set fmri(custom21) "dummy" - -# Orthogonalise EV 21 wrt EV 0 -set fmri(ortho21.0) 0 - -# Orthogonalise EV 21 wrt EV 1 -set fmri(ortho21.1) 0 - -# Orthogonalise EV 21 wrt EV 2 -set fmri(ortho21.2) 0 - -# Orthogonalise EV 21 wrt EV 3 -set fmri(ortho21.3) 0 - -# Orthogonalise EV 21 wrt EV 4 -set fmri(ortho21.4) 0 - -# Orthogonalise EV 21 wrt EV 5 -set fmri(ortho21.5) 0 - -# Orthogonalise EV 21 wrt EV 6 -set fmri(ortho21.6) 0 - -# Orthogonalise EV 21 wrt EV 7 -set fmri(ortho21.7) 0 - -# Orthogonalise EV 21 wrt EV 8 -set fmri(ortho21.8) 0 - -# Orthogonalise EV 21 wrt EV 9 -set fmri(ortho21.9) 0 - -# Orthogonalise EV 21 wrt EV 10 -set fmri(ortho21.10) 0 - -# Orthogonalise EV 21 wrt EV 11 -set fmri(ortho21.11) 0 - -# Orthogonalise EV 21 wrt EV 12 -set fmri(ortho21.12) 0 - -# Orthogonalise EV 21 wrt EV 13 -set fmri(ortho21.13) 0 - -# Orthogonalise EV 21 wrt EV 14 -set fmri(ortho21.14) 0 - -# Orthogonalise EV 21 wrt EV 15 -set fmri(ortho21.15) 0 - -# Orthogonalise EV 21 wrt EV 16 -set fmri(ortho21.16) 0 - -# Orthogonalise EV 21 wrt EV 17 -set fmri(ortho21.17) 0 - -# Orthogonalise EV 21 wrt EV 18 -set fmri(ortho21.18) 0 - -# Orthogonalise EV 21 wrt EV 19 -set fmri(ortho21.19) 0 - -# Orthogonalise EV 21 wrt EV 20 -set fmri(ortho21.20) 0 - -# Orthogonalise EV 21 wrt EV 21 -set fmri(ortho21.21) 0 - -# Orthogonalise EV 21 wrt EV 22 -set fmri(ortho21.22) 0 - -# Orthogonalise EV 21 wrt EV 23 -set fmri(ortho21.23) 0 - -# Orthogonalise EV 21 wrt EV 24 -set fmri(ortho21.24) 0 - -# Orthogonalise EV 21 wrt EV 25 -set fmri(ortho21.25) 0 - -# Orthogonalise EV 21 wrt EV 26 -set fmri(ortho21.26) 0 - -# Higher-level EV value for EV 21 and input 1 -set fmri(evg1.21) 0 - -# Higher-level EV value for EV 21 and input 2 -set fmri(evg2.21) 0 - -# Higher-level EV value for EV 21 and input 3 -set fmri(evg3.21) 0 - -# Higher-level EV value for EV 21 and input 4 -set fmri(evg4.21) 0 - -# Higher-level EV value for EV 21 and input 5 -set fmri(evg5.21) 0 - -# Higher-level EV value for EV 21 and input 6 -set fmri(evg6.21) 0 - -# Higher-level EV value for EV 21 and input 7 -set fmri(evg7.21) 0 - -# Higher-level EV value for EV 21 and input 8 -set fmri(evg8.21) 0 - -# Higher-level EV value for EV 21 and input 9 -set fmri(evg9.21) 0 - -# Higher-level EV value for EV 21 and input 10 -set fmri(evg10.21) 0 - -# Higher-level EV value for EV 21 and input 11 -set fmri(evg11.21) 0 - -# Higher-level EV value for EV 21 and input 12 -set fmri(evg12.21) 0 - -# Higher-level EV value for EV 21 and input 13 -set fmri(evg13.21) 0 - -# Higher-level EV value for EV 21 and input 14 -set fmri(evg14.21) 0 - -# Higher-level EV value for EV 21 and input 15 -set fmri(evg15.21) 0 - -# Higher-level EV value for EV 21 and input 16 -set fmri(evg16.21) 0 - -# Higher-level EV value for EV 21 and input 17 -set fmri(evg17.21) 0 - -# Higher-level EV value for EV 21 and input 18 -set fmri(evg18.21) 0 - -# Higher-level EV value for EV 21 and input 19 -set fmri(evg19.21) 0 - -# Higher-level EV value for EV 21 and input 20 -set fmri(evg20.21) 0 - -# Higher-level EV value for EV 21 and input 21 -set fmri(evg21.21) 0 - -# Higher-level EV value for EV 21 and input 22 -set fmri(evg22.21) 0 - -# Higher-level EV value for EV 21 and input 23 -set fmri(evg23.21) 0 - -# Higher-level EV value for EV 21 and input 24 -set fmri(evg24.21) 0 - -# Higher-level EV value for EV 21 and input 25 -set fmri(evg25.21) 0 - -# Higher-level EV value for EV 21 and input 26 -set fmri(evg26.21) 0 - -# Higher-level EV value for EV 21 and input 27 -set fmri(evg27.21) 0 - -# Higher-level EV value for EV 21 and input 28 -set fmri(evg28.21) 0 - -# Higher-level EV value for EV 21 and input 29 -set fmri(evg29.21) 0 - -# Higher-level EV value for EV 21 and input 30 -set fmri(evg30.21) 0 - -# Higher-level EV value for EV 21 and input 31 -set fmri(evg31.21) 0 - -# Higher-level EV value for EV 21 and input 32 -set fmri(evg32.21) 0 - -# Higher-level EV value for EV 21 and input 33 -set fmri(evg33.21) 0 - -# Higher-level EV value for EV 21 and input 34 -set fmri(evg34.21) 0 - -# Higher-level EV value for EV 21 and input 35 -set fmri(evg35.21) 0 - -# Higher-level EV value for EV 21 and input 36 -set fmri(evg36.21) 0 - -# Higher-level EV value for EV 21 and input 37 -set fmri(evg37.21) 0 - -# Higher-level EV value for EV 21 and input 38 -set fmri(evg38.21) 0 - -# Higher-level EV value for EV 21 and input 39 -set fmri(evg39.21) 0 - -# Higher-level EV value for EV 21 and input 40 -set fmri(evg40.21) 0 - -# Higher-level EV value for EV 21 and input 41 -set fmri(evg41.21) 1.0 - -# Higher-level EV value for EV 21 and input 42 -set fmri(evg42.21) 1.0 - -# Higher-level EV value for EV 21 and input 43 -set fmri(evg43.21) 0 - -# Higher-level EV value for EV 21 and input 44 -set fmri(evg44.21) 0 - -# Higher-level EV value for EV 21 and input 45 -set fmri(evg45.21) 0 - -# Higher-level EV value for EV 21 and input 46 -set fmri(evg46.21) 0 - -# Higher-level EV value for EV 21 and input 47 -set fmri(evg47.21) 0 - -# Higher-level EV value for EV 21 and input 48 -set fmri(evg48.21) 0 - -# Higher-level EV value for EV 21 and input 49 -set fmri(evg49.21) 0 - -# Higher-level EV value for EV 21 and input 50 -set fmri(evg50.21) 0 - -# Higher-level EV value for EV 21 and input 51 -set fmri(evg51.21) 0 - -# Higher-level EV value for EV 21 and input 52 -set fmri(evg52.21) 0 - -# EV 22 title -set fmri(evtitle22) "" - -# Basic waveform shape (EV 22) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape22) 2 - -# Convolution (EV 22) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve22) 0 - -# Convolve phase (EV 22) -set fmri(convolve_phase22) 0 - -# Apply temporal filtering (EV 22) -set fmri(tempfilt_yn22) 0 - -# Add temporal derivative (EV 22) -set fmri(deriv_yn22) 0 - -# Custom EV file (EV 22) -set fmri(custom22) "dummy" - -# Orthogonalise EV 22 wrt EV 0 -set fmri(ortho22.0) 0 - -# Orthogonalise EV 22 wrt EV 1 -set fmri(ortho22.1) 0 - -# Orthogonalise EV 22 wrt EV 2 -set fmri(ortho22.2) 0 - -# Orthogonalise EV 22 wrt EV 3 -set fmri(ortho22.3) 0 - -# Orthogonalise EV 22 wrt EV 4 -set fmri(ortho22.4) 0 - -# Orthogonalise EV 22 wrt EV 5 -set fmri(ortho22.5) 0 - -# Orthogonalise EV 22 wrt EV 6 -set fmri(ortho22.6) 0 - -# Orthogonalise EV 22 wrt EV 7 -set fmri(ortho22.7) 0 - -# Orthogonalise EV 22 wrt EV 8 -set fmri(ortho22.8) 0 - -# Orthogonalise EV 22 wrt EV 9 -set fmri(ortho22.9) 0 - -# Orthogonalise EV 22 wrt EV 10 -set fmri(ortho22.10) 0 - -# Orthogonalise EV 22 wrt EV 11 -set fmri(ortho22.11) 0 - -# Orthogonalise EV 22 wrt EV 12 -set fmri(ortho22.12) 0 - -# Orthogonalise EV 22 wrt EV 13 -set fmri(ortho22.13) 0 - -# Orthogonalise EV 22 wrt EV 14 -set fmri(ortho22.14) 0 - -# Orthogonalise EV 22 wrt EV 15 -set fmri(ortho22.15) 0 - -# Orthogonalise EV 22 wrt EV 16 -set fmri(ortho22.16) 0 - -# Orthogonalise EV 22 wrt EV 17 -set fmri(ortho22.17) 0 - -# Orthogonalise EV 22 wrt EV 18 -set fmri(ortho22.18) 0 - -# Orthogonalise EV 22 wrt EV 19 -set fmri(ortho22.19) 0 - -# Orthogonalise EV 22 wrt EV 20 -set fmri(ortho22.20) 0 - -# Orthogonalise EV 22 wrt EV 21 -set fmri(ortho22.21) 0 - -# Orthogonalise EV 22 wrt EV 22 -set fmri(ortho22.22) 0 - -# Orthogonalise EV 22 wrt EV 23 -set fmri(ortho22.23) 0 - -# Orthogonalise EV 22 wrt EV 24 -set fmri(ortho22.24) 0 - -# Orthogonalise EV 22 wrt EV 25 -set fmri(ortho22.25) 0 - -# Orthogonalise EV 22 wrt EV 26 -set fmri(ortho22.26) 0 - -# Higher-level EV value for EV 22 and input 1 -set fmri(evg1.22) 0 - -# Higher-level EV value for EV 22 and input 2 -set fmri(evg2.22) 0 - -# Higher-level EV value for EV 22 and input 3 -set fmri(evg3.22) 0 - -# Higher-level EV value for EV 22 and input 4 -set fmri(evg4.22) 0 - -# Higher-level EV value for EV 22 and input 5 -set fmri(evg5.22) 0 - -# Higher-level EV value for EV 22 and input 6 -set fmri(evg6.22) 0 - -# Higher-level EV value for EV 22 and input 7 -set fmri(evg7.22) 0 - -# Higher-level EV value for EV 22 and input 8 -set fmri(evg8.22) 0 - -# Higher-level EV value for EV 22 and input 9 -set fmri(evg9.22) 0 - -# Higher-level EV value for EV 22 and input 10 -set fmri(evg10.22) 0 - -# Higher-level EV value for EV 22 and input 11 -set fmri(evg11.22) 0 - -# Higher-level EV value for EV 22 and input 12 -set fmri(evg12.22) 0 - -# Higher-level EV value for EV 22 and input 13 -set fmri(evg13.22) 0 - -# Higher-level EV value for EV 22 and input 14 -set fmri(evg14.22) 0 - -# Higher-level EV value for EV 22 and input 15 -set fmri(evg15.22) 0 - -# Higher-level EV value for EV 22 and input 16 -set fmri(evg16.22) 0 - -# Higher-level EV value for EV 22 and input 17 -set fmri(evg17.22) 0 - -# Higher-level EV value for EV 22 and input 18 -set fmri(evg18.22) 0 - -# Higher-level EV value for EV 22 and input 19 -set fmri(evg19.22) 0 - -# Higher-level EV value for EV 22 and input 20 -set fmri(evg20.22) 0 - -# Higher-level EV value for EV 22 and input 21 -set fmri(evg21.22) 0 - -# Higher-level EV value for EV 22 and input 22 -set fmri(evg22.22) 0 - -# Higher-level EV value for EV 22 and input 23 -set fmri(evg23.22) 0 - -# Higher-level EV value for EV 22 and input 24 -set fmri(evg24.22) 0 - -# Higher-level EV value for EV 22 and input 25 -set fmri(evg25.22) 0 - -# Higher-level EV value for EV 22 and input 26 -set fmri(evg26.22) 0 - -# Higher-level EV value for EV 22 and input 27 -set fmri(evg27.22) 0 - -# Higher-level EV value for EV 22 and input 28 -set fmri(evg28.22) 0 - -# Higher-level EV value for EV 22 and input 29 -set fmri(evg29.22) 0 - -# Higher-level EV value for EV 22 and input 30 -set fmri(evg30.22) 0 - -# Higher-level EV value for EV 22 and input 31 -set fmri(evg31.22) 0 - -# Higher-level EV value for EV 22 and input 32 -set fmri(evg32.22) 0 - -# Higher-level EV value for EV 22 and input 33 -set fmri(evg33.22) 0 - -# Higher-level EV value for EV 22 and input 34 -set fmri(evg34.22) 0 - -# Higher-level EV value for EV 22 and input 35 -set fmri(evg35.22) 0 - -# Higher-level EV value for EV 22 and input 36 -set fmri(evg36.22) 0 - -# Higher-level EV value for EV 22 and input 37 -set fmri(evg37.22) 0 - -# Higher-level EV value for EV 22 and input 38 -set fmri(evg38.22) 0 - -# Higher-level EV value for EV 22 and input 39 -set fmri(evg39.22) 0 - -# Higher-level EV value for EV 22 and input 40 -set fmri(evg40.22) 0 - -# Higher-level EV value for EV 22 and input 41 -set fmri(evg41.22) 0 - -# Higher-level EV value for EV 22 and input 42 -set fmri(evg42.22) 0 - -# Higher-level EV value for EV 22 and input 43 -set fmri(evg43.22) 1.0 - -# Higher-level EV value for EV 22 and input 44 -set fmri(evg44.22) 1.0 - -# Higher-level EV value for EV 22 and input 45 -set fmri(evg45.22) 0 - -# Higher-level EV value for EV 22 and input 46 -set fmri(evg46.22) 0 - -# Higher-level EV value for EV 22 and input 47 -set fmri(evg47.22) 0 - -# Higher-level EV value for EV 22 and input 48 -set fmri(evg48.22) 0 - -# Higher-level EV value for EV 22 and input 49 -set fmri(evg49.22) 0 - -# Higher-level EV value for EV 22 and input 50 -set fmri(evg50.22) 0 - -# Higher-level EV value for EV 22 and input 51 -set fmri(evg51.22) 0 - -# Higher-level EV value for EV 22 and input 52 -set fmri(evg52.22) 0 - -# EV 23 title -set fmri(evtitle23) "" - -# Basic waveform shape (EV 23) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape23) 2 - -# Convolution (EV 23) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve23) 0 - -# Convolve phase (EV 23) -set fmri(convolve_phase23) 0 - -# Apply temporal filtering (EV 23) -set fmri(tempfilt_yn23) 0 - -# Add temporal derivative (EV 23) -set fmri(deriv_yn23) 0 - -# Custom EV file (EV 23) -set fmri(custom23) "dummy" - -# Orthogonalise EV 23 wrt EV 0 -set fmri(ortho23.0) 0 - -# Orthogonalise EV 23 wrt EV 1 -set fmri(ortho23.1) 0 - -# Orthogonalise EV 23 wrt EV 2 -set fmri(ortho23.2) 0 - -# Orthogonalise EV 23 wrt EV 3 -set fmri(ortho23.3) 0 - -# Orthogonalise EV 23 wrt EV 4 -set fmri(ortho23.4) 0 - -# Orthogonalise EV 23 wrt EV 5 -set fmri(ortho23.5) 0 - -# Orthogonalise EV 23 wrt EV 6 -set fmri(ortho23.6) 0 - -# Orthogonalise EV 23 wrt EV 7 -set fmri(ortho23.7) 0 - -# Orthogonalise EV 23 wrt EV 8 -set fmri(ortho23.8) 0 - -# Orthogonalise EV 23 wrt EV 9 -set fmri(ortho23.9) 0 - -# Orthogonalise EV 23 wrt EV 10 -set fmri(ortho23.10) 0 - -# Orthogonalise EV 23 wrt EV 11 -set fmri(ortho23.11) 0 - -# Orthogonalise EV 23 wrt EV 12 -set fmri(ortho23.12) 0 - -# Orthogonalise EV 23 wrt EV 13 -set fmri(ortho23.13) 0 - -# Orthogonalise EV 23 wrt EV 14 -set fmri(ortho23.14) 0 - -# Orthogonalise EV 23 wrt EV 15 -set fmri(ortho23.15) 0 - -# Orthogonalise EV 23 wrt EV 16 -set fmri(ortho23.16) 0 - -# Orthogonalise EV 23 wrt EV 17 -set fmri(ortho23.17) 0 - -# Orthogonalise EV 23 wrt EV 18 -set fmri(ortho23.18) 0 - -# Orthogonalise EV 23 wrt EV 19 -set fmri(ortho23.19) 0 - -# Orthogonalise EV 23 wrt EV 20 -set fmri(ortho23.20) 0 - -# Orthogonalise EV 23 wrt EV 21 -set fmri(ortho23.21) 0 - -# Orthogonalise EV 23 wrt EV 22 -set fmri(ortho23.22) 0 - -# Orthogonalise EV 23 wrt EV 23 -set fmri(ortho23.23) 0 - -# Orthogonalise EV 23 wrt EV 24 -set fmri(ortho23.24) 0 - -# Orthogonalise EV 23 wrt EV 25 -set fmri(ortho23.25) 0 - -# Orthogonalise EV 23 wrt EV 26 -set fmri(ortho23.26) 0 - -# Higher-level EV value for EV 23 and input 1 -set fmri(evg1.23) 0 - -# Higher-level EV value for EV 23 and input 2 -set fmri(evg2.23) 0 - -# Higher-level EV value for EV 23 and input 3 -set fmri(evg3.23) 0 - -# Higher-level EV value for EV 23 and input 4 -set fmri(evg4.23) 0 - -# Higher-level EV value for EV 23 and input 5 -set fmri(evg5.23) 0 - -# Higher-level EV value for EV 23 and input 6 -set fmri(evg6.23) 0 - -# Higher-level EV value for EV 23 and input 7 -set fmri(evg7.23) 0 - -# Higher-level EV value for EV 23 and input 8 -set fmri(evg8.23) 0 - -# Higher-level EV value for EV 23 and input 9 -set fmri(evg9.23) 0 - -# Higher-level EV value for EV 23 and input 10 -set fmri(evg10.23) 0 - -# Higher-level EV value for EV 23 and input 11 -set fmri(evg11.23) 0 - -# Higher-level EV value for EV 23 and input 12 -set fmri(evg12.23) 0 - -# Higher-level EV value for EV 23 and input 13 -set fmri(evg13.23) 0 - -# Higher-level EV value for EV 23 and input 14 -set fmri(evg14.23) 0 - -# Higher-level EV value for EV 23 and input 15 -set fmri(evg15.23) 0 - -# Higher-level EV value for EV 23 and input 16 -set fmri(evg16.23) 0 - -# Higher-level EV value for EV 23 and input 17 -set fmri(evg17.23) 0 - -# Higher-level EV value for EV 23 and input 18 -set fmri(evg18.23) 0 - -# Higher-level EV value for EV 23 and input 19 -set fmri(evg19.23) 0 - -# Higher-level EV value for EV 23 and input 20 -set fmri(evg20.23) 0 - -# Higher-level EV value for EV 23 and input 21 -set fmri(evg21.23) 0 - -# Higher-level EV value for EV 23 and input 22 -set fmri(evg22.23) 0 - -# Higher-level EV value for EV 23 and input 23 -set fmri(evg23.23) 0 - -# Higher-level EV value for EV 23 and input 24 -set fmri(evg24.23) 0 - -# Higher-level EV value for EV 23 and input 25 -set fmri(evg25.23) 0 - -# Higher-level EV value for EV 23 and input 26 -set fmri(evg26.23) 0 - -# Higher-level EV value for EV 23 and input 27 -set fmri(evg27.23) 0 - -# Higher-level EV value for EV 23 and input 28 -set fmri(evg28.23) 0 - -# Higher-level EV value for EV 23 and input 29 -set fmri(evg29.23) 0 - -# Higher-level EV value for EV 23 and input 30 -set fmri(evg30.23) 0 - -# Higher-level EV value for EV 23 and input 31 -set fmri(evg31.23) 0 - -# Higher-level EV value for EV 23 and input 32 -set fmri(evg32.23) 0 - -# Higher-level EV value for EV 23 and input 33 -set fmri(evg33.23) 0 - -# Higher-level EV value for EV 23 and input 34 -set fmri(evg34.23) 0 - -# Higher-level EV value for EV 23 and input 35 -set fmri(evg35.23) 0 - -# Higher-level EV value for EV 23 and input 36 -set fmri(evg36.23) 0 - -# Higher-level EV value for EV 23 and input 37 -set fmri(evg37.23) 0 - -# Higher-level EV value for EV 23 and input 38 -set fmri(evg38.23) 0 - -# Higher-level EV value for EV 23 and input 39 -set fmri(evg39.23) 0 - -# Higher-level EV value for EV 23 and input 40 -set fmri(evg40.23) 0 - -# Higher-level EV value for EV 23 and input 41 -set fmri(evg41.23) 0 - -# Higher-level EV value for EV 23 and input 42 -set fmri(evg42.23) 0 - -# Higher-level EV value for EV 23 and input 43 -set fmri(evg43.23) 0 - -# Higher-level EV value for EV 23 and input 44 -set fmri(evg44.23) 0 - -# Higher-level EV value for EV 23 and input 45 -set fmri(evg45.23) 1.0 - -# Higher-level EV value for EV 23 and input 46 -set fmri(evg46.23) 1.0 - -# Higher-level EV value for EV 23 and input 47 -set fmri(evg47.23) 0 - -# Higher-level EV value for EV 23 and input 48 -set fmri(evg48.23) 0 - -# Higher-level EV value for EV 23 and input 49 -set fmri(evg49.23) 0 - -# Higher-level EV value for EV 23 and input 50 -set fmri(evg50.23) 0 - -# Higher-level EV value for EV 23 and input 51 -set fmri(evg51.23) 0 - -# Higher-level EV value for EV 23 and input 52 -set fmri(evg52.23) 0 - -# EV 24 title -set fmri(evtitle24) "" - -# Basic waveform shape (EV 24) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape24) 2 - -# Convolution (EV 24) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve24) 0 - -# Convolve phase (EV 24) -set fmri(convolve_phase24) 0 - -# Apply temporal filtering (EV 24) -set fmri(tempfilt_yn24) 0 - -# Add temporal derivative (EV 24) -set fmri(deriv_yn24) 0 - -# Custom EV file (EV 24) -set fmri(custom24) "dummy" - -# Orthogonalise EV 24 wrt EV 0 -set fmri(ortho24.0) 0 - -# Orthogonalise EV 24 wrt EV 1 -set fmri(ortho24.1) 0 - -# Orthogonalise EV 24 wrt EV 2 -set fmri(ortho24.2) 0 - -# Orthogonalise EV 24 wrt EV 3 -set fmri(ortho24.3) 0 - -# Orthogonalise EV 24 wrt EV 4 -set fmri(ortho24.4) 0 - -# Orthogonalise EV 24 wrt EV 5 -set fmri(ortho24.5) 0 - -# Orthogonalise EV 24 wrt EV 6 -set fmri(ortho24.6) 0 - -# Orthogonalise EV 24 wrt EV 7 -set fmri(ortho24.7) 0 - -# Orthogonalise EV 24 wrt EV 8 -set fmri(ortho24.8) 0 - -# Orthogonalise EV 24 wrt EV 9 -set fmri(ortho24.9) 0 - -# Orthogonalise EV 24 wrt EV 10 -set fmri(ortho24.10) 0 - -# Orthogonalise EV 24 wrt EV 11 -set fmri(ortho24.11) 0 - -# Orthogonalise EV 24 wrt EV 12 -set fmri(ortho24.12) 0 - -# Orthogonalise EV 24 wrt EV 13 -set fmri(ortho24.13) 0 - -# Orthogonalise EV 24 wrt EV 14 -set fmri(ortho24.14) 0 - -# Orthogonalise EV 24 wrt EV 15 -set fmri(ortho24.15) 0 - -# Orthogonalise EV 24 wrt EV 16 -set fmri(ortho24.16) 0 - -# Orthogonalise EV 24 wrt EV 17 -set fmri(ortho24.17) 0 - -# Orthogonalise EV 24 wrt EV 18 -set fmri(ortho24.18) 0 - -# Orthogonalise EV 24 wrt EV 19 -set fmri(ortho24.19) 0 - -# Orthogonalise EV 24 wrt EV 20 -set fmri(ortho24.20) 0 - -# Orthogonalise EV 24 wrt EV 21 -set fmri(ortho24.21) 0 - -# Orthogonalise EV 24 wrt EV 22 -set fmri(ortho24.22) 0 - -# Orthogonalise EV 24 wrt EV 23 -set fmri(ortho24.23) 0 - -# Orthogonalise EV 24 wrt EV 24 -set fmri(ortho24.24) 0 - -# Orthogonalise EV 24 wrt EV 25 -set fmri(ortho24.25) 0 - -# Orthogonalise EV 24 wrt EV 26 -set fmri(ortho24.26) 0 - -# Higher-level EV value for EV 24 and input 1 -set fmri(evg1.24) 0 - -# Higher-level EV value for EV 24 and input 2 -set fmri(evg2.24) 0 - -# Higher-level EV value for EV 24 and input 3 -set fmri(evg3.24) 0 - -# Higher-level EV value for EV 24 and input 4 -set fmri(evg4.24) 0 - -# Higher-level EV value for EV 24 and input 5 -set fmri(evg5.24) 0 - -# Higher-level EV value for EV 24 and input 6 -set fmri(evg6.24) 0 - -# Higher-level EV value for EV 24 and input 7 -set fmri(evg7.24) 0 - -# Higher-level EV value for EV 24 and input 8 -set fmri(evg8.24) 0 - -# Higher-level EV value for EV 24 and input 9 -set fmri(evg9.24) 0 - -# Higher-level EV value for EV 24 and input 10 -set fmri(evg10.24) 0 - -# Higher-level EV value for EV 24 and input 11 -set fmri(evg11.24) 0 - -# Higher-level EV value for EV 24 and input 12 -set fmri(evg12.24) 0 - -# Higher-level EV value for EV 24 and input 13 -set fmri(evg13.24) 0 - -# Higher-level EV value for EV 24 and input 14 -set fmri(evg14.24) 0 - -# Higher-level EV value for EV 24 and input 15 -set fmri(evg15.24) 0 - -# Higher-level EV value for EV 24 and input 16 -set fmri(evg16.24) 0 - -# Higher-level EV value for EV 24 and input 17 -set fmri(evg17.24) 0 - -# Higher-level EV value for EV 24 and input 18 -set fmri(evg18.24) 0 - -# Higher-level EV value for EV 24 and input 19 -set fmri(evg19.24) 0 - -# Higher-level EV value for EV 24 and input 20 -set fmri(evg20.24) 0 - -# Higher-level EV value for EV 24 and input 21 -set fmri(evg21.24) 0 - -# Higher-level EV value for EV 24 and input 22 -set fmri(evg22.24) 0 - -# Higher-level EV value for EV 24 and input 23 -set fmri(evg23.24) 0 - -# Higher-level EV value for EV 24 and input 24 -set fmri(evg24.24) 0 - -# Higher-level EV value for EV 24 and input 25 -set fmri(evg25.24) 0 - -# Higher-level EV value for EV 24 and input 26 -set fmri(evg26.24) 0 - -# Higher-level EV value for EV 24 and input 27 -set fmri(evg27.24) 0 - -# Higher-level EV value for EV 24 and input 28 -set fmri(evg28.24) 0 - -# Higher-level EV value for EV 24 and input 29 -set fmri(evg29.24) 0 - -# Higher-level EV value for EV 24 and input 30 -set fmri(evg30.24) 0 - -# Higher-level EV value for EV 24 and input 31 -set fmri(evg31.24) 0 - -# Higher-level EV value for EV 24 and input 32 -set fmri(evg32.24) 0 - -# Higher-level EV value for EV 24 and input 33 -set fmri(evg33.24) 0 - -# Higher-level EV value for EV 24 and input 34 -set fmri(evg34.24) 0 - -# Higher-level EV value for EV 24 and input 35 -set fmri(evg35.24) 0 - -# Higher-level EV value for EV 24 and input 36 -set fmri(evg36.24) 0 - -# Higher-level EV value for EV 24 and input 37 -set fmri(evg37.24) 0 - -# Higher-level EV value for EV 24 and input 38 -set fmri(evg38.24) 0 - -# Higher-level EV value for EV 24 and input 39 -set fmri(evg39.24) 0 - -# Higher-level EV value for EV 24 and input 40 -set fmri(evg40.24) 0 - -# Higher-level EV value for EV 24 and input 41 -set fmri(evg41.24) 0 - -# Higher-level EV value for EV 24 and input 42 -set fmri(evg42.24) 0 - -# Higher-level EV value for EV 24 and input 43 -set fmri(evg43.24) 0 - -# Higher-level EV value for EV 24 and input 44 -set fmri(evg44.24) 0 - -# Higher-level EV value for EV 24 and input 45 -set fmri(evg45.24) 0 - -# Higher-level EV value for EV 24 and input 46 -set fmri(evg46.24) 0 - -# Higher-level EV value for EV 24 and input 47 -set fmri(evg47.24) 1.0 - -# Higher-level EV value for EV 24 and input 48 -set fmri(evg48.24) 1.0 - -# Higher-level EV value for EV 24 and input 49 -set fmri(evg49.24) 0 - -# Higher-level EV value for EV 24 and input 50 -set fmri(evg50.24) 0 - -# Higher-level EV value for EV 24 and input 51 -set fmri(evg51.24) 0 - -# Higher-level EV value for EV 24 and input 52 -set fmri(evg52.24) 0 - -# EV 25 title -set fmri(evtitle25) "" - -# Basic waveform shape (EV 25) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape25) 2 - -# Convolution (EV 25) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve25) 0 - -# Convolve phase (EV 25) -set fmri(convolve_phase25) 0 - -# Apply temporal filtering (EV 25) -set fmri(tempfilt_yn25) 0 - -# Add temporal derivative (EV 25) -set fmri(deriv_yn25) 0 - -# Custom EV file (EV 25) -set fmri(custom25) "dummy" - -# Orthogonalise EV 25 wrt EV 0 -set fmri(ortho25.0) 0 - -# Orthogonalise EV 25 wrt EV 1 -set fmri(ortho25.1) 0 - -# Orthogonalise EV 25 wrt EV 2 -set fmri(ortho25.2) 0 - -# Orthogonalise EV 25 wrt EV 3 -set fmri(ortho25.3) 0 - -# Orthogonalise EV 25 wrt EV 4 -set fmri(ortho25.4) 0 - -# Orthogonalise EV 25 wrt EV 5 -set fmri(ortho25.5) 0 - -# Orthogonalise EV 25 wrt EV 6 -set fmri(ortho25.6) 0 - -# Orthogonalise EV 25 wrt EV 7 -set fmri(ortho25.7) 0 - -# Orthogonalise EV 25 wrt EV 8 -set fmri(ortho25.8) 0 - -# Orthogonalise EV 25 wrt EV 9 -set fmri(ortho25.9) 0 - -# Orthogonalise EV 25 wrt EV 10 -set fmri(ortho25.10) 0 - -# Orthogonalise EV 25 wrt EV 11 -set fmri(ortho25.11) 0 - -# Orthogonalise EV 25 wrt EV 12 -set fmri(ortho25.12) 0 - -# Orthogonalise EV 25 wrt EV 13 -set fmri(ortho25.13) 0 - -# Orthogonalise EV 25 wrt EV 14 -set fmri(ortho25.14) 0 - -# Orthogonalise EV 25 wrt EV 15 -set fmri(ortho25.15) 0 - -# Orthogonalise EV 25 wrt EV 16 -set fmri(ortho25.16) 0 - -# Orthogonalise EV 25 wrt EV 17 -set fmri(ortho25.17) 0 - -# Orthogonalise EV 25 wrt EV 18 -set fmri(ortho25.18) 0 - -# Orthogonalise EV 25 wrt EV 19 -set fmri(ortho25.19) 0 - -# Orthogonalise EV 25 wrt EV 20 -set fmri(ortho25.20) 0 - -# Orthogonalise EV 25 wrt EV 21 -set fmri(ortho25.21) 0 - -# Orthogonalise EV 25 wrt EV 22 -set fmri(ortho25.22) 0 - -# Orthogonalise EV 25 wrt EV 23 -set fmri(ortho25.23) 0 - -# Orthogonalise EV 25 wrt EV 24 -set fmri(ortho25.24) 0 - -# Orthogonalise EV 25 wrt EV 25 -set fmri(ortho25.25) 0 - -# Orthogonalise EV 25 wrt EV 26 -set fmri(ortho25.26) 0 - -# Higher-level EV value for EV 25 and input 1 -set fmri(evg1.25) 0 - -# Higher-level EV value for EV 25 and input 2 -set fmri(evg2.25) 0 - -# Higher-level EV value for EV 25 and input 3 -set fmri(evg3.25) 0 - -# Higher-level EV value for EV 25 and input 4 -set fmri(evg4.25) 0 - -# Higher-level EV value for EV 25 and input 5 -set fmri(evg5.25) 0 - -# Higher-level EV value for EV 25 and input 6 -set fmri(evg6.25) 0 - -# Higher-level EV value for EV 25 and input 7 -set fmri(evg7.25) 0 - -# Higher-level EV value for EV 25 and input 8 -set fmri(evg8.25) 0 - -# Higher-level EV value for EV 25 and input 9 -set fmri(evg9.25) 0 - -# Higher-level EV value for EV 25 and input 10 -set fmri(evg10.25) 0 - -# Higher-level EV value for EV 25 and input 11 -set fmri(evg11.25) 0 - -# Higher-level EV value for EV 25 and input 12 -set fmri(evg12.25) 0 - -# Higher-level EV value for EV 25 and input 13 -set fmri(evg13.25) 0 - -# Higher-level EV value for EV 25 and input 14 -set fmri(evg14.25) 0 - -# Higher-level EV value for EV 25 and input 15 -set fmri(evg15.25) 0 - -# Higher-level EV value for EV 25 and input 16 -set fmri(evg16.25) 0 - -# Higher-level EV value for EV 25 and input 17 -set fmri(evg17.25) 0 - -# Higher-level EV value for EV 25 and input 18 -set fmri(evg18.25) 0 - -# Higher-level EV value for EV 25 and input 19 -set fmri(evg19.25) 0 - -# Higher-level EV value for EV 25 and input 20 -set fmri(evg20.25) 0 - -# Higher-level EV value for EV 25 and input 21 -set fmri(evg21.25) 0 - -# Higher-level EV value for EV 25 and input 22 -set fmri(evg22.25) 0 - -# Higher-level EV value for EV 25 and input 23 -set fmri(evg23.25) 0 - -# Higher-level EV value for EV 25 and input 24 -set fmri(evg24.25) 0 - -# Higher-level EV value for EV 25 and input 25 -set fmri(evg25.25) 0 - -# Higher-level EV value for EV 25 and input 26 -set fmri(evg26.25) 0 - -# Higher-level EV value for EV 25 and input 27 -set fmri(evg27.25) 0 - -# Higher-level EV value for EV 25 and input 28 -set fmri(evg28.25) 0 - -# Higher-level EV value for EV 25 and input 29 -set fmri(evg29.25) 0 - -# Higher-level EV value for EV 25 and input 30 -set fmri(evg30.25) 0 - -# Higher-level EV value for EV 25 and input 31 -set fmri(evg31.25) 0 - -# Higher-level EV value for EV 25 and input 32 -set fmri(evg32.25) 0 - -# Higher-level EV value for EV 25 and input 33 -set fmri(evg33.25) 0 - -# Higher-level EV value for EV 25 and input 34 -set fmri(evg34.25) 0 - -# Higher-level EV value for EV 25 and input 35 -set fmri(evg35.25) 0 - -# Higher-level EV value for EV 25 and input 36 -set fmri(evg36.25) 0 - -# Higher-level EV value for EV 25 and input 37 -set fmri(evg37.25) 0 - -# Higher-level EV value for EV 25 and input 38 -set fmri(evg38.25) 0 - -# Higher-level EV value for EV 25 and input 39 -set fmri(evg39.25) 0 - -# Higher-level EV value for EV 25 and input 40 -set fmri(evg40.25) 0 - -# Higher-level EV value for EV 25 and input 41 -set fmri(evg41.25) 0 - -# Higher-level EV value for EV 25 and input 42 -set fmri(evg42.25) 0 - -# Higher-level EV value for EV 25 and input 43 -set fmri(evg43.25) 0 - -# Higher-level EV value for EV 25 and input 44 -set fmri(evg44.25) 0 - -# Higher-level EV value for EV 25 and input 45 -set fmri(evg45.25) 0 - -# Higher-level EV value for EV 25 and input 46 -set fmri(evg46.25) 0 - -# Higher-level EV value for EV 25 and input 47 -set fmri(evg47.25) 0 - -# Higher-level EV value for EV 25 and input 48 -set fmri(evg48.25) 0 - -# Higher-level EV value for EV 25 and input 49 -set fmri(evg49.25) 1.0 - -# Higher-level EV value for EV 25 and input 50 -set fmri(evg50.25) 1.0 - -# Higher-level EV value for EV 25 and input 51 -set fmri(evg51.25) 0 - -# Higher-level EV value for EV 25 and input 52 -set fmri(evg52.25) 0 - -# EV 26 title -set fmri(evtitle26) "" - -# Basic waveform shape (EV 26) -# 0 : Square -# 1 : Sinusoid -# 2 : Custom (1 entry per volume) -# 3 : Custom (3 column format) -# 4 : Interaction -# 10 : Empty (all zeros) -set fmri(shape26) 2 - -# Convolution (EV 26) -# 0 : None -# 1 : Gaussian -# 2 : Gamma -# 3 : Double-Gamma HRF -# 4 : Gamma basis functions -# 5 : Sine basis functions -# 6 : FIR basis functions -# 8 : Alternate Double-Gamma -set fmri(convolve26) 0 - -# Convolve phase (EV 26) -set fmri(convolve_phase26) 0 - -# Apply temporal filtering (EV 26) -set fmri(tempfilt_yn26) 0 - -# Add temporal derivative (EV 26) -set fmri(deriv_yn26) 0 - -# Custom EV file (EV 26) -set fmri(custom26) "dummy" - -# Orthogonalise EV 26 wrt EV 0 -set fmri(ortho26.0) 0 - -# Orthogonalise EV 26 wrt EV 1 -set fmri(ortho26.1) 0 - -# Orthogonalise EV 26 wrt EV 2 -set fmri(ortho26.2) 0 - -# Orthogonalise EV 26 wrt EV 3 -set fmri(ortho26.3) 0 - -# Orthogonalise EV 26 wrt EV 4 -set fmri(ortho26.4) 0 - -# Orthogonalise EV 26 wrt EV 5 -set fmri(ortho26.5) 0 - -# Orthogonalise EV 26 wrt EV 6 -set fmri(ortho26.6) 0 - -# Orthogonalise EV 26 wrt EV 7 -set fmri(ortho26.7) 0 - -# Orthogonalise EV 26 wrt EV 8 -set fmri(ortho26.8) 0 - -# Orthogonalise EV 26 wrt EV 9 -set fmri(ortho26.9) 0 - -# Orthogonalise EV 26 wrt EV 10 -set fmri(ortho26.10) 0 - -# Orthogonalise EV 26 wrt EV 11 -set fmri(ortho26.11) 0 - -# Orthogonalise EV 26 wrt EV 12 -set fmri(ortho26.12) 0 - -# Orthogonalise EV 26 wrt EV 13 -set fmri(ortho26.13) 0 - -# Orthogonalise EV 26 wrt EV 14 -set fmri(ortho26.14) 0 - -# Orthogonalise EV 26 wrt EV 15 -set fmri(ortho26.15) 0 - -# Orthogonalise EV 26 wrt EV 16 -set fmri(ortho26.16) 0 - -# Orthogonalise EV 26 wrt EV 17 -set fmri(ortho26.17) 0 - -# Orthogonalise EV 26 wrt EV 18 -set fmri(ortho26.18) 0 - -# Orthogonalise EV 26 wrt EV 19 -set fmri(ortho26.19) 0 - -# Orthogonalise EV 26 wrt EV 20 -set fmri(ortho26.20) 0 - -# Orthogonalise EV 26 wrt EV 21 -set fmri(ortho26.21) 0 - -# Orthogonalise EV 26 wrt EV 22 -set fmri(ortho26.22) 0 - -# Orthogonalise EV 26 wrt EV 23 -set fmri(ortho26.23) 0 - -# Orthogonalise EV 26 wrt EV 24 -set fmri(ortho26.24) 0 - -# Orthogonalise EV 26 wrt EV 25 -set fmri(ortho26.25) 0 - -# Orthogonalise EV 26 wrt EV 26 -set fmri(ortho26.26) 0 - -# Higher-level EV value for EV 26 and input 1 -set fmri(evg1.26) 0 - -# Higher-level EV value for EV 26 and input 2 -set fmri(evg2.26) 0 - -# Higher-level EV value for EV 26 and input 3 -set fmri(evg3.26) 0 - -# Higher-level EV value for EV 26 and input 4 -set fmri(evg4.26) 0 - -# Higher-level EV value for EV 26 and input 5 -set fmri(evg5.26) 0 - -# Higher-level EV value for EV 26 and input 6 -set fmri(evg6.26) 0 - -# Higher-level EV value for EV 26 and input 7 -set fmri(evg7.26) 0 - -# Higher-level EV value for EV 26 and input 8 -set fmri(evg8.26) 0 - -# Higher-level EV value for EV 26 and input 9 -set fmri(evg9.26) 0 - -# Higher-level EV value for EV 26 and input 10 -set fmri(evg10.26) 0 - -# Higher-level EV value for EV 26 and input 11 -set fmri(evg11.26) 0 - -# Higher-level EV value for EV 26 and input 12 -set fmri(evg12.26) 0 - -# Higher-level EV value for EV 26 and input 13 -set fmri(evg13.26) 0 - -# Higher-level EV value for EV 26 and input 14 -set fmri(evg14.26) 0 - -# Higher-level EV value for EV 26 and input 15 -set fmri(evg15.26) 0 - -# Higher-level EV value for EV 26 and input 16 -set fmri(evg16.26) 0 - -# Higher-level EV value for EV 26 and input 17 -set fmri(evg17.26) 0 - -# Higher-level EV value for EV 26 and input 18 -set fmri(evg18.26) 0 - -# Higher-level EV value for EV 26 and input 19 -set fmri(evg19.26) 0 - -# Higher-level EV value for EV 26 and input 20 -set fmri(evg20.26) 0 - -# Higher-level EV value for EV 26 and input 21 -set fmri(evg21.26) 0 - -# Higher-level EV value for EV 26 and input 22 -set fmri(evg22.26) 0 - -# Higher-level EV value for EV 26 and input 23 -set fmri(evg23.26) 0 - -# Higher-level EV value for EV 26 and input 24 -set fmri(evg24.26) 0 - -# Higher-level EV value for EV 26 and input 25 -set fmri(evg25.26) 0 - -# Higher-level EV value for EV 26 and input 26 -set fmri(evg26.26) 0 - -# Higher-level EV value for EV 26 and input 27 -set fmri(evg27.26) 0 - -# Higher-level EV value for EV 26 and input 28 -set fmri(evg28.26) 0 - -# Higher-level EV value for EV 26 and input 29 -set fmri(evg29.26) 0 - -# Higher-level EV value for EV 26 and input 30 -set fmri(evg30.26) 0 - -# Higher-level EV value for EV 26 and input 31 -set fmri(evg31.26) 0 - -# Higher-level EV value for EV 26 and input 32 -set fmri(evg32.26) 0 - -# Higher-level EV value for EV 26 and input 33 -set fmri(evg33.26) 0 - -# Higher-level EV value for EV 26 and input 34 -set fmri(evg34.26) 0 - -# Higher-level EV value for EV 26 and input 35 -set fmri(evg35.26) 0 - -# Higher-level EV value for EV 26 and input 36 -set fmri(evg36.26) 0 - -# Higher-level EV value for EV 26 and input 37 -set fmri(evg37.26) 0 - -# Higher-level EV value for EV 26 and input 38 -set fmri(evg38.26) 0 - -# Higher-level EV value for EV 26 and input 39 -set fmri(evg39.26) 0 - -# Higher-level EV value for EV 26 and input 40 -set fmri(evg40.26) 0 - -# Higher-level EV value for EV 26 and input 41 -set fmri(evg41.26) 0 - -# Higher-level EV value for EV 26 and input 42 -set fmri(evg42.26) 0 - -# Higher-level EV value for EV 26 and input 43 -set fmri(evg43.26) 0 - -# Higher-level EV value for EV 26 and input 44 -set fmri(evg44.26) 0 - -# Higher-level EV value for EV 26 and input 45 -set fmri(evg45.26) 0 - -# Higher-level EV value for EV 26 and input 46 -set fmri(evg46.26) 0 - -# Higher-level EV value for EV 26 and input 47 -set fmri(evg47.26) 0 - -# Higher-level EV value for EV 26 and input 48 -set fmri(evg48.26) 0 - -# Higher-level EV value for EV 26 and input 49 -set fmri(evg49.26) 0 - -# Higher-level EV value for EV 26 and input 50 -set fmri(evg50.26) 0 - -# Higher-level EV value for EV 26 and input 51 -set fmri(evg51.26) 1.0 - -# Higher-level EV value for EV 26 and input 52 -set fmri(evg52.26) 1.0 - -# Setup Orthogonalisation at higher level? -set fmri(level2orth) 0 - -# Group membership for input 1 -set fmri(groupmem.1) 1 - -# Group membership for input 2 -set fmri(groupmem.2) 1 - -# Group membership for input 3 -set fmri(groupmem.3) 1 - -# Group membership for input 4 -set fmri(groupmem.4) 1 - -# Group membership for input 5 -set fmri(groupmem.5) 1 - -# Group membership for input 6 -set fmri(groupmem.6) 1 - -# Group membership for input 7 -set fmri(groupmem.7) 1 - -# Group membership for input 8 -set fmri(groupmem.8) 1 - -# Group membership for input 9 -set fmri(groupmem.9) 1 - -# Group membership for input 10 -set fmri(groupmem.10) 1 - -# Group membership for input 11 -set fmri(groupmem.11) 1 - -# Group membership for input 12 -set fmri(groupmem.12) 1 - -# Group membership for input 13 -set fmri(groupmem.13) 1 - -# Group membership for input 14 -set fmri(groupmem.14) 1 - -# Group membership for input 15 -set fmri(groupmem.15) 1 - -# Group membership for input 16 -set fmri(groupmem.16) 1 - -# Group membership for input 17 -set fmri(groupmem.17) 1 - -# Group membership for input 18 -set fmri(groupmem.18) 1 - -# Group membership for input 19 -set fmri(groupmem.19) 1 - -# Group membership for input 20 -set fmri(groupmem.20) 1 - -# Group membership for input 21 -set fmri(groupmem.21) 1 - -# Group membership for input 22 -set fmri(groupmem.22) 1 - -# Group membership for input 23 -set fmri(groupmem.23) 1 - -# Group membership for input 24 -set fmri(groupmem.24) 1 - -# Group membership for input 25 -set fmri(groupmem.25) 1 - -# Group membership for input 26 -set fmri(groupmem.26) 1 - -# Group membership for input 27 -set fmri(groupmem.27) 1 - -# Group membership for input 28 -set fmri(groupmem.28) 1 - -# Group membership for input 29 -set fmri(groupmem.29) 1 - -# Group membership for input 30 -set fmri(groupmem.30) 1 - -# Group membership for input 31 -set fmri(groupmem.31) 1 - -# Group membership for input 32 -set fmri(groupmem.32) 1 - -# Group membership for input 33 -set fmri(groupmem.33) 1 - -# Group membership for input 34 -set fmri(groupmem.34) 1 - -# Group membership for input 35 -set fmri(groupmem.35) 1 - -# Group membership for input 36 -set fmri(groupmem.36) 1 - -# Group membership for input 37 -set fmri(groupmem.37) 1 - -# Group membership for input 38 -set fmri(groupmem.38) 1 - -# Group membership for input 39 -set fmri(groupmem.39) 1 - -# Group membership for input 40 -set fmri(groupmem.40) 1 - -# Group membership for input 41 -set fmri(groupmem.41) 1 - -# Group membership for input 42 -set fmri(groupmem.42) 1 - -# Group membership for input 43 -set fmri(groupmem.43) 1 - -# Group membership for input 44 -set fmri(groupmem.44) 1 - -# Group membership for input 45 -set fmri(groupmem.45) 1 - -# Group membership for input 46 -set fmri(groupmem.46) 1 - -# Group membership for input 47 -set fmri(groupmem.47) 1 - -# Group membership for input 48 -set fmri(groupmem.48) 1 - -# Group membership for input 49 -set fmri(groupmem.49) 1 - -# Group membership for input 50 -set fmri(groupmem.50) 1 - -# Group membership for input 51 -set fmri(groupmem.51) 1 - -# Group membership for input 52 -set fmri(groupmem.52) 1 - -# Contrast & F-tests mode -# real : control real EVs -# orig : control original EVs -set fmri(con_mode_old) real -set fmri(con_mode) real - -# Display images for contrast_real 1 -set fmri(conpic_real.1) 1 - -# Title for contrast_real 1 -set fmri(conname_real.1) "" - -# Real contrast_real vector 1 element 1 -set fmri(con_real1.1) 1 - -# Real contrast_real vector 1 element 2 -set fmri(con_real1.2) 0 - -# Real contrast_real vector 1 element 3 -set fmri(con_real1.3) 0 - -# Real contrast_real vector 1 element 4 -set fmri(con_real1.4) 0 - -# Real contrast_real vector 1 element 5 -set fmri(con_real1.5) 0 - -# Real contrast_real vector 1 element 6 -set fmri(con_real1.6) 0 - -# Real contrast_real vector 1 element 7 -set fmri(con_real1.7) 0 - -# Real contrast_real vector 1 element 8 -set fmri(con_real1.8) 0 - -# Real contrast_real vector 1 element 9 -set fmri(con_real1.9) 0 - -# Real contrast_real vector 1 element 10 -set fmri(con_real1.10) 0 - -# Real contrast_real vector 1 element 11 -set fmri(con_real1.11) 0 - -# Real contrast_real vector 1 element 12 -set fmri(con_real1.12) 0 - -# Real contrast_real vector 1 element 13 -set fmri(con_real1.13) 0 - -# Real contrast_real vector 1 element 14 -set fmri(con_real1.14) 0 - -# Real contrast_real vector 1 element 15 -set fmri(con_real1.15) 0 - -# Real contrast_real vector 1 element 16 -set fmri(con_real1.16) 0 - -# Real contrast_real vector 1 element 17 -set fmri(con_real1.17) 0 - -# Real contrast_real vector 1 element 18 -set fmri(con_real1.18) 0 - -# Real contrast_real vector 1 element 19 -set fmri(con_real1.19) 0 - -# Real contrast_real vector 1 element 20 -set fmri(con_real1.20) 0 - -# Real contrast_real vector 1 element 21 -set fmri(con_real1.21) 0 - -# Real contrast_real vector 1 element 22 -set fmri(con_real1.22) 0 - -# Real contrast_real vector 1 element 23 -set fmri(con_real1.23) 0 - -# Real contrast_real vector 1 element 24 -set fmri(con_real1.24) 0 - -# Real contrast_real vector 1 element 25 -set fmri(con_real1.25) 0 - -# Real contrast_real vector 1 element 26 -set fmri(con_real1.26) 0 - -# Display images for contrast_real 2 -set fmri(conpic_real.2) 1 - -# Title for contrast_real 2 -set fmri(conname_real.2) "" - -# Real contrast_real vector 2 element 1 -set fmri(con_real2.1) 0 - -# Real contrast_real vector 2 element 2 -set fmri(con_real2.2) 1.0 - -# Real contrast_real vector 2 element 3 -set fmri(con_real2.3) 0 - -# Real contrast_real vector 2 element 4 -set fmri(con_real2.4) 0 - -# Real contrast_real vector 2 element 5 -set fmri(con_real2.5) 0 - -# Real contrast_real vector 2 element 6 -set fmri(con_real2.6) 0 - -# Real contrast_real vector 2 element 7 -set fmri(con_real2.7) 0 - -# Real contrast_real vector 2 element 8 -set fmri(con_real2.8) 0 - -# Real contrast_real vector 2 element 9 -set fmri(con_real2.9) 0 - -# Real contrast_real vector 2 element 10 -set fmri(con_real2.10) 0 - -# Real contrast_real vector 2 element 11 -set fmri(con_real2.11) 0 - -# Real contrast_real vector 2 element 12 -set fmri(con_real2.12) 0 - -# Real contrast_real vector 2 element 13 -set fmri(con_real2.13) 0 - -# Real contrast_real vector 2 element 14 -set fmri(con_real2.14) 0 - -# Real contrast_real vector 2 element 15 -set fmri(con_real2.15) 0 - -# Real contrast_real vector 2 element 16 -set fmri(con_real2.16) 0 - -# Real contrast_real vector 2 element 17 -set fmri(con_real2.17) 0 - -# Real contrast_real vector 2 element 18 -set fmri(con_real2.18) 0 - -# Real contrast_real vector 2 element 19 -set fmri(con_real2.19) 0 - -# Real contrast_real vector 2 element 20 -set fmri(con_real2.20) 0 - -# Real contrast_real vector 2 element 21 -set fmri(con_real2.21) 0 - -# Real contrast_real vector 2 element 22 -set fmri(con_real2.22) 0 - -# Real contrast_real vector 2 element 23 -set fmri(con_real2.23) 0 - -# Real contrast_real vector 2 element 24 -set fmri(con_real2.24) 0 - -# Real contrast_real vector 2 element 25 -set fmri(con_real2.25) 0 - -# Real contrast_real vector 2 element 26 -set fmri(con_real2.26) 0 - -# Display images for contrast_real 3 -set fmri(conpic_real.3) 1 - -# Title for contrast_real 3 -set fmri(conname_real.3) "" - -# Real contrast_real vector 3 element 1 -set fmri(con_real3.1) 0 - -# Real contrast_real vector 3 element 2 -set fmri(con_real3.2) 0 - -# Real contrast_real vector 3 element 3 -set fmri(con_real3.3) 1.0 - -# Real contrast_real vector 3 element 4 -set fmri(con_real3.4) 0 - -# Real contrast_real vector 3 element 5 -set fmri(con_real3.5) 0 - -# Real contrast_real vector 3 element 6 -set fmri(con_real3.6) 0 - -# Real contrast_real vector 3 element 7 -set fmri(con_real3.7) 0 - -# Real contrast_real vector 3 element 8 -set fmri(con_real3.8) 0 - -# Real contrast_real vector 3 element 9 -set fmri(con_real3.9) 0 - -# Real contrast_real vector 3 element 10 -set fmri(con_real3.10) 0 - -# Real contrast_real vector 3 element 11 -set fmri(con_real3.11) 0 - -# Real contrast_real vector 3 element 12 -set fmri(con_real3.12) 0 - -# Real contrast_real vector 3 element 13 -set fmri(con_real3.13) 0 - -# Real contrast_real vector 3 element 14 -set fmri(con_real3.14) 0 - -# Real contrast_real vector 3 element 15 -set fmri(con_real3.15) 0 - -# Real contrast_real vector 3 element 16 -set fmri(con_real3.16) 0 - -# Real contrast_real vector 3 element 17 -set fmri(con_real3.17) 0 - -# Real contrast_real vector 3 element 18 -set fmri(con_real3.18) 0 - -# Real contrast_real vector 3 element 19 -set fmri(con_real3.19) 0 - -# Real contrast_real vector 3 element 20 -set fmri(con_real3.20) 0 - -# Real contrast_real vector 3 element 21 -set fmri(con_real3.21) 0 - -# Real contrast_real vector 3 element 22 -set fmri(con_real3.22) 0 - -# Real contrast_real vector 3 element 23 -set fmri(con_real3.23) 0 - -# Real contrast_real vector 3 element 24 -set fmri(con_real3.24) 0 - -# Real contrast_real vector 3 element 25 -set fmri(con_real3.25) 0 - -# Real contrast_real vector 3 element 26 -set fmri(con_real3.26) 0 - -# Display images for contrast_real 4 -set fmri(conpic_real.4) 1 - -# Title for contrast_real 4 -set fmri(conname_real.4) "" - -# Real contrast_real vector 4 element 1 -set fmri(con_real4.1) 0 - -# Real contrast_real vector 4 element 2 -set fmri(con_real4.2) 0 - -# Real contrast_real vector 4 element 3 -set fmri(con_real4.3) 0 - -# Real contrast_real vector 4 element 4 -set fmri(con_real4.4) 1.0 - -# Real contrast_real vector 4 element 5 -set fmri(con_real4.5) 0 - -# Real contrast_real vector 4 element 6 -set fmri(con_real4.6) 0 - -# Real contrast_real vector 4 element 7 -set fmri(con_real4.7) 0 - -# Real contrast_real vector 4 element 8 -set fmri(con_real4.8) 0 - -# Real contrast_real vector 4 element 9 -set fmri(con_real4.9) 0 - -# Real contrast_real vector 4 element 10 -set fmri(con_real4.10) 0 - -# Real contrast_real vector 4 element 11 -set fmri(con_real4.11) 0 - -# Real contrast_real vector 4 element 12 -set fmri(con_real4.12) 0 - -# Real contrast_real vector 4 element 13 -set fmri(con_real4.13) 0 - -# Real contrast_real vector 4 element 14 -set fmri(con_real4.14) 0 - -# Real contrast_real vector 4 element 15 -set fmri(con_real4.15) 0 - -# Real contrast_real vector 4 element 16 -set fmri(con_real4.16) 0 - -# Real contrast_real vector 4 element 17 -set fmri(con_real4.17) 0 - -# Real contrast_real vector 4 element 18 -set fmri(con_real4.18) 0 - -# Real contrast_real vector 4 element 19 -set fmri(con_real4.19) 0 - -# Real contrast_real vector 4 element 20 -set fmri(con_real4.20) 0 - -# Real contrast_real vector 4 element 21 -set fmri(con_real4.21) 0 - -# Real contrast_real vector 4 element 22 -set fmri(con_real4.22) 0 - -# Real contrast_real vector 4 element 23 -set fmri(con_real4.23) 0 - -# Real contrast_real vector 4 element 24 -set fmri(con_real4.24) 0 - -# Real contrast_real vector 4 element 25 -set fmri(con_real4.25) 0 - -# Real contrast_real vector 4 element 26 -set fmri(con_real4.26) 0 - -# Display images for contrast_real 5 -set fmri(conpic_real.5) 1 - -# Title for contrast_real 5 -set fmri(conname_real.5) "" - -# Real contrast_real vector 5 element 1 -set fmri(con_real5.1) 0 - -# Real contrast_real vector 5 element 2 -set fmri(con_real5.2) 0 - -# Real contrast_real vector 5 element 3 -set fmri(con_real5.3) 0 - -# Real contrast_real vector 5 element 4 -set fmri(con_real5.4) 0 - -# Real contrast_real vector 5 element 5 -set fmri(con_real5.5) 1.0 - -# Real contrast_real vector 5 element 6 -set fmri(con_real5.6) 0 - -# Real contrast_real vector 5 element 7 -set fmri(con_real5.7) 0 - -# Real contrast_real vector 5 element 8 -set fmri(con_real5.8) 0 - -# Real contrast_real vector 5 element 9 -set fmri(con_real5.9) 0 - -# Real contrast_real vector 5 element 10 -set fmri(con_real5.10) 0 - -# Real contrast_real vector 5 element 11 -set fmri(con_real5.11) 0 - -# Real contrast_real vector 5 element 12 -set fmri(con_real5.12) 0 - -# Real contrast_real vector 5 element 13 -set fmri(con_real5.13) 0 - -# Real contrast_real vector 5 element 14 -set fmri(con_real5.14) 0 - -# Real contrast_real vector 5 element 15 -set fmri(con_real5.15) 0 - -# Real contrast_real vector 5 element 16 -set fmri(con_real5.16) 0 - -# Real contrast_real vector 5 element 17 -set fmri(con_real5.17) 0 - -# Real contrast_real vector 5 element 18 -set fmri(con_real5.18) 0 - -# Real contrast_real vector 5 element 19 -set fmri(con_real5.19) 0 - -# Real contrast_real vector 5 element 20 -set fmri(con_real5.20) 0 - -# Real contrast_real vector 5 element 21 -set fmri(con_real5.21) 0 - -# Real contrast_real vector 5 element 22 -set fmri(con_real5.22) 0 - -# Real contrast_real vector 5 element 23 -set fmri(con_real5.23) 0 - -# Real contrast_real vector 5 element 24 -set fmri(con_real5.24) 0 - -# Real contrast_real vector 5 element 25 -set fmri(con_real5.25) 0 - -# Real contrast_real vector 5 element 26 -set fmri(con_real5.26) 0 - -# Display images for contrast_real 6 -set fmri(conpic_real.6) 1 - -# Title for contrast_real 6 -set fmri(conname_real.6) "" - -# Real contrast_real vector 6 element 1 -set fmri(con_real6.1) 0 - -# Real contrast_real vector 6 element 2 -set fmri(con_real6.2) 0 - -# Real contrast_real vector 6 element 3 -set fmri(con_real6.3) 0 - -# Real contrast_real vector 6 element 4 -set fmri(con_real6.4) 0 - -# Real contrast_real vector 6 element 5 -set fmri(con_real6.5) 0 - -# Real contrast_real vector 6 element 6 -set fmri(con_real6.6) 1.0 - -# Real contrast_real vector 6 element 7 -set fmri(con_real6.7) 0 - -# Real contrast_real vector 6 element 8 -set fmri(con_real6.8) 0 - -# Real contrast_real vector 6 element 9 -set fmri(con_real6.9) 0 - -# Real contrast_real vector 6 element 10 -set fmri(con_real6.10) 0 - -# Real contrast_real vector 6 element 11 -set fmri(con_real6.11) 0 - -# Real contrast_real vector 6 element 12 -set fmri(con_real6.12) 0 - -# Real contrast_real vector 6 element 13 -set fmri(con_real6.13) 0 - -# Real contrast_real vector 6 element 14 -set fmri(con_real6.14) 0 - -# Real contrast_real vector 6 element 15 -set fmri(con_real6.15) 0 - -# Real contrast_real vector 6 element 16 -set fmri(con_real6.16) 0 - -# Real contrast_real vector 6 element 17 -set fmri(con_real6.17) 0 - -# Real contrast_real vector 6 element 18 -set fmri(con_real6.18) 0 - -# Real contrast_real vector 6 element 19 -set fmri(con_real6.19) 0 - -# Real contrast_real vector 6 element 20 -set fmri(con_real6.20) 0 - -# Real contrast_real vector 6 element 21 -set fmri(con_real6.21) 0 - -# Real contrast_real vector 6 element 22 -set fmri(con_real6.22) 0 - -# Real contrast_real vector 6 element 23 -set fmri(con_real6.23) 0 - -# Real contrast_real vector 6 element 24 -set fmri(con_real6.24) 0 - -# Real contrast_real vector 6 element 25 -set fmri(con_real6.25) 0 - -# Real contrast_real vector 6 element 26 -set fmri(con_real6.26) 0 - -# Display images for contrast_real 7 -set fmri(conpic_real.7) 1 - -# Title for contrast_real 7 -set fmri(conname_real.7) "" - -# Real contrast_real vector 7 element 1 -set fmri(con_real7.1) 0 - -# Real contrast_real vector 7 element 2 -set fmri(con_real7.2) 0 - -# Real contrast_real vector 7 element 3 -set fmri(con_real7.3) 0 - -# Real contrast_real vector 7 element 4 -set fmri(con_real7.4) 0 - -# Real contrast_real vector 7 element 5 -set fmri(con_real7.5) 0 - -# Real contrast_real vector 7 element 6 -set fmri(con_real7.6) 0 - -# Real contrast_real vector 7 element 7 -set fmri(con_real7.7) 1.0 - -# Real contrast_real vector 7 element 8 -set fmri(con_real7.8) 0 - -# Real contrast_real vector 7 element 9 -set fmri(con_real7.9) 0 - -# Real contrast_real vector 7 element 10 -set fmri(con_real7.10) 0 - -# Real contrast_real vector 7 element 11 -set fmri(con_real7.11) 0 - -# Real contrast_real vector 7 element 12 -set fmri(con_real7.12) 0 - -# Real contrast_real vector 7 element 13 -set fmri(con_real7.13) 0 - -# Real contrast_real vector 7 element 14 -set fmri(con_real7.14) 0 - -# Real contrast_real vector 7 element 15 -set fmri(con_real7.15) 0 - -# Real contrast_real vector 7 element 16 -set fmri(con_real7.16) 0 - -# Real contrast_real vector 7 element 17 -set fmri(con_real7.17) 0 - -# Real contrast_real vector 7 element 18 -set fmri(con_real7.18) 0 - -# Real contrast_real vector 7 element 19 -set fmri(con_real7.19) 0 - -# Real contrast_real vector 7 element 20 -set fmri(con_real7.20) 0 - -# Real contrast_real vector 7 element 21 -set fmri(con_real7.21) 0 - -# Real contrast_real vector 7 element 22 -set fmri(con_real7.22) 0 - -# Real contrast_real vector 7 element 23 -set fmri(con_real7.23) 0 - -# Real contrast_real vector 7 element 24 -set fmri(con_real7.24) 0 - -# Real contrast_real vector 7 element 25 -set fmri(con_real7.25) 0 - -# Real contrast_real vector 7 element 26 -set fmri(con_real7.26) 0 - -# Display images for contrast_real 8 -set fmri(conpic_real.8) 1 - -# Title for contrast_real 8 -set fmri(conname_real.8) "" - -# Real contrast_real vector 8 element 1 -set fmri(con_real8.1) 0 - -# Real contrast_real vector 8 element 2 -set fmri(con_real8.2) 0 - -# Real contrast_real vector 8 element 3 -set fmri(con_real8.3) 0 - -# Real contrast_real vector 8 element 4 -set fmri(con_real8.4) 0 - -# Real contrast_real vector 8 element 5 -set fmri(con_real8.5) 0 - -# Real contrast_real vector 8 element 6 -set fmri(con_real8.6) 0 - -# Real contrast_real vector 8 element 7 -set fmri(con_real8.7) 0 - -# Real contrast_real vector 8 element 8 -set fmri(con_real8.8) 1.0 - -# Real contrast_real vector 8 element 9 -set fmri(con_real8.9) 0 - -# Real contrast_real vector 8 element 10 -set fmri(con_real8.10) 0 - -# Real contrast_real vector 8 element 11 -set fmri(con_real8.11) 0 - -# Real contrast_real vector 8 element 12 -set fmri(con_real8.12) 0 - -# Real contrast_real vector 8 element 13 -set fmri(con_real8.13) 0 - -# Real contrast_real vector 8 element 14 -set fmri(con_real8.14) 0 - -# Real contrast_real vector 8 element 15 -set fmri(con_real8.15) 0 - -# Real contrast_real vector 8 element 16 -set fmri(con_real8.16) 0 - -# Real contrast_real vector 8 element 17 -set fmri(con_real8.17) 0 - -# Real contrast_real vector 8 element 18 -set fmri(con_real8.18) 0 - -# Real contrast_real vector 8 element 19 -set fmri(con_real8.19) 0 - -# Real contrast_real vector 8 element 20 -set fmri(con_real8.20) 0 - -# Real contrast_real vector 8 element 21 -set fmri(con_real8.21) 0 - -# Real contrast_real vector 8 element 22 -set fmri(con_real8.22) 0 - -# Real contrast_real vector 8 element 23 -set fmri(con_real8.23) 0 - -# Real contrast_real vector 8 element 24 -set fmri(con_real8.24) 0 - -# Real contrast_real vector 8 element 25 -set fmri(con_real8.25) 0 - -# Real contrast_real vector 8 element 26 -set fmri(con_real8.26) 0 - -# Display images for contrast_real 9 -set fmri(conpic_real.9) 1 - -# Title for contrast_real 9 -set fmri(conname_real.9) "" - -# Real contrast_real vector 9 element 1 -set fmri(con_real9.1) 0 - -# Real contrast_real vector 9 element 2 -set fmri(con_real9.2) 0 - -# Real contrast_real vector 9 element 3 -set fmri(con_real9.3) 0 - -# Real contrast_real vector 9 element 4 -set fmri(con_real9.4) 0 - -# Real contrast_real vector 9 element 5 -set fmri(con_real9.5) 0 - -# Real contrast_real vector 9 element 6 -set fmri(con_real9.6) 0 - -# Real contrast_real vector 9 element 7 -set fmri(con_real9.7) 0 - -# Real contrast_real vector 9 element 8 -set fmri(con_real9.8) 0 - -# Real contrast_real vector 9 element 9 -set fmri(con_real9.9) 1.0 - -# Real contrast_real vector 9 element 10 -set fmri(con_real9.10) 0 - -# Real contrast_real vector 9 element 11 -set fmri(con_real9.11) 0 - -# Real contrast_real vector 9 element 12 -set fmri(con_real9.12) 0 - -# Real contrast_real vector 9 element 13 -set fmri(con_real9.13) 0 - -# Real contrast_real vector 9 element 14 -set fmri(con_real9.14) 0 - -# Real contrast_real vector 9 element 15 -set fmri(con_real9.15) 0 - -# Real contrast_real vector 9 element 16 -set fmri(con_real9.16) 0 - -# Real contrast_real vector 9 element 17 -set fmri(con_real9.17) 0 - -# Real contrast_real vector 9 element 18 -set fmri(con_real9.18) 0 - -# Real contrast_real vector 9 element 19 -set fmri(con_real9.19) 0 - -# Real contrast_real vector 9 element 20 -set fmri(con_real9.20) 0 - -# Real contrast_real vector 9 element 21 -set fmri(con_real9.21) 0 - -# Real contrast_real vector 9 element 22 -set fmri(con_real9.22) 0 - -# Real contrast_real vector 9 element 23 -set fmri(con_real9.23) 0 - -# Real contrast_real vector 9 element 24 -set fmri(con_real9.24) 0 - -# Real contrast_real vector 9 element 25 -set fmri(con_real9.25) 0 - -# Real contrast_real vector 9 element 26 -set fmri(con_real9.26) 0 - -# Display images for contrast_real 10 -set fmri(conpic_real.10) 1 - -# Title for contrast_real 10 -set fmri(conname_real.10) "" - -# Real contrast_real vector 10 element 1 -set fmri(con_real10.1) 0 - -# Real contrast_real vector 10 element 2 -set fmri(con_real10.2) 0 - -# Real contrast_real vector 10 element 3 -set fmri(con_real10.3) 0 - -# Real contrast_real vector 10 element 4 -set fmri(con_real10.4) 0 - -# Real contrast_real vector 10 element 5 -set fmri(con_real10.5) 0 - -# Real contrast_real vector 10 element 6 -set fmri(con_real10.6) 0 - -# Real contrast_real vector 10 element 7 -set fmri(con_real10.7) 0 - -# Real contrast_real vector 10 element 8 -set fmri(con_real10.8) 0 - -# Real contrast_real vector 10 element 9 -set fmri(con_real10.9) 0 - -# Real contrast_real vector 10 element 10 -set fmri(con_real10.10) 1.0 - -# Real contrast_real vector 10 element 11 -set fmri(con_real10.11) 0 - -# Real contrast_real vector 10 element 12 -set fmri(con_real10.12) 0 - -# Real contrast_real vector 10 element 13 -set fmri(con_real10.13) 0 - -# Real contrast_real vector 10 element 14 -set fmri(con_real10.14) 0 - -# Real contrast_real vector 10 element 15 -set fmri(con_real10.15) 0 - -# Real contrast_real vector 10 element 16 -set fmri(con_real10.16) 0 - -# Real contrast_real vector 10 element 17 -set fmri(con_real10.17) 0 - -# Real contrast_real vector 10 element 18 -set fmri(con_real10.18) 0 - -# Real contrast_real vector 10 element 19 -set fmri(con_real10.19) 0 - -# Real contrast_real vector 10 element 20 -set fmri(con_real10.20) 0 - -# Real contrast_real vector 10 element 21 -set fmri(con_real10.21) 0 - -# Real contrast_real vector 10 element 22 -set fmri(con_real10.22) 0 - -# Real contrast_real vector 10 element 23 -set fmri(con_real10.23) 0 - -# Real contrast_real vector 10 element 24 -set fmri(con_real10.24) 0 - -# Real contrast_real vector 10 element 25 -set fmri(con_real10.25) 0 - -# Real contrast_real vector 10 element 26 -set fmri(con_real10.26) 0 - -# Display images for contrast_real 11 -set fmri(conpic_real.11) 1 - -# Title for contrast_real 11 -set fmri(conname_real.11) "" - -# Real contrast_real vector 11 element 1 -set fmri(con_real11.1) 0 - -# Real contrast_real vector 11 element 2 -set fmri(con_real11.2) 0 - -# Real contrast_real vector 11 element 3 -set fmri(con_real11.3) 0 - -# Real contrast_real vector 11 element 4 -set fmri(con_real11.4) 0 - -# Real contrast_real vector 11 element 5 -set fmri(con_real11.5) 0 - -# Real contrast_real vector 11 element 6 -set fmri(con_real11.6) 0 - -# Real contrast_real vector 11 element 7 -set fmri(con_real11.7) 0 - -# Real contrast_real vector 11 element 8 -set fmri(con_real11.8) 0 - -# Real contrast_real vector 11 element 9 -set fmri(con_real11.9) 0 - -# Real contrast_real vector 11 element 10 -set fmri(con_real11.10) 0 - -# Real contrast_real vector 11 element 11 -set fmri(con_real11.11) 1.0 - -# Real contrast_real vector 11 element 12 -set fmri(con_real11.12) 0 - -# Real contrast_real vector 11 element 13 -set fmri(con_real11.13) 0 - -# Real contrast_real vector 11 element 14 -set fmri(con_real11.14) 0 - -# Real contrast_real vector 11 element 15 -set fmri(con_real11.15) 0 - -# Real contrast_real vector 11 element 16 -set fmri(con_real11.16) 0 - -# Real contrast_real vector 11 element 17 -set fmri(con_real11.17) 0 - -# Real contrast_real vector 11 element 18 -set fmri(con_real11.18) 0 - -# Real contrast_real vector 11 element 19 -set fmri(con_real11.19) 0 - -# Real contrast_real vector 11 element 20 -set fmri(con_real11.20) 0 - -# Real contrast_real vector 11 element 21 -set fmri(con_real11.21) 0 - -# Real contrast_real vector 11 element 22 -set fmri(con_real11.22) 0 - -# Real contrast_real vector 11 element 23 -set fmri(con_real11.23) 0 - -# Real contrast_real vector 11 element 24 -set fmri(con_real11.24) 0 - -# Real contrast_real vector 11 element 25 -set fmri(con_real11.25) 0 - -# Real contrast_real vector 11 element 26 -set fmri(con_real11.26) 0 - -# Display images for contrast_real 12 -set fmri(conpic_real.12) 1 - -# Title for contrast_real 12 -set fmri(conname_real.12) "" - -# Real contrast_real vector 12 element 1 -set fmri(con_real12.1) 0 - -# Real contrast_real vector 12 element 2 -set fmri(con_real12.2) 0 - -# Real contrast_real vector 12 element 3 -set fmri(con_real12.3) 0 - -# Real contrast_real vector 12 element 4 -set fmri(con_real12.4) 0 - -# Real contrast_real vector 12 element 5 -set fmri(con_real12.5) 0 - -# Real contrast_real vector 12 element 6 -set fmri(con_real12.6) 0 - -# Real contrast_real vector 12 element 7 -set fmri(con_real12.7) 0 - -# Real contrast_real vector 12 element 8 -set fmri(con_real12.8) 0 - -# Real contrast_real vector 12 element 9 -set fmri(con_real12.9) 0 - -# Real contrast_real vector 12 element 10 -set fmri(con_real12.10) 0 - -# Real contrast_real vector 12 element 11 -set fmri(con_real12.11) 0 - -# Real contrast_real vector 12 element 12 -set fmri(con_real12.12) 1.0 - -# Real contrast_real vector 12 element 13 -set fmri(con_real12.13) 0 - -# Real contrast_real vector 12 element 14 -set fmri(con_real12.14) 0 - -# Real contrast_real vector 12 element 15 -set fmri(con_real12.15) 0 - -# Real contrast_real vector 12 element 16 -set fmri(con_real12.16) 0 - -# Real contrast_real vector 12 element 17 -set fmri(con_real12.17) 0 - -# Real contrast_real vector 12 element 18 -set fmri(con_real12.18) 0 - -# Real contrast_real vector 12 element 19 -set fmri(con_real12.19) 0 - -# Real contrast_real vector 12 element 20 -set fmri(con_real12.20) 0 - -# Real contrast_real vector 12 element 21 -set fmri(con_real12.21) 0 - -# Real contrast_real vector 12 element 22 -set fmri(con_real12.22) 0 - -# Real contrast_real vector 12 element 23 -set fmri(con_real12.23) 0 - -# Real contrast_real vector 12 element 24 -set fmri(con_real12.24) 0 - -# Real contrast_real vector 12 element 25 -set fmri(con_real12.25) 0 - -# Real contrast_real vector 12 element 26 -set fmri(con_real12.26) 0 - -# Display images for contrast_real 13 -set fmri(conpic_real.13) 1 - -# Title for contrast_real 13 -set fmri(conname_real.13) "" - -# Real contrast_real vector 13 element 1 -set fmri(con_real13.1) 0 - -# Real contrast_real vector 13 element 2 -set fmri(con_real13.2) 0 - -# Real contrast_real vector 13 element 3 -set fmri(con_real13.3) 0 - -# Real contrast_real vector 13 element 4 -set fmri(con_real13.4) 0 - -# Real contrast_real vector 13 element 5 -set fmri(con_real13.5) 0 - -# Real contrast_real vector 13 element 6 -set fmri(con_real13.6) 0 - -# Real contrast_real vector 13 element 7 -set fmri(con_real13.7) 0 - -# Real contrast_real vector 13 element 8 -set fmri(con_real13.8) 0 - -# Real contrast_real vector 13 element 9 -set fmri(con_real13.9) 0 - -# Real contrast_real vector 13 element 10 -set fmri(con_real13.10) 0 - -# Real contrast_real vector 13 element 11 -set fmri(con_real13.11) 0 - -# Real contrast_real vector 13 element 12 -set fmri(con_real13.12) 0 - -# Real contrast_real vector 13 element 13 -set fmri(con_real13.13) 1.0 - -# Real contrast_real vector 13 element 14 -set fmri(con_real13.14) 0 - -# Real contrast_real vector 13 element 15 -set fmri(con_real13.15) 0 - -# Real contrast_real vector 13 element 16 -set fmri(con_real13.16) 0 - -# Real contrast_real vector 13 element 17 -set fmri(con_real13.17) 0 - -# Real contrast_real vector 13 element 18 -set fmri(con_real13.18) 0 - -# Real contrast_real vector 13 element 19 -set fmri(con_real13.19) 0 - -# Real contrast_real vector 13 element 20 -set fmri(con_real13.20) 0 - -# Real contrast_real vector 13 element 21 -set fmri(con_real13.21) 0 - -# Real contrast_real vector 13 element 22 -set fmri(con_real13.22) 0 - -# Real contrast_real vector 13 element 23 -set fmri(con_real13.23) 0 - -# Real contrast_real vector 13 element 24 -set fmri(con_real13.24) 0 - -# Real contrast_real vector 13 element 25 -set fmri(con_real13.25) 0 - -# Real contrast_real vector 13 element 26 -set fmri(con_real13.26) 0 - -# Display images for contrast_real 14 -set fmri(conpic_real.14) 1 - -# Title for contrast_real 14 -set fmri(conname_real.14) "" - -# Real contrast_real vector 14 element 1 -set fmri(con_real14.1) 0 - -# Real contrast_real vector 14 element 2 -set fmri(con_real14.2) 0 - -# Real contrast_real vector 14 element 3 -set fmri(con_real14.3) 0 - -# Real contrast_real vector 14 element 4 -set fmri(con_real14.4) 0 - -# Real contrast_real vector 14 element 5 -set fmri(con_real14.5) 0 - -# Real contrast_real vector 14 element 6 -set fmri(con_real14.6) 0 - -# Real contrast_real vector 14 element 7 -set fmri(con_real14.7) 0 - -# Real contrast_real vector 14 element 8 -set fmri(con_real14.8) 0 - -# Real contrast_real vector 14 element 9 -set fmri(con_real14.9) 0 - -# Real contrast_real vector 14 element 10 -set fmri(con_real14.10) 0 - -# Real contrast_real vector 14 element 11 -set fmri(con_real14.11) 0 - -# Real contrast_real vector 14 element 12 -set fmri(con_real14.12) 0 - -# Real contrast_real vector 14 element 13 -set fmri(con_real14.13) 0 - -# Real contrast_real vector 14 element 14 -set fmri(con_real14.14) 1.0 - -# Real contrast_real vector 14 element 15 -set fmri(con_real14.15) 0 - -# Real contrast_real vector 14 element 16 -set fmri(con_real14.16) 0 - -# Real contrast_real vector 14 element 17 -set fmri(con_real14.17) 0 - -# Real contrast_real vector 14 element 18 -set fmri(con_real14.18) 0 - -# Real contrast_real vector 14 element 19 -set fmri(con_real14.19) 0 - -# Real contrast_real vector 14 element 20 -set fmri(con_real14.20) 0 - -# Real contrast_real vector 14 element 21 -set fmri(con_real14.21) 0 - -# Real contrast_real vector 14 element 22 -set fmri(con_real14.22) 0 - -# Real contrast_real vector 14 element 23 -set fmri(con_real14.23) 0 - -# Real contrast_real vector 14 element 24 -set fmri(con_real14.24) 0 - -# Real contrast_real vector 14 element 25 -set fmri(con_real14.25) 0 - -# Real contrast_real vector 14 element 26 -set fmri(con_real14.26) 0 - -# Display images for contrast_real 15 -set fmri(conpic_real.15) 1 - -# Title for contrast_real 15 -set fmri(conname_real.15) "" - -# Real contrast_real vector 15 element 1 -set fmri(con_real15.1) 0 - -# Real contrast_real vector 15 element 2 -set fmri(con_real15.2) 0 - -# Real contrast_real vector 15 element 3 -set fmri(con_real15.3) 0 - -# Real contrast_real vector 15 element 4 -set fmri(con_real15.4) 0 - -# Real contrast_real vector 15 element 5 -set fmri(con_real15.5) 0 - -# Real contrast_real vector 15 element 6 -set fmri(con_real15.6) 0 - -# Real contrast_real vector 15 element 7 -set fmri(con_real15.7) 0 - -# Real contrast_real vector 15 element 8 -set fmri(con_real15.8) 0 - -# Real contrast_real vector 15 element 9 -set fmri(con_real15.9) 0 - -# Real contrast_real vector 15 element 10 -set fmri(con_real15.10) 0 - -# Real contrast_real vector 15 element 11 -set fmri(con_real15.11) 0 - -# Real contrast_real vector 15 element 12 -set fmri(con_real15.12) 0 - -# Real contrast_real vector 15 element 13 -set fmri(con_real15.13) 0 - -# Real contrast_real vector 15 element 14 -set fmri(con_real15.14) 0 - -# Real contrast_real vector 15 element 15 -set fmri(con_real15.15) 1.0 - -# Real contrast_real vector 15 element 16 -set fmri(con_real15.16) 0 - -# Real contrast_real vector 15 element 17 -set fmri(con_real15.17) 0 - -# Real contrast_real vector 15 element 18 -set fmri(con_real15.18) 0 - -# Real contrast_real vector 15 element 19 -set fmri(con_real15.19) 0 - -# Real contrast_real vector 15 element 20 -set fmri(con_real15.20) 0 - -# Real contrast_real vector 15 element 21 -set fmri(con_real15.21) 0 - -# Real contrast_real vector 15 element 22 -set fmri(con_real15.22) 0 - -# Real contrast_real vector 15 element 23 -set fmri(con_real15.23) 0 - -# Real contrast_real vector 15 element 24 -set fmri(con_real15.24) 0 - -# Real contrast_real vector 15 element 25 -set fmri(con_real15.25) 0 - -# Real contrast_real vector 15 element 26 -set fmri(con_real15.26) 0 - -# Display images for contrast_real 16 -set fmri(conpic_real.16) 1 - -# Title for contrast_real 16 -set fmri(conname_real.16) "" - -# Real contrast_real vector 16 element 1 -set fmri(con_real16.1) 0 - -# Real contrast_real vector 16 element 2 -set fmri(con_real16.2) 0 - -# Real contrast_real vector 16 element 3 -set fmri(con_real16.3) 0 - -# Real contrast_real vector 16 element 4 -set fmri(con_real16.4) 0 - -# Real contrast_real vector 16 element 5 -set fmri(con_real16.5) 0 - -# Real contrast_real vector 16 element 6 -set fmri(con_real16.6) 0 - -# Real contrast_real vector 16 element 7 -set fmri(con_real16.7) 0 - -# Real contrast_real vector 16 element 8 -set fmri(con_real16.8) 0 - -# Real contrast_real vector 16 element 9 -set fmri(con_real16.9) 0 - -# Real contrast_real vector 16 element 10 -set fmri(con_real16.10) 0 - -# Real contrast_real vector 16 element 11 -set fmri(con_real16.11) 0 - -# Real contrast_real vector 16 element 12 -set fmri(con_real16.12) 0 - -# Real contrast_real vector 16 element 13 -set fmri(con_real16.13) 0 - -# Real contrast_real vector 16 element 14 -set fmri(con_real16.14) 0 - -# Real contrast_real vector 16 element 15 -set fmri(con_real16.15) 0 - -# Real contrast_real vector 16 element 16 -set fmri(con_real16.16) 1.0 - -# Real contrast_real vector 16 element 17 -set fmri(con_real16.17) 0 - -# Real contrast_real vector 16 element 18 -set fmri(con_real16.18) 0 - -# Real contrast_real vector 16 element 19 -set fmri(con_real16.19) 0 - -# Real contrast_real vector 16 element 20 -set fmri(con_real16.20) 0 - -# Real contrast_real vector 16 element 21 -set fmri(con_real16.21) 0 - -# Real contrast_real vector 16 element 22 -set fmri(con_real16.22) 0 - -# Real contrast_real vector 16 element 23 -set fmri(con_real16.23) 0 - -# Real contrast_real vector 16 element 24 -set fmri(con_real16.24) 0 - -# Real contrast_real vector 16 element 25 -set fmri(con_real16.25) 0 - -# Real contrast_real vector 16 element 26 -set fmri(con_real16.26) 0 - -# Display images for contrast_real 17 -set fmri(conpic_real.17) 1 - -# Title for contrast_real 17 -set fmri(conname_real.17) "" - -# Real contrast_real vector 17 element 1 -set fmri(con_real17.1) 0 - -# Real contrast_real vector 17 element 2 -set fmri(con_real17.2) 0 - -# Real contrast_real vector 17 element 3 -set fmri(con_real17.3) 0 - -# Real contrast_real vector 17 element 4 -set fmri(con_real17.4) 0 - -# Real contrast_real vector 17 element 5 -set fmri(con_real17.5) 0 - -# Real contrast_real vector 17 element 6 -set fmri(con_real17.6) 0 - -# Real contrast_real vector 17 element 7 -set fmri(con_real17.7) 0 - -# Real contrast_real vector 17 element 8 -set fmri(con_real17.8) 0 - -# Real contrast_real vector 17 element 9 -set fmri(con_real17.9) 0 - -# Real contrast_real vector 17 element 10 -set fmri(con_real17.10) 0 - -# Real contrast_real vector 17 element 11 -set fmri(con_real17.11) 0 - -# Real contrast_real vector 17 element 12 -set fmri(con_real17.12) 0 - -# Real contrast_real vector 17 element 13 -set fmri(con_real17.13) 0 - -# Real contrast_real vector 17 element 14 -set fmri(con_real17.14) 0 - -# Real contrast_real vector 17 element 15 -set fmri(con_real17.15) 0 - -# Real contrast_real vector 17 element 16 -set fmri(con_real17.16) 0 - -# Real contrast_real vector 17 element 17 -set fmri(con_real17.17) 1.0 - -# Real contrast_real vector 17 element 18 -set fmri(con_real17.18) 0 - -# Real contrast_real vector 17 element 19 -set fmri(con_real17.19) 0 - -# Real contrast_real vector 17 element 20 -set fmri(con_real17.20) 0 - -# Real contrast_real vector 17 element 21 -set fmri(con_real17.21) 0 - -# Real contrast_real vector 17 element 22 -set fmri(con_real17.22) 0 - -# Real contrast_real vector 17 element 23 -set fmri(con_real17.23) 0 - -# Real contrast_real vector 17 element 24 -set fmri(con_real17.24) 0 - -# Real contrast_real vector 17 element 25 -set fmri(con_real17.25) 0 - -# Real contrast_real vector 17 element 26 -set fmri(con_real17.26) 0 - -# Display images for contrast_real 18 -set fmri(conpic_real.18) 1 - -# Title for contrast_real 18 -set fmri(conname_real.18) "" - -# Real contrast_real vector 18 element 1 -set fmri(con_real18.1) 0 - -# Real contrast_real vector 18 element 2 -set fmri(con_real18.2) 0 - -# Real contrast_real vector 18 element 3 -set fmri(con_real18.3) 0 - -# Real contrast_real vector 18 element 4 -set fmri(con_real18.4) 0 - -# Real contrast_real vector 18 element 5 -set fmri(con_real18.5) 0 - -# Real contrast_real vector 18 element 6 -set fmri(con_real18.6) 0 - -# Real contrast_real vector 18 element 7 -set fmri(con_real18.7) 0 - -# Real contrast_real vector 18 element 8 -set fmri(con_real18.8) 0 - -# Real contrast_real vector 18 element 9 -set fmri(con_real18.9) 0 - -# Real contrast_real vector 18 element 10 -set fmri(con_real18.10) 0 - -# Real contrast_real vector 18 element 11 -set fmri(con_real18.11) 0 - -# Real contrast_real vector 18 element 12 -set fmri(con_real18.12) 0 - -# Real contrast_real vector 18 element 13 -set fmri(con_real18.13) 0 - -# Real contrast_real vector 18 element 14 -set fmri(con_real18.14) 0 - -# Real contrast_real vector 18 element 15 -set fmri(con_real18.15) 0 - -# Real contrast_real vector 18 element 16 -set fmri(con_real18.16) 0 - -# Real contrast_real vector 18 element 17 -set fmri(con_real18.17) 0 - -# Real contrast_real vector 18 element 18 -set fmri(con_real18.18) 1.0 - -# Real contrast_real vector 18 element 19 -set fmri(con_real18.19) 0 - -# Real contrast_real vector 18 element 20 -set fmri(con_real18.20) 0 - -# Real contrast_real vector 18 element 21 -set fmri(con_real18.21) 0 - -# Real contrast_real vector 18 element 22 -set fmri(con_real18.22) 0 - -# Real contrast_real vector 18 element 23 -set fmri(con_real18.23) 0 - -# Real contrast_real vector 18 element 24 -set fmri(con_real18.24) 0 - -# Real contrast_real vector 18 element 25 -set fmri(con_real18.25) 0 - -# Real contrast_real vector 18 element 26 -set fmri(con_real18.26) 0 - -# Display images for contrast_real 19 -set fmri(conpic_real.19) 1 - -# Title for contrast_real 19 -set fmri(conname_real.19) "" - -# Real contrast_real vector 19 element 1 -set fmri(con_real19.1) 0 - -# Real contrast_real vector 19 element 2 -set fmri(con_real19.2) 0 - -# Real contrast_real vector 19 element 3 -set fmri(con_real19.3) 0 - -# Real contrast_real vector 19 element 4 -set fmri(con_real19.4) 0 - -# Real contrast_real vector 19 element 5 -set fmri(con_real19.5) 0 - -# Real contrast_real vector 19 element 6 -set fmri(con_real19.6) 0 - -# Real contrast_real vector 19 element 7 -set fmri(con_real19.7) 0 - -# Real contrast_real vector 19 element 8 -set fmri(con_real19.8) 0 - -# Real contrast_real vector 19 element 9 -set fmri(con_real19.9) 0 - -# Real contrast_real vector 19 element 10 -set fmri(con_real19.10) 0 - -# Real contrast_real vector 19 element 11 -set fmri(con_real19.11) 0 - -# Real contrast_real vector 19 element 12 -set fmri(con_real19.12) 0 - -# Real contrast_real vector 19 element 13 -set fmri(con_real19.13) 0 - -# Real contrast_real vector 19 element 14 -set fmri(con_real19.14) 0 - -# Real contrast_real vector 19 element 15 -set fmri(con_real19.15) 0 - -# Real contrast_real vector 19 element 16 -set fmri(con_real19.16) 0 - -# Real contrast_real vector 19 element 17 -set fmri(con_real19.17) 0 - -# Real contrast_real vector 19 element 18 -set fmri(con_real19.18) 0 - -# Real contrast_real vector 19 element 19 -set fmri(con_real19.19) 1.0 - -# Real contrast_real vector 19 element 20 -set fmri(con_real19.20) 0 - -# Real contrast_real vector 19 element 21 -set fmri(con_real19.21) 0 - -# Real contrast_real vector 19 element 22 -set fmri(con_real19.22) 0 - -# Real contrast_real vector 19 element 23 -set fmri(con_real19.23) 0 - -# Real contrast_real vector 19 element 24 -set fmri(con_real19.24) 0 - -# Real contrast_real vector 19 element 25 -set fmri(con_real19.25) 0 - -# Real contrast_real vector 19 element 26 -set fmri(con_real19.26) 0 - -# Display images for contrast_real 20 -set fmri(conpic_real.20) 1 - -# Title for contrast_real 20 -set fmri(conname_real.20) "" - -# Real contrast_real vector 20 element 1 -set fmri(con_real20.1) 0 - -# Real contrast_real vector 20 element 2 -set fmri(con_real20.2) 0 - -# Real contrast_real vector 20 element 3 -set fmri(con_real20.3) 0 - -# Real contrast_real vector 20 element 4 -set fmri(con_real20.4) 0 - -# Real contrast_real vector 20 element 5 -set fmri(con_real20.5) 0 - -# Real contrast_real vector 20 element 6 -set fmri(con_real20.6) 0 - -# Real contrast_real vector 20 element 7 -set fmri(con_real20.7) 0 - -# Real contrast_real vector 20 element 8 -set fmri(con_real20.8) 0 - -# Real contrast_real vector 20 element 9 -set fmri(con_real20.9) 0 - -# Real contrast_real vector 20 element 10 -set fmri(con_real20.10) 0 - -# Real contrast_real vector 20 element 11 -set fmri(con_real20.11) 0 - -# Real contrast_real vector 20 element 12 -set fmri(con_real20.12) 0 - -# Real contrast_real vector 20 element 13 -set fmri(con_real20.13) 0 - -# Real contrast_real vector 20 element 14 -set fmri(con_real20.14) 0 - -# Real contrast_real vector 20 element 15 -set fmri(con_real20.15) 0 - -# Real contrast_real vector 20 element 16 -set fmri(con_real20.16) 0 - -# Real contrast_real vector 20 element 17 -set fmri(con_real20.17) 0 - -# Real contrast_real vector 20 element 18 -set fmri(con_real20.18) 0 - -# Real contrast_real vector 20 element 19 -set fmri(con_real20.19) 0 - -# Real contrast_real vector 20 element 20 -set fmri(con_real20.20) 1.0 - -# Real contrast_real vector 20 element 21 -set fmri(con_real20.21) 0 - -# Real contrast_real vector 20 element 22 -set fmri(con_real20.22) 0 - -# Real contrast_real vector 20 element 23 -set fmri(con_real20.23) 0 - -# Real contrast_real vector 20 element 24 -set fmri(con_real20.24) 0 - -# Real contrast_real vector 20 element 25 -set fmri(con_real20.25) 0 - -# Real contrast_real vector 20 element 26 -set fmri(con_real20.26) 0 - -# Display images for contrast_real 21 -set fmri(conpic_real.21) 1 - -# Title for contrast_real 21 -set fmri(conname_real.21) "" - -# Real contrast_real vector 21 element 1 -set fmri(con_real21.1) 0 - -# Real contrast_real vector 21 element 2 -set fmri(con_real21.2) 0 - -# Real contrast_real vector 21 element 3 -set fmri(con_real21.3) 0 - -# Real contrast_real vector 21 element 4 -set fmri(con_real21.4) 0 - -# Real contrast_real vector 21 element 5 -set fmri(con_real21.5) 0 - -# Real contrast_real vector 21 element 6 -set fmri(con_real21.6) 0 - -# Real contrast_real vector 21 element 7 -set fmri(con_real21.7) 0 - -# Real contrast_real vector 21 element 8 -set fmri(con_real21.8) 0 - -# Real contrast_real vector 21 element 9 -set fmri(con_real21.9) 0 - -# Real contrast_real vector 21 element 10 -set fmri(con_real21.10) 0 - -# Real contrast_real vector 21 element 11 -set fmri(con_real21.11) 0 - -# Real contrast_real vector 21 element 12 -set fmri(con_real21.12) 0 - -# Real contrast_real vector 21 element 13 -set fmri(con_real21.13) 0 - -# Real contrast_real vector 21 element 14 -set fmri(con_real21.14) 0 - -# Real contrast_real vector 21 element 15 -set fmri(con_real21.15) 0 - -# Real contrast_real vector 21 element 16 -set fmri(con_real21.16) 0 - -# Real contrast_real vector 21 element 17 -set fmri(con_real21.17) 0 - -# Real contrast_real vector 21 element 18 -set fmri(con_real21.18) 0 - -# Real contrast_real vector 21 element 19 -set fmri(con_real21.19) 0 - -# Real contrast_real vector 21 element 20 -set fmri(con_real21.20) 0 - -# Real contrast_real vector 21 element 21 -set fmri(con_real21.21) 1.0 - -# Real contrast_real vector 21 element 22 -set fmri(con_real21.22) 0 - -# Real contrast_real vector 21 element 23 -set fmri(con_real21.23) 0 - -# Real contrast_real vector 21 element 24 -set fmri(con_real21.24) 0 - -# Real contrast_real vector 21 element 25 -set fmri(con_real21.25) 0 - -# Real contrast_real vector 21 element 26 -set fmri(con_real21.26) 0 - -# Display images for contrast_real 22 -set fmri(conpic_real.22) 1 - -# Title for contrast_real 22 -set fmri(conname_real.22) "" - -# Real contrast_real vector 22 element 1 -set fmri(con_real22.1) 0 - -# Real contrast_real vector 22 element 2 -set fmri(con_real22.2) 0 - -# Real contrast_real vector 22 element 3 -set fmri(con_real22.3) 0 - -# Real contrast_real vector 22 element 4 -set fmri(con_real22.4) 0 - -# Real contrast_real vector 22 element 5 -set fmri(con_real22.5) 0 - -# Real contrast_real vector 22 element 6 -set fmri(con_real22.6) 0 - -# Real contrast_real vector 22 element 7 -set fmri(con_real22.7) 0 - -# Real contrast_real vector 22 element 8 -set fmri(con_real22.8) 0 - -# Real contrast_real vector 22 element 9 -set fmri(con_real22.9) 0 - -# Real contrast_real vector 22 element 10 -set fmri(con_real22.10) 0 - -# Real contrast_real vector 22 element 11 -set fmri(con_real22.11) 0 - -# Real contrast_real vector 22 element 12 -set fmri(con_real22.12) 0 - -# Real contrast_real vector 22 element 13 -set fmri(con_real22.13) 0 - -# Real contrast_real vector 22 element 14 -set fmri(con_real22.14) 0 - -# Real contrast_real vector 22 element 15 -set fmri(con_real22.15) 0 - -# Real contrast_real vector 22 element 16 -set fmri(con_real22.16) 0 - -# Real contrast_real vector 22 element 17 -set fmri(con_real22.17) 0 - -# Real contrast_real vector 22 element 18 -set fmri(con_real22.18) 0 - -# Real contrast_real vector 22 element 19 -set fmri(con_real22.19) 0 - -# Real contrast_real vector 22 element 20 -set fmri(con_real22.20) 0 - -# Real contrast_real vector 22 element 21 -set fmri(con_real22.21) 0 - -# Real contrast_real vector 22 element 22 -set fmri(con_real22.22) 1.0 - -# Real contrast_real vector 22 element 23 -set fmri(con_real22.23) 0 - -# Real contrast_real vector 22 element 24 -set fmri(con_real22.24) 0 - -# Real contrast_real vector 22 element 25 -set fmri(con_real22.25) 0 - -# Real contrast_real vector 22 element 26 -set fmri(con_real22.26) 0 - -# Display images for contrast_real 23 -set fmri(conpic_real.23) 1 - -# Title for contrast_real 23 -set fmri(conname_real.23) "" - -# Real contrast_real vector 23 element 1 -set fmri(con_real23.1) 0 - -# Real contrast_real vector 23 element 2 -set fmri(con_real23.2) 0 - -# Real contrast_real vector 23 element 3 -set fmri(con_real23.3) 0 - -# Real contrast_real vector 23 element 4 -set fmri(con_real23.4) 0 - -# Real contrast_real vector 23 element 5 -set fmri(con_real23.5) 0 - -# Real contrast_real vector 23 element 6 -set fmri(con_real23.6) 0 - -# Real contrast_real vector 23 element 7 -set fmri(con_real23.7) 0 - -# Real contrast_real vector 23 element 8 -set fmri(con_real23.8) 0 - -# Real contrast_real vector 23 element 9 -set fmri(con_real23.9) 0 - -# Real contrast_real vector 23 element 10 -set fmri(con_real23.10) 0 - -# Real contrast_real vector 23 element 11 -set fmri(con_real23.11) 0 - -# Real contrast_real vector 23 element 12 -set fmri(con_real23.12) 0 - -# Real contrast_real vector 23 element 13 -set fmri(con_real23.13) 0 - -# Real contrast_real vector 23 element 14 -set fmri(con_real23.14) 0 - -# Real contrast_real vector 23 element 15 -set fmri(con_real23.15) 0 - -# Real contrast_real vector 23 element 16 -set fmri(con_real23.16) 0 - -# Real contrast_real vector 23 element 17 -set fmri(con_real23.17) 0 - -# Real contrast_real vector 23 element 18 -set fmri(con_real23.18) 0 - -# Real contrast_real vector 23 element 19 -set fmri(con_real23.19) 0 - -# Real contrast_real vector 23 element 20 -set fmri(con_real23.20) 0 - -# Real contrast_real vector 23 element 21 -set fmri(con_real23.21) 0 - -# Real contrast_real vector 23 element 22 -set fmri(con_real23.22) 0 - -# Real contrast_real vector 23 element 23 -set fmri(con_real23.23) 1.0 - -# Real contrast_real vector 23 element 24 -set fmri(con_real23.24) 0 - -# Real contrast_real vector 23 element 25 -set fmri(con_real23.25) 0 - -# Real contrast_real vector 23 element 26 -set fmri(con_real23.26) 0 - -# Display images for contrast_real 24 -set fmri(conpic_real.24) 1 - -# Title for contrast_real 24 -set fmri(conname_real.24) "" - -# Real contrast_real vector 24 element 1 -set fmri(con_real24.1) 0 - -# Real contrast_real vector 24 element 2 -set fmri(con_real24.2) 0 - -# Real contrast_real vector 24 element 3 -set fmri(con_real24.3) 0 - -# Real contrast_real vector 24 element 4 -set fmri(con_real24.4) 0 - -# Real contrast_real vector 24 element 5 -set fmri(con_real24.5) 0 - -# Real contrast_real vector 24 element 6 -set fmri(con_real24.6) 0 - -# Real contrast_real vector 24 element 7 -set fmri(con_real24.7) 0 - -# Real contrast_real vector 24 element 8 -set fmri(con_real24.8) 0 - -# Real contrast_real vector 24 element 9 -set fmri(con_real24.9) 0 - -# Real contrast_real vector 24 element 10 -set fmri(con_real24.10) 0 - -# Real contrast_real vector 24 element 11 -set fmri(con_real24.11) 0 - -# Real contrast_real vector 24 element 12 -set fmri(con_real24.12) 0 - -# Real contrast_real vector 24 element 13 -set fmri(con_real24.13) 0 - -# Real contrast_real vector 24 element 14 -set fmri(con_real24.14) 0 - -# Real contrast_real vector 24 element 15 -set fmri(con_real24.15) 0 - -# Real contrast_real vector 24 element 16 -set fmri(con_real24.16) 0 - -# Real contrast_real vector 24 element 17 -set fmri(con_real24.17) 0 - -# Real contrast_real vector 24 element 18 -set fmri(con_real24.18) 0 - -# Real contrast_real vector 24 element 19 -set fmri(con_real24.19) 0 - -# Real contrast_real vector 24 element 20 -set fmri(con_real24.20) 0 - -# Real contrast_real vector 24 element 21 -set fmri(con_real24.21) 0 - -# Real contrast_real vector 24 element 22 -set fmri(con_real24.22) 0 - -# Real contrast_real vector 24 element 23 -set fmri(con_real24.23) 0 - -# Real contrast_real vector 24 element 24 -set fmri(con_real24.24) 1.0 - -# Real contrast_real vector 24 element 25 -set fmri(con_real24.25) 0 - -# Real contrast_real vector 24 element 26 -set fmri(con_real24.26) 0 - -# Display images for contrast_real 25 -set fmri(conpic_real.25) 1 - -# Title for contrast_real 25 -set fmri(conname_real.25) "" - -# Real contrast_real vector 25 element 1 -set fmri(con_real25.1) 0 - -# Real contrast_real vector 25 element 2 -set fmri(con_real25.2) 0 - -# Real contrast_real vector 25 element 3 -set fmri(con_real25.3) 0 - -# Real contrast_real vector 25 element 4 -set fmri(con_real25.4) 0 - -# Real contrast_real vector 25 element 5 -set fmri(con_real25.5) 0 - -# Real contrast_real vector 25 element 6 -set fmri(con_real25.6) 0 - -# Real contrast_real vector 25 element 7 -set fmri(con_real25.7) 0 - -# Real contrast_real vector 25 element 8 -set fmri(con_real25.8) 0 - -# Real contrast_real vector 25 element 9 -set fmri(con_real25.9) 0 - -# Real contrast_real vector 25 element 10 -set fmri(con_real25.10) 0 - -# Real contrast_real vector 25 element 11 -set fmri(con_real25.11) 0 - -# Real contrast_real vector 25 element 12 -set fmri(con_real25.12) 0 - -# Real contrast_real vector 25 element 13 -set fmri(con_real25.13) 0 - -# Real contrast_real vector 25 element 14 -set fmri(con_real25.14) 0 - -# Real contrast_real vector 25 element 15 -set fmri(con_real25.15) 0 - -# Real contrast_real vector 25 element 16 -set fmri(con_real25.16) 0 - -# Real contrast_real vector 25 element 17 -set fmri(con_real25.17) 0 - -# Real contrast_real vector 25 element 18 -set fmri(con_real25.18) 0 - -# Real contrast_real vector 25 element 19 -set fmri(con_real25.19) 0 - -# Real contrast_real vector 25 element 20 -set fmri(con_real25.20) 0 - -# Real contrast_real vector 25 element 21 -set fmri(con_real25.21) 0 - -# Real contrast_real vector 25 element 22 -set fmri(con_real25.22) 0 - -# Real contrast_real vector 25 element 23 -set fmri(con_real25.23) 0 - -# Real contrast_real vector 25 element 24 -set fmri(con_real25.24) 0 - -# Real contrast_real vector 25 element 25 -set fmri(con_real25.25) 1.0 - -# Real contrast_real vector 25 element 26 -set fmri(con_real25.26) 0 - -# Display images for contrast_real 26 -set fmri(conpic_real.26) 1 - -# Title for contrast_real 26 -set fmri(conname_real.26) "" - -# Real contrast_real vector 26 element 1 -set fmri(con_real26.1) 0 - -# Real contrast_real vector 26 element 2 -set fmri(con_real26.2) 0 - -# Real contrast_real vector 26 element 3 -set fmri(con_real26.3) 0 - -# Real contrast_real vector 26 element 4 -set fmri(con_real26.4) 0 - -# Real contrast_real vector 26 element 5 -set fmri(con_real26.5) 0 - -# Real contrast_real vector 26 element 6 -set fmri(con_real26.6) 0 - -# Real contrast_real vector 26 element 7 -set fmri(con_real26.7) 0 - -# Real contrast_real vector 26 element 8 -set fmri(con_real26.8) 0 - -# Real contrast_real vector 26 element 9 -set fmri(con_real26.9) 0 - -# Real contrast_real vector 26 element 10 -set fmri(con_real26.10) 0 - -# Real contrast_real vector 26 element 11 -set fmri(con_real26.11) 0 - -# Real contrast_real vector 26 element 12 -set fmri(con_real26.12) 0 - -# Real contrast_real vector 26 element 13 -set fmri(con_real26.13) 0 - -# Real contrast_real vector 26 element 14 -set fmri(con_real26.14) 0 - -# Real contrast_real vector 26 element 15 -set fmri(con_real26.15) 0 - -# Real contrast_real vector 26 element 16 -set fmri(con_real26.16) 0 - -# Real contrast_real vector 26 element 17 -set fmri(con_real26.17) 0 - -# Real contrast_real vector 26 element 18 -set fmri(con_real26.18) 0 - -# Real contrast_real vector 26 element 19 -set fmri(con_real26.19) 0 - -# Real contrast_real vector 26 element 20 -set fmri(con_real26.20) 0 - -# Real contrast_real vector 26 element 21 -set fmri(con_real26.21) 0 - -# Real contrast_real vector 26 element 22 -set fmri(con_real26.22) 0 - -# Real contrast_real vector 26 element 23 -set fmri(con_real26.23) 0 - -# Real contrast_real vector 26 element 24 -set fmri(con_real26.24) 0 - -# Real contrast_real vector 26 element 25 -set fmri(con_real26.25) 0 - -# Real contrast_real vector 26 element 26 -set fmri(con_real26.26) 1.0 - -# Contrast masking - use >0 instead of thresholding? -set fmri(conmask_zerothresh_yn) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 2? -set fmri(conmask1_2) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 3? -set fmri(conmask1_3) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 4? -set fmri(conmask1_4) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 5? -set fmri(conmask1_5) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 6? -set fmri(conmask1_6) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 7? -set fmri(conmask1_7) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 8? -set fmri(conmask1_8) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 9? -set fmri(conmask1_9) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 10? -set fmri(conmask1_10) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 11? -set fmri(conmask1_11) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 12? -set fmri(conmask1_12) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 13? -set fmri(conmask1_13) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 14? -set fmri(conmask1_14) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 15? -set fmri(conmask1_15) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 16? -set fmri(conmask1_16) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 17? -set fmri(conmask1_17) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 18? -set fmri(conmask1_18) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 19? -set fmri(conmask1_19) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 20? -set fmri(conmask1_20) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 21? -set fmri(conmask1_21) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 22? -set fmri(conmask1_22) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 23? -set fmri(conmask1_23) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 24? -set fmri(conmask1_24) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 25? -set fmri(conmask1_25) 0 - -# Mask real contrast/F-test 1 with real contrast/F-test 26? -set fmri(conmask1_26) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 1? -set fmri(conmask2_1) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 3? -set fmri(conmask2_3) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 4? -set fmri(conmask2_4) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 5? -set fmri(conmask2_5) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 6? -set fmri(conmask2_6) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 7? -set fmri(conmask2_7) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 8? -set fmri(conmask2_8) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 9? -set fmri(conmask2_9) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 10? -set fmri(conmask2_10) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 11? -set fmri(conmask2_11) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 12? -set fmri(conmask2_12) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 13? -set fmri(conmask2_13) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 14? -set fmri(conmask2_14) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 15? -set fmri(conmask2_15) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 16? -set fmri(conmask2_16) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 17? -set fmri(conmask2_17) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 18? -set fmri(conmask2_18) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 19? -set fmri(conmask2_19) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 20? -set fmri(conmask2_20) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 21? -set fmri(conmask2_21) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 22? -set fmri(conmask2_22) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 23? -set fmri(conmask2_23) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 24? -set fmri(conmask2_24) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 25? -set fmri(conmask2_25) 0 - -# Mask real contrast/F-test 2 with real contrast/F-test 26? -set fmri(conmask2_26) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 1? -set fmri(conmask3_1) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 2? -set fmri(conmask3_2) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 4? -set fmri(conmask3_4) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 5? -set fmri(conmask3_5) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 6? -set fmri(conmask3_6) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 7? -set fmri(conmask3_7) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 8? -set fmri(conmask3_8) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 9? -set fmri(conmask3_9) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 10? -set fmri(conmask3_10) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 11? -set fmri(conmask3_11) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 12? -set fmri(conmask3_12) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 13? -set fmri(conmask3_13) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 14? -set fmri(conmask3_14) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 15? -set fmri(conmask3_15) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 16? -set fmri(conmask3_16) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 17? -set fmri(conmask3_17) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 18? -set fmri(conmask3_18) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 19? -set fmri(conmask3_19) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 20? -set fmri(conmask3_20) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 21? -set fmri(conmask3_21) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 22? -set fmri(conmask3_22) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 23? -set fmri(conmask3_23) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 24? -set fmri(conmask3_24) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 25? -set fmri(conmask3_25) 0 - -# Mask real contrast/F-test 3 with real contrast/F-test 26? -set fmri(conmask3_26) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 1? -set fmri(conmask4_1) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 2? -set fmri(conmask4_2) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 3? -set fmri(conmask4_3) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 5? -set fmri(conmask4_5) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 6? -set fmri(conmask4_6) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 7? -set fmri(conmask4_7) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 8? -set fmri(conmask4_8) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 9? -set fmri(conmask4_9) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 10? -set fmri(conmask4_10) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 11? -set fmri(conmask4_11) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 12? -set fmri(conmask4_12) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 13? -set fmri(conmask4_13) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 14? -set fmri(conmask4_14) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 15? -set fmri(conmask4_15) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 16? -set fmri(conmask4_16) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 17? -set fmri(conmask4_17) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 18? -set fmri(conmask4_18) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 19? -set fmri(conmask4_19) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 20? -set fmri(conmask4_20) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 21? -set fmri(conmask4_21) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 22? -set fmri(conmask4_22) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 23? -set fmri(conmask4_23) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 24? -set fmri(conmask4_24) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 25? -set fmri(conmask4_25) 0 - -# Mask real contrast/F-test 4 with real contrast/F-test 26? -set fmri(conmask4_26) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 1? -set fmri(conmask5_1) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 2? -set fmri(conmask5_2) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 3? -set fmri(conmask5_3) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 4? -set fmri(conmask5_4) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 6? -set fmri(conmask5_6) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 7? -set fmri(conmask5_7) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 8? -set fmri(conmask5_8) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 9? -set fmri(conmask5_9) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 10? -set fmri(conmask5_10) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 11? -set fmri(conmask5_11) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 12? -set fmri(conmask5_12) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 13? -set fmri(conmask5_13) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 14? -set fmri(conmask5_14) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 15? -set fmri(conmask5_15) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 16? -set fmri(conmask5_16) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 17? -set fmri(conmask5_17) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 18? -set fmri(conmask5_18) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 19? -set fmri(conmask5_19) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 20? -set fmri(conmask5_20) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 21? -set fmri(conmask5_21) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 22? -set fmri(conmask5_22) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 23? -set fmri(conmask5_23) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 24? -set fmri(conmask5_24) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 25? -set fmri(conmask5_25) 0 - -# Mask real contrast/F-test 5 with real contrast/F-test 26? -set fmri(conmask5_26) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 1? -set fmri(conmask6_1) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 2? -set fmri(conmask6_2) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 3? -set fmri(conmask6_3) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 4? -set fmri(conmask6_4) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 5? -set fmri(conmask6_5) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 7? -set fmri(conmask6_7) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 8? -set fmri(conmask6_8) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 9? -set fmri(conmask6_9) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 10? -set fmri(conmask6_10) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 11? -set fmri(conmask6_11) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 12? -set fmri(conmask6_12) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 13? -set fmri(conmask6_13) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 14? -set fmri(conmask6_14) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 15? -set fmri(conmask6_15) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 16? -set fmri(conmask6_16) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 17? -set fmri(conmask6_17) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 18? -set fmri(conmask6_18) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 19? -set fmri(conmask6_19) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 20? -set fmri(conmask6_20) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 21? -set fmri(conmask6_21) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 22? -set fmri(conmask6_22) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 23? -set fmri(conmask6_23) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 24? -set fmri(conmask6_24) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 25? -set fmri(conmask6_25) 0 - -# Mask real contrast/F-test 6 with real contrast/F-test 26? -set fmri(conmask6_26) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 1? -set fmri(conmask7_1) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 2? -set fmri(conmask7_2) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 3? -set fmri(conmask7_3) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 4? -set fmri(conmask7_4) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 5? -set fmri(conmask7_5) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 6? -set fmri(conmask7_6) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 8? -set fmri(conmask7_8) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 9? -set fmri(conmask7_9) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 10? -set fmri(conmask7_10) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 11? -set fmri(conmask7_11) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 12? -set fmri(conmask7_12) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 13? -set fmri(conmask7_13) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 14? -set fmri(conmask7_14) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 15? -set fmri(conmask7_15) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 16? -set fmri(conmask7_16) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 17? -set fmri(conmask7_17) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 18? -set fmri(conmask7_18) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 19? -set fmri(conmask7_19) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 20? -set fmri(conmask7_20) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 21? -set fmri(conmask7_21) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 22? -set fmri(conmask7_22) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 23? -set fmri(conmask7_23) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 24? -set fmri(conmask7_24) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 25? -set fmri(conmask7_25) 0 - -# Mask real contrast/F-test 7 with real contrast/F-test 26? -set fmri(conmask7_26) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 1? -set fmri(conmask8_1) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 2? -set fmri(conmask8_2) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 3? -set fmri(conmask8_3) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 4? -set fmri(conmask8_4) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 5? -set fmri(conmask8_5) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 6? -set fmri(conmask8_6) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 7? -set fmri(conmask8_7) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 9? -set fmri(conmask8_9) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 10? -set fmri(conmask8_10) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 11? -set fmri(conmask8_11) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 12? -set fmri(conmask8_12) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 13? -set fmri(conmask8_13) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 14? -set fmri(conmask8_14) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 15? -set fmri(conmask8_15) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 16? -set fmri(conmask8_16) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 17? -set fmri(conmask8_17) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 18? -set fmri(conmask8_18) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 19? -set fmri(conmask8_19) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 20? -set fmri(conmask8_20) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 21? -set fmri(conmask8_21) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 22? -set fmri(conmask8_22) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 23? -set fmri(conmask8_23) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 24? -set fmri(conmask8_24) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 25? -set fmri(conmask8_25) 0 - -# Mask real contrast/F-test 8 with real contrast/F-test 26? -set fmri(conmask8_26) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 1? -set fmri(conmask9_1) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 2? -set fmri(conmask9_2) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 3? -set fmri(conmask9_3) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 4? -set fmri(conmask9_4) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 5? -set fmri(conmask9_5) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 6? -set fmri(conmask9_6) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 7? -set fmri(conmask9_7) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 8? -set fmri(conmask9_8) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 10? -set fmri(conmask9_10) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 11? -set fmri(conmask9_11) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 12? -set fmri(conmask9_12) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 13? -set fmri(conmask9_13) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 14? -set fmri(conmask9_14) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 15? -set fmri(conmask9_15) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 16? -set fmri(conmask9_16) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 17? -set fmri(conmask9_17) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 18? -set fmri(conmask9_18) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 19? -set fmri(conmask9_19) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 20? -set fmri(conmask9_20) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 21? -set fmri(conmask9_21) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 22? -set fmri(conmask9_22) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 23? -set fmri(conmask9_23) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 24? -set fmri(conmask9_24) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 25? -set fmri(conmask9_25) 0 - -# Mask real contrast/F-test 9 with real contrast/F-test 26? -set fmri(conmask9_26) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 1? -set fmri(conmask10_1) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 2? -set fmri(conmask10_2) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 3? -set fmri(conmask10_3) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 4? -set fmri(conmask10_4) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 5? -set fmri(conmask10_5) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 6? -set fmri(conmask10_6) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 7? -set fmri(conmask10_7) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 8? -set fmri(conmask10_8) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 9? -set fmri(conmask10_9) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 11? -set fmri(conmask10_11) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 12? -set fmri(conmask10_12) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 13? -set fmri(conmask10_13) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 14? -set fmri(conmask10_14) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 15? -set fmri(conmask10_15) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 16? -set fmri(conmask10_16) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 17? -set fmri(conmask10_17) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 18? -set fmri(conmask10_18) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 19? -set fmri(conmask10_19) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 20? -set fmri(conmask10_20) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 21? -set fmri(conmask10_21) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 22? -set fmri(conmask10_22) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 23? -set fmri(conmask10_23) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 24? -set fmri(conmask10_24) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 25? -set fmri(conmask10_25) 0 - -# Mask real contrast/F-test 10 with real contrast/F-test 26? -set fmri(conmask10_26) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 1? -set fmri(conmask11_1) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 2? -set fmri(conmask11_2) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 3? -set fmri(conmask11_3) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 4? -set fmri(conmask11_4) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 5? -set fmri(conmask11_5) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 6? -set fmri(conmask11_6) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 7? -set fmri(conmask11_7) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 8? -set fmri(conmask11_8) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 9? -set fmri(conmask11_9) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 10? -set fmri(conmask11_10) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 12? -set fmri(conmask11_12) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 13? -set fmri(conmask11_13) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 14? -set fmri(conmask11_14) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 15? -set fmri(conmask11_15) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 16? -set fmri(conmask11_16) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 17? -set fmri(conmask11_17) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 18? -set fmri(conmask11_18) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 19? -set fmri(conmask11_19) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 20? -set fmri(conmask11_20) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 21? -set fmri(conmask11_21) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 22? -set fmri(conmask11_22) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 23? -set fmri(conmask11_23) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 24? -set fmri(conmask11_24) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 25? -set fmri(conmask11_25) 0 - -# Mask real contrast/F-test 11 with real contrast/F-test 26? -set fmri(conmask11_26) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 1? -set fmri(conmask12_1) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 2? -set fmri(conmask12_2) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 3? -set fmri(conmask12_3) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 4? -set fmri(conmask12_4) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 5? -set fmri(conmask12_5) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 6? -set fmri(conmask12_6) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 7? -set fmri(conmask12_7) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 8? -set fmri(conmask12_8) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 9? -set fmri(conmask12_9) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 10? -set fmri(conmask12_10) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 11? -set fmri(conmask12_11) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 13? -set fmri(conmask12_13) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 14? -set fmri(conmask12_14) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 15? -set fmri(conmask12_15) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 16? -set fmri(conmask12_16) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 17? -set fmri(conmask12_17) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 18? -set fmri(conmask12_18) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 19? -set fmri(conmask12_19) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 20? -set fmri(conmask12_20) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 21? -set fmri(conmask12_21) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 22? -set fmri(conmask12_22) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 23? -set fmri(conmask12_23) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 24? -set fmri(conmask12_24) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 25? -set fmri(conmask12_25) 0 - -# Mask real contrast/F-test 12 with real contrast/F-test 26? -set fmri(conmask12_26) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 1? -set fmri(conmask13_1) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 2? -set fmri(conmask13_2) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 3? -set fmri(conmask13_3) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 4? -set fmri(conmask13_4) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 5? -set fmri(conmask13_5) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 6? -set fmri(conmask13_6) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 7? -set fmri(conmask13_7) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 8? -set fmri(conmask13_8) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 9? -set fmri(conmask13_9) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 10? -set fmri(conmask13_10) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 11? -set fmri(conmask13_11) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 12? -set fmri(conmask13_12) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 14? -set fmri(conmask13_14) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 15? -set fmri(conmask13_15) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 16? -set fmri(conmask13_16) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 17? -set fmri(conmask13_17) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 18? -set fmri(conmask13_18) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 19? -set fmri(conmask13_19) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 20? -set fmri(conmask13_20) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 21? -set fmri(conmask13_21) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 22? -set fmri(conmask13_22) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 23? -set fmri(conmask13_23) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 24? -set fmri(conmask13_24) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 25? -set fmri(conmask13_25) 0 - -# Mask real contrast/F-test 13 with real contrast/F-test 26? -set fmri(conmask13_26) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 1? -set fmri(conmask14_1) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 2? -set fmri(conmask14_2) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 3? -set fmri(conmask14_3) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 4? -set fmri(conmask14_4) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 5? -set fmri(conmask14_5) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 6? -set fmri(conmask14_6) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 7? -set fmri(conmask14_7) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 8? -set fmri(conmask14_8) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 9? -set fmri(conmask14_9) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 10? -set fmri(conmask14_10) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 11? -set fmri(conmask14_11) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 12? -set fmri(conmask14_12) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 13? -set fmri(conmask14_13) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 15? -set fmri(conmask14_15) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 16? -set fmri(conmask14_16) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 17? -set fmri(conmask14_17) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 18? -set fmri(conmask14_18) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 19? -set fmri(conmask14_19) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 20? -set fmri(conmask14_20) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 21? -set fmri(conmask14_21) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 22? -set fmri(conmask14_22) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 23? -set fmri(conmask14_23) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 24? -set fmri(conmask14_24) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 25? -set fmri(conmask14_25) 0 - -# Mask real contrast/F-test 14 with real contrast/F-test 26? -set fmri(conmask14_26) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 1? -set fmri(conmask15_1) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 2? -set fmri(conmask15_2) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 3? -set fmri(conmask15_3) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 4? -set fmri(conmask15_4) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 5? -set fmri(conmask15_5) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 6? -set fmri(conmask15_6) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 7? -set fmri(conmask15_7) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 8? -set fmri(conmask15_8) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 9? -set fmri(conmask15_9) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 10? -set fmri(conmask15_10) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 11? -set fmri(conmask15_11) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 12? -set fmri(conmask15_12) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 13? -set fmri(conmask15_13) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 14? -set fmri(conmask15_14) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 16? -set fmri(conmask15_16) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 17? -set fmri(conmask15_17) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 18? -set fmri(conmask15_18) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 19? -set fmri(conmask15_19) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 20? -set fmri(conmask15_20) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 21? -set fmri(conmask15_21) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 22? -set fmri(conmask15_22) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 23? -set fmri(conmask15_23) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 24? -set fmri(conmask15_24) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 25? -set fmri(conmask15_25) 0 - -# Mask real contrast/F-test 15 with real contrast/F-test 26? -set fmri(conmask15_26) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 1? -set fmri(conmask16_1) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 2? -set fmri(conmask16_2) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 3? -set fmri(conmask16_3) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 4? -set fmri(conmask16_4) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 5? -set fmri(conmask16_5) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 6? -set fmri(conmask16_6) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 7? -set fmri(conmask16_7) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 8? -set fmri(conmask16_8) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 9? -set fmri(conmask16_9) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 10? -set fmri(conmask16_10) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 11? -set fmri(conmask16_11) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 12? -set fmri(conmask16_12) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 13? -set fmri(conmask16_13) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 14? -set fmri(conmask16_14) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 15? -set fmri(conmask16_15) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 17? -set fmri(conmask16_17) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 18? -set fmri(conmask16_18) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 19? -set fmri(conmask16_19) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 20? -set fmri(conmask16_20) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 21? -set fmri(conmask16_21) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 22? -set fmri(conmask16_22) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 23? -set fmri(conmask16_23) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 24? -set fmri(conmask16_24) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 25? -set fmri(conmask16_25) 0 - -# Mask real contrast/F-test 16 with real contrast/F-test 26? -set fmri(conmask16_26) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 1? -set fmri(conmask17_1) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 2? -set fmri(conmask17_2) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 3? -set fmri(conmask17_3) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 4? -set fmri(conmask17_4) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 5? -set fmri(conmask17_5) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 6? -set fmri(conmask17_6) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 7? -set fmri(conmask17_7) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 8? -set fmri(conmask17_8) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 9? -set fmri(conmask17_9) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 10? -set fmri(conmask17_10) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 11? -set fmri(conmask17_11) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 12? -set fmri(conmask17_12) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 13? -set fmri(conmask17_13) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 14? -set fmri(conmask17_14) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 15? -set fmri(conmask17_15) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 16? -set fmri(conmask17_16) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 18? -set fmri(conmask17_18) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 19? -set fmri(conmask17_19) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 20? -set fmri(conmask17_20) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 21? -set fmri(conmask17_21) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 22? -set fmri(conmask17_22) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 23? -set fmri(conmask17_23) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 24? -set fmri(conmask17_24) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 25? -set fmri(conmask17_25) 0 - -# Mask real contrast/F-test 17 with real contrast/F-test 26? -set fmri(conmask17_26) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 1? -set fmri(conmask18_1) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 2? -set fmri(conmask18_2) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 3? -set fmri(conmask18_3) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 4? -set fmri(conmask18_4) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 5? -set fmri(conmask18_5) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 6? -set fmri(conmask18_6) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 7? -set fmri(conmask18_7) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 8? -set fmri(conmask18_8) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 9? -set fmri(conmask18_9) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 10? -set fmri(conmask18_10) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 11? -set fmri(conmask18_11) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 12? -set fmri(conmask18_12) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 13? -set fmri(conmask18_13) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 14? -set fmri(conmask18_14) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 15? -set fmri(conmask18_15) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 16? -set fmri(conmask18_16) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 17? -set fmri(conmask18_17) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 19? -set fmri(conmask18_19) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 20? -set fmri(conmask18_20) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 21? -set fmri(conmask18_21) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 22? -set fmri(conmask18_22) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 23? -set fmri(conmask18_23) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 24? -set fmri(conmask18_24) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 25? -set fmri(conmask18_25) 0 - -# Mask real contrast/F-test 18 with real contrast/F-test 26? -set fmri(conmask18_26) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 1? -set fmri(conmask19_1) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 2? -set fmri(conmask19_2) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 3? -set fmri(conmask19_3) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 4? -set fmri(conmask19_4) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 5? -set fmri(conmask19_5) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 6? -set fmri(conmask19_6) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 7? -set fmri(conmask19_7) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 8? -set fmri(conmask19_8) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 9? -set fmri(conmask19_9) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 10? -set fmri(conmask19_10) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 11? -set fmri(conmask19_11) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 12? -set fmri(conmask19_12) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 13? -set fmri(conmask19_13) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 14? -set fmri(conmask19_14) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 15? -set fmri(conmask19_15) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 16? -set fmri(conmask19_16) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 17? -set fmri(conmask19_17) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 18? -set fmri(conmask19_18) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 20? -set fmri(conmask19_20) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 21? -set fmri(conmask19_21) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 22? -set fmri(conmask19_22) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 23? -set fmri(conmask19_23) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 24? -set fmri(conmask19_24) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 25? -set fmri(conmask19_25) 0 - -# Mask real contrast/F-test 19 with real contrast/F-test 26? -set fmri(conmask19_26) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 1? -set fmri(conmask20_1) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 2? -set fmri(conmask20_2) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 3? -set fmri(conmask20_3) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 4? -set fmri(conmask20_4) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 5? -set fmri(conmask20_5) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 6? -set fmri(conmask20_6) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 7? -set fmri(conmask20_7) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 8? -set fmri(conmask20_8) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 9? -set fmri(conmask20_9) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 10? -set fmri(conmask20_10) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 11? -set fmri(conmask20_11) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 12? -set fmri(conmask20_12) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 13? -set fmri(conmask20_13) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 14? -set fmri(conmask20_14) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 15? -set fmri(conmask20_15) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 16? -set fmri(conmask20_16) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 17? -set fmri(conmask20_17) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 18? -set fmri(conmask20_18) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 19? -set fmri(conmask20_19) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 21? -set fmri(conmask20_21) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 22? -set fmri(conmask20_22) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 23? -set fmri(conmask20_23) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 24? -set fmri(conmask20_24) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 25? -set fmri(conmask20_25) 0 - -# Mask real contrast/F-test 20 with real contrast/F-test 26? -set fmri(conmask20_26) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 1? -set fmri(conmask21_1) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 2? -set fmri(conmask21_2) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 3? -set fmri(conmask21_3) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 4? -set fmri(conmask21_4) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 5? -set fmri(conmask21_5) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 6? -set fmri(conmask21_6) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 7? -set fmri(conmask21_7) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 8? -set fmri(conmask21_8) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 9? -set fmri(conmask21_9) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 10? -set fmri(conmask21_10) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 11? -set fmri(conmask21_11) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 12? -set fmri(conmask21_12) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 13? -set fmri(conmask21_13) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 14? -set fmri(conmask21_14) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 15? -set fmri(conmask21_15) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 16? -set fmri(conmask21_16) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 17? -set fmri(conmask21_17) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 18? -set fmri(conmask21_18) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 19? -set fmri(conmask21_19) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 20? -set fmri(conmask21_20) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 22? -set fmri(conmask21_22) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 23? -set fmri(conmask21_23) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 24? -set fmri(conmask21_24) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 25? -set fmri(conmask21_25) 0 - -# Mask real contrast/F-test 21 with real contrast/F-test 26? -set fmri(conmask21_26) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 1? -set fmri(conmask22_1) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 2? -set fmri(conmask22_2) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 3? -set fmri(conmask22_3) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 4? -set fmri(conmask22_4) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 5? -set fmri(conmask22_5) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 6? -set fmri(conmask22_6) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 7? -set fmri(conmask22_7) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 8? -set fmri(conmask22_8) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 9? -set fmri(conmask22_9) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 10? -set fmri(conmask22_10) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 11? -set fmri(conmask22_11) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 12? -set fmri(conmask22_12) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 13? -set fmri(conmask22_13) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 14? -set fmri(conmask22_14) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 15? -set fmri(conmask22_15) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 16? -set fmri(conmask22_16) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 17? -set fmri(conmask22_17) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 18? -set fmri(conmask22_18) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 19? -set fmri(conmask22_19) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 20? -set fmri(conmask22_20) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 21? -set fmri(conmask22_21) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 23? -set fmri(conmask22_23) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 24? -set fmri(conmask22_24) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 25? -set fmri(conmask22_25) 0 - -# Mask real contrast/F-test 22 with real contrast/F-test 26? -set fmri(conmask22_26) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 1? -set fmri(conmask23_1) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 2? -set fmri(conmask23_2) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 3? -set fmri(conmask23_3) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 4? -set fmri(conmask23_4) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 5? -set fmri(conmask23_5) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 6? -set fmri(conmask23_6) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 7? -set fmri(conmask23_7) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 8? -set fmri(conmask23_8) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 9? -set fmri(conmask23_9) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 10? -set fmri(conmask23_10) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 11? -set fmri(conmask23_11) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 12? -set fmri(conmask23_12) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 13? -set fmri(conmask23_13) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 14? -set fmri(conmask23_14) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 15? -set fmri(conmask23_15) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 16? -set fmri(conmask23_16) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 17? -set fmri(conmask23_17) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 18? -set fmri(conmask23_18) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 19? -set fmri(conmask23_19) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 20? -set fmri(conmask23_20) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 21? -set fmri(conmask23_21) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 22? -set fmri(conmask23_22) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 24? -set fmri(conmask23_24) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 25? -set fmri(conmask23_25) 0 - -# Mask real contrast/F-test 23 with real contrast/F-test 26? -set fmri(conmask23_26) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 1? -set fmri(conmask24_1) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 2? -set fmri(conmask24_2) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 3? -set fmri(conmask24_3) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 4? -set fmri(conmask24_4) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 5? -set fmri(conmask24_5) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 6? -set fmri(conmask24_6) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 7? -set fmri(conmask24_7) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 8? -set fmri(conmask24_8) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 9? -set fmri(conmask24_9) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 10? -set fmri(conmask24_10) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 11? -set fmri(conmask24_11) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 12? -set fmri(conmask24_12) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 13? -set fmri(conmask24_13) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 14? -set fmri(conmask24_14) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 15? -set fmri(conmask24_15) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 16? -set fmri(conmask24_16) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 17? -set fmri(conmask24_17) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 18? -set fmri(conmask24_18) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 19? -set fmri(conmask24_19) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 20? -set fmri(conmask24_20) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 21? -set fmri(conmask24_21) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 22? -set fmri(conmask24_22) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 23? -set fmri(conmask24_23) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 25? -set fmri(conmask24_25) 0 - -# Mask real contrast/F-test 24 with real contrast/F-test 26? -set fmri(conmask24_26) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 1? -set fmri(conmask25_1) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 2? -set fmri(conmask25_2) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 3? -set fmri(conmask25_3) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 4? -set fmri(conmask25_4) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 5? -set fmri(conmask25_5) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 6? -set fmri(conmask25_6) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 7? -set fmri(conmask25_7) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 8? -set fmri(conmask25_8) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 9? -set fmri(conmask25_9) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 10? -set fmri(conmask25_10) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 11? -set fmri(conmask25_11) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 12? -set fmri(conmask25_12) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 13? -set fmri(conmask25_13) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 14? -set fmri(conmask25_14) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 15? -set fmri(conmask25_15) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 16? -set fmri(conmask25_16) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 17? -set fmri(conmask25_17) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 18? -set fmri(conmask25_18) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 19? -set fmri(conmask25_19) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 20? -set fmri(conmask25_20) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 21? -set fmri(conmask25_21) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 22? -set fmri(conmask25_22) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 23? -set fmri(conmask25_23) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 24? -set fmri(conmask25_24) 0 - -# Mask real contrast/F-test 25 with real contrast/F-test 26? -set fmri(conmask25_26) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 1? -set fmri(conmask26_1) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 2? -set fmri(conmask26_2) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 3? -set fmri(conmask26_3) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 4? -set fmri(conmask26_4) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 5? -set fmri(conmask26_5) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 6? -set fmri(conmask26_6) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 7? -set fmri(conmask26_7) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 8? -set fmri(conmask26_8) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 9? -set fmri(conmask26_9) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 10? -set fmri(conmask26_10) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 11? -set fmri(conmask26_11) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 12? -set fmri(conmask26_12) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 13? -set fmri(conmask26_13) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 14? -set fmri(conmask26_14) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 15? -set fmri(conmask26_15) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 16? -set fmri(conmask26_16) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 17? -set fmri(conmask26_17) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 18? -set fmri(conmask26_18) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 19? -set fmri(conmask26_19) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 20? -set fmri(conmask26_20) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 21? -set fmri(conmask26_21) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 22? -set fmri(conmask26_22) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 23? -set fmri(conmask26_23) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 24? -set fmri(conmask26_24) 0 - -# Mask real contrast/F-test 26 with real contrast/F-test 25? -set fmri(conmask26_25) 0 - -# Do contrast masking at all? -set fmri(conmask1_1) 0 - -########################################################## -# Now options that don't appear in the GUI - -# Alternative (to BETting) mask image -set fmri(alternative_mask) "" - -# Initial structural space registration initialisation transform -set fmri(init_initial_highres) "" - -# Structural space registration initialisation transform -set fmri(init_highres) "" - -# Standard space registration initialisation transform -set fmri(init_standard) "" - -# For full FEAT analysis: overwrite existing .feat output dir? -set fmri(overwrite_yn) 0 diff --git a/pydra/tasks/fsl/tests/data/test.nii.gz b/pydra/tasks/fsl/tests/data/test.nii.gz deleted file mode 100644 index a25d016..0000000 --- a/pydra/tasks/fsl/tests/data/test.nii.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05271ea95146ecc19af198d7052cdfa5ef98a6796b2179c6789422447978974a -size 28061534 diff --git a/pydra/tasks/fsl/tests/data/test2.nii b/pydra/tasks/fsl/tests/data/test2.nii deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/test3.nii b/pydra/tasks/fsl/tests/data/test3.nii deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/test_film_gls.nii.gz b/pydra/tasks/fsl/tests/data/test_film_gls.nii.gz deleted file mode 100644 index 75ee73d..0000000 --- a/pydra/tasks/fsl/tests/data/test_film_gls.nii.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f164986665ec302f7d09ebfb3fe8047df8787e24394e680d513e180e6a25df30 -size 27889429 diff --git a/pydra/tasks/fsl/tests/data/test_warpcoef.nii.gz b/pydra/tasks/fsl/tests/data/test_warpcoef.nii.gz deleted file mode 100644 index 0991c88..0000000 --- a/pydra/tasks/fsl/tests/data/test_warpcoef.nii.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb3d96bd875f3bd3ccb37caa761336c7e9f52779d19cd21a059d777b04885785 -size 325 diff --git a/pydra/tasks/fsl/tests/data/timeDesign.con b/pydra/tasks/fsl/tests/data/timeDesign.con deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/timeDesign.mat b/pydra/tasks/fsl/tests/data/timeDesign.mat deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/varcope_merged.nii.gz b/pydra/tasks/fsl/tests/data/varcope_merged.nii.gz deleted file mode 100644 index d777854..0000000 --- a/pydra/tasks/fsl/tests/data/varcope_merged.nii.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67fd15e24c00fd6736ca6a5492fb2b51672e20dde9aa693bc75a910f8c2ed4ca -size 23935446 diff --git a/pydra/tasks/fsl/tests/data/warpfield.nii b/pydra/tasks/fsl/tests/data/warpfield.nii deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/tests/data/warpfield.nii.gz b/pydra/tasks/fsl/tests/data/warpfield.nii.gz deleted file mode 100644 index a25d016..0000000 --- a/pydra/tasks/fsl/tests/data/warpfield.nii.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:05271ea95146ecc19af198d7052cdfa5ef98a6796b2179c6789422447978974a -size 28061534 diff --git a/pydra/tasks/fsl/tests/data/zstat1.nii.gz b/pydra/tasks/fsl/tests/data/zstat1.nii.gz deleted file mode 100644 index 246c3e4..0000000 --- a/pydra/tasks/fsl/tests/data/zstat1.nii.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:217ee66ca638ee732b7e82c16ff841f38aa7dd19b7a473d6e94b7de2fdb685e0 -size 961353 diff --git a/pydra/tasks/fsl/utils/__init__.py b/pydra/tasks/fsl/utils/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/utils/complex.py b/pydra/tasks/fsl/utils/complex.py deleted file mode 100644 index 0170b06..0000000 --- a/pydra/tasks/fsl/utils/complex.py +++ /dev/null @@ -1,267 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def Complex_output(inputs): - import attr - - if inputs.complex_cartesian: - in_file = inputs.real_in_file - elif inputs.complex_polar: - in_file = inputs.magnitude_in_file - elif inputs.complex_split or inputs.complex_merge: - in_file = inputs.complex_in_file - else: - return None - return f"{in_file}_cplx" - - -input_fields = [ - ( - "complex_in_file", - specs.File, - {"help_string": "", "argstr": "{complex_in_file}", "position": 2}, - ), - ( - "complex_in_file2", - specs.File, - {"help_string": "", "argstr": "{complex_in_file2}", "position": 3}, - ), - ( - "real_in_file", - specs.File, - {"help_string": "", "argstr": "{real_in_file}", "position": 2}, - ), - ( - "imaginary_in_file", - specs.File, - {"help_string": "", "argstr": "{imaginary_in_file}", "position": 3}, - ), - ( - "magnitude_in_file", - specs.File, - {"help_string": "", "argstr": "{magnitude_in_file}", "position": 2}, - ), - ( - "phase_in_file", - specs.File, - {"help_string": "", "argstr": "{phase_in_file}", "position": 3}, - ), - ( - "complex_out_file", - str, - { - "help_string": "", - "argstr": "{complex_out_file}", - "position": -3, - "xor": [ - "complex_out_file", - "magnitude_out_file", - "phase_out_file", - "real_out_file", - "imaginary_out_file", - "real_polar", - "real_cartesian", - ], - }, - ), - ( - "magnitude_out_file", - str, - { - "help_string": "", - "argstr": "{magnitude_out_file}", - "position": -4, - "xor": [ - "complex_out_file", - "real_out_file", - "imaginary_out_file", - "real_cartesian", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - "output_file_template": "{in_file}_mag", - }, - ), - ( - "phase_out_file", - str, - { - "help_string": "", - "argstr": "{phase_out_file}", - "position": -3, - "xor": [ - "complex_out_file", - "real_out_file", - "imaginary_out_file", - "real_cartesian", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - "output_file_template": "{in_file}_phase", - }, - ), - ( - "real_out_file", - str, - { - "help_string": "", - "argstr": "{real_out_file}", - "position": -4, - "xor": [ - "complex_out_file", - "magnitude_out_file", - "phase_out_file", - "real_polar", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - "output_file_template": "{in_file}_real", - }, - ), - ( - "imaginary_out_file", - str, - { - "help_string": "", - "argstr": "{imaginary_out_file}", - "position": -3, - "xor": [ - "complex_out_file", - "magnitude_out_file", - "phase_out_file", - "real_polar", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - "output_file_template": "{in_file}_imag", - }, - ), - ("start_vol", int, {"help_string": "", "argstr": "{start_vol}", "position": -2}), - ("end_vol", int, {"help_string": "", "argstr": "{end_vol}", "position": -1}), - ( - "real_polar", - bool, - { - "help_string": "", - "argstr": "-realpolar", - "position": 1, - "xor": [ - "real_polar", - "real_cartesian", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - }, - ), - ( - "real_cartesian", - bool, - { - "help_string": "", - "argstr": "-realcartesian", - "position": 1, - "xor": [ - "real_polar", - "real_cartesian", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - }, - ), - ( - "complex_cartesian", - bool, - { - "help_string": "", - "argstr": "-complex", - "position": 1, - "xor": [ - "real_polar", - "real_cartesian", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - }, - ), - ( - "complex_polar", - bool, - { - "help_string": "", - "argstr": "-complexpolar", - "position": 1, - "xor": [ - "real_polar", - "real_cartesian", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - }, - ), - ( - "complex_split", - bool, - { - "help_string": "", - "argstr": "-complexsplit", - "position": 1, - "xor": [ - "real_polar", - "real_cartesian", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - ], - }, - ), - ( - "complex_merge", - bool, - { - "help_string": "", - "argstr": "-complexmerge", - "position": 1, - "xor": [ - "real_polar", - "real_cartesian", - "complex_cartesian", - "complex_polar", - "complex_split", - "complex_merge", - "start_vol", - "end_vol", - ], - }, - ), -] -Complex_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -Complex_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class Complex(ShellCommandTask): - input_spec = Complex_input_spec - output_spec = Complex_output_spec - executable = "fslcomplex" diff --git a/pydra/tasks/fsl/utils/convertwarp.py b/pydra/tasks/fsl/utils/convertwarp.py deleted file mode 100644 index 5d8ab40..0000000 --- a/pydra/tasks/fsl/utils/convertwarp.py +++ /dev/null @@ -1,169 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "reference", - specs.File, - { - "help_string": "Name of a file in target space of the full transform.", - "argstr": "--ref={reference}", - "mandatory": True, - "position": 1, - }, - ), - ( - "out_file", - str, - { - "help_string": "Name of output file, containing warps that are the combination of all those given as arguments. The format of this will be a field-file (rather than spline coefficients) with any affine components included.", - "argstr": "--out={out_file}", - "position": -1, - "output_file_template": "{reference}_concatwarp", - }, - ), - ( - "premat", - specs.File, - { - "help_string": "filename for pre-transform (affine matrix)", - "argstr": "--premat={premat}", - }, - ), - ( - "warp1", - specs.File, - { - "help_string": "Name of file containing initial warp-fields/coefficients (follows premat). This could e.g. be a fnirt-transform from a subjects structural scan to an average of a group of subjects.", - "argstr": "--warp1={warp1}", - }, - ), - ( - "midmat", - specs.File, - { - "help_string": "Name of file containing mid-warp-affine transform", - "argstr": "--midmat={midmat}", - }, - ), - ( - "warp2", - specs.File, - { - "help_string": "Name of file containing secondary warp-fields/coefficients (after warp1/midmat but before postmat). This could e.g. be a fnirt-transform from the average of a group of subjects to some standard space (e.g. MNI152).", - "argstr": "--warp2={warp2}", - }, - ), - ( - "postmat", - specs.File, - { - "help_string": "Name of file containing an affine transform (applied last). It could e.g. be an affine transform that maps the MNI152-space into a better approximation to the Talairach-space (if indeed there is one).", - "argstr": "--postmat={postmat}", - }, - ), - ( - "shift_in_file", - specs.File, - { - "help_string": 'Name of file containing a "shiftmap", a non-linear transform with displacements only in one direction (applied first, before premat). This would typically be a fieldmap that has been pre-processed using fugue that maps a subjects functional (EPI) data onto an undistorted space (i.e. a space that corresponds to his/her true anatomy).', - "argstr": "--shiftmap={shift_in_file}", - }, - ), - ( - "shift_direction", - ty.Any, - { - "help_string": "Indicates the direction that the distortions from --shiftmap goes. It depends on the direction and polarity of the phase-encoding in the EPI sequence.", - "argstr": "--shiftdir={shift_direction}", - "requires": ["shift_in_file"], - }, - ), - ( - "cons_jacobian", - bool, - { - "help_string": "Constrain the Jacobian of the warpfield to lie within specified min/max limits.", - "argstr": "--constrainj", - }, - ), - ( - "jacobian_min", - float, - { - "help_string": "Minimum acceptable Jacobian value for constraint (default 0.01)", - "argstr": "--jmin={jacobian_min}", - }, - ), - ( - "jacobian_max", - float, - { - "help_string": "Maximum acceptable Jacobian value for constraint (default 100.0)", - "argstr": "--jmax={jacobian_max}", - }, - ), - ( - "abswarp", - bool, - { - "help_string": "If set it indicates that the warps in --warp1 and --warp2 should be interpreted as absolute. I.e. the values in --warp1/2 are the coordinates in the next space, rather than displacements. This flag is ignored if --warp1/2 was created by fnirt, which always creates relative displacements.", - "argstr": "--abs", - "xor": ["relwarp"], - }, - ), - ( - "relwarp", - bool, - { - "help_string": "If set it indicates that the warps in --warp1/2 should be interpreted as relative. I.e. the values in --warp1/2 are displacements from the coordinates in the next space.", - "argstr": "--rel", - "xor": ["abswarp"], - }, - ), - ( - "out_abswarp", - bool, - { - "help_string": "If set it indicates that the warps in --out should be absolute, i.e. the values in --out are displacements from the coordinates in --ref.", - "argstr": "--absout", - "xor": ["out_relwarp"], - }, - ), - ( - "out_relwarp", - bool, - { - "help_string": "If set it indicates that the warps in --out should be relative, i.e. the values in --out are displacements from the coordinates in --ref.", - "argstr": "--relout", - "xor": ["out_abswarp"], - }, - ), -] -ConvertWarp_input_spec = specs.SpecInfo( - name="Input", fields=input_fields, bases=(specs.ShellSpec,) -) - -output_fields = [] -ConvertWarp_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class ConvertWarp(ShellCommandTask): - """ - Example - ------- - >>> task = ConvertWarp() - >>> task.inputs.warp1 = "warpfield.nii" - >>> task.inputs.reference = "test.nii.gz" - >>> task.inputs.relwarp = True - >>> task.inputs.out_file = "test_concatwarp.nii.gz" - >>> task.cmdline - 'convertwarp --ref=test.nii.gz --warp1=warpfield.nii --rel --out=test_concatwarp.nii.gz' - """ - - input_spec = ConvertWarp_input_spec - output_spec = ConvertWarp_output_spec - executable = "convertwarp" diff --git a/pydra/tasks/fsl/utils/convertxfm.py b/pydra/tasks/fsl/utils/convertxfm.py deleted file mode 100644 index 48dc601..0000000 --- a/pydra/tasks/fsl/utils/convertxfm.py +++ /dev/null @@ -1,110 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def ConvertXFM_output(inputs): - import attr - - in_file = inputs.in_file - if inputs.invert_xfm: - return f"{in_file}_inv" - elif inputs.concat_xfm: - if inputs.in_file2.exists(): - in_file2 = inputs.in_file2 - return f"{in_file}_{in_file2}" - else: - raise Exception("in_file2 is needed to use concat_xfm") - - elif inputs.fix_scale_skew: - return f"{in_file}_fix" - else: - raise Exception("this function requires invert_xfm, or concat_xfm," "or fix_scale_skew") - - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input transformation matrix", - "argstr": "{in_file}", - "mandatory": True, - "position": -1, - }, - ), - ( - "in_file2", - specs.File, - { - "help_string": "second input matrix (for use with fix_scale_skew or concat_xfm)", - "argstr": "{in_file2}", - "position": -2, - }, - ), - ( - "invert_xfm", - bool, - { - "help_string": "invert input transformation", - "argstr": "-inverse", - "position": -3, - "xor": ["invert_xfm", "concat_xfm", "fix_scale_skew"], - }, - ), - ( - "concat_xfm", - bool, - { - "help_string": "write joint transformation of two input matrices", - "argstr": "-concat", - "position": -3, - "requires": ["in_file2"], - "xor": ["invert_xfm", "concat_xfm", "fix_scale_skew"], - }, - ), - ( - "fix_scale_skew", - bool, - { - "help_string": "use secondary matrix to fix scale and skew", - "argstr": "-fixscaleskew", - "position": -3, - "requires": ["in_file2"], - "xor": ["invert_xfm", "concat_xfm", "fix_scale_skew"], - }, - ), - ( - "out_file", - str, - { - "help_string": "final transformation matrix", - "argstr": "-omat {out_file}", - "position": 1, - "output_file_template": ConvertXFM_output, - }, - ), -] -ConvertXFM_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -ConvertXFM_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class ConvertXFM(ShellCommandTask): - """ - Example - ------- - >>> task = ConvertXFM() - >>> task.inputs.in_file = "flirt.mat" - >>> task.inputs.invert_xfm = True - >>> task.inputs.out_file = "flirt_inv.mat" - >>> task.cmdline - 'convert_xfm -omat flirt_inv.mat -inverse flirt.mat' - """ - - input_spec = ConvertXFM_input_spec - output_spec = ConvertXFM_output_spec - executable = "convert_xfm" diff --git a/pydra/tasks/fsl/utils/copygeom.py b/pydra/tasks/fsl/utils/copygeom.py deleted file mode 100644 index 11b94c7..0000000 --- a/pydra/tasks/fsl/utils/copygeom.py +++ /dev/null @@ -1,69 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "source image", - "argstr": "{in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "dest_file", - str, - { - "help_string": "destination image", - "argstr": "{dest_file}", - "copyfile": True, - "mandatory": True, - "position": 1, - "output_file_template": "{dest_file}", - }, - ), - ( - "ignore_dims", - bool, - { - "help_string": "Do not copy image dimensions", - "argstr": "-d", - "position": "-1", - }, - ), -] -CopyGeom_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "out_file", - specs.File, - { - "help_string": "image with new geometry header", - "requires": ["in_file", "dest_file"], - "output_file_template": "{dest_file}", - }, - ) -] -CopyGeom_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class CopyGeom(ShellCommandTask): - """ - Example - ------- - >>> task = CopyGeom() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.dest_file = "dest.nii.gz" - >>> task.cmdline - 'fslcpgeom test.nii.gz dest.nii.gz' - """ - - input_spec = CopyGeom_input_spec - output_spec = CopyGeom_output_spec - executable = "fslcpgeom" diff --git a/pydra/tasks/fsl/utils/extractroi.py b/pydra/tasks/fsl/utils/extractroi.py deleted file mode 100644 index da34f08..0000000 --- a/pydra/tasks/fsl/utils/extractroi.py +++ /dev/null @@ -1,58 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input file", - "argstr": "{in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "roi_file", - str, - { - "help_string": "output file", - "argstr": "{roi_file}", - "position": 1, - "output_file_template": "{in_file}_trim", - }, - ), - ("x_min", int, {"help_string": "", "argstr": "{x_min}", "position": 2}), - ("x_size", int, {"help_string": "", "argstr": "{x_size}", "position": 3}), - ("y_min", int, {"help_string": "", "argstr": "{y_min}", "position": 4}), - ("y_size", int, {"help_string": "", "argstr": "{y_size}", "position": 5}), - ("z_min", int, {"help_string": "", "argstr": "{z_min}", "position": 6}), - ("z_size", int, {"help_string": "", "argstr": "{z_size}", "position": 7}), - ("t_min", int, {"help_string": "", "argstr": "{t_min}", "position": 8}), - ("t_size", int, {"help_string": "", "argstr": "{t_size}", "position": 9}), -] -ExtractROI_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -ExtractROI_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class ExtractROI(ShellCommandTask): - """ - Example - ------- - >>> task = ExtractROI() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.t_min = 0 - >>> task.inputs.t_size = 3 - >>> task.inputs.roi_file = "test_trim.nii.gz" - >>> task.cmdline - 'fslroi test.nii.gz test_trim.nii.gz 0 3' - """ - - input_spec = ExtractROI_input_spec - output_spec = ExtractROI_output_spec - executable = "fslroi" diff --git a/pydra/tasks/fsl/utils/filterregressor.py b/pydra/tasks/fsl/utils/filterregressor.py deleted file mode 100644 index 21985d0..0000000 --- a/pydra/tasks/fsl/utils/filterregressor.py +++ /dev/null @@ -1,91 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input file name (4D image)", - "argstr": "-i {in_file}", - "mandatory": True, - "position": 1, - }, - ), - ( - "out_file", - str, - { - "help_string": "output file name for the filtered data", - "argstr": "-o {out_file}", - "position": 2, - "output_file_template": "{in_file}_filtered", - }, - ), - ( - "design_file", - specs.File, - { - "help_string": "name of the matrix with time courses (e.g. GLM design or MELODIC mixing matrix)", - "argstr": "-d {design_file}", - "mandatory": True, - "position": 3, - }, - ), - ( - "filter_columns", - list, - { - "help_string": "(1-based) column indices to filter out of the data", - "argstr": "-f '{filter_columns}'", - "mandatory": True, - "position": 4, - "xor": ["filter_all"], - }, - ), - ( - "mask", - specs.File, - {"help_string": "mask image file name", "argstr": "-m {mask}"}, - ), - ( - "var_norm", - bool, - {"help_string": "perform variance-normalization on data", "argstr": "--vn"}, - ), - ( - "out_vnscales", - bool, - { - "help_string": "output scaling factors for variance normalization", - "argstr": "--out_vnscales", - }, - ), -] -FilterRegressor_input_spec = specs.SpecInfo( - name="Input", fields=input_fields, bases=(specs.ShellSpec,) -) - -output_fields = [] -FilterRegressor_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class FilterRegressor(ShellCommandTask): - """ - Example - ------- - >>> task = FilterRegressor() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.design_file = "design" - >>> task.inputs.filter_columns = "1,2,3" - >>> task.inputs.out_file = "test_filtered.nii.gz" - >>> task.cmdline - 'fsl_regfilt -i test.nii.gz -o test_filtered.nii.gz -d design -f 1,2,3' - """ - - input_spec = FilterRegressor_input_spec - output_spec = FilterRegressor_output_spec - executable = "fsl_regfilt" diff --git a/pydra/tasks/fsl/utils/imagemaths.py b/pydra/tasks/fsl/utils/imagemaths.py deleted file mode 100644 index 7cdf89e..0000000 --- a/pydra/tasks/fsl/utils/imagemaths.py +++ /dev/null @@ -1,75 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - {"help_string": "", "argstr": "{in_file}", "mandatory": True, "position": 1}, - ), - ( - "in_file2", - specs.File, - {"help_string": "", "argstr": "{in_file2}", "position": 3}, - ), - ( - "mask_file", - specs.File, - { - "help_string": "use (following image>0) to mask current image", - "argstr": "-mas {mask_file}", - }, - ), - ( - "out_file", - str, - { - "help_string": "", - "argstr": "{out_file}", - "position": -2, - "output_file_template": "{in_file}_maths", - }, - ), - ( - "op_string", - str, - { - "help_string": "string defining the operation, i. e. -add", - "argstr": "{op_string}", - "position": 2, - }, - ), - ( - "out_data_type", - ty.Any, - { - "help_string": "output datatype, one of (char, short, int, float, double, input)", - "argstr": "-odt {out_data_type}", - "position": -1, - }, - ), -] -ImageMaths_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -ImageMaths_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class ImageMaths(ShellCommandTask): - """ - Example - ------- - >>> task = ImageMaths() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.op_string = "-add 5" - >>> task.inputs.out_file = "test_maths.nii.gz" - >>> task.cmdline - 'fslmaths test.nii.gz -add 5 test_maths.nii.gz' - """ - - input_spec = ImageMaths_input_spec - output_spec = ImageMaths_output_spec - executable = "fslmaths" diff --git a/pydra/tasks/fsl/utils/imagemeants.py b/pydra/tasks/fsl/utils/imagemeants.py deleted file mode 100644 index 64b0eef..0000000 --- a/pydra/tasks/fsl/utils/imagemeants.py +++ /dev/null @@ -1,105 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input file for computing the average timeseries", - "argstr": "-i {in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "out_file", - str, - { - "help_string": "name of output text matrix", - "argstr": "-o {out_file}", - "output_file_template": "{in_file}_meants.txt", - }, - ), - ("mask", specs.File, {"help_string": "input 3D mask", "argstr": "-m {mask}"}), - ( - "spatial_coord", - list, - { - "help_string": " requested spatial coordinate (instead of mask)", - "argstr": "-c {spatial_coord}", - }, - ), - ( - "use_mm", - bool, - { - "help_string": "use mm instead of voxel coordinates (for -c option)", - "argstr": "--usemm", - }, - ), - ( - "show_all", - bool, - { - "help_string": "show all voxel time series (within mask) instead of averaging", - "argstr": "--showall", - }, - ), - ( - "eig", - bool, - { - "help_string": "calculate Eigenvariate(s) instead of mean (output will have 0 mean)", - "argstr": "--eig", - }, - ), - ( - "order", - int, - 1, - {"help_string": "select number of Eigenvariates", "argstr": "--order={order}"}, - ), - ( - "nobin", - bool, - { - "help_string": "do not binarise the mask for calculation of Eigenvariates", - "argstr": "--no_bin", - }, - ), - ( - "transpose", - bool, - { - "help_string": "output results in transpose format (one row per voxel/mean)", - "argstr": "--transpose", - }, - ), -] -ImageMeants_input_spec = specs.SpecInfo( - name="Input", fields=input_fields, bases=(specs.ShellSpec,) -) - -output_fields = [] -ImageMeants_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class ImageMeants(ShellCommandTask): - """ - Example - ------- - >>> task = ImageMeants() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.mask = "mask.nii.gz" - >>> task.inputs.out_file = "test_meants.txt" - >>> task.cmdline - 'fslmeants -i test.nii.gz -o test_meants.txt -m mask.nii.gz --order=1' - """ - - input_spec = ImageMeants_input_spec - output_spec = ImageMeants_output_spec - executable = "fslmeants" diff --git a/pydra/tasks/fsl/utils/imagestats.py b/pydra/tasks/fsl/utils/imagestats.py deleted file mode 100644 index 54a6438..0000000 --- a/pydra/tasks/fsl/utils/imagestats.py +++ /dev/null @@ -1,77 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "split_4d", - bool, - { - "help_string": "give a separate output line for each 3D volume of a 4D timeseries", - "argstr": "-t", - "position": 1, - }, - ), - ( - "in_file", - specs.File, - { - "help_string": "input file to generate stats of", - "argstr": "{in_file}", - "mandatory": True, - "position": 3, - }, - ), - ( - "op_string", - str, - { - "help_string": "string defining the operation, options are applied in order, e.g. -M -l 10 -M will report the non-zero mean, apply a threshold and then report the new nonzero mean", - "argstr": "{op_string}", - "mandatory": True, - "position": 4, - }, - ), - ( - "mask_file", - specs.File, - {"help_string": "mask file used for option -k %s", "argstr": ""}, - ), - ( - "index_mask_file", - specs.File, - { - "help_string": "generate seperate n submasks from indexMask, for indexvalues 1..n where n is the maximum index value in indexMask, and generate statistics for each submask", - "argstr": "-K {index_mask_file}", - "position": 2, - }, - ), -] -ImageStats_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "out_stat", - ty.Any, - {"help_string": "stats output", "requires": ["in_file", "op_string"]}, - ) -] -ImageStats_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class ImageStats(ShellCommandTask): - """ - Example - ------- - >>> task = ImageStats() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.op_string = "-M" - >>> task.cmdline - 'fslstats test.nii.gz -M' - """ - - input_spec = ImageStats_input_spec - output_spec = ImageStats_output_spec - executable = "fslstats" diff --git a/pydra/tasks/fsl/utils/invwarp.py b/pydra/tasks/fsl/utils/invwarp.py deleted file mode 100644 index 26b77c5..0000000 --- a/pydra/tasks/fsl/utils/invwarp.py +++ /dev/null @@ -1,111 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "warp", - specs.File, - { - "help_string": "Name of file containing warp-coefficients/fields. This would typically be the output from the --cout switch of fnirt (but can also use fields, like the output from --fout).", - "argstr": "--warp={warp}", - "mandatory": True, - }, - ), - ( - "reference", - specs.File, - { - "help_string": "Name of a file in target space. Note that the target space is now different from the target space that was used to create the --warp file. It would typically be the file that was specified with the --in argument when running fnirt.", - "argstr": "--ref={reference}", - "mandatory": True, - }, - ), - ( - "inverse_warp", - str, - { - "help_string": 'Name of output file, containing warps that are the "reverse" of those in --warp. This will be a field-file (rather than a file of spline coefficients), and it will have any affine component included as part of the displacements.', - "argstr": "--out={inverse_warp}", - "output_file_template": "{warp}_inverse", - }, - ), - ( - "absolute", - bool, - { - "help_string": "If set it indicates that the warps in --warp should be interpreted as absolute, provided that it is not created by fnirt (which always uses relative warps). If set it also indicates that the output --out should be absolute.", - "argstr": "--abs", - "xor": ["relative"], - }, - ), - ( - "relative", - bool, - { - "help_string": "If set it indicates that the warps in --warp should be interpreted as relative. I.e. the values in --warp are displacements from the coordinates in the --ref space. If set it also indicates that the output --out should be relative.", - "argstr": "--rel", - "xor": ["absolute"], - }, - ), - ( - "niter", - int, - { - "help_string": "Determines how many iterations of the gradient-descent search that should be run.", - "argstr": "--niter={niter}", - }, - ), - ( - "regularise", - float, - { - "help_string": "Regularization strength (deafult=1.0).", - "argstr": "--regularise={regularise}", - }, - ), - ( - "noconstraint", - bool, - {"help_string": "Do not apply Jacobian constraint", "argstr": "--noconstraint"}, - ), - ( - "jacobian_min", - float, - { - "help_string": "Minimum acceptable Jacobian value for constraint (default 0.01)", - "argstr": "--jmin={jacobian_min}", - }, - ), - ( - "jacobian_max", - float, - { - "help_string": "Maximum acceptable Jacobian value for constraint (default 100.0)", - "argstr": "--jmax={jacobian_max}", - }, - ), -] -InvWarp_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -InvWarp_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class InvWarp(ShellCommandTask): - """ - Example - ------- - >>> task = InvWarp() - >>> task.inputs.reference = "anatomical.nii" - >>> task.inputs.warp = "struct2mni.nii" - >>> task.inputs.inverse_warp = "struct2mni_inverse.nii.gz" - >>> task.cmdline - 'invwarp --warp=struct2mni.nii --ref=anatomical.nii --out=struct2mni_inverse.nii.gz' - """ - - input_spec = InvWarp_input_spec - output_spec = InvWarp_output_spec - executable = "invwarp" diff --git a/pydra/tasks/fsl/utils/slice.py b/pydra/tasks/fsl/utils/slice.py deleted file mode 100644 index f728857..0000000 --- a/pydra/tasks/fsl/utils/slice.py +++ /dev/null @@ -1,44 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input filename", - "argstr": "{in_file}", - "copyfile": False, - "mandatory": True, - "position": 0, - }, - ), - ( - "out_base_name", - str, - {"help_string": "outputs prefix", "argstr": "{out_base_name}", "position": 1}, - ), -] -Slice_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -Slice_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class Slice(ShellCommandTask): - """ - Example - ------- - >>> task = Slice() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.out_base_name = "sl" - >>> task.cmdline - 'fslslice test.nii.gz sl' - """ - - input_spec = Slice_input_spec - output_spec = Slice_output_spec - executable = "fslslice" diff --git a/pydra/tasks/fsl/utils/smooth.py b/pydra/tasks/fsl/utils/smooth.py deleted file mode 100644 index cc24ae7..0000000 --- a/pydra/tasks/fsl/utils/smooth.py +++ /dev/null @@ -1,55 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - {"help_string": "", "argstr": "{in_file}", "mandatory": True, "position": 0}, - ), - ( - "sigma", - float, - { - "help_string": "gaussian kernel sigma in mm (not voxels)", - "argstr": "-kernel gauss {sigma:.03f} -fmean", - "mandatory": True, - "position": 1, - "xor": ["fwhm"], - }, - ), - ( - "smoothed_file", - str, - { - "help_string": "", - "argstr": "{smoothed_file}", - "position": 2, - "output_file_template": "{in_file}_smooth", - }, - ), -] -Smooth_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [] -Smooth_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class Smooth(ShellCommandTask): - """ - Example - ------- - >>> task = Smooth() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.sigma = 3.397 - >>> task.inputs.smoothed_file = "test_smooth.nii.gz" - >>> task.cmdline - 'fslmaths test.nii.gz -kernel gauss 3.397 -fmean test_smooth.nii.gz' - """ - - input_spec = Smooth_input_spec - output_spec = Smooth_output_spec - executable = "fslmaths" diff --git a/pydra/tasks/fsl/utils/split.py b/pydra/tasks/fsl/utils/split.py deleted file mode 100644 index cc001c6..0000000 --- a/pydra/tasks/fsl/utils/split.py +++ /dev/null @@ -1,72 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - - -def Split_output(inputs): - import os, glob - - output_dir = os.getcwd() - return sorted(glob.glob(os.path.join(output_dir, f"{inputs.output_basename}*.*"))) - - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input filename", - "argstr": "{in_file}", - "mandatory": True, - "position": 0, - }, - ), - ( - "output_basename", - str, - {"help_string": "outputs prefix", "argstr": "{output_basename}", "position": 1}, - ), - ( - "dimension", - ty.Any, - { - "help_string": "dimension along which the file will be split", - "argstr": "-{dimension}", - "mandatory": True, - "position": 2, - }, - ), -] -Split_input_spec = specs.SpecInfo(name="Input", fields=input_fields, bases=(specs.ShellSpec,)) - -output_fields = [ - ( - "out_files", - specs.MultiOutputFile, - { - "help_string": "output files", - "requires": ["in_file", "output_basename", "dimension"], - "callable": Split_output, - }, - ) -] -Split_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class Split(ShellCommandTask): - """ - Example - ------- - >>> task = Split() - >>> task.inputs.in_file = "test.nii.gz" - >>> task.inputs.output_basename = "test_split" - >>> task.inputs.dimension = "t" - >>> task.cmdline - 'fslsplit test.nii.gz test_split -t' - """ - - input_spec = Split_input_spec - output_spec = Split_output_spec - executable = "fslsplit" diff --git a/pydra/tasks/fsl/utils/swapdimensions.py b/pydra/tasks/fsl/utils/swapdimensions.py deleted file mode 100644 index 9731072..0000000 --- a/pydra/tasks/fsl/utils/swapdimensions.py +++ /dev/null @@ -1,48 +0,0 @@ -from pydra.engine import specs -from pydra import ShellCommandTask -import typing as ty - -input_fields = [ - ( - "in_file", - specs.File, - { - "help_string": "input image", - "argstr": "{in_file}", - "mandatory": True, - "position": "1", - }, - ), - ( - "new_dims", - ty.Any, - { - "help_string": "3-tuple of new dimension order", - "argstr": "{new_dims} {new_dims} {new_dims}", - "mandatory": True, - }, - ), - ( - "out_file", - str, - { - "help_string": "image to write", - "argstr": "{out_file}", - "output_file_template": "{in_file}_newdims", - }, - ), -] -SwapDimensions_input_spec = specs.SpecInfo( - name="Input", fields=input_fields, bases=(specs.ShellSpec,) -) - -output_fields = [] -SwapDimensions_output_spec = specs.SpecInfo( - name="Output", fields=output_fields, bases=(specs.ShellOutSpec,) -) - - -class SwapDimensions(ShellCommandTask): - input_spec = SwapDimensions_input_spec - output_spec = SwapDimensions_output_spec - executable = "fslswapdim" diff --git a/pydra/tasks/fsl/utils/tests/__init__.py b/pydra/tasks/fsl/utils/tests/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/pydra/tasks/fsl/utils/tests/test_run_complex.py b/pydra/tasks/fsl/utils/tests/test_run_complex.py deleted file mode 100644 index 3b8279a..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_complex.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..complex import Complex - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_Complex(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Complex(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Complex(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_Complex_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Complex(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Complex(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_run_convertwarp.py b/pydra/tasks/fsl/utils/tests/test_run_convertwarp.py deleted file mode 100644 index cb2ab5a..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_convertwarp.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..convertwarp import ConvertWarp - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_ConvertWarp(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ConvertWarp(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ConvertWarp(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_ConvertWarp_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ConvertWarp(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ConvertWarp(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_run_convertxfm.py b/pydra/tasks/fsl/utils/tests/test_run_convertxfm.py deleted file mode 100644 index ea9abea..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_convertxfm.py +++ /dev/null @@ -1,43 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..convertxfm import ConvertXFM - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", [({"in_file": "flirt.mat", "invert_xfm": True}, ["out_file"])] -) -def test_ConvertXFM(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ConvertXFM(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ConvertXFM(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/utils/tests/test_run_copygeom.py b/pydra/tasks/fsl/utils/tests/test_run_copygeom.py deleted file mode 100644 index 9ee77fd..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_copygeom.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..copygeom import CopyGeom - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_CopyGeom(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = CopyGeom(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = CopyGeom(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_CopyGeom_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = CopyGeom(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = CopyGeom(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_run_extractroi.py b/pydra/tasks/fsl/utils/tests/test_run_extractroi.py deleted file mode 100644 index e3bddd8..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_extractroi.py +++ /dev/null @@ -1,44 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..extractroi import ExtractROI - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [({"in_file": "test.nii.gz", "t_min": 0, "t_size": 1}, ["roi_file"])], -) -def test_ExtractROI(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ExtractROI(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ExtractROI(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/utils/tests/test_run_filterregressor.py b/pydra/tasks/fsl/utils/tests/test_run_filterregressor.py deleted file mode 100644 index 27e9983..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_filterregressor.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..filterregressor import FilterRegressor - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_FilterRegressor(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FilterRegressor(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FilterRegressor(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FilterRegressor_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FilterRegressor(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FilterRegressor(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_run_imagemaths.py b/pydra/tasks/fsl/utils/tests/test_run_imagemaths.py deleted file mode 100644 index ef0dd5a..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_imagemaths.py +++ /dev/null @@ -1,41 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..imagemaths import ImageMaths - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", [(None, ["out_file"])]) -def test_ImageMaths(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ImageMaths(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ImageMaths(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/utils/tests/test_run_imagemeants.py b/pydra/tasks/fsl/utils/tests/test_run_imagemeants.py deleted file mode 100644 index 240d2bf..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_imagemeants.py +++ /dev/null @@ -1,41 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..imagemeants import ImageMeants - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", [(None, ["out_file"])]) -def test_ImageMeants(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ImageMeants(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ImageMeants(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/utils/tests/test_run_imagestats.py b/pydra/tasks/fsl/utils/tests/test_run_imagestats.py deleted file mode 100644 index 59023c2..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_imagestats.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..imagestats import ImageStats - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_ImageStats(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ImageStats(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ImageStats(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_ImageStats_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ImageStats(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ImageStats(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_run_invwarp.py b/pydra/tasks/fsl/utils/tests/test_run_invwarp.py deleted file mode 100644 index 9933a37..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_invwarp.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..invwarp import InvWarp - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_InvWarp(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = InvWarp(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = InvWarp(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_InvWarp_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = InvWarp(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = InvWarp(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_run_slice.py b/pydra/tasks/fsl/utils/tests/test_run_slice.py deleted file mode 100644 index cfe8272..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_slice.py +++ /dev/null @@ -1,22 +0,0 @@ -import os, pytest -from pathlib import Path -from ..slice import Slice - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", [(None, [])]) -def test_Slice(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = Slice(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - assert getattr(res.output, out_nm).exists() diff --git a/pydra/tasks/fsl/utils/tests/test_run_smooth.py b/pydra/tasks/fsl/utils/tests/test_run_smooth.py deleted file mode 100644 index e6b34a5..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_smooth.py +++ /dev/null @@ -1,43 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..smooth import Smooth - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", [({"in_file": "test.nii.gz", "sigma": 3.397}, ["smoothed_file"])] -) -def test_Smooth(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Smooth(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Smooth(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/utils/tests/test_run_split.py b/pydra/tasks/fsl/utils/tests/test_run_split.py deleted file mode 100644 index 970a85e..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_split.py +++ /dev/null @@ -1,53 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..split import Split - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - { - "in_file": "test.nii.gz", - "output_basename": "test_split", - "dimension": "t", - }, - ["out_files"], - ) - ], -) -def test_Split(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Split(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Split(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) diff --git a/pydra/tasks/fsl/utils/tests/test_run_swapdimensions.py b/pydra/tasks/fsl/utils/tests/test_run_swapdimensions.py deleted file mode 100644 index fd8b523..0000000 --- a/pydra/tasks/fsl/utils/tests/test_run_swapdimensions.py +++ /dev/null @@ -1,72 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..swapdimensions import SwapDimensions - - -@pytest.mark.xfail("FSLDIR" not in os.environ, reason="no FSL found", raises=FileNotFoundError) -@pytest.mark.parametrize("inputs, outputs", []) -def test_SwapDimensions(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = SwapDimensions(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = SwapDimensions(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - res = task() - print("RESULT: ", res) - for out_nm in outputs: - if isinstance(getattr(res.output, out_nm), list): - assert [os.path.exists(x) for x in getattr(res.output, out_nm)] - else: - assert os.path.exists(getattr(res.output, out_nm)) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_SwapDimensions_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = SwapDimensions(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = SwapDimensions(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_spec_complex.py b/pydra/tasks/fsl/utils/tests/test_spec_complex.py deleted file mode 100644 index 2ab9134..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_complex.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..complex import Complex - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_Complex(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Complex(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Complex(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_Complex_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Complex(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Complex(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_spec_convertwarp.py b/pydra/tasks/fsl/utils/tests/test_spec_convertwarp.py deleted file mode 100644 index d89b807..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_convertwarp.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..convertwarp import ConvertWarp - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_ConvertWarp(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ConvertWarp(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ConvertWarp(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_ConvertWarp_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ConvertWarp(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ConvertWarp(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_spec_convertxfm.py b/pydra/tasks/fsl/utils/tests/test_spec_convertxfm.py deleted file mode 100644 index 456096a..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_convertxfm.py +++ /dev/null @@ -1,35 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..convertxfm import ConvertXFM - - -@pytest.mark.parametrize( - "inputs, outputs", [({"in_file": "flirt.mat", "invert_xfm": True}, ["out_file"])] -) -def test_ConvertXFM(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ConvertXFM(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ConvertXFM(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/utils/tests/test_spec_copygeom.py b/pydra/tasks/fsl/utils/tests/test_spec_copygeom.py deleted file mode 100644 index 4e6b5bb..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_copygeom.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..copygeom import CopyGeom - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_CopyGeom(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = CopyGeom(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = CopyGeom(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_CopyGeom_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = CopyGeom(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = CopyGeom(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_spec_extractroi.py b/pydra/tasks/fsl/utils/tests/test_spec_extractroi.py deleted file mode 100644 index 3496f3f..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_extractroi.py +++ /dev/null @@ -1,36 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..extractroi import ExtractROI - - -@pytest.mark.parametrize( - "inputs, outputs", - [({"in_file": "test.nii.gz", "t_min": 0, "t_size": 1}, ["roi_file"])], -) -def test_ExtractROI(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ExtractROI(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ExtractROI(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/utils/tests/test_spec_filterregressor.py b/pydra/tasks/fsl/utils/tests/test_spec_filterregressor.py deleted file mode 100644 index 4a55c64..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_filterregressor.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..filterregressor import FilterRegressor - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_FilterRegressor(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FilterRegressor(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FilterRegressor(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_FilterRegressor_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = FilterRegressor(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = FilterRegressor(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_spec_imagemaths.py b/pydra/tasks/fsl/utils/tests/test_spec_imagemaths.py deleted file mode 100644 index 8ec0bb2..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_imagemaths.py +++ /dev/null @@ -1,33 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..imagemaths import ImageMaths - - -@pytest.mark.parametrize("inputs, outputs", [(None, ["out_file"])]) -def test_ImageMaths(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ImageMaths(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ImageMaths(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/utils/tests/test_spec_imagemeants.py b/pydra/tasks/fsl/utils/tests/test_spec_imagemeants.py deleted file mode 100644 index 4d4d0d0..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_imagemeants.py +++ /dev/null @@ -1,33 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..imagemeants import ImageMeants - - -@pytest.mark.parametrize("inputs, outputs", [(None, ["out_file"])]) -def test_ImageMeants(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ImageMeants(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ImageMeants(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/utils/tests/test_spec_imagestats.py b/pydra/tasks/fsl/utils/tests/test_spec_imagestats.py deleted file mode 100644 index 7db868d..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_imagestats.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..imagestats import ImageStats - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_ImageStats(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ImageStats(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ImageStats(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_ImageStats_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = ImageStats(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = ImageStats(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_spec_invwarp.py b/pydra/tasks/fsl/utils/tests/test_spec_invwarp.py deleted file mode 100644 index 4cc3ca9..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_invwarp.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..invwarp import InvWarp - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_InvWarp(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = InvWarp(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = InvWarp(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_InvWarp_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = InvWarp(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = InvWarp(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/pydra/tasks/fsl/utils/tests/test_spec_slice.py b/pydra/tasks/fsl/utils/tests/test_spec_slice.py deleted file mode 100644 index 1933828..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_slice.py +++ /dev/null @@ -1,17 +0,0 @@ -import os, pytest -from pathlib import Path -from ..slice import Slice - - -@pytest.mark.parametrize("inputs, outputs", [(None, [])]) -def test_Slice(test_data, inputs, outputs): - in_file = Path(test_data) / "test.nii.gz" - if inputs is None: - inputs = {} - for key, val in inputs.items(): - try: - inputs[key] = eval(val) - except: - pass - task = Slice(in_file=in_file, **inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/utils/tests/test_spec_smooth.py b/pydra/tasks/fsl/utils/tests/test_spec_smooth.py deleted file mode 100644 index cec0b9c..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_smooth.py +++ /dev/null @@ -1,35 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..smooth import Smooth - - -@pytest.mark.parametrize( - "inputs, outputs", [({"in_file": "test.nii.gz", "sigma": 3.397}, ["smoothed_file"])] -) -def test_Smooth(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Smooth(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Smooth(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/utils/tests/test_spec_split.py b/pydra/tasks/fsl/utils/tests/test_spec_split.py deleted file mode 100644 index af3704b..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_split.py +++ /dev/null @@ -1,45 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..split import Split - - -@pytest.mark.parametrize( - "inputs, outputs", - [ - ( - { - "in_file": "test.nii.gz", - "output_basename": "test_split", - "dimension": "t", - }, - ["out_files"], - ) - ], -) -def test_Split(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = Split(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = Split(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) diff --git a/pydra/tasks/fsl/utils/tests/test_spec_swapdimensions.py b/pydra/tasks/fsl/utils/tests/test_spec_swapdimensions.py deleted file mode 100644 index f1dbbfa..0000000 --- a/pydra/tasks/fsl/utils/tests/test_spec_swapdimensions.py +++ /dev/null @@ -1,64 +0,0 @@ -import re, os, shutil, pytest -from pathlib import Path -from ..swapdimensions import SwapDimensions - - -@pytest.mark.parametrize("inputs, outputs", []) -def test_SwapDimensions(test_data, inputs, outputs): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = SwapDimensions(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = SwapDimensions(**inputs) - assert set(task.generated_output_names) == set(["return_code", "stdout", "stderr"] + outputs) - - -@pytest.mark.parametrize("inputs, error", [(None, "AttributeError")]) -def test_SwapDimensions_exception(test_data, inputs, error): - if inputs is None: - in_file = Path(test_data) / "test.nii.gz" - task = SwapDimensions(in_file=in_file) - else: - for key, val in inputs.items(): - try: - pattern = r"\.[a-zA-Z]*" - if isinstance(val, str): - if re.findall(pattern, val) != []: - inputs[key] = Path(test_data) / val - elif "_dir" in key: - dirpath = Path(test_data) / val - if dirpath.exists() and dirpath.is_dir(): - shutil.rmtree(dirpath) - inputs[key] = Path(test_data) / val - else: - inputs[key] = eval(val) - elif isinstance(val, list): - if all(re.findall(pattern, _) != [] for _ in val): - inputs[key] = [Path(test_data) / _ for _ in val] - else: - inputs[key] = eval(val) - except: - pass - task = SwapDimensions(**inputs) - with pytest.raises(eval(error)): - task.generated_output_names diff --git a/related-packages/fileformats-extras/fileformats/extras/medimage_fsl/_version.py b/related-packages/fileformats-extras/fileformats/extras/medimage_fsl/_version.py deleted file mode 100644 index accac60..0000000 --- a/related-packages/fileformats-extras/fileformats/extras/medimage_fsl/_version.py +++ /dev/null @@ -1,16 +0,0 @@ -# file generated by setuptools_scm -# don't change, don't track in version control -TYPE_CHECKING = False -if TYPE_CHECKING: - from typing import Tuple, Union - VERSION_TUPLE = Tuple[Union[int, str], ...] -else: - VERSION_TUPLE = object - -version: str -__version__: str -__version_tuple__: VERSION_TUPLE -version_tuple: VERSION_TUPLE - -__version__ = version = '0.1.dev228+g48cd321.d20231122' -__version_tuple__ = version_tuple = (0, 1, 'dev228', 'g48cd321.d20231122') diff --git a/related-packages/fileformats-extras/pyproject.toml b/related-packages/fileformats-extras/pyproject.toml index d35d999..c6304d3 100644 --- a/related-packages/fileformats-extras/pyproject.toml +++ b/related-packages/fileformats-extras/pyproject.toml @@ -8,9 +8,9 @@ description = "Extensions to add functionality to tool-specific *fileformats* cl readme = "README.rst" requires-python = ">=3.8" dependencies = [ - "fileformats >= 0.7", + "fileformats", "fileformats-medimage-fsl", - "pydra >= 0.22.0" + "pydra >= 0.23.0a" ] license = {file = "LICENSE"} authors = [ diff --git a/related-packages/fileformats/fileformats/medimage_fsl/__init__.py b/related-packages/fileformats/fileformats/medimage_fsl/__init__.py index c8301dd..d6ea01b 100644 --- a/related-packages/fileformats/fileformats/medimage_fsl/__init__.py +++ b/related-packages/fileformats/fileformats/medimage_fsl/__init__.py @@ -1,10 +1,5 @@ -from fileformats.generic import File, Directory - +from fileformats.generic import File class Con(File): ext = ".con" binary = True - - -class MelodicIca(Directory): - """Directory containing output from Melodic ICA""" diff --git a/related-packages/fileformats/fileformats/medimage_fsl/_version.py b/related-packages/fileformats/fileformats/medimage_fsl/_version.py deleted file mode 100644 index accac60..0000000 --- a/related-packages/fileformats/fileformats/medimage_fsl/_version.py +++ /dev/null @@ -1,16 +0,0 @@ -# file generated by setuptools_scm -# don't change, don't track in version control -TYPE_CHECKING = False -if TYPE_CHECKING: - from typing import Tuple, Union - VERSION_TUPLE = Tuple[Union[int, str], ...] -else: - VERSION_TUPLE = object - -version: str -__version__: str -__version_tuple__: VERSION_TUPLE -version_tuple: VERSION_TUPLE - -__version__ = version = '0.1.dev228+g48cd321.d20231122' -__version_tuple__ = version_tuple = (0, 1, 'dev228', 'g48cd321.d20231122') diff --git a/related-packages/fileformats/pyproject.toml b/related-packages/fileformats/pyproject.toml index b36b6b6..f0b3af0 100644 --- a/related-packages/fileformats/pyproject.toml +++ b/related-packages/fileformats/pyproject.toml @@ -8,8 +8,8 @@ description = "Classes for representing different file formats in Python classes readme = "README.rst" requires-python = ">=3.8" dependencies = [ - "fileformats >= 0.4", - "fileformats-medimage >= 0.2" + "fileformats", + "fileformats-medimage" ] license = {file = "LICENSE"} authors = [