forked from algorithmsbooks/algforopt-notebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gp.jl
330 lines (287 loc) · 10.1 KB
/
gp.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
using PGFPlots
using Distributions
using Optim
using Parameters
import LinearAlgebra: norm, I, diag
const Dset = Vector{Vector{Float64}}
function myopt(f; a=0.0, b=8.0, Δx=0.1)
best_x = a
best_y = Inf
m = ceil(Int, (b-a)/Δx)
pts = range(a, stop=b, length=m+1)
for i in 1 : m
res = optimize(f, pts[i], pts[i+1])
if res.minimum < best_y
best_y = res.minimum
best_x = res.minimizer
end
end
return best_x
end
μ(X::Dset, m::Function) = [m(x) for x in X]
Σ(X::Dset, k::Function) = [k(x,x′) for x in X, x′ in X]
K(X::Dset, X′::Dset, k::Function) = [k(x,x′) for x in X, x′ in X′]
@with_kw struct GaussianProcess
m::Function = x -> 0.0
k::Function = (x,x′)->exp(-(norm(x-x′))^2)
X::Vector{Vector{Float64}} = Vector{Float64}[]
y::Vector{Float64} = Float64[]
ν::Float64 = 0.0 # variance when sampling f
end
mvnrand(μ::Vector{Float64}, Σ::Matrix{Float64}, inflation=1e-6) = rand(MvNormal(μ, Σ + inflation*I));
Base.rand(GP::GaussianProcess, X::Dset) = mvnrand(μ(X, GP.m), Σ(X, GP.k))
function Base.push!(GP::GaussianProcess, x::Vector{Float64}, y::Real)
push!(GP.X, x)
push!(GP.y, y)
return GP
end
function Base.pop!(GP::GaussianProcess)
pop!(GP.X)
pop!(GP.y)
return GP
end
function predict(GP::GaussianProcess, X_pred::Dset)
m, k, ν = GP.m, GP.k, GP.ν
tmp = K(X_pred, GP.X, k) / (K(GP.X, GP.X, k) + ν*I)
μₚ = μ(X_pred, m) + tmp*(GP.y - μ(GP.X, m))
S = K(X_pred, X_pred, k) - tmp*K(GP.X, X_pred, k)
νₚ = diag(S) .+ eps() # eps prevents numerical issues
return (μₚ, νₚ)
end
function predict(GP::GaussianProcess, x_pred::Vector{Float64})
(μₚ, νₚ) = predict(GP, [x_pred])
return Normal(μₚ[1], sqrt(νₚ[1]))
end
prob_of_improvement(N::Normal{Float64}, y_max::Real) = isapprox(N.σ, 0, atol=1e-4) ? 0.0 : cdf(N, y_max)
prob_is_safe(N::Normal{Float64}, y_max::Real) = cdf(N, y_max)
function upperbound(GP::GaussianProcess, x_pred::Vector{Float64}, β::Real)
(μₚ, νₚ) = predict(GP, [x_pred])
return μₚ[1] + sqrt(β*νₚ[1])
end
function lowerbound(GP::GaussianProcess, x_pred::Vector{Float64}, β::Real)
(μₚ, νₚ) = predict(GP, [x_pred])
return μₚ[1] - sqrt(β*νₚ[1])
end
function width(GP::GaussianProcess, x_pred::Vector{Float64}, β::Real)
(μₚ, νₚ) = predict(GP, [x_pred])
return 2sqrt(β*νₚ[1])
end
is_safe(GP::GaussianProcess, x::Vector{Float64}, β::Real, y_max::Real) = upperbound(GP, x, β) <= y_max
function get_safe_regions(GP::GaussianProcess, β::Real, a::Real, b::Real, y_max::Real; Δx=(b-a)/201)
a = 1.0*a
b = 1.0*b
x = Float64[a]
safe_regions = Tuple{Float64,Float64}[]
while x[1] ≤ b
while !is_safe(GP, x, β, y_max) && x[1] < b
x[1] += Δx
end
lo = x[1]
if is_safe(GP, x, β, y_max)
while is_safe(GP, x, β, y_max) && x[1] < b
x[1] += Δx
end
hi = x[1]
push!(safe_regions, (lo,hi))
x[1] += Δx
end
end
return safe_regions
end
function get_best_upperbound(GP::GaussianProcess, β::Real, safe_regions::Vector{Tuple{Float64,Float64}})
best_hi = Inf
for (a,b) in safe_regions
best_hi = min(best_hi, myopt(x->upperbound(GP, [x], β), a=a, b=b))
end
return upperbound(GP, [best_hi], β)
end
function get_potential_maximizers(GP::GaussianProcess, β::Real, safe_regions::Vector{Tuple{Float64,Float64}}; Δx=0.01)
best_hi = get_best_upperbound(GP, β, safe_regions)
M_regions = Tuple{Float64,Float64}[]
for (a,b) in safe_regions
x = [a*1.0]
while x[1] ≤ b
while lowerbound(GP, x, β) > best_hi && x[1] < b
x[1] += Δx
end
lo = x[1]
if lowerbound(GP, x, β) ≤ best_hi
while lowerbound(GP, x, β) ≤ best_hi && x[1] < b
x[1] += Δx
end
hi = x[1]
push!(M_regions, (lo,hi))
x .+= Δx
else
x .+= Δx
end
end
end
return M_regions
end
function is_expander(
GP::GaussianProcess,
x::Vector{Float64},
β::Float64,
a::Float64,
b::Float64,
L::Float64,
d::Function,
y_max::Float64,
)
ℓ = lowerbound(GP, x, β)
return ℓ + L*min(d(x, [a]), d(x, [b])) ≤ y_max
end
function get_potential_expanders(
GP::GaussianProcess,
β::Real,
safe_regions::Vector{Tuple{Float64,Float64}},
L::Float64,
d::Function,
y_max::Float64,
;
Δx = 0.01,
)
E_regions = Tuple{Float64,Float64}[]
for (a,b) in safe_regions
x = [a*1.0]
while is_expander(GP, x, β, a, b, L, d, y_max) && x[1] < b
x[1] += Δx
end
if !is_expander(GP, x, β, a, b, L, d, y_max) && x[1] > a
push!(E_regions, (a, x[1]))
end
x = [b*1.0]
while is_expander(GP, x, β, a, b, L, d, y_max) && x[1] > a
x[1] -= Δx
end
if !is_expander(GP, x, β, a, b, L, d, y_max) && x[1] > a
push!(E_regions, (x[1], b))
end
end
return E_regions
end
function plot_GP_data(GP::GaussianProcess; legendentry::String="")
p = Plots.Scatter([x[1] for x in GP.X], GP.y, style="only marks, mark=*, mark size=1, mark options={draw=black, fill=black}")
if !isempty(legendentry)
p.legendentry = legendentry
end
return p
end
function plot_transparent_interval(xdom::Tuple{A,B}, ydom::Tuple{C,D}; style::String="") where {A<:Real, B<:Real, C<:Real, D<:Real}
a,b = xdom
lo,hi = ydom
p = Plots.Plot[]
push!(p, Plots.Linear([a,a], [lo,hi], style="name path=A, draw=none, mark=none"))
push!(p, Plots.Linear([b,b], [lo,hi], style="name path=B, draw=none, mark=none"))
push!(p, Plots.Command("\\addplot[$style] fill between[of=A and B]"))
return p
end
function plot_transparent_intervals(regions::Vector{Tuple{Float64,Float64}}, ydom::Tuple{Float64,Float64}, color::String, opacity::Real, legendentry::String="")
p = Plots.Plot[]
lo, hi = ydom
for (i,tup) in enumerate(regions)
a, b = tup
push!(p, Plots.Linear([a,a], [lo,hi], style="name path=A, draw=none, mark=none, forget plot"))
push!(p, Plots.Linear([b,b], [lo,hi], style="name path=B, draw=none, mark=none, forget plot"))
if i != length(regions) || isempty(legendentry)
push!(p, Plots.Command("\\addplot[$color, forget plot, opacity=$(string(opacity))] fill between[of=A and B]"))
else
push!(p, Plots.Command("\\addplot[$color, opacity=$(string(opacity))] fill between[of=A and B]"))
push!(p, Plots.Command("\\addlegendentry{$legendentry}"))
end
end
return p
end
function update_confidence_intervals!(GP, X, u, ℓ, β)
μₚ, νₚ = predict(GP, X)
u[:] = μₚ + sqrt.(β*νₚ)
ℓ[:] = μₚ - sqrt.(β*νₚ)
return (u, ℓ)
end
function compute_sets!(GP, S, M, E, X, u, l, y_max, β)
fill!(M, false)
fill!(E, false)
# safe set
S[:] = u .≤ y_max
if any(S)
# potential minimizers
M[S] = l[S] .< minimum(u[S])
# maximum width (in M)
w_max = maximum(u[M] - l[M])
# expanders - skip values in M or those with w ≤ w_max
E[:] = S .& .~M # skip points in M
if any(E)
E[E] .= maximum(u[E] - l[E]) .> w_max
for (i,e) in enumerate(E)
if e && u[i] - l[i] > w_max
push!(GP, X[i], l[i])
μₚ, νₚ = predict(GP, X[.~S])
pop!(GP)
E[i] = any(μₚ + sqrt.(β*νₚ) .≥ y_max)
if E[i]; w_max = u[i] - l[i]; end
end
end
end
end
return (S,M,E)
end
function compute_sets!(S, M, E, X, u, ℓ, y_max)
# update the safe set based on current confidence bounds
S[:] = u .≤ y_max
# maximizers
fill!(M, false)
M[S] = u[S] .≥ maximum(ℓ[S])
# maximum width (in M)
w_max = maximum(u[M] - ℓ[M])
# expanders
#=
For the run of the algorithm we do not need to calculate the
full set of potential expanders:
We can skip the ones already in M and ones that have lower
variance than the maximum variance in M, w_max or the threshold.
Amongst the remaining ones we only need to find the
potential expander with maximum variance
=#
E[:] = S .& .~M # skip points in M
if any(E)
E[E] = maximum(u[E] - ℓ[E]) .> w_max # skip points with low width
for (i,e) in enumerate(E)
if e && u[i] - ℓ[i] > w_max # is potentially an expander and higher width
push!(GP, X[i], ℓ[i]) # Add safe point with its lowest possible value to the GP
μₚ, νₚ = predict(GP, X[.~S]) # Prediction of previously unsafe points based on that
pop!(GP) # Remove the fake data point from the GP again
E[i] = any(μₚ + sqrt.(β*νₚ) ≥ y_max) # If any unsafe upperr bound is suddenly below fmax then the point is an expander
if E[i]; w_max = u[i] - ℓ[i]; end # so we don't consider other expanders with lower width
end
end
end
return (S,M,E)
end
function get_new_query_point(M, E, u, ℓ)
ME = M .| E
any(ME) || error("There are no points to evaluate")
return something(findfirst(isequal(argmax(u[ME] - ℓ[ME])), cumsum(ME)), 0)
end
function safe_opt(GP, X, xi, f, y_max; β=3.0, K=10)
push!(GP, X[i], f(X[i])) # make first observation
m = length(X)
u, ℓ = fill(Inf, m), fill(-Inf, m)
S, M, E = falses(m), falses(m), falses(m)
for k in 1 : K
update_confidence_intervals!(GP, X, u, ℓ, β)
compute_sets!(S, M, E, X, u, ℓ, y_max)
i = get_new_query_point(M, E, u, ℓ)
push!(GP, X[i], f(X[i]))
end
# return the best point
update_confidence_intervals!(GP, X, u, ℓ, β)
S[:] = u .≤ y_max
if any(S)
u_best, i_best = findmin(u[S])
i_best = something(findfirst(isequal(i_best), cumsum(S)), 0)
return (u_best, i_best)
else
return (NaN,0)
end
end