-
Notifications
You must be signed in to change notification settings - Fork 0
/
harmonic-number-and-zeta-functions-explained-in-julia-part-2.html
888 lines (721 loc) · 139 KB
/
harmonic-number-and-zeta-functions-explained-in-julia-part-2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
<!DOCTYPE html>
<html lang="en">
<head>
<title>Harmonic number and Zeta functions explained in Julia (part 2) - You don't need to prove this</title>
<link href="https://newptcai.github.io/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="You don't need to prove this Full Atom Feed" />
<!-- CSS -->
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/w3.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/style.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/jqcloud.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/all.min.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/shariff.min.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/pygments-highlight-github.css">
<!-- JavaScript -->
<script src="https://newptcai.github.io/theme/js/jquery-3.5.1.min.js"></script>
<script src="https://newptcai.github.io/theme/js/jqcloud.min.js"></script>
<!-- Meta -->
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta name="HandheldFriendly" content="True" />
<meta name="author" content="Xing Shi Cai" />
<meta name="description" content="This is part 2 of a series explaining what is Harmonic number and it's connection with Zeta functions. The post …" />
<meta name="keywords" content="programming, probability, Julia, Covid-19">
<!-- Facebook OpenGraph -->
<meta property="og:site_name" content="You don't need to prove this">
<meta property="og:title" content="Harmonic number and Zeta functions explained in Julia (part 2) - You don't need to prove this" />
<meta property="og:description" content="This is part 2 of a series explaining what is Harmonic number and it's connection with Zeta functions. The post …" />
<meta property="og:image" content="https://newptcai.github.io">
<meta property="og:type" content="article" />
<meta property="og:url" content="https://newptcai.github.io/harmonic-number-and-zeta-functions-explained-in-julia-part-2.html" />
<meta property="og:locale" content="de_DE" />
<meta property="og:locale:alternate" content="en_US" />
<!-- Twitter -->
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:title" content="Harmonic number and Zeta functions explained in Julia (part 2) - You don't need to prove this">
<meta name="twitter:description" content="This is part 2 of a series explaining what is Harmonic number and it's connection with Zeta functions. The post …">
<meta name="twitter:image" content="https://newptcai.github.io">
</head>
<body>
<div class="w3-row w3-card w3-white">
<header id=banner>
<!-- AUTHOR INITIALS-->
<a href="https://newptcai.github.io" id=logo title="Home">XS</a>
<nav id="menu">
<ul>
<li><a href="https://newptcai.github.io/pages/research.html">Research</a></li>
<li><a href="https://newptcai.github.io/pages/teaching.html">Teaching</a></li>
<li class="active"><a href="https://newptcai.github.io/category/math.html">math</a></li>
<li ><a href="https://newptcai.github.io/category/mumble.html">mumble</a></li>
<li ><a href="https://newptcai.github.io/category/photo.html">photo</a></li>
</ul>
</nav>
</header>
</div>
<br>
<article>
<header class="w3-container col-main">
<h1>Harmonic number and Zeta functions explained in Julia (part 2)</h1>
<div class="post-info">
<div class="w3-opacity w3-margin-right w3-margin-bottom" style="flex-grow: 1;">
<span> Posted on Wed 15 April 2020 in <a href="https://newptcai.github.io/category/math.html" style="font-style: italic">math</a>
</span>
</div>
<div id="article-tags">
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/programming.html" title=" All posts about Programming
">#programming</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/probability.html" title=" All posts about Probability
">#probability</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/julia.html" title=" All posts about Julia
">#Julia</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/covid-19.html" title=" All posts about Covid-19
">#Covid-19</a>
</span>
</div>
</div>
</header>
<br>
<div class="col-main w3-container">
<main id="article-content">
<p><em>This is part 2 of a series explaining what is Harmonic number and it's connection with Zeta
functions. The post is written as a Jupyter notebook with Julia kernel. You can download it
<a href="https://newptcai.github.io/notebook/2020-04-14-harmonic-2.ipynb">here</a>.</em></p>
<hr>
<style type="text/css">.highlight .hll { background-color: var(--jp-cell-editor-active-background) }
.highlight { background: var(--jp-cell-editor-background); color: var(--jp-mirror-editor-variable-color) }
.highlight .c { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment */
.highlight .err { color: var(--jp-mirror-editor-error-color) } /* Error */
.highlight .k { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword */
.highlight .o { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator */
.highlight .p { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation */
.highlight .ch { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Multiline */
.highlight .cp { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Preproc */
.highlight .cpf { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Single */
.highlight .cs { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Special */
.highlight .kc { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Pseudo */
.highlight .kr { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Type */
.highlight .m { color: var(--jp-mirror-editor-number-color) } /* Literal.Number */
.highlight .s { color: var(--jp-mirror-editor-string-color) } /* Literal.String */
.highlight .ow { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator.Word */
.highlight .w { color: var(--jp-mirror-editor-variable-color) } /* Text.Whitespace */
.highlight .mb { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Bin */
.highlight .mf { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Float */
.highlight .mh { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Hex */
.highlight .mi { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer */
.highlight .mo { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Oct */
.highlight .sa { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Affix */
.highlight .sb { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Backtick */
.highlight .sc { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Char */
.highlight .dl { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Delimiter */
.highlight .sd { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Doc */
.highlight .s2 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Double */
.highlight .se { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Escape */
.highlight .sh { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Heredoc */
.highlight .si { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Interpol */
.highlight .sx { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Other */
.highlight .sr { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Regex */
.highlight .s1 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Single */
.highlight .ss { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Symbol */
.highlight .il { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer.Long */</style>None
<style type="text/css">
.prompt {
min-width: 8ex;
font-size: 13px;
}
</style>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Lottery-in-a-pandemic">Lottery in a pandemic<a class="anchor-link" href="#Lottery-in-a-pandemic">¶</a></h2><p>In the last post we have seen how to compute and approximate the $m$-th harmonic number, i.e.,
$$
H_m = \sum_{i=1}^m \frac{1}{i}
$$</p>
<p>This number appears in the famous <a href="https://en.wikipedia.org/wiki/Coupon_collector%27s_problem">coupon collection problem</a>. But today let me give you another place where it is useful.</p>
<p>Imaging a place called Path Town which has $10$ residents, which, for some mysterious reasons, has a social network that looks like this</p>
<pre><code>😀️ -- 😀️ -- 😀️ -- 😀️ -- 😀️ -- 😀️ -- 😀️ -- 😀️ -- 😀️ -- 😀️
</code></pre>
<p>In other words, person 1 (from the left) knows only person 2, person 2 knows only person 1 and 3, person 3 only knows person 2 and 4, and so on.
So their social network is just a path of $10$ people.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Now suppose that person 1 sadly contracted corona virus 🤧️. But instead of putting him in isolation, the town decided to do social distancing more "fairly". Every day, among all the people who may still contract the virus through the social network, one is chosen <strong>uniformly at random</strong> through lottery to be put into quarantine. (What is fairer than a lottery?) This goes on until person 🤧️ is also in quarantine.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><img src="" alt="dylan-nolte-RSsqjpezn6o-unsplash.jpg"></p>
<center>
Photo by dylan nolte on Unsplash
</center>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>For example, by the end of day 1, maybe person 6 won the lottery and the network becomes like this</p>
<pre><code>🤧️️ -- 😀️ -- 😀️ -- 😀️ -- 😀️ 😭️ ( 😀️ -- 😀️ -- 😀️ -- 😀️ )
</code></pre>
<p>Then on day 2, among the 5 people who are still connected to person 1, person 3 got lucky. The network becomes</p>
<pre><code>🤧️️ -- 😀️ 😭️ ( 😀️ -- 😀️ ) 😭️ ( 😀️ -- 😀️ -- 😀️ -- 😀️ )
</code></pre>
<p>Finally on day 3, person 1 wons the lottery and he is finally in isolation.</p>
<pre><code>🤧️️ ( 😀️ ) 😭️ ( 😀️ -- 😀️ ) 😭️ ( 😀️ -- 😀️ -- 😀️ -- 😀️ )
</code></pre>
<p>Now the question is, on average, how many days does it take, or equivalently, how many people need to be isolated, for person 🤧️️ to go into isolation?</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Lottery-by-playing-cards">Lottery by playing cards<a class="anchor-link" href="#Lottery-by-playing-cards">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Instead of doing a lottery each day, a more efficient but equivalent way to do this is to uniformly randomly shuffle a deck of playing card of $1,.., 10$ and give each person a card.</p>
<p>Then in day one, the person has card with the lowest number is chosen. On day two, the person among the remaining ones with a card of lowest number is chosen. This goes on until eventual until eventual Mr 🤧️️ is chosen.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><img src="" alt="close-up-photo-of-playing-cards-1831119.jpg"></p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>This may sounds surprising 😱️. But think about it for a minute. On the first day, who has better chance to draw the smallest card?
Everyone has the same change.
On day two, among the remaining ones, who has better chance? No one! Everyone again has the same chance. What happens on day one does not change this fact.</p>
<p>Let's write a Julia function to simulate how this works.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">Random</span><span class="o">:</span> <span class="n">randperm</span>
<span class="k">function</span> <span class="n">corona_lottery</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="n">X1</span> <span class="o">=</span> <span class="n">randperm</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">X1</span>
<span class="k">while</span> <span class="n">length</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">>=</span> <span class="mi">1</span>
<span class="n">println</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">pos</span> <span class="o">=</span> <span class="n">findmin</span><span class="p">(</span><span class="n">X</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">-</span><span class="mi">1</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="mi">1</span><span class="o">:</span><span class="n">pos</span><span class="p">]</span>
<span class="k">end</span>
<span class="k">return</span> <span class="n">X1</span>
<span class="k">end</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[1]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>corona_lottery (generic function with 1 method)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>So the lottery may go like this</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">corona_lottery</span><span class="p">(</span><span class="mi">10</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>[1, 2, 3, 7, 10, 5, 4, 8, 9, 6]
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>or this</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">corona_lottery</span><span class="p">(</span><span class="mi">10</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>[10, 5, 4, 1, 2, 6, 3, 7, 8, 9]
[10, 5, 4]
[10, 5]
[10]
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="The-records">The records<a class="anchor-link" href="#The-records">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's look at an example closer. (I will seed the random number generator so we will get the same example every time.)</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">import</span> <span class="n">Random</span>
<span class="n">Random</span><span class="o">.</span><span class="n">seed!</span><span class="p">(</span><span class="mi">1001</span><span class="p">)</span>
<span class="n">cards</span> <span class="o">=</span> <span class="n">corona_lottery</span><span class="p">(</span><span class="mi">10</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>[8, 9, 4, 6, 1, 10, 5, 3, 2, 7]
[8, 9, 4, 6]
[8, 9]
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>In this example, the first person goes to isolation is at position $5$. Because he got the card <code>1</code> which is smaller than all cards.</p>
<p>The, the second one who won the lottery is at position $3$, because his card <code>4</code> is smallest among all the four people who survived 😱️ till day 2.</p>
<p>Then on day three, only two people left and Mr 🤧️ who is at position $1$ won with a card <code>8</code>, so the whole process ends.</p>
<p>Stare into this list of numbers a little longer,</p>
<pre><code>[(((8), 9, 4), 6, 1), 10, 5, 3, 2, 7]
</code></pre>
<p>you will notice that <code>8</code>, <code>4</code>, <code>1</code> are all smaller than every number before them 🤔️.</p>
<p>Given a list of numbers $X_1, \cdots, X_{10}$, we say that $X_i$ is a <strong>record</strong> it smaller than every number before it.</p>
<p>So it looks like that the number of records in the deck of cards
are the same as the number of people who have to go into isolation.</p>
<p>Let's do another lottery and see if this is still true.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>First a function to print out where the records are with red color.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Another lottery</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">cards1</span> <span class="o">=</span> <span class="n">corona_lottery</span><span class="p">(</span><span class="mi">10</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>[9, 2, 3, 5, 6, 4, 10, 7, 8, 1]
[9, 2, 3, 5, 6, 4, 10, 7, 8]
[9]
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's color where the records are</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">function</span> <span class="n">print_records</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="kp">in</span> <span class="mi">1</span><span class="o">:</span><span class="n">length</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="k">if</span> <span class="n">all</span><span class="p">(</span><span class="n">X</span><span class="p">[</span><span class="mi">1</span><span class="o">:</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">.></span> <span class="n">v</span><span class="p">)</span>
<span class="n">printstyled</span><span class="p">(</span><span class="s">"</span><span class="si">$v</span><span class="s"> "</span><span class="p">,</span> <span class="n">color</span><span class="o">=:</span><span class="n">red</span><span class="p">)</span>
<span class="k">else</span>
<span class="n">print</span><span class="p">(</span><span class="s">"</span><span class="si">$v</span><span class="s"> "</span><span class="p">)</span>
<span class="k">end</span>
<span class="k">end</span>
<span class="k">end</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[6]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>print_records (generic function with 1 method)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">print_records</span><span class="p">(</span><span class="n">cards1</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre><span class="ansi-red-fg">9 </span><span class="ansi-red-fg">2 </span>3 5 6 4 10 7 8 <span class="ansi-red-fg">1 </span></pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>You can run this as many times you want. The number of isolation is always the same as the number of records. This is because if you get a record card, no one on your left you will be isolated before you. So you are guaranteed to go to self-isolation 😭️.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Back-to-harmonic-number">Back to harmonic number<a class="anchor-link" href="#Back-to-harmonic-number">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>So what is the chance that the person at position $1$, i.e., Mr 🤧️ being a record? Well, he will always be one.</p>
<p>What is the chance of the person at position $2$ to be a record? Well, since he is only competing with one person, he has $1/2$ of chance to win. So on average, he contributes $1/2$ records.</p>
<p>By this argument, the person at position $i$ contributes on average $1/i$ records. Adding this up, and we have our old friend 😍️, the harmonic number
$$
H_m = \sum_{i=1}^m \frac{1}{m}.
$$
So on average there are $H_m$ records among a uniform random permutations of $m$ people. In terms of pandemic, there are on average $H_m$ people of the Path Town have to go into isolation.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Simulation-with-Julia">Simulation with Julia<a class="anchor-link" href="#Simulation-with-Julia">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>In case I have not convinced you that harmonic number is the right answer. Let's do some simulation.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [8]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">function</span> <span class="n">corona_lottery_winner_num</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="n">winner</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">X1</span> <span class="o">=</span> <span class="n">randperm</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">X1</span>
<span class="k">while</span> <span class="n">length</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">>=</span> <span class="mi">1</span>
<span class="c"># println(X)</span>
<span class="n">pos</span> <span class="o">=</span> <span class="n">findmin</span><span class="p">(</span><span class="n">X</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">-</span><span class="mi">1</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="mi">1</span><span class="o">:</span><span class="n">pos</span><span class="p">]</span>
<span class="n">winner</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="k">end</span>
<span class="k">return</span> <span class="n">winner</span>
<span class="k">end</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[8]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>corona_lottery_winner_num (generic function with 1 method)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let run the lotter for $10$ people $10000$ times.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [9]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">lottery_data</span> <span class="o">=</span> <span class="n">map</span><span class="p">(</span><span class="n">i</span><span class="o">-></span><span class="n">corona_lottery_winner_num</span><span class="p">(</span><span class="mi">10</span><span class="p">),</span> <span class="mi">1</span><span class="o">:</span><span class="mi">10</span><span class="o">^</span><span class="mi">4</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>And the average is</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [10]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">Statistics</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [11]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">mean_isolation</span> <span class="o">=</span> <span class="n">mean</span><span class="p">(</span><span class="n">lottery_data</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[11]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>2.9275</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>While the $H_{10}$ is</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [12]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">harmonic</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="o">=</span> <span class="n">sum</span><span class="p">(</span><span class="n">i</span><span class="o">-></span><span class="mi">1</span><span class="o">/</span><span class="n">i</span><span class="p">,</span> <span class="mi">1</span><span class="o">:</span><span class="n">m</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [13]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">h10</span> <span class="o">=</span> <span class="n">harmonic</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[13]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>2.9289682539682538</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>And the difference is</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [14]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">h10</span> <span class="o">-</span> <span class="n">mean_isolation</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[14]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>0.0014682539682535634</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Do you believe me now? 😀️</p>
</div>
</div>
</div>
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
var mathjaxscript = document.createElement('script');
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
mathjaxscript.type = 'text/javascript';
mathjaxscript.src = '//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
"MathJax.Hub.Config({" +
" config: ['MMLorHTML.js']," +
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
" displayAlign: 'center'," +
" displayIndent: '0em'," +
" showMathMenu: true," +
" tex2jax: { " +
" inlineMath: [ ['$','$'] ], " +
" displayMath: [ ['$$','$$'] ]," +
" processEscapes: true," +
" preview: 'TeX'," +
" }, " +
" 'HTML-CSS': { " +
" linebreaks: { automatic: true, width: '95% container' }, " +
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'black ! important'} }" +
" } " +
"}); ";
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
}
</script>
</main>
<br>
<footer>
<div class="adjust-width">
<div id="author-block" class="w3-light-grey w3-border">
<img style="width: 35px; height: 56px; margin-left:50px;" src="https://newptcai.github.io/theme/images/bookmark-red.png" alt="bookmark"></img>
<div id="author-info">
<a href="https://newptcai.github.io/authors.html#xing-shi-cai"><img
style="width: 60px; height: 60px;" src="https://newptcai.github.io/authors/xing-shi-cai.png" onerror="this.src='https://newptcai.github.io/theme/images/avatar.png'"></img>
</a>
<div style="margin-left: 20px; margin-top: 15px;">
<a href="https://newptcai.github.io/authors.html#xing-shi-cai"><span id="author-name" class="w3-hover-text-dark-grey">Xing Shi Cai</span></a>
<p id="author-story" style="max-width: 500px;"></p>
</div>
</div>
</div>
</div>
<br>
</footer>
</div>
</article>
<br>
<script src="https://newptcai.github.io/theme/js/shariff.min.js"></script>
</body>
</html>