-
Notifications
You must be signed in to change notification settings - Fork 0
/
harmonic-number-and-zeta-functions-explained-in-julia-part-1.html
2687 lines (2360 loc) · 546 KB
/
harmonic-number-and-zeta-functions-explained-in-julia-part-1.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<title>Harmonic number and Zeta functions explained in Julia (part 1) - You don't need to prove this</title>
<link href="https://newptcai.github.io/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="You don't need to prove this Full Atom Feed" />
<!-- CSS -->
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/w3.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/style.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/jqcloud.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/all.min.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/shariff.min.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/pygments-highlight-github.css">
<!-- JavaScript -->
<script src="https://newptcai.github.io/theme/js/jquery-3.5.1.min.js"></script>
<script src="https://newptcai.github.io/theme/js/jqcloud.min.js"></script>
<!-- Meta -->
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta name="HandheldFriendly" content="True" />
<meta name="author" content="Xing Shi Cai" />
<meta name="description" content="This is part 1 of a series explaining what is Harmonic number and it's connection with Zeta functions. The post …" />
<meta name="keywords" content="programming, analysis, Julia, CAS">
<!-- Facebook OpenGraph -->
<meta property="og:site_name" content="You don't need to prove this">
<meta property="og:title" content="Harmonic number and Zeta functions explained in Julia (part 1) - You don't need to prove this" />
<meta property="og:description" content="This is part 1 of a series explaining what is Harmonic number and it's connection with Zeta functions. The post …" />
<meta property="og:image" content="https://newptcai.github.io">
<meta property="og:type" content="article" />
<meta property="og:url" content="https://newptcai.github.io/harmonic-number-and-zeta-functions-explained-in-julia-part-1.html" />
<meta property="og:locale" content="de_DE" />
<meta property="og:locale:alternate" content="en_US" />
<!-- Twitter -->
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:title" content="Harmonic number and Zeta functions explained in Julia (part 1) - You don't need to prove this">
<meta name="twitter:description" content="This is part 1 of a series explaining what is Harmonic number and it's connection with Zeta functions. The post …">
<meta name="twitter:image" content="https://newptcai.github.io">
</head>
<body>
<div class="w3-row w3-card w3-white">
<header id=banner>
<!-- AUTHOR INITIALS-->
<a href="https://newptcai.github.io" id=logo title="Home">XS</a>
<nav id="menu">
<ul>
<li><a href="https://newptcai.github.io/pages/research.html">Research</a></li>
<li><a href="https://newptcai.github.io/pages/teaching.html">Teaching</a></li>
<li class="active"><a href="https://newptcai.github.io/category/math.html">math</a></li>
<li ><a href="https://newptcai.github.io/category/mumble.html">mumble</a></li>
<li ><a href="https://newptcai.github.io/category/photo.html">photo</a></li>
</ul>
</nav>
</header>
</div>
<br>
<article>
<header class="w3-container col-main">
<h1>Harmonic number and Zeta functions explained in Julia (part 1)</h1>
<div class="post-info">
<div class="w3-opacity w3-margin-right w3-margin-bottom" style="flex-grow: 1;">
<span> Posted on Tue 14 April 2020 in <a href="https://newptcai.github.io/category/math.html" style="font-style: italic">math</a>
</span>
</div>
<div id="article-tags">
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/programming.html" title=" All posts about Programming
">#programming</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/analysis.html" title=" All posts about Analysis
">#analysis</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/julia.html" title=" All posts about Julia
">#Julia</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/cas.html" title=" All posts about Cas
">#CAS</a>
</span>
</div>
</div>
</header>
<br>
<div class="col-main w3-container">
<main id="article-content">
<p><em>This is part 1 of a series explaining what is Harmonic number and it's connection with Zeta
functions. The post is written as a Jupyter notebook with Julia kernel. You can download it
<a href="https://newptcai.github.io/notebook/2020-04-14-harmonic.ipynb">here</a>.</em></p>
<hr>
<style type="text/css">.highlight .hll { background-color: var(--jp-cell-editor-active-background) }
.highlight { background: var(--jp-cell-editor-background); color: var(--jp-mirror-editor-variable-color) }
.highlight .c { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment */
.highlight .err { color: var(--jp-mirror-editor-error-color) } /* Error */
.highlight .k { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword */
.highlight .o { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator */
.highlight .p { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation */
.highlight .ch { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Multiline */
.highlight .cp { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Preproc */
.highlight .cpf { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Single */
.highlight .cs { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Special */
.highlight .kc { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Pseudo */
.highlight .kr { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Type */
.highlight .m { color: var(--jp-mirror-editor-number-color) } /* Literal.Number */
.highlight .s { color: var(--jp-mirror-editor-string-color) } /* Literal.String */
.highlight .ow { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator.Word */
.highlight .w { color: var(--jp-mirror-editor-variable-color) } /* Text.Whitespace */
.highlight .mb { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Bin */
.highlight .mf { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Float */
.highlight .mh { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Hex */
.highlight .mi { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer */
.highlight .mo { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Oct */
.highlight .sa { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Affix */
.highlight .sb { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Backtick */
.highlight .sc { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Char */
.highlight .dl { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Delimiter */
.highlight .sd { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Doc */
.highlight .s2 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Double */
.highlight .se { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Escape */
.highlight .sh { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Heredoc */
.highlight .si { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Interpol */
.highlight .sx { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Other */
.highlight .sr { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Regex */
.highlight .s1 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Single */
.highlight .ss { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Symbol */
.highlight .il { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer.Long */</style>None
<style type="text/css">
.prompt {
min-width: 8ex;
font-size: 13px;
}
</style>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Harmonic-number">Harmonic number<a class="anchor-link" href="#Harmonic-number">¶</a></h2><p>If you took some discrete math courses, you have probably seen this sum
$$
\newcommand{\Bold}[1]{\mathbf{#1}}{\sum_{i=1}^{m} \frac{1}{i}}
$$
This is called the $m$-th <a href="https://en.wikipedia.org/wiki/Harmonic_number">Harmonic number</a> and is often written as $H_m$.</p>
<p>Why should we care? Well, for one thing, if there $10$ different coupons, and the type you can is uniform at random whenever you buy one, then on average you need to buy to get all of them is
$$
\newcommand{\Bold}[1]{\mathbf{#1}}{\sum_{i=0}^{m-1} \frac{m}{m-i}} = m H_{m}
$$
This is the famous <a href="https://en.wikipedia.org/wiki/Coupon_collector%27s_problem">coupon collectors problem</a> 🎉️.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><img src="" alt="save-money-with-these-coupon-1619724-640x480.jpg"></p>
<center>
(Photo by <a href="/photographer/BessieSpin-81413">BessieSpin</a> from <a href="https://freeimages.com/">FreeImages</a>)
</center>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's see how we can compute and approximate this in Julia.
But first, Julia is not a CAS (computer algebra system).
But fortunately, we have <a href="https://github.com/JuliaPy/SymPy.jl"><code>SymPy.jl</code></a>.
It allows us to use <a href="https://www.sympy.org/en/index.html"><code>SymPy</code></a>, a CAS written entirely in Python. A good source of learning to use <code>SymPy.jl</code> is <a href="http://mth229.github.io/symbolic.html">Symbolic math with julia</a>.</p>
<p><img src="" alt="image.png"></p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Of course you will need to install Python and <code>SymPy</code> itself first. And to run this notebook, you also need to add the following Julia packages.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [ ]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">Pkg</span><span class="p">;</span>
<span class="n">Pkg</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s">"SymPy"</span><span class="p">)</span>
<span class="n">Pkg</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s">"Plots"</span><span class="p">)</span>
<span class="n">Pkg</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s">"BenchmarkTools"</span><span class="p">)</span>
<span class="n">Pkg</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s">"LaTeXStrings"</span><span class="p">)</span>
<span class="n">Pkg</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s">"FastRationals"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">SymPy</span>
<span class="nd">@vars</span> <span class="n">i</span> <span class="n">m</span><span class="p">;</span>
<span class="n">harmonic</span> <span class="o">=</span> <span class="n">summation</span><span class="p">(</span><span class="mi">1</span><span class="o">/</span><span class="n">i</span><span class="p">,</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[2]:</div>
<div class="output_latex output_subarea output_execute_result">
\begin{equation*}\operatorname{harmonic}{\left(m \right)}\end{equation*}
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>What we get here is a symbolic object (representing a math symbol) of type <code>Sym</code></p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">typeof</span><span class="p">(</span><span class="n">harmonic</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[3]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>Sym</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>To compute $H_m$, we just need to replace $m$ in the expression <code>harmonic</code> by a integer.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">subs</span><span class="p">(</span><span class="n">harmonic</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[4]:</div>
<div class="output_latex output_subarea output_execute_result">
\begin{equation*}\frac{7381}{2520}\end{equation*}
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>But there is a short cut for this substitution. We can use <code>harmonic</code> just as if it is a Julia function.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">h10</span> <span class="o">=</span> <span class="n">harmonic</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[5]:</div>
<div class="output_latex output_subarea output_execute_result">
\begin{equation*}\frac{7381}{2520}\end{equation*}
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The first ten harmonic numbers are</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">transpose</span><span class="p">(</span><span class="n">map</span><span class="p">(</span><span class="n">harmonic</span><span class="p">,</span> <span class="mi">1</span><span class="o">:</span><span class="mi">10</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[6]:</div>
<div class="output_latex output_subarea output_execute_result">
\[\left[ \begin{array}{rrrrrrrrrr}1&\frac{3}{2}&\frac{11}{6}&\frac{25}{12}&\frac{137}{60}&\frac{49}{20}&\frac{363}{140}&\frac{761}{280}&\frac{7129}{2520}&\frac{7381}{2520}\end{array}\right]\]
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="The-speed">The speed<a class="anchor-link" href="#The-speed">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>How fast can <code>SymPy</code> compute the Harmonic numbers? We can find out with <a href="https://github.com/JuliaCI/BenchmarkTools.jl">BenchmarkTools.jl</a>.
We load it and use the marco <code>@benchmark</code> test how faster can we compute <code>harmonic(10000)</code>. The macro runs the computation many times to get an average performance.
It will take a while. Make a tea 🍵️ for your self.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">BenchmarkTools</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [8]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">m0</span> <span class="o">=</span> <span class="mi">10</span><span class="o">^</span><span class="mi">4</span>
<span class="nd">@benchmark</span> <span class="n">harmonic</span><span class="p">(</span><span class="n">m0</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[8]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>BenchmarkTools.Trial:
memory estimate: 1.31 KiB
allocs estimate: 47
--------------
minimum time: 94.483 μs (0.00% GC)
median time: 97.704 μs (0.00% GC)
mean time: 105.042 μs (0.00% GC)
maximum time: 23.499 ms (0.00% GC)
--------------
samples: 10000
evals/sample: 1</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>As you can see, the longest time it take to compute <code>harmonic(10^4)</code> is about 270 times slower than the median time.
<a href="https://julialang.slack.com/archives/C66NPKCQZ/p1586874541165500?thread_ts=1586872314.165100&cid=C66NPKCQZ">Jeffery Sarnoff</a> pointed out to me that</p>
<blockquote><p>As far as I know, when the <code>maximum time</code> reported by <code>@benchmark</code> is much larger than the median time (as usually is the case) you are seeing overhead unrelated to the function evaluation itself (e.g. the OS is handling other things). It is important for realtime systems and mostly irrelevant otherwise.</p>
</blockquote>
<p>Though I did check the code of<code>SymPy</code> and found that it does some <a href="https://en.wikipedia.org/wiki/Memoization">memoization</a> here -- After the first time <code>H_m</code> is computed, <code>SymPy</code> just remembers it. This may also explains the difference.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Three-Julia-implementations">Three Julia implementations<a class="anchor-link" href="#Three-Julia-implementations">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Of course you can also do this purely with Julia. Don't forget to use <code>//</code> instead of <code>/</code>, the first gives rational number, the second gives a float number.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [9]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">harmonic_j</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="o">=</span> <span class="n">sum</span><span class="p">(</span><span class="n">i</span><span class="o">-></span><span class="mi">1</span><span class="o">//</span><span class="n">big</span><span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="mi">1</span><span class="o">:</span><span class="n">m</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[9]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>harmonic_j (generic function with 1 method)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [10]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">harmonic_j</span><span class="p">(</span><span class="mi">10</span><span class="o">^</span><span class="mi">4</span><span class="p">)</span> <span class="o">==</span> <span class="n">harmonic</span><span class="p">(</span><span class="n">m0</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[10]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>true</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [11]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="nd">@benchmark</span> <span class="n">harmonic_j</span><span class="p">(</span><span class="n">m0</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[11]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>BenchmarkTools.Trial:
memory estimate: 5.19 MiB
allocs estimate: 169990
--------------
minimum time: 349.699 ms (0.00% GC)
median time: 369.920 ms (0.00% GC)
mean time: 379.078 ms (1.67% GC)
maximum time: 555.587 ms (15.98% GC)
--------------
samples: 14
evals/sample: 1</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>This is a bit slow.
It turns out that <code>Rational{BigInt}</code> is just not.
But there is a package <a href="https://github.com/JeffreySarnoff/FastRationals.jl"><code>FastRationsl.jl</code></a> which addresses this problem.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [12]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">FastRationals</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [13]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">harmonic_fast</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="o">=</span> <span class="n">sum</span><span class="p">(</span><span class="n">i</span><span class="o">-></span><span class="n">FastQBig</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">i</span><span class="p">),</span> <span class="mi">1</span><span class="o">:</span><span class="n">m</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[13]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>harmonic_fast (generic function with 1 method)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [14]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">harmonic_fast</span><span class="p">(</span><span class="n">m0</span><span class="p">)</span> <span class="o">==</span> <span class="n">N</span><span class="p">(</span><span class="n">harmonic</span><span class="p">(</span><span class="n">m0</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[14]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>true</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [15]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="nd">@benchmark</span> <span class="n">harmonic_fast</span><span class="p">(</span><span class="n">m0</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[15]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>BenchmarkTools.Trial:
memory estimate: 3.66 MiB
allocs estimate: 119995
--------------
minimum time: 20.617 ms (0.00% GC)
median time: 22.180 ms (0.00% GC)
mean time: 42.780 ms (27.93% GC)
maximum time: 373.927 ms (64.51% GC)
--------------
samples: 120
evals/sample: 1</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Almost 20 times speed up. Not bad. But why don't we try <code>SymPy</code>'s idea of memoization?</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [16]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="kd">const</span> <span class="n">harmonic_numbers</span> <span class="o">=</span> <span class="kt">Array</span><span class="p">{</span><span class="n">FastRational</span><span class="p">{</span><span class="kt">BigInt</span><span class="p">},</span> <span class="mi">1</span><span class="p">}()</span>
<span class="k">function</span> <span class="n">harmonic_cached</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="n">m1</span> <span class="o">=</span> <span class="n">length</span><span class="p">(</span><span class="n">harmonic_numbers</span><span class="p">)</span>
<span class="k">if</span> <span class="n">m</span> <span class="o"><=</span> <span class="n">m1</span>
<span class="k">return</span> <span class="n">harmonic_numbers</span><span class="p">[</span><span class="n">m</span><span class="p">]</span>
<span class="k">end</span>
<span class="k">if</span> <span class="n">m1</span> <span class="o">></span> <span class="mi">0</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">harmonic_numbers</span><span class="p">[</span><span class="n">m1</span><span class="p">]</span>
<span class="k">else</span>
<span class="n">ret</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">end</span>
<span class="k">for</span> <span class="n">i</span> <span class="kp">in</span> <span class="n">m1</span><span class="o">+</span><span class="mi">1</span><span class="o">:</span><span class="n">m</span>
<span class="n">ret</span> <span class="o">+=</span> <span class="n">FastQBig</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">i</span><span class="p">)</span>
<span class="n">push!</span><span class="p">(</span><span class="n">harmonic_numbers</span><span class="p">,</span> <span class="n">ret</span><span class="p">)</span>
<span class="k">end</span>
<span class="k">return</span> <span class="n">ret</span>
<span class="k">end</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[16]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>harmonic_cached (generic function with 1 method)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's make sure we have not made any mistakes</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [17]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">all</span><span class="p">([</span><span class="n">harmonic_cached</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="o">==</span> <span class="n">harmonic_fast</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="k">for</span> <span class="n">m</span> <span class="kp">in</span> <span class="mi">1</span><span class="o">:</span><span class="mi">100</span><span class="p">])</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[17]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>true</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>How fast is this version?</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [18]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="nd">@benchmark</span> <span class="n">harmonic_cached</span><span class="p">(</span><span class="n">m0</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[18]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>BenchmarkTools.Trial:
memory estimate: 0 bytes
allocs estimate: 0
--------------
minimum time: 33.303 ns (0.00% GC)
median time: 35.614 ns (0.00% GC)
mean time: 35.636 ns (0.00% GC)
maximum time: 79.539 ns (0.00% GC)
--------------
samples: 10000
evals/sample: 993</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>As you can, this is 200 times faster! And much much faster than calling <code>SymPy</code>.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Approximations">Approximations<a class="anchor-link" href="#Approximations">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>But for any practical purpose, e.g., you want to buy coupons, we don't really need the exact value of harmonic number. A good approximation is enough.</p>
<p>You probably remember that $H_m \sim \log m$. This is to say that when $m$ is really large, the two numbers are quite close. Let's draw a picture.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [19]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">Plots</span><span class="p">;</span> <span class="n">gr</span><span class="p">();</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>We load <code>LatexString</code> so we can use LaTeX in the plots.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [20]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">LaTeXStrings</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [21]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span></span><span class="n">xpos</span> <span class="o">=</span> <span class="mi">1</span><span class="o">:</span><span class="mi">30</span><span class="o">:</span><span class="mi">1001</span><span class="p">;</span>
<span class="n">harmonic_values</span> <span class="o">=</span> <span class="n">map</span><span class="p">(</span><span class="n">m</span><span class="o">-></span><span class="kt">BigFloat</span><span class="p">(</span><span class="n">harmonic_cached</span><span class="p">(</span><span class="n">m</span><span class="p">)),</span> <span class="n">xpos</span><span class="p">);</span>
<span class="n">scatter</span><span class="p">(</span><span class="n">xpos</span><span class="p">,</span> <span class="n">harmonic_values</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">L</span><span class="s">"H_m"</span><span class="p">,</span> <span class="n">legend</span><span class="o">=:</span><span class="n">bottomright</span><span class="p">)</span>
<span class="n">plot!</span><span class="p">(</span><span class="n">log</span><span class="p">,</span> <span class="mi">1</span><span class="o">:</span><span class="mi">1001</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">L</span><span class="s">"\log(m)"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[21]:</div>
<div class="output_svg output_subarea output_execute_result">
<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="600" height="400" viewBox="0 0 2400 1600">
<defs>
<clipPath id="clip8700">
<rect x="0" y="0" width="2400" height="1600"/>
</clipPath>
</defs>
<path clip-path="url(#clip8700)" d="
M0 1600 L2400 1600 L2400 0 L0 0 Z
" fill="#ffffff" fill-rule="evenodd" fill-opacity="1"/>
<defs>
<clipPath id="clip8701">
<rect x="480" y="0" width="1681" height="1600"/>