-
Notifications
You must be signed in to change notification settings - Fork 8
/
minds20.html
1708 lines (913 loc) · 39 KB
/
minds20.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<title>MINDS20</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style_i.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
# Lifelong Learning:
Moving Beyond Avoiding Catastrophic Forgetting
<center>
<!-- ![:scale 25%](images/neurodata_blue.png) -->
<img src="images/neurodata_blue.png", width="30%">
</center>
Joshua T. Vogelstein | {[BME](https://www.bme.jhu.edu/),[CIS](http://cis.jhu.edu/), [ICM](https://icm.jhu.edu/), [KNDI](http://kavlijhu.org/)}@[JHU](https://www.jhu.edu/) | [neurodata](https://neurodata.io)
<br>
[jovo@jhu.edu](mailto:[email protected]) | <http://neurodata.io/talks> | [@neuro_data](https://twitter.com/neuro_data)
---
class: middle
Who is wise? He who learns from every man, as it is said: "From all who taught me have I gained understanding"
-- Pirkei Avot 4:1
---
## What is Lifelong Learning
Given a sequence of data associated with different tasks, continually learn such that task performances improve by virtue of having data from other tasks.
--
If learning a new task causes performance degradation on previous tasks, it is said that the algorithm exhibited "catastrophic forgetting"
--
.r[But, data on future tasks can actually improve performance on past tasks.]
--
In general, tasks are complex, built of sub-tasks; if learning a new complex task can improve sub-task performance (including sub-tasks involved in previous tasks), then performance in previous tasks will improve too....
---
## Goals of this work
- Formalize the above claims
- Develop algorithms that move beyond catastrophic forgetting
---
## Outline
- Background
- Lifelong learning
- Evaluation criteria
- Algorithm
- Implementation
- Simulations
- Real data
- Theory
- Discussion
---
### Background
---
## A simple learning example
- $z_i=(x_i,y_i)$, $i \in \lbrace 1, 2, \ldots, 200 \rbrace$
- $x \in \mathbb{R}^2$
- $y \in \lbrace 0,1 \rbrace$
- we desire to learn a classifier that minimizes expected misclassification rate
---
<img src="images/rock20/s2.png" style="position:absolute; top:0px; left:100px; height:100%;"/>
---
<img src="images/rock20/s3.png" style="position:absolute; top:0px; left:100px; height:100%;"/>
---
## But there is a problem...
"Training on a new set of items may drastically disrupt performance on previously learned items."
-- McCloskey & Cohen, 1989
---
## 30 years later...
<img src="images/rock20/masse1.png" style="width:600px;"/>
<img src="images/rock20/flesch1.png" style="width:600px;"/>
<img src="images/rock20/kirkpatrick1.png" style="width:600px;"/>
---
## Last Year: A Grand Challenge
<br>
"We need to invent a new kind of learning that .r[leverages existing knowledge], rather than one that obstinately starts over from square one.”— Rebooting AI, Gary Marcus, Ernest Davis, 2019
<br>
"One such obstacle is adaptability or robustness... efforts toward “transfer learning,” “domain adaptation,” and “.r[lifelong learning]” are reflective of this obstacle." -- Judea Pearl, 2019
---
## This Year: A Real Challenge
- Industry
- Microsoft/Amazon/Google trained a recommender system on existing products, then a new product is launched, desire to update model to recommend for new products
- Healthcare
- A new disease, test, treatment exists, want to update model
- Augmented Reality
- Walking around, go to a new place, want to update model
In all cases, re-training from scratch is just too expensive.
<!-- ---
# Math
- Formalizing lifelong learning
- Introducing evaluation criteria
- Proposing generic algorithm
- Implementing forest variant
- Illustrative Simulations
- Real data demonstrations
- Theoretical results
- Discussion -->
---
class: middle
### A Theory of the Lifelong Learnable
---
## What is Learning?
<img src="images/Vapnik71b.png" style="width:400px;"/>
<img src="images/Valiant84.png" style="width:400px;"/>
<img src="images/Mitchell97a.png" style="width:400px;"/>
---
## What is Learning?
"An agent $f$ learns from data $\mathcal{D}_n$ with performance measure $\mathcal{E}$, if $f$'s performance improves with $n$.''
-- Tom Mitchell, 1997 (not exact quote)
---
## What are data?
- Assume $Z_i$ is a $z \in \mathcal{Z}$ valued random variable
- Sample $Z_i \sim P \in \mathcal{P}$, identically and independently
- Let $\mathcal{D}=\lbrace Z_1, \ldots, Z_n \rbrace \in \, \mathcal{Z}^n$
--
- Example 1: Classification
- $Z_i = (X_i,Y_i)$ where $\mathcal{X}=\mathbb{R}^p$ and $\mathcal{Y}=\lbrace 0,1\rbrace$
- $P=P\_{XY}=P\_{X|Y}P\_Y$, where $P\_{X|Y}$ is Gaussian
--
- Example 2: Reinforcment Learning
- $Z$ is a sequence of states and actions + current state
- $P$ a distribution over current states conditioned on
- past states
- past actions
---
## What is an Algorithm?
$f$ is a learning algorithm, which maps from a subset of data to a hypothesis $h$,
$$f : 2^{\mathcal{Z}^N} \rightarrow \mathcal{H}, \text{ where }N \gg n.$$
--
- Example 1: Classification
- $f$ is *RandomForestClassifier.fit*
- $h$ is *RandomForestClassifier.predict*
<!-- --
- Example 2: Reinforment Learning
- $f$
- $h$
-->
---
## What is Performance?
Generalization error $\mathcal{E}$ is the expected risk of algorithm $f$ for task $t$ with respect to training dataset size $n$:
$$ \mathcal{E}(f,\mathcal{D} \mid t ) := \mathcal{E}(f,\mathcal{D} ) = \mathbb{E}\_P[\mathcal{R}(f(\mathcal{D}))].$$
--
For example
- $\mathcal{R}$ is expected misclassification rate
---
## What is a Setting?
A setting is defined by a septuple $\mathcal{S} = \lbrace \mathcal{Z}, \mathcal{P}, \mathcal{A}, \mathcal{H}, \mathcal{L}, \mathcal{R}, \mathcal{F} \rbrace$
| Definition | Notation | Example
|:--- |:--- |:--- |
| Measurements | $ \mathcal{Z}$ | $(x,y) \in \, \mathbb{R}^p \times \lbrace 0, 1 \rbrace$ |
| Model | $\mathcal{P} := \lbrace P_z \rbrace$ | Gaussian
| Action space | $\mathcal{A}$ | {U,D,L,R,A,B}
| Hypotheses | $\mathcal{H} = \lbrace h: \mathcal{Z} \to \mathcal{A} \rbrace$ | hyperplanes
| Loss Function | $\mathcal{L}: \mathcal{A} \to \mathbb{R}_+$ | $ (a - y)^2$
| Risk Functional | $\mathcal{R}: \mathcal{P} \times \mathcal{L} \to \mathbb{R}_+$ | $\mathbb{E}_P[ \mathcal{L}(a)]$
| Algorithm | $\mathcal{F} = \lbrace f : \mathcal{Z}^n \to \mathcal{H} \rbrace$ | *RandomForestClassifier.fit*
---
## What is a Task?
Given
- some true but unknown distribution $P\_z \in \mathcal{P}$,
- a sample size $n$,
<!-- - some (complexity) constraints on $f \in \mathcal{F}$, $f: \mathcal{Z}^n \to \mathcal{H}$: -->
find the $f \in \mathcal{F}$ that minimizes generalization error.
.center[ $f^* = \arg \min\_{f \in \mathcal{F}} \mathcal{E}(f,\mathcal{D}_n)$.]
---
## What is Learning?
Letting $\mathcal{D}_0$ be a data corpus with no samples,
.center[$f$ learns from data $\mathcal{D}$ iff $\mathcal{E}(f,\mathcal{D}) < \mathcal{E}(f,\mathcal{D}_0),$]
$\mathcal{E}(f,\mathcal{D}_0)$ is the initial performance of $f$ prior to seeing data, and therefore a function of
- prior on $\theta$
- inductive bias of $\mathcal{H}$
- estimation bias of $f$
- model bias of $\mathcal{P}$
---
## What is Transfer Learning?
Given
- .r[source] data $\mathcal{D}_1$,
- .r[target] data $\mathcal{D}_0$ from possibly another distribution.
- let $\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1$.
<!-- "An algorithm $f$ .r[transfer] learns from data $\mathcal{D}_j$ with respect to transfer learning task $t$ with performance measure $\mathcal{E}^t$, if $f$'s performance at task $t$ improves with $\mathcal{D}_j$." -->
--
.center[$f$ .r[transfer] learns from $\mathcal{D}_1$ iff
$\mathcal{E}(f,\mathcal{D}) < \mathcal{E}(f,\mathcal{D}_0).$]
---
## What is Multitask Learning?
- $T_i \in \lbrace{1,2,..,J\rbrace}=[J]$ is a task lable,
- Each task could differ by $P_z$ or any element of $\lbrace \mathcal{Z}, \mathcal{P}, \mathcal{A}, \mathcal{H}, \mathcal{L}, \mathcal{R}, \mathcal{F} \rbrace$
- $\mathcal{D} :=\mathcal{D}_n= \lbrace (Z_i,T_i) \rbrace^n $]
<!-- - Sample $Z\_i \sim P :=P\_{XYT}$, identically and independently -->
- Let $\mathcal{D}_j = \lbrace (X_i,Y_i,T_i) : T_i = j \rbrace$
<!-- - Let $\mathcal{D}= \mathcal{D}_1, \ldots , \mathcal{D}_J$ -->
--
$f$ weakly .r[multitask] learns from $\mathcal{D}$ if
$$ \sum\_{j \in [J]} \mathcal{E}(f,\mathcal{D} \mid j ) P(j) < \sum\_{j \in [J]} \mathcal{E}(f,\mathcal{D}_j \mid j) P(j),$$
<br>
and $f$ strongly .r[multitask] learns if,
$$ \frac{\mathcal{E}(f,\mathcal{D}_j \mid j)}{\mathcal{E}(f,\mathcal{D} \mid j)} > 1 \quad \forall j \in \mathcal{J}.$$
---
## What is Lifelong Learning?
Same as multitask learning, but...
- data arrived sequentially
- $|\mathcal{J}|$ is (countably) infinite
- $J_n$ is the number of tasks observed after $n$ samples
<!-- - Let $\mathcal{D}= \mathcal{D}\_1, \ldots , \mathcal{D}\_{J_n}$ -->
--
$f$ weakly .r[lifelong] learns from $\mathcal{D}$ if
$$ \sum\_{j \in [J\_n]} \mathcal{E}(f,\mathcal{D} \mid j ) P(T=j) < \sum\_{j \in [J\_n]} \mathcal{E}(f,\mathcal{D}\_j \mid j) P(T=j),$$
<br>
and $f$ strongly .r[lifelong] learns if,
$$ \frac{\mathcal{E}(f,\mathcal{D}_j \mid j)}{\mathcal{E}(f,\mathcal{D} \mid j)} > 1 \quad \forall j \in [J_n].$$
---
class: middle
### Evaluation Criteria
---
## Transfer Efficiency (TE)
The transfer efficiency of learning algorithm $f$ for task $j$ is
$$ TE\_j(f) :=
\frac{\mathcal{E}\_j(f, \mathcal{D}_j)}{\mathcal{E}\_j(f, \mathcal{D_n})}.
$$
<br>
Algorithm $ f $ transfer learns if $ TE_j(f) > 1 $.
---
## Forward / Reverse TE
- Let $\mathcal{D}_F^j = \{(X_i, Y_i, T_i) \in \, \mathcal{D} : i \leq n_j\}$ be the set of all data up to sample $n_j$.
- Forward transfer efficiency of $ f $ for task $j$ is the improvement on task $j$ resulting from all data .r[preceding] task $j$
$$ FTE_j(f) :=
\frac{\mathcal{E}_j(f, \mathcal{D}_j)}{\mathcal{E}_j(f, \mathcal{D}_F^j)}.
$$
--
<!-- ## Reverse Transfer Efficiency -->
<!-- Reverse Transfer Efficiency (RTE) for task $j$ measures the improvement on task $j$ resulting from all data occurring after the last sample $i$ with $T_i = j$. -->
- Reverse transfer efficiency of $ f $ for task $j$ is the improvement on task $j$ resulting from all data .r[after] task $j$
<!-- The reverse transfer efficiency of $ f $ for task $j$ is -->
$$ RTE\_j(f) :=
\frac{\mathcal{E}\_j(f, \mathcal{D}_F^j)}{\mathcal{E}_j(f, \mathcal{D})}.
$$
---
## Catastrophic Forgetting vs Reverse Transfer
- Catastrophic forgetting: performance on past tasks gets much .r[worse] given new task data
- Reverse transfer: performance on past tasks gets .r[better] given new task data
Wise learning machines cannot simply avoid catastrophic forgetting, them must reverse transfer to gain understanding from every sample.
---
class: middle
### Algorithm
<!-- ---
## A Concrete Setting
- Let $\mathcal{X}^i=\mathcal{X} = \mathbb{R}^p$ (feature spaces are the same $p$-dimensional Euclidean space)
- Let $\mathcal{Y}_i$ be categorical with $K_i$ categories (always classification)
- Assume data are "task batched", that is, samples $n, \ldots, n+n_j$ all come from task $j$
- Risk is expected misclassification rate -->
---
## Key Idea
- Learn new representation for each task
- Learn classifier for each task on each representation
- .r[Ensemble representations]
- Dimensionality of internal representation grows linearly with number of tasks
---
## Lifelong Learning Schema
<img src="images/learning-schemas.svg" style="width:700px;"/>
<!-- TODO: add increasing complexity schema -->
---
## Lifelong.Fit
Given a new training dataset $\mathcal{D}_J$
- Learn a new representation transformation on that dataset
$$g^J: \mathcal{X} \rightarrow \tilde{\mathcal{X}}^J$$
- Apply $J^{th}$ transformation to all $n$ samples
$$\forall \, i \in [n], \qquad g^J(X_i) \rightarrow \tilde{X}_i^J$$
- Learn class-conditional posteriors on $J^{th}$ representations for each task
$$ \forall \, j \in [J] \qquad h^j : \tilde{\mathcal{X}}^J \rightarrow \hat{\eta}(\cdot | J \rightarrow j)$$
---
## Lifelong.Predict
Given a test sample from task $j'$
- Apply $J$ transformations to sample $n+1$
$$\forall \, j \in [J], \qquad g^j(X) \rightarrow \tilde{X}^j$$
- Evaluate $J$ posteriors for sample $n+1$
$$\forall \, j \in [J], \qquad h^{j'}(\tilde{X}^j) \rightarrow \hat{\eta}(X | j \rightarrow j')$$
- Compute max of average of $J$ class posteriors
$$ \hat{Y}\_{n+1} = \arg \max \frac{1}{J} \sum\_j^J \hat{\eta}(X | j \rightarrow j') $$
---
class: middle
### Simulations
---
## A Transfer Example
- .r[XOR]
- Samples in the (0,0) and (1,1) quadrants are purple
- samples in the (0,1) and (1,0) quadrants are green
- .lb[N-XOR]
- Samples in the (0,0) and (1,1) quadrants are green
- samples in the (0,1) and (1,0) quadrants are purple
- Optimal decision boundaries for both problems are coordinate axes
<img src="images/l2m_18mo/xor_nxor.png" style="width:475px" class="center"/>
---
## Lifelong Classifier
<img src="images/columbia20/xor-nxor-all.png" style="height:300px;">
- .lb[Uncertainty Forest] uses 100 samples from XOR to learn partitions
- .orange[Transfer Forest] uses $n$ samples from N-XOR to learn partitions
- .r[Lifelong Forest] uses 100 samples from XOR and $n$ samples from N-XOR to learn partitions
<!-- TODO: replace with four panel figure:
TOP LEFT: XOR
TOP RIGHT: N-XOR
BOTTOM LEFT: x-axis is simply # samples, and y-axis is Generalization Error, and we show 4 lines: E_1(D_1), E_1(D_n), E_2(D_2), E_2(D_n)
BOTTOM RIGHT: x-axis is # of samples, maybe starting with n/2, y-axis is TE, two lines, TE_1 and TE_2
-->
---
## Lifelong Classifier
<img src="images/columbia20/xor-nxor-all2.png" style="height:500px;">
---
## Different # of Classes
<img src="images/spiral-all.png" style="height:500px;">
<!-- TODO: replace with same 4 panel figure as above -->
---
## Graceful Forgetting
<img src="images/rxor-suite-new-row.png" style="width:750px;">
<!-- TODO: replace with 4 panel figure, same 3 panels as above
ADD: same as right, but n_1=1000, or possibly only show TE_1 for different n_1 ranging from 75, 100, 250, 500, 1000?
-->
---
class: middle
### Real Data
---
## Consider an example
- *CIFAR 100* is a popular image classification dataset with 100 classes of images.
- CIFAR 10x10 breaks the 100-class task problem into 10 tasks, each with 10-class.
- 500 training images and 100 testing images per class.
- All images are 32x32 color images.
<img src="images/l2m_18mo/cifar-10.png" style="position:absolute; left:250px; width:400px;"/>
<!-- TODO: replace CIFAR10 image with same thing but using CIFAR100 images and categories -->
---
## Previous State-of-the-Art
<img src="images/l2m_18mo/progressive_netsc.png" style="width:650px;"/>
Andrei A. Rusu et al. [Progressive Neural Networks](https://arxiv.org/abs/1606.04671), arXiv, 2016.
<!-- Seungwon Lee, James Stokes, and Eric Eaton. "[Learning Shared Knowledge for Deep Lifelong Learning Using Deconvolutional Networks](https://www.ijcai.org/proceedings/2019/393)." IJCAI, 2019. -->
---
<!-- <img src="images/fte_cifar.png" style="height:530px;" /> -->
<img src="images/fte_cifar_2.png" style="height:530px;" />
<!-- TODO: replace with average FTE + "error bars" and add legend outside -->
---
## Reverse Transfer Efficiency
- y-axis indicates .r[reverse transfer efficiency] (RTE),
- which is the ratio of "single task error" to "error using future tasks"
- each task will have a line
- if the line .r[increases], that means it is doing "reverse transfer"
---
.r[Lifelong Forests] uniquely exhibits reverse transfer.
<img src="images/fte_bte_stacked.png" style="height:630px;" />
<!-- TODO: replace with average RTE + "error bars" and add legend outside -->
---
<!-- | Algorithms | Final FTE | Task 1 Final RTE -->
<!-- |:--- |:--- |:--- | -->
<!-- | LF | .r[1.24] | .r[1.19] -->
<!-- | DF-CNN | 1.23 | 0.38 -->
<!-- | Online EWC | 1.20 | 0.87 -->
<!-- | EWC | 1.18 | 0.96 -->
<!-- | SI | 1.22 | 0.76 -->
<!-- | ProgNN | 1.17 | 1.00 -->
<!-- | LwF | .r[1.25] | 0.92 -->
Lifelong Forests uniquely exhibits .r[strong] lifelong learning.
<!-- <img src="images/all_TE.png" style="height:250px;" /> -->
<img src="images/all_TE_2.png" style="height:500px;" />
<!-- TODO: replace table with same thing but
1. remove Task specific TE (only show average and min)
2. color code names using the same color scheme as the figure
-->
---
class: middle
### Theory
---
## What do classifiers do?
<br>
learn: given $(x_i,y_i)$, for $i \in [n]$, where $y \in \lbrace 0,1 \rbrace$
1. partition feature space into "parts",
2. compute plurality of points in each part.
predict: given $x$
2. find its part,
3. report the plurality vote in its part.
---
## What can regressors do?
<br>
learn: given $(x_i,y_i)$, for $i \in [n]$, where $y \in \mathbb{R}$
1. partition feature space into "parts",
2. compute average of points in each part.
predict: given $x$
2. find its part,
3. report the average vote in its part.
---
## The fundamental theorem of statistical pattern recognition
If each part is:
1. small enough, and
2. has enough points in it,
then given enough data, one can learn *perfectly, no matter what*!
$$\mathcal{E}\(f,\mathcal{D}) \rightarrow \mathcal{E}^*,$$
where $\mathcal{E}^*$is Bayes optimal.
-- Stone, 1977
<!-- NB: the parts can be overlapping (as in kNN) or not (as in histograms) -->
---
## The fundamental .r[conjecture] of transfer learning
If each cell is:
- small enough, and
- has enough points in it,
then given enough data, one can .r[transfer learn] *perfectly, no matter what*!
-- jovo, 2020
---
class: middle
### Discussion
---
## Key Insights
1. Avoiding catastrophic forgetting simply means reverse transfer is 1, but why stop there?
2. Ensembling internal representations enables reverse transfer > 1
---
## Limitations
2. Tasks must be discrete
3. Data must be batched into tasks
4. Tasks must be known
5. Feature space must be the same for all tasks
1. Internal representation grows linearly with # of tasks
---
## Key Accomplishments
- Formalized Lifelong Learning as generalization of classical machine learning
- Introduced novel evaluation criteria: forward and reverse transfer efficiency
- Proposed generic lifelong learning algorithm framework by ensembling internal representations
- Implemented Lifelong Forests as a specific example
- Demonstrated Lifelong Forests uniquely exhibits
- reverse transfer
- stong lifelong learning
- Conjectured theory promising to prove consistency and robustness
---
## References
1. H. Helm et al. Lifelong Learning Forests, 2020
1. R. Mehta et al. A General Theory of Learnability, 2020.
3. T. M. Tomita et al. [Sparse Projection Oblique Randomer Forests](https://arxiv.org/abs/1506.03410). arXiv, 2018.
1. R Guo, et al. [Estimating Information-Theoretic Quantities with Uncertainty Forests](https://arxiv.org/abs/1907.00325). arXiv, 2019.
1. R. Perry, et al. Manifold Forests: Closing the Gap on Neural Networks. preprint, 2019.
1. C. Shen and J. T. Vogelstein. [Decision Forests Induce Characteristic Kernels](https://arxiv.org/abs/1812.00029). arXiv, 2018
7. J. Browne et al. [Forest Packing: Fast, Parallel Decision Forests](https://arxiv.org/abs/1806.07300). SIAM ICDM, 2018.
1. M. Madhya, et al. [Geodesic Learning via Unsupervised Decision Forests](https://arxiv.org/abs/1907.02844). arXiv, 2019.
More info: [https://neurodata.io/sporf/](https://neurodata.io/sporf/)
---
### Acknowledgements
<!-- <div class="small-container">
<img src="faces/ebridge.jpg"/>
<div class="centered">Eric Bridgeford</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben Pedigo</div>
</div>
<div class="small-container">
<img src="faces/jaewon.jpg"/>
<div class="centered">Jaewon Chung</div>
</div> -->
<div class="small-container">
<img src="faces/yummy.jpg"/>
<div class="centered">yummy</div>
</div>
<div class="small-container">
<img src="faces/lion.jpg"/>
<div class="centered">lion</div>
</div>
<div class="small-container">
<img src="faces/violet.jpg"/>
<div class="centered">baby girl</div>
</div>
<div class="small-container">
<img src="faces/family.jpg"/>
<div class="centered">family</div>
</div>
<div class="small-container">
<img src="faces/earth.jpg"/>
<div class="centered">earth</div>
</div>
<div class="small-container">
<img src="faces/milkyway.jpg"/>
<div class="centered">milkyway</div>
</div>
##### JHU
<div class="small-container">
<img src="faces/cep.png"/>
<div class="centered">Carey Priebe</div>
</div>
<!-- <div class="small-container">
<img src="faces/randal.jpg"/>
<div class="centered">Randal Burns</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/cshen.jpg"/>
<div class="centered">Cencheng Shen</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/bruce_rosen.jpg"/>
<div class="centered">Bruce Rosen</div>
</div>
<div class="small-container">
<img src="faces/kent.jpg"/>
<div class="centered">Kent Kiehl</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/mim.jpg"/>
<div class="centered">Michael Miller</div>
</div>
<div class="small-container">
<img src="faces/dtward.jpg"/>
<div class="centered">Daniel Tward</div>
</div> -->