-
Notifications
You must be signed in to change notification settings - Fork 1
/
demo_old.py
164 lines (139 loc) · 5.66 KB
/
demo_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import os
import pickle
import cv2
from matplotlib import pyplot as plt
import numpy as np
from copy import deepcopy
from PIL import Image
from handobjectdatasets.queries import TransQueries, BaseQueries
from handobjectdatasets.viz2d import visualize_joints_2d_cv2
from mano_train.exputils import argutils
from mano_train.netscripts.reload import reload_model
from mano_train.visualize import displaymano
from mano_train.demo.attention import AttentionHook
from mano_train.demo.preprocess import prepare_input, preprocess_frame
from detection.detection import detection_init, detection
def forward_pass_3d(model, input_image, pred_obj=True, left=True):
sample = {}
sample[TransQueries.images] = input_image
sample[BaseQueries.sides] = ["left" if left else "right"]
sample[TransQueries.joints3d] = input_image.new_ones((1, 21, 3)).float()
sample["root"] = "wrist"
if pred_obj:
sample[TransQueries.objpoints3d] = input_image.new_ones(
(1, 600, 3)
).float()
#print(sample)
_, results, _ = model.forward(sample, no_loss=True)
print(results)
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--resume",
type=str,
help="Path to checkpoint",
default="release_models/obman/checkpoint.pth.tar",
)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--hand_side", default="left")
parser.add_argument("--video_path", help="Path to video")
parser.add_argument(
"--no_beta", action="store_true", help="Force shape to average"
)
parser.add_argument(
"--left", action="store_true", help="Force shape to average"
)
parser.add_argument(
"--right", action="store_true", help="Force shape to average"
)
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=1, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load network',
default=10, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load network',
default=90193, type=int, required=True)
args = parser.parse_args()
argutils.print_args(args)
checkpoint = os.path.dirname(args.resume)
with open(os.path.join(checkpoint, "opt.pkl"), "rb") as opt_f:
opts = pickle.load(opt_f)
# Initialize network
model = reload_model(args.resume, opts, no_beta=args.no_beta)
fasterRCNN = detection_init(args.checksession, args.checkepoch, args.checkpoint)
model.eval()
# Initialize stream from camera
if args.video_path is None:
# Read from webcam
cap = cv2.VideoCapture(0)
else:
cap = cv2.VideoCapture(args.video_path)
if cap is None:
raise RuntimeError("OpenCV could not use webcam")
print("Please use {} hand !".format(args.hand_side))
# load faces of hand
with open("misc/mano/MANO_RIGHT.pkl", "rb") as p_f:
mano_right_data = pickle.load(p_f, encoding="latin1")
faces = mano_right_data["f"]
# Add attention map
attention_hand = AttentionHook(model.module.base_net)
if hasattr(model.module, "atlas_base_net"):
attention_atlas = AttentionHook(model.module.atlas_base_net)
has_atlas_encoder = True
else:
has_atlas_encoder = False
fig = plt.figure(figsize=(4, 4))
while True:
fig.clf()
ret, frame = cap.read()
if not ret:
raise RuntimeError("OpenCV could not load frame")
hand_dets = detection(frame, fasterRCNN)
#print(hand_dets)
frame = preprocess_frame(frame)
blend_img_hand = attention_hand.blend_map(frame)
if has_atlas_encoder:
blend_img_atlas = attention_atlas.blend_map(frame)
cv2.imshow("attention atlas", blend_img_atlas)
img = Image.fromarray(frame.copy())
hand_crop = cv2.resize(np.array(img), (256, 256))
hand_image = prepare_input(
hand_crop, flip_left_right=args.right
)
output = forward_pass_3d(model, hand_image, left=args.left)
if args.left:
inpimage = deepcopy(hand_crop)
else:
inpimage = deepcopy(np.flip(hand_crop, axis=1))
# noflip_inpimage = cv2.flip(noflip_inpimage, 0)
# noflip_inpimage = cv2.rotate(noflip_inpimage, cv2.ROTATE_180)
# noflip_inpimage = cv2.flip(noflip_inpimage, 1)
if "joints2d" in output:
joints2d = output["joints2d"]
inpimage = visualize_joints_2d_cv2(
inpimage, joints2d.cpu().detach().numpy()[0]
)
cv2.imshow("attention hand", blend_img_hand)
verts = output["verts"].cpu().detach().numpy()[0]
ax = fig.add_subplot(1, 1, 1, projection="3d")
displaymano.add_mesh(ax, verts, faces, flip_x=args.left)
if "objpoints3d" in output:
objverts = output["objpoints3d"].cpu().detach().numpy()[0]
displaymano.add_mesh(
ax, objverts, output["objfaces"], flip_x=args.left, c="r"
)
if args.left: cv2.imshow("pose", cv2.flip(inpimage, 1))
fig.canvas.draw()
w, h = fig.canvas.get_width_height()
buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
buf.shape = (w, h, 4)
# Captured right hand of user is seen as right (mirror effect)
# cv2.imshow("pose estimation", cv2.flip(frame, 1))
cv2.imshow("mesh", buf)
cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()