diff --git a/docs/_images/tutorials_read_recording_17_1.png b/docs/_images/tutorials_read_recording_17_1.png new file mode 100644 index 0000000..1655eed Binary files /dev/null and b/docs/_images/tutorials_read_recording_17_1.png differ diff --git a/docs/_images/tutorials_read_recording_21_1.png b/docs/_images/tutorials_read_recording_21_1.png new file mode 100644 index 0000000..268cf1d Binary files /dev/null and b/docs/_images/tutorials_read_recording_21_1.png differ diff --git a/docs/_images/tutorials_resample_and_concat_10_1.png b/docs/_images/tutorials_resample_and_concat_10_1.png new file mode 100644 index 0000000..3685348 Binary files /dev/null and b/docs/_images/tutorials_resample_and_concat_10_1.png differ diff --git a/docs/_images/tutorials_resample_and_concat_12_1.png b/docs/_images/tutorials_resample_and_concat_12_1.png new file mode 100644 index 0000000..78d029f Binary files /dev/null and b/docs/_images/tutorials_resample_and_concat_12_1.png differ diff --git a/docs/_images/tutorials_resample_and_concat_6_1.png b/docs/_images/tutorials_resample_and_concat_6_1.png new file mode 100644 index 0000000..6ad0f01 Binary files /dev/null and b/docs/_images/tutorials_resample_and_concat_6_1.png differ diff --git a/docs/_sources/index.rst.txt b/docs/_sources/index.rst.txt index 84a76ba..2dee77b 100644 --- a/docs/_sources/index.rst.txt +++ b/docs/_sources/index.rst.txt @@ -10,7 +10,10 @@ eye-tracking data. It is a community-driven effort to provide a versatile set of tools to work with the rich data (gaze, eye states, IMU, events, etc.) provided by Neon. -PyNeon is licensed under the MIT License. +PyNeon works with the cloud-processed data from Pupil Cloud instead of +"native" data from the Companion app. To read data in the "native" format, please +see ``pl-neon-recording`` https://github.com/pupil-labs/pl-neon-recording/ +(which also inspired PyNeon). Here we provide tutorials and API reference to help you get started with PyNeon. @@ -33,10 +36,11 @@ PyNeon works with the "Timeseries Data" or "Timeseries Data + Scene Video" forma as exported from Pupil Clouds. The data could be from a single recording or from a project with multiple recordings. -Credits +License ======= -PyNeon was inspired by https://github.com/pupil-labs/pl-neon-recording/ +.. literalinclude:: ../LICENSE + :language: none .. toctree:: :maxdepth: 2 diff --git a/docs/_sources/reference/index.rst.txt b/docs/_sources/reference/index.rst.txt index 81148be..5fb5250 100644 --- a/docs/_sources/reference/index.rst.txt +++ b/docs/_sources/reference/index.rst.txt @@ -4,7 +4,7 @@ PyNeon API ========== .. toctree:: - :maxdepth: 3 + :maxdepth: 2 dataset recording diff --git a/docs/_sources/tutorials/index.rst.txt b/docs/_sources/tutorials/index.rst.txt index e74a60e..c5e9781 100644 --- a/docs/_sources/tutorials/index.rst.txt +++ b/docs/_sources/tutorials/index.rst.txt @@ -9,7 +9,6 @@ started with PyNeon. .. toctree:: :maxdepth: 1 - load_recording - load_dataset + read_recording resample_and_concat export_to_bids \ No newline at end of file diff --git a/docs/_sources/tutorials/load_dataset.ipynb.txt b/docs/_sources/tutorials/load_dataset.ipynb.txt deleted file mode 100644 index 6f2a872..0000000 --- a/docs/_sources/tutorials/load_dataset.ipynb.txt +++ /dev/null @@ -1,30 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Load a Neon dataset (Pupil Cloud project)\n", - "In this tutorial, we will show how to load a Neon dataset downloaded from [Pupil Cloud](https://docs.pupil-labs.com/neon/pupil-cloud/)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "plaintext" - } - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/_sources/tutorials/load_recording.ipynb.txt b/docs/_sources/tutorials/load_recording.ipynb.txt deleted file mode 100644 index 90e463a..0000000 --- a/docs/_sources/tutorials/load_recording.ipynb.txt +++ /dev/null @@ -1,26 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Load a Neon recording\n", - "In this tutorial, we will show how to load a single Neon recording downloaded from [Pupil Cloud](https://docs.pupil-labs.com/neon/pupil-cloud/)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/_sources/tutorials/read_recording.ipynb.txt b/docs/_sources/tutorials/read_recording.ipynb.txt new file mode 100644 index 0000000..d1c18c5 --- /dev/null +++ b/docs/_sources/tutorials/read_recording.ipynb.txt @@ -0,0 +1,460 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reading a Neon dataset/recording\n", + "In this tutorial, we will show how to load a single Neon recording downloaded from [Pupil Cloud](https://docs.pupil-labs.com/neon/pupil-cloud/).\n", + "\n", + "## Reading sample data\n", + "We will use a sample recording produced by the NCC Lab called `OfficeWalk`. It's a project with 2 recordings and multiple enrichments and can be downloaded with the `get_sample_data()` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import numpy as np\n", + "from scipy.ndimage import gaussian_filter\n", + "from pyneon import get_sample_data, NeonDataset, NeonRecording\n", + "\n", + "sample_dir = get_sample_data(\"OfficeWalk\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `OfficeWalk` data has the following structure:\n", + "\n", + "```plaintext\n", + "OfficeWalk\n", + "├── Timeseries Data\n", + "│ ├── walk1-e116e606\n", + "│ │ ├── info.json\n", + "│ │ ├── gaze.csv\n", + "│ │ └── ....\n", + "│ ├── walk2-93b8c234\n", + "│ │ ├── info.json\n", + "│ │ ├── gaze.csv\n", + "│ │ └── ....\n", + "| ├── enrichment_info.txt\n", + "| └── sections.csv\n", + "├── OfficeWalk_FACE-MAPPER_FaceMap\n", + "├── OfficeWalk_MARKER-MAPPER_TagMap_csv\n", + "└── OfficeWalk_STATIC-IMAGE-MAPPER_ManualMap_csv\n", + "```\n", + "\n", + "The `Timeseries Data` folder contains what PyNeon calls a `NeonDataset`. It contains multiple recordings, each with its own `info.json` file and data files. These recordings can either be loaded individually as `NeonRecording`s or as a wholist `NeonDataset`.\n", + "\n", + "If loading a `NeonDataset`, specify the path to the `Timeseries Data` folder to create a `NeonDataset` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NeonDataset | 2 recordings\n" + ] + } + ], + "source": [ + "dataset_dir = sample_dir / \"Timeseries Data\"\n", + "dataset = NeonDataset(dataset_dir)\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "NeonDataset has a `recordings` attribute that contains a list of `NeonRecording` objects. These `NeonRecording` objects can be accessed by their index." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "first_recording = dataset[0]\n", + "print(type(first_recording))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, one can directly load a single `NeonRecording` by specifying the path to the recording's folder:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "recording_dir = dataset_dir / \"walk1-e116e606\"\n", + "recording = NeonRecording(recording_dir)\n", + "print(type(recording))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Accessing data and metadata of a NeonRecording\n", + "An overview of basic metadata and contents of a `NeonRecording` can be obtained by printing the object. An initiated `NeonRecording` locates data files in the recording directory but does not load them until requested to be memory efficient." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Recording ID: e116e606-5f3f-4d34-8727-040b8762cef8\n", + "Wearer ID: bcff2832-cfcb-4f89-abef-7bbfe91ec561\n", + "Wearer name: Qian\n", + "Recording start time: 2024-08-30 17:37:01.527000\n", + "Recording duration: 98.213 s\n", + " exist filename path\n", + "3d_eye_states True 3d_eye_states.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\3d_eye_states.csv\n", + "blinks True blinks.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\blinks.csv\n", + "events True events.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\events.csv\n", + "fixations True fixations.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\fixations.csv\n", + "gaze True gaze.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\gaze.csv\n", + "imu True imu.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\imu.csv\n", + "labels True labels.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\labels.csv\n", + "saccades True saccades.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\saccades.csv\n", + "world_timestamps True world_timestamps.csv C:\\Users\\qian.chu\\Documents\\GitHub\\pyneon\\data\\OfficeWalk\\Timeseries Data\\walk1-e116e606\\world_timestamps.csv\n", + "scene_video False None None\n", + "\n" + ] + } + ], + "source": [ + "print(recording)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Individual data streams can be accessed as properties of the `NeonRecording` object. For example, the gaze data can be accessed as `recording.gaze`, and upon accessing, the tabular data is loaded into memory." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "recording._gaze size before accessing `gaze`: 16\n", + "recording.gaze is of type: \n", + "recording._gaze size after accessing `gaze`: 48\n" + ] + } + ], + "source": [ + "print(f\"recording._gaze size before accessing `gaze`: {sys.getsizeof(recording._gaze)}\")\n", + "\n", + "gaze = recording.gaze\n", + "print(f\"recording.gaze is of type: {type(gaze)}\")\n", + "print(f\"recording._gaze size after accessing `gaze`: {sys.getsizeof(recording._gaze)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can access the timeseries data in the gaze stream as a pandas DataFrame by accessing the `data` attribute of the gaze stream. The columns of the DataFrame include `timestamp [ns]` and channel data columns. During loading, PyNeon strips the redundant `section id` and `recording id` columns and adds a more human-readable `time [s]` column to represent the time of each sample in seconds relative to the start of the data stream." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " timestamp [ns] gaze x [px] gaze y [px] worn fixation id blink id \\\n", + "0 1725032224852161732 1067.486 620.856 True 1 \n", + "1 1725032224857165732 1066.920 617.117 True 1 \n", + "2 1725032224862161732 1072.699 615.780 True 1 \n", + "3 1725032224867161732 1067.447 617.062 True 1 \n", + "4 1725032224872161732 1071.564 613.158 True 1 \n", + "\n", + " azimuth [deg] elevation [deg] time [s] \n", + "0 16.213030 -0.748998 0.000000 \n", + "1 16.176285 -0.511733 0.005004 \n", + "2 16.546413 -0.426618 0.010000 \n", + "3 16.210049 -0.508251 0.015000 \n", + "4 16.473521 -0.260388 0.020000 \n" + ] + } + ], + "source": [ + "print(gaze.data.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PyNeon also automatically sets the column datatype to appropriate types, such as `Int64` for timestamps, `Int32` for event IDs, and `float64` for float data." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "timestamp [ns] Int64\n", + "gaze x [px] float64\n", + "gaze y [px] float64\n", + "worn bool\n", + "fixation id Int32\n", + "blink id Int32\n", + "azimuth [deg] float64\n", + "elevation [deg] float64\n", + "time [s] float64\n", + "dtype: object\n" + ] + } + ], + "source": [ + "print(gaze.data.dtypes)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualizing data timeseries and sampling gaps\n", + "\n", + "Up to this point, PyNeon simply reads and re-organizes the raw .csv files. Let's plot some samples from the `gaze` and `eye_states` streams and a saccade from the `saccades` events." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5UAAAHACAYAAAAydEy+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDvklEQVR4nO3deXhTVf4G8Dfpkq1pm5YugF1YFIqCIFUWHQTFgiJTxwKioCCbIKDiCiqLIuIAKqKIigoooo7g4Ag/oQzgziCrCBREpJSlLdA1XZK2yf39cU1omts2SdNmez/Pkwdy783JSQNt3p5zvkcmCIIAIiIiIiIiIhfIPd0BIiIiIiIi8l0MlUREREREROQyhkoiIiIiIiJyGUMlERERERERuYyhkoiIiIiIiFzGUElEREREREQuY6gkIiIiIiIilzFUEhERERERkcuCPd0BX1BTU4MDBw4gLi4OcjlzOBERERFRoDKbzcjPz0ePHj0QHMw4BTBUOuTAgQO44YYbPN0NIiIiIiLyEr/88guuv/56T3fDKzBUOiAuLg6A+A+ndevWHu4NERFR4DAYDDh9+rSnu+FVkpKSoFQqPd0NooCVm5uLG264wZoRiKHSIZYpr61bt8YVV1zh4d4QEREFjsrKShgMBk93w6u0bdsWKpXK090gCnhcFncZvxJERERERETkMoZKIiIiIiIichlDJREREREREbmMoZKIiIiIiIhcxlBJRERERERELmOoJCIiIiIiIpcxVBIREREREZHLGCqJiIiIiIjIZQyVRERERERE5DKGSiIiIiIiInJZsKc7QN5JX25Ckd6M8kozwlRyRGrl0GqCPN0tIiLHGYqAinzAWAIoIgF1LKDUebpXREREfoehkuxcKKrBkrUF2JtltB5LTVHgydHRiNXxnwwR+QD9GWDrBOB05uVjyWlA2vuANsFz/SIiImpAdnY25s+fjx07diAvLw9t2rTB6NGj8dxzzyE0NNTT3asXp7+SDX25yS5QAsDeLCOWrC2AvtzkoZ4RETnIUGQfKAEgOxPInCCeJyIi8kLHjh2D2WzGu+++iyNHjuD111/HO++8g2effdbTXWsQh538lKPTV+teZxIEu0BpsTfLiCK9mdNgici7VeTbB0qL7EzxPKfBEhGRFxo8eDAGDx5svd++fXscP34cK1aswJIlSzzYs4YxVPohR6evSl23YEqrBtsurzS7v8NERO5kLGnaeSIiIi9SUlKCqKgoT3ejQQyVfqax6auzx7WCVhNU73WArMH2NSrbGdNSI6IAWOSHiDxHEdG080RERA7Q6/UoLS213lcoFFAoFG59jj/++ANvvvmmV49SAgyVfqdIb3Zo+mp912WdMuK6TgrsP25/LjVFAZ32cqisO9KpVMjw8pQYrNtawiI/ROQ56jixKE+2xBTY5DTxPBERURN16dLF5v7cuXMxb948yWtnzpyJf/7znw22l5WVhc6dO1vvnzt3DoMHD8bw4cMxceLEJve3OfFTvo9pbGSwxiRIPk6pkGHYAC2qagRknTLWe936nXrMHtcKcnmpTTDs202J6cN1KNKbcfZCDSI0ciz9vNDmmmEDtFj7TYldIK07Skq+i1vNkE9Q6sQqr5kTbIOlpfor11MSEZEbHD16FG3btrXeb2iU8oknnsDYsWMbbK99+/bWv58/fx4DBgxA37598d577zW5r82NodKHODIyuGBKjN3jlAoZZo9rhQ07SrF2S2m91wGAwShg/oeXsHJWPExmcQ1lmFqOkGDg1XWFNs9Td6QzpZ3C2n5dLPLj+7jVDPkUbQIw5LNa+1RGiCOUSh33ryQiIrfQarUIDw936NqYmBjExEh//q7r3LlzGDBgAHr27IlVq1ZBLvf+DTv4SdBHSK2BlBoZlJq+OmyAFht2lDZ6ncU17UMRrrk8AqUvN2H+h5dsnruq2n6kU+pYbSzy47scXatL5FWUOvuwyP0riYjIi507dw79+/dHUlISlixZgosXL1rPxcfHe7BnDfP+2EsApNdKprSzD4Xrd+qRcUs4ruukcPo6QBx5emp0tE1AkHru0BD7gj5Sx2qrW+SHfIcja3WJvB73ryQiIi+3bds2/PHHH9i+fTuuuOIKtG7d2nrzZhyp9BFSo3xSI4OW6avDBmgxOUOH6mpBcv2k1HUalRw6iTVyUs8tNdLpTJEf8i2NjTJzFJp8AvevJCIiLzd27NhG1156I37K9xFSo3z1jQwajALWbilFaLAMKe0UiAiTnpZY97rE+BDJKYxSzy010rl+px6jb49Aakrjo5/kWxobZeYoNPkE7l9JRETULDhS6SN0WjlSUxQ2UxAdHRmUeqzUdc48t2Wkc2pGJKaN0KHScHmkc/a4VtYKofWNfpJvaeq/ISKvwP0riYiImgU/CfoIrSYIT46OthkFdHRkUOqxUtc589yAWNDnhqtVSG4dajPSqdUEITE+pMHRT/ItTf03RORxhiJAHgIkpUmf5/6V1ELefvttDBs2zNPdICJyK45U+pBYXbDkKKAjI4P1PdbRMNDUx5Pv478B8glS24VUl4kFes7/BAz5FBBMQM72y4/h/pU+q7CwEMuXL8f333+PgoIChIeHo1OnTpg8eTJ69Ojh6e4REQUMhkofYxkJlDru6mOb+twUOPhvgLya1HYht70H/L7+8rHN9wLXPSbeACCyPaBpzUDpo2bMmIGamhosWLAAV1xxBQoKCrB7924UFxd7umtERAGFoZKIiHxfWa70diGa1rbHqsuB3Qsu338wi4HSR5WWlmL//v348MMPcf311wMA2rRpg65du1qvWbNmDTZu3Ihz584hPDwc/fv3x+OPPw61Wm295sCBA1i2bBkOHz6MkJAQdO3aFYsWLUJERATMZjNWr16N9evXIy8vD9HR0Rg+fDgmTZoEAHjttdewY8cO5OfnIzo6GkOGDMHkyZMREhJibf/999/Hxx9/DIPBgEGDBkGns//3tmHDBqxZswbnzp1DmzZtMGrUKIwcObK5vnRERG7HUElERL5NfwYoOiG9XYjJ0PBjWfHVZ6nVaqjVauzYsQPXXnstQkND7a6Ry+WYNWsW2rZti7Nnz+Kll17Ca6+9hueffx4AcOzYMUyYMAH/+Mc/MHPmTAQFBeGXX36B2Sxuk7R06VJs2LABTz/9NK677jpcvHgRp06dsrav0Wjw0ksvISYmBidOnMC8efOg0Wgwbtw4AMCWLVuwYsUKPPfcc+jRowe+/vprrFu3DldccYW1jU2bNmH58uV49tln0blzZxw7dgzz5s2DSqVCenp6c34JiYjcRiYIgv0mhmTj7NmzSEhIwJkzZ2x+EBARkYcZioBNI4FuE4Gvh9ufv+trYOPQ+h//YBYQ1bn5+kdNVllZiZMnT0qe27ZtG+bNmwej0YiUlBSkpqZi8ODB6NSpk+T1mZmZmD9/Pn744QcAwNNPP428vDx89NFHdteWl5ejX79+ePbZZ5GRkeFQX1evXo1vvvkGn3/+OQBg9OjR6Ny5szXEAsCoUaNgNBqxfv16AMAdd9yBadOm4Y477rBe8+677+KHH37A2rVrJZ+nQ4cOUKlUDvWJiNyP2cAeRyqJiMh3VeSLI5Q9pkufz/0fkHirbWEeC1Z89Xm33XYb+vXrh3379uHQoUP48ccfsWrVKsybNw933XUXdu3ahQ8++ACnTp1CWVkZTCYTjEYjKisroVKpcPz4caSlSVcE/vPPP1FVVYVevXrV+/xbtmzBJ598gjNnzqCiogImkwlhYWE2bYwYMcLmMd26dcOePXsAABUVFThz5gzmzp2LefPmWa+p2w4RkbdjqCQiIt9lmb5aX3jcvxT4xyZAHgRk15oey4qvfkOhUKBv377o27cvJk+ejLlz5+Ltt9/G9ddfj2nTpmHEiBGYPn06IiIicODAAcyZMwfV1dVQqVRQKBQNttuQgwcPYubMmXj44Ydx4403IiwsDN98843kqGd9KioqAABz585Ft27dbM7J5dz1jYh8B0MlERH5LkWE+Of+peJ2IYBtsGxzIxDZERjyWa2tRiLEEUoGSr/Uvn177NixA0ePHoXZbMZTTz1lDWhbt261ufaqq67C7t27MXXqVLt2kpKSoFQqsXv3bsnpbb/++itat25tLdoDALm5uXZ9OXToEP7+979bjx06dMj691atWiE2NhZnz57FnXfe6doLJiLyAgyVRETku9Rx4qhjdqbtdiEmA6CMAqJSgLDW4rUMkX6luLgYTzzxBO666y5cddVV0Gg0OHLkCFatWoUBAwYgMTERNTU1WLduHW6++WYcPHgQ//rXv2zamDBhAu6++2689NJLGD58OEJCQrBnzx6kpaVBp9Nh3LhxeO211xASEoIePXqgsLAQJ0+exN13343ExETk5eXhm2++wTXXXIPvv/8e27fbjpSPHj0azz//PK6++mr06NEDmzdvxsmTJ21C6sMPP4xXXnkFWq0WN954I6qqqnDkyBGUlpZizJgxLfK1JCJqKoZKIiLyXUqdOI01c4IYLC3bhVimt1oCJfkdtVqNrl274uOPP8bZs2dRU1ODuLg4ZGRkYOLEiVAqlXjqqafw4Ycf4o033kDPnj3x2GOP4dlnn7W2kZycjHfffRfLli3DfffdB4VCgW7duuH2228HADz00EMICgrC8uXLceHCBcTExFjXSA4YMAD3338/Xn75ZVRVVaFfv3546KGHsGLFCmv7gwcPxpkzZ/D666/DaDRi4MCBGDFiBH7++WfrNRkZGVAqlVi9ejVeffVVqFQqXHnllbj//vtb6CtJRNR0rP7qAFZ4IiLycoYiTm/1Uw1Vfw1UrP5K5FnMBvY4UklERL5PqWOIJCIi8hCGSiIi8k02o5ORgDqWwZKIiMgDGCqJiMj36M8AWyeIe1RaWNZRahM81y8iIqIAxE2QiIjItxiK7AMlIBbqyZwgniciIqIWw1BJRES+pSLfPlBaZGeK54mIiKjFMFQSEZFvMZY07TwRERG5FUMlERH5FkVE084TERGRWzFUEhGRb1HHiUV5pCSnieeJiIioxTBUEhGRb1HqxCqvdYOlpfortxUhIiJqUdxShIiIfI82ARjyWa19KiPEEUoGSiIiohbHUElERL5JqWOIJCIi8gKc/kpEREREREQuY6gkIiIiIiIilzFUEhERERERkcu4ppKIiAKboahWwZ9IQB3LtZpEREROYKgkIqLApT8DbJ0AnM68fMyyNYk2wXP9IiIi8iGc/kpERIHJUGQfKAEgOxPInCCeJyIiokYxVBIRUWCqyLcPlBbZmeJ5IiIiahRDJRERBSZjSdPOExEREQCGSiIiClSKiKadJyIiIgAMlURE5O0MRUDhMSB3N1B43H1rHdVxYlEeKclp4nkiIiJqFKu/EhGR92rO6qxKndhO5gRxDWXd9rmtCBERkUMYKomIyDvVrc4aogGuewxo3Ru48CtQpQc0rZsW/rQJwJDPbPepDA0HqkrEkVHuW0lERNQohkoiIvJOtauzhmiAIZ8C+98Adi+4fI07Ri2VusuhUX8G2DKW+1YSERE5gWsqiYjI+xiKgMpLl+9f95gYKHO2217nzj0luW8lERGRSxgqiYjIu+jPAJtGAobiy8da97YPlBbu2lOS+1YSERG5hKGSiIi8R+3Rwtz/AYm3isdNhoYf5449JblvJRERkUu4ppKIiLxH7dHC/UvFdZQAEKRs+HHu2FOS+1YSERG5hCOVRETkPWqPBlaXA5vvFae+auKBpGbeU5L7VhIREbmEoZKIiLxH3dHA6nKx2uu/+gM9ptkHS3fuKWnZt7JusOS+lURERA3i9FciIvIeltHC7DoFc6rLgd/eBwavFveQNJaIAVQd596wZ7dvZTM8BxERkZ9hqCQiIu9hGS3MnGAbLJPTgFvfAsJaA2jd/H1giCQiInIYQyUREXkXjhYSERH5FIZKIiLyPhwtJCIi8hks1ENEREREREQu82io/P777zF06FC0adMGMpkMGzdutDkvCALmzJmD1q1bQ6VSYeDAgThx4oTNNYWFhRg1ahTCw8MRGRmJ8ePHo6yszOaaQ4cO4W9/+xuUSiUSEhKwaNGi5n5pREREREREAcGjobK8vBzXXnstli9fLnl+0aJFWLZsGd555x3s3r0bGo0GgwYNgsFgsF4zatQoHDlyBNu2bcOmTZvw/fffY9KkSdbzpaWlSEtLQ1JSEvbt24fFixdj3rx5eO+995r99REREREREfk7j66pvP3223H77bdLnhMEAUuXLsXzzz+P9PR0AMBHH32EuLg4bNy4ESNHjkRWVha2bNmCPXv2IDU1FQDw5ptv4o477sCSJUvQpk0bfPLJJ6iqqsKHH36I0NBQXH311Th48CBee+01m/BJREQeZiiqVZwnElDHcl0lERGRD/DaNZWnTp1CXl4eBg4caD0WERGBXr16YdeuXQCAXbt2ITIy0hooAWDgwIGQy+XYvXu39Zp+/fohNDTUes2gQYNw/PhxFBUVST630WhEaWmp9abX65vjJRIRkYX+DLBpJLAqBVjXG1jVGdg8UjxOREQUgIxGI7p37w6ZTIaDBw96ujsN8tpQmZeXBwCIi4uzOR4XF2c9l5eXh9jYWJvzwcHBiIqKsrlGqo3az1HXwoULERERYb116dKl6S+IiIikGYqArROA05m2x7Mzxf0qDdK/ACQiIvJnTz/9NNq0aePpbjjEa0OlJ82aNQslJSXW29GjRz3dJSIi/1WRbx8oLbIzxfNEREQB5JtvvkFmZiaWLFni6a44xGv3qYyPjwcA5Ofno3Xr1tbj+fn56N69u/WaCxcu2DyupqYGhYWF1sfHx8cjP9/2A4nlvuWauhQKBRQKhfV+aWlp014MERHVz1jStPNEREQeoNfrbXJC3Qzhqvz8fEycOBEbN26EWq1ucnstwWtHKtu1a4f4+Hhs377deqy0tBS7d+9Gnz59AAB9+vRBcXEx9u3bZ71mx44dMJvN6NWrl/Wa77//HtXV1dZrtm3bhk6dOkGnYwEIIiKPU0Q07TwREZEHdOnSxWbJ3MKFC5vcpiAIGDt2LCZPnmxTN8bbeTRUlpWV4eDBg9aFp6dOncLBgweRk5MDmUyGxx57DC+99BL+85//4LfffsMDDzyANm3a4K677gIApKSkYPDgwZg4cSJ++eUX/PTTT5g2bRpGjhxpnX983333ITQ0FOPHj8eRI0fw+eef44033sDjjz/uoVdNREQ21HFAcpr0ueQ08TwREZGXOXr0qM2SuVmzZtV77cyZMyGTyRq8HTt2DG+++Sb0en2DbXkjmSAIgqee/Ntvv8WAAQPsjo8ZMwarV6+GIAiYO3cu3nvvPRQXF+Omm27C22+/jauuusp6bWFhIaZNm4avv/4acrkcGRkZWLZsGcLCwqzXHDp0CFOnTsWePXvQqlUrTJ8+Hc8884zD/Tx79iwSEhJw5swZXHHFFU170UREZE9/RizKk11rbWVyGpD2PqBN8Fy/yOMqKytx8uRJT3fDq3To0AEqlcrT3SAKWK5kg4sXL6KgoKDBa9q3b48RI0bg66+/hkwmsx43mUwICgrCqFGjsGbNmib1vbl4NFT6CoZKIqIWYLNPZYQ4Qsl9KgMeQ6U9hkoiz2rObJCTk2OzTvP8+fMYNGgQ1q9fj169enltFvHaQj1ERBRglDqGSCIiCmiJiYk29y2zLzt06OC1gRLw4kI9RERERERE5P04UklETaIvN6FIb0Z5pRlhKjkitXJoNUGSxwFIXkvktWym5EYC6liOphIRUYtJTk6GL6xWZKgkIpddKKrBkrUF2JtltB7r202JhzN0WPpZofW4UiHDy1NisG5rid2104frYKwGgyZ5H/0ZYOsE4DSLBxERETWEoZKIXKIvN9kFSgBo3yYUr60rxP7jl48PG6DF2m9KbI4pFTIMuVGLxWttr01NUeDJ0dGI1fHbE3mQocg+UAJiddrMCcCQzzhiSURE9BeuqSQilxTpzXaBEgBS2ilsQmJ9x4YN0GLDjlK744f/rMKeI5XIzq1C1ikjzuRVQ19ukuyDvtyEnLzqRq8jclpFvn2gtMjOFM8TERERAI5UEpGLyivNkserqu3n/UsdS2mnwNotpTbHlAoZZo9rhQ07SvHquiLrcanRS6mptxzlJLcxljTtPBERUQDhSCURuUSjkv72ERoic+iYVNB0dPTy/IVqyam3e7OMWLK2gCOW1HSKiKadJyIiCiAMlUTkEp1WjtQUhd3xrFNG9OyksDt2XZ1jUkFTapqsZfRy574KjJufh6mL83E6v0Zy6i0gBssivfQoKpHD1HFiUR4pyWnieSIiIgLAUElELtJqgvDk6Gi7YPnn+SrMuC/K5vj6nXqMvj3C5phU+HR09FLqutrqm5pL5DClTqzyWjdYWqq/skgPERGRFRceEZHLYnXBmD2ulXXvSY1KDt1fW4JIHa99LEwtxx03avDaustbj9Q3ell37aXUdbXVNzWXyCnaBLHKq3WfyghxhJKBkoiIyAZDJRE1iVYTJLmvZEPHa6sdNMM14pTa2lNbpUYlLdNp606VBcRiPTotQyW5iVLHEElERNQIfvIiIo/SaoKQGB+ClHYKtI0NsZtSKzUquX6nHhm3hNut00xNUeCp0dGSYZa8lKEIKDwG5O4GCo+L94mIiMincKSSiLxK3Sm1UqOXBqOA+R9ewtSMSEwboUOlQbCZeqsvN12eZquSI/Kv4+Rl9GeArRNs94O0rFnUJniuX0REROQUhkoi8jp1p84+OTrabguRa9qH4oarVYipsycl96/0EYYi+0AJANmZQOYEcS0jp50SERH5BH7CIiKv11BBoNr05aYG96+cPa4VRyy9RUW+faC0yM4UzzNUEhER+QSGSiLyCfUV/qmtSG9udP9KhkovYSxp2nlPMRTVqgYbCahjGX6JiCjgMVQSkd9obH9K7l/pRRQRTTvvCVwDSkREJInVX4nIbzS2PyX3r/Qi6jgxkElJThPPe5PG1oCyai0REQUwfsIiIr+h08pttiOpjftXehmlThzhqxssLSN/3jal1JE1oERERAGK01+JyG9oNUGSlWK5f6WX0iaIVV6taxQjxBFKbwuUgO+uASUiImoBDJVE5FccrRRLXkKp884QWZcvrgElIiJqIQyVROR3HKkUS+QUyxrQbIkpsN64BpSIiKgFcYEREQUsfbkJOXnVyDplxJm8aujLTZ7uEnkrX1sDSkRE1II4UklEAelCUY3k2ssnR0cjVsdvjSTBl9aAEhERtSCOVBJRwNGXm+wCJQDszTJiydoCjlhS/ZQ6IKoz0LqX+CcDJREREUMlEQWeIr3ZLlBa7M0yokhvbuEeEREREfkuzvEiooBTXtlwaKx7Xl9uslaTDVPJEclqsk1jKKo1hTQSUMdyxI+IiMiHMVQSUcDRqBqepFH7PNdeupn+DLB1AnC6VhVVS7EbbYLn+kVEREQu4/RXIgo4Oq0cqSkKyXOpKQrotOK3RlfWXrKibAMMRfaBEhC36cicIJ4nIiIin8NfsxNRwNFqgvDk6GjJEcinRkdbp7Y6svay9jRYjmo2oiLfPlBaZGeK5zkNloiIyOfwUw4RBaRYXTBmj2tlXSupUcmhq7NW0pm1l42Nas4e14rrMI0lTTvvjbg+lIiIiKGSiAKXVhPUYNBzZu2ls6OaAUkR0bTz3obrQ4mIiABwTSURUb0cXXsJOF9RNiCp48TQJSU5TTzvK7g+lIiIyIqhkoioHpa1l3WDZd21l4Bzo5oBS6kTR/HqBkvL6J4vTRt1ZH0oERFRgOD0VyKiBjiy9hK4PKopNQW27qhmQNMmAEM+q7UOMUIcofSlQAn45/pQIiIiFzFUEhE1orG1l5ZrHKkoSxADpK+FyLr8bX0oERFREzBUEhG5iaOjmuQHLOtDsyWmwPra+lAiIqImYqgkInIjR0Y1yQ9Y1odmTrANlr64PpSIiKiJGCqJiIhc4S/rQ4mIiJqIoZKIiMhV/rA+lIiIqIlYjpCIiIiIiIhcxlBJRERERERELmOoJCIiIiIiIpcxVBIREREREZHLGCqJiIiIiIjIZaz+SkTkAfpyE4r0ZpRXmhGmkiNSK/fv/S0NRbW23ogE1LH+VzU1EF4jERGRBIZKIqIWdqGoBkvWFmBvltF6LDVFgSdHRyNW54fflvVngK0TgNOZl48lpwFp74t7PfqDQHiNRERE9eD0VyKiFqQvN9kFSgDYm2XEkrUF0JebPNSzZmIosg9bAJCdCWROEM/7ukB4jURERA1gqCQiakFFerNdoLTYm2VEkd7cwj1qZhX59mHLIjtTPO/rAuE1EhERNYChkoioBZVXNhwaGzvvc4wlTTvvCwLhNRIRETWAoZKIqAVpVA1/223svM9RRDTtvC8IhNdIRETUAD/79EJE5N10WjlSUxSS51JTFNBp/ezbsjpOLFgjJTlNPO/rAuE1EhERNcDPPr0QEXk3rSYIT46OtguWqSkKPDU62v+2FVHqxAqodUOXpTKqP2y5EQivkYiIqAF+WLueiMi7xeqCMXtcK+s+lRqVHDp/3qdSmwAM+azWHo4R4uidP4WtQHiNRETUYjZv3owXX3wRhw4dglKpxM0334yNGzd6ulv1YqgkIvIArSbIf0OkFKXO/wNWILxGIiJqdhs2bMDEiRPx8ssv45ZbbkFNTQ0OHz7s6W41iKGSiMiL6ctN1hHNMJUckf48oklERBTgampq8Oijj2Lx4sUYP3689XiXLl082KvGMVQSEXmpC0U1WLK2wGZfy9QUBZ4cHY1YHb99ExEReZJer0dpaan1vkKhgEIhXYzPUfv378e5c+cgl8vRo0cP5OXloXv37li8eDGuueaapna52bBQDxGRF9KXm+wCJQDszTJiydoC6MtNHuqZEwxFQOExIHc3UHhcvE9EROQnunTpgoiICOtt4cKFTW7zzz//BADMmzcPzz//PDZt2gSdTof+/fujsLCwye03F4ZKIiIvVKQ32wVKi71ZRhTpzS3cIyfpzwCbRgKrUoB1vYFVnYHNI8XjREREfuDo0aMoKSmx3mbNmlXvtTNnzoRMJmvwduzYMZjN4s/35557DhkZGejZsydWrVoFmUyGL774oqVemtM4f4qIyAuVVzYcGhs771GGImDrBOB0pu3x7Ewgc4JYJZUFbYiIyMdptVqEh4c7dO0TTzyBsWPHNnhN+/btkZubC8B2DaVCoUD79u2Rk5Pjcl+bG0MlEZEX0qgankjS2HmPqsi3D5QW2ZnieYZKIiIKIDExMYiJiWn0up49e0KhUOD48eO46aabAADV1dXIzs5GUlKS6x1YHuXkA2TA/fuBcMeek6GSiMgL6bRypKYoJKfApqYooNPah0qvqRRrLGnaeSIiogAVHh6OyZMnY+7cuUhISEBSUhIWL14MABg+fLjrDRuKgQFLxX2UGyMIwPaHAbPj9RsYKomIvJBWE4QnR0dLVn99anS0XVj0qkqxjf3AcuQHGhERUYBavHgxgoODcf/996OyshK9evXCjh07oNM1cZZP55GAOtaxa3dMd6ppmSAIggtdCihnz55FQkICzpw5gyuuuMLT3SGiAFJ79FGjkkMnMfqoLzdh/oeX6h3VnD2uVcuOWBqKxKI82RJTYJPTuKaSnFJZWYmTJ096uhtepUOHDlCpVJ7uBlHAYjawx5FKIiIvptUENRoIHakU26KhUqkD0t4Xi/LUDpbJaeJxBkorr5myTERE1AQMlUREPs4rK8VqE8QRyYp8cQ2lIgJQxzFQ1uJVU5aJiChwHFkDqFoB7YeI9797GvjtPSCqC3Dnpw4X56nNi8sHEhGRI9xRKVZfbkJOXjWyThlxJq8a+nLHF+fbMBQBhceA3N1AxQUxSLbuBUR19spA6bbX7WSb+nKTXaAExJHlJWsL3NIPIiIiSbtfBoL/mkJ/fhdwcDnQb5EYNHfOcKlJ/iqUiMjHuVIptja3jZjpz9jvT2mZ8qpNcLwdN3BkWmlzjBQ62qbXTVkmIqLAoT8DRHYU//7HRuCqDKDbJKDNjcC/+rvUpNePVOr1ejz22GNISkqCSqVC3759sWfPHut5QRAwZ84ctG7dGiqVCgMHDsSJEyds2igsLMSoUaMQHh6OyMhIjB8/HmVlZS39UoiImoWlUmxqisLmeH2VYmtz24iZocg+UALimsrMCeJ5J7k6inihqAbzP7yEsS/mYurifIx5MRfzP7yEC0U1Nm2743XX7uP5C9UOt+mVU5aJiCgwhIQBlQXi37MzgaTbxL8HK4GaSpeadOhXsT8dqnC64dTOSihCm55ZJ0yYgMOHD+Pjjz9GmzZtsHbtWgwcOBBHjx5F27ZtsWjRIixbtgxr1qxBu3btMHv2bAwaNAhHjx6FUqkEAIwaNQq5ubnYtm0bqqur8eCDD2LSpElYt25dk/tHROQNYnXBmD2uVaOVYuty24hZRb59oLTIzhTPOzH91dVRxMbCoqUSriuvu/bop1YtR3Aw8Nq6Qms7C6bEONymO6YsExERuSTpNvEXvrE9gKLfgXZ3iMcvHQHCk11q0qFQOefdS041KgPw0Qtt0KZV034oVlZWYsOGDfjqq6/Qr18/AMC8efPw9ddfY8WKFZg/fz6WLl2K559/Hunp6QCAjz76CHFxcdi4cSNGjhyJrKwsbNmyBXv27EFqaioA4M0338Qdd9yBJUuWoE2bNk3qIxGRt3CkUmxdbhsxM5Y07XwtjgZDKY6GRWdfd92QO3pwOI6eMmL/8cvPVVXd8A5dtdts6pRlIiIil926HPjpeXEa7N83AKpo8Xj+PqDzvS416fCikfWvtIVO69iHlSEzzrjUmbpqampgMpmsI44WKpUKP/74I06dOoW8vDwMHDjQei4iIgK9evXCrl27MHLkSOzatQuRkZHWQAkAAwcOhFwux+7du/GPf/zD7nmNRiOMxss/6PV6vVteDxGRt3HbiJkiomnna2nK6KmjYdGZ1y0VclPaKbB2S6nNY0JDZA63aZmyLDUa29iUZSIiIpf89iHQ4e+AuhVw61v25298weWmHQqVab00UDTyw7K2gTdooFE6fn19tFot+vTpg/nz5yMlJQVxcXH49NNPsWvXLnTs2BF5eXkAgLi4OJvHxcXFWc/l5eUhNjbW5nxwcDCioqKs19S1cOFCvPCC619UIiJf4cqImWQRHHWcWJQnW2IKbHKaWAXWQU0ZPXU0LDrzuqVCrtSoZNYpI67rpMD+40YoFTKMvdWMvh31CDWXQq6MgFajARBtvd7VKctEREQuyVoLbH8YiL0O6JgOdEgHoju7pWmHfgX9zAPRUCsdn4oz494oRIS554fixx9/DEEQ0LZtWygUCixbtgz33nsv5PLmmxo0a9YslJSUWG9Hjx5ttuciIvIkZ4v8SBXB+efHBbhQHoaqASshJKXZXC8kpcFw80qcLQlzuPhNU0ZPLWFRSu2w6MzrlgqxUqOS63fqkXFLOHpfo8SyiVXIqJiEKzZ3Rew3N6LVv6+BIvM+capRLVpNEBLjQ5DSToHE+BAGSiIiaj4jdgCTc4HuD4tTXdfdAHxwJfDtE8DZ7wHB9SJxTtdML9abEFnPNNg/z1WhfdtQlzsjpUOHDvjuu+9QXl6O0tJStG7dGvfccw/at2+P+Ph4AEB+fj5at25tfUx+fj66d+8OAIiPj8eFCxds2qypqUFhYaH18XUpFAooFJc/aJSWlkpeR0TkDxwdMZOaBhqplePhIYCs5HeUGPVQ9n0Tsl5VCEUZSqu12HE0DKsXyGAw5jq8XUdT1hs6M63U0dctFWJrj0paGIwC5n94CW9NC0G7Aw9DdqaeSrhDPvPKPTuJiCgAKHVAl9HizVQF5OwATv4H2DxKrPza/g5ximy724EQjcPNOh0qxy/IxVOjotG7q8rm+OfbSrFqUwm2vNE8e5FpNBpoNBoUFRVh69atWLRoEdq1a4f4+Hhs377dGiJLS0uxe/duTJkyBQDQp08fFBcXY9++fejZsycAYMeOHTCbzejVq1ez9JWIyNc4UuSn7jRQpUKGldNrELlrPIJyLgcoc2Iacnu+g4lvBsNgFACIU0UP/1mFPUcqcXUHBSoNQr37RzZ1vaEz00oded1SIXf9Tj1mj2sFGUqxr1awvKZ9KBLDiyBzYyVcIiKiZhEUCrQbLN4Gvg3k7RUD5v/mAwVZQJ/ZDjfldKgcfks45q68iMF9wvBwRiRKK8x4ZU0BTp2rxnMPRjfegJO2bt0KQRDQqVMn/PHHH3jqqafQuXNnPPjgg5DJZHjsscfw0ksv4corr7RuKdKmTRvcddddAICUlBQMHjwYEydOxDvvvIPq6mpMmzYNI0eOZOVXIiIn1J0GOvZWM6L+9xBkObYBSp6TiXhhMsbe+h7e+T9xmqhSIcPsca2wYUcpXl13ec/K+kYvm7re0JVKuA21VTfkGowCNv+kx5Ojo2Cshk0fg0uzG27QiUq4RERELSY+Vbzd+CJgqnbqoU6HypFp4eiZosTC1QWYsCAP+gozOieH4v3nWiMqwv1rQUpKSjBr1iycPXsWUVFRyMjIwIIFCxASEgIAePrpp1FeXo5JkyahuLgYN910E7Zs2WJTMfaTTz7BtGnTcOutt0IulyMjIwPLli1ze1+JiPxZ3WmgfTvqIdssPSIXdCYTfYfo8Q7CAQDDBmixYUepzXRRoOFtQtwZDJvKqZBrdF8lXCIiIrf79vF6TsiAYCUQeaU4BVYV5XCTTodKAGgbE4x2bULw/YEKAMCAnupmCZQAMGLECIwYMaLe8zKZDC+++CJefPHFeq+JiorCunXrmqN7REQBo+400FBzw+vNxfNiqJTagsOisW1CvIXDIdeNlXCJiIjc7sIBIH8/IJgAXSfxWNHvgDwIiOoMHHwb+O5xYOSPQHQXh5p0uoTq4ZNGTFiQi7MXqvH+c63x2L1RePNfRXjx/UvQV7heMYiIiLxb3YqpVfLwBq+vfV5qC47aGttGxKcodUDa+2KArMWVSrhERERu1yEdSBoIPHQeuH+feHvoLJB0G9D5XuChc0DbfsDOGQ436fRI5RNv5CPjlnCMGxqB4CAZklqHoPtVCixcXYDxL+XiXy+3dbZJIiLyEbWngapkKghJaZJFaYSkNJwsigQghkWpLThqa2wbEZ+jTRCrvFbkw1RZgiJjmEuVcImIiNxu72Jg2DZAUeuXw4oIoM88YEMacN2jQJ85wPq0epuoy+mfZoumxeLaq5Q2x9rGhGDZE3H4pJ6pTURE5D8uTwONAQa9L26TUWuqp5CUBvNt7+O64NZYPUdcgxiucX2bEJ+l1EFvCsf8Ty7Vet3iiG1Da0mJiIialbEEqLhgP7W18iJg/CvPKSIBc5XDTTodKusGSgu5XIb772DxASKigFJrRA7GEkARAZk6DkFKHbSATWBqyjYhvqruNiy1+cpaUiIi8jMd0oGt44CbXwXirxeP5e0BvnsS6HjXX/d/AXRXOdykS/Nu9h8zYP2OUpzOqwEAJMUHI+OWcPTsLB04iYjIjyl1Du272NRtQnxRY2tF/WotKRER+Ybb3gW+nQFsHgmYxTwHeTDQZQww4HXxflRnsT6Ag5wOlV99p8dbXxSh33VqZAzQAgCOnjJi1vILeHiYDnfdrHW2SSIiChDetE1IS2hsrajfrSUlIiLvFxoGpK0E+r8OlPwpHotoLx63iO3uVJNOh8pPtpbi4WE6/KP/5fB49wAtNn6nxydbShkqiYgCgaGo1pTXSEAd69BoZaCpuw1LbX67lpSIiHxDeR5QnitWeg1RAYIAyBourFcfp3+alVWacUMX+2muqSlKlBs4jYeIyO/pzwCbRgKrUoB1vYFVncUpNPoznu6Z16m7DYuFt64l1ZebkJNXjaxTRpzJq+bWJ0RE/qiyAPjiVuDDq4Av7xCDJQBsHQ98+4RLTTo9Utm3qwo//FqJkbeF2Bz/6ddK9LlG5VIniIjIRxiKgK0TgLrbiGRnilVgh3zGEcs6nF1Lqi83Wa8NU8kR2UzrTms/j1YtR3Aw8Nq6QrtCStz6hIjIz3w7A5CHAJNyxF8QW3S+B/j2cQCvOt2k0z8lklqH4JMtJfj1dwO6tBd/85p1yojDJ40YPjAcX+7UW6+9ewCnwhIR+ZWKfPtAaZGdKZ5nqLTj6FrSC0U1khVymxLspEJqZZVg8zyjB4fj6Ckj9h+3nabLrU+IiPxQdiaQsRXQXmF7PPJKoPS0S006/RPqm5/LoFXLcTqvGqfzqq3Hw9RyfPNzmfW+DAyVRER+x1jStPNUL325yS5QAk0LdlIh9Yn7dPjuQIXNsZR2CqyV2GtaqZChc5ICF4tNOHuhxhpKAdgFValjDKJERF6ouhwIUdsfNxQCQQr74w5wOlSum9/WpSciIiI/oGhkP+LGzlO96tvT0plgVzvE1RdSoyKC7Y5VVQuSzzt7XCts2FFqDZxKhQwvT4nBuq0l1jakjgHumTqrLzehsDQI5tBkqJUyBKEMlWUFMJtZw4GIyGVX/A04+hFw43zxvkwGCGZgzyIgYYBLTXKRBBEROU4dBySniVNn6kpOE8+TS6T2rHQ02AFA325KTB+ug7FabEsRKpMMqVIBMjTEvtrfsAFabNhRajMldtgALdZ+U9LoMUAcYV32eSFm3BuF8krB6VHN+qYCT8tIRFlxDoMlEZGr+i0SC/Xk7QXMVcD3TwOXjogjlff+5FKTDoXKt9cX4cGhEVApHCsWu3JjMe65TYtwTnshIvIvSp24GXLmBNtgmZwmHud6SpdJ7VnpaLBTKmQYcqMWi9cWWo/PndBK8nmkAmTWKSOu66SwaVNqSqyjx2r36Z9rCrD3WMOjmnUDcYRGjqWfF0pOBX5rAzAlPRrlpRclXx8RETWi1TXAuN+BA28BoVqgugy48m6g+1QgrLVLTToUKr/cqcd9g8KhcnCK7Vff6zHkpjCEa1zqExEReTNtgljl1bpPZYQ4QslA2SRSe1o6GuKkwqdUeASkA+T6nXrMHtcKMpRi31/HpUY0HT1WX58cDcQLpsRIjrICYrA0pUcDYKgkInKZIgLo/ZzbmnMoVAoAHph3HjIHN8M0GKV/wBARkZ9Q6hgi3cyyp2XtKZ+OhjipoCkVHgExQL48JQZy+eXRQoNRwOaf9HhydJTN9Nm6pIJqfeG1KYG4vqBqUWEUnN9om4gokF085Pi1Md2cbt6hUPn0/VFON6zT8ts9ERGRM+ruaelosJMKYZbRR8A2sF3TPhRtYxrfO1NfbrIbOZUKqvWF16YE4vqCqoVaIYNBeiCTiIikfNT9r4I8gvinhfDX9+Xaxx43Od28Q6FyUO8wpxsmIiIi59Xe09LRYCcVwgxGAfM/vIRhA7R4eJgOxirBLjw2tOWH1Mip1Cin1DHx8fa/XHY0ENcXVAGxWE8QyuyOExFRAyaeuvz3/APA908CqU8BbfqIx87vAva9CvxtkUvNs/orERGRl3I02GWdMqJnJ4V1PaSFwSjg2Gkjht+qdWnPyLojp5ZQ6sgxjUrmciCub5RVrP6qQVlxjtOvhYgooIUnXf7718OBAcuA9ndcPhbTTayZ8NNs4Mq7nG6eoZKIiMiLORLswtRy3HGjBq+tK7TbguOp0dEuBUqL2iOndY83dszVQGwZZZ2aEYlpw3UoLa+CWiFDsKwcZlMFQsOSUGEQuHclEZErLv0GRLSzPx7RDig86lKTDJVEREReztFg19g6yZbWlEB8TftQ3HC1CmHKapQVZqOqWo7QyES8tb4ce48VWK/j3pVERE6KSgF+WShuBRYUKh4zVYnHolJcapKhkoiIyE/UFz49qamBuLKyGgCgCov+K1By70oioiYZ+A6wcSjw7hWXK71ePCQW67nra5eadDpUFutNiNRK/8D681wV2rcNdakjREREFLgaC8QmhNmMUNbGvSuJiJzQ+gZgwp9A1idA4THxWKd7gJT7gBCNS006HSrHL8jFU6Oi0buryub459tKsWpTCba8keBSR4iIiPyWoQioyAeMJYAiElDHcp9PJ1UYuHclEZHbhGiAbpPc1pzToXL4LeGYu/IiBvcJw8MZkSitMOOVNQU4da4azz0Y7baOERER+QX9GWDrBOB05uVjyWniWhYtfxHrKLWSe1cSEbnsj/8A7W4HgkIcu/7P/wMSBgAhqsavBZz/pd7ItHC89VQ8fvvDiAkL8jBxQR5CgmV4/7nW+Ft3tbPNERGRrzAUidNkcncDhcfF+9QwQ5F9oASA7EwgcwK/hk4IQhlSUxR2x5UKGZ64TweZPAjm0GQow9tBEx4DuZzjlkREVv/5B2Asdvz6zSOB8lyHL3epUE/bmGC0axOC7w9UAAAG9FQjKsK7CgMQEZEbcbTNNRX59oHSIjtTPM9psA6pLCvAtIxEvLUB1iqxSoUML0+JwbotJXh1Xd39LFkRlojIShCALWOBIPtfzkmqMTjVvNOh8vBJI15efQlatRzvP9cah/804s1/FWH3YQNm3BcFrZq/GSQi8iuNjbYN+YzBqD7GkqadJyuz2Yyy4hxMSY+GKT0aFUYBOm0w3vxXCSvCEhE15uoxzl2fMgoIDXf4cqdD5RNv5CPjlnCMGxqB4CAZklqHoPtVCixcXYDxL+XiXy+3dbZJIiLyZhxtc50iomnnyYbZbP4rJF6EHIBR0c4uUFqwIiwRUS2DVzVr804PKy6aFotJd0UiOOjygvm2MSFY9kQcht4U5tbOERGRF+Bom+vUceI0YSnJaeJ5cpkjFWGJiKj5OR0qr71KKd2QXIb77+BvXImI/A5H21yn1InrTusGS8t6VI7wNokjFWGJiKj5uVSoh4iIAohltC1bYgosR9sap00Q151a96mMEL9mDJRNZqkIayncU1tqigJBKPNAr4iIAg+r6hARUcM42tZ0Sh0Q1Rlo3Uv8k18ztxArwmrsthoRq79qUFlW4KGeEREFFo5UEhFR4zjaRl5IqiKsWiFDEMq4nQgRkSuqK4AQtdMPY6gkIiLHKHUMkeR16laENUgXgyUiIosvbgUGfwRo6+zakfsL8M1oYNzvTjfp0vTXcxer8cF/ijH/w0so0psAALuPVOLU+SpXmiMiIgoshiKg8BiQuxsoPC7eJyIiaglBSuCjbsCxz8X7ghn4eR7w2U1AuztcatLpUPnr7wZMeCkPx7Kr8OPBClT+Va775NkqrNnMsvJEREQN0p8BNo0EVqUA63oDqzoDm0eKx8lt5HI5NOExUIa3gzk0GcrwdtCEx0AuZzkJIvJuv//+O9LT09GqVSuEh4fjpptuws6dO933BHdvBvq+CGwdB2y+D/j0JuC3lcA/NgEDlrrUpNPfWVd+VYxxf4/A4kdibfaq7NFJiaOnOFJJRERUL0MRsHUCcLpOJd3sTCBzAkcs3UQulyMsMhErNgKTXinAY0sLMemVAqz4CgiLTGSwJCKvduedd6KmpgY7duzAvn37cO211+LOO+9EXl6e+56kx1TgukeAY58B+XuBO7+of19lBzj9XfXP89W46Vr7xZs6bRBKykwud4SIiMjvVeTbB0qL7EzxPDWZKiwab60vx95jtgss92YZ8daGcqjCoj3UMyKihl26dAknTpzAzJkz0a1bN1x55ZV45ZVXUFFRgcOHD7vnSQxFwH8ygF9XALe9C3QaAWxIAw6+7XKTTofKMJUcBSX24fHEmSq0imTdHyIionoZG1km0th5cogJYXaB0mJvlhEmhLVwj4iIHBMdHY1OnTrho48+Qnl5OWpqavDuu+8iNjYWPXv2dM+TrLkGKM8H7j8AdJsI3LEWSPsA+Gk28OUQl5p0OlQO6KnGyo3FKCwxQSYDBLOAwyeNeOfLYqT10rjUCSIiooCgiGjaeXJIhUFo+Lyx4fNERI7Q6/UoLS213ozGppeflslk+O9//4sDBw5Aq9VCqVTitddew5YtW6DTuakCe7fJwMjvgYh2l491vgd44FfA5NpyRqdD5YT0SCTEB+Oe586h0ijgwfm5eOy1fFzdPhSjbw93qRNEREQBQR1X/5qV5DTxPDWZWilr+Lyi4fNERI7o0qULIiIirLeFCxfWe+3MmTMhk8kavB07dgyCIGDq1KmIjY3FDz/8gF9++QV33XUXhg4ditzcXPd0vM9sQCYRA7VXAMO3udSkTBAEl35dd6GwBn+er4bBaEbHhFBcERviUgd8wdmzZ5GQkIAzZ87giiuu8HR3iIjIl+nPiEV5smutrUxOA9LeB7QJnuuXl6qsrMTJkyedeowmPAYrvhKnutaVmqLAlHT8tbelb+rQoQNUKpWnu0EUsCzZ4OjRo2jb9vJejwqFAgqFQvIxFy9eREFBQYPttm/fHj/88APS0tJQVFSE8PDLA3ZXXnklxo8fj5kzZ7rnRbiZ04sgfz1hQGJ8CGKjghEbdfnhNSYBR/404torlW7tIBERkV/RJgBDPhOL8hhLxCmv6jhA6aZpTYTKsgJMy0jEWxtsg2VqigLTMjQoK87xYO+IyF9otVqb4NeQmJgYxMTENHpdRUUFANhVqZbL5TCbzc53soU4HSofX3oBOq0cLz4Ugy7tLifx0nIznlh6Af9dnujWDhIRkZsYimoFmUhAHcsg4ylKHb/2zchsNqOsOAdT0qNhSo9GhVGAWiFDEMpQVpzj1R/MiCiw9enTBzqdDmPGjMGcOXOgUqmwcuVKnDp1CkOGuFZEpyW4VK51QKoGT75xAY/co8PgPpcrqHHZOxGRl9Kfsd8fkVMuyY+Zzea/prhehByAoen1M4iIml2rVq2wZcsWPPfcc7jllltQXV2Nq6++Gl999RWuvfZaT3evXk6HShmA+waFo2sHBV75qAB/nqvGlIxI6zkiIvIyhiL7QAmIa/oyJ4hTMTlqRkRE5BVSU1OxdevW5n+iiotA4XHx71GdAHXj03Pr43SotIxG9uuhRutWwZj9zkWczqvG1OH8QEJE5JUq8u0DpUV2pnieoZKIiCgwVJcD26cDWR8DZpN4TB4EdHkAuOVNIETtdJNObylS25UJoXj76XiUVZjx5BsXmtIUERE1F2NJ084TERGR//j2ceDsd8Bd/wGmFYu39K/EY9894VKTTofKtF4aKEIuT3SNigjC6zPicF0nJWKjglzqBBERNSNFRNPOExERkf/4fQMw6AOg3e2AIly8tb8DuG0l8Pt6l5p0evrrMw9E2x0LDZFh5hj740RE5AXUcWJRnmyJKbDJaeJ5IiIiCgw1FdI/+9WxQHWFS026PP3VUGVGTl41Tp6tsrkREZGXUerEKq/JabbHLdVfuZ6SiIgocLTpA/w8F6gxXD5WXQnsekE85wKnRyqL9SYs+rgAvxwxSJ7nPpVERBI8vUekNkGs8mrtQ4T4W0oGSiIiosDSfynw5WDg3SuA2L+2KbnwKxCsBDJcqzrrdKhcvr4IZZUClj8dhxlLL+DFSa1QVGrG2i0lmHI3P5wQEdnxlj0ilTqGSCIiokAX0xUYdwLI+gQoPCYe63QvkDIKCFG51KTTofLAcQPmT45BpyQF5DIgLioYqSkhUKtkWJdZit5dXesIEZFf4h6RRERE5C1M1cCqzsA/NgHdJrqtWafXVBqqBOi0YpXXMLUcJWVmAED7NqE4kcM1lURENhzZI5KIiIioJQSFACbpZYxN4XSoTIgNwZn8agBAh7ah+PoHPS4W1+DrH/SIiuCWIkRENty1R6ShSJyikrsbKDwu3iciIiJyVvepwJ5/AuYatzXp9PTXuwdoUVBiAgCMGRKBZ966gO17ziM4WIZn7o9yW8eIiPyCO/aI9JY1mUREROT78vYAOdvFGVOtugIhGtvz6V863aTTofK2Xpef9KrEUHz6Uhvk5NUgLioIEWEcqSQistHUPSK5JpOIiIjcSREJXJnh1iadDpV1KUPluCox1B19ISLyP5Y9IjMn2AZLR/eIdGRNJkMlkUPkcjlUYdEwIQwVBgFqpQxBKENlWQHMZrOnu0dE1DIGr3J7k06HyrfXS6/jkcmA0GAZ2sQG48ZuKoRrOGpJRASgaXtEumtNJlGAk8vlCItMxFvry7H3WIH1eGqKAtMyElFWnMNgSUSB4ae5QNdxQHiS25p0OlT+caYKJ85UwSQACbHiw89eqIFcDiTGheCr76vxzoZivPFEHJJbh7ito0REHmMoqhUIIwF1rPOjg67uEemONZlEBFVY9F+B0mhzfG+WEW9tAKakR6O89KKHekdE1IJOfgXsXgAk3AxcM16cChusaFKTTofKvteqoNXI8fT90dCoxOKxZZVmLFlbgK4dFBhyUxgWfFiAt9cXYdH02CZ1jojI4zxdJKepazKJCABgQpjNCGVte7OMMKVHA2CoJKIA8MBBIP8AcGQVsPNRYPtUoPNI4JpxQPz1LjXp9JYin2/T48GhkdZACQBhKjnGDInAZ9v0UIbKcf8dEfide1YSka9rrEhOS2zrYVmTmZxme9zRNZlEBACoMAgNnzc2fJ6IyK/E9QBuWQY8dB4Y9AGgPwt8eiOwphuw/w2nl9c4PVJZbjCjWG8C6kxtLSkzo8IgrkUIU8tRY+I3ZyLycd5SJKcpazKJCACgVsoaPq+QwWBs8BIiIj8kAKZqwFQl/l2pAw68Bfw0G7htJdD5HodacTpU3thNhcUfF2Byhg6dk8Sqr8dOV+GdL4tx47Uq8X62EVfEcj0lEfk4byqS4+qaTCICAAShDKkpCuzNsk+OqSkKBKHMA70i8nLuqClA3il/H3B4FXDsUyBIAXR5ALh1OaDrKJ7f/yaw85HmC5WP3xuF5RuK8NKHl2AyiceCgoC0Xho8PEz8R5YYF4InR0U52zQRkXdhkRwiv1FZVoBpGYl4awNsgqVY/VWDsuIcD/aOyAt5uqYANZ81XYHCY0BSGpD2AdBhKCCvs3NH53vF9ZYOcjpUqpRyPDkqGlMzdDh/qQYA0KZVMFTKy2ssOyZw30oi8gMskkPkN8xmM8qKczAlPRqm9GhUGAWoFeI+ldxOhKiOxmoKDPmMI5a+7KoRYlEebdv6r1G3Ap5w/Pui06HSQqWUo8MVDI9E5McsRXIyJ9gGSxbJIfJJZrP5r21DLkIOcA0lUX28paYANY8+s93epMuhsiWYTCbMmzcPa9euRV5eHtq0aYOxY8fi+eefh0wmLrgXBAFz587FypUrUVxcjBtvvBErVqzAlVdeaW2nsLAQ06dPx9dffw25XI6MjAy88cYbCAsL89RLIyJfwSI5REQUaLyppgC537eP13NCBgQrgciOQId0QOX4ckavDpX//Oc/sWLFCqxZswZXX3019u7diwcffBARERF45JFHAACLFi3CsmXLsGbNGrRr1w6zZ8/GoEGDcPToUSiVSgDAqFGjkJubi23btqG6uhoPPvggJk2ahHXr1nny5RGRr2CRHCIiCiSsKeDfLhwA8vcDggnQdRKPFf0urquM6gwcfBv47glg5I9AdBeHmvTqUPnzzz8jPT0dQ4YMAQAkJyfj008/xS+//AJAHKVcunQpnn/+eaSnpwMAPvroI8TFxWHjxo0YOXIksrKysGXLFuzZswepqakAgDfffBN33HEHlixZgjZt2njmxREREVmwwiIReRPWFPBvHdIBZRQwaBWgCBePGUvE5T5tbwK6TgQ23wfsnAEM2+pQk/LGL/Gcvn37Yvv27fj9998BAL/++it+/PFH3H777QCAU6dOIS8vDwMHDrQ+JiIiAr169cKuXbsAALt27UJkZKQ1UALAwIEDIZfLsXv3bsnnNRqNKC0ttd70en1zvUQiIgp0+jPAppHAqhRgXW9gVWdg80jxOBGRJ1hqCiSn2R5nTQH/sHcxcOP8y4ESEEef+8wD9iwCQtRAnznitiMO8uqRypkzZ6K0tBSdO3dGUFAQTCYTFixYgFGjRgEA8vLyAABxcba/LYmLi7Oey8vLQ2xsrM354OBgREVFWa+pa+HChXjhhRfc/XKIiIhsscIiEXkr1hTwX8YSoOKC/dTWyouAsVT8uyISMFc53KRXj1T+61//wieffIJ169Zh//79WLNmDZYsWYI1a9Y06/POmjULJSUl1tvRo0eb9fmIiChAOVJhkYjIU5Q6cY1d617inwyU/qFDOrB1HHDi34D+rHg78W9g63ig413iNXm/ALqrHG7Sq0cqn3rqKcycORMjR44EAHTt2hWnT5/GwoULMWbMGMTHxwMA8vPz0bp1a+vj8vPz0b17dwBAfHw8Lly4YNNuTU0NCgsLrY+vS6FQQKFQWO+Xlpa682URERGJWGGR/B3XCxN5n9veBb6dIS61MNeIx+TBQJcxwIDXxftRncWpzg7y6lBZUVEBudx2MDUoKMi6QXG7du0QHx+P7du3W0NkaWkpdu/ejSlTpgAA+vTpg+LiYuzbtw89e/YEAOzYsQNmsxm9evVquRdDRERUFysskj/Tn7Gf3m1Zk6dN8Fy/iAJdaBiQthLo/zpQ8qd4LKK9eNwitrtTTXp1qBw6dCgWLFiAxMREXH311Thw4ABee+01jBs3DgAgk8nw2GOP4aWXXsKVV15p3VKkTZs2uOuuuwAAKSkpGDx4MCZOnIh33nkH1dXVmDZtGkaOHMnKr0RE5FmssEj+ypvXC3P0lEgUGgbEdHNLU14dKt98803Mnj0bDz/8MC5cuIA2bdrgoYcewpw5c6zXPP300ygvL8ekSZNQXFyMm266CVu2bLHuUQkAn3zyCaZNm4Zbb70VcrkcGRkZWLZsmSdeEhER0WWWCouZE2yDJSsskq9zZL2wJ/59c/SUqFnIBEEQPN0Jb3f27FkkJCTgzJkzuOKKKzzdHSIi8jc2IyessFhbZWUlTp486elueJUOHTpApVJ5uhsNy90tbpFTn/v+JxZ/aUmGInH7Hqmwm5zGasvkMGYDe149UklE5Bac6kTeTqnjv0kPkcvlUIVFw4QwVBgEqJUyBKEMlWUF1hoO5AJvXC/sraOnFvxZRT6MoZKI/BunOhFRPeRyOcIiE/HW+nLsPVZgPZ6aosC0jESUFecwWLrKG9cLe3O1Zf6sIh/n1ftUEhE1SWOFIgxFnukXEXkFVVj0X4HSaHN8b5YRb20ohyos2kM98wOW9cLJabbHPble2BtHTwH+rCK/wJFKIvJf3j7ViYg8yoQwmxHK2vZmGWFKjwZwsWU75U+0CeI6RW9ZL+yNo6cAf1aRX2CoJCL/5c1TnYjqw3VVLabC0HCtwgqjwCldTeVN64W9tdoyf1aRH2CoJCL/5a1TnYjqw3VVLUqtlDV8XiGDwdjgJeRrvG30FODPKvIL/AUcEXk3QxFQeEwsT1943Lm1JZapTlK4sTx5G66ranFBKENqikLyXGqKAkEoa+EeUYtQ6oCozuKWJlGdPT+Syp9V5AcYKonIe+nPiHuKrUoR9ztb1RnYPFI87ghvLBRBVB9H1lWRW1WWFWBahsYuWIrVXzWoLJNeb0nkVvxZRX6A01+JyDs1Nmrj6CbV3jjViUgK11W1OLPZjLLiHExJj4YpPRoVRgFqhbhPJbcToRbFn1Xk4xgqicg7ubManjcViiCqD9dVeYTZbEZ56UUAFyEHuIaSPIc/q8iHcforEXknjtpQoOG6KiIi8lEMlUTknThqQ4GG66qIiMhHcforEXknb92kmqg5cV0VERH5IIZKIvJO3rpJNVFz47oqIiLyMQyVRNS8DEW1Rl0iAXWs4x+YOWpDRERE5PUYKomo+ejP2G8LYhlp1CY41gZHbYiIiIi8Ggv1EFHzaGyfSUORZ/pFRERERG7FkUoiql9Tpq66c59JIiIiIvJaDJVEJK2pU1e5zyQR+Si5XA5VWDRMCEOFQYBaKUMQylBZVgCz2ezp7hEReR1OfyUie+6Yusp9JonIB8nlcoRFJmLFRmDSKwV4bGkhJr1SgBVfAWGRiZDL+dGJiJrXggUL0LdvX6jVakRGRkpek5OTgyFDhkCtViM2NhZPPfUUampqWrajtfA7IxHZc2TqamMs+0xK4T6TROSlVGHReGt9OfYeM9oc35tlxFsbyqEKi/ZQz4goUFRVVWH48OGYMmWK5HmTyYQhQ4agqqoKP//8M9asWYPVq1djzpw5LdzTyxgqicieO6auWvaZrBssuc8kEXkxE8LsAqXF3iwjTAhr4R4RUaB54YUXMGPGDHTt2lXyfGZmJo4ePYq1a9eie/fuuP322zF//nwsX74cVVVVLdxbEddUEpE9d01d5T6TRORjKgxCw+eNAn8jT0QAAL1ej9LSUut9hUIBhULR7M+7a9cudO3aFXFxl2d9DRo0CFOmTMGRI0fQo0ePZu9DXfy+SET23Dl1VakDojoDrXuJfzJQEpEXUytlDZ9XNHyeiAJHly5dEBERYb0tXLiwRZ43Ly/PJlACsN7Py8trkT7UxVBJRPY4dZWIAlQQypCaIj3SkJqiQBDKWrhHROStjh49ipKSEutt1qxZ9V47c+ZMyGSyBm/Hjh1rwd67F6e/EpE0Tl0logBUWVaAaRmJeGuDuIbSIjVFgWkZGpQV53iwd0TkTbRaLcLDwx269oknnsDYsWMbvKZ9+/YOtRUfH49ffvnF5lh+fr71nCcwVBJR/ZQ6hkgiCihmsxllxTmYkh4NU3o0KowC1Apxn8qy4hzuU0lELomJiUFMTIxb2urTpw8WLFiACxcuIDY2FgCwbds2hIeHo0uXLm55DmcxVBIRERHVYjabUV56EcBFyAEYpIvBEhE1i5ycHBQWFiInJwcmkwkHDx4EAHTs2BFhYWFIS0tDly5dcP/992PRokXIy8vD888/j6lTp7ZIoSApDJVEREREREReYs6cOVizZo31vqWa686dO9G/f38EBQVh06ZNmDJlCvr06QONRoMxY8bgxRdf9FSXGSqJ/JqhqNaayEhAHcvprERERERebPXq1Vi9enWD1yQlJeH//u//WqZDDmCoJPJX+jPA1gnA6czLxyzVW7UJnusXEREREfkVbilC5I8MRfaBEgCyM4HMCeJ5IiIiIiI3YKgk8kcV+faB0iI7UzxPREREROQGnP5K5I+MJU07T0Teg2ujiYjIyzFUEvkjRUTTzhORd+DaaCIi8gGc/krkj9Rx4gdPKclp4nki8m5cG01ERD6CoZLIHyl14khG3WBpGeHg1Dki78e10URE5CM4/ZXIX2kTgCGf1VqLFSGOUDJQEvkGro0mIiIfwVBJ5K3cUZxDqWOIJPJVXBtNREQ+gqGSyBuxOAcRWdZGZ0tMgeXaaCIi8iJcU0nUXAxFQOExIHc3UHjc8aIaLM5BRADXRhMRkc/gSCVRc2jKSKMjxTn4YZIoMHBtNBER+QCGSiJ3a2ykcchnDX8gZHEOIqqNa6OJiMjLcforkbs1dRsAFucgIiIiIh/CUEnkbk0dabQU55DC4hxERERE5GUYKoncrakjjSzOQUTkdeRyOTThMVCGt4M5NBnK8HbQhMdALudHKSIirqkkcjd3bAPA4hxERF5DLpcjLDIRb60vx95jBdbjqSkKTMtIRFlxDsxmswd7SETkWfz1GpG7uWukUakDojoDrXuJfzJQEhF5hCos+q9AabQ5vjfLiLc2lEMVFu2hnhEReQeOVBI1B440EhH5DRPCbEYoa9ubZYQpPRrAxZbtFBGRF2GoJGou3AaAiMgvVBiEhs8bBU79IqKAxlBJZGEoqjWyGAmoYxkKiYgIaqWs4fMKGQzGBi8hIvJrDJVEAKA/A2ydYLu/pGUNpDbBc/0iIiKPC0IZUlMU2JtlnxxTUxQIQpkHekVE5D04W4PIUGQfKAGxemvmBPE8EREFrMqyAkzL0CA1RWFzXKz+qkFlmfR6SyKiQMGRSqKKfPtAaZGdKZ7nNFgiooBlNptRVpyDKenRMKVHo8IoQK2QIQhl3E6EiAgMlUTiGsqmnCciaklc/+0RZrMZ5aUXAVyEHOAaSiKiWhgqiRQRTTtPRNRSuP6biIi8ENdUEqnjxA9lUpLTxPNERJ7G9d9E5MP05Sbk5FUj65QRZ/KqoS83ebpL5EYcqSTf5a4pYEqd+Fv+zAnihzMLy2//Oa2MiLwB138TkY+6UFSDJWsLbCoo9+2mxPThOhirgfJKM8JUckRqxfGuIr3Z5phWE+SprpODGCrJN7l7Cpg2ARjyWa2QGiGOUPIDGhF5C67/JiIfpC832QVKpUKGITdqsXhtIfYfN1qPvTwlBuu2ljgUPhk0vQtDJfmexqaADfnM9RFLhkgi8lZc/01EPqhIb7bb43XYAC027Ci1BkrLsbXflNgckwqfgLidz5OjoxGrY5TxFlxTSb7HkSlgRET+huu/icgHlVfab7mT0k5hExLrOyYVPgFgb5YRS9YWcF2mF2GopJZjKAIKjwG5u4HC464XleAUMCIKRJb133WDJdd/e5RcLocmPAbK8HYwhyZDGd4OmvAYyOX8iEUEABqV/f+FqmrBoWNSQdNib5YRRXruEestOGZMLcOdayA5BYyIAhXXf3sVuVyOsMhEvLW+HHuPFViPp6YoMC0jEWXFOTCb+aGX/Je+3NRoUR2dVo7UFIXNFNjQEJldW1LHpIJmbVKjoOQZDJXU/Ny9BtIyBSxbYgosp4ARkb/j+m+voQqL/itQ2k/Ne2sDMCU9GuWlFz3UO6Lm5UxF1ydHR9tcm3XKiJ6dFNhXaxQy65QR13WyHZmUCpq1SY2CkmcwVFLzc3cZfG4BQkREXsCEMJsRytr2ZhlhSo8GwFBJ/sfRiq6AOHL/1OhozB7X6vKoplqOO27U4LV1hdY21u/U4+UpMZDLSxoMn7Xb1WkZKr0FQyU1v+ZYA8kpYERE5GEVhoan5lUYBRavIL9Re6qrIlTmUEVXQPwFy+K1BZg9rhUS40NsztUOmhqVHDqtvNHwCVwOqtxWxHswVFLza641kJwCRkREHqRWNjw1T62QwSBdY4TIp9Sd6jp3Qiu7a1LaKbB2S6nk4y1FdeqGQK0mSDIY1j0mFT4ZKL0Lf4FGzY9l8ImIyA8FoQypKQrJc6kpCgShrIV7ROR+UlNdW7qojlYThMT4EKS0UyAxPoSB0gsxVFLzYxl8IiLyQ5VlBZiWobELlmL1Vw0qy6TXWxL5kiK92W6qq6WoTm0sqhPYvP7dTU5Ohkwms7tNnToVAGAwGDB16lRER0cjLCwMGRkZyM/Pt2kjJycHQ4YMgVqtRmxsLJ566inU1NR44uUELssayAezgPv+J/455DPntxMhIiLyEmazGWXFOZiSDrw3MxpLZ0ThvZnRmJIObidCfkNqhHH9Tj0ybgm3CZaWojpSWFTH/3n9mso9e/bAZDJZ7x8+fBi33XYbhg8fDgCYMWMGNm/ejC+++AIRERGYNm0a7r77bvz0008AAJPJhCFDhiA+Ph4///wzcnNz8cADDyAkJAQvv/yyR15TwOIaSCIi8jNms/mvbUMuQg5wDSX5hbpFeeoyGAXM//AShg3Q4uFhOhirBBbVCXAyQRAangDtZR577DFs2rQJJ06cQGlpKWJiYrBu3ToMGzYMAHDs2DGkpKRg165d6N27N7755hvceeedOH/+POLixLV777zzDp555hlcvHgRoaGhjT7n2bNnkZCQgDNnzuCKK65o1tfnVQxFtaqrRgLqWIZCIiJqUZWVlTh58qSnu+FVOnToAJVK5elukAfUDnuWPSCbGtZqt6lVyxEcDJtgOHpwOLJOGevd1mP2uFY2fajdnr8W1QnYbNAArx+prK2qqgpr167F448/DplMhn379qG6uhoDBw60XtO5c2ckJiZaQ+WuXbvQtWtXa6AEgEGDBmHKlCk4cuQIevToYfc8RqMRRuPl/zh6vb55X5g30p8Btk6w3V/SsgaSU1aJiIiIWlTdCqwA0LebEtOH62CshktBs26boweH4+gpo822IOt36jF7XCsApTbBsr4RyPoqupJ/86lQuXHjRhQXF2Ps2LEAgLy8PISGhiIyMtLmuri4OOTl5VmvqR0oLect56QsXLgQL7zwgns770sMRfaBEgCyM4HMCeJaSI5YEhERSZLL5VCFRcOEMFQYBKiVMgShDJVlBVxnGUDcOaooVYFVqZBhyI1aLF5baBMCU1MUeHJ0NGJ1DX/Ml2pTaluQ2lNdp/w11dVfRyDJdT4VKj/44APcfvvtaNOmTbM+z6xZs/D4449b7587dw5dunRp1uf0KhX59oHSIjtTPM9QSUREZEculyMsMhFvrS/H3mOXq7+KFWETWcAnQLh7VFGqAuuwAVps2FFqEygBcU/IJWsL7KalOtJmfduCGIwC1m4pRZ+uKqS0ky7GQ4HNZ0Ll6dOn8d///hdffvml9Vh8fDyqqqpQXFxsM1qZn5+P+Ph46zW//PKLTVuW6rCWa+pSKBRQKC7/hyktld7I1W8ZS5p2noiIKECpwqL/CpT2H/Tf2gBMSY/+q7AP+avmGFWUqsAqNaposTfLiCK9ucFQKdUmtwUhV/nMv4xVq1YhNjYWQ4YMsR7r2bMnQkJCsH37duux48ePIycnB3369AEA9OnTB7/99hsuXLhgvWbbtm0IDw8PrNFHZygimnaeiIgoQJkQZhcoLfZmGWFCWAv3iFqaK6OK+nIT6tKXm5CTV42sU0bJCqz1jSpaSIXG2qQCotT+kxbcFoQa4hMjlWazGatWrcKYMWMQHHy5yxERERg/fjwef/xxREVFITw8HNOnT0efPn3Qu3dvAEBaWhq6dOmC+++/H4sWLUJeXh6ef/55TJ061WY0kmpRx4lFebIlpsAmp4nniYiIyE6FoeEP+hVGwXd+o08ucXZU8fCfVSgtNzdagbVnJ4VNoZz6RhWVChmGDdBCESpD1imjdZotAJs1nhqVDKkpCpsAbCnKI3OwKA+RhU+Eyv/+97/IycnBuHHj7M69/vrrkMvlyMjIgNFoxKBBg/D2229bzwcFBWHTpk2YMmUK+vTpA41GgzFjxuDFF19syZfgW5Q6scpr5gTbYGmp/sr1lERE3oFbP3kdtbLh6YNqhYx7WfqhxvZ1rG9UUamQYfa4Vnjjs0LrCLejFVizThntgqalvQ07Sq0hVqmQ4eUpMVi3tcRujedjI6Ow9LPL4dVgFLD5Jz2eHB1lXfvJojzkCJ/bp9ITAnYvGpsPKxHiCCU/rBAReYcA2frJ1/ap1ITHYMVXsJv+CIijPVPS0eQ1ldyn0rNc2ddxwZQYPLfC/n2XCpD1XWsZgezfUw1jlYAwtRwhEs9dtz2pYxZ9uykx494olFcKDJBOCNhs0ACfGKkkD1HqGCKJiLwRt37yWpVlBZiWkYi3NtgGS7H6qwZlxTke7B01lav7OkqNKgLS02KdrcA6e1wrm1HSuu01NPX250MGTLpLQGJ8iGNfAKJ6MFQSERH5Gm795LXMZjPKinMwJT0apvRoVBgFqBXiPpXcTsT31B6VjNDIsfTzQpf2dQxTy3HHjRqbUUWRfYB0tgKrVhNkHVnMOmU/GtnUgj7U8hYsWIDNmzfj4MGDCA0NRXFxsc35X3/9Fa+88gp+/PFHXLp0CcnJyZg8eTIeffRRz3QYDJVERES+h1s/eTWz2fzXFNeLkANcQ+mj6o5KLpgS0+R9HWuPKmpUcpglVqFZKrBKTVdtrAKrVEVXbhPie6qqqjB8+HD06dMHH3zwgd35ffv2ITY2FmvXrkVCQgJ+/vlnTJo0CUFBQZg2bZoHesxQSURE5Hu49RNRs5Laa1IqQDZlVNHyPO6swKrTyu3aa0pIJc944YUXAACrV6+WPF+3eGn79u2xa9cufPnllwyVRERE5CBu/URkp/ZUVcs2Gq4WnJHaa1IqQDY1sGk1QXhydLRNgG1KBVap9tbv1OPlKTGQy0vs1vlym5Cm0ev1KC29PP1ZoVB4bMvCkpISREVFeeS5AYZKIiIi38Otn4hs1J2qCoih6cnR0YjV2X7cdSR8Sq0zlAqQ7tjXMVYXbDcttikVWOtrz53PQaIuXbrY3J87dy7mzZvX4v34+eef8fnnn2Pz5s0t/twWDJVERES+SJsgVnnl1k8U4KSmqgJi9d0lawswe1wra3hyNHxKrTOsXdXVEizdta9j3WmxTVVfewyR7nX06FG0bdvWer+hUcqZM2fin//8Z4PtZWVloXPnzk714fDhw0hPT8fcuXORlpbm1GPdiaGSiIjIV3HrJwpQtUcbFaEyyX1BlQoZOicpcLHYhLMXaiSrtwLS4VNqbaKlquvUjEhMG6FDpUHgiF+A02q1CA8Pd+jaJ554AmPHjm3wmvbt2zv1/EePHsWtt96KSZMm4fnnn3fqse7GUElEROQvDEW1Ri4jAXUsQyf5nbqjjXMntLK7RqmQYfa4Vtiwo9S65YdU9VaLvVlGFOnN1nAotTYRAK5pH4obrlYhRseP0OScmJgYxMTEuK29I0eO4JZbbsGYMWOwYMECt7XrKv6PICIi8gf6M8DWCbb7V1rWWGoTPNcvIjeSmuoqVUBn2AAtNuwotVn/6Ox+je5e60jkqJycHBQWFiInJwcmkwkHDx4EAHTs2BFhYWE4fPgwbrnlFgwaNAiPP/448vLyAABBQUFuDa7OYKgkIiLydYYi+0AJiEV8MieIay85Ykk+qrGprlIFdFLaKawjlBau7Nfo7rWORI6YM2cO1qxZY73fo0cPAMDOnTvRv39/rF+/HhcvXsTatWuxdu1a63VJSUnIzs5u6e4CALgxDRERka+ryLcPlBbZmeJ5Ih90oagG8z+8hLEv5mLq4nycya+xu2b9Tj0ybgnHdZ0uF0mRGpW0hE8p3K+RvMnq1ashCILdrX///gCAefPmSZ73VKAEOFJJRETk+4wlTTtP5IUcnepqKaAzbIAWDw/TwVglQBFqf51U9VaA+zUSuQNDJRERka9TRDTtPDU7uVwOVVg0TAhDhUGAWilDEMpQWVYAs9l+T8RAVHf/SJMgODTVFRCD5bHTRgy/VQutJgj6chOrtxK1IIZKIiIiX6eOE4vyZEtMgU1OE883F1acbZRcLkdYZCLeWl+OvccKrMdTUxSYlpGIsuKcgAuWtQOkVi1HcDDw2jrb7T4WTLGv6uroaCOrtxK1LP6PIiIi8nVKnVjlNXOCGCxDNMB1jwGJtwBBSqDiwuXr3IkVZx2iCov+K1Da74/41gZgSno0yksveqh3La/uliCjB4fj6Cmj3egj4NhU1/pGG1m9lajlMFQSERH5A22CWOXVEiB3PALsrrV3mbvDHivOOsyEMJsRytr2ZhlhSo8G4B+hsu4U1si/it9YjkVo5Fj6ue2IpFSlVsDxqa4NYfVWopbBUElEROQvLCFu08jmD3uOVJxlqAQAVBga3h+xwij4RTn+uiOQSoUML0+JwbqtJdZjC6bE2K2TrG//SMtUV7m81OYxLKxD5H0YKomIiPxJS4U9Vpx1mFrZ8P6IaoUMhrozP31A7VFJqRHIYQO0WPtNic1Io1SArG//SMtU15Wz4mEyg1NYibwYQyUREZE/aamwx4qzDgtCmV0lUovUFAWCUOaBXjVN3VFJqRFIqWmtUgGyvmmugFhYJ1zDEEnk7fxhtgURERFZtFTYs1ScldLcFWd9TGVZAaZlaJCaorA5LlZ/1aCyTHq9pbeS2j9SagRS6pglQNa2fqceGbeEo2cn+68Pp7kS+QaOVBIREfmTltpepG7F2drPkfY+11PWYjabUVacgynp0TClR6PCKECtEPep9MXtRIr0ZrtRSakRSKljUluCGIwCNv+kx5Ojo2Cs5jRXIl/EUElERORPWjLsWSvOWvapjBBDKwOlHbPZ/Ne2IRchB3xyDaVFeaV9CJaawip1zLJOcmpGJKaN0KHSUP+WIETkOxgqiYiI/E1zhj1DUa12IwF1LBDVuentks/QqOxXT0mNQK7fqcfLU2Igl5fYjGxe0z4UN1ytQoyOH0OJ/AX/NxMREfkjpc79I4b6M/Z7U7p7/0vySnUrvdYtPNTQCOTsca2sj+WoJJF/YqgkIiKixhmK7AMl4P79L8nr1Lf/JOD4CCRDJJF/Y6gkIiKixrXU/pfkUbVHJMNUcqhVMrtKrwajgGdXXMTUjEg8PIzrIomIoZKIiIgc0VL7X1KLqR0gtWo5goOB19YV2gTIJY/GSu6vaTAKeHVdEVbPaY2UdqEt2W0i8kIMlURERNS4ltr/klpE3SmtoweH4+gpo02lVgDQlze83YlUJVgiCjz25buIiIiI6rLsfynFnftfBhC5XA5NeAyU4e1gDk2GMrwdNOExkMub9+OZvtxkN6U1pZ3CLlAC0ntN1iZVCZaIAg9HKomIiKhxLbn/ZQCQy+UIi0zEW+vLsfdYgfV4aooC0zISUVacA7PZfaOAtae6KkJldlNaq6oFycdJ7TVZu686LUMlETFUEhERkaOac//LAKMKi/4rUNqGtb1ZRry1AZiSHo3y0osutd3YWsm5E1rZPaa+EUnL/pNyealNEE1NUeCp0dEszENEABgqiYiIyBnNsf9lADIhzGaEsra9WUaY0qMBOB8qHVkrKRUg6xuRNBgFbP5Jj2ceiEZ5pcC9JolIEkMlERFRIDAU1RphjATUsQyHHlRhkJ5uaj1vFJwufFHfWsm1W0ptrpMKkJYRSRlKse+47Yjko/dEIToiGNGsxURE9WCoJCIi8nf6M8DWCbb7TFrWQmoT7K9nAG12amXDBXDUChkM9ssYG1SkNzu0VtISIIFSa7C0jEg+OToKxmpwRJKInMJQSURE5M8MRfaBEhCL7WROENdI1g6MzgZQckkQypCaopDcAzI1RYEglDndptT2HlJTXQ1GAfM/vIRhA7R4eJgOxiqBAZKImoQlu4iIiPxZRb59oAzRAL2eA7pPBwqOAIXHxfApFUBDNEDc9UDRCeD8rsvXUpNUlhVgWoYGqSkKm+Ni9VcNKsuk11s2RGp7D8tU17oMRgHHThsRExmElHYKJMaHMFASkcs4UklEROTPjCW290M0wJBPgf1vALsXXD6enAbc/Kp9oKzvWo5cNonZbEZZcQ6mpEfDlB6NCqMAtUKGIJQ5tZ1I7UqvERq53ehnQ2slWb2ViNyFoZKIiMifKepUV7nuMTEk5mwX74doxGOtewOVlxq+1qK+qbPkFLPZ/Ne2IRchB2AwivtXqsKiYUIYKgwC1EoZgmXlAIAaQYMKg4ALxUGIMptQWSXYFOZRKmR4eUoMgBLrMa6VJKKWwFBJRETkz9Rx4shi9l8jkK17Xx51rDsSedfXto+tfW1d2Zni1FqGSreRy+UIi0z8a/9KcfqrJSiu21JiswXJE/fp8N2BCptRSYNRwLMrLmJqRiQeHqZDpYFrJYmoZXBNJRERkT9T6sSpqslp4n2T4fK5uiORuf8DEm+9fL72tVLqTq2lJlGFRf8VKC8HxWEDtFj7TYnNMQCIigiWLPJjMAp4dV0R5DIZ10oSUYthqCQiIvJ32gRxquqDWUBkx8vHW/e2ndq6fylw3aOXg2WQsuF2606tpSYxIcwuPKa0s91P0kJqq5DapCrBEhE1F4ZKIiKiQKDUAVGdgfAk6VFLAKguBzbfK4bNu74Wr01Kk24vOU2cWktuU2GwD4r1hUeprUJqk6oES0TUXPgdh4iIKJDUng4rNRJZXS6uo9w4FAgKBQbVmjprYan+yvWUbqVW2gfF+sJjfVuFAGJlV52WH/GIqOWwUA8REVGgsUyHNRSKI5F197EE/hqJjBWD45DPxKI8xhJxyqs6joGyGQShzG5LEEt4rDsFdv1OPV6eEgO5vMTmem4VQkSewFBJREQUiJQ68TbofXF7kOxawbLuSKTlWmpWlWUFmJaRiLc2wBoU6wuP17QPRduYYMwe18q6TyUrvRKRpzBUEhERBTLLqCVHIj3ObDajrDgHU9KjYUqPRoVRgFohQ7CsFA/fJUPNX8ciwkIRFR5kDY8MkUTkaQyVREREgY4jkV7DbDajvPQigIuQAzDUKfwqBxB7RQeoVKEe6B0RkTSu4iYiIiIiIiKXMVQSERERERGRyxgqiYiIiIiIyGUMlUREREREROQyhkoiIiIiIiJyGUMlERERERERuYyhkoiIiIiIiFzGUElEREREREQuY6gkIiIiIiIilzFUEhERERERkcsYKomIiIiIiMhlwZ7ugC8wm80AgNzcXA/3hIiIKLAYDAbk5+d7uhteRalUQqlUerobRAHLkgksGYEYKh1i+WF2ww03eLgnRERERETkDfLz85GYmOjpbngFmSAIgqc74e1qampw4MABxMXFQS7njGF30Ov16NKlC44ePQqtVuvp7lAdfH+8F98b78b3x3vxvfFufH+8F98be2azGfn5+ejRoweCgzlGBzBUkoeUlpYiIiICJSUlCA8P93R3qA6+P96L74134/vjvfjeeDe+P96L7w05gsNuRERERERE5DKGSiIiIiIiInIZQyV5hEKhwNy5c6FQKDzdFZLA98d78b3xbnx/vBffG+/G98d78b0hR3BNJREREREREbmMI5VERERERETkMoZKIiIiIiIichlDJREREREREbmMoZKIiIiIiIhcxlBJLeaVV16BTCbDY489Zj128uRJ/OMf/0BMTAzCw8MxYsQI5Ofne66TAWTevHmQyWQ2t86dO1vPGwwGTJ06FdHR0QgLC0NGRgbfmxbS2Hvz3nvvoX///ggPD4dMJkNxcbHnOhuAGnp/CgsLMX36dHTq1AkqlQqJiYl45JFHUFJS4uFeB47G/v889NBD6NChA1QqFWJiYpCeno5jx455sMeBo7H3xkIQBNx+++2QyWTYuHFjy3c0QDX2/vTv39/u/OTJkz3YY/ImwZ7uAAWGPXv24N1330W3bt2sx8rLy5GWloZrr70WO3bsAADMnj0bQ4cOxf/+9z/I5fydR3O7+uqr8d///td6Pzj48reEGTNmYPPmzfjiiy8QERGBadOm4e6778ZPP/3kia4GnIbem4qKCgwePBiDBw/GrFmzPNG9gFff+3P+/HmcP38eS5YsQZcuXXD69GlMnjwZ58+fx/r16z3V3YDT0P+fnj17YtSoUUhMTERhYSHmzZuHtLQ0nDp1CkFBQZ7obkBp6L2xWLp0KWQyWUt2i/7S2PszceJEvPjii9b7arW6xfpG3o2hkppdWVkZRo0ahZUrV+Kll16yHv/pp5+QnZ2NAwcOIDw8HACwZs0a6HQ67NixAwMHDvRUlwNGcHAw4uPj7Y6XlJTggw8+wLp163DLLbcAAFatWoWUlBT873//Q+/evVu6qwGnvvcGgHW0/9tvv225DpGN+t6fa665Bhs2bLDe79ChAxYsWIDRo0ejpqZG8gM0uV9D/38mTZpk/XtycjJeeuklXHvttcjOzkaHDh1aqosBq6H3BgAOHjyIV199FXv37kXr1q1bsGcENP7+qNXqBs9T4OJQEDW7qVOnYsiQIXYh0Wg0QiaT2Wymq1QqIZfL8eOPP7Z0NwPSiRMn0KZNG7Rv3x6jRo1CTk4OAGDfvn2orq62ec86d+6MxMRE7Nq1y1PdDSj1vTfkHZx5f0pKShAeHs5A2YIcfX/Ky8uxatUqtGvXDgkJCS3cy8DU0HtTUVGB++67D8uXL2dw8ZDG/u988sknaNWqFa655hrMmjULFRUVHuopeRuGSmpWn332Gfbv34+FCxfanevduzc0Gg2eeeYZVFRUoLy8HE8++SRMJhNyc3M90NvA0qtXL6xevRpbtmzBihUrcOrUKfztb3+DXq9HXl4eQkNDERkZafOYuLg45OXleabDAaSh94Y8z5n359KlS5g/f77N6Bg1L0fen7fffhthYWEICwvDN998g23btiE0NNSDvQ4Mjb03M2bMQN++fZGenu7hngamxt6f++67D2vXrsXOnTsxa9YsfPzxxxg9erSHe01eQyBqJjk5OUJsbKzw66+/Wo/dfPPNwqOPPmq9v3XrVqF9+/aCTCYTgoKChNGjRwvXXXedMHnyZA/0OLAVFRUJ4eHhwvvvvy988sknQmhoqN01119/vfD00097oHeBrfZ7U9vOnTsFAEJRUZFnOkaCINT//pSUlAg33HCDMHjwYKGqqspDvSOp96e4uFj4/fffhe+++04YOnSocN111wmVlZUe7GVgqv3efPXVV0LHjh0FvV5vPQ9A+Pe//+25Dga4+r63WWzfvl0AIPzxxx8t3DPyRhyppGazb98+XLhwAddddx2Cg4MRHByM7777DsuWLUNwcDBMJhPS0tJw8uRJXLhwAZcuXcLHH3+Mc+fOoX379p7ufsCJjIzEVVddhT/++APx8fGoqqqyqyqan5/PKUkeUPu9Ie8j9f7o9XoMHjwYWq0W//73vxESEuLBHgY2qfcnIiICV155Jfr164f169fj2LFj+Pe//+3BXgam2u/Njh07cPLkSURGRlo/MwBARkYG+vfv79mOBqjGfvb06tULAPiziQBw+is1o1tvvRW//fYbDh48aL2lpqZi1KhROHjwoE2VvVatWiEyMhI7duzAhQsX8Pe//92DPQ9MZWVlOHnyJFq3bo2ePXsiJCQE27dvt54/fvw4cnJy0KdPHw/2MjDVfm/I+9R9f0pLS5GWlobQ0FD85z//gVKp9HAPA1tj/38EQYAgCDAajS3cM6r93sycOROHDh2y+cwAAK+//jpWrVrl2Y4GqMb+71jeI/5sIoDVX6kZabVaXHPNNTbHNBoNoqOjrcctFUVjYmKwa9cuPProo5gxYwY6derkiS4HlCeffBJDhw5FUlISzp8/j7lz5yIoKAj33nsvIiIiMH78eDz++OOIiopCeHg4pk+fjj59+rDyawto6L0BgLy8POTl5Vl/O/zbb79Bq9UiMTERUVFRnux6QGjo/bEEyoqKCqxduxalpaUoLS0FAMTExHDLihbQ0Pvz559/4vPPP0daWhpiYmJw9uxZvPLKK1CpVLjjjjs83XW/19B7ExMTIzkTJjExEe3atfNAbwNPQ+/PyZMnsW7dOtxxxx2Ijo7GoUOHMGPGDPTr189muzgKXAyV5FHHjx/HrFmzUFhYiOTkZDz33HOYMWOGp7sVEM6ePYt7770XBQUFiImJwU033YT//e9/iImJASD+dlgulyMjIwNGoxGDBg3C22+/7eFeB4bG3pt33nkHL7zwgvX6fv36ARB/STN27FhPdDmgNPT+fPvtt9i9ezcAoGPHjjaPO3XqFJKTkz3Q48DS0PtTXV2NH374AUuXLkVRURHi4uLQr18//Pzzz4iNjfV01/1eY9/byLMaen8MBgP++9//YunSpSgvL0dCQgIyMjLw/PPPe7rb5CVkgiAInu4EERERERER+SauqSQiIiIiIiKXMVQSERERERGRyxgqiYiIiIiIyGUMlUREREREROQyhkoiIiIiIiJyGUMlERERERERuYyhkoiIiIiIiFzGUElERC3u22+/hUwmQ3Fxsae74tVWr14NmUwGmUyGxx57zG3tJicnW9vle0CB6Pvvv8fQoUPRpk0byGQybNy40ek2tm7dit69e0Or1SImJgYZGRnIzs52uU9ffvkl0tLSEB0dDZlMhoMHDzb6mP79+1v/L9e+DRkyBABQXV2NZ555Bl27doVGo0GbNm3wwAMP4Pz58zbt1P6eYLm98sorNtccOnQIf/vb36BUKpGQkIBFixbZ9T81NRWRkZHQaDTo3r07Pv74Y+t5R/qSnZ2N8ePHo127dlCpVOjQoQPmzp2Lqqoq6zXffvst0tPT0bp1a+vzfPLJJw5/nS0WLFiAvn37Qq1WIzIyUvKaPXv24NZbb0VkZCR0Oh0GDRqEX3/91ennCgQMlURE1Kz69+9vF4j69u2L3NxcREREeKZT8J1gGx4ejtzcXMyfP99tbe7ZswcbNmxwW3tEvqa8vBzXXnstli9f7tLjT506hfT0dNxyyy04ePAgtm7dikuXLuHuu++u9zHz5s3D2LFjG+zTTTfdhH/+858O9+PLL79Ebm6u9Xb48GEEBQVh+PDhAICKigrs378fs2fPxv79+/Hll1/i+PHj+Pvf/27X1osvvmjT1vTp063nSktLkZaWhqSkJOzbtw+LFy/GvHnz8N5771mviYqKwnPPPYddu3bh0KFDePDBB/Hggw9i69atDvfl2LFjMJvNePfdd3HkyBG8/vrreOedd/Dss89ar/n555/RrVs3bNiwwfo8DzzwADZt2uTw1w0AqqqqMHz4cEyZMkXyfFlZGQYPHozExETs3r0bP/74I7RaLQYNGoTq6mqnnisgCERERM3o5ptvFh599FFPd8POzp07BQBCUVGRp7tSr1WrVgkRERHN0rYvvH6ilgBA+Pe//21zzGAwCE888YTQpk0bQa1WCzfccIOwc+dO6/kvvvhCCA4OFkwmk/XYf/7zH0EmkwlVVVWSzzN37lxhzJgxjfbn1KlTAgDhwIEDTr+W119/XdBqtUJZWVm91/zyyy8CAOH06dPWY0lJScLrr79e72PefvttQafTCUaj0XrsmWeeETp16tRgf3r06CE8//zzTvWlrkWLFgnt2rVr8HnuuOMO4cEHH7Q5tnLlSqFz586CQqEQOnXqJCxfvlzysfV9n92zZ48AQMjJybEeO3TokABAOHHiRIP9CUQcqSQiomYzduxYfPfdd3jjjTesU6qys7PtRglXr16NyMhIbNq0CZ06dYJarcawYcNQUVGBNWvWIDk5GTqdDo888ghMJpO1faPRiCeffBJt27aFRqNBr1698O2331rPnz59GkOHDoVOp4NGo8HVV1+N//u//0N2djYGDBgAANDpdJDJZNYRhC1btuCmm25CZGQkoqOjceedd+LkyZPWNrOzsyGTyfCvf/0Lf/vb36BSqXD99dfj999/x549e5CamoqwsDDcfvvtuHjxos3X4q677sILL7yAmJgYhIeHY/LkyTbTuhyVnJyMl19+GePGjYNWq0ViYqLNiEFVVRWmTZuG1q1bQ6lUIikpCQsXLnT6eYgC1bRp07Br1y589tlnOHToEIYPH47BgwfjxIkTAICePXtCLpdj1apVMJlMKCkpwccff4yBAwciJCTEY/3+4IMPMHLkSGg0mnqvKSkpgUwms5vy+corryA6Oho9evTA4sWLUVNTYz23a9cu9OvXD6GhodZjgwYNwvHjx1FUVGT3HIIgYPv27Th+/Dj69evndF/qXhMVFVXvealrPvnkE8yZMwcLFixAVlYWXn75ZcyePRtr1qxpsJ3aOnXqhOjoaHzwwQeoqqpCZWUlPvjgA6SkpCA5OdnhdgKGp1MtERH5r+LiYqFPnz7CxIkThdzcXCE3N1eoqamxGyVbtWqVEBISItx2223C/v37he+++06Ijo4W0tLShBEjRghHjhwRvv76ayE0NFT47LPPrO1PmDBB6Nu3r/D9998Lf/zxh7B48WJBoVAIv//+uyAIgjBkyBDhtttuEw4dOiScPHlS+Prrr4XvvvtOqKmpETZs2CAAEI4fPy7k5uYKxcXFgiAIwvr164UNGzYIJ06cEA4cOCAMHTpU6Nq1q3VEwjKK0LlzZ2HLli3C0aNHhd69ews9e/YU+vfvL/z444/C/v37hY4dOwqTJ0+29nXMmDFCWFiYcM899wiHDx8WNm3aJMTExAjPPvtsvV+/+n6DnpSUJERFRQnLly8XTpw4ISxcuFCQy+XCsWPHBEEQhMWLFwsJCQnC999/L2RnZws//PCDsG7dOps2OFJJJEKdkcrTp08LQUFBwrlz52yuu/XWW4VZs2ZZ73/77bdCbGysEBQUJAAQ+vTp0+D/p+Yeqdy9e7cAQNi9e3e911RWVgrXXXedcN9999kcf/XVV4WdO3cKv/76q7BixQohMjJSmDFjhvX8bbfdJkyaNMnmMUeOHBEACEePHrUeKy4uFjQajRAcHCwoFArhgw8+cLovtZ04cUIIDw8X3nvvvXqv+fzzz4XQ0FDh8OHD1mMdOnSw+543f/58oU+fPnaPb2hGyG+//SZ06NBBkMvlglwuFzp16iRkZ2fX25dAxlBJRETNSmr6q1SoBCD88ccf1mseeughQa1WC3q93nps0KBBwkMPPSQIgmMf/Lp27SrMmzdPsl+OhqqLFy8KAITffvtNEITLH/jef/996zWffvqpAEDYvn279djChQttpoaNGTNGiIqKEsrLy63HVqxYIYSFhdlMoautoVA5evRo632z2SzExsYKK1asEARBEKZPny7ccsstgtlsrvd1MVQSieqGyk2bNgkABI1GY3MLDg4WRowYIQiCIOTm5gpXXnml8NRTT1l/EXbzzTcLt956q/X/3ffff2/z+JCQECE4ONjm2Nq1a+3642qonDRpktC1a9d6z1dVVQlDhw4VevToIZSUlDTY1gcffCAEBwcLBoNBEATHQ6XJZLL+Qm7JkiVCRESEzbRhZ/py9uxZoUOHDsL48ePr7eeOHTsEtVotrFmzxnqsrKxMACCoVCqbr7VCoRBiY2Pt2qjv+2xFRYVwww03CA888IDwyy+/CLt27RIyMjKEq6++WqioqKi3T4EquEWHRYmIiOqhVqvRoUMH6/24uDgkJycjLCzM5tiFCxcAAL/99htMJhOuuuoqm3aMRiOio6MBAI888gimTJmCzMxMDBw4EBkZGejWrVuD/Thx4gTmzJmD3bt349KlSzCbzQCAnJwcXHPNNdbrarcTFxcHAOjatatkXy2uvfZaqNVq6/0+ffqgrKwMZ86cQVJSUoP9qqv288tkMsTHx1ufb+zYsbjtttvQqVMnDB48GHfeeSfS0tKcap8oUJWVlSEoKAj79u1DUFCQzTnL96Ply5cjIiLCpgLq2rVrkZCQgN27d6N3795ITU21qeC6bNkynDt3zqYQj+V7R1OVl5fjs88+w4svvih5vrq6GiNGjMDp06exY8cOhIeHN9her169UFNTg+zsbHTq1Anx8fHIz8+3ucZyPz4+3npMLpejY8eOAIDu3bsjKysLCxcuRP/+/Z3qy/nz5zFgwAD07dvXZmp/bd999x2GDh2K119/HQ888ID1eFlZGQBg5cqV6NWrl81j6r6fDVm3bh2ys7Oxa9cuyOVy6zGdToevvvoKI0eOdLitQMBQSUREXqHuOiSZTCZ5zBLyHPngN2HCBAwaNAibN29GZmYmFi5ciFdffdWmqmFdQ4cORVJSElauXIk2bdrAbDbjmmuusVv7WLtvMplM8pilr82hoa/Nddddh1OnTuGbb77Bf//7X4wYMQIDBw7E+vXrm60/RP6iR48eMJlMuHDhAv72t79JXlNRUWENGhaW70OW/4cqlcoasACxOmppaanNMXf54osvYDQaMXr0aLtzlhB34sQJ7Ny50/pLt4YcPHgQcrkcsbGxAMRfgD333HOorq62fu/Ztm0bOnXqBJ1OV287ZrMZRqPRqb6cO3cOAwYMQM+ePbFq1Sq7rzMgVu++88478c9//hOTJk2yORcXF4c2bdrgzz//xKhRoxp9rfWxvMeW7+8ArPeb83u7r2KoJCKiZhUaGmpTXMddHPngBwAJCQmYPHkyJk+ejFmzZmHlypWYPn26teBE7b4VFBTg+PHjWLlypbXNH3/80W19/vXXX1FZWQmVSgUA+N///oewsDAkJCS47TkswsPDcc899+Cee+7BsGHDMHjwYBQWFjZa8IIoEJSVleGPP/6w3j916hQOHjyIqKgoXHXVVRg1ahQeeOABvPrqq+jRowcuXryI7du3o1u3bhgyZAiGDBmC119/HS+++CLuvfde6PV6PPvss0hKSkKPHj1c6lNhYSFycnKs+zYeP34cgDgSaBkNfOCBB9C2bVu7wlsffPAB7rrrLruQVl1djWHDhmH//v3YtGkTTCYT8vLyAIghNzQ0FLt27cLu3bsxYMAAaLVa7Nq1CzNmzMDo0aOtgfG+++7DCy+8gPHjx+OZZ57B4cOH8cYbb+D111+3PtfChQuRmpqKDh06wGg04v/+7//w8ccfY8WKFQ735dy5c+jfvz+SkpKwZMkSm2Jnlq/Bzp07ceedd+LRRx9FRkaGtY3Q0FDr97cXXngBjzzyCCIiIjB48GAYjUbs3bsXRUVFePzxxwGIs08sX3OTyWQdVe7YsSPCwsJw22234amnnsLUqVMxffp0mM1mvPLKKwgODrYWeqNaPD3/loiI/NvEiROF66+/Xjh16pRw8eJFwWQySa6prLumZe7cucK1115rc2zMmDFCenq69f6oUaOE5ORkYcOGDcKff/4p7N69W3j55ZeFTZs2CYIgCI8++qiwZcsW4c8//xT27dsn9OrVy7om6uzZs4JMJhNWr14tXLhwQdDr9YLJZBKio6OF0aNHCydOnBC2b98uXH/99TZrrqTWO0mtT6z7miyFeu69917hyJEjwubNm4W4uDhh5syZ9X7tGlpTWbf8/7XXXivMnTtXEASx6Ma6deuErKws4fjx48L48eOF+Ph4m7WbXFNJgczy77/uzVJIp6qqSpgzZ46QnJwshISECK1btxb+8Y9/CIcOHbK28emnnwo9evQQNBqNEBMTI/z9738XsrKy6n3Oxgr1WNaW171Z/l8LgrhGvW4bx44dEwAImZmZdm1avl9J3SxrHS3fGyMiIgSlUimkpKQIL7/8snU9pcWvv/4q3HTTTYJCoRDatm0rvPLKKzbnn3vuOaFjx46CUqkUdDqd0KdPH5vCao70pb6vQe3IMmbMGMnzN998s01/PvnkE6F79+5CaGiooNPphH79+glffvllo+3UXgOamZkp3HjjjUJERISg0+mEW265Rdi1a1d9b2FAY6gkIqJmdfz4caF3796CSqUSAAinTp1yW6hs7IPftGnThA4dOggKhUKIiYkR7r//fuHSpUvWx7/44otCfHy8IJPJrB/Utm3bJqSkpAgKhULo1q2b8O2337otVKanpwtz5swRoqOjhbCwMGHixIl2H9xqczVUvvfee0L37t0FjUYjhIeHC7feequwf/9+m+sZKomIyF1kgiAI7h79JCIiIltjx45FcXExNm7c6PBjVq9ejccee8y6n6c7ffvttxgwYACKiooa3COOiIioMfYrX4mIiMhrlJSUICwsDM8884zb2rz66qtx++23u609IiIKbCzUQ0RE5KUyMjJw0003AYBbRxP/7//+D9XV1QDQ6NYCREREjeH0VyIiIiIiInIZp78SERERERGRyxgqiYiIiIiIyGUMlUREREREROQyhkoiIiIiIiJyGUMlERERERERuYyhkoiIiIiIiFzGUElEREREREQuY6gkIiIiIiIilzFUEhERERERkcv+HzudIOxnlYGYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "gaze_color = \"royalblue\"\n", + "gyro_color = \"darkorange\"\n", + "\n", + "imu = recording.imu\n", + "saccades = recording.saccades\n", + "\n", + "# Create a figure\n", + "fig, ax = plt.subplots(figsize=(10, 5))\n", + "ax2 = ax.twinx()\n", + "ax.yaxis.label.set_color(gaze_color)\n", + "ax2.yaxis.label.set_color(gyro_color)\n", + "\n", + "# Visualize the 2nd saccade\n", + "saccade = saccades.data.iloc[1]\n", + "ax.axvspan(\n", + " saccade[\"start timestamp [ns]\"], saccade[\"end timestamp [ns]\"], color=\"lightgray\"\n", + ")\n", + "ax.text(\n", + " (saccade[\"start timestamp [ns]\"] + saccade[\"end timestamp [ns]\"]) / 2,\n", + " 1050,\n", + " \"Saccade\",\n", + " horizontalalignment=\"center\",\n", + ")\n", + "\n", + "# Visualize gaze x and pupil diameter left\n", + "sns.scatterplot(\n", + " ax=ax,\n", + " data=gaze.data.head(100),\n", + " x=\"timestamp [ns]\",\n", + " y=\"gaze x [px]\",\n", + " color=gaze_color,\n", + ")\n", + "sns.scatterplot(\n", + " ax=ax2,\n", + " data=imu.data.head(60),\n", + " x=\"timestamp [ns]\",\n", + " y=\"gyro x [deg/s]\",\n", + " color=gyro_color,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's apparent that at the beginning of the recording, there are some missing data points in both the `gaze` and `imu` streams. This is presumably due to the time it takes for the sensors to start up and stabilize. We will show how to handle missing data using resampling in the next tutorial. For now, it's important to be aware of these gaps and that it will require great caution to assume the data is continuously and equally sampled.\n", + "\n", + "PyNeon also calculates the effective (as opposed to the nominal) sampling frequency of each stream by dividing the number of samples by the duration of the recording." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gaze: nominal sampling frequency = 200, effective sampling frequency = 197.8078038925275\n", + "IMU: nominal sampling frequency = 110, effective sampling frequency = 115.35532450871617\n" + ] + } + ], + "source": [ + "print(\n", + " f\"Gaze: nominal sampling frequency = {gaze.sampling_freq_nominal}, \"\n", + " f\"effective sampling frequency = {gaze.sampling_freq_effective}\"\n", + ")\n", + "print(\n", + " f\"IMU: nominal sampling frequency = {recording.imu.sampling_freq_nominal}, \"\n", + " f\"effective sampling frequency = {recording.imu.sampling_freq_effective}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualizing gaze heatmap\n", + "Finally, we will show how to plot a heatmap of the gaze/fixation data." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Scene camera y [px]')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAISCAYAAADcEEl4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADs5klEQVR4nOzdeXwb933n/9eAJI4ZkBiRBEhRF0kdlORLsnXwcNKmcXO4m2vTpm7djZv4kTRN3DRNu02y+4t7bI6Nu5tH6x7Jpk2bdLftto/caVJ33biJE4nUZcunSF2kbhLgAYCYwUES8/sDJAQMSIAQwUPS55mHHjGIwcwXJz/84j2fr2JZloUQQgghhBCiKMdqD0AIIYQQQoibgRTOQgghhBBCLIIUzkIIIYQQQiyCFM5CCCGEEEIsghTOQgghhBBCLIIUzkIIIYQQQiyCFM5CCCGEEEIsghTOQgghhBBCLIIUzkIIIYQQQiyCFM5CCCGEEEIswqoWzs8++yxvectbaGlpQVEUvvWtb2Wvm5qa4mMf+xh33XUXmqbR0tLCu9/9bq5evZq3j/HxcR5++GHq6urQdZ1HH32UWCyWt82LL77Ia17zGtxuN5s2beKJJ55YibsnhBBCCCFuIataOBuGwT333MOf//mfF1xnmibPPfccn/zkJ3nuuef4xje+wcDAAG9961vztnv44Yd55ZVXePrpp/nnf/5nnn32Wd7//vdnr49Go7zhDW9gy5YtnDhxgj/6oz/i93//9/nSl7607PdPCCGEEELcOhTLsqzVHgSAoih885vf5O1vf/uC2xw7dowDBw5w4cIFNm/ezKlTp9i9ezfHjh1j3759ADz11FM8+OCDXL58mZaWFr7whS/wX//rf2V4eBin0wnAxz/+cb71rW/R39+/EndNCCGEEELcAqpXewDliEQiKIqCrusA9Pb2out6tmgGeOCBB3A4HBw5coR3vOMd9Pb28trXvjZbNAO88Y1v5HOf+xwTExOsW7eu4DjJZJJkMpm9nE6nGR8fp6GhAUVRlu8OCiGEEEKIRbEsi8nJSVpaWnA4ViZEcdMUzolEgo997GP80i/9EnV1dQAMDw8TCATytquurqa+vp7h4eHsNm1tbXnbNDU1Za+br3D+7Gc/yx/8wR8sx90QQgghhBAVdOnSJTZu3Lgix7opCuepqSne9a53YVkWX/jCF5b9eJ/4xCf46Ec/mr0ciUTYvHkzoMz+E0IIIYQQq8sCLGpra1fsiGu+cJ4rmi9cuMAzzzyTnW0GaG5uJhgM5m0/PT3N+Pg4zc3N2W1GRkbytpm7PLeNncvlwuVyzXONFM5CCCGEEGuHtaIx2jXdx3muaD5z5gz/9m//RkNDQ971XV1dhMNhTpw4kf3ZM888Qzqd5uDBg9ltnn32WaamprLbPP3003R0dMwb0xBCCCGEEGI+q1o4x2IxTp48ycmTJwEYHBzk5MmTXLx4kampKX7+53+e48eP83d/93fMzMwwPDzM8PAwqVQKgF27dvGmN72J973vfRw9epRDhw7x2GOP8dBDD9HS0gLAL//yL+N0Onn00Ud55ZVX+Md//Ef+5E/+JC+KIYQQQgghRCmr2o7uhz/8Ia973esKfv7II4/w+7//+wUn9c3593//d376p38ayCyA8thjj/Hd734Xh8PBO9/5Tp588km8Xm92+xdffJEPfehDHDt2jMbGRn7jN36Dj33sY4seZzQaxefzkfk7Q6IaQgghhBCrzwLSRCKRvCjvclozfZzXMimchRBCCCHWmpUvnNd0xlkIIYQQQoi1QgpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFkEKZyGEEEIIIRZBCmchhBBCCCEWQQpnIYQQQgghFqF6tQcghBDiZqEs4bZWxUYhhBCrRWachRBCCCGEWAQpnIUQQgghhFgEKZyFEEIIIYRYBMk4CyGEWMBSMs3l7ksy0EKItU9mnIUQQgghhFgEKZyFEEIIIYRYBCmchRBCCCGEWATJOAshhJhVyUzzUo9dTua50uOWvLUQYn4y4yyEEEIIIcQiSOEshBBCCCHEIkjhLIQQQgghxCJIxlkIIW5bS8kGl5p3SS9h33Dz5q2FELcymXEWQgghhBBiEaRwFkIIIYQQYhGkcBZCCCGEEGIRVrVwfvbZZ3nLW95CS0sLiqLwrW99K+96y7J4/PHHWb9+PR6PhwceeIAzZ87kbTM+Ps7DDz9MXV0duq7z6KOPEovF8rZ58cUXec1rXoPb7WbTpk088cQTy33XhBBiDVBK/CvFUeRfube9mZXzmFXyWJX+J4RYqlX9NDMMg3vuuYc///M/n/f6J554gieffJIvfvGLHDlyBE3TeOMb30gikchu8/DDD/PKK6/w9NNP88///M88++yzvP/9789eH41GecMb3sCWLVs4ceIEf/RHf8Tv//7v86UvfWnZ758QQgghhLh1KJZlrYnThRVF4Zvf/CZvf/vbgcxsc0tLC7/927/N7/zO7wAQiURoamriK1/5Cg899BCnTp1i9+7dHDt2jH379gHw1FNP8eCDD3L58mVaWlr4whe+wH/9r/+V4eFhnE4nAB//+Mf51re+RX9//6LGFo1G8fl8ZP7OkL/ahRA3i6V+XlVybmWpXTbWiuX+lbmcv2PWxK97ISrIAtJEIhHq6upW5Ihr9vuzwcFBhoeHeeCBB7I/8/l8HDx4kN7eXgB6e3vRdT1bNAM88MADOBwOjhw5kt3mta99bbZoBnjjG9/IwMAAExMT8x47mUwSjUbz/gkhhBBCiNvbmi2ch4eHAWhqasr7eVNTU/a64eFhAoFA3vXV1dXU19fnbTPfPnKPYffZz34Wn8+X/bdp06al3yEhhFh2S8203iy55GLZ68X8W4pyH+NK5pCXer8k8yzEUq3lT8ZV84lPfIJIJJL9d+nSpdUekhBCCCGEWGVrtnBubm4GYGRkJO/nIyMj2euam5sJBoN5109PTzM+Pp63zXz7yD2Gncvloq6uLu+fEEIIIYS4va3ZwrmtrY3m5mZ+8IMfZH8WjUY5cuQIXV1dAHR1dREOhzlx4kR2m2eeeYZ0Os3Bgwez2zz77LNMTU1lt3n66afp6Ohg3bp1K3RvhBBCCCHEzW5VC+dYLMbJkyc5efIkkDkh8OTJk1y8eBFFUfjIRz7Cpz71Kb7zne/w0ksv8e53v5uWlpZs541du3bxpje9ife9730cPXqUQ4cO8dhjj/HQQw/R0tICwC//8i/jdDp59NFHeeWVV/jHf/xH/uRP/oSPfvSjq3SvhRCiHJXs07uc2d9yj72U21d6LEsZ23I/J7dr72wh1qZVbUf3wx/+kNe97nUFP3/kkUf4yle+gmVZ/N7v/R5f+tKXCIfD3H///fzFX/wFO3bsyG47Pj7OY489xne/+10cDgfvfOc7efLJJ/F6vdltXnzxRT70oQ9x7NgxGhsb+Y3f+A0+9rGPLXqc0o5OCLF6KvmZs5aKqXLb063k2Feydd5y3q9S90Pa04mb3cq3o1szfZzXMimchRCrRwrnDCmcyyeFs7jVSR9nIYQQQggh1qTq1R6AEELcXpbzW6vKzoUoZYzVqvjs5eLvSznjhOUYazmK369y70uuwvtlP5Z9Btp+LJmBFqIUmXEWQgghhBBiEaRwFkIIIYQQYhEkqiGEEBVV7lftqzd/sZRYwK2tVMRhKfvKV/I5UIrc3sofl31fqxtJEeLWJDPOQgghhBBCLIIUzkIIIYQQQiyCFM5CCCGEEEIsgmSchRBiSUrlhCuccbVWcnEOUb5lzDTP0nUdTdMwYpOEw+EyxiaEWCopnIUQQoibxM6dHfT0dOH1eolNTnLo0GH6+wdWe1hC3DYkqiGEEELcBHRdp6enC0VRGBwcQlGgp6cbXddXe2hC3DakcBZCCCFuApqm4fV6CQZDpNNpgsEQXq8XTdNWe2hC3DYkqiGEEGUrllPNn48oyLQWZFjLnL/Iu32JvPMK5qHL7yFcyV7JtwfDMIjFYgQCfoLBEAF/A7FYDMMwVntoQtw2ZMZZCCGEuAmEw2EOHerFsiza2lqxLDh06LCcICjECpIZZyGEEOIm0d8/wPDwiHTVEGKVSOEshBBC3ETC4XCmYJbWhEKsOCmchRDLpFR/40oqladdquXLNCtUldi+CFvhZDFj21d5t19dN54cLJ2nXqo1kmos8XyV/zgs9+MmxK1njXwaCCGEEEIIsbZJ4SyEEEIIIcQiSOEshBBCCCHEIkjGWQixBOXkmCv9d3pu3rNkmLfE9eXmsa/fl7IzzUqN7cj264s/TlZOztWyH9p2Nwvv9Vru6yyAsnLnpR/TtZRhF+LWIDPOQgghhBBCLIIUzkIIIYQQQiyCFM5CCCGEEEIsgmSchRBlWHw/48JbVravs5V3vFJZzqUeu5w5huJ9mgszzeV9DCu5d8WeabbfTcvW17lgZ7b7tYx9nct9/pczE13J12Kpca7ksUq/DyRnLsRSSeEshBBrlK770DQVwzAJhyOrPRwhhLjtSeEshBBr0M6d2+nuOYBX04gZBocPHaW//8xqD0sIIW5rknEWQog1Rtd9dPccQFEUBocuoCgK3T0H0HXfag9NCCFuazLjLIQoolQ+s5x+xgvfdn7F85pKbj/jZZ4DKJpTVUpkmm0ZZnuf5vn6Nnu9XrxeL0ODF7DSEAqO0tq2Ba/XmxfZUGzDsmwZZftYltzXueRzWjkFj/gy5q8LD17kfhY8xkvLMC8tyy2ZZiFWmsw4CyHEGmMYJkbMIBDw43AoBAJ+jJiBYZirPTQhhLitSeEshBBrTDgc4fDhY1iWRWvbFizL4vDhY3KCoBBCrDKJagghxBrU33+G4eGgdNUQQog1RApnIW5ri88wz3/rnNsX5EKLZ39LKZnOzD30cudfi9y3gvu15Gz3deFwZGUL5rIyzKVeG+U933YWth7USjl9u8tVxv0u9ZZZ1tfiCua8hRDzkqiGEEIIIYQQiyCFsxBCCCGEEIsghbMQQgghhBCLIBlnIVbc0vq+Lq8yMs1gy52WyDSX2QNYsYWcCzKvucer+ENaRn63oI9z6T7NlWLv27z8Fp/ttj8OSzkWkJcdXmp34qXlr+29se1ZbNvmS36Oyrm99G0WYrnJjLMQQgghhBCLIIWzEEIIIYQQiyBRDSHEitN1H5qmYRiG9CcWQghx05DCWYiKW8sZZrulZJrzb7/YTPPOnTvo6TmI16sRixkcOnSE/v7T8xzclpktmnle2pdnS8ljL3emuTDHXMlcc5m58yLZbodi/3VS3uNiv5+K7X5aeZcXzj8vSomx2J9Tq8hjXvi6LNiZbYNSY5VMsxBrmUQ1hBArRtd99PQcRFEUBgcvoCgKPT0H0XXfag9NCCGEKEkKZyHEitE0Da9XIxgMkU5bBIMhvF4NTdNWe2hCCCFESRLVEKIiyolnrN2/V8uJZtwIwzCIxQwCAT/BYIhAwE8sZmAYRuHGFWy1Vm4Uo5xWaqWjGeVFFFZTOS3mFFs0w/44OJSa4seybW9/HOyX00zljKNYjKN8pZ7D3PtdMM6CKIa9baIQ4laydn+DCyFuOeFwhEOHjmBZFm1tW7Asi0OHjtzWJwjquo8NG9ZLXEUIIW4CMuMshFhR/f2nGR4eka4awM6d2+nuOYBX04gZBocPHaW//8xqD0sIIcQCZMZZCLHiwuEIV65cvSmL5swMccuSZ4h13Ud3z4HMiZJDmRMlu3sO3NYzz5nHtnlNPQbyjYAQIpfMOAux7Ow50ZVrV2fZ2lVV+thLW7rYpkTWt3DJ7YUtdTnohTKvmRnigzkzxEcWMUNsv1+ZfWuailfTGBy6kD1Rsq11C5qmVu4PinLvd4kWcrm5Zvtj7HDk/zopbE9X3I6dbXR178OrqcQMk8OHjzLQf+76BjkPY9qayrutsuSXdbHn+8DsmDLP96lTA0X3ZH9clpq/FkKsLTLjLIQQi5CZIT6IosDg0BCKAt1LaKVnGCYxI3OipMOhZE6UNAwMw6zwyNc+Xa+jq3sfCjA0dBEF6Oreh67XreKYcr8RWPrzLYS4NUjhLIQQizA3Q5zXSk/T0DT1hvYXDkc4fOho5kTJ1syJkocPHb0p4ytLpWoqXk0lFBolnbYIhUaX9NhWwsLPt7ROFOJ2JlENIYRYhNwZ4mwrvSXOEPf3n2F4OIimqRiGeVsWzQCmYRIzTPz+RkKhUfz+xlWffc9/vkdynu95WicKIW4bimVZsmZnCdFoFJ/PR2aC/mZaTlksn2KvgxKZ5iX2/S26JO9SewIvYWxLzTuXzjAXu2/2x7y8jPNil8m+sYxz8bHalbs0db6l5mmL92LOzTHbM8wFmecSj7k9+7t9Ryud3ffh9arEYiaHDx/Jyzinremc/87POJe/LHk5z7e960l+xjl3XJnB2HtMT5W43v4rWJbcFmLxLCBNJBKhrm5lol1SOC+CFM6i0M1TOOu6ntP6LVx811I4l6TrviXOEEvhDIWFc9pKo+t1qJoH04gzPjFmu37lC2eY7/m2j1sKZyFWz8oXzhLVEOIWtnNnBz093Xi9XmKxGIcOHS6YMRPlCYcjt22kYrmFw1HC4WjF97uUP3bk+RZC5JLCWYhblK7r9PR0Z7pADA4SCPjp6elmeHik9MzzbSJTUGmYZlyKoxWQO6M8sUKvwfnjNedK31AIIeYhhbMQK65UL93ikYeiX87mpEI0by1er5fBwUHS6XSmT3BbG5qmLVw427/yLogNzN+TODOuxfdZnn9fK2vnzh309BxE82oYhnmDeeWlK+iVXOL5dziuxyeKxzZu4Ngl4hW50Y0qe1RDyR+3/bY7Oto42LUHzatixEz6ep/j9MBgzha2+EVB/Ob6ZcWyR3HyL84FEDMt5TpnW8pdJBDw093TyfDwqPyhJIS4IdKOTohblGEYxGKx2T7BjkxXgFhMugKQKah6ZnsyDw1Kj97l5tNrOdi1B0VRuDB0GUVR6Ozai0+vXdbjVrqFoBBCSOEsxC0qHA5z6NBhLAva2tqwLDh06LDENABN09C8UlCtFE3zoHlVQqExrLRFKDSG5vUs++Mti8wIISpNohpC3ML6+wcYHh5ZfFeN24RhGBixyvZkFvPz6bXU1XlJp9P4/Q2EQmP4/Q0YsfiyP95zi8x09xygrXVLtqWcxDSEEDdK2tEtgrSjE4Xsr4Oc/GWJ9nMKNUWvL6mgnVVutrhE5nXZ+zyXYaljyVUwrtLt6eYyzl6vhhGLc+jQEfr7Ty99KKXGohRv+VYqZ1xO67xSym0hlztWR4lMM8D2jlYOdu3BOzvjDBZGLE7MiNN7+HhextneYm7aSuZdzmtHl85vAWfP19uz30tvIZg3kgXHlTm4tKMTYuVIOzohhFgR/f2ns7PxpiFdNSotm2sGhoau4PfX4/a4efaHRxi+Nsr4xPiKjUVaygkhKkUyzkKI21Y4HOHKlatSVC2BT6+lpSVQcKKfqnrwah5CofHZXPM4VQ6FaMQgEp5cpdEKIcTSyIyzEEKIG7JjNoqhaR4MI8mR3pOcGRgCwDQzkQy/v55QaBy/v56YEcc046s7aCGEWAIpnIVYdqX6Npf3xY9lj1DnxBwLE48V7pVcwVxyYbazPHlZ8oL+0/Zj2a62/cD+mJY3jvKev4JlrG39kO3Xl+qXXI5SYy2VW67KGZuu++jqOoCiwKULo/j96+jq2sd4MEYkPEkskuB438sc6LybtrZNxGIGR/teJBoxMjltiedWgP2FKw+qEMtNCmchhBBlU1U3Xq+HoaGrs1GMCVpbW1BVdzaKcWbgAsGRcVTVTcyUiIYQ4uYnhbMQQoiymWaCWCyO37+OUGgCv38dsVgc00zkbRcJTxIJT5Iue2VJIYRYe9b0yYEzMzN88pOfpK2tDY/Hw9atW/lv/+2/kdtBz7IsHn/8cdavX4/H4+GBBx7gzJn8ZXPHx8d5+OGHqaurQ9d1Hn30UWKx2ErfHSGEuGVEwpMc63sRy4LW1hYsC471vSizykKIW9qannH+3Oc+xxe+8AW++tWvcscdd3D8+HHe85734PP5+PCHPwzAE088wZNPPslXv/pV2tra+OQnP8kb3/hGXn31VdxuNwAPP/ww165d4+mnn2Zqaor3vOc9vP/97+fv//7vV/PuidtViT68Jfv0FsvnWuXN6i01Z7y87Hnq/Mcld+wFvbNLsPf9tWeeCyyhd3JBX2bb5WqHK++yPeNcreRfn3t7h70/9RIV9G2meOb5/MBVxkaiqKobwzSJhGPZ2xSm4fMfc3ue2t7HeSnsj7G9r3Op95h9+6WxH6vUvsvdPle5Yf21/P4XYm1a0wug/If/8B9oamriy1/+cvZn73znO/F4PPyf//N/sCyLlpYWfvu3f5vf+Z3fASASidDU1MRXvvIVHnroIU6dOsXu3bs5duwY+/btA+Cpp57iwQcf5PLly7S0tJQchyyAIgqVswCK/eQu24IXZS5wYf+lbuX8YrUKig/bL92Siy+sJcUL51ylFp0pfYJmiQK0yHNS6vlTbM9/la1QrnF48i7fTIVzLsu+MIitUJ6xLQRiXzhkOp0f8VjKAigFY6to4VzuAii2sVn2sZd6D1b4BF/b0YW4ua38AihrOqrR3d3ND37wA06fzqzm9cILL/CTn/yEN7/5zQAMDg4yPDzMAw88kL2Nz+fj4MGD9Pb2AtDb24uu69miGeCBBx7A4XBw5MiReY+bTCaJRqN5/4QQYrX59FrWz9MzWQghxMpY01GNj3/840SjUXbu3ElVVRUzMzN8+tOf5uGHHwZgeHgYgKamprzbNTU1Za8bHh4mEAjkXV9dXU19fX12G7vPfvaz/MEf/EGl744QQtyw7PLVXhUjZnKk70XODVxalbH4dC+q6sY0E0TCcr6IEOL2saYL53/6p3/i7/7u7/j7v/977rjjDk6ePMlHPvIRWlpaeOSRR5btuJ/4xCf46Ec/mr0cjUbZtGnTsh1P3N4Kvza+flnXfWiaimGY2dXtFHuP4ormMe2Wc9/lWji6Yf+6WynR17kwL23LPNsjEAX7K/ZlnS3uUGbfZns0o1px4dNr6erah6LAlaFRGv3r6OncT3jEXFLhas8ZL8a2js3s77wTVXNjGgmO9b3M2YGLpAu+9V9aFw37c6DkPP8F7xl77t/+fJaZUS+Vkc4fl/21VOI9Y4/ylIxPFRv7Ut+f5UQPJdYhBKzxwvk//+f/zMc//nEeeughAO666y4uXLjAZz/7WR555BGam5sBGBkZYf369dnbjYyMsGfPHgCam5sJBoN5+52enmZ8fDx7ezuXy4XL5Zr3OiFWys6d2+nuOYBX04gZBocPHaW//0zpG4pbTm7PZEfawWhogs3ZnskrN+Pr073s77wTFLg4dI3GwDr2d95JaGSciQlZtlwIcetb0xln0zRxOGwrV1VVkU5n/spua2ujubmZH/zgB9nro9EoR44coaurC4Curi7C4TAnTpzIbvPMM8+QTqc5ePDgCtwLIcqn6z66ew6gKAqDQxdQFIXungPoum+1hyZWQW7PZMWh0OhfhzlPz+Tl5lHdqJqb0eAElmUxGpxA1dx4VPeKjkMIIVbLmi6c3/KWt/DpT3+a733vewwNDfHNb36Tz3/+87zjHe8AQFEUPvKRj/CpT32K73znO7z00ku8+93vpqWlhbe//e0A7Nq1ize96U28733v4+jRoxw6dIjHHnuMhx56aFEdNYRYDZqm4tU0gsEQ6bRFMBjCq2lomrraQxOrILdn8ubWFrDgaN9LK54vjpsJTCNBY2AdiqLQGFiHaSSIr3ABL4QQq2VNRzX+9E//lE9+8pN88IMfJBgM0tLSwq/92q/x+OOPZ7f53d/9XQzD4P3vfz/hcJj777+fp556KtvDGeDv/u7veOyxx3j961+Pw+Hgne98J08++eRq3CUhFsUwTGKGQSDgJxgMEQj4iRkGhmEuab+r2/pqqSr5d36pHtElMs9FlOrbXGXLNM932afXZk++M8Ip4HrPZK9WS3z2pLwaZXkjZWnb4xQNmxzve4X9nXewuXV9NuNciQJeseWtHdizv7lt+PJ/dVmKbVtraX2aS7W3K6ogw2zfd/G8fEE+P++25eSfKyF3LKXy0JKBFreHNd3Hea2QPs6iUOX6ONtPFpvb18IZ54X7yJbq42yVXCDl1iicS/d1Lm/fBYWzkvt8204GdDjzLpfq21zjyP8WYdfOHRzovBvN68GIxTnR18/ZgYvX95fz+nEsc+FkL5zn+HQvbtWZLeAB0lbxvs2l+jjPWPbrpxa8vlgv8/mutyu3cM7fvvixCgrjgutLLPRSVuG83Mr5PJBSQqyGle/jvKgZ5xvpY7xSd0CIW1V//xmGh4MFXTXErcun13Kg824UReHC0FX8/noOdN5FaGR82WMZdTkt5qIljhUJxwiH1/IfWUIIsTwWVTjruo5i74FVhKIonD59mvb29hsemBC3i8JVza7/dzg8QTg8UXT74jsvte1aLn5KzQKvjW9/SrU6K1hZsMhlTdXwer1cHLqGkq5iLBSltXUjmqYxGYkD+bPMxSIkmULYhWkms4XwQhGErR2b2Nd5B5rmxjASHO97peI9ou2rENpnZu2RFbvcx8kezUjbZ3WVYjPG80U77LPEBQfP2dZ2VdntIUt8S1DkZV1w1bK2osyPxxSyH1uiHOL2sOiM89e+9jXq6+tLbmdZFg8++OCSBiWEELcj04xjznbPCIUm8Ptv7OS7TCG8O9tr+XjfqwsWwnW6l32dd6AocHFomMaAzr7OOwiNTBAOy6qpQgiRa1GF85YtW3jta19LQ0PDonba3t5OTU3x2QMhhBD5IuFJjva9zIHOOzMn38XiHD9S3sl3mUJ4N4oCl7KF8G5CIxNE5on7qKobTXNzcWh4tsVcmM2tzaiqWwpnIYSwWVThPDg4WNZOX3755RsajBBC3O7ODlwgNDKGqnowzTixSLKs26uqC1VzcymnEN7U2oyquoiEC7c3zQSGkaAxoDMaDNMY0DGMxIr3iBZCiJtBRdvRmaaJqkqfWXE7ys372XOnJc6yt0cDS0QBS521v7yKDa7czPESM8xlLHtdSsl2c/aWYXn7t19nWyq6oD1d8eshc/Ld3CxzsezvfJllwzQxDJOGQB2jwTANAR+GYWKYha0M06QJh6Mc63uJ/Z13sKm1CdOIc6zvFcLhaNHlo+1dNOzb2jPN9j2VyjTblx5P59zXUp0s7B067N1kZmwdPdK2ThcFGeqci6WW1C5Ygtve4KXk+7sMZS4lXprtfIvcCwWPealjl8pAS+ZZ3JzKfte9/vWv58qVKwU/P3r0aHaZayGEEKsjGo5xvO+V2cVSmrEsON73StFOGWcHLvH9b/+E733rx3z/2z/hbIVPDBRCiFtF2TPObrebu+++m7/4i7/gF3/xF0mn0/zhH/4hn/nMZ/jgBz+4HGMUQghRhnMDlwiNTCy6vRzkz3ILIYSYX9mF8/e+9z3+/M//nPe+9718+9vfZmhoiAsXLvDP//zPvOENb1iOMQohhChTNBxbVMEshBBi8W4o4/yhD32Iy5cv87nPfY7q6mp++MMf0t3dXemxCbGGLdzo1b66V2Gyz7acs31J3pLtUO1Zw9z9rXRf5nJyzWVmmgvymwvfvtjKfothz6UWXF9kLPbrHA7bSpH2zPMSV/tbaDW/xSiVz7XnlpeyL/v9rLKvsGjPepfzuNheKvZM84xSfNXC6XT+CZcztiW67dcrRVaKLNXX2f5RUer9XfA4FDuHodIZ52KfLQVZ7VKrL9rHJn2fxa2h7HfdxMQE73znO/nCF77A//pf/4t3vetdvOENb+Av/uIvlmN8QgghhBBCrAllzzjfeeedtLW18fzzz9PW1sb73vc+/vEf/5EPfvCDfO973+N73/vecoxTCCGEKJtPr8WlVmOacSLhydUejhDiJlf2jPMHPvABnn32Wdra2rI/+8Vf/EVeeOEFUqlURQcnhBBCzPHpXppbGvHp3kVtv71jCz/3tp/mre/4Gd7yttexvaN1eQcohLjlKZZlT2gJu2g0is/nI/N3Rrm9asXtIfd1Ye/rW152t1RP4cLevblNZu0ZxVJv7+XMRJebaS6eDS7WS3m+XshljaXE7Yv1Zi7IONvuh70fcbXDXfx68i+XkwW2545rfZ5sZ435OmaUyimXoyDTbOvTXEX+5Wqr2nZ9/mWHbX/bdmxib1dHdhnx53sHOD+QaY06reT3ZZ4iRZ2u8aa39aAoMBIapTGgg2Xx/W//hNBEMH97K55/OZ3f8zo38zyTzp8gStvy1fb3lL3n9HIq/T4ormh/7KLnVkDJfvUFn0XlPC5SpoiFWECaSCRCXV3dihzxhk4OnJiY4Mtf/jKnTp0CYNeuXbz3ve+lvr6+ooMTQghxY7Z1bGbfwd2oXg9mLM7Rvpc4O3BxtYd1Q+p0jb1dHQBcGhqhwe9jb1cHoyNhomFj3tuoqhvNW7iUuEd1w8RKjl4IcSsp+8/TuZjGk08+ycTEBBMTE/zpn/4pbW1tPPvss8sxRiGEEGXw6V72d94JClwcugoKHOi8a9ERh7XGM7uM+FgogpW2GAtFUDU3HtW14G1MM4ERS9Do11EUhcaAjmnEictS4kKIJSi7cP7Qhz7Eu971LgYHB/nGN77BN77xDc6fP89DDz3Ehz70oeUYoxBCiDJ4VDeq5mY0NIGVtjDNOM0bGmlqbljtod2QuJnENBI0+H0oDoUGvw/TSBA3kwveJho2ONH3anYFRSyLY32vyCIvOXTdx4YN69F132oPRYibRtkZZ4/Hw8mTJ+no6Mj7+cDAAHv27CEejy9wy5uXZJxFaQtnnAu3LJV5LlORDOXScoXlKpUjtme3bZllWybWnplV7BnovN66C2eQ571cwcyzoyDjbMv22i7bM9A15Gee7duXk2me68Ps07383Nt+ChSLamc19963C6erhuNHXuFHzxzn7MCFzPYFOdXFs2eWS2WanZYz73KN7bLLyp89rrElCds6Wri7axser5t4LMGLvWe5MHANgGnb45BUrueQa3WVKi1TfM/FOkwlv7tG0sovppPp/Mu5medSGWfLys9bQ6ZA1TQVwzCZmCgvJ1Jebrn46z7Xzp3b6e7ej+bVMGIGhw8f49SpAdtW1x/XtP1+VTzzbFfss0oyz2LOTZBxvvfeezl16lRB4Xzq1Cnuueeeig1MCCGKyS1GZBYxXyQc42jfS7z2dfeyr/NOUskp+g69yPTUNAc67yQ0MnbTPWYXBq4xPhLBrblIGEkmw2bpGwGTYZNkZPXiGTt3bqe75yBeTSNmGBz6SR/9/adXbTyQee90d+9HURSGBi8QCPjp7t7PtWvDhMORVR2bEGtd2YXzhz/8YX7zN3+Ts2fP0tnZCUBfXx9//ud/zn//7/+dF198Mbvt3XffXbmRCiHErJ07t9PTczA7W9Z7+AT9/WdXe1hrytmBiygOC9+6Os6fvYQRi6M4FDa3rkdVPTdd4QyZInixBbNdna7hUV2Z2EdkZfo567qP7p6DKAoMDg0RCPjp6TnI8PDIqhaomqaieTWGBi+QTlsEgyFa27agaaoUzkKUUHbh/Eu/9EsA/O7v/u681ymKgmVZKIrCzMyNfw0ohBDzyRQjBwpmy4aHQ/JL32bk2hjDV0NomgfTTOD3r8OMxTHN1YnUZYpXN3EzQXzC3sZt+bR3bODezl1oXhdGLMnhI8c5O3Bp2Y+raSpeTWNwaOh6gdq6BU3TVvW1ahgmRswgEPATDIYIBPwYMQPDuLE/SoS4nZRdOA8ODi7HOIS4hdizeSUyihXs81o6N1hpC9+3cjPN9uyvPdNc5chkYH119dTV6lwYuoRCDWOjEdra2vDVNWBMTs/uq3im2T42+/X23sl2xXLHBX2dbfnrUtnggrEUOVbBK80Wn4+GTY71vcKBzrvY0roBI2ZwtO/lBWeb7ZnpwrEs/LjYx2nv09yxoy2vD/Orh4cYms0oA7jsmWjbsaqL5HWnrPxJmmrr+rbrtzRw/5v2MpWa5urgKPX+OroP3svk8PXM8wz5RfyMkn85nXM5rdizvgsOC8MwiRnzFajzt9CDUpnmUtn9Eq/b2e2jEZPe3ufp7rqPtra22W9tjhONmHkZ/dz8tv39WdAD3Cp6seD0IKVk5jn3vtlf6aXONZIMtFg+ZRfOW7ZsWY5xCCHEoswVI35/I6HQKH5/I7GYiWnceicmV8LZgYuERsZRVTeGuTp58Pn6MO/p2s7YSOSGoxeLsaVjPT1vvps7DrYTvDrO9NQMwasTBNrq8KjuBXtAV0o4HOHwoSN09xykrbU1k3E+dGRNfDMy0H+W4Wsj2fME1sKYhLgZLKpw/s53vsOb3/xmampqSm8MfP/73+d1r3sdHo9nSYMTQgi7cDhK7+HjdHcfoLV1MzHD5MjhE4TD0dUe2pL5dC+qqhJfYKW/GxUJx4iEYxVdKbAc6mx7vEtDI9k+zO2tG2hcr+PRXMSNJKlwZaMbtbrK3V3bmErNMHJ1Am+th607W6iuqSIai65YP+f+/jMMDwdvuKvGcgqHI1IwC1GmRRXO73jHOxgeHsbv9y9qpw899BAnT56kvb19SYMTQoj5DPSfIzg8li1GopGbf7Z5W8dm9nfemckjG3GO9b2yIjnclWCaiWwf5rFQhAa/D4/XzcGf3o1SpRCPJXm1d5ALA8MVO6Zbc+Hxurk6FCI+laR91waaWuq5emmME8/0L/tscy4pUIW4dSyqcLYsi1/91V/F5Vp4laZciYSszCRudTfez9ue5Svo67zE/S2vItnegvtRKtPstF22ZX8d+ddXO/I/f8zJNOZkZla2xpH/7VZBbrjM3HGpPs+lMtDFzJdhrtO9HOi8G0WBy0MhGgM6BzrvYWwkRmxi4SiDohTvpWu/36VyqZTKyOaM3f4Y2PO1uZnnWDjOC71n2dO1g82t67GsNA4cpBLTjIei1Pvr2Nu1g+hIjNhsdKPGNvYaR5HXnn0i3YK0McN0bIqAX+fatXFcNTUEL47zw2+e4MKlYapyfv3VKPmvrRT5j3mp10MxVgXPYSiVaS7Vv7zU/uxjdTB/3jlz2/x9Wfb3e0Uzz/b7UeoxLfczVTLRYvEWVTg/8sgjZe304YcfXrFG1EIIcbNTVTea5ubi0DBYCqPBMJtam1FVV9HC+WYyOHCV0ZEwHtWNt87Da1+/l/FQFCttMR6K0trajFtzZgtnO0334FZdJMwkRjiedzk8Xjh7HAubvNR7lru6trGh1U88luTID17h2oWxG1gzVwghMhZVOP/N3/zNco9DCCFuW6aZwDASNAZ0xoJRGgM6ppHALLKk9M1org9z3FSJx5LU++uyM87xWJKEkZr3dps6mrm7e2t28ZPx4Sj1zXXZyy8ePseleWIeFweGGR+JYmkK8TIWTRFCiIXI391CCLHKouEYx/tewbJgU2szlgXH+14lehMuUrIYk2GTF3vPYFnQ0urHsuCl3rPzzjZ7dQ93dLWjKAojQ2O4VSf3v2MvLtXJyNAYiqJwR1c7Xn3+k9FjYZPglQkpmoUQFVF2Ozohbk/lZOYq+/fo0jLMS81XlshI5j4uBX2Yi/dprrJllgsyzbbcabXDveD+5jLKPr0WVXWTMFN5XSnsGVV7BtqecXZYhTnkPEWeknSZj/ncvi/2BwkPG6iqG9NMEA0bVFNdcOy8+1KQI80/tn0s07YexCUz0EUUZLWtIuOcx9DANcZyltCetnXVcMyGaFXNjep1Exwaw7IszMkkap2b+GQSy7IIBycJtDZk+kPPLq2tWPnvV4ft/Wsfq/3tXaxf9cq7PtZSmebCXujlfRbZn38rNzxue2kUZJ5tz7dl/8i0ylsQLfezpXiP5xtRqi+0ZJ7FwqRwFkLcErZ3bGF/5914vR7MWIKjfS9zduDCag+rLNGwsaLdHlZb7hLaHuZvd5owk8RjSfRALeHgJGqtCzOawFPrYnLcQA/UZmIet1isRQixNklUQwixaLqus2HDBnRdX+2h5PHpteyf7UoxNHQVRVE40HknPt272kMTSxQLx3m17xyWZdHU2kDCTPGTbz5P0kzR1NqAZVm82neOWPjmb0kohFj7yp5xPn/+vPRnFuI2tHPnTnp6uvF6NWIxg0OHDjPQP7DawwIyXSm8Xg9DQ1ex0hah0ASbW9ejqp4bWkikTtfyIhML/UwsP6/uIT6Z5OQPB5iZSs/bVSO6hM4jdbqG11sz+7zemplyIUTllF04b9u2jZ/6qZ/i0Ucf5ed//udxu92lbyTETafcPqBr9cubcvufzk/XdXp6unEoMDQ4RCDg5/6ebkZGQoTDYWCePr62vKVDKZ5prnGotsv5J3vVkP9Zk5tTno4rJI1p1geaGA2G8QfWkTRmmIqDU/EUjs2Wca3O+Shs79jI/s7deLwe4rE4z/UN4LAc7O3qyORojQQne08zOHAVKMwRp5XiOeNSOWJ7VrTasmXDc8ZakL22mSE/0zxtu2y/PqXkd7Ww94VeisL8dX6OdNp2ecpKs7mjmTu7Mt00UkaKV/vOEbySWXkvOmFmC+YZK/+2M7Z92Y819xy1d2zg3s4Oqr0KhpHgeN8rnFviojP2XsjlPt8F1+fklMvNNBe+J4sfq/C1mvP8l/goKbiX1rTtB/ljKdXXmZzHcam97u3sPacL5d4byTuLfGX/tn/uuee4++67+ehHP0pzczO/9mu/xtGjR5djbEKINULTNLxejWAwRDqdJhgM4fV60TRttYcGZJaUPtb3ClgWm7NdKV4pewaxTte4r3MnKAqXh0ZAUej+mbvp+pm7ALg0NALA3q4OavW1cd9vVV5d5c6urQBcGxpFUWB359YFu2eUq07XuLezAxSFi0PDKArs67yDOon3CCGKKLtw3rNnD3/yJ3/C1atX+eu//muuXbvG/fffz5133snnP/95QqHQcoxTCLGKDMMgFjMIBPw4HA4CAT+xWAzDWDuRhbMDl/j+t3/C9771Y/7l2z+5oZlDj5rp4DAWimClLcZCEXy6F986b97PPJobVV3cSqrLqVZXCbSso1ZXS298k3GrTtyai4nQJFbaIhyaxON14a7Q4+5RXXi8nszzalmMBsNomhtVlW9RhRALUyzLWtL3EMlkkr/4i7/gE5/4BKlUCqfTybve9S4+97nPsX79+kqNc1VFo1F8Ph+ZvzMq+5WRWKtKPc+L/5uz8l8zrs5Xhzt37uT+nm68Xi+xWIxDhw7TP3Aue729/VyVrX1ctT16YbvsrMqf6XOSXwwWayFX0F7Mxh5pWKjFW52u8Ya3dVGFg7FQhAa/D7fqQrEUUvEUY6EoDf460sC/fevovL2B7V/N21vAlWpXVyyaAeC0Mve7tWM9e7s68HhdxGNJXuw9w0XbIiD2iMKULZoxpeS3FLNHNXKjHHW6hlt1ZjPe9khKsfgLQI1li+aQf9ll5T+/6/Q6fvrt94ICE6FJGv11YMGPvvVcQb9n+yNqv59x2/2KK2b2uVYUuBoapjGgg2Xx/W//hOGJK3nbp2auf3ORSuf/sTg9k39SomWLKNhfD/ZoRmHLOHscI+d17rDHn2yvFftS8wXHKt5mz7K1jMsd+4yt/dxMOv8xtbenS9uuL3xc7DGgyi1NXlLR5b3t5lnPXawhFpAmEoms2IrVNxzMPH78OB/84AdZv349n//85/md3/kdzp07x9NPP83Vq1d529veVslxCiFWWX9/P1//+jf52te+wde//k3618iJgZUUDRs813cKgE2tTQD0/uBF+p55mTSwoTVAGjjZe3pVF9So1VX2dG3PFH1DIRQF7u7avmwzz1s7NvKmt3Xz5nf08Ka39bC1Y+OyHCfX3JLZWNDS2ghFFkm5EXPPtWXB5tZmsCyO9b1yQyeTCiFuH2WfHPj5z3+ev/mbv2FgYIAHH3yQv/3bv+XBBx/E4cjU4G1tbXzlK1+htbW10mMVQqyycDicPRnwVnV+4Arh4Rge1UXcTBING1RRzehIGI/qJm4mVn0VOo/mwuN1cW1oDCttMR6K0tLqx625Kj62TO57VzYL3OjXua9zNyPB8WXvQnFhYJixkSgezcmUMVWxonnO+YErjI6EQZsmbiZuyaJZ1+tQNQ+mEScSWTvRKiFuVmUXzl/4whd473vfy6/+6q8uGMUIBAJ8+ctfXvLghBBiNcy3EEnuYh03qk7XcKk12YL8RsWNzKIg9f46xkNR6v11mUVAjMovAqLO5r4vDY1gpS1GQ2E2tzajqq4Vad8WC5vEwibVyxSTi4YNzMjksux7te3oaKeray+aV8WImfT1vcDpgcHVHpYQN7WyC+czZ86U3MbpdPLII4/c0ICEWB1rN9Ncav/LmXkuuC9F2l0Vtp+zL7mdf9m+hHaxdnMANVb+SWGlWrFV0mKXoq7VNdwLFMZzrc88XhdGLMlzfac4P3BlgT1dV23l51JrqCIRTvJy73n2dnWwubWZeCzJy71nmQpP4c7JfttfG9Ul2vLZpRRImtPEY1P4/fWEQuM0+PXZIj2Vd/tSz4c9620/dtL2Uktb9nz29Q3sS2iXzHKzcHYb5llquoyWcqUyyqXfngtnmiE/11y/rh5VUzENk3A4WvAeyb2tT6+lq3sfiqJw4cI1/P4Gurv3MRqMEAkv8IeCbX/2XHOu3OW4db0Ot6cGwzAJhyOZXRUs525/XJbS6nCJ7337x1pZmWdZnvt2J0tuCyFuCau9QElbR0vmZD3NhWkkeL53IFsY57Y+uzQUpMHv497OXYyOhG94rBcGrhEdMfBoTuJGiljYpGoZ/mibywLf27mLTa1NmLEEJ/pOySIwK6xj51Z6ug9mZ497D5/g7OmLC26vaSqaV+XC0OXZRYHGaGvdhKZ6Fi6cb3BcXd37UFUXRszg8OFj9Pefrdj+hVhrpHAWQtwUihXGWzs2cl/nLlSvO1vYnRu4vGJjq9U19nZ1oKBwaWiEBr+PvV0djI6ECUcms63PLs/GHcZCETa1BvCoriUVoHMxhlxeXcWtOamqrmJ6eprEbFFd7v1RVReR+CTRsJHNArvUalk5cRXoeh1d3fsAhaHBS/j9jXR138doMEw4HJ33NoZhYsRM/P4GQqEx/P4GDCOOYVZuafK5cSnA0OAF/IFGurv3MzwcYnwiWLHjCLGWSOEshFgzfLoXVfVgmnGMyPWvibd1bOLgwT1oXjdGLMGJvlezK/flnryWKVp17uvcRWhkYsUKPFV14dHcXBkK5hTGTXhUF+HIJHEzSTwWp8HvYzQUpsHvw4gliZuVzSTPrbTX0t5IQ7PO6HCYa+dHean3bEGruoVcnzl3M2kY2UhJNGwwE7avBidWgqapeDWNC0NXSKctQqFRWts2oWqeBQvnSHiSI70nOdi1hy2tGzFiJkf7XqjobHNmXCpDQxcz4wqO0tq2BU1TGZ+o2GGEWFOkcBa3qcplmjN7W73+3uUcu1QeuvS+bI9LXo6xeH/aqoIMdP7ljp1b2d95Z3ZZ6+f6TnNu4BJ1upcDnffgwMHloSANfp39nXcwMZKZDdVUFc3ryazql4bxUISNrQFU1b1g4VzYS9mWcVSK997NzfOmSROJTzJpGPgCGqOhCRr8PiaNGNH4JFOkGAunONr3Mvd17mJDa2N2VnwiHCk7q527fW40w6ur7H/9brw+D3pDLQ5FQfO68Wgu7uneTiQYY2Ii/2S+Ktuxdb2O+7p2AQrXhsbw+VX2d95BeDiWeSzzXh5LK6LtmWf7S9PeJ9qe9c7f1r7EdnnLoKeXlLctrlQGumCZ7ILzCByYRgLDiNMUCBAMjRHwNxCPJYmbU3m5Zvvr9Nzpy4wGI9k/RqMRo+B9d6McSpq4OYVhJAn4mxgOXsMfaMQw4phmouB+2tmXAy/8ZMp9jsrbVymllvvOzTwXLs+9gv2mxZq0cmfXCCHEAnx6Lfs77wQFLg5dAwX2de6mTveiqi5Uzc1YKDw7mxtG9brxzK7wFjcTmLEEDX4fikOhwe/DjCVmf3mvjNyewJtam8CCE339eYX7uYHLPPXtwzz1zcM89e3DFY+SbL17A7s729nc0cym7QESiRQ1rhrMyQRuzYVbdZbch2f2sR4PRbMz56rmxrMGVkm8nYXDUXoPHwcL2lo3gQW9vc8tavY4Ep7k2tVgRWeac8fVd/gEFtDWuhksOHz4WPYEQSFuRTf0p+fXvvY1/umf/omLFy+SSuWfrfzcc89VZGBCiNuHqnpQNTcXh67NLn88QWvrJlTVhWkmMY0EDX6dsVCYBr+OGUsQny2Mo2GDE3393Ne5c1VPXpvLAbtVJ/EFcsDztbmrBK+u0n7nRqaSU0wnZ5iesWi/YwNDp66i1rpJGEkSZqrkfuKzj/Vcm7sGvw/TSFQ8UiLKN9B/jrFgNNuTORyOFnTgWJVxDZxnZGQUl0fBMOJSNItbXtkzzk8++STvec97aGpq4vnnn+fAgQM0NDRw/vx53vzmNy/HGIUQtzjTjGMaCRoD61AUhcbAOkwjgWkmiYZjHO97FSxrdjbXKiiMzw9c5l+/3ctT3+zlX7/du6InBuaKhg1Gro6teNHu1pw4HAoDxy+SSk4RHY9RVeNgOjlN0kzxcu+5RZ0gOBk2Odl7BrDY2OoH4PneATkZcI0Ih6NcvTKyYK55tYTDUa5cGV6zRbOu62zY0IKu66s9FHELUCzLKqsJ4c6dO/m93/s9fumXfona2lpeeOEF2tvbefzxxxkfH+fP/uzPlmusqyYajeLz+cj8nbF6WVZRjnKfpxXMNBdkHm8eCvkzXEpOXtLhyI8C1FRp+Zcd+ctBuxzevMu7d+7Myzif7D2TVwDrem1eV41i2eCCDGuJXKI9A2tXrN9xqduWUm3lf/FXQ/7j6El78i9zPTbhnM12enWV1759L1WKg4SZpLFFx1Gl0Pf9lxi7FiEWznRSmLJleZO2nHKSzAmZtbqKR3MRNQ0mc4rm3Fyy/TGdr9dxna7lrLZYvJuD/fm0P+a519uzvHb2saSU/Nl2e1/nBPnZ76SVf3kqbeb8d/79mEnn7ytdpPcxFGaYC/udL9wPvfA8AfttbX267duXmQVOM4NPr0VVPURj4by4x4yV/y1E4eOSf33a9jhZlr2X9uJz5gWZ5iKfqTt37qCn5yBer0YsZnDo0BH6T/WXOHZOxrkg/17q/S59nVeWBaSJRCLU1dWtyBHLjmpcvHiR7u5uADweD5OTmTfSf/pP/4nOzs5bsnAWQiy/swMXCY2MZwut+ET+L6zlijncCmJhk5d7z3F39zZ0fy2TYZNXes9zaZGdNOzmVkmcUooXgcW0d2zkvs6d2RaBz/UNLGrBl5WS294wcQsutV0J2ztaOdh5N5pXJToZ5UjvyZtq5UFd99HTcxBFURgcvEAg4Ken5yDD14YJh8OrPTxxkyq7cG5ubmZ8fJwtW7awefNm+vr6uOeeexgcHKTMyWshhMgTCceIzBYxTjwltha5Lg4MEw1O4lZdJMxkdpZ5NWRaBO4EhWxf66Uu+FJJmb7fu7PtDQ/3HefswMKLidyOfHotBzvvBkVhaOgKDY11HOzaw8jI6LKcaLgcNE3D69UYHLxAOm0RDIZom22XJ4WzuFFlf2f8Mz/zM3znO98B4D3veQ+/9Vu/xc/+7M/yi7/4i7zjHe+o+ACFEEIsTiwcZ/RqeFWLZgCP6kb1uhkLRbLdORr8tWxua6ZO10rvYBllivrdKApcHBpGUeBA5134dG/pG99GVNWN5lUJhcazKw9qXhVNu3n+oDUMg1jMIBDw43AoBAJ+YjEDwyhvQSAhcpU94/ylL32JdDqT8fnQhz5EQ0MDhw8f5q1vfSu/9mu/VvEBisVYydz1Wv5WoZzHYRkzzRXPMK9eJtqeJVRsmcm8jLMtb2m/bVXB9YX9anPZs8P2zGux3HKpPr6l8pT2208vMcecq8r2sZsu8fwW9Ci2csdSPLOaLvP9as8ZF/Svzn0OCt4S169LmdMkYin8/nrGQhE67tzClvYmQGF3qG1VYxse1YXmdXNxaBgrbTEaCtPS2oCmaUxGMn9wFMtQL6bvcjGF76ni+1tOxcYaN1OYsQRN/kZCoXHqG3XiRoK4mcKhVJG2yrzftvtl74+slPNSXeRjFA5HOHToCD09B2lr25LNOIcj0fx9FOnjbf/sl77OoqzCeXp6ms985jO8973vZePGjQA89NBDPPTQQ8syOCGEEDefTF/rAe7t7GDbrk1saW/i4vkRzp66PBvb6Fi12EbcTGLEEjT6dUZDYRr9+mzLvZXr+30ziIQnOdr3Igc672ZLawuTscxKhDdLTGNOf/9phodH0DQNwzDWbOcPcfMoq3Curq7miSee4N3vfvdyjUcIIcQtYK6v9aa2JsDi7KnL2djGxtnlyFejcM70/X6V+zp3s7m1GSOW4NiRl7PZ+rVK1+uo9dZmezivhDMDFwiOjGdW4TQiN13RPCccjkjBLCqm7KjG61//en70ox/R2tq6DMMRQghxq4iGDS4NjjAxu5hKJuvsIx6L3/CiKrW6hqp6Zlvc3VhW9dzAZUIjE9muGqOR0Rvaz0rp6Gins/s+6rxejJhJb+/znB44vyLHjoQniYQnmbZkERwh4AYK5ze/+c18/OMf56WXXuK+++5D0/JP9HjrW99ascGJhaxmL+lSx17JDHSxsSxzX+aK5hDLy0QuZx/o0jnFhfvI2nvG2nvOFuRly+4pa8s8l/kczy3fbZpJIrbZpxlbP+O0LfM4X4/ihRTcT6X4/SzVv7jasmXFy3jcHLbXddp22b4veybafuzcmzusEr2xZx+z2ESck71n2NvVweYtzZhGgud7TxObiJf9HLZ1tLC3q2N29bwEJ3tPMzhwteTt5jtOXnvDEm9/Jfc5tOzX2V/X+Vl+y/Y4lZth1vU6OrvvQwEGhy4T8DfQ1bWX4MgokYh9xj7/+bIfmxKvxUqyf25ZtveY/X1iLaU1fpmvI/v7uXCsucrNMNvvyFo+L0jciLIL5w9+8IMAfP7zny+4TlEUZmYW38RcCCFWwtaOTezr3J1dXOVY30ucG7i02sO6bczFNjyqi7iZvKGIRq2usberAwWFK0NBGvx17OnawehIODvzXKureFQ3phnPW7glV52uUaVq2YV01jpV8+D1qgwNXgLLQTA0RlvrRlTNM0/hLIRYbmUXznMdNYQQolJ8updazUfcTFQ8a1qna+ybbT92aWiYxoDOvs47CI1MEF3EsXy6F4/qwjTjaz4Hu5YtdQEbVXXh0dxcGQpCGsZCUTa0BvCobibDJm0dLezp2jH7x1Gc53sHCmaj2zs2cG9nB05vNUYswYm+V1dtefbFMo04sZiJ39/A6GiYgL8BI2ZiGqvbclCI29WSvvNNJOQsZCHE0mzr2MLPve2n+Lm3v4YH33Y/2zo2VXT/qupG1dyMBsNYlsVoMIymuVFV9yLGtjkztnf8FD/3tp9iW8eWio6tEry6SuMGHa+ult74JmaaSeJGgga/D8Wh0OCvy3bDqNVV9nTtwAFcGQqioLC3q4PanJ7RdbrGvZ0doCjZ/s33de4u6Cvt072sbwng02tX+B7OLxyO0nf4BBbQ1roRLIve3udX7ARBIUS+smecZ2Zm+MxnPsMXv/hFRkZGOH36NO3t7Xzyk5+ktbWVRx99dDnGKW5YpfOwpb5xKBZUKzfrVW7orUjv1VXNMNstLdNc0P847/qljbtU/tLeqzk311ztcBXddr5+tz7dO7s6WWYxisaAzv7Z2eBYuPjJSEX7OOf0XY7F4xiGSUOgjtFgmIaAD8MwMUwzu4/5Ms0+3cv+zjtAsRgauoLfv459nXcwMhLK6y5QKqtt79tcY+U/Ti7Lbbtsu96WmXXl5FTbd65nd+dWPF4X8ViS/r5zXBoYWXAsBVnQgrdk8V8Jufnrwl7Z+TuzPyr27cvJjUNmcZeTvWfY07WDDa2BbMZ5MmwSaKlHnZ2NnuvcsaE1gKq6spENj+rC4/VweWgk2795c2tz5g+o2cj7to7N7O+8E5fmwIjFOdr3ImcGLuSNo6APc4n7tdS+zwADA+cZGRnF69Xyu2rYnj97T3CHYr8+/3VuP3JBL/US/c7LY38cbFevZhTY/rmX+3lgf74s+/MtfZ1vN2X/lv30pz/NV77yFZ544gmcTmf253feeSd/9Vd/VdHBCSFubarqRvV6GA1NZGeDVc2DZxGzwYsVDcc43vcKlgWbW5uxLDjW90rJ2IWqelC9HkKhidmV0ybwej2LmqleCV5dZXfnVhQFhodGURTY3bkVr165ld1qdRX/hnXUrpHZ7MGBq/zbt47y9DeP8m/fOpqNYsTNBKaRoMFfNzsb7SNuJDBzOnfEzSTxWDw7Y93o1zFiCczZ/s2ZP5TuBAUuDF1FURQOdN694jPPul5Hy4ZmdL0u7+fhcJSrV0ZkplmIVVb2jPPf/u3f8qUvfYnXv/71fOADH8j+/J577qG/v7+igxNCLJ2u+9A0FcMw11wvU9NMYMbiNPrXMR6apDGgYxrxii9GcW7gUl77scUUH6YZx4zF8fvXMRIaw+9fRywWzxZaq82tOvF4XQwPjWKlLcKhSda3NuJSXRVZcntLRzO7u9qzs9kv9p7h3Cqt9pdrMmwWtKGbDJuc7D2dMxudyTjnniCYuyjLXP/mE32vZnLXyuwy4Zqbi0PXZv9QGmdLa0vmD6XxlblvHTu30t29H82rZtrOHT7B6YGhlTm4EGJRyi6cr1y5wrZt2wp+nk6nmZqaqsighBCVsXPndrp7DuDVNGKGweFDR+nvP7Paw8qKhGMc7XuJA513sbm1GdOIZ2eDq2wRhVLqdO16YRwpXKghGo4t6mTA/LG9zIHOO2ltbSEWi3Os78U1swhEwkwRjyXR/bWEQ5Po/loSsSTJG+yPnMurq9zVtY20kubqUIh6fx13d20nODJxw72Tl9vgwNXZzh0Ld9WY6+5RpVLQVWNu1roxsI7h4DB+fz3GCv6hpOt1dHXvAxSGBi/h9zfS1X0fwZFxmWUWYg0pu3DevXs3P/7xj9myJf8kma997Wvs3bu3YgMTS7H4BI49+2uVDJqV2nexfFel+08vIdO8rBlmu6Vlmu39ke37s2eJ5+i6j/vv78l89XzhKv5AI/ff30MouPAqWqXyl/brq3KOXaW4FrwOKCiE5/obnz99hbFgBK/qnS1mYvP23c3NLduVajd3o/naswMXCI2MoaqebFcNB1V5j4u9T3M1pTLM+Zc9tkyzx/Y4uR35z7/LMXvsyRSDR4fY2dXO5vYACSPJmb7zKLEUtdWZMdnv5YyV//6eSuc/zsnZrkn1mkqd18OVoRDOdBVGyGR9ayP1Wi0z4Uz+c8a292lbTtzeE3rGlpdNK/Y87dKzoXOz0QV9uXP2HQ5PMhVOFdw2Eo5xrO9l9nfeyZbWlmzGORKetD3ftnGX6OtcytxrUdXcaJqHC0OXSKctQqEgra2b8WguJmYfc/uxCjLMVvHJq4IMs+329pHn9oEut7d5qc8Sq+BxK7q7yrLsFxfu61z4G1H6Ot/uyi6cH3/8cR555BGuXLlCOp3mG9/4BgMDA/zt3/4t//zP/7wcYxRC3ABNU/FqKoNDFzO/iIOjtLVuRtM8ay6yEQnHiIVvbGavTvcuqd3cYsa21trQaboHt+oiHIzS9+2TuFQXSTNJMlKZFmUJM0nCSLLOX8tEaJJ1/lrisSRxo7DgvJWcHbhIaGScao+FaSZW9NsFwzCJGQZ+fyOh0Ch+fyMxw8Q01uYMvxC3q7Kn3d72trfx3e9+l3/7t39D0zQef/xxTp06xXe/+11+9md/tuIDvHLlCr/yK79CQ0MDHo+Hu+66i+PHj2evtyyLxx9/nPXr1+PxeHjggQc4cyb/q+jx8XEefvhh6urq0HWdRx99lFhsbf0iFKLSMr+ITfyBRhwOBX8g84vYuMX6v6qq64bbzd2MNu5oovtte+h++x4637YHPVDH+NUwRgVyzXNi4Tiv9J7HsmB9ayOWBS/3niO2RmMalRQJx7h2Nb9zik+vpWXD8raoC4ej9B4+jgW0tm7GAnoPH1+xmIZPr2V9i3/NtOETYq0qe8YZ4DWveQ1PP/10pcdSYGJigp6eHl73utfxL//yL/j9fs6cOcO6deuy2zzxxBM8+eSTfPWrX6WtrY1PfvKTvPGNb+TVV1/F7c784nz44Ye5du0aTz/9NFNTU7znPe/h/e9/P3//93+/7PdBiNUSDkc4fPgY3d37aWvdTMwwOXz42JqbbZ5Pne5FU1VMM1ly1tg0k7PZVJ3RYJjGgI5hJNbMSXyV5NU97OpqBxRGBsdY11TLzq52wsHokgrnuRnsaCyePbHw0sAwweEwbs1JwkitiaJ5bmXAuJlYsaz19o4t3HtwZ/aEvcOHj3J64PyyHGug/xzB4bGck3mjZUc/bsT2jlYOdt6N16st2IZPCJGhWJY9abR4sVisYCXBurq6BbYu38c//nEOHTrEj3/843mvtyyLlpYWfvu3f5vf+Z3fASASidDU1MRXvvIVHnroIU6dOsXu3bs5duwY+/btA+Cpp57iwQcf5PLly7S0tJQcRzQaxefzkZmgX8kg1kJKjaGC/YxLKJ2JXjlF71vZv3yW75dV+X2a8/++LeilnJOBnS+TrOt1qJqKOfuLuJyx2fOc9mPn5pjtWWx7prngsv1+zI49k1e+A01TMY0Ex/tenXd5bCsnM3v9Nm6M2Yzz2Zzb2DOM9rxmKfYcc25v5lJ9mT1Wfns4N868y6rtcVOr8o+lVl9/Xde36HS9fQ+hoTEsy6LGodC4pYET3z1J+Fqk5Lt72vZ2Tc5Ay44mdhxsx6U5MWJJBvrOc+V0phd0Km3PRF9/HKfseWnbYzpdIuM8bXtOCjPQ+bfPrAy4HVVzEzPinOw9nW1HV/D82vPXSn7meYr8yElKyf+jI2VlinKfXst/eNtPk2aaUGgcv7+edHqKb3/r6ex7adrKPxnTKujzW14mtlhf58Lc8I2/X+eO5dNrecvbX48C2ftoAd/91g/y/sieseWn7Xnq6XQSXa/LFv3jE/mtSAofl5mi15envNuWfI5yrrePs+BYBfuy/060j23t/M68NVhAmkgkUtH6s5iyq4PBwUF+7ud+Dk3T8Pl8rFu3jnXr1qHret5McCV85zvfYd++ffzCL/wCgUCAvXv38pd/+Zd5YxkeHuaBBx7I/szn83Hw4EF6e3sB6O3tRdf1bNEM8MADD+BwODhy5Mi8x00mk0Sj0bx/QtysMv1fh2+KM/MzeeU7snllRYF9nbup071Fb3du4BL/8u2f8P1v/YR/+fZP8ormW0nCSJKMpajze1EUhVq/l6SZImXeWPZY9XnYcbAdsAgNjaEo0NHZjuarXC/oSsisDLgdULg8FMIB7Onasez9pVXVjeb1EAqNZ1vUaV4VVVtbj89SqKoHr5Z/H72aB1Ut7z527NzK2//jm3nHf3wzb/+Pb6ZjZ2H3LSFuBWUXzr/yK7/CxMQEf/3Xf80PfvADnnnmGZ555hn+/d//nWeeeaaigzt//jxf+MIX2L59O//6r//Kr//6r/PhD3+Yr371qwAMDw8D0NTUlHe7pqam7HXDw8MEAoG866urq6mvr89uY/fZz34Wn8+X/bdpU2WXABZiOel6HRvmWUCh2PbzLbiwGlTVjWbLK6uaG1V1lbxtNBxj+OpoRU4IXKvMSJwzR86DpeBvbQAUzh45j3mDJwW6NScuzUk0FMOyLCLBGG7NhUsr/XjP8eoeGluWd8lvz2yOfTwUnV0ZMIqquSu6UM58TDOBEYvj99ejOJTZFnUm5i10noBpxokZ+fcxZsQxzcXfx7lWegowNHQRBeju3o+u+5Zt3EKslrIzzi+88AInTpygo6NjOcaTJ51Os2/fPj7zmc8AsHfvXl5++WW++MUv8sgjjyzbcT/xiU/w0Y9+NHs5Go3eMsWz/WukpUY3it2+0jGOssZaMpqxku3oylNyid4i0Y5dOzvo7L4Pr1clFjM50vt8Xh7T/jXwjo52urr2ZvObfX0vcHpgcMHt7ZGF3HhGqWhGwW3tsRKqiJtTmEYKf6A+m1c2bSvAzafcdnP2sRTcT9tlexyjJiduURjNsEcxbJcd+cfWqh22y4rtct5FZi4NcyEawam6SCcSpCNxAu65cecrbEeXv29lJoUzlWLDBi+xUAxXgxeSKbTpFIpLITGTv33u5VTaYsOOJnZ1tePSXMQmE7zad57LA3Mxj/yjT9mO7bDHKWzv75mcr8CnjGnisSQN/jrGQ1HW+X2Z2XczhaNgT4WPg/35LHzt2doszr52Y+EEx/tOcW9nB22tm4gZcfr6XiASMVBmX0P21/kMtpZw87Q+y4002L8JKvratX+kFrSjs1+dHzOwhw4UHIxPjNN7+DgHu/awpXU9hhHnSO9JwuFIXqTJsrcbzHl+3KoLr6YyNNfBJzTKli0by+rgY/9cW1p0ozwFrfJyH9cyY13i1ld24bx//34uXbq0IoXz+vXr2b17d97Pdu3axde//nUAmpubARgZGWH9+vXZbUZGRtizZ092m2AwmLeP6elpxsfHs7e3c7lcuFyLn3ERYi3Q9To6u+/LzPoMXsLvb6Cr616CI6PzxjR0vY6urr2gKAwOXSbgb6Czay8jI6OrtshHZnnsV9nXuZtNrc3ZjPOtPIt8I+KROPFInBrHwn+cun0eqj0uUvEkiQVmpOOROOePnqf9QDv1mxswYinOHV3cDLaWc6JicHAMze9ld2c7EyNLO1FxPpmVAc+wp2t7dmXAk71nVuQEwbMDF7gyfDnby3tsYnRJ++vYuZWu7n3ZRYl6Dx9noP9chUZ7Y04PDDIyMkqt5sUw42W//00jnungY2uld6t18BECbqBw/qu/+is+8IEPcOXKFe68805qavL/2r777rsrNrienh4GBgbyfnb69Ons4ittbW00Nzfzgx/8IFsoR6NRjhw5wq//+q8D0NXVRTgc5sSJE9x3330APPPMM6TTaQ4ePFixsYrbl67rObNH4VUbh6apeL0qQ4NzCyiM0da2GVXzzFs4q5oHzasyOHQZK20RDI3R1rYJTVNXdXW868tjuxbVVUMUatzWxJb97VSrLlJmkovHzhM6OzLvtsGzI0yGojhVJ5OTqUXHPlxqJtIRHMycqBgOTtLU2oBbdVW8cAYYGrjK2EgYj+bCWMGuGgCR8GRF3hPXIw0KQ0MXZ1cH3MfIcGjVz0GIhCeZjNzYYzrXSq+rex+tN1kHHyHKVXbhHAqFOHfuHO95z3uyP1MUBcuyUBSFmZnKfa3xW7/1W3R3d/OZz3yGd73rXRw9epQvfelLfOlLX8oe9yMf+Qif+tSn2L59e7YdXUtLC29/+9uBzAz1m970Jt73vvfxxS9+kampKR577DEeeuihRXXUEKKYnTs76OnpxOv1EovFOHSoj/7+gdI3XAaGYRKLmfj9DYRCY/j9DUXzmKYRx4iZBPwNBENjBPwNGLE4xhpYcKHc5bHFdW6fhy37MzPBExfH0Bpr2by/nclQFGOBRWbmZrATZXx8J80kSSOJL1BLJDiJ7veSMJIkKrDk90LmVga0d9y4WWQWJdLyIg2trZvRNHXVC+elGug/x8hwaMGuGkLcKsounN/73veyd+9e/uEf/oGmpiaUZVwnc//+/Xzzm9/kE5/4BH/4h39IW1sbf/zHf8zDDz+c3eZ3f/d3MQyD97///YTDYe6//36eeuqpbA9ngL/7u7/jscce4/Wvfz0Oh4N3vvOdPPnkk8s27uVXIuiWl5FbvSxvpVvfFR6g2H1b/vut6zo9PZ0oisLg4BCBgJ+enk6Gh0fyZp4L2s/ZFLafKt5yyp4FnGs5FY3EOdL7PF1d99LWthkjZnKk70Wikfi8y3JHIgZH+l7iYNce2tq2YMRMjvW9SCySyLatKrnkdk6+01HQGmvhHLEv26c5UZEC2Z5ZLZWOtG9fZeU/PjW2lnGFy2Zfv95jby9nWyJbs7WX89oyzF7bU1Nbk//+1qrz741adf2y05F/XZVioa1TafBVE700yroaC6IT+DY1smmdQiSZ330jMZP/OMRtl83p/MvG9PWxx80kV44Pse1gO+u2NTI5meT0kUGqjSS+GkfRfDRA0rJnoPOPZV/SO5WzjLbD1govbfusmbZ99Dhs+66ytQC0Z9gt2/Luua/zctvL5WaeTTOBYcQJ+P3ZSINhxDGNRPb9UWz/hW3TbBso9qsd9h8U3X7G3lotN+NccB5B4RLcE+EwEzf4rVt5meaVzD/nv3/Lff7n22O+m/OPwNtZ2X2cNU3jhRdeYNu226fVzNrr42xXbEzFC8hlL26X0yoXzhs2tPDzP/8OBgeHSKfTOBwO2tpa+drXvsmVK1evD7NU4Wz7JV5O32aAKsWVs+1c32YPphEnWuJr97k+rprmwTDiBV/VLqVwnq9nLMC2jk3sn+3TbBgJjve9wrmBSyUfJ7vC/qrX2U8WtLuVC2dnnUr7G+9FAYyxSdSGzEpw5//1OQzb62FJhfPsw6/6PLhUJ5HJZF7MIzGTfz8SM/ljLSyc7X2dFy6c7SceF/Zttp8UN227/sb6OkNh3+ZS/Y3t1+/oaJvNOKvEDLMg41xOYWZ/f65bp+f1bF/oPZi9rBR/zxUrnAvvd/5jWtAruaJ9nJdWvJY6Vt59LRi3/eTPcvs4Fx5NLMXK93Eue8b5Z37mZ267wlmI+WSiETECAT/BYIhAwE8sFlv1qEM4HM1+7TvfTLNdbn7TPktcaT7dy/7OO0BRuDg0TGNAZ1/nHYRGJphchlzszc7t81BbW8OUmSQRXdzjk4qaDJ84S/N92/BtamTKTDJ84izJqImrTqPG42QqniIZrczr1IzEMSPxgkJ5ravTNTyqi7iZZCx8Y32wb4Q90lCpiEbHzq10d+/PdsjpPXyCs6cvVmTfQojryi6c3/KWt/Bbv/VbvPTSS9x1110FJwe+9a1vrdjghFjLwuEwhw710dPTSVtbazbjvJonCK51HtWNqnm4ODQMFowGw2xubUZV3bdV4az6PLg0J0kjBQv0y/XPnuBX660hZSa5dPw8Y+fmP8HPLnx+GHM0SrXHyfRskbyuvRn/fduo8biYiie5duIc104HS+/sFtTesYF7O3eheV0YsSRH+17k3MDlFTt+7h+3lTB30iEosx11Gunqvo/RYPimz04LsdaUXTh/4AMfAOAP//APC66r9MmBYrGKBdeKdzgt1Wu5olGOspe9LqX4/nK7XVS6S8Tc14z9/QMMD4+U11VjiY9D0SV5S/SnLdW/uGB/9jy1Pcecc7nksXGQMFOYRhJ/YB1jwehsn+YUcXOqIIda2sLb2+fNS/XxrbHs0Yz8zKuH/MvunDhNuX2Zt+8K0HagHZfqImkmGXn+HKM5HS98NTO46jxs79oCSpr08DC1DbXs7trM4OQoNaZxfRxV+V+PV+W2p5sxcMQyl2uaVdZ3bWSGFMngKN6GOtZ1bsQTDTKVM/NsTOdPhBjT+b8iJqev39fJqYVjHPNdrrGdD1OTzr990tb3OZnO/12S+1lUsDy3/fm1vZbSOa+IWl3lQOedKChcGxynwe/jQOfdhEcMomFjdnv7Et45x1viR6K9z7M9NlDqPTmfzEmHKkNDl6+fdNi2CbfqIj1xff+OMuO1uZGFdInoRcFtlxzNuPE4Rrk9oMtbclvc7sp+h6bT6QX/SdEs1oqdOzt45zvfxs///Dt45zvfxs6dO5btWOFwmCtXrspM8yJk+jS/gmXBptZmLIvbqk+z6vPQdqAdFBi7OAYKbN7Xjrsuf3njGtVFjerCHJ0EyyI+Npn5med6Ae+sU/EE1lFTW3rFviqPm2rVTXIsCpZFcixKteqm2rN8/epVn4d1632oa2z5bo/mwqO5GQtFZlchjKB5XXgWsTrlWmUYZraPssOhZE46vMVWOBRirSh7xlmItW7+bhddDA8HpbhdA+b6NGe6atxefZpdqhOX6mLsYqb3cSwUo7atHqfqysswT5lJpswkamMt6YkJPA21mZ/Fk9QAdW3r8d+7HY9Ww7SZYOzkGSYHry543Jl4gmkzgauhjuRYFFdDHdNmgun48rSOa9rexMb72nF5nSRjKc4cOc/5U8PLcqxyxY0kcSNBg9/HWChCg9+HEUsSX8Y2esttro9yd/d+Wts2ZTPOEtMQovJuqHA2DIMf/ehHXLx4kVQq/6SKD3/4wxUZmBA3KrMQiDfb7SIYDNHe1j7bKzW82sO7Kfn0WlTVQ8JMVST2Eg3Hlj3TXKdrqKob00wQW4H8tKZ7cKsuqpJTBd0r5iTNFEkzidefWeLa6/eSMpOkbEVbMhrn6onztNzXTv32FtLTaa4dP00qaqLVq/jv3Q6AcTmEq6GOhj3bSYyGSRvGfIdlatIkevYi+p7duPRakhNRxk6eyYtpVIrH56F9fzspyyI0NEad38v2g+2MXI0s+LispMmwyfO9A+zt6mBDa4C4keC5vlPZmMbNaqD/HMGRsbyuGuV2qhFClFZ24fz888/z4IMPYpomhmFQX1/P6OgoqqoSCASkcF4TcoNrxXo8z2cVM9AlxlLK3C8J00hixOI0BZoIBoMEAgFiMWPVu11k2fN3S8w8O3Jub28vVSrTbM8wF+ybKrZ3bOFA591oXg9GLMmxvhc5M3BhnnGU6ledf321ZWu7VyIjXY5tHZu4t7MDj9dDPBbnhd6zDA5cn5Gtsn30uWzt6DzkX3bbWsypVdfH5qly0LKjiR0H23FpTkikOHvkPMNnMrllnzPnPZQwGTt5lk372tHb15Eyk0y8cAYtGUWbTQroztnJiCtDTNcrqP6tVPnceLvaqHclcEyMsM6nEL86gtM9BaaJu6WJtH+KtCOcN86q2XZ17s2b0O5qpMqbxJpOw7VX8Y2fxl2Xfz/NVH7WO5bKjy+Ecy6rVfm3jUxlnt86vYZ6Xw3XBsfxVllYEzEaNjfQqLuojl9fgKXaloGutvV5rrJlolM5GegpK/86+6eavZWdPbN8rX+c2PALeDQXcSPJaCSMi/yWg3lyD2f7SEwrxSOKuS3doLBNo31sS8nUlnvSYTmt70qNq9zMc6Ei/avLzCwX3H4F+z6XT/o632zK/s30W7/1W7zlLW9hYmICj8dDX18fFy5c4L777uN//I//sRxjFKIsmW4XvVhWZll2y4JDh3pltvkG+PRaDnTejaIoXBi6iqLA/s678em1qz20BdXpGvd2doCicHloBBSFvV0d1OrashxP9XnYcbAdyMywgsW2g+0LZnvHzo3Q/y8nOfUvJ+n/l5NMnJs/wuCsU9F3bMLhduL0efHtaqX1F34WT2sLM/E4znofKAo163Rm4glm4vOvCljl9aLdtRsFiA9dYsYwUNtbqfIuz+MxN4Pu9XtRFAWv30vSTJIyV67l22JMhk2CVyZWdOluIcTNr+zC+eTJk/z2b/82DoeDqqoqkskkmzZt4oknnuC//Jf/shxjFKJs/f2n+frXv83XvvYtvv71b9Pff3q1h3RTUlU3mtdDKDSOlbYIhSbwej2oapHZuVXmUV14vJ68k788mht1mU7+cmtOXJqTaCiGZVlMhmK4VCdO1bngbRLROJPD4aK9mas9LtzrvLjq68AC4/IIVc5q6na0ETt3ESwLd0sTYDH50ilmYvNHDRxuF1UeD1MTYbAspibCODxuqjzL8xwmonEuHj8PFjRsbgALBo+ez1scRdw8dL2Olg1N6PrKLC4x/xh8bNjQgq77Vm0MQswpO6pRU1ODw5GptwOBABcvXmTXrl34fD4uXbpU8QEKcaPC4bDMMi+RaSYwYnH8/npCoXH8/nXEYnFMc/7ZzbUgbiaJx+J5J3/FjQTmMp38lTBSJI0UdX4v0VCMWr+XpJla8gzrdDyJNZPGqddiXB6hRlNJhidRqqpJBscxL15Dq3VkZpsXKJoB0okkM/E4Net0kuNRatbpWJZFlabiWu/Cmk6jVDuwptOkommmJxfel7NOpdrjypxUODa14HajZ0cYuTqJU3WRMpPEI3FupI/bXG48YSZJjd/cGeTVNLeaaMJMlhXl2NHRTlfXvWhelcnYJL2HTzAwcK70DSto587tdHcfQPNqGDGDQ4eOyESIWFVlF8579+7l2LFjbN++nZ/6qZ/i8ccfZ3R0lP/9v/83d95553KMUSxJsR7P8yne97lw7/n7X1rmudTy4CVOdCmS1y2Vly2ZgSvotZo/lmL5P/t1hbe173v58nil+jLbRcMGx/peZn/n3bS2biQWi3Os78XsCYLFHld7ZtmeabbnjMvNPOde78jJvM6Mw6nDF9nTtZ2tWzYSjyV5qfccMxNpVDLxCZctw+yy5bPdjvxjuavyL6tV149XE49z9bnzbN3fjr6tAeJJho6doyZu4nOCXpP//OvO/N7L65z5Bf069+zM7JRB8qUXcO5uwN3awFQ4wtREhKrkCPXOEWZSMTwzCXAC9ZmbVNfk79tRNQOEqL5q4e7YQ22jF4fbCZbFurd3ovgCWFMplBonM+OjmJdCGK+8TPJSZsW5WPx6qzvPlo1UddyRLZwvHB0iOngte73TkT+jH03EIBGjGlBdUD3b79rj8+BUXYxHU7MF9ezYp/I/OzZtXU9HZztuzUXCSPLi4bNcHsjkxqtsGWePz50tsGPhONO2662C1469by9F5b5HZ5T8Pxjsy7Xb38/21TvtS3LbeyunKxxx7ehop7P7PrxeFTMWp7f3OU4PnC95O12v42DXXiwsBgcv0uivp6v7PkZGQoTD0ZKfmaWz2qX7Quu6j+7uA6BYDA4OEgj46e7Zz7Xha4TDkZL3YeHBLXXs5bB/Rpb6fC8SqBdrQtmF82c+8xkmJzO/ND/96U/z7ne/m1//9V9n+/btfPnLX674AIUQq+vMwAWCI+PZDhWVXkxmOQwNXGNsJJI9+csML+8M+ciZEaLBKC7VSXUqmVcQLkX0lbOMfCtB7T134KiuZmoiQuLMy8zEymvhN31lCDM8hsMXwH3n/kw2Wq+HmmqqGwLMRCZQPCq4XGh33Mn0xHjeMaq8GrV37iI+BeaVIK56H/57t5MYi5AqozNHYHY1RJfmIhpNceXUVSLDYZJmCmP0+mOm+jx0dLajKBAcGsMX8LKrs52JkSiGrUPKpo4mdna2Z5/rV3rPM9i/cGu+5ZDpOpN5f4xNrJ22drpeR2f3fSjA0OAlAoFGurruJTgyWnLmWdU8eL0qQ4OX8hZVUTV1xdrcaZqG5tUYHBwknbYIBkO0tW1B07SlFc5CLEHZhfO+ffuy/x0IBHjqqacqOiAhxNoTCU/eFAVzrsmwmT3xq2oJHTrmM9+S2fFInHgkjlZd2Vmi2KkzxC9dpcrjZiaewDMTuqH9pI1JqNGgykHajEGNi5lwmBr/elKRCRwuN1hpqhsbqK5vyC+cPW6qVA/JwYnMAirjEWqaNlDlccEiC2ePz8OW/e0owPiFMep3trD14P2MnBshNmrwcu95rp3OzCi7NCduzUVwKNPvOhKMUb95HW7VlVc4e3UPuzu3YgHDQ2Po/lru6GonNBwmtkIn/W3v2ML+zrvxej3EYnF6e49zZmDohvc3F6swjfiSC1R78RsMjdHWuglV85Tct2nEicVM/P4GQqExGv0Ns4uqrNzJlIZhYKXT7NixjStXrqFp6myHJIntiNVTduE8ODjI9PQ027dvz/v5mTNnqKmpobW1tVJjE+K2oOs+NE3DMAyZRVkmtbqa/cp/qV0UNuxo4q7urdnC+fKJ84ycGSl9wxtQXavhXKcyE0+QCo1lfriEhfisZBwrbuJwazCVpEpfRzqZpMq3DtJpvHfvQamqIp2aAssidnoUyCygMmPGcdX7SI5HcNX7MOJJZspYQMWpunBpLsYvjFHjqaG2sZYadxWTwUmUKoXtB9uJjEQxI3GSRoqEkcQX8BIJxvAFvMSNJAlbTt2tuvB4XVwdHMVKW4RDkzS3NuDWnCtSOPt0L/s770ZRYGjoKn7/Og527SE4MnZDf2ju6GjnYNdevF6VWMyk7/AJBhYRq1iIvfgNZIvf0t+IhMNR+g6foLP7PlrbNhGLxVZ8UZXm5ibq6urYfUcH9957D6+80s/Xv/4d+ZwUq6rswvlXf/VXee9731tQOB85coS/+qu/4oc//GGlxiaWRanZsMr1fV5qj+eCTLNSPPOad12ZvZHt+7Ln7ayCVpuVySHv3LmDnvu78Ho1YrMnviwmf7iQgj7NBdnO4n2d7Uptn9u72Z5ZrrHyM6815HeZsGeaa2xZ0Sp73+ciGWf7a6065/Lmjmbu6d6e91X+8On8QteeYXZXKfNeVn0e7unZitNhMXlpjFq/l92dbaTHI9l4Rm1N/mvDnmmud+UXf41q/uxZvZYpuNybN1F7372ojU7Sk5OYLxxl6vIFtNrrM8FOLT+CUu3O37dSZXsdz4RwhC2q2vahVLtRqmuwouNUub049AAWTmbCQfQdTXh991Jtfi8zU8041Rf7qG3bj761jpm4yeSxC+jTIZiNQVcp+Z8tVUr+85+YMqlKxvE3q6Rn0qzzaxjjMaqmUkxFp6jb2MA6nxPFjOOpgYmhEJvu2IC3vYGkkaL/6BAzk8nMczWTuV/T8RQpI0lDoJZwaBLdX8uUkWLGnKIm5zNgZvZzyauruFUnhpGwFdb5r8WZgt7L16+vysnHe1UvtV4vF4eu4kg7GA9F2djqp1arJRbJPDf2LHBBNnj2YdP1Orq77sNSLIaGLhPwN9DdvY9QcPyGi9VoJMaR3ufp6rqXtrbNmRUFe59bcH9p2+fawMB5RkZGUTUPsVjxHtHl9mkutb1Pr6W7Zz/DI8OcPXeOjRs3kEwmGB4eqdjnb3YsRTPN9udrJXtCS4/nteiGFkDp6ekp+HlnZyePPfZYRQYlxO0gszR41+zS4BdmlwY/SHBkTGZUKsSrq9zVtQ0FJe+r/FgwekOrCbpUJ27NSWR2yezJUIyW9gacqitbOLvrPNSoLqbMZNF2c8VUeb3or70f14YWqolDUwsOVSPy/a8DJfLNnjoUp4qVMiEVLrg6PXKOdDSE4lSZmVZhZhpH81ZcP/0rTE9MYEUmUDQv1Ru3UV3fQMrIFPJTly9gXErhcLtJJxIYI+X9YZyIxrl8/Bwb923F669jOjVNbDTGVHwKb6OXeCxF0kzRtL2JrfvbwePESltcfOkKl16+wuh44QyyEY5zqu88Ow+209zaSCKW5NW+c/M+t5s7mrmzaytuzYUZS/BS71kuDixtGXDTTGLG4jT61zEamqDRvw7jBrvOqJoHzatyfugiVpmximJOD5wnOFv83kj8Y25RFftJjctN0zS8Xo3BwQuk0xanT5+5nm+emFjRsQiRq+zCWVGU7MmBuSKRCDMzlTwTVYhbW2ZpcI3BoQu2E19UKZwrxK058XhdBIfGs1/lb9m1nuY2P8ODobKL56SZImGkqPV7mZxrPWdcXzI7sK2Jjs7WbBu2S8fPY126XPa4axrqcbe2Mh0JQ2oCh+alZnMbVfWNEL624O0cTVupatsHTg1SBukLx0gHzxZuGI9ixaOkE7Ozwp5alKkETM2AYoHlAEc1Dr0ex/jY7KwzzMRiOdnn8hfBGTs3ghGKUqO6UBrrad7ZwrrNDaTMJOeOZb5p2bq/HRSL0dnlupva/Vx6+cqC+7w8MMLYcASX6iI521XDzqur3Nm1FYBrQ6P4/F7u6trG+Eh0SZGOaDjG0b6XONB5F5tbWzBjcY7mdJ0ph2nEMWImAX8DwTJjFaWUu6LgWmAYBrGYQSDgJxgMEQj4Jd8s1oSyz5h57Wtfy2c/+9m8InlmZobPfvaz3H///RUdnBC3MsMws78YHA4l5xeDrGRWKQkjRTyWRPfXojgU2u/ayMYdTex9/U563raXTR1NZe3PjMQ5e+Q8lqXQ0NqAZSlcOHaeeCSePfkNRSF8aQwUhU372nHVqaV3bGMxF3tSZr+tVXKumZ+i1mWKZhSs8YuAgqNtP3hKLxphRYLMXDuD4vHgqGvAUe+HqircHXegdf80NRu3lH0fFjK3+Mvl5y/w8vdP8vL3TvLy908ycmYEl+rE5XUyObuYTDQUwzW7wEwxsXCcsavhBf8QcquZkw0nQpNYaYuJ0CQerwt3if0uxtmBi3zv2z/ie9/8Id/79o/mXY5+McLhKL29z4MFba2bwKJorOJWFw5HOHToCJZl0da2BcuyOHToiEwqiFVX9ozz5z73OV772tfS0dHBa17zGgB+/OMfE41GeeaZZyo+QLHSlpqBvv63WEGPZ3s2rMwccsFICm7vWPC6cvouZ+TnUu0PS2Hv5aqc6xb3zcvc0uA993fR1rYlm3Feyi8Gh60fceHjUF7muWB/RXLGpTLN9T4dj+ombiaYDJu4rPzrnfaMtO1YVbb7UpXzWnQoim3bzGVrcoqzR4e4q2sr2+5oYePWRq6dHyM0EMQX8HJvz3amRg2mYvlfrTttLy13zsMQPj/C6UgkO6vsMAzUaqitrcFbW0Pqagi3wyI9EcG3qZGUTyGeuL4Yij3THPDlf+1cXz+B4khQFTqFq3kjNdUeqFKYCb2Iz/MqzvrrrdaqvDmFoteian0aooOgpYEw6K3UGAYYmUy3NZV/x9LG3OqBQZQr/0DaehOO2gBKVTVW8Aw14SFcdQ2oPXcwdWqS6sFkdvbZsgX/0/beybb3zIzt+hlLAcNgxjCoAjxVDhzJJOl4koYmL8HhzIz+TDyFlUhR41h4X2nbR4v9kyFlZk42rPfXEQ5NUufXiMeSJI0plNn/5SrI1+fk8attr9NppYrJSJzJ2ahOqfMMCs4ryDn0mdMXCmIVpc5DKEfJfvUF29/4t8ilM8/2YxVu399/muHhETTVg2GYi17Qaul9mCuZY17JTLRYCWUXzrt37+bFF1/kz/7sz3jhhRfweDy8+93v5rHHHqO+vn45xihEnrkuFHEzedPPPvT3n2Z4JJTXVcOhlP22XPPaOzawr/MOVM2NaSQ42Xuaq/2jK3LsywMjxIKTrG/zA3Dp1WGqFYgEYwRaG3BproLCuZS51nMA2uzTNWUmSRlJ1IZazLFJ1IZapszyOk/MsYxJEkf+DdddnVQFnKSNMNMDh7Di0YW7akyZMBUD1Q9mKPP/UwZML+6rbWvsNNPXDBwNW6ja/lrSIwNgeaCqmppte3BoPrTmKIn+F5m6fGOzqqXEI3GGjp6n9UA7jVsaSJopzh5Z+nLdsXCcV3rPc0dXO82tDRixBC/3nluxlnXluBljFcspHI5IplmsKTf0G7qlpYXPfOYzlR6LECXt3LmDnp6DeL0ahpHg8KEj9PefWe1hLUk4HLnp/wAopk7XuLezAwdwZShIg7+OPV07mBw2l9wabrGMcJxrgyFaRzfgC9RijmZanCWNJEmjMgtWJKJxLh0/T0dnG75NjUyZSa6eOEdVGQuE5Jq+OsRMZAxl/RQkzUzRvBCXDjUq1thLKA13QV0bTMWwhg9DMrz4g8YjpMcu4GgZQ/E2okxZVLffDVNTzIxcAOpx77ybmYlxKGO35QieHWEqOQW1XmLjBmOXxiuy30sDw0yMRHCrLmIFXTXEzUTXdTRNLWsWWohKufWmtsQtS9d99PQczHahaGpqorvnIMPDwVu68FxuPt2LqnowzTjRZSgmPKoLj9fD8OAYVtpiLBRlQ2sAj+ZaVOHs1VXcmpMpc3pJxY4RjtPfe56dXe0EWhtIGkn6+85jROI4q8rrELGQ0XMjVIXD1KhOpswUyahJo7v07RZiGZNYJQoDpb4DZUMnOL0o6SjW2MtgXM3MNk/dwExdPEJ66BiO1v1UNbWiVNcwdfoEVsJgJgbVTS0objewPF0WAtuaaD3QjuVyZWechyvUJzsWjs8uyS1fn9+sMpMnuS08e+nvP73awxK3ESmcRZnsGehimefKrtbm1WrxemsZGhzCSpPpQtHamu1CkZvndSj5PYEL89D5L317Hq/w12p+5tmy37ec2xf0ny6hMMNY/HErllu27yu35+x8l3fsbGN/553ZCMXxvlc4O3ApZyTFs+K52U97ptllZSrGGQOmYtM0+xsYD0Wp99cxHZvBMiw8Obdx2fLUNYrCpo4mdnduxe11kTSSnOo7z+WBTBFVlZNrrrJlnKttL8tqR+YHE+dDvDAWw+t1kjRTmJE4nmqlINPssj2FTkf+696dc9lj65VcE49AHGqAmhrQXfkxkLk+zXMaGvNnVOs22HpMbxzLu6z4c1679RtRmn8aUCA5DFozyobXY43/BJIjkLBl1OP5f3g4IvmXlZrZ13n6OFw5y3RqB1b6NdQ441jeBGhNYIVxV42hevJfS/Gp/Oc/Pp1/vWcm/z1kzuQ/6C6HA7fPw7aDmdUFRy5m+mR3HGzHHI1ihnLjGsXPxUjbA9Y29vMvlqLkeQNK8evTtqHYty8nl2xZy9fZqqAftb3X/ZJzxfYDFt7vuRaeKGnOD54nEPDT3XOAa8PXypx5LuMPpxJ/ZFXytSRuDpWtbIRYRoZhYNi7UBjSheJGZVY9uxMUuDh0DRTY33kHPt1b0eNMhk1O9p7BsqCl1Y9lwYu9Z0rOHs8tp4wCw0OjKIrCrs52NH0JS+eR6YwxcS2y5NzsmlClQrUGyRBggeIE/T6UpgdRmh4EbdvCt63xgboBnPr81yfDWCNnSJ9+NtPfo2EzWGmmzpzEMku3W6upVXEH6qmpXXxXEafHhUt1YYzGsn2yXV4nLrWw+4Wme6hv0Zf8ehA3j7kWnsFgiHQ6TTAYwuv1omnld64R4kbJjLO4acy1J+rpOUhrWyuGYXJY2hPdMFV1o2puLg5dw7IsTCNO+7ZNBJobiIRLLLJRpsGBq0wOG3nLXrtss992LtWF2+tieGh2OeXg7HLKqgvjBhYvuSXNmJmT/1z+zH/79kA6CeYgVKko6w5gzSSBaZg2gdk/Vmp3oDQcBMsH6Wms4R/D6LF5D5EOniU9GUJxekhccS6qaPZs2Yi3Yw9VqosZM8nYC6cZO5U/s+7KWSgmObtQTCqeJGkm0Rq9xGa7aiRnF0bJtWFHE7u62nFpmW8iXjh8LvtNhLh15bbwvN7bOSaTJ2JF3VDhPD09zQ9/+EPOnTvHL//yL1NbW8vVq1epq6vD663sbJUQubLtiTQN04xL0bwEppnANBI0BtZRU1PN3n07cTlreM3r9mJZ6bzIRiVMhss7GTBpJknM9mAOhybRA7XEjSQJszIn890SpiJYE8dQ1u0HrR0cNTBxNJOPmTGhdg/Khp8HRclse+VfITGSKZrdzaCsA1cjin4HVj8QeiF//x4fitODlYpjRYaxzHUlh1Rdq1F39y6MFJhXQrjq62i4ZwfXrrxIavZESV/7ejbc1UGN5mLKSHL5xHkip0ZJROJcPHaezfvbaWxtIBlLcW62T/Yc1edhV1c7oBAcHMMXqGV3ZzsTI1H5g+oWN9fCs7vnAG1trcRiMQ4d6pMTBMWKKrtwvnDhAm9605u4ePEiyWSSn/3Zn6W2tpbPfe5zJJNJvvjFLy7HOMWaVSzzbM/A2fKyBX2d7fuePys814VCUarJ692cs729pVthxjlfqRzhwt2q56639X0uQ0Fm2Z6JdNjui+1xyc1zVynFM82518ciSU70neI1r7uX+w7uIpWa4vihfqamZjh4cA8Tw0bBghL2zHNNTi/mwoxz/rHtM8xuW6bZ5XCg6R7cqouEmSQVTXD26CC7utrZ2O5n2kjRf2QQazKJWuWgKmco9oyz/Vw/++Ua2xNozzjX2DLNLvv2Vdevd9syzu6q/Kyn5swv9Otq82dsvYGxvGWy3Rvz2/Qp7QGo9kGVB2biTDdeX9BkxjtbyDouo1SZVFXr0Lgea0ZFqQ7gcO4CKwXpOCjV4A1gjf8bjnVbwRlAiRswdSkzA73jP+KIBiE222pO34nL/XpwqpAySV88QnX0+qxxTU3+yYE1s/fbqdXgVJ1ERsJUYTE9EUbdEMCtOklPGjjrVFru3YoxA7HLo6gNtWzZ387wtRiJSJzRc8PERiMkqt0kzRTxSBwFmI2p4/E6caouRgYzy55PjEzS0FqP0+MkOpEpzGdsn0szts+aafv1tnxusdyq/T1QeB5A8Uyz/XPOvn3hZ9H126dLZZht+y6VeU6XyCnn5pgLMs0reIJl7rhO9Z/i2vC1El01yhxbGfeldKa5ko+L5KfXorIL59/8zd9k3759vPDCCzQ0NGR//o53vIP3ve99FR2cEGJ5nRu4hENR8K3zMnj2CvHJFIpDYXNrM6rqLntJ6qXY2NHErs52PJqLuJHkzJFBrpweIRyM4lJdpM0Uxq2QS7ZxbL6Hqq0HwVENxjikHTDRf30DbVtmRrlKhRkTpeoyVtLWRzltYKUNZuJVVLl3oVQ3gcODolRhTUcgHQOHF4e6lZlIL5Y1g6NGh+g1UDdl8s6+O1G2vhPrwvfBHEZp7s60nJu4AJofx+aDKOcOYZnFewzPxBPMxBO46n0kxyO46n1MxxNMz/azrva4qFbdmEMTYFmYY5P4NjXi9LhIzD6/iUiccGr+bxaSRmYxE1+glkhwEl+glnhMvom4nYTDYZllFqum7JMDf/zjH/P//X//H05n/uxSa2srV65cqdjAhBArY2R4nOGrY6iaG8Wh0OjXMWIJTLO8RUGWomlLPfvfdCdu1cnw0FjmRMCuzImARjjO+NXwLVk0u7bvxtnzbqo23k2VrxmltilTsLr02Q30TNFsAeZFsMCh3Q1VtfPuz5q6zLRxmBnjMDPxk2DlP2YWCswYWNHjWOkpqN2RiWxMT4J5CWZSmePrO0BrybS0sywwQuBUUVylT8SbiRlMvvwqFhbqhgAWFuGTA9mYxnQ8ybSZQG2oBUXJLhSTWuRCMWYk01YQLJraGgCLV/vOregfeUKI21fZM87pdJqZmcKvfy5fvkxt7fwf5uJ2kvvVUvHluUtFNyzF/jqzfyWar1gcozDeYFt6uMyv1+xf/eZGQ0p9hVkYzch/G9pb6VUp+UtZVzsWvlwsmjHf9dVWNfGJKV7oPcN9nbtobW3BjCU40dePGU5SZfuIyG0/B/nxjBrbdfZohr3dnMuReRw2djSx7013sPtgO2PDYaxpi/GrETa0N+CrdTMzmSnga+xxjLyoBvnXlRnVsEczanUPTo8rW8ypmpOUmSQxexJblXJ9+2rFHuvIf926bZEGjza7NLNai7p3Nw7NAeOnwVWLw1WLorVAIgCJaXAHmGncgpUaBloAhXRDB9N1gJVAca8DrhecVnouMuRGUbxMk0JxrgdmgCqU2CmmNQekR1HiT1OT7kBx7obpUazUEEr8AvgPoNQ2g74Th3M71pUTWDNTKNMxrOTc2OuobvCTTiSyS3DnSly4TPjiNFUeFzPxJFOTBnNLHqaiJsHnz6LetZO6jXMLxZzPzjZn74ttnzM5LeYunR5hPBjNxnpCY/kns07Z3oMz2KMa+c9R2na06YLPnoXZP1vs7zn7HZmx9b+2FHsrzIWPXSrWYW9tV6pFXLFohn3/pdrPFX7ulWpft4LLWpe9/Hc5EYml3g+JY9xsyi6c3/CGN/DHf/zHfOlLXwJAURRisRi/93u/x4MPPljxAQpRabpeh9erYRpxWdp21rmBy4RGJtBUlbiZIBpe3DLNS6XpHnZ1tjOTmmHsWgS11s3GXU1U11SRMJIkKrSqXzkC25poP9COS3Xh9Gb+KJk2EqTMJBePn2f0bGW6NyhuD0pVNRhj4KqDZBTWtUH6SubkPsj8fzoB1etgeiLz/7ioqtmBgoJS5WEmfRnLup49digNOKo2ouDEmk4CYbBmSFsmyuSPM7ENwEoMYE2cnT2OmekD7d0CaguMPQ8jPwG1C2VzF1w6Rvr8D7HMKFXN7VRvuxfvlJ+ZRJzEqetLcFd5Nao8bmbiCaaGjdmCuVDk/DWuXInbumqU1//cCMflZEAhxIoru3D+n//zf/LGN76R3bt3k0gk+OVf/mXOnDlDY2Mj//AP/7AcYxSiYjo62unsvo9ar4YRM+ntfY7TA+dXe1hrQjRceDLgcnOrLjyai+GhMaxpi407m2lYrzN6McypH/WveK9lj89D6/7MAhzG6CTr79yABZz/0SmcqovN+9qJBaNgLP0PCysRJx2dwDKrUVQ/1LfBdApr4hBMzXaLmYqQNl/God4JzmawLBQFSE9hWTEUawNVjo1MzxhkZp7dOKo2ApC2wijpadJUMzN9GisdoTp1vVOK4tyE4guAUoWibcWqroXURYhfnT1BME36qonSsI2ZwR/B6GkUdRvV2+5FAaZGrlKlr8O9K7MEt9u3kdo7d2cL59iRC8SGri54/5PReLYNnRBC3CzKLpw3btzICy+8wP/9v/+XF198kVgsxqOPPsrDDz+MxyON6MXapet1dHbfhwIMDl0i4G+gq+tegiOjjE+EV3t4t6WEmSRuJNEDtYxfjVBV42D08ji93zpJ9Mp4wfaqz4NLc5I0UiQn49mfeTQnqdmVAJfCqbpwai6iF8fw6CrpqTQWFtXOaozRSdZtbsCpukhVonA2J0mdfgGteSPWzDRELpG+2Et1/XP526UuMjM9Dg43ODSo24Blxch8oWzgQEehBoskilKDgpO0Fc5cb02iODIncSuKCxze6ycKeu6ARAgiz2F5NoFSg3XlaRT/fvD4IR4ClwaT12ByOLMPlweHS2Vm9BJYtcyEJ6hpaqG6voHazbtBgcS1YWrW6dTv6SA5Fllw1lkIIW5GN9THubq6ml/5lV+p9FjELafU8tyl2LJjBe3rimTo5jmUqnnwelWGBi9hWRAMjdHWuglV8xRENgry1/YWU7YcY9q6nlss1V6uIG9tazdXKtNc48j/A7UG9/VtbbetsfIv21tn2TPM9uvtmebCzPP1++K0XVdju99OR+HlqWiSs0eG2NnVzob2BhJGkpd+NMB0LE7TBj27LDbApo4mth1sx6VmlssePJr5pmDrgXbcXifJWIrzx84zcmZknkxz/mvRfv3cEt3peJJpM0mt30vKTFJV4wAF0lNT1Pm9TJuZjhG5GecqW8a5ymHPv9suV19vXZgOnsE6dzTb8k1JhmFTfd72M7VN1y8oVdQ4a4E6wKS62p8Zf40f8DGTtlDwUIUHiDNtuUDRqa7uBNI4fH5mEq9m2tNVeyF1CrAgfgk8m8Ecx7p6GKWpG7RWrEmL6QvHsCJxwMnU5BRVZhLUJqbHUlTr65gyUkxNV6O4VOJXR8ByMD06ieLXsVwepmefv6l0/vM/bc/+WvlPyrTt7Z6b351K5185ZWu7NmVrDzmNPfNsyzjbnkP7OQ+5l+2fBfb3SN06L6rqwjSTRMOxgs+iwiW37a3w7GO9/tmStn+uFcRjy2s/Z1dsWe1yM81lKyuHfDNlmiXDfKu5ocL5zJkz/Pu//zvBYJC07QPs8ccfr8jAhKg004gTi5n4/Q2ERscJ+BswYiamIV8Xr6a5lnN1tZlVBfWmOg68dQ9arYtkLMWZI+eJBKNsO9gOWIxeGKPW72XXT3eABalEirGhzM/a97cTDUZJ5UQAPD4Pmjdzcl+8xIz03AIcbQfa0BprGb8QwrLA21hLykhy6fh5EtE47vLiuMUlw5l/pSgaisNF2hrDoTSQKZ4BQsDcynopLEZQaEKhFsVRg8Phz/TztRLg3ECV4mLaPJLJTjsbITWa+f8ZM9NFw7iCZQ5Djcb0OSckri8yZJmTTJ1+npode3GubyEdj2O++hLTE+M44gmc63ykJiI41/mImUlm4ivXmWUt2NqxkT1dHaiaG9NIcLzvVYmCCXGLKbtw/su//Et+/dd/ncbGRpqbm1FyznRXFEUKZ7FmhcNR+g6foLP7PtpaN2UzznKC4OozwnGmJ+OoPg87DrYDEBoao87vZfvBds4eO49LdTJ6IbPoxWQoxrq7N6CgMPbSOMrszxpaG3Cpzmzh3LS9ifb97Xi8TpJmkqGj5wmWOLkvdHYEczSS11XDozmZyumqsdKU6haqnB0oDjcoDaStMbAMoJbrRfOcCBZxLFSstA7KDAoJFEc9isuDVb0eR2qQmcSrVLEuM9M8Y2KFj6OkwpldpMKZf4l67KavDTITGSUaayGdTJCOZU42nHyxH9/dO/G0NDETTzB+8jRTk5VbClnzebJLbEdHK7skfCXU6Rr3de4iraS5NDRMY0BnX+duRkaCeUvY+3QvHtVN3ExUdGl7n16LW63GMOJEwqWXRRdC3JiyC+dPfepTfPrTn+ZjH/vYcoxHiGU1MHCekZFR6aqxRrk1F27NRXBojCrFIhqK4W/NZHSTZopav5fJUIxavzcze2xBrd+LMfuzZCxF0swUkh6fh/b97ViKxfjFMbyNXloPtDMZyp+Rnk8iEs9rjzZdwQKwbIpGlbMDgPR0EActOJQGZqzw7AYeMl/R5xbQKaAalGksK4HDUc/1r/HTOFxtTE8+gxXsyy6sAoC2ITPrPFdAL8AyJ5key1/hMH7hMlPjEzjcbtKJBJOVaT4CQPP2Jjbc14Zby3wr8dyhM1waqOABiqjVVVxqNXEzWbTbjKq6Ub1uhoauYlkWo8Ewm1qb8ajubIG8rWMT+zrvyM5IH+t7mdP9g0se4/aOVg527cGjOTFiJkd6T3J6YOn7FUIUKrtwnpiY4Bd+4ReWYyzilmfPei2tr3NBX9Cc6wuyejn5vInwxJIL5oJlsW09i4tuW6Jvc0GfZntuOSfTbL/enmmutr3FC5cDtl22SmS7bTnUqpzrqwry09e39eoe9FqVhJnMthAr6KWsKMyYKabMFPUBL+ZYphieNlMYwShDx86zdX87TW0NJGMpzj47AED7/naaWxtImkkGj50jPWniqoLaWidqrZPxC2M4sIiPxVi3uQFVc5GezC+cqxQLt+9672b7TKmjIKe6sLTtMbJsl9PT+c+JNWX7GE7lzyA7ptMoaQfW9AiK4iI9E0dRNKy0Rjq9HoVqLKaxGGF6eiznllOQmsaqIrNkNwrKdAJr8iQOa4aqeBJlYrbLRu0OlPqDWJYTayqGdaUXxgeYMfNfT0nzer4+kbRdN11DciLFXAGfnFHz79ZsxtlVp1LtcVIdmcmbwZ+yRUdnZj8uVJ+H9gPtmDMWVwfH8AW8dHS2ExqOZLvA2JfQnrLlce19mWdsGWi7uUxze8cG9nZ14Pa6iMfiPNc3wNmBS3nbzr2HEmaKeCxJwN/AWChMg18nGUsxZaSpsVzU6RoHD+4BxeLK0CiNAZ2DnXsYHQnnzTwX9DcuEpGdIY1Pr+Vg1x4U4MLQZfz+Bg527WFkZJSJicITbPN2XWIZ7dxzN8rNNC+1b3OpHtRLIZlmsRRlF86/8Au/wP/7f/+PD3zgA8sxHiHELWZTRzN3dLVTV+shYSQ51Xuey6fnny00I3HOHDnP9oPtNG5pIGmmOHvkPGYkztRknGgwmj05cGq26Ir+/+3deXhb5Z0v8O+RbS1HsqTYluxs3pLgrJA9digwbdOGlg60cO90OpRCSzstDaW0vQzwzABdbiF05t5Ob8t0u23pdIPLDEtLKcukJUBihyyEJYuz2I6zWZKXI1nnaNd7/5CtSEe2JeE1yffzPDxE0tHRq9eS/dPR9/xebyC9QElmhjmqRRBVI7BVpYpwW1XqhL+RVqirWliNunWN6b7Cp/YcR+/xqTmiCbMDKLOmjvRm5ImHCREGRBgGYz2kEgdEST0AAUhGpEqAQQAWSKgG0ItzC6JEkIz1ADDCYFBThUugDSIZTH2kSQ7lj8sckCo2pB5L6QKsLkhzWyDUiX/+sxprULNmIcpkE6oCMZzacxx9eebZJBthshpx9lgqpuP3BuGodcIsmya1faLdacWqltSR/lNdHlS6HFjd3ASvp3/EI88BRcXetsNY3dyERUvmIx5LYPeOA+ltZdkMq82ME11nRz0i/W7IsgU2qwVdXachkgI+Xx/q6ufBarVgYOBd75aIRlF04bxw4ULcd999aGtrw4oVK1BWln207I477piwwRFNJafTDtlqgaaGMKCcv39x7E4rZNkMTQtDU6Z+AZFMNqcFy1oaAUjwdPbB4S7HkpZGDHgDSA6OfOLY2SMe+D0B2MpzW8yF/KF0cTzcCSPkDyEWyI1ShPwhdO3uQP26RsyqrURUi+DE7tQKdZlHjM0OC+rWpcaodPfBWlWO+WsbEfQFJj3TXDqnASWL3wMYrUBURfLkLgDd2RslVSQiXShzLAWkUghoQBIoMVQD6AMQAxBKnQw41JYufddED5LJAETiFKSSeTAgAQlAUn0LSAzlYEusQKkVULsAJAHVB6lqCYRzAWDxA6GJiTOZ7DJq1iwEAPhP9gJOB+atXQB1lHmWHRaYZCMMpSWIqFE43LZU0ey2pRbH0Sb3tW2RTZCtZpzs8kAIgT6fH/Pqq2GRTaNGNjraT0EuN2H9e5ajpKwUTcvqERhUcbz9FDQtDDUYRpXbiV6vgiq3E5oaRmicS9trWghBNQSXqwIenxeuoZOeVZ70TDQpii6cf/KTn8Bms2H79u3Yvn171m2SJLFwpvPS8MIoNpuMYFBD687daG8/Pt3DKtqCpnlY07wUVpsZajCM/W1H0NF+akIfo9wpw2I1IaRGEFb0J6ZlM8upzHJPVx+MkOD3DqK6oRJm2QRtlMIZSB15jgfH/4ffe8yDQV9qaeZoKJKzrDMAGC0mlMkmqL2DMDtkRIfa0ZXJpkktnCW5HMZLLoNAH6CcAGQXDPM3AGX+cwugDEv0Ixk7lWojZ1wCg8EFyVAFCU4IKBDpEwJjuQ8kNCRiR4H4aRj8x1NHmhMZJ48lVCCuAiYXgDOAezngbIQBAmWlESQ69yDpGf97odRiRJlsShXNQkDrHYRzftWI8+xeWI3q1QvSPbv9PX6Uueyobki1LDzQ2jHpi/WEtAg0NYxKlwO9vQoqXQ6EgiGExijY7U4rFi+rR0BR03GNNc1L4fMMDB2RPojVLUswv74m3XVjvCcI+pVB7Grdjw0tK1FXPy+dceYJgkSTo+jCubOTJxzQZMmTec7pMRrXXT63fTKp6xemC6Vm7iu1MMoqAAKdnSfgclWheeNq9PR4Cs5C63PMWQ89zkyz/nKJ7v4lQ/lqu9OGK9+7BkZzKTxn+mGRTVjTvBR9Hn/6CFm+THM+9U1zsLJlESw2M0LBMA62duJE+9mhfWcrlSTEQ1HE1Cgq3eXQejU43DZEtSjioShKpOzsb6k+86y7XJrTezmjl/LQthaHBUbZhHhGkRwNhJAYyiwP92/O3HUiHIbFZsSc5YuRiCdQUlqCgS4f4lokndI2jJFb1GeaY7rXXiSe/fMKa6mMeonFiTKDHXFfFyBMgDoIQ0UtStUYoJ37xqOs4jhQ4oMkrYQkLwSSqZ7NIjkAgVhqwZNEErHwDojQgazHMvZl/74uPZXdGk14ggCCEMG/QKrZiKS8EgbzQiTOdCHZcwLRWCNQfQXC3WEIbRChjIyzGsnO2qsxY9blkC7LHVLjCKlRGCvs0PoGYaxwQFOjCAZjiCQNiA01KbY4LKhduwChhICnM9VZxVbtQNu2Q0jGkghrEfT0ZReF+r7M+kxzTNd5JCmNnVtNIol+vx+72w5gdfMSzKuvTmecg0oo632UuSdZTvWKP9nlhZQ0YMA3iHn1LpTLNmhKBCfae9Dn8ae/EQooKsqQ/f5OSLoPPxkvL33P52FH27vg9fTldNUY61yPEW8fM/M8wZnmKezbXFymuYDH0+2dLi7vqo8zAESjUXR2dmLBggUoLX3XuyGadlarDOvQwijJpIDP14v6+nmwWuV3fRKh0+mA1WqBqoYQ8E/NymlLljdgVXMTNDWM2XNd6Dh6CsaysjG/Wi5GuVPGypZFgASc7vKiwmXHpS0L0e/xY1AZuetEUAnhYNtxLG1ekD5aeLi1A6oSglm/Csk4uRdWo35dI4zWVE75xO4O+PK0nhsmkKpPJCEVvUzPuyXCYYhwCJK7CiLYC8lWBRHVUkd/9UrKU/8ZzIBUBklKQsQ1JJM9QEk5kskBiKRS/CCMzlS+WuuB6HgSidAqABKS3sOAEEgG+lDimgvJJENo4zuCGQloOLP3OOasWQDH/Cr4AzF0D/XFzhqSbITRaoTneCrTHPAFUVVfiWQsib4z7+I5jkNH+2n0ehRYZUverhpA6ii1Goyg0uVAn8+PSpcDWjA7jhFQ1Al5P+r5lUH0D4zwjQMRTaiiK15N0/ClL30Jv/zlLwEAR44cQWNjI770pS9h7ty5uOeeeyZ8kESTSVU1qEENLlcVfL5euFxVCKoaVPXdtSBrWrwQGzeug80qI6hqaGvdh/bDkxv7sDttWLyiAdFIHJFwFJIBuHTNJTjwRseYXy0XwyKbYbGZcbrLC5EU6PcFUFc/G2aradTCGQBOtnsw4AnAUS4jktFVYyJZHBbUr0v1f+4/kTpKWbcu1XpupHhGJqPFhKgawbHth1BiLEUiGoetqnzSoxpJdRDhw2+h3D0fhopaiKiGZNduoErJ3tDSAMn5VzBY5kHEA0gm+iElZUiQAIMMSUiAiEJk9TEpgHUhpMal6RMTRc9OJE91wTB7GaRZtUA4iBJDNUQkBBGZmHZ8/cd7oPoCKJON6FUSI85vVIsiqkZhd9kQ8AVhd9kQUaOTnmkeTUBRC46FBBQV+9oOYXXzEsyvd0MNRrC37fCkFMpEND2K+54WwL333os333wTL7/8Mszmc1/Vbdq0CY8//viEDo5oKihKAK079wIQqG+YD0Cgdeeed3W02el0YOPGdYAEdHZ1AxLQsnEtnE57/juPgyybYJAkvLXnKEQSMJnLYDSVov3AiQn7ox3SwggFw6hw2SEZJFS47AgFwwir+QuaoBJC/xllUopmADDKJhitJgR7gxBCINgbTF1nMeW9bzSU6r5hlE0IKxqMcqqQjk1BoRY7dQLxt59D/O0/Iv72c0h6j2VvYHRCKl+dKowjPgASpGQolXU2lEIyOABDGQxSGUqNi2EonVPYA5c6IM1anzrMHugCJECq2QgASA56UTJ7BUqWfABl9UuRHPCN+2hzpkhAQ7BHGfVDScgfQsfuDghIqKqvhICEo7s6Ju21M9E62k/jxWda8fxTrXjxmdaCzzGwO62omVMJu9OWcZ0NNXOq4Mi4joimV9FHnJ9++mk8/vjjaG5uzlo1cNmyZTh+/Pw7mYqmkz4blud4WZ6+zkkxem9WkczeVp8zPnjoEM6cPZOOVyhK9slZuT1MRybLZthsVnR1dUMIoNfXh4b6uqzYh0HSZ7d1l3N6RGdnZnN7KxsQVlM9ZA2SAfteP4yaOZWIRmM4/HZHVtYwpxOrLuupz0AjY04VJYAjB05i9XsugbOqHAO9AbzZehT+AgtzfS9kfWZZn2nWJzkyM83AuVwzAMSGWs+VV9kQ7A2ivMqGmBZBPBSBAblHCDLj1ZFACKf2dGD+2qHuG2oEp/Z2IDoYSo9ZGuOlmdBlnIf7FQ8L6vodDwbLsy7LnSpSvY9LAFSgRD73tb5kd8PYpwKD7wDyGcC5BJIoA/yvQ6jHYZjVBMSDQPgUSoyVkOICwvMGEB/60OdXsh5LeIb2bTUBFoFYtwYIGZA0GGbVIRxtglE0ItZ+HCKsIpqsQtJUCy02F0l1EIHguQJO1T2vkK4fdSiR/boNJ7LnJZrUz9u5f/f1BKC83gEIYKDHD80fQkKc+/kndO/HuO6Vre/TrH+d5+vjrDfWuz/nPYPUB8Xho9QlOb3U9XuLD53UuwSyzYxBVcOetoMAgLXNS2G2lqYXSzl0+MiY49TnipM5fZl185LUnSeS0zv53P3z/Q4cb6a5qL7NE55pJipc0YWzz+eD2+3OuV5V1axCmuh8oyj+nIK5WKqqIaiqExb7KNTwGfvrmpehyu1AQAlib9uhCf2KuLFpLhYtn4fS0lLE4wkcfeckuoZODJxuIX8IJ3Z3oG5dIyrqKhHTIugeaj1XiN7jHgR9gXQf5+jgzDi6KaIaEAsCFhegnQEMZYDUB3H2WQBxoHweED4FQADRPqBsdmolwHieb0viKhBTIVldEKov9f/o0GvFJCPpOwkIgXgwjrLqOanVANWp6dJQs6gaC9Y3QpiNCKsRHBnq432hGl6qG5KEk10ezHKX44r3roKQgEgogu6us6hyz8K65uU403OW3TKIplnRUY21a9fij3/8Y/rycLH8f//v/0VLS8vEjYzoPKQofrTu3AMBgfr6Wog8sQ+n0445c91wOMtHvL0Yx9tP4flnduL5p3bi+Wd24vgEtqE7txiEhOOHTmNQ0bBo+XyUO8+tDmdzyqia64TNKY++o0nkPebBO8/tx9t/3I8Dz+0v+MTAYeFACINjRAimRdgP4d2Z+nKmvAGIaxDel4DwSSCuAYkQYKwEIKX+n9DOLZ89logCcXYnAAHDrDoAAokTu5FUfEBEg8FeCUgSSpyzkAiHkAyPr9dwoWSHBQvWNwKSgLcrtQriJRsaITssee55/hpeqrvPp0AkUwuj2GfZ4HTa0OtVhhZLGYBsNUOWzfl3OEWcTgfmzp0Dp9Mx3UMhmlJFH3F+8MEH8aEPfQgHDx5EPB7H9773PRw8eBA7d+7M6etMdDFqP3wcnh4frFYZqqqN2qf1kqZGtLSshq3cnu69eqR9fO0eJ+uM/eHFIM529adPDJxX70qfGFjfNBtrWxbDYjMhFIzg7dZj6D3aO+Y+ZYcFzho7IAHK2QDEBCzYMLxAij4Gcl7zt0OEPKlFSuIqMGsoAhH3QwT2QrKvAczzgUQIQtmT/2jzsIHDiB+PQDLKqSPbYT+EVono0TdgXLQKJa75EH1A+NBbU3a02Ti0SmDviXMdNdz1lTBbTUDvhXmCnaaFoQXDqHQ50edLLYwSGAhCSECV2wmP14cq9yxoahjaOBdLmSiLF1+Cyy/fAKvNCjWoYseOXTh0+PB0D4toShRdOL/nPe/B/v37sXXrVqxYsQIvvvgiVq9ejdbWVqxYsWIyxkgXDX0uLU9fZ30f51HvmfvVij4jOV6ZuWQhDBgYUDAwoKQeW9fHOSmScDrt2NCyCgICXV0n4XZVYkPLZejxeKH69T1nx+69mtn3NanLQxfbpzmnz/PQ8wqEBjGoBuFwyek2W4OqikFVhdlpxLKWRiQkgZNdPsxylWNpywLs843ejWDuJdW48mMrMXfxbAACpw978PZz++E5eu4osT7jXKJ7Kpk36/PThTLbU32fE6FwUUeaM38C+oxzWJftDcays8D9g9nfLpSUjN6PHABswb6hf8UAGGGcda6INVi2Q5jePNcZQ1fgJoLZR2ojSlX635LFjnDYDREOQWgCgAXB2BwYThmBs4eBRAJKbwkSQRWAEwCghKzp+weiuj7O+n7V+TLOukhrLAmowSi0YBRypQ2DPUE4XDaowQiCgxHEMjLOcd3vCn0f56Q+65vncj6ZI9efY5Czbb73nO61GlRS/aHXNC9GbX0NAqqKV//yBoBUxrm2fnY646yPkiVEdvu5ZJ7Lub2Wdb9bcnrjZ2Sch+bM6XRg4+XrAEmgs7MTbrcLGy9fh7Nnz0BRlFGfdlEZ5tToM+48sb+vx3wsojzeVQPmBQsW4Kc//elEj4XooiFbUwsldHWehIRSeH19qK+fmzpK7R97Nb5C2J02yLIJYTU6IUegUxnqw1jfvBzz66uhqWG80dqOQUWDe+4sWGxm9Halvmoe8A1iTn0VTLJpxMLZ6rDg0vc2wd3owmD/ICAkVDdWIn5lEwLeQHpJ7clWtbAatWsbYZRNkEQSnsNn4Dl4asKjGmXlMkotqUVZYoOTkHWPKKn/AED3wUlPstgBkwyDoxolc5ogJSqRjGiIHdkPACif1wzJbIEIhxA6+A4Swf6JH+8YNH8Ix3Z1YOGGRrjrU32/29s6oJ6HGWe70wqLbCqo/3NH+yn0egZgkc3whwYRGPqWyucZgFGWENLC415hcKJYrVbYbFZ0dp5AMing9frQ0DB8ArQy3cMjmnRFF87PPfccSkpKsHnz5qzrX3jhBSSTSXzoQx+asMERXag0NYRgUIPLVYm+vgDcrkqowdCEnER42dombLh8GUpKSzHgC2Bv28EJyTt3tJ+Cv0fNKgZMSC29HQqGMctVjgHfIGa5yhEKRhAZpZ2byWqC1SkjEYtDU8IABMpMZZBnyTDJxikpnM12C2rXNgKQEI8nULuyFvPWNOLU3g50vHoY/R3F5aNH42yswbx1DSiVTYhrEfTuPwL0HMt/x0kguRahrOpKSLZKlLgbkOjtRvzICRjsFTAu3wBAQsgvIe45ixLnLFiWLkfJyb1DR5ynztmjHvi9AUSNRkTUyHlZNDc2zcWqlibIVnP6Q2ZH++kx7zMcs4pK0Yzrgogr09O/ejSqqiIYVOF2u+D1+uB2uxAMqpN+AjTRTFH0yYH33HMPEoncr1yEEFz8hKhAihJA2869EADq6+dCCIG21jfGfcb8ZWubcNNnP4wVqxaiZnYF3DWzsKZ5KexOa/47FyCgqPCc6c86gjaoaNjfehQQwJz6KkAAb7ceGzWmEVEjUBUNJWWlkJ1myA4ZpUYDtAENES33aLvFYYFjtgOWCTxBzCibUv2atQhcC6oRUSOIqRGUGksxf20jzPbxP5bRLqN69ULAAARP+wADULXyEpSWj/6zMNhsMFS4IcnjP1k0i9kBQ+0GQJIgBr1AmQmG8kpIRjOSgX4YbHYYrHYklAFACCSUAUhmC0os03MymuYf6vt9HhbN506kBU52pT6ArWppmrD34HRTFD927NgFIQQaGuoghMCOHbt4tJkuGkUfcT569CiWLl2ac/3ixYtx7Nj0HEmhC1WRmeesnqP6rJ8uw5anl3I++l7LGfFLJDH2srfD9z3cfhQ9Hg/KbXZoaijdeSORZyz6jHMJUtlSh9OGtRsvQampBMePn0S5XYbTJSOcCKFETiBcwFe9Bin7q359D9r4KP1v2490IuAJwmw1IaxGMKhosEvZRVdyaI4GlRD2/7kdDqcFc5tmQ0gCZw570LXvBMyyERJSJ/kZIOBeWI2G9Y0wySbEQhF07e6Ad4RuGcl8LcF1OeSIFkFUi8Be44Sp3Awkk4jHkhg464etqhwlFhOSGUVbTkYeEsx2C8qG8tGRzHhHPDVnJUYZMMvoO+0BRAnUHg32+VUYQAVC2rnxxJKpObfWz4XzsiZEnRISoRDUtw8i3H0S9oCu77P13IeWEqPutabrjRwJp34GJRVuyHPnI3TSB8lkhcUeRYl9LvxaH6QSAwynAUAgVDYP0X4/jBUOiD7A02tELHhu8Z5g1Jj+d2am2WiXIdllxLQoIoHUkUctT9/myBh9nFPzossxZ/Zx1meadT2+9X2bc/objyPTqn8t6PdkspbBbDPhVJcHQgj0+fyYX18Ni2x6V7GppDj3XJP6TLL+fIec33u6vs05mefRM805+8+47fChw+g525M+AVpRlAIyzEXO+Ri55vH3aWammd69ogtnh8OBjo4O1NfXZ11/7NgxWK0XxidqoqmiKAEMTtBRNVm2oKSsFP19A7DbZQQCGuoXzMXpU54pORt/UNHGXHo70+kjHmz7v6+mumogFd9YsHwuGtbVIxKMomN3ByK9fjSsbwQkoK87tYx2/dAy2uONc4SH+j5fdv06uBZWAwLo6/Shot6FoNefd9XAygXVmLd2AYyyCXEtjFN7O9B/vCdrm5gWRUyLwFJZjlDfICyV5alFWUbYd2m5Fc7LUkcpI2fOomyWE9YVSxHrHwAw/myriIQgQlqqvZwygIR/AAaLjLKKWYgrCgb3pk5GK2laCfOcaiRCYQTeOoTYYP5Cz9lYg+rVC5E0y4hpEZzZexwDurm4mIS0CELBECpdjtSJtFUOaGoYoWlaMnyyKIrCo8x0USo6qnHdddfhzjvvzFol8NixY/ja176Ga6+9dkIHR0SF07QQ+n0Ker0KIAH1jXMRDUfR9tpbM+bEokyaP4Qz7R4oPQHMXzoXkiTQ19UHSRJoXNcIe7UjdYKhL2MZbWsqYjERgr4Agr2D6Go7hp5Dp2AoNaCirhKew2fGPEHQbLdg3toFAICB7l5AkjBvTSNMunhHJKDhzN7U70n7/FQ3C8++YyOeIFhiMaHUYka03w8IgdiAghKLBQbzxDzXpDqISPtbgBAorZ6NeH8flOeeRv+L26C8sgPh7pMId59E78ut6P1LK3pfboV2YuxMLpARRwHgP5lqPzhnzQKY7NPTy3smCCgq9rW1A0JgXn01AOCN1vZJaRNJRFOv6CPO3/nOd3D11Vdj8eLFmDdvHgDg1KlTuOKKK/Av//IvEz5AIiqMXwni9ba3sb55BeKJJE53e9G6403s3zOz+6uaZCNMNiMGu1O9ewd9QVTWVwJIRSpsLhuCviBsVTZE1VTEYiIYLSZIkoTu1ztQZilDqdmIclc5BnvGXj2ybCgfPdDdCwgBtXcQztpKlMmm7MgGgIHjPUgO9KPMkoqaRAMa7GW5+0yEIoiHwjBWOAAthLJZTiRCISTDkVFXopes5TDYyiAiGoSWPxsfO92F6NkgDGYLkuEQkmoQMS27wI0PqogXcJR5WKnFhFLZhMGTvYAwQOsbhGN+FcpkI9B/YR1hLUZH+2n0ehRYZBMiaoxFM9EF5F1FNXbu3ImXXnoJb775JiwWCy699FJceeWVkzE+ojHo8ngZsTdJf5su8whdr9XciOzYbb30+epMBt3bKidNpx+Kbmz6fGZSys4lJqTsyiszl3zg8EGc6jkJWbZA00JFn2yoz3obdPNQCt0R0IyirgzGrJsiInuccZG9r+H+x5oaRSgYhdVlw6AvCJvLhnAwiv6eAOKvd6JxXSOctZWIhyLoer0D6ignHWbvO/uyvs9zXEgIqqmewaaKcoT6giiVzQj0qdDUKOK6/G3myyU13ggslXaovYOwVJRDG4wiOBhDOGFAXJfNDfviQDobbszpb6zGS4EgMNB6CtWrF6LcsRCJYBi9+49isNuMctPsrO1lYwSWunmwL1oCo2xEIhTG4DsHET5xCkldljs+9Fil5VYYzGaog8mhwtgGwAYtlv0z0nS9mEPx7Ndy5tjDCQNC/gQqA3HAOQthXxByVTkGB6MYCMQRTuj7W5+7bHFYIBuNiGrR9HLa+kxzZt/m1OVzGdp4kZnlvLfnZKL1faHPPW99n+bSUd7vijIIZfj9N0afcf3YErpzJDJzxvkzy/rfifrLeTLNYuRzGFLj0GeYJy6znPeuRWeamWGmySMJIcabsr/gBQIBOBwOpJItF9KSZOebfHN/7g+apN9W0he6Y6eU8hXOufvL2LNuwRNJd9mQU/iOfXtJ3vufG2uxJznq6U96zFc4m2FL/9sunFm32UX20cxZpdmFtb3s3GPNuaQay1saYbIaEVGjOP56B/qPp04CtDgsMMpGiHDkXWeb9YXz8EX3wmrUrWuExWpCRIuge3cHfMc8KNGdbFZiyL7sWlCN+WsbYbSaEFUjOLmnA71D4y3V31f32JbS7ALEWnquWDHaZVSUS1k9n8tN2Udu7ZWlqPyrjQCApL8fZbOcgAD6t+/IjYHIdsgLG2BbUAfJICEUjEN5sx1qVyqGMd7CGQAqFtRg7ppGSBYzolpqLvqOe3IKZzWe2t69sBqN6xsBsxERLYpjuzrQc9SDwVj2vA3Gs4sfNXGuSFSR3X0lImVfjukv67bPWRAlT+EsFVE4F/MetDutMMml0LRw+qh0RMp+jcfFuZ9/RGRHrmLJ7J93PJn9Wkkkdc9bZN/OwnkisISaXgJAEn6/H3a7Pe/WE6HgI86tra3o6+vDRz7ykfR1//7v/44HHngAqqriox/9KL7//e/DZJqYTB4RXTzOHPEg1heAUT53FNI4VH8ML6NdZpj4P1DeYx4M+gKwyCZEQxGECyzMe497EPQFUCabENMiE7ZoSjSgIRQaewEcg9mMEosZ4TOpAj82oMA8uwYlFnNW4Wypm4fyNathX96EZDSOwUNHAADOy5oQ6VOKimSMpf94D1SfH0mzJe9cWBwWNF3VhFJjKbyn/TDKZVi4oREBbwCDvRdXH+DGprlY3bwEFlsZtGAYe9sOTUi/dSKaXAV/NP7mN7+JAwcOpC+//fbbuPXWW7Fp0ybcc889+MMf/oCHHnpoUgZJRBc+zR+Cctaf/up+qoT8IQR6lIKL5mHhQAiDPcqErzSYTzIcRiIURtksByBJQ3no1HXDSmxWlC9fAqmsDAkthERIg6VuHhKhMEotZpRYJvYAR6TAuZizdC4a1jbAtcCFxrX1KC0rhUk2wigbx7zfeNidVtTMqZxRfZTtTitWNy+BJA31epYkrGleMqPGSEQjK/iI8/79+/Gtb30rffmxxx7Dhg0b0ktvz58/Hw888AC+/vWvT/ggiVLyNevN6OOs7/Gc8zXh2H2d9f1Rc4cy+mdO/T31j52bac7OKRqk7K9LE/r4hD4Kki9WMgbDGJGT1O3ZX90ndGPNyjhL2cVPmcgep1mX7TXq8hPlztTKgZGM3GsmgeyM7PC27ya+oX/l5MQrdGOTdJnnzJtNdkt6MZWRxmKQALPDAqMldVR7MJB9ZNVckj1P/mj2PFrC2d06ZDUOx2tn4V61ECbHLMTUCHz7jiLQbYEYisfIZbNQgioEu4JwO0sAqQQlRiM0x1wo/Ro6vSZEA46cvHVY13s5pstMxzLmQZ8jj+X0ZdbNmc0C9+I5iERiiITiiENg/qo6dL15EoHBKKL6jHMy+30Sz3j/67+6H61P8/BRXbOtFGownF5FUx/N0OeKhzmcNlhkc9aS10L3ntHHPvRRDgNyty+Ty2G2laK7qwdJkYTX14f59TUwWksh/KOPLbOnc+qy7nkXnYHWZZ6LiWOMI3qReqzxfIM0nRlmRjMudgUXzgMDA6iurk5f3r59e9by2uvWrcPJkycndnREVDSn0w7ZaslaVGWmm3tJNS7duAAmmxGRYBRHd3VgYJRlr6sXVaNx3bk8dMfuDniOjr1E9ngL7dG4Flajdm0jTFYTImoEJ0ZYoMU1lKMeLq5P7TkO3wiLuBQj1OuHd/9xlBiSCPsURIeKcaNdRqnFBKnUgLgWQZnFCKWjB65LG1BSVopkJI6efcfS208lo2yEZJDQua8bNQvdMJqMKDOW4OSB05PyLUPmUd3urh5UuZxY07wUPs8AFH/+k2YXNs3HuuZl6ffS7rYDONY+MX/jNC0MNRhGlcsJn28AVW4nNDUM7QLr9Ux0ISq4cK6urkZnZyfmz5+PaDSKffv24Rvf+Eb69sHBQZSVjdBniYimTFNTI5o3roHNJiMY1NC2cy/a2zume1hjsjosaGpuBCQBX1dqoZNFGxrxTl8gp6CyOCxoXJfatu9EH2wuGxrXpTKyoxXEIxXa3jyFdiHMDgvq1jWmTsw70QdblQ11ugVaLEPbSAAGulPb1A5tU2w0ZJijcTbcqxaiVDYjGQ7Bt+9oqs1dw2y4Vl2CUtmEuBaB5lNgrJqF0tIS9B04gf72U/AcOj0tRTMARLUoImoUkAQ69nRBrnYgHk2g+50zk/J4FtkEq82Ek11eiKRAr09BbX0NZNmct3B2OG1Y17wMkKRU0e12Yl3zMvg8AwUv8jOWgKJib9tBrGleivn1NdDUMPa0HURgBvZbJ6JsBRfOH/7wh3HPPffg4YcfxtNPPw1ZlnHFFVekb3/rrbewYMGCSRkk0cjGim6MvTx37q70Z9Hn6+AxetRDv9w3dFEK/dfKkr41nqQ/s10XO8lZLjy1f6fTgfXNy5EUERw/fhoudxXWNy/HqTPdUBT/iPfVy+mqoYtmCEk3TyXntg9L2blZoy66oena05UNxQIs5jIYLGXo7R6AEAK9PUG46yuRNBkRip8rLqMGwGg0QrIY4evqA4RApCeIqvpKJIxGqPHcQlR2WDB3TSPCSQFvR6oon7O6ET1nsovyEknKuo/Rmt0qTd+VAwAMZSYIswm9XX0wykaEYgLl7nKESk1QokN541IT4kYTek8M9ag+G4SrrhKDBjOUcOroYpnuR2IyZF+RGeUwOyyYu3QJ+qIS1DN+lLtsMCxdBqW/BM6li9EblaCdCUCuKgfsLry1rR3JRDJ90l40YQBwbin0SM4y19lPVB/HyKS/Sb/suf6+0b4QDrR2YNGGRpgry+EfCKG9rQP9/drQWLLvENW9J2MZy71Hda/LuKSPHCShaSGowRAqXOXw+PpQ6XYgqIYQDIVyIgn696TJUgKz1YTurjMQSQGP14fa+tkwWgyIDWQfFdYvU5/vPTbs8JHjOOv1wCwbs6Ig+mWzMy/nRFLyRDFyW3YWGc2Y1GWv9Ri/oPNDwYXzt771LVx//fW46qqrYLPZ8Mtf/hJG47k/jD//+c/xwQ9+cFIGSUT5Wa0yrDYrujpPIJkU8Hl7Ud9QB6tVThfOM1FYiyCsRuBw2+D3BuFw2xBRI6mjkzoRLYqwGoXdZUNUjcI5J3XUMqKN3InCJBththrh6UoVrgFfEK76Sphk44jxgJpF1Vi4oRGWjLZ4PaMcnY5oUUSCUcxbNge2qnKUV1kRCyfgnO2EcjY131EtiogWRflQj+pylw0RLYroKOPNx2gxwWg1QRlaLEbrHYRzfhUsFTYYZRMG+wZhdsqIahHYKsuRTCQx2KO8q8eaDGePeOD3BGCyGqEEIlAn8UTQ1FHdw1jTvLjoo7qaFoYWDKHKNQu9vgFUuZzQgiFo2sSO168EoSjsOUx0Pim4q0ZVVRVeeeUVDAwMYGBgAB/72Meybn/iiSfwwAMPTPgAM23duhWSJOHOO+9MXxcOh7FlyxZUVlbCZrPhhhtugMeT/Yeuu7sb11xzDWRZhtvtxl133YV4fPR+lUTnI1XVoAZVuNxVMBgkuNxVUIMqVHVmt/lSlRAOtnUAAnDXVwICONzWMWJhq/lDOLarA3a3A5d9aDnqLquFpdwMh/tc/07ZYcGs2Q7IDktWoS1JEuwuGyLB6IiFtuywYOGGRgACvSf6AElgwfpGyA5LzrZAqhvH6UOnUVXvQnmVFYO9KnxdPsxbOid9n+HxAhKq6ioBSDi2a+TnVohoKIKoGoG1qhySJEGuKk+dlNgfhNFmwoKrlmD+2kYsuGoJymypVnnDzHYL7DVOmEd5PlNF84cwcMY/qUXzsI72U3jhmVb86enX8KdnduB4gRnl4VU4IYDa+jkQQuD1tncmbel6h9OGmjlVcDht+Tcmomn1rlYOHElFRcW4BzOW3bt348c//jEuvfTSrOu/8pWv4I9//COeeOIJOBwO3H777bj++uuxY8cOAEAikcA111yDmpoa7Ny5E2fPnsWnPvUplJWV4cEHH5zUMRNNJUXxY+fO3di4cR3qG+qgBlXs3Ll7Rh9tHnaq3YOYL5g+yU71h2DWrxwyxO8NIDQYwom3TkE5c64XsN8bgMNtx8INjTBbjQirqcU1ju3qwIL1jXDVV6ZPPBypcDXKRphkI3pP9EFCaunvqrpKGGXjqG3W/D1+eI57EPAMIhqOIhaKoaI2dZ/hx+g56kHAe65H9XhOTgz7Qzi5pwPz16ZWU0wMnWwYGQylvm0WAIQECCCzUUjV0IItJRZL1kIvF4OAoiLqL/4I/7H2bvg8/ZBlM1RNm7SieWFTLdY1L4dsNUNTw2hr3Y9j7Scm5bGIaPyKLpynQzAYxI033oif/vSn+J//83+mr/f7/fjZz36G3/72t3jf+94HAPjFL36BJUuWoK2tDc3NzXjxxRdx8OBB/Nd//Reqq6uxcuVKfOtb38Ldd9+Nr3/961lxEzrfZebURm9VNzJ9O7oiM28Zecz8y33rL+pb5+nay+kzk7r7Z65UduDg2zh9phtWqxWqqsKvPwkq79PSZ5yzc8nCoMtnZ+Q7wwZdhlmXeS7TZZwNupXlRF8Q6DtXnESS2WMZziGXlBkRERJOHfZCCAEpEIGrvhIllXbMXduAUEKg51gvHO5yzF1bj9Zn9qP7qX0wyanVAVUllJNhN0hATIlgIBBBaUUqVuFw2TDgj8CnRBCKjjxxUSUCT08QkiTBPxiDw2VDfyACrxKBOnSfpAD6vRqAkY/8l+peqqW6QLU+A937di+Odaup5bbDqULcOdsBnz+GYy+1o9RYing0DrurHH2SBdGyEjRctghKTGDgdCrn7bhsAY52D0IZyB5TQpcz1r9rMoci5TkNQIjUiZ/DH4b0J9XpM83hZHbeNoLsbwUzM84J3W05KwEWuQS3vs3bcAu4fmUA/Ypu2WtdLtige7/mWzkwczVOh9OGVRuakEAMHV1euFyzsKa5CWc8Z+AfWq47M+Ock2nOOZdDl93Wt58rMtM89u9BZpLp4jS+9XmnyJYtW3DNNddg06ZNWdfv3bsXsVgs6/rFixejtrYWra2tAFIrHq5YsSKrld7mzZsRCASyFnTJFIlEEAgEsv4jOl8oih+nT585L440vxuRjEy0JElwuG0Iq6lIgtlqgt8bhBACfu8gTFYTTLIJqhJC/xkFqjL60V7VnzpZTQjAXVcJIYD2XR1jRgo0fwjtu3T3aRv7PhNheLGY4aPXw3lrk9UITdHSHUSiWjR9JH3QF0znvE221HWTac4l1dhw3cr0f3Mvqc5/p4uMLFtgs1ng8w1AJAV8vgFYbTJkeXrjNEQ0uhl/xPmxxx7Dvn37sHv37pzbenp6YDQa4XQ6s66vrq5GT09PepvMonn49uHbRvLQQw9ltdojoplDVUI43NqBJS2NcNdXIqxGcLi1A4o3kHGS4SAc7vLUSYZF9MY9fcQDxROAbDsXGdGTHRaYrSaE1Qg0fwhn0ie8pe4TGKM4nywhfwjHd3egcV0jquoq0yc2ahmFdbnLhgFvcMyc90SxOixY3NwISIC3qw8Otw1LWhqheANjfni52GhaCMFgCC7XLPh8A3C5ZkENahN+EiIRTZwZXTifPHkSX/7yl/HSSy/BbDbnv8MEuffee/HVr341fTkQCGD+/PlT9vhENLbTR1K54XMxgFShcbi1A4tbGuFuqEREjeBQa0fRhZrqD42aaZ5zSTUu2dCYLpyP7OrAqXYPVH9oSk52G4vnaKqAH85SDxfNwycoLtyQP+c9UUxWE0xWE7xD3Uz83iAq6yvSR/8pxa8EsbvtLaxrvhT19XMQDIawq+2tdEyDiGaeGV047927F16vF6tXr05fl0gk8Morr+AHP/gBXnjhBUSjUSiKknXU2ePxoKamBgBQU1OD119/PWu/w103hrfRM5lMMJlMI95G54t8y3PrTVxeL6dndN4e0cVlonPz2Jn71vWMzhcFzOkJrV8eWP/I2b8yMjOX+mWLI1J2gaQadL9udDtPJHV9oJPZz8WgC9UqvTGgN3sfysFTOHGmH0a5DGE1imCBi1WU5sxDNoMkwea0YO6aemiJJM4c98LpKsfcNfXoONmPYEYxmND9wJK6H4I+N6p/PZTpxlKm6+tcmjEP+vMnk5oKQD03lqHH7nnrDI52D6DUYkRYi6THG9NlWhN5llHOHOtYcxZVVAwEQjBWylB8g3BWlUMJhNAX0BCMJ4Yee+xMc0T3eopl9G4eqW9zJn2GOV/fZv1l/Ws5cylrfR46n5w+z7r32MHDh3G65zSssgWqFsLAgJJ1u91hSa9e2DuQfYJi/iW0x+7rnD/TPJk5ZuaU6fw0owvn97///Xj77bezrvv0pz+NxYsX4+6778b8+fNRVlaGbdu24YYbbgAAtLe3o7u7Gy0tLQCAlpYWfPvb34bX64Xb7QYAvPTSS7Db7Vi6dOnUPiEimnRBRUNyYOL/KJtlEyw2E3q6eiGSAopvEDX1VTDLpqzCeSpYnRaYZRNioUjBR3BVJYTYwNS0JgwqIRxsO46lzQtQU1+FUDCCA60dBc9TuVOGw2pAaISTCi9EfmVwxKPMlzQ1YEPzClhtMtSghtd27kJ7+/FpGCERDZvRhXN5eTmWL1+edZ3VakVlZWX6+ltvvRVf/epXUVFRAbvdji996UtoaWlBc3MzAOCDH/wgli5diptuugnf+c530NPTg3/6p3/Cli1beFSZiAoW1iIIBSNwuspTR1Fd5QgFIwgXkaGeCPMuqcaSllRcJKql4iinj8y81nIn2z0Y8ARglk0IaxH4Cyza65pm49KWhSizlSEUDGN/61F0tU/OstwzmcNZjg0tKwEk0dl1Cm5XJVo2roHH44Oi8IR1oulyXnTVGMt3v/tdfOQjH8ENN9yAK6+8EjU1NXjyySfTt5eUlODZZ59FSUkJWlpa8MlPfhKf+tSn8M1vfnMaR01EhbI5ZVTNdcLmlKd1HMNHUYUAauqrIARwsO34lB5ttjotWNLSCECCp7MPgIQlLY2wOmdmF4agEkLvGaWoI82XtiyEJEk43eUFJGBlyyKUT/PPfjpYrRZYbTK8vj6IpIDX15fquGG9+OaCaCaZ0UecR/Lyyy9nXTabzXjkkUfwyCOPjHqfuro6PPfcc5M8MprZiv3qPl8meixj5wJzRzK+THTWXfX56DyPJel7SuseSv/I+kxlMuNyUpevjCP7SGxE1xPaoMvuxnXPu1SUoL5pDla2LILFZh7z6GNS90SSeechW6muF68h52eS+l/voQ4cO9sDi9WUjhHk9AQucCzlThkW2YyIFs2KI+jHUpI4NxbJbELCYsCZobhIoCeGOfVVCBoBXyySk1GN67K9MV2OOC7p+hdLY6+oWpLxJyNnnLp8fb63XEI3triUgNUqo8RWgtNdXsSTcXh8fZhfX40Sq4Ro4FwXkNEyzXanFbJsRlDTEFBUFErfmzn3dZ7I+PfYvZT1EmP0XR/r/oNBP4KDAVRWOeDz9aKqqgqDwUEEg4H0ey1nLPqMep7MenGZZmaSiYDzsHAmootDuVPGypZFgASc7vKiwmXHypZF6PMo05p7HVS0cT9+Q9McrGy5BLLVjLAawf7Wo+gsII4QVlNxkVmucgz4BjFrKC4SUievtdxUCmlhaGoYlS47vL4BVLoc0NQwQgXEYRY0zcOa5iWQbWYEgyHsbTuI4+2npmDUk0NRAmht3YcNLZehvmE+1KCG1p17GNMgmmbnfVSDiC5MFqsJFpsZ/b4ARFKg3xeAxWaGxXp+n5uQ+kBwCQxIfSAApILjCIOKhrdajwECmFNfBQjg7dZjBXcPmekGFQ37W48gCWB+farf/hut7XmPHtudVqxpXgJIEk52eSBJwJrmpbA7rVMw6slzpL0DTz/1PJ568nk8/dTzaD/MEwOJphuPOBPRjBRSIwgFw6hw2dHvC6DCZUcoGEZIndqT8SaaRTZDtppxusub/kAwr94Fi2wq6Ej2ifYe9HsCQ72kC2+5d77obD+DXo8Ck1yKkBYpKHIhy2bINjNOdnkgkgK9PgW19TWQZXNRkY2ZSFECPMpMNIOwcCYa0UTm+cbXQzqnL3TO3jP2nyfTqB9KbrfrifsSSp8b1WeeQ7qxxJAdN9ACQezYtQ9rmpegqqEcWjCEvbsO4XTgLGDI7tWrzxHr+/YWS98P2yB0/a3HyFDrHzsnAx0OoU/zwVxtQK9Xgcs9Cz6tF2fDZxAwBFEisrPgpbpf0xIM6A30A4GhLHbG0PSPlcjJNMd1txeX1818fZRAN06RPc6cnHgemWPX/EEk/cnhB80rqGkIBkOocNnR61NQ5XJCDYahaeGhXeh7KWc/T4P+dl2P6szscE7P53w54yLl9JjOOo9A/1jxsS/rfr55fz+MMBoiysbCmYimnMNpQ7lsh6ZFEFCCo253vP0UfJ4ByLIZmhY+748eAsOrxR3AuuZlqK2vgaZGsKftwJjzQGMLKCr2th3EmualqK2vgRoMY2/bwQvi9UJEMwsLZyKaUgubarGueTlsVhs0NYw9bQdxvP3kqNsHFPWCK4COtZ+EzzMAi2xGWIuyaJ4AF+KHLCKaeVg4E9GUcThtWNe8HJCAk109qHI7sbZ5KXyeAWgD4eke3pTyK0H4lWDRkQYa3YX4IYuIZhYWzkSTLl9OsNgMtL4P7Ln95/Z8nlj67GempK4Ps76ndELEYLKUwmwtQ3fXWUjCAI/Xh9r62TDKEvrzFDz6LGlmhjqn726evrzjJjL/Ob5963PlJbp+1/rbM/O4+XoC6zPMieTYmWb9z1DPII3+2Ppx6zPQevny9JmPpd9e/2FDn2EuVjHZ/qQYPYOcul2fOy7u9aHPyGffP89j6bP9+rHm7dvMTDNRPjzUQURTRtNC0IIhuFyzIEkSqtyzhvr0XlxHm4mI6PzEwpmIpoxfCeL1tncghEBt/WxAALvb3oGfGV8aB7vThpo5lbA7bQVuWwVHAdsSEekxqkFEE8rhLIfVakEsJMGvDObcfqz9BHyePtis5QhpYRbNNC4LmuZjXfMKyFZz3pNNFzTNx9rmpbBYy6CpIexuO4BjY5yYSkSkx8KZ6CKW2992fF9CXdLUgA0tK2G1yQipUexq3Y+j7V3DO0/rVwYwoPiz7qvP25Y7ZciyBZoWgl8ZzMmKZmaec/rb5mRB8/XKLq7v83gy0/qceE7PaN3tBmn0rHC+jLPQZZYTeTKx+Z5X5tj14y6RdP2mx8goA2NnmIHcjPRIPaQdThtWb2iCkBI40XUaVW4n1jRfAq+nN6dTid1pw5rmxYCURPfQianrmpfB5xlA/8DAqM95pLFlGqvvcur2fHOc57WZ2UM6b6ZZf3u+TDMRFYtRDSKaEA5nOTa0rIQkSTjRdQoSgA0tK+Fwlhe9r0VNdfjr696Laz/2Pvz1de/Foqb6CR8vnf9SKwZa0OtVIIRAr1eBbLVAls0jbmu1mnO2tYywLRHRaFg4E9GEsFotsNpk+Hx9EEkBn68fNqsFsmwpaj8OZznWN18KSBK6uk4DkoQNzZe+qwKcLmyaFoYWDKHK7Rw62dQJTQ2lVwzUb6uq4ZxteWIqERWDhTMRTQhVDUENanC5KiEZJLhcFQiqIWhaqKj9yLIZVpsFPl9/ugC32uSiC3C68KVONn0bEAK19TWwmI3o7Dgz4rYBJYg9bQcgBFBbXwMIgd1tB5ixJ6KiMONMNO30OcTJ7cU8Hjn5TelcxnJgoB+tO/egpWUV6upmQ1Uj2NW6H/0D/altdfnK0fK5AdWPweAgKqvK4fX1wV1VicCgH4FgP2JJLb19Zl5Xn/XM10s3X5a32OxvMfJlnHNuz9m+8OMdefO3efK4eplj1Y8rkWec+qy2Psut3z6Rs/25x87sEX64/Si8nl4sXbEQS5cvwOIVdahrqMHrbW/jWHt31n2PtHfC4/HBbCmDlnFiar5e3HanFVarDFXV0Nc/9gfBYjPNuT8D3faZGecJzzSzbzNRsVg4E9GEOdLeAa+nF7LVgpAWG7GrRj5+ZRC7WvdjXfMK1NfPhRoMoa31DShKYBJGTBeKhsa5CIci8PkG4HJVYH3zCvg8/TlHlP1KEAMDhZ8MuqipHms3LIHVZoEaDGHHjl1ob++Y6OET0XmChTMRTShFCUBRAmN2g8jnSHsXzvT0pI/yvZsCnC4esmyBbLOgu+ssRFKg1zeA2vo5kGXzuKIYDmc5NjRfiiTi6Oo6DberEs0b18Dj6eUHOaKLFDPORDSlHM5yzJnjznuyn18ZxJnTHhbNlFfWipQGCVWuWdCCI58kWAxZTp3w6h064dXr64PNJkO2jp63dzodmDt3NpxOx7gem4hmJh5xJrqQScV9Ns7NIetuHyMjm4A+b6nvpWzAJU2NaGlZBatNhhrU0Nr6Bo4Mfe2dr/fyWL2ak8li+xMXmTPVG0/mOU+2Nzfj/O5/TefPZhf3PETmz1jky2JnZ7eTUvbPSL+9Qd8HWpffzewTnZSyf76+gRh2tO7GhpaVmFdXBVUNYVfbW/Ap3tS+RfZY9JKjZOSD6iCCwSBcVbPg9fXBVVWBYDAIVQ2mX2OZc9y0eOHQ69sKNahi587dOHToUNa+c99DeXozZ/6Mcl6nzDQTTTUWzkQ0JZxOO1paVgGShM6uU3C7KtHSsgpefu1NE+Boexe8nj7IsgWhUGRCvqlI5+03LEND/bzUh72de0d8vTqdDmzcuA5AAl2dJ+B2u7Bx4zqcPXsGim6xHyI6f7FwJqIpIQ/1ee7sOpX+2ruhfh5kq4WFM00IvzIIvzKYczR7PI60d+HM2TOQrRZoagi9A74Rt7NaLbBZZXR0diCZFPB6fahvqIPVKrNwJrqAMONMRFNCG+rz7B7q8+x2VSKZTMJut8HptE/38IhGpSgBnDntGfMDnqqGEFQ1uN0uGAwS3G4X1KAKVdVGvQ8RnX8kIQRDT3kEAgE4HA6kPmfM3B67dKHI9xrTZ0nH2D7nyNvYOVT99vrcqf7+mZ0zDAZdRnWEz+VNixegZeNa2KwybOVWQADBoIqgqqF15x60Hz6e3jZvL+aMLOhE9srV73uk/Y1PcT+Dsfo264+s5u9PPYH9qPNks3Oe5wT2r87XE1p/e77e17n9rrN//pk9w/VZ+0Qymv734sUL0bxxNWxWK4Kqip07Xs/NOOd97cVGvT0306yn//nyzztd6ASAJPx+P+z2qTkAw6gGEU2Z9sPH4enxYfbsarz3fRsRCoXh8/XC5apCy8a18PT4GNug89bhw8dw5uyZdBtFRjSILjyMahDRlFKUAAKBQRgMBvh8vUgmBXy+XtisMqxWebqHRzQuiuLH6dNnWTQTXaB4xJnoPJf59e2YsQ0AOREG3a2S7oqkrsWc/ivvzL2JZOHLNQcG/QgMKqiscsDr9aGyyoXAoAL/YD/iydSSxsXEL4qPXuiNfX+9/F+Zj07SPw9J/9j6pcj1989Yenqc38Tnn5cxHlv3UtP/vHLjESMvsZ5xRfb9x4h25GttJyFS8L5SDz32PGTGhvIvUz7eWFAxJjJCRESF4BFnIppyiuLHzp27IYRAfUMdhBDYuXM3j9IREdGMxiPORDQtDh8+ip4eL/OgRER03mDhTETTRlH8LJiJiOi8wcKZ6EKmz+rmWRhCn7fUZ55z2nZlXJbE+JJf41nmuuj2cXmXLs7n3WdLhT4hp2t9ps9A639m2fOkn/PJzbxmzVLOuHW54SIz0Pla62W91nLmMPtiTos/nWIXSMnO0+uXcx+7bWLRrQ7HfG1ySW2i6caMMxERERFRAXjEmYiIJozT6Uzl1rUQYzhEdMFh4UxERBNi8eJLcPnlLbDZUivn7dixC4cPH5nuYRERTRgWzkQzTm7n3mz6nGMRiauczHO+keR5rIyc68SnK9995jln06KXKp5MY89pzlhzssSZP7Qp7uM7xuvF4XRi4+XrASmJjs4OVLurcfnGDeg52wNFUXK2L74P9LnbHQ4HrFYrVFWFovhz89G6/uO5Dz6elGJxy7mPL9M8wva6rYloarFwJiKicbNaZdhsNnR2diGZTMLr9aKhoQFWqzxi4fxupY5qb4DVZoUaTB3Vbm8/NmH7JyIaC08OJCKicVNVDcFgEG63CwaDAW63G8GgClXVJuwxnE4HLr98AyQJ6OrsgiQBl1++AU6nY8Ieg4hoLCyciYho3BRFwY4dbRBCoKGhHkIAO3a0TujRZqvVCqvNCq/Xh2RSwOv1wWqzwmqVJ+wxiIjGwqgG0QVEn4+U8oaYi83ITl2mtvjeypnGO87JzI7my6yPLacP9CTKef2M9XqRgMOHD6Gn5+xQ/jg0ZtGs7xGul5OvlwwIqoMIBgfhclfB6/XB5a5CMDiIwWAASZEn1zyG3Dx14XLGmTNHzDQTXUh4xJmIiCaMoig4ffr0hB5pPrdvP3bs2DV0VLsOQgjs2LGLbe+IaMrwiDMREZ03Dh8+gp4eT1ZXjankdDqm7bGJaPqxcCYiovOKovinpWgdqaPHocOHp3wcRDR9WDgTzXjF9HXO0xN4Wk1lz+GZ9Lz1ih3b+DLR4zFWnjpv/jlvj/BiB6PvhzyRSvJu4XQ6sXHjOgBJdHYch9vtxsaN63D27JmsWEpO3+a8meZ8ZvJrmejiw4wzERFRHqk+1VZ4vd6hjh5e2NjRg+iiw8KZiIgoj1SfahVutxsGgzQpfaqJaOZj4UxERJRHqk91K4QAGhoaJqVPNRHNfMw4E513xso8T2WOeLyY3SzMRM5TnuBxjtFfT/n6SUv5eoQXO5RJlNOLeZTndujwIZztOQurVYaqakNF83jfc+fTe5aIWDgTEREVSFEUHmUmuogxqkFEREREVAAWzkREREREBWBUg+i8l5mBnejgKHPIF5bx9pDONHYuOF+/4rwZ6OlUzNsoz/PInYd8z5vvOaKZjEeciYiIiIgKwMKZiIiIiKgALJyJiIiIiArAjDPRBYX5SJpIY72e9EHgfNnd4jLQ00oksi5KGc+1+HEz00x0IeERZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICMONMRETvgj6bm6/5cbF9m8c6rjO1PaDFhI6FmWai8xmPOBMRERERFYCFMxERERFRARjVICKiCZAvglDscvDjiWNM5NLiQHFjYRSD6ELGI85ERERERAVg4UxEREREVAAWzkREREREBWDGmYiIpsBMzv7O5LER0Uwyo484P/TQQ1i3bh3Ky8vhdrvx0Y9+FO3t7VnbhMNhbNmyBZWVlbDZbLjhhhvg8Xiytunu7sY111wDWZbhdrtx1113IR6PT+VTISIiIqLz3IwunLdv344tW7agra0NL730EmKxGD74wQ9CVdX0Nl/5ylfwhz/8AU888QS2b9+OM2fO4Prrr0/fnkgkcM011yAajWLnzp345S9/iUcffRT333//dDwlIiIiIjpPSUKI8+Y7Kp/PB7fbje3bt+PKK6+E3++Hy+XCb3/7W/y3//bfAACHDx/GkiVL0NraiubmZvzpT3/CRz7yEZw5cwbV1dUAgB/96Ee4++674fP5YDQa8z5uIBCAw+FA6nNGsS2ViIiIiGjiCQBJ+P1+2O32KXnEGX3EWc/v9wMAKioqAAB79+5FLBbDpk2b0tssXrwYtbW1aG1tBQC0trZixYoV6aIZADZv3oxAIIADBw6M+DiRSASBQCDrPyIiIiK6uJ03hXMymcSdd96Jyy+/HMuXLwcA9PT0wGg0wul0Zm1bXV2Nnp6e9DaZRfPw7cO3jeShhx6Cw+FI/zd//vwJfjZEREREdL45bwrnLVu24J133sFjjz026Y917733wu/3p/87efLkpD8mEREREc1s50U7uttvvx3PPvssXnnlFcybNy99fU1NDaLRKBRFyTrq7PF4UFNTk97m9ddfz9rfcNeN4W30TCYTTCbTBD8LIiIiIjqfzegjzkII3H777Xjqqafw5z//GQ0NDVm3r1mzBmVlZdi2bVv6uvb2dnR3d6OlpQUA0NLSgrfffhterze9zUsvvQS73Y6lS5dOzRMhIiIiovPejO6q8cUvfhG//e1v8cwzz6CpqSl9vcPhgMViAQDcdttteO655/Doo4/CbrfjS1/6EgBg586dAFLt6FauXIk5c+bgO9/5Dnp6enDTTTfhs5/9LB588MGCxsGuGkREREQzzdR31ZjRhbMkjVyk/uIXv8Att9wCILUAyte+9jX87ne/QyQSwebNm/Fv//ZvWTGMEydO4LbbbsPLL78Mq9WKm2++GVu3bkVpaWFJFRbORERERDMNC+cZiYUzERER0UzDPs5ERERERDMSC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICsHAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgALZyIiIiKiArBwJiIiIiIqAAtnIiIiIqICXFSF8yOPPIL6+nqYzWZs2LABr7/++nQPiYiIiIjOExdN4fz444/jq1/9Kh544AHs27cPl112GTZv3gyv1zvdQyMiIiKi84AkhBDTPYipsGHDBqxbtw4/+MEPAADJZBLz58/Hl770Jdxzzz1j3jcQCMDhcCD1OUOa/MESERERUR4CQBJ+vx92u31KHrF0Sh5lmkWjUezduxf33ntv+jqDwYBNmzahtbU1Z/tIJIJIJJK+7Pf7h/51UXzGICIiIjoPpOqyqTwGfFEUzr29vUgkEqiurs66vrq6GocPH87Z/qGHHsI3vvGNEfYkwOKZiIiIaObo6+sbSgZMvouicC7Wvffei69+9avpy4qioK6uDt3d3VP2gznfBQIBzJ8/HydPnpyyr0/Od5yz4nHOisc5Kx7nrHics+Jxzorn9/tRW1uLioqKKXvMi6JwrqqqQklJCTweT9b1Ho8HNTU1OdubTCaYTKac6x0OB1/MRbLb7ZyzInHOisc5Kx7nrHics+JxzorHOSuewTB1vS4uiq4aRqMRa9aswbZt29LXJZNJbNu2DS0tLdM4MiIiIiI6X1wUR5wB4Ktf/SpuvvlmrF27FuvXr8e//uu/QlVVfPrTn57uoRERERHReeCiKZw//vGPw+fz4f7770dPTw9WrlyJ559/PueEwZGYTCY88MADI8Y3aGScs+JxzorHOSse56x4nLPicc6Kxzkr3nTM2UXTx5mIiIiIaDwuiowzEREREdF4sXAmIiIiIioAC2ciIiIiogKwcCYiIiIiKgAL5wI88sgjqK+vh9lsxoYNG/D6669P95CmxUMPPYR169ahvLwcbrcbH/3oR9He3p61TTgcxpYtW1BZWQmbzYYbbrghZ+GZ7u5uXHPNNZBlGW63G3fddRfi8fhUPpVps3XrVkiShDvvvDN9Hecs1+nTp/HJT34SlZWVsFgsWLFiBfbs2ZO+XQiB+++/H7Nnz4bFYsGmTZtw9OjRrH309/fjxhtvhN1uh9PpxK233opgMDjVT2VKJBIJ3HfffWhoaIDFYsGCBQvwrW99C5nnfl/sc/bKK6/gr//6rzFnzhxIkoSnn3466/aJmp+33noLV1xxBcxmM+bPn4/vfOc7k/3UJs1YcxaLxXD33XdjxYoVsFqtmDNnDj71qU/hzJkzWfvgnD096rZf+MIXIEkS/vVf/zXres7Z0znbHDp0CNdeey0cDgesVivWrVuH7u7u9O1T+ndU0Jgee+wxYTQaxc9//nNx4MAB8bnPfU44nU7h8Xime2hTbvPmzeIXv/iFeOedd8T+/fvFhz/8YVFbWyuCwWB6my984Qti/vz5Ytu2bWLPnj2iublZbNy4MX17PB4Xy5cvF5s2bRJvvPGGeO6550RVVZW49957p+MpTanXX39d1NfXi0svvVR8+ctfTl/POcvW398v6urqxC233CJ27dolOjo6xAsvvCCOHTuW3mbr1q3C4XCIp59+Wrz55pvi2muvFQ0NDSIUCqW3ufrqq8Vll10m2traxKuvvioWLlwoPvGJT0zHU5p03/72t0VlZaV49tlnRWdnp3jiiSeEzWYT3/ve99LbXOxz9txzz4l//Md/FE8++aQAIJ566qms2ydifvx+v6iurhY33nijeOedd8Tvfvc7YbFYxI9//OOpepoTaqw5UxRFbNq0STz++OPi8OHDorW1Vaxfv16sWbMmax+cs6dG3O7JJ58Ul112mZgzZ4747ne/m3Ub5+yprNuPHTsmKioqxF133SX27dsnjh07Jp555pmsOmwq/46ycM5j/fr1YsuWLenLiURCzJkzRzz00EPTOKqZwev1CgBi+/btQojUL9KysjLxxBNPpLc5dOiQACBaW1uFEKk3iMFgED09PeltfvjDHwq73S4ikcjUPoEpNDg4KBYtWiReeuklcdVVV6ULZ85Zrrvvvlu85z3vGfX2ZDIpampqxD//8z+nr1MURZhMJvG73/1OCCHEwYMHBQCxe/fu9DZ/+tOfhCRJ4vTp05M3+GlyzTXXiM985jNZ111//fXixhtvFEJwzvT0f5wnan7+7d/+TcyaNSvrfXn33XeLpqamSX5Gk2+sInDY66+/LgCIEydOCCE4Z6PN2alTp8TcuXPFO++8I+rq6rIKZ85Z7px9/OMfF5/85CdHvc9U/x1lVGMM0WgUe/fuxaZNm9LXGQwGbNq0Ca2trdM4spnB7/cDACoqKgAAe/fuRSwWy5qvxYsXo7a2Nj1fra2tWLFiRdbCM5s3b0YgEMCBAwemcPRTa8uWLbjmmmuy5gbgnI3k97//PdauXYv//t//O9xuN1atWoWf/vSn6ds7OzvR09OTNWcOhwMbNmzImjOn04m1a9emt9m0aRMMBgN27do1dU9mimzcuBHbtm3DkSNHAABvvvkmXnvtNXzoQx8CwDnLZ6Lmp7W1FVdeeSWMRmN6m82bN6O9vR0DAwNT9Gymj9/vhyRJcDqdADhnI0kmk7jppptw1113YdmyZTm3c86yJZNJ/PGPf8Qll1yCzZs3w+12Y8OGDVlxjqn+O8rCeQy9vb1IJBI5qwtWV1ejp6dnmkY1MySTSdx55524/PLLsXz5cgBAT08PjEZj+pfmsMz56unpGXE+h2+7ED322GPYt28fHnrooZzbOGe5Ojo68MMf/hCLFi3CCy+8gNtuuw133HEHfvnLXwI495zHel/29PTA7XZn3V5aWoqKiooLcs7uuece/O3f/i0WL16MsrIyrFq1CnfeeSduvPFGAJyzfCZqfi6292qmcDiMu+++G5/4xCdgt9sBcM5G8vDDD6O0tBR33HHHiLdzzrJ5vV4Eg0Fs3boVV199NV588UV87GMfw/XXX4/t27cDmPq/oxfNkts0sbZs2YJ33nkHr7322nQPZUY7efIkvvzlL+Oll16C2Wye7uGcF5LJJNauXYsHH3wQALBq1Sq88847+NGPfoSbb755mkc3M/2///f/8Jvf/Aa//e1vsWzZMuzfvx933nkn5syZwzmjSReLxfA3f/M3EELghz/84XQPZ8bau3cvvve972Hfvn2QJGm6h3NeSCaTAIDrrrsOX/nKVwAAK1euxM6dO/GjH/0IV1111ZSPiUecx1BVVYWSkpKcMzM9Hg9qamqmaVTT7/bbb8ezzz6Lv/zlL5g3b176+pqaGkSjUSiKkrV95nzV1NSMOJ/Dt11o9u7dC6/Xi9WrV6O0tBSlpaXYvn07/s//+T8oLS1FdXU150xn9uzZWLp0adZ1S5YsSZ9BPfycx3pf1tTUwOv1Zt0ej8fR399/Qc7ZXXfdlT7qvGLFCtx00034yle+kv6Wg3M2toman4vtvQqcK5pPnDiBl156KX20GeCc6b366qvwer2ora1N/z04ceIEvva1r6G+vh4A50yvqqoKpaWlef8mTOXfURbOYzAajVizZg22bduWvi6ZTGLbtm1oaWmZxpFNDyEEbr/9djz11FP485//jIaGhqzb16xZg7Kysqz5am9vR3d3d3q+Wlpa8Pbbb2f9Yhj+Zat/Y1wI3v/+9+Ptt9/G/v370/+tXbsWN954Y/rfnLNsl19+eU6bwyNHjqCurg4A0NDQgJqamqw5CwQC2LVrV9acKYqCvXv3prf585//jGQyiQ0bNkzBs5hamqbBYMj+dV5SUpI+WsM5G9tEzU9LSwteeeUVxGKx9DYvvfQSmpqaMGvWrCl6NlNnuGg+evQo/uu//guVlZVZt3POst1000146623sv4ezJkzB3fddRdeeOEFAJwzPaPRiHXr1o35N2HKa4+iTiW8CD322GPCZDKJRx99VBw8eFD8/d//vXA6nVlnZl4sbrvtNuFwOMTLL78szp49m/5P07T0Nl/4whdEbW2t+POf/yz27NkjWlpaREtLS/r24ZYwH/zgB8X+/fvF888/L1wu1wXbWm0kmV01hOCc6b3++uuitLRUfPvb3xZHjx4Vv/nNb4Qsy+LXv/51eputW7cKp9MpnnnmGfHWW2+J6667bsTWYatWrRK7du0Sr732mli0aNEF01pN7+abbxZz585Nt6N78sknRVVVlfiHf/iH9DYX+5wNDg6KN954Q7zxxhsCgPjf//t/izfeeCPdAWIi5kdRFFFdXS1uuukm8c4774jHHntMyLJ83rYJG2vOotGouPbaa8W8efPE/v37s/4mZHYp4Jxlv8709F01hOCc6efsySefFGVlZeInP/mJOHr0qPj+978vSkpKxKuvvprex1T+HWXhXIDvf//7ora2VhiNRrF+/XrR1tY23UOaFgBG/O8Xv/hFeptQKCS++MUvilmzZglZlsXHPvYxcfbs2az9dHV1iQ996EPCYrGIqqoq8bWvfU3EYrEpfjbTR184c85y/eEPfxDLly8XJpNJLF68WPzkJz/Juj2ZTIr77rtPVFdXC5PJJN7//veL9vb2rG36+vrEJz7xCWGz2YTdbhef/vSnxeDg4FQ+jSkTCATEl7/8ZVFbWyvMZrNobGwU//iP/5hVwFzsc/aXv/xlxN9fN998sxBi4ubnzTffFO95z3uEyWQSc+fOFVu3bp2qpzjhxpqzzs7OUf8m/OUvf0nvg3OW/TrTG6lw5pzlztnPfvYzsXDhQmE2m8Vll10mnn766ax9TOXfUUmIjKWliIiIiIhoRMw4ExEREREVgIUzEREREVEBWDgTERERERWAhTMRERERUQFYOBMRERERFYCFMxERERFRAVg4ExEREREVgIUzEREREVEBWDgTEdGMd8stt0CSJEiShKeffnpC911fX5/et6IoE7pvIrqwsHAmoguSz+fDbbfdhtraWphMJtTU1GDz5s3YsWPHdA+N3qWrr74aZ8+exYc+9KEJ3e/u3bvxn//5nxO6TyK6MJVO9wCIiCbDDTfcgGg0il/+8pdobGyEx+PBtm3b0NfXN91Du2DEYjGUlZVN2eMNfwCaaC6XCxUVFRO+XyK68PCIMxFdcBRFwauvvoqHH34Y733ve1FXV4f169fj3nvvxbXXXpu13ec//3lUV1fDbDZj+fLlePbZZ9O3v/baa7jiiitgsVgwf/583HHHHVBVNX17fX09HnzwQXzmM59BeXk5amtr8ZOf/CRrLCdPnsTf/M3fwOl0oqKiAtdddx26urrGHP+BAwfwkY98BHa7HeXl5bjiiitw/PhxAKmjox/4wAdQVVUFh8OBq666Cvv27cu6vyRJ+PGPf4yPfOQjkGUZS5YsQWtrK44dO4a/+qu/gtVqxcaNG9P7HPbMM89g9erVMJvNaGxsxDe+8Q3E4/Gs/f7whz/EtddeC6vVim9/+9tIJBK49dZb0dDQAIvFgqamJnzve98b8/l985vfxJw5c7I+xFxzzTV473vfi2QyOeZ9M3V1dUGSJDz22GPYuHFj+me4ffv2CX8sIiIAgCAiusDEYjFhs9nEnXfeKcLh8IjbJBIJ0dzcLJYtWyZefPFFcfz4cfGHP/xBPPfcc0IIIY4dOyasVqv47ne/K44cOSJ27NghVq1aJW655Zb0Purq6kRFRYV45JFHxNGjR8VDDz0kDAaDOHz4sBBCiGg0KpYsWSI+85nPiLfeekscPHhQ/N3f/Z1oamoSkUhkxHGdOnVKVFRUiOuvv17s3r1btLe3i5///OfpfW7btk386le/EocOHRIHDx4Ut956q6iurhaBQCC9DwBi7ty54vHHHxft7e3iox/9qKivrxfve9/7xPPPPy8OHjwompubxdVXX52+zyuvvCLsdrt49NFHxfHjx8WLL74o6uvrxde//vWs/brdbvHzn/9cHD9+XJw4cUJEo1Fx//33i927d4uOjg7x61//WsiyLB5//PFRfz7xeFy0tLSIj370o0IIIX7wgx8Ip9MpTpw4Mep9br75ZnHddddlXdfZ2SkAiHnz5on/+I//EAcPHhSf/exnRXl5uejt7S3qsf7yl78IAGJgYGDUMRARsXAmogvSf/zHf4hZs2YJs9ksNm7cKO69917x5ptvpm9/4YUXhMFgEO3t7SPe/9ZbbxV///d/n3Xdq6++KgwGgwiFQkKIVOH8yU9+Mn17MpkUbrdb/PCHPxRCCPGrX/1KNDU1iWQymd4mEokIi8UiXnjhhREf99577xUNDQ0iGo0W9DwTiYQoLy8Xf/jDH9LXARD/9E//lL7c2toqAIif/exn6et+97vfCbPZnL78/ve/Xzz44INZ+/7Vr34lZs+enbXfO++8M++YtmzZIm644YYxtzl+/LgoLy8Xd999t7BYLOI3v/nNmNuPVThv3bo1fV0sFhPz5s0TDz/8cFGPxcKZiArBqAYRXZBuuOEGnDlzBr///e9x9dVX4+WXX8bq1avx6KOPAgD279+PefPm4ZJLLhnx/m+++SYeffRR2Gy29H+bN29GMplEZ2dnertLL700/W9JklBTUwOv15vex7Fjx1BeXp7eR0VFBcLhcE5MYtj+/ftxxRVXjJod9ng8+NznPodFixbB4XDAbrcjGAyiu7s7a7vMcVVXVwMAVqxYkXVdOBxGIBBIj/Wb3/xm1vP93Oc+h7Nnz0LTtPT91q5dmzOmRx55BGvWrIHL5YLNZsNPfvKTnPHoNTY24l/+5V/w8MMP49prr8Xf/d3fjbn9WFpaWtL/Li0txdq1a3Ho0KFJeSwiurjx5EAiumCZzWZ84AMfwAc+8AHcd999+OxnP4sHHngAt9xyCywWy5j3DQaD+PznP4877rgj57ba2tr0v/UFriRJ6exsMBjEmjVr8Jvf/CZnHy6Xa8THzTeum2++GX19ffje976Huro6mEwmtLS0IBqNZm2XOS5Jkka9LnOs3/jGN3D99dfnPKbZbE7/22q1Zt322GOP4X/8j/+B//W//hdaWlpQXl6Of/7nf8auXbvGfB4A8Morr6CkpARdXV2Ix+MoLZ28P0lT+VhEdOHiEWciumgsXbo0fXLfpZdeilOnTuHIkSMjbrt69WocPHgQCxcuzPnPaDQW9HirV6/G0aNH4Xa7c/bhcDhGvM+ll16KV199FbFYbMTbd+zYgTvuuAMf/vCHsWzZMphMJvT29hY0nnxjbW9vH/H5Ggyj/6nYsWMHNm7ciC9+8YtYtWoVFi5cOOrR9EyPP/44nnzySbz88svo7u7Gt771rXc99ra2tvS/4/E49u7diyVLlkzKYxHRxY2FMxFdcPr6+vC+970Pv/71r/HWW2+hs7MTTzzxBL7zne/guuuuAwBcddVVuPLKK3HDDTfgpZdeQmdnJ/70pz/h+eefBwDcfffd2LlzJ26//Xbs378fR48exTPPPIPbb7+94HHceOONqKqqwnXXXYdXX30VnZ2dePnll3HHHXfg1KlTI97n9ttvRyAQwN/+7d9iz549OHr0KH71q1+hvb0dALBo0SL86le/wqFDh7Br1y7ceOONeY9SF+L+++/Hv//7v+Mb3/gGDhw4gEOHDuGxxx7DP/3TP415v0WLFmHPnj144YUXcOTIEdx3333YvXv3mPc5deoUbrvtNjz88MN4z3veg1/84hd48MEHswrgYjzyyCN46qmncPjwYWzZsgUDAwP4zGc+MymPRUQXNxbORHTBsdls2LBhA7773e/iyiuvxPLly3Hffffhc5/7HH7wgx+kt/vP//xPrFu3Dp/4xCewdOlS/MM//AMSiQSA1JHf7du348iRI7jiiiuwatUq3H///ZgzZ07B45BlGa+88gpqa2tx/fXXY8mSJbj11lsRDodht9tHvE9lZSX+/Oc/IxgM4qqrrsKaNWvw05/+NB2z+NnPfoaBgQGsXr0aN910E+644w643e5xzFbK5s2b8eyzz+LFF1/EunXr0NzcjO9+97uoq6sb836f//zncf311+PjH/84NmzYgL6+Pnzxi18cdXshBG655RasX78+/SFk8+bNuO222/DJT34SwWCw6LFv3boVW7duxWWXXYbXXnsNv//971FVVTUpj0VEFzdJCCGmexBERERjueWWW6AoStZy211dXWhoaMAbb7yBlStXjmv/L7/8Mt773vdiYGAATqdzXPsiogsXjzgTEdF54dlnn4XNZstapGYiLFu2bMKX8SaiCxOPOBMR0Yzn9XrTrfNmz54Nq9U6YUecT5w4kT4Zs7GxccyTIYno4sbCmYiIiIioAPxYTURERERUABbOREREREQFYOFMRERERFQAFs5ERERERAVg4UxEREREVAAWzkREREREBWDhTERERERUABbOREREREQF+P/ElHOZehPZvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_edges = np.linspace(0, 1600, 160)\n", + "y_edges = np.linspace(0, 1200, 120)\n", + "\n", + "gaze_x = gaze.data[\"gaze x [px]\"]\n", + "gaze_y = gaze.data[\"gaze y [px]\"]\n", + "gaze_heatmap, _, _ = np.histogram2d(gaze_x, gaze_y, bins=(x_edges, y_edges))\n", + "gaze_heatmap = gaussian_filter(gaze_heatmap, sigma=3)\n", + "\n", + "fixations = recording.fixations\n", + "fix_x = fixations.data[\"fixation x [px]\"]\n", + "fix_y = fixations.data[\"fixation y [px]\"]\n", + "\n", + "# Plot a heatmap and scatter plot fixations on top\n", + "fig, ax = plt.subplots(figsize=(8, 6))\n", + "ax.imshow(gaze_heatmap.T, cmap=\"inferno\", extent=[0, 1600, 0, 1200], origin=\"lower\")\n", + "ax.scatter(fix_x, fix_y, color=\"white\", s=10, alpha=0.3)\n", + "ax.set_aspect(\"equal\", \"box\")\n", + "ax.set_xlabel(\"Scene camera x [px]\")\n", + "ax.set_ylabel(\"Scene camera y [px]\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pyneon", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_sources/tutorials/resample_and_concat.ipynb.txt b/docs/_sources/tutorials/resample_and_concat.ipynb.txt index 375b925..bbee9ff 100644 --- a/docs/_sources/tutorials/resample_and_concat.ipynb.txt +++ b/docs/_sources/tutorials/resample_and_concat.ipynb.txt @@ -6,11 +6,312 @@ "source": [ "# Resample data and concatenate channels\n" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we show how to resample different continuous data streams to be evenly sampled. We firstly import the necessary libraries and define our recording as well as output directory" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from pyneon import get_sample_data, NeonRecording\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "recording_dir = get_sample_data(\"OfficeWalk\") / \"Timeseries Data\" / \"walk1-e116e606\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will save local instances of the unprocessed data for comparison" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "recording = NeonRecording(recording_dir)\n", + "raw_gaze_data = recording.gaze.data\n", + "raw_eye_states_data = recording.eye_states.data\n", + "raw_imu_data = recording.imu.data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For imu, the effective rate is actually higher.\n", + "We can further explore this behaviour by plotting the distances between subsequent datapoints as a histogram. Dataframes can be operated upon with regular pandas logic" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.010090909090909091, 100, 'IMU nominal sampling rate')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAK9CAYAAADFdObnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMk0lEQVR4nOzdd3hUVf7H8c+k9wYhISH0XgSkCSIdASkiKlgpCrIaRGWxoKuCq7KuUiyjiAqorAqi4q4IiiiLBaVIld4hQEIgJCQhde7vD37MOkwCMxC4k8z79Tw8ZM4958537kyS+eTce8ZiGIYhAAAAAIBLfMwuAAAAAADKE0IUAAAAALiBEAUAAAAAbiBEAQAAAIAbCFEAAAAA4AZCFAAAAAC4gRAFAAAAAG4gRAEAAACAGwhRAAAAAOAGQhTgopo1a2r48OFml1Hhvfzyy6pdu7Z8fX3VokULt8fv27dPFotFc+bMKfPaytq5r6nly5fLYrFo+fLlDv0+/PBDNWzYUP7+/oqKirK3X+qx8iZnXxevvPKK2aV4rS5duqhp06Zml1GhdenSRV26dDG7jMtq4sSJslgsZpcBEKLgnebMmSOLxaI1a9aUuL2sftl//fXXmjhx4iXvx1t8++23euyxx3Tttddq9uzZevHFF0vt+9FHH2n69OlXrjiTbNu2TcOHD1edOnX0zjvvaObMmZLcO1a4PLZs2aKJEydq3759ZpeCcu6XX37RxIkTdfLkSVPuPzc3VxMnTnT6A05FY/ZxRsXiZ3YBQHmxfft2+fi493eHr7/+WlarlSDlou+//14+Pj567733FBAQcN6+H330kTZv3qyHH37Yob1GjRo6ffq0/P39L2Oll0enTp10+vRph8e+fPly2Ww2vfrqq6pbt6693Z1jhctjy5YtmjRpkrp06aKaNWuaXQ7KsV9++UWTJk3S8OHDHWabr5Tc3FxNmjRJkjx+Jutvf/ubnnjiiYsaa/ZxRsXCTBTgosDAwHL3xjwnJ8fsEtySlpam4ODgSwoFFotFQUFB8vX1LcPKrgwfHx8FBQU5hPW0tDRJcvqFXxbH6ly5ubllti8AuBz8/PwUFBRkdhkAIQpw1bnXrxQWFmrSpEmqV6+egoKCVKlSJXXs2FFLly6VJA0fPlxWq1XSmTf2Z/+dlZOTo7/+9a9KSkpSYGCgGjRooFdeeUWGYTjc7+nTpzV27FhVrlxZ4eHhGjBggFJSUmSxWBxmuM6eJ75lyxbdcccdio6OVseOHSVJGzdu1PDhw1W7dm0FBQUpPj5e99xzj44fP+5wX2f3sWPHDt11112KjIxUbGysnn76aRmGoYMHD+rGG29URESE4uPjNWXKFJeOXVFRkf7+97+rTp06CgwMVM2aNfXkk08qPz/f3sdisWj27NnKycmxH6vSrmvq0qWLFi1apP3799v7np0JKOmaqOHDhyssLEwHDhxQv379FBYWpsTERPvzs2nTJnXr1k2hoaGqUaOGPvroI6f7PHnypB5++GH781W3bl299NJLstlsF3z8hmHo+eefV7Vq1RQSEqKuXbvqjz/+cOp37jVRNWvW1LPPPitJio2NtT/nFzpWc+fOVatWrRQcHKyYmBjddtttOnjwoNMxbNq0qdauXatOnTopJCRETz75pCQpPz9fzz77rOrWravAwEAlJSXpsccec3i+pDPP2ZgxY7Rw4UI1bdpUgYGBatKkiZYsWeL02FJSUnTvvfcqISFBgYGBqlWrlu6//34VFBS4fYw/+eQTtWrVSuHh4YqIiFCzZs306quvXvB5OGvatGmqUaOGgoOD1blzZ23evNmpz7Zt23TLLbcoJiZGQUFBat26tf7973/bt8+ZM0e33nqrJKlr167252H58uUaN26cKlWq5PC9/OCDD8pisei1116zt6Wmpspiseitt96yt7l67CX3nuctW7aoa9euCgkJUWJiov75z3+6dKyWLl2qjh07KioqSmFhYWrQoIH9dXL2OFgsFqdTGku7vk+S1q5dqw4dOig4OFi1atXSjBkznPq8/vrratKkiUJCQhQdHa3WrVs7fV+mpKTonnvuUVxcnP21N2vWLKd9HTp0SAMHDlRoaKiqVKmiRx55RN98841TfaVd91rSdUZl+T0yceJEPfroo5KkWrVq2V9LFzpNdObMmapTp46Cg4PVtm1b/fjjj059CgoK9Mwzz6hVq1aKjIxUaGiorrvuOv3www/2Pvv27VNsbKwkadKkSfb7P/v7xdXfHyU5+zqYN2+ennzyScXHxys0NFQDBgxweq1K0qeffmp/TVeuXFl33XWXUlJSHPqUdE1UWRznC73WgXNxOh+8WmZmptLT053aCwsLLzh24sSJmjx5skaOHKm2bdsqKytLa9as0e+//66ePXtq9OjROnz4sJYuXaoPP/zQYaxhGBowYIB++OEH3XvvvWrRooW++eYbPfroo0pJSdG0adPsfYcPH6758+fr7rvv1jXXXKP//ve/6tu3b6l13XrrrapXr55efPFF+5u4pUuXas+ePRoxYoTi4+P1xx9/aObMmfrjjz/066+/Ov1CGjJkiBo1aqR//OMfWrRokZ5//nnFxMTo7bffVrdu3fTSSy/pX//6l8aPH682bdqoU6dO5z1WI0eO1Pvvv69bbrlFf/3rX/Xbb79p8uTJ2rp1q7744gtJZxZPmDlzplatWqV3331XktShQ4cS9/fUU08pMzNThw4dsh+rsLCw89ZQXFysPn36qFOnTvrnP/+pf/3rXxozZoxCQ0P11FNP6c4779SgQYM0Y8YMDR06VO3bt1etWrUknZmh6dy5s1JSUjR69GhVr15dv/zyiyZMmKAjR45c8NqsZ555Rs8//7xuuOEG3XDDDfr99991/fXXOwSIkkyfPl0ffPCBvvjiC7311lsKCwvTVVddpbp165Z6rF544QU9/fTTGjx4sEaOHKljx47p9ddfV6dOnbRu3TqHGa3jx4+rT58+uu2223TXXXcpLi5ONptNAwYM0E8//aT77rtPjRo10qZNmzRt2jTt2LFDCxcudKjxp59+0ueff64HHnhA4eHheu2113TzzTfrwIEDqlSpkiTp8OHDatu2rU6ePKn77rtPDRs2VEpKihYsWKDc3FwFBAS4fIyXLl2q22+/Xd27d9dLL70kSdq6dat+/vlnPfTQQ+c9npL0wQcf6NSpU0pOTlZeXp5effVVdevWTZs2bVJcXJwk6Y8//tC1116rxMREPfHEEwoNDdX8+fM1cOBAffbZZ7rpppvUqVMnjR07Vq+99pqefPJJNWrUSJLUqFEjZWRkaNq0afrjjz/s11b++OOP8vHx0Y8//qixY8fa2yTZv3/cOfbuPM8ZGRnq3bu3Bg0apMGDB2vBggV6/PHH1axZM/Xp06fUY/XHH3+oX79+uuqqq/Tcc88pMDBQu3bt0s8//3zB41yajIwM3XDDDRo8eLBuv/12zZ8/X/fff78CAgJ0zz33SJLeeecdjR07Vrfccoseeugh5eXlaePGjfrtt990xx13SDoTQK+55hr7m+fY2FgtXrxY9957r7Kysuyn+Z4+fVrdu3fXgQMHNHbsWCUkJOjDDz/U999/f9GPoay/RwYNGqQdO3bo448/1rRp01S5cmVJsgebkrz33nsaPXq0OnTooIcfflh79uzRgAEDFBMTo6SkJHu/rKwsvfvuu7r99ts1atQonTp1Su+995569eqlVatWqUWLFoqNjdVbb72l+++/XzfddJMGDRokSbrqqqskuf/7oyQvvPCCLBaLHn/8caWlpWn69Onq0aOH1q9fr+DgYElnAvmIESPUpk0bTZ48WampqXr11Vf1888/O72mS3Ipx/lyvNbhBQzAC82ePduQdN5/TZo0cRhTo0YNY9iwYfbbzZs3N/r27Xve+0lOTjZK+jZbuHChIcl4/vnnHdpvueUWw2KxGLt27TIMwzDWrl1rSDIefvhhh37Dhw83JBnPPvusve3ZZ581JBm333670/3l5uY6tX388ceGJGPFihVO+7jvvvvsbUVFRUa1atUMi8Vi/OMf/7C3Z2RkGMHBwQ7HpCTr1683JBkjR450aB8/frwhyfj+++/tbcOGDTNCQ0PPu7+z+vbta9SoUcOpfe/evYYkY/bs2Q77lWS8+OKLTvVbLBbjk08+sbdv27bN6dj+/e9/N0JDQ40dO3Y43NcTTzxh+Pr6GgcOHCi1zrS0NCMgIMDo27evYbPZ7O1PPvmkIcnh+P3www+GJOOHH36wt519To4dO+aw35KO1b59+wxfX1/jhRdecGjftGmT4efn59DeuXNnQ5IxY8YMh74ffvih4ePjY/z4448O7TNmzDAkGT///LO9TZIREBBgf70ahmFs2LDBkGS8/vrr9rahQ4caPj4+xurVq52Oz9lj4uoxfuihh4yIiAijqKjIaV/nc/Z1ERwcbBw6dMje/ttvvxmSjEceecTe1r17d6NZs2ZGXl6eQ50dOnQw6tWrZ2/79NNPnZ4vwzjznEsy3nzzTcMwDOPkyZOGj4+PceuttxpxcXH2fmPHjjViYmLsx8DVY38xz/MHH3xgb8vPzzfi4+ONm2+++bzHbNq0aSW+9v7s7M/SvXv3OrSX9Fo+W8uUKVMcamnRooVRpUoVo6CgwDAMw7jxxhudfv6e69577zWqVq1qpKenO7TfdtttRmRkpP1n3vTp0w1Jxvz58+19cnJyjLp16zrVd+7P+D/X3blzZ/vty/E98vLLL5d4HEtSUFBgVKlSxWjRooWRn59vb585c6YhyaHWoqIihz6GceZnX1xcnHHPPffY244dO+b0c+8sV39/lOTs6yAxMdHIysqyt8+fP9+QZLz66qsOj6lp06bG6dOn7f2++uorQ5LxzDPP2NvO/kz8s0s9zq681oFzcTofvJrVatXSpUud/p39C9z5REVF6Y8//tDOnTvdvt+vv/5avr6+9r9In/XXv/5VhmFo8eLFkmQ/FeGBBx5w6Pfggw+Wuu+//OUvTm1n/9InSXl5eUpPT9c111wjSfr999+d+o8cOdL+ta+vr1q3bi3DMHTvvffa26OiotSgQQPt2bOn1FqkM49VksaNG+fQ/te//lWStGjRovOOL0t/flxn6w8NDdXgwYPt7Q0aNFBUVJTD4/r000913XXXKTo6Wunp6fZ/PXr0UHFxsVasWFHqfX733XcqKCiwn8511rkLYpSFzz//XDabTYMHD3aoMz4+XvXq1XM4hUc6c53fiBEjHNo+/fRTNWrUSA0bNnTYR7du3STJaR89evRQnTp17LevuuoqRURE2I+fzWbTwoUL1b9/f7Vu3dqp5rPHxNVjHBUVpZycHPtps+4aOHCgEhMT7bfbtm2rdu3a2V+nJ06c0Pfff6/Bgwfr1KlT9jqOHz+uXr16aefOnU6nF50rNjZWDRs2tNf8888/y9fXV48++qhSU1PtPzN+/PFHdezY0eEYuHLs3X2ew8LCdNddd9lvBwQEqG3bthf83j37l/8vv/zSpdNWXeHn56fRo0c71DJ69GilpaVp7dq19vs9dOiQVq9eXeI+DMPQZ599pv79+8swDIdj0KtXL2VmZtp/rn399deqWrWqbrnlFvv4kJAQ3XfffRf9GMr6e8Rda9asUVpamv7yl784XBM5fPhwRUZGOvT19fW197HZbDpx4oSKiorUunXrEn/2l8Td3x8lGTp0qMLDw+23b7nlFlWtWtX+fXf2MT3wwAMO1zv17dtXDRs2dOn3xKUc58vxWkfFx+l88Gpt27Yt8Y3d2Tdy5/Pcc8/pxhtvVP369dW0aVP17t1bd999t0sBbP/+/UpISHD4pSLJfkrQ/v377f/7+PjYTys768+rtJ3r3L7SmTeGkyZN0ieffGJfqOCszMxMp/7Vq1d3uB0ZGamgoCD76Q9/br/QefFnH8O5NcfHxysqKsr+WC+3oKAgp9NjIiMjVa1aNafTUSIjI5WRkWG/vXPnTm3cuLHU02vOPaZ/dvbx1atXz6E9NjZW0dHRbj2GC9m5c6cMw3C6r7POXRglMTHRaWGKnTt3auvWrS4/1nNfK9KZ75+zx+/YsWPKysq64EcGuHqMH3jgAc2fP199+vRRYmKirr/+eg0ePFi9e/c+7/7PKunY1K9fX/Pnz5ck7dq1S4Zh6Omnn9bTTz9dai1/DmIlue666+xvEH/88Ue1bt1arVu3VkxMjH788UfFxcVpw4YN9tPTJNePvbvPc0mv8ejoaG3cuPG8j2HIkCF69913NXLkSD3xxBPq3r27Bg0apFtuucXtlUrPSkhIUGhoqENb/fr1JZ25Nueaa67R448/ru+++05t27ZV3bp1df311+uOO+7QtddeK+nMa+rkyZOaOXOmfcn/c509Vvv371fdunWdHn+DBg0uqn6p7L9H3FXazxR/f3/Vrl3bqf/777+vKVOmaNu2bQ6nqpf0u6Ik7v7+KMm5tVosFtWtW9d+PdLZx1TS89KwYUP99NNPF7yPSznOl+O1joqPEAVcpE6dOmn37t368ssv9e233+rdd9/VtGnTNGPGDIcZjyvtz381PGvw4MH65Zdf9Oijj6pFixYKCwuTzWZT7969S/yrW0kr25W22p1xzkIYpTH7wxFLq9+Vx2Wz2dSzZ0899thjJfY9+ybQbDabTRaLRYsXLy7xcZ173VhJrxWbzaZmzZpp6tSpJd7Hn6+3kC79dfHn+3XlGFepUkXr16/XN998o8WLF2vx4sWaPXu2hg4dqvfff9+t+yytDkkaP368evXqVWKf8/0R46yOHTvqnXfe0Z49e/Tjjz/quuuuk8ViUceOHfXjjz8qISFBNptN1113ncN9u3Ls3X2eL/Y5Cg4O1ooVK/TDDz9o0aJFWrJkiebNm6du3brp22+/la+vb6nf18XFxefd9/k0atRI27dv11dffaUlS5bos88+05tvvqlnnnlGkyZNsj9Hd911l4YNG1biPlz5Y9a5zvdY/nwMzfoeuRhz587V8OHDNXDgQD366KOqUqWKfH19NXnyZO3evdulfbj7+8Msl3KcXXmtA+ciRAGXICYmRiNGjNCIESOUnZ2tTp06aeLEifYQVdov5Ro1aui7777TqVOnHGajtm3bZt9+9n+bzaa9e/c6/CVv165dLteYkZGhZcuWadKkSXrmmWfs7RdzGuLFOPsYdu7caZ9pk85cGH7y5En7Y3XXlQxlderUUXZ2tnr06OH22LOPb+fOnQ5/JT527NhF/yW6NHXq1JFhGKpVq9ZFB7s6depow4YN6t69e5kc49jYWEVERJS4At659+vqMQ4ICFD//v3Vv39/2Ww2PfDAA3r77bf19NNPXzDglPS637Fjh311x7PPkb+//wVrOd/xORuOli5dqtWrV9s/16ZTp05666237DMyrVq1so9x9diXxfPsKh8fH3Xv3l3du3fX1KlT9eKLL+qpp57SDz/8oB49ethnU8/98NLSZpgPHz6snJwch9moHTt2SJLDZ22FhoZqyJAhGjJkiAoKCjRo0CC98MILmjBhgmJjYxUeHq7i4uILPkc1atTQ5s2bZRiGwzHdvn27U9/o6OgSP4R1//79Dt+7Zf09Irn38+zPP1POnkIonVkQae/evWrevLm9bcGCBapdu7Y+//xzh/s4u+rnhe6/rH5/nNvfMAzt2rXLHnbPPqbt27c7PKazbRf7e+Jc5zvOF3qtA+dijhK4SOeexhYWFqa6des6LHF79o3Cub+Yb7jhBhUXF+uNN95waJ82bZosFot9xayzfwl/8803Hfq9/vrrLtd59i9o5/417kIrypWVG264ocT7O/tX3POtNHg+oaGhLp9KcqkGDx6slStX6ptvvnHadvLkSRUVFZU6tkePHvL399frr7/u8BxcjuM/aNAg+fr6atKkSU7Pt2EYLi1JPHjwYKWkpOidd95x2nb69Gm3P3vMx8dHAwcO1H/+8x+tWbPGafvZOl09xuc+Bh8fH/sbsZKWAT/XwoULHa5pWrVqlX777Tf791yVKlXUpUsXvf322zpy5IjT+GPHjtm/Lu37WzpzqlRiYqKmTZumwsJC+6lo1113nXbv3q0FCxbommuukZ/f//6W6eqxL4vn2RUnTpxwamvRooWk/x3rs9eg/Pm6wOLi4lJPsysqKtLbb79tv11QUKC3335bsbGx9kB5bv0BAQFq3LixDMNQYWGhfH19dfPNN+uzzz4rMZz/+Tm64YYbdPjwYS1YsMDelpubW2J9derU0a+//uqwauZXX33ltBR3WX+PSOd/LZ2rdevWio2N1YwZMxxqnTNnjtP4kn7+//bbb1q5cqVDv5CQkBLvv6x+f5xdFfOsBQsW6MiRI/bvu9atW6tKlSqaMWOGw/fx4sWLtXXr1ov+PXGu0o6zK6914FzMRAEXqXHjxurSpYtatWqlmJgYrVmzRgsWLNCYMWPsfc6+KRg7dqx69eolX19f3Xbbberfv7+6du2qp556Svv27VPz5s317bff6ssvv9TDDz9sf2PSqlUr3XzzzZo+fbqOHz9uX+L87F9uXfnrZUREhH1Z78LCQiUmJurbb7/V3r17L8NRcda8eXMNGzZMM2fO1MmTJ9W5c2etWrVK77//vgYOHKiuXbte1H5btWqlefPmady4cWrTpo3CwsLUv3//Mq7+jEcffVT//ve/1a9fPw0fPlytWrVSTk6ONm3apAULFmjfvn1O14udFRsbq/Hjx2vy5Mnq16+fbrjhBq1bt06LFy8udczFqlOnjp5//nlNmDBB+/bt08CBAxUeHq69e/fqiy++0H333afx48efdx9333235s+fr7/85S/64YcfdO2116q4uFjbtm3T/Pnz9c0335R4HeH5vPjii/r222/VuXNn+5LQR44c0aeffqqffvpJUVFRLh/jkSNH6sSJE+rWrZuqVaum/fv36/XXX1eLFi0cZjpLU7duXXXs2FH333+/8vPzNX36dFWqVMnhNEKr1aqOHTuqWbNmGjVqlGrXrq3U1FStXLlShw4d0oYNGySdeZPl6+url156SZmZmQoMDFS3bt1UpUoVSWcC0yeffKJmzZrZZ2yuvvpqhYaGaseOHQ7XQ7lz7MvieXbFc889pxUrVqhv376qUaOG0tLS9Oabb6patWr2z6Br0qSJrrnmGk2YMEEnTpxQTEyMPvnkk1L/sJCQkKCXXnpJ+/btU/369TVv3jytX79eM2fOtF/Ldf311ys+Pl7XXnut4uLitHXrVr3xxhvq27evfeb+H//4h3744Qe1a9dOo0aNUuPGjXXixAn9/vvv+u677+xvikeNGqU33nhDQ4cO1dq1a1W1alV9+OGH9tDwZyNHjtSCBQvUu3dvDR48WLt379bcuXMdFitw53lyx9nfFU899ZRuu+02+fv7q3///k7Xj0lnZkmff/55jR49Wt26ddOQIUO0d+9ezZ492+maqH79+unzzz/XTTfdpL59+2rv3r2aMWOGGjdurOzsbHu/4OBgNW7cWPPmzVP9+vUVExOjpk2bqmnTpmXy+yMmJkYdO3bUiBEjlJqaqunTp6tu3boaNWqU/TG99NJLGjFihDp37qzbb7/dvsR5zZo19cgjj7h1f6Up7Ti78loHnFyhVQABj3J2Wd6Sllw2jDNL2l5oifPnn3/eaNu2rREVFWUEBwcbDRs2NF544QX7Mr2GcWZ52QcffNCIjY01LBaLw7Ksp06dMh555BEjISHB8Pf3N+rVq2e8/PLLDstgG8aZ5XiTk5ONmJgYIywszBg4cKCxfft2Q5LDkuOlLYVtGIZx6NAh46abbjKioqKMyMhI49ZbbzUOHz5c6jLpriynXdpxKklhYaExadIko1atWoa/v7+RlJRkTJgwwWEJ6fPdT0mys7ONO+64w4iKijIk2Zc7L22Jc3fqr1GjhtPy9adOnTImTJhg1K1b1wgICDAqV65sdOjQwXjllVccnvOSFBcXG5MmTTKqVq1qBAcHG126dDE2b97s9Jq61CXOz/rss8+Mjh07GqGhoUZoaKjRsGFDIzk52di+ffsFH7thnFlu+KWXXjKaNGliBAYGGtHR0UarVq2MSZMmGZmZmfZ+kozk5GSn8SUtFb1//35j6NChRmxsrBEYGGjUrl3bSE5Odlh+2ZVjvGDBAuP66683qlSpYgQEBBjVq1c3Ro8ebRw5cqTEx3LW2dfFyy+/bEyZMsVISkoyAgMDjeuuu87YsGGDU//du3cbQ4cONeLj4w1/f38jMTHR6Nevn7FgwQKHfu+8845Ru3Ztw9fX1+m5s1qthiTj/vvvdxjTo0cPQ5KxbNkyp/t19dgbxqU9z8OGDSvxIwL+bNmyZcaNN95oJCQkGAEBAUZCQoJx++23Oy1Dv3v3bqNHjx5GYGCgERcXZzz55JPG0qVLS1zivEmTJsaaNWuM9u3bG0FBQUaNGjWMN954w2F/b7/9ttGpUyejUqVKRmBgoFGnTh3j0UcfdXr8qampRnJyspGUlGT4+/sb8fHxRvfu3Y2ZM2c69Nu/f78xYMAAIyQkxKhcubLx0EMPGUuWLClxefopU6YYiYmJRmBgoHHttdcaa9ascVri3DAuz/fI3//+dyMxMdHw8fFxabnzN99806hVq5YRGBhotG7d2lixYoVTrTabzXjxxReNGjVqGIGBgUbLli2Nr776qsTn/5dffjFatWplBAQEOPxucPX3R0nO/kz7+OOPjQkTJhhVqlQxgoODjb59+xr79+936j9v3jyjZcuWRmBgoBETE2PceeedDh9JYBilL3F+KcfZ1dc68GcWw7gCVzYCKFPr169Xy5YtNXfuXN15551mlwMA5cry5cvVtWtX/fDDD+rSpYvZ5VRYZ4/zp59+6rDMPFARcE0U4OFOnz7t1DZ9+nT5+PioU6dOJlQEAADg3bgmCvBw//znP7V27Vp17dpVfn5+9mWd77vvPqeldAEAAHD5EaIAD9ehQwctXbpUf//735Wdna3q1atr4sSJeuqpp8wuDQAAwCtxTRQAAAAAuIFrogAAAADADYQoAAAAAHCD118TZbPZdPjwYYWHh7v0waUAAAAAKibDMHTq1CklJCTIx6f0+SavD1GHDx9mhTMAAAAAdgcPHlS1atVK3e61IcpqtcpqtaqoqEjSmQMVERFhclUAAAAAzJKVlaWkpCSFh4eft5/Xr86XlZWlyMhIZWZmlusQ9dFHHyk3N1chISG64447LtsYAAAAoKJyNRsQoipIiKpWrZpSUlKUmJioQ4cOXbYxAAAAQEXlajZgdT4AAAAAcAMhCgAAAADc4LULSwAAAADnMgxDRUVFKi4uNrsUXAa+vr7y8/O75I82IkQBAAAAkgoKCnTkyBHl5uaaXQouo5CQEFWtWlUBAQEXvQ9CFAAAALyezWbT3r175evrq4SEBAUEBFzybAU8i2EYKigo0LFjx7R3717Vq1fvvB+oez6EKAAAAHi9goIC2Ww2JSUlKSQkxOxycJkEBwfL399f+/fvV0FBgYKCgi5qPywsAQAAAPy/i52ZQPlRFs8xrxIAAAAAcAOn81UQ8fHxDv9frjEAAACAtyNEVRBr1qy5ImMAAAAAb0eIAgAAAM5j2tIdV/T+HulZ363+w4cP18mTJ7Vw4UINHz5c77//vkaPHq0ZM2Y49EtOTtabb76pYcOGac6cOZKkLl26qEWLFpo+fbpD3zlz5ujhhx/WyZMnL+GRVFxcEwUAAABUIElJSfrkk090+vRpe1teXp4++ugjVa9e3cTKKg5CFAAAAFCBXH311UpKStLnn39ub/v8889VvXp1tWzZ0sTKKg5CVAUxevRo3XrrrRo9evRlHQMAAADPd88992j27Nn227NmzdKIESNMrKhi4ZqoCmLRokVKSUlRYmLiZR0DAAAAz3fXXXdpwoQJ2r9/vyTp559/1ieffKLly5ebW1gFQYgCAAAAKpjY2Fj17dtXc+bMkWEY6tu3rypXrmx2WRUGIQoAAACogO655x6NGTNGkmS1WkvsExERoczMTKf2kydPKjIy8rLWV55xTRQAAABQAfXu3VsFBQUqLCxUr169SuzToEED/f77707tv//+u+rXd2+pdW/CTBQAAABQAfn6+mrr1q32r0ty//3364033tDYsWM1cuRIBQYGatGiRfr444/1n//850qWW64QogAAAIDzcPfDbz1JRETEebfXrl1bK1as0FNPPaUePXqooKBADRs21KeffqrevXtfoSrLH68NUVarVVarVcXFxWaXAgAAAFy0OXPmlPh1SRYuXOjU1qZNG3377bdlW1QF57XXRCUnJ2vLli1avXq12aUAAAAAKEe8NkQBAAAAwMXw2tP5Kprbb79dGRkZio6OvqxjAAAAAG9nMQzDMLsIM2VlZSkyMlKZmZkXvPDO0w35uPOl7yQ8/pKGz+s379JrAAAAuMLy8vK0d+9e1apVS0FBQWaXg8vofM+1q9mA0/kAAAAAwA2EKAAAAABwAyEKAAAAANzAwhIVRMOGDbX7wC4FRwWoz5Q2Lo1Z/NfVOn2ywK0xAAAAgLdjJqqCyM7OVtHpYhXlu/7hwUX5xW6PAQAAALwdM1EAAADA+fww+creX9cJV/b+4DZmogAAAIBybPjw4bJYLE7/evfubVpNXbp00cMPP+z2uOHDh2vgwIFlXk9ZYyYKAAAAKOd69+6t2bNnO7QFBgaaVE3Fx0wUAAAAUM4FBgYqPj7e4V90dLQk6Z577lG/fv0c+hcWFqpKlSp67733JEk2m02TJ09WrVq1FBwcrObNm2vBggXnvc8333xT9erVU1BQkOLi4nTLLbdIOjOb9N///levvvqqfVZs3759Ki4u1r333mu/jwYNGujVV1+172/ixIl6//339eWXX9rHLV++XJJ08OBBDR48WFFRUYqJidGNN96offv22ccuX75cbdu2VWhoqKKionTttddq//79l3pYS8VMFAAAAFCBjRw5Up06ddKRI0dUtWpVSdJXX32l3NxcDRkyRJI0efJkzZ07VzNmzFC9evW0YsUK3XXXXYqNjVXnzp2d9rlmzRqNHTtWH374oTp06KATJ07oxx9/lCS9+uqr2rFjh5o2barnnntOkhQbGyubzaZq1arp008/VaVKlfTLL7/ovvvuU9WqVTV48GCNHz9eW7duVVZWln1WLSYmRoWFherVq5fat2+vH3/8UX5+fnr++efVu3dvbdy4UT4+Pho4cKBGjRqljz/+WAUFBVq1apUsFstlO6aEKAAAAKCc++qrrxQWFubQ9uSTT+rJJ59Uhw4d1KBBA3344Yd67LHHJEmzZ8/WrbfeqrCwMOXn5+vFF1/Ud999p/bt20uSateurZ9++klvv/12iSHqwIEDCg0NVb9+/RQeHq4aNWqoZcuWkqTIyEgFBAQoJCRE8fHx9jG+vr6aNGmS/XatWrW0cuVKzZ8/X4MHD1ZYWJiCg4OVn5/vMG7u3Lmy2Wx699137cFo9uzZioqK0vLly9W6dWtlZmaqX79+qlOnjiSpUaNGZXFYS0WIAgAAAMq5rl276q233nJoi4mJsX89cuRIzZw5U4899phSU1O1ePFiff/995KkXbt2KTc3Vz179nQYX1BQYA9G5+rZs6dq1Kih2rVrq3fv3urdu7duuukmhYSEnLdOq9WqWbNm6cCBAzp9+rQKCgrUokWL847ZsGGDdu3apfDwcIf2vLw87d69W9dff72GDx+uXr16qWfPnurRo4cGDx5sn3W7HAhRAAAAQDkXGhqqunXrlrp96NCheuKJJ7Ry5Ur98ssvqlWrlq677jpJZz5vVJIWLVqkxMREh3GlLU4RHh6u33//XcuXL9e3336rZ555RhMnTtTq1asVFRVV4phPPvlE48eP15QpU9S+fXuFh4fr5Zdf1m+//Xbex5adna1WrVrpX//6l9O22NhYSWdmpsaOHaslS5Zo3rx5+tvf/qalS5fqmmuuOe++LxYhqoKYMWOGXlz6mHwDXF8rpNU99VRcYHNrDAAAAMqfSpUqaeDAgZo9e7ZWrlypESNG2Lc1btxYgYGBOnDgQImn7pXGz89PPXr0UI8ePfTss88qKipK33//vQYNGqSAgAAVFxc79P/555/VoUMHPfDAA/a23bt3O/QpadzVV1+tefPmqUqVKoqIiCi1npYtW6ply5aaMGGC2rdvr48++ogQhfPr16+fPjz1sltjEq6udJmqAQAAwJWUn5+vo0ePOrT5+fmpcuXK9tsjR45Uv379VFxcrGHDhtnbw8PDNX78eD3yyCOy2Wzq2LGjMjMz9fPPPysiIsKh71lfffWV9uzZo06dOik6Olpff/21bDabGjRoIEmqWbOmfvvtN+3bt09hYWGKiYlRvXr19MEHH+ibb75RrVq19OGHH2r16tWqVauWfb81a9bUN998o+3bt6tSpUqKjIzUnXfeqZdfflk33nijnnvuOVWrVk379+/X559/rscee0yFhYWaOXOmBgwYoISEBG3fvl07d+7U0KFDy/ow/+/YXrY9AwAAABVB1wlmV3BBS5YscboGqEGDBtq2bZv9do8ePVS1alU1adJECQkJDn3//ve/KzY2VpMnT9aePXsUFRWlq6++Wk8++WSJ9xcVFaXPP/9cEydOVF5enurVq6ePP/5YTZo0kSSNHz9ew4YNU+PGjXX69Gnt3btXo0eP1rp16zRkyBBZLBbdfvvteuCBB7R48WL7fkeNGmVfLCI7O1s//PCDunTpohUrVujxxx/XoEGDdOrUKSUmJqp79+6KiIjQ6dOntW3bNr3//vs6fvy4qlatquTkZI0ePbqsDq8Ti2EYxmXbezmQlZWlyMhIZWZmnnd6sDwY8rHr06+lCo+/cJ/zmNdv3qXXAAAAcIXl5eVp7969qlWrloKCgswu57LIzs5WYmKiZs+erUGDBpldjmnO91y7mg2Yiaog1q5dq/QdWfLxsyimdviFB0g6seeUbEWGW2MAAABQvthsNqWnp2vKlCmKiorSgAEDzC6p3CNEVRA33nijUlJSFBwToP5vuHYB3c9T/9DpEwVujQEAAED5cuDAAdWqVUvVqlXTnDlz5OdHBLhUHEEAAACgAqtZs6a8/AqeMsfa1gAAAADgBkIUAAAAALiBEAUAAAAAbiBEAQAAAIAbCFEAAAAA4AZCFAAAAAC4gSXOAQAAgPMY8tWQK3p/8/rNu6L3B/cxEwUAAABUAEePHtVDDz2kunXrKigoSHFxcbr22mv11ltvKTc31+zyKhRmoiqIrVu3atj83pLF9TG9X24tGXJrDAAAADzPnj17dO211yoqKkovvviimjVrpsDAQG3atEkzZ85UYmKiBgwYYHaZFUaFmYnKzc1VjRo1NH78eLNLMUV4eLj8Q/zkH+x6LvYP9nN7DAAAADzPAw88ID8/P61Zs0aDBw9Wo0aNVLt2bd14441atGiR+vfvL0maOnWqmjVrptDQUCUlJemBBx5Qdna2fT9dunSRxWJx+rdv3z5J0smTJzVy5EjFxsYqIiJC3bp104YNG8x4yKaqMCHqhRde0DXXXGN2GQAAAMAVdfz4cX377bdKTk5WaGhoiX0sljOnHvn4+Oi1117TH3/8offff1/ff/+9HnvsMXu/zz//XEeOHLH/GzRokBo0aKC4uDhJ0q233qq0tDQtXrxYa9eu1dVXX63u3bvrxIkTl/+BepAKEaJ27typbdu2qU+fPmaXAgAAAFxRu3btkmEYatCggUN75cqVFRYWprCwMD3++OOSpIcfflhdu3ZVzZo11a1bNz3//POaP3++fUxMTIzi4+MVHx+vjz/+WN9//73+/e9/Kzg4WD/99JNWrVqlTz/9VK1bt1a9evX0yiuvKCoqSgsWLLiij9lspoeoFStWqH///kpISJDFYtHChQud+litVtWsWVNBQUFq166dVq1a5bB9/Pjxmjx58hWq2DNNnTpVmxfs0/ZFh1wes33RIbfHAAAAoHxYtWqV1q9fryZNmig/P1+S9N1336l79+5KTExUeHi47r77bh0/ftxp4YnFixfriSee0Lx581S/fn1J0oYNG5Sdna1KlSrZw1lYWJj27t2r3bt3X/HHZybTQ1ROTo6aN28uq9Va4vZ58+Zp3LhxevbZZ/X777+refPm6tWrl9LS0iRJX375perXr29/cr3V1KlTteXzA9qx2PVAtGPxIbfHAAAAwLPUrVtXFotF27dvd2ivXbu26tatq+DgYEnSvn371K9fP1111VX67LPPtHbtWvt78IKCAvu4LVu26LbbbtM//vEPXX/99fb27OxsVa1aVevXr3f4t337dj366KNX4JF6DtNXFOjTp895T8ObOnWqRo0apREjRkiSZsyYoUWLFmnWrFl64okn9Ouvv+qTTz7Rp59+quzsbBUWFioiIkLPPPNMifvLz8+3J3FJysrKKtsHBAAAAFxBlSpVUs+ePfXGG2/owQcfLPW6qLVr18pms2nKlCny8Tkzl/LnU/kkKT09Xf3799fNN9+sRx55xGHb1VdfraNHj8rPz081a9a8LI+lvDB9Jup8CgoKtHbtWvXo0cPe5uPjox49emjlypWSpMmTJ+vgwYPat2+fXnnlFY0aNarUAHW2f2RkpP1fUlLSZX8cAAAAwOX05ptvqqioSK1bt9a8efO0detWbd++XXPnztW2bdvk6+urunXrqrCwUK+//rr27NmjDz/8UDNmzHDYz80336yQkBBNnDhRR48etf8rLi5Wjx491L59ew0cOFDffvut9u3bp19++UVPPfWU1qxZY9IjN4fpM1Hnk56eruLiYvtqIGfFxcVp27ZtF7XPCRMmaNy4cfbbWVlZBCkAAACUal6/eWaXcEF16tTRunXr9OKLL2rChAk6dOiQAgMD1bhxY40fP14PPPCAQkJCNHXqVL300kuaMGGCOnXqpMmTJ2vo0KH2/axYsUKSVKNGDYf97927VzVr1tTXX3+tp556SiNGjNCxY8cUHx+vTp06Ob1fr+g8OkS5a/jw4RfsExgYqMDAwMtfDAAAAHAFVa1aVa+//rpef/31Uvs88sgjTqfp3X333favDcM4732Eh4frtdde02uvvXZpxZZzHn06X+XKleXr66vU1FSH9tTUVMXHx5tUFQAAAABv5tEhKiAgQK1atdKyZcvsbTabTcuWLVP79u1NrAwAAACAtzL9dL7s7Gzt2rXLfnvv3r1av369YmJiVL16dY0bN07Dhg1T69at1bZtW02fPl05OTn21foAAAAA4EoyPUStWbNGXbt2td8+u+jDsGHDNGfOHA0ZMkTHjh3TM888o6NHj6pFixZasmTJJV+8ZrVaZbVaVVxcfEn7AQAAAOBdTA9RXbp0ueAFbGPGjNGYMWPK9H6Tk5OVnJysrKwsRUZGlum+zXD11VcrLzhLgRH+Lo+JrhmmkJhCt8YAAABUZBd6X4ryryyeY9NDFBxNW7rjosZ1ffAV2VLOnOKYk1/k0piWDza0f312TLbxvw8ijotgFUMAAOAd/P3P/FE5NzdXwcHBJleDyyk3N1fS/57zi0GIAgAAgNfz9fVVVFSU0tLSJEkhISGyWCwmV4WyZBiGcnNzlZaWpqioKPn6+l70vghRAAAAgGT/CJ2zQQoVU1RU1CV/XBIhCgAAAJBksVhUtWpVValSRYWFhWaXg8vA39//kmagzvLaEFXRVud775m/KOXYRgWE+6vNQ41cGrP61a0qOFXo1hgAAICKztfXt0zeaKPi8ugP272ckpOTtWXLFq1evdrsUsrEoV1bdHJ3trL257g8Jmt/jttjAAAAAG/ntSEKAAAAAC4GIQoAAAAA3ECIAgAAAAA3EKIAAAAAwA2EKAAAAABwAyEKAAAAANzgtSHKarWqcePGatOmjdmlAAAAAChHvDZEVbTPiQIAAABwZfiZXQDKRudBI7Q1da78gl1/Smv1SlDR6SK3xgAAAADejnfPFUSXW0aoOGWFW2Nq90q4TNUAAAAAFZfXns4HAAAAABeDEAUAAAAAbuB0vgoiLzdbhaeLZJFFfsG+Lo0pOl0sQ4ZbYwAAAABvR4iqIF4aeYMy01MVFB2g7lNbuzTmv0+tU15GgVtjAAAAAG/H6XwAAAAA4AavDVF82C4AAACAi+G1IYoP2wUAAABwMbw2RAEAAADAxSBEAQAAAIAbCFEAAAAA4AZCFAAAAAC4gRAFAAAAAG4gRAEAAACAG/zMLgBl456Jb+q3IxPl42dxeUzrsQ1lKzLcGgMAAAB4O0JUBZFUv6l2hIa7NSayZthlqgYAAACouLz2dD6r1arGjRurTZs2ZpcCAAAAoBzx2hCVnJysLVu2aPXq1WaXAgAAAKAc4XS+CuKPX3/QkaPp8vH3UVyLGJfGpK4/IVuhza0xAAAAgLcjRFUQC157VpnpqQqKDnA5EG3+YI/yMgrcGgMAAAB4O689nQ8AAAAALgYhCgAAAADcQIgCAAAAADcQogAAAADADYQoAAAAAHADIQoAAAAA3ECIAgAAAAA3EKIAAAAAwA2EqAoiMChEfkG+8g30dXmMb6Cv22MAAAAAb+dndgFmsVqtslqtKi4uNruUMvHErCValjLCrTFdJre8TNUAAAAAFZfXzkQlJydry5YtWr16tdmlAAAAAChHvDZEAQAAAMDFIEQBAAAAgBu89pqoiubfM1/S7tRd8g/1U6MhNV0as3XePhXmFLk1BgAAAPB2zERVEOuWL9LBH9N0+Ld0l8cc/i3d7TEAAACAtyNEAQAAAIAbCFEAAAAA4AZCFAAAAAC4gRAFAAAAAG4gRAEAAACAGwhRAAAAAOAGQhQAAAAAuIEQBQAAAABu8DO7AJSNRm27aF/adwoIdf0prXJVtApyitwaAwAAAHg73j1XEIMffk7LUg66NabZ8DqXqRoAAACg4vLa0/msVqsaN26sNm3amF0KAAAAgHLEa0NUcnKytmzZotWrV5tdCgAAAIByxGtDFAAAAABcDK6JqiCmJg9SevpOBUb6q+OzzV0a89OkDcrPLHRrDAAAAODtCFEVxKmMdOVlFLg1Jj+z0O0xAAAAgLfjdD4AAAAAcAMhCgAAAADcQIgCAAAAADcQolCqU4dP6ejvR1WUXyRJMgzD5IoAAAAA87GwBJwUnirQltdX6+SWdFksFvV5u4/C4sO0+rXVCggLUIt7W5hdIgAAAGAaZqLgZPfcTbL4+qjfrH7yDfS1t1e/rrqOrj1qYmUAAACA+QhRcHJi0zHVvq2xQiqHOLSHJYQp91iuSVUBAAAAnoEQBSe2/CL5/GkG6qyCUwXy8eclAwAAAO/GNVEVRL+Rj2rj0bfkG+B6yGl4aw0VF9icxkQ2qKTUHw+qVv1K9jbDZmjbZ9tUpVmVMqsZAAAAKI8IURVEq279dTLlc7fGJLaPLbG99u1NtOHFX7TiQJZshTZtnLNRWQeyVHCqQN3+2a0sygUAAADKLUIUnIQmRajtlO7K/O8B+QX7qSivSIntE1W3b10FxwSbXR4AAABgKkIUnOSl5yqwUrAaD2nstC0nLUehVUJNqAoAAADwDKwSUEGkHdyjUym5yj5y2uUx2UdOlzjmt4eXqjCrwKl/fla+vh719SXXCgAAAJRnzERVEG89PlyZ6akKig5Q96mtXRrz28t/KC+joOQxFuf+RXlFrM4HAAAAr0eIgt2Wj/eqwDdVkrTv0206Hh5g32bYDB3fcVxRtaNMqg4AAADwDIQo2GUeyFGxpVCSlHMwS0VB//usKB8/H0XVjFKDQQ3MKg8AAADwCIQo2LV/vKmyA2K17e3fVffuZkqMDzO7JAAAAMDjEKLgpOHoq80uAQAAAPBYXhuirFarrFariouLzS7FI53ak6Gj61KVeyxXtiKbw7Zrn7zWpKoAAAAA83ntUmvJycnasmWLVq9ebXYpHidt5SGtm/ijsg5mKWVlimxFNmUdyFLaxjT5h/ibXR4AAABgKq8NUSjdgS93qs5dTXXdM9fJx99HLe9rqd5v9VZSxySFxIaYXR4AAABgKkIUnJxOy1GllvGSzqzKV5RXJIvFovo31teeb/aYXB0AAABgLkIUnPiF+KvodJEkKbhSsLL2Z0mSCnIKVJzPNWQAAADwbl67sERF88jrC7Ti8MOy+FhcHnPtM1fJsBlOY6IaVlLG5jSpaayqXVtN695Zp9SNqUpdn6oqzauUdekAAABAuUKIqiAiKlVRcF6gW2OCogJKbK87/CrZCs/MODUe3Fg+vj46vu24qnWopsZDGl9yrQAAAEB5RoiCA6PYpuPrjirmqjMzThYfixrd2sjkqgAAAADPwTVRcGDx9dHOWRtlK7BduDMAAADghZiJqiBWLpqnPamH5Rfoo+pd4l0ac2D5URXl25zGhNeJUvb+TKlO9OUqFwAAACi3CFEVxLf/siozPVVB0QEuh6id/z6kvIwCpzEJPWpp9782K//EaYXVipJvoK/DuLDqkaXuc9rSHRf3AC7gkZ71L8t+AQAAAHcRouBk6xtrJEm7PthU4vbOc2+8kuUAAAAAHoUQBSftpvU0uwQAAADAYxGi4CQoNsTsEgAAAACPxep8AAAAAOAGQhQAAAAAuIEQBQAAAABuIEQBAAAAgBsIUQAAAADgBlbnqyBiE2uqOCBLgRH+Lo8JjQuSX7Cv05ifR30tWUoYYJF8/H0VHBeq+E5Jiu9c4xKrBgAAAMofQlQF8cDLH2hZygi3xlzzeNMS22sMaqD9C3copnkVRdSJliRl7c5QxsY0JfSspby0XO2YvVFGsaGq3WpeaukAAABAuUKIgpPM7cdV69aGSuhRy96WKOnwsn3K2JSmJg+3VVj1CKV8s4cQBQAAAK/DNVFwcmJjmqKbxjq1RzeprBMb0yRJMS3idPpY7pUuDQAAADAdIQpO/MMCdHxdqlP78XWp8g8LkCQV5xfJN4iJTAAAAHgf3gVXEHMn/1UH0rYoINxPLUfXd2nMurd3qOBUkdOYGgPra8fsjTq5JV3htaMkSaf2nNSJDamqd09zSVLGpmOKalipzB8HAAAA4OkIURXE7k2rlZl+UkHRAS6PObE9S3kZBU5jqnarqZDEcKUs3av0NUckScFVw9T8bx0VWT9GkpTUt27ZFQ8AAACUI4QolCiyQSVFNmCmCQAAADgXIQolMmyGTqfmqDArX4bNcNgW1aiySVUBAAAA5iNEwUnWzhPaal2rvPSSV9/rPPfGK1wRAAAA4DkIUXCyY9YGhdeOUtNHr1FgVJBkMbsiAAAAwHMQouDkdGqOmjzURsHxYWaXAgAAAHgcPicKTiLqROt0ao7ZZQAAAAAeiZkoOEm8vpZ2/+sPFZzMV2j1CFl8Hc/nC6seaVJlAAAAgPkIUXDyx6urJUnb31lX4nYWlgAAAIA3K/ch6uTJk+rRo4eKiopUVFSkhx56SKNGjTK7rCvumj6DtSN1gfyCXX9KkzrFqeh0kdOYdtN6lnV5AAAAQIVR7kNUeHi4VqxYoZCQEOXk5Khp06YaNGiQKlXyrg+K7XX3GPmlrHVrTP2BSSW2B8WGlEVJAAAAQIVU7kOUr6+vQkLOvOnPz8+XYRgyDOMCo3Cu1HUnFNssSgqQ0tceOW/fyq2qXpmiAAAAAA9k+up8K1asUP/+/ZWQkCCLxaKFCxc69bFarapZs6aCgoLUrl07rVq1ymH7yZMn1bx5c1WrVk2PPvqoKleufIWqrzjWvL5NhblFkqQ/pq067z8AAADAm5k+E5WTk6PmzZvrnnvu0aBBg5y2z5s3T+PGjdOMGTPUrl07TZ8+Xb169dL27dtVpUoVSVJUVJQ2bNig1NRUDRo0SLfccovi4uKu9EMp1/rO6iBJKhQLRwAAAADnY3qI6tOnj/r06VPq9qlTp2rUqFEaMWKEJGnGjBlatGiRZs2apSeeeMKhb1xcnJo3b64ff/xRt9xyS4n7y8/PV35+vv12VlZWGTwK8026o5My01MVFB2g7lNbuzRm2bg1yssocGsMAAAA4O1MD1HnU1BQoLVr12rChAn2Nh8fH/Xo0UMrV66UJKWmpiokJETh4eHKzMzUihUrdP/995e6z8mTJ2vSpEmXvfbyZu/SM9dB5fteOFRW613ncpcDAAAAeCyPDlHp6ekqLi52OjUvLi5O27ZtkyTt379f9913n31BiQcffFDNmjUrdZ8TJkzQuHHj7LezsrKUlFTyKnXeZO+3hyVJhsX3gn0JUQAAAPBmHh2iXNG2bVutX7/e5f6BgYEKDAy8fAWVU91ebiVJyg6INbkSAAAAwLOZvjrf+VSuXFm+vr5KTU11aE9NTVV8fLxJVXkXlowHAAAAHHn0TFRAQIBatWqlZcuWaeDAgZIkm82mZcuWacyYMeYWV8EdWb5fhxbv1umjOZKk4PhQVetdR1W71jC5MgAAAMBcpoeo7Oxs7dq1y3577969Wr9+vWJiYlS9enWNGzdOw4YNU+vWrdW2bVtNnz5dOTk59tX6UPb2LtiqQ1/vVuL1tRVRL1qSlLUzQ7vnblLe8VzVuqWRyRUCAAAA5jE9RK1Zs0Zdu3a13z676MOwYcM0Z84cDRkyRMeOHdMzzzyjo0ePqkWLFlqyZMklfw6U1WqV1WpVcXHxJe2nIjry3T41GNlCVTpUs7dVblVVYdUjtPP9TYQoAAAAeDXTQ1SXLl0ueM3NmDFjyvz0veTkZCUnJysrK0uRkZFluu/yzlZsU1jtKKf2sFpRMmy2K18QAAAA4EE8emEJmCOuY5IOf7fPqf3I9/sU96fZKQAAAMAbmT4ThbJx5+Mva82RyfLxdz0Xt7ivnmyFthLHHF2+Xxmb0hRR98w1Uad2ZSjv+GnFXZekXXM32/vVvavppRcPAAAAlCOEqAqibvN22l852q0xlRqWfBpjzsFTCqsZJUk6nZorSfILD1RYeKByDp6y97NYLq5WAAAAoDwjRMFJi79da3YJAAAAgMfy2muirFarGjdurDZt2phdCgAAAIByxGtnoira6ny7NvymY0cy5OPvU+ppeuc6vi3Tfk3Un8fYCoqV8u0endySroKsfOmcxRNbvdClDCsHAAAAyhevDVEVzb9eelSZ6akKig5Q96mtXRqzfuZO5WUUOI3Z/s56ZWxKU+W2CQqv4951VgAAAEBFR4iCk+PrjqrZo9coskEls0sBAAAAPI7XXhOF0gVGB8k3mHwNAAAAlIQQBSe172yqPR9vUd6xXLNLAQAAADwO0w1wEl47SrZCm357ZKl8A31l8XXM2tfOvMGkygAAAADzEaLgZOsba1SQcVq1hjRWQESgxIfqAgAAAHZeG6KsVqusVquKi4vNLsXjZO3MUMuJ1ymsRvlf+h0AAAAoa157TVRycrK2bNmi1atXm12KxwlJCJOtgHAJAAAAlMRrQxRKV2tIY+3+1x86uSVdhacKVJRb6PAPAAAA8GZeezofSrfpnyslSRte/LnE7Z3n3nglywEAAAA8CiGqgnj2oxValjLCrTHdp7Yusb35U9eWRUkAAABAhUSIgpOoRpXNLgEAAADwWIQolKo4v0j5x0/LVmRzaA+rzqp9AAAA8F6EKDgpyMrX9rfX6cSG1BK3c00UAAAAvBkhqoL45sM3tCN1r/yC/VR/YJJLY3YsPKii00VOY3Z/uFlFuYW6+rlOWv/8z2rySFsVZuZr/8IdqnNnk8v1EAAAAIBywWtDVEX7sN1fF89XZnqqgqIDXA5RB1ekKi+jwGnMyS3H1GRcO4XXjpbFYlFQ5RDFNKsi32A/Hfj3TlVqGX+5HgYAAADg8bz2c6L4sN3SFecVKyAiUJLkF+qvwqx8SVJoUoSy92WaWRoAAABgOq8NUShdSEKYco9kS5LCakTqyPf7lH/itI4s26eAqECTqwMAAADM5bWn86F0ib1qqyAjT5JUY1ADbXpppVJ/PiQfPx81GH21ydUBAAAA5iJEwUlcx/9dHxVeK0rtXu2p3MPZCqocLP9wZqIAAADg3TidDxfk4+8ri8Ui+VjMLgUAAAAwHTNRcLLrw00KTYpQ1S41ZNgMrX/uJ2XtOiGfAF81G3+NohpXNrtEAAAAwDTMRMHJsd8OK6x6hCTp+O9HlZeeqzYvd1e1PnW0d/5Wk6sDAAAAzEWIgpPC7AIFRAZJkk6sT1VsuwSFVA1TfOfqyjmYZXJ1AAAAgLkIURVEnWZtVLlJlGIaRLg8JqZBRIljAiIClZNySobN0ImNaYpuGitJshUUy8J1UQAAAPByXntNlNVqldVqVXFxsdmllIm7JkzRspQRbo1pObp+ie3xnatry+urFRh1ZjbqbIjK2pWh4ISwSysUAAAAKOe8NkQlJycrOTlZWVlZioyMNLscj1Lz5oYKrRah/BOnFds2QT7+vpIki49F1fvXM7k6AAAAwFxeG6JwfrHtEpza4jtVN6ESAAAAwLNwTRQAAAAAuIGZqArizUeH6uixjQqM8Nc1jzd1acyvL21WflahW2MAAAAAb0eIqiCOpexTdvppFZ12faGMnNQ85WUUuDUGAAAA8HaczgcAAAAAbmAmCpKkwtNFkqSiosIL9vUL8b/c5QAAAAAeixAFSdK3yatc7tt57o2XsRIAAADAsxGiIEm65rEmkqTT/lHmFgIAAAB4OEIUJEmVGp75wOHsgMomVwIAAAB4NkIUSlWcX6T846dlK7I5tIdVjzSpIgAAAMB8hCg4KcjK1/a31+nEhtQSt3NNFAAAALyZ1y5xbrVa1bhxY7Vp08bsUjzO7g83qyi3UFc/10k+Ab5q9nh7NfzL1QqOD1PTv7YzuzwAAADAVF47E5WcnKzk5GRlZWUpMrL8n552/Z3J2pw6S36BrufiegOqqSjf5jTm5JZjajKuncJrR8tisSiocohimlWRb7CfDvx7pyq1jC/r8gEAAIByw2tDVEXTvu8Q5aYscWtM9S4lh6HivGIFRARKkvxC/VWYlS9VDVNoUoSy92Vecq0AAABAeea1p/OhdCEJYco9ki1JCqsRqSPf71P+idM6smyfAqICTa4OAAAAMBczUXCS2Ku2CjLyJEk1BjXQppdWKvXnQ/Lx81GD0VebXB0AAABgLkJUBZF1PE2nT+TL4mNRUFSAS2PyThbIsBlOY+I6Jtm/Dq8VpXav9lTu4WwFVQ6WfzgzUQAAAPBuhKgKYtqDtygzPVVB0QHqPrW1S2N+fm6j8jIKLjjGN9BP4bWiyqhSAAAAoHwjRMGJYTN0dMUBndx8TAVZ+ZLhuL35U9eaUxgAAADgAQhRcLLrg006uuKAKrWIU2hShNnlAAAAAB6FEAUnaStT1HhsG1VqEWd2KQAAAIDHYYlzOPHxsyg4LtTsMgAAAACPRIiCk2o31FXKkt0yDOPCnQEAAAAvw+l8cJK547hObknXiQ1pCqkWLh9fx6zd5JG2JlUGAAAAmI8QBSd+If6q3Lqq2WUAAAAAHokQBScNR19tdgkAAACAx+KaKAAAAABwg9fORFmtVlmtVhUXF5tdSpm4/6U5+uXIBFl8LC6PafdoExk2QxYfi358doOueayJFCCtfXK5dJ7dtHqhyyXXCwAAAJRXXhuikpOTlZycrKysLEVGRppdziWrklRb4T4hbo0Jqxps/zquZYx8/M4kp0qt4su0trIwbekOs0tw8EjP+maXAAAAAJN4bYiCo/oDk+xf17y5oYmVAAAAAJ6NEIXzKs4rkmFz/LwovxB/k6oBAAAAzEeIqiDWfv8fHTiaKt8AHyW2j3VpTMrKYyousDmNOZ2Wo13vb9LJremyFThfM9Z57o1lVjcAAABQ3hCiKoiv3n1ZmempCooOcDlEbft0v/IyCpzGbHvzd0mGGoxqqYDIwPMuMgEAAAB4G0IUnGQfyFSr5zsrJCHc7FIAAAAAj8PnRMFJeO1o5Z84bXYZAAAAgEdiJgpOGoxqoR2zNij/RJ5CkyJk8XU8ny+sevlfEh4AAAC4WIQoOCnMyldeao62z1xX4nYWlgAAAIA3I0TByfaZ6xRWM1KNxrRSQGSQ2eUAAAAAHoUQBSd5x0+r6V/bKTg+zOxSAAAAAI/DwhJwEtW4srIPZJldBgAAAOCRmImCk0pXx2v33M3KOZhV4sISlVtVNakyAAAAwHyEqAoiPLqy8oszFBjp7/KYs33PHbNz1gZJ0v4vtpc4joUlAAAA4M0IURXEOOvnWpYywq0xHZ9tXmI7IQkAAAAoHddEAQAAAIAbmIlCiU5uTdfBRbuUezhbkhSaGK5qfesqqmElkysDAAAAzMVMFJyk/nRQGyf/It8AXyVeX0uJ19eSj7+PNr74s1J/PmR2eQAAAICpmImqIOZPf0b70rYrINRPzYbXcWnMpjm7VZBT5DTmwJc7VPv2JqrW50/76V1HB7/epQMLtyvu2mplXT4AAABQbhCiKoitq5YrM/24gqIDXB6TtjFDeRkFTmNOp+WqUss4p/6Vr47X3vlbL7lWAAAAoDzjdD44CawUrIw/0p3aMzYfU1BMsAkVAQAAAJ6DmSg4SbqhjnZ9sEnZ+zMVWS9GkpS544SO/nhAde9uZnJ1AAAAgLm8NkRZrVZZrVYVFxebXYrHSehRSwGRgTr49W4d+y1FkhSSEK7GY1qrcuuqJlcHAAAAmMtrQ1RycrKSk5OVlZWlyMhIs8vxOJXbJKhymwSzywAAAAA8jteGKFyYrcimwsx8GYbh0B5UOcSkigAAAADzEaLgJPdotrbPXKesHSdK3N557o1XuCIAAADAc1xUiKpdu7ZWr16tSpUqObSfPHlSV199tfbs2VMmxcEc22esk8XXoqbjr1FgVJBkMbsiAAAAwHNcVIjat29fiQsy5OfnKyUl5ZKLgrmyD2Sq1fOdFZIQbnYpAAAAgMdxK0T9+9//tn/9zTffOCzIUFxcrGXLlqlmzZplVhxc17JLX+1O/Ur+oa4/pQntKqswp8hpTGhiuApPFZR1iQAAAECF4FaIGjhwoCTJYrFo2LBhDtv8/f1Vs2ZNTZkypcyKg+sG3Pe4lqVsc2tMoyE1S2yvdVtj7fn4D9Ua3FihSRGy+Dqez+cX4n+xZQIAAADlnlshymazSZJq1aql1atXq3LlypelKJhr4+RfJEkbXvy5xO0sLAEAAABvdlHXRO3du7es64AHaf7UtWaXAAAAAHisi17ifNmyZVq2bJnS0tLsM1RnzZo165ILg3miGjHDCAAAAJTmokLUpEmT9Nxzz6l169aqWrWqLBbWwDbbP+7prRPpBxQYFaAuk1u6NGb5hHXKP1ng1hgAAADA211UiJoxY4bmzJmju+++u6zrwUXKz8tVUV6x/PKdl54vTXF+sdtjAAAAAG/nczGDCgoK1KFDh7KuBQAAAAA83kWFqJEjR+qjjz4q61oAAAAAwONd1Ol8eXl5mjlzpr777jtdddVV8vd3/NygqVOnlklxAAAAAOBpLipEbdy4US1atJAkbd682WEbi0yUX98k/yZZnCcn/UL8FRwfqmp96yqmWRUTKgMAAAA8x0WFqB9++KGs64AHaHJ7LeX5hTu1F+UWKnvvSW1+5Tc1fqiNKl8db0J1AAAAgGe46M+JQsVTrWMVZQfElro9tEakDv57ByEKAAAAXu2iQlTXrl3Pe9re999/f9EFwXNVahmvAwt3mF0GAAAAYKqLClFnr4c6q7CwUOvXr9fmzZs1bNiwsqgLHshWaJPF76IWdAQAAAAqjIsKUdOmTSuxfeLEicrOzr6kgnBxbhk7SeuOTpWPv+shp+nQ2rIV2lwec/S/+xVWI/JiSwQAAAAqhDK9Juquu+5S27Zt9corr5TlbuGCJtd01dGUD9waE9cixuH2lo/3qsA31alfcW6hsvdlKvdotlo83fGS6gQAAADKuzINUStXrlRQUFBZ7hJXUOaBHBVbCp3a/YL9FNU0Vo0fbqPgKqEmVAYAAAB4josKUYMGDXK4bRiGjhw5ojVr1ujpp58uk8Jw5bV/vOl5V+cDAAAAcJEhKjLS8boYHx8fNWjQQM8995yuv/76MikM7jm4Y7MyjpySj59FkTXDXBqTuS9btiLDrTEAAACAt7uoEDV79uyyrgOXaNbEB5SZnqqg6AB1n9rapTFrXtumvIwC+5gN7+1Ske+hC45rcF/LSy0XAAAAKLcu6ZqotWvXauvWrZKkJk2aqGVL3lyXZ4d+TlNQ5RCF1YiUIcPscgAAAACPdFEhKi0tTbfddpuWL1+uqKgoSdLJkyfVtWtXffLJJ4qN5bqa8qhG13il/HZcecdyFdcpSXEdk+QfFmB2WQAAAIBHuahPTn3wwQd16tQp/fHHHzpx4oROnDihzZs3KysrS2PHji3rGnGFNL27ttpbeympX10dX5eqX8d+qy2vrdaJjWkyDGamAAAAAOkiZ6KWLFmi7777To0aNbK3NW7cWFarlYUlyjkff19V6VBNVTpUU96xXB1dcUA7Z2+QUWyozT+7yTeoTFfFBwAAAMqdi5qJstls8vf3d2r39/eXzWa75KLgIXwsksUiGZJhYyYKAAAAkC5yJqpbt2566KGH9PHHHyshIUGSlJKSokceeUTdu3cv0wJxZdkKi5W++oiO/PeAsrYfV0zLeNUdfpVirqoii4/F7PIAAAAA011UiHrjjTc0YMAA1axZU0lJSZKkgwcPqmnTppo7d26ZFogrZ9MHu3V41WoFVgpWfOfqajymlfzDA80uCwAAAPAoFxWikpKS9Pvvv+u7777Ttm3bJEmNGjVSjx49yrQ4Vxw8eFB333230tLS5Ofnp6efflq33nrrFa+jIjiwPFWBlYIVVCVEmVuPK3Pr8RL7NXmk7RWuDAAAAPAcboWo77//XmPGjNGvv/6qiIgI9ezZUz179pQkZWZmqkmTJpoxY4auu+66y1JsSfz8/DR9+nS1aNFCR48eVatWrXTDDTcoNDT0itVQUVTrEKtC3yCzywAAAAA8mlshavr06Ro1apQiIiKctkVGRmr06NGaOnXqFQ1RVatWVdWqVSVJ8fHxqly5sk6cOOF1Ierxd7/W8sP3yyLXr1vq/EJLGTLsY5qPrKfsAD7jCwAAADgft1bn27Bhg3r37l3q9uuvv15r1651q4AVK1aof//+SkhIkMVi0cKFC536WK1W1axZU0FBQWrXrp1WrVpV4r7Wrl2r4uJi+3Va3iQoJEz+wX7yC/Z1eYxfsK/bYwAAAABv59ZMVGpqaolLm9t35uenY8eOuVVATk6OmjdvrnvuuUeDBg1y2j5v3jyNGzdOM2bMULt27TR9+nT16tVL27dvV5UqVez9Tpw4oaFDh+qdd95x6/7xP2te36Zin70X7Mc1UQAAAPBmboWoxMREbd68WXXr1i1x+8aNG+2n1rmqT58+6tOnT6nbp06dqlGjRmnEiBGSpBkzZmjRokWaNWuWnnjiCUlSfn6+Bg4cqCeeeEIdOnQ47/3l5+crPz/ffjsrK8uteisy/xBfyYcP0wUAAADOx613zDfccIOefvpp9e7dW0FBjgsQnD59Ws8++6z69etXZsUVFBRo7dq1mjBhgr3Nx8dHPXr00MqVKyVJhmFo+PDh6tatm+6+++4L7nPy5MmaNGlSmdXoKZYvmK0dqQfkF+yn2r0SXBqz55vDKjpdZB/T/F6uiQIAAAAuxK1rov72t7/pxIkTql+/vv75z3/qyy+/1JdffqmXXnpJDRo00IkTJ/TUU0+VWXHp6ekqLi5WXFycQ3tcXJyOHj0qSfr55581b948LVy4UC1atFCLFi20adOmUvc5YcIEZWZm2v8dPHiwzOo1038/n62dXx7S3m8Ouzxm7zeH3R4DAAAAeDu3ZqLi4uL0yy+/6P7779eECRNkGIYkyWKxqFevXrJarU6B53Lr2LGjbDaby/0DAwMVGMgHyAIAAAC4OG5fAFOjRg19/fXXysjI0K5du2QYhurVq6fo6OgyL65y5cry9fVVamqqQ3tqaqri4+PL/P4AAAAA4ELcOp3vz6Kjo9WmTRu1bdv2sgQoSQoICFCrVq20bNkye5vNZtOyZcvUvn37y3KfAAAAAHA+pi/Flp2drV27dtlv7927V+vXr1dMTIyqV6+ucePGadiwYWrdurXatm2r6dOnKycnx75aHwAAAABcSaaHqDVr1qhr16722+PGjZMkDRs2THPmzNGQIUN07NgxPfPMMzp69KhatGihJUuWXPK1V1arVVarVcXFxZe0HwAAAADexfQQ1aVLF/sCFaUZM2aMxowZU6b3m5ycrOTkZGVlZSkyMrJM9w0AAACg4rroa6IAAAAAwBsRogAAAADADaafzoeyUa1uY1kicxQQ7u/ymIgaoQqKCXBrDM6YtnSH2SXYPdKzvtklAAAAeBVCVAVx73MztCzFvRUL2zzU6DJVAwAAAFRcXns6n9VqVePGjdWmTRuzSwEAAABQjnhtiEpOTtaWLVu0evVqs0sBAAAAUI54bYgCAAAAgIvBNVEVxHvP/EUpxzYqINzf5WudVr+6VQWnCt0aAwAAAHg7QlQFcWjXFmWmZysoOsDlMVn7c5SXUeDWGAAAAMDbcTofAAAAALiBEAUAAAAAbiBEAQAAAIAbvDZE8TlRAAAAAC6G14YoPicKAAAAwMXw2hAFAAAAABeDEAUAAAAAbiBEAQAAAIAb+LDdCqLzoBHamjpXfsGuP6W1eiWo6HSRW2MAAAAAb8e75wqiyy0jVJyywq0xtXslXKZqAAAAgIqL0/kAAAAAwA2EKAAAAABwg9eezme1WmW1WlVcXGx2KWUiLzdbhaeLZJFFfsG+Lo0pOl0sQ4ZbYwCgopq2dIfZJdg90rO+2SUAAM7Da0NUcnKykpOTlZWVpcjISLPLuWQvjbxBmempCooOUPeprV0a89+n1ikvo8CtMQAAAIC343Q+AAAAAHADIQoAAAAA3ECIAgAAAAA3EKIAAAAAwA2EKAAAAABwAyEKAAAAANxAiAIAAAAANxCiAAAAAMANXhuirFarGjdurDZt2phdCgAAAIByxM/sAsySnJys5ORkZWVlKTIy0uxyLtk9E9/Ub0cmysfP4vKY1mMbylZkuDUGAAAA8HZeG6IqmqT6TbUjNNytMZE1wy5TNQAAAEDF5bWn8wEAAADAxSBEAQAAAIAbOJ2vgvjj1x905Gi6fPx9FNcixqUxqetPyFZoc2sMAAAA4O0IURXEgteeVWZ6qoKiA1wORJs/2KO8jAK3xgAAAADejtP5AAAAAMANhCgAAAAAcAMhCgAAAADcQIgCAAAAADcQogAAAADADYQoAAAAAHCD14Yoq9Wqxo0bq02bNmaXAgAAAKAc8doQlZycrC1btmj16tVmlwIAAACgHPHaEFXRBAaFyC/IV76Bvi6P8Q30dXsMAAAA4O38zC4AZeOJWUu0LGWEW2O6TG55maoBAAAAKi5CFAAAHmba0h1ml+DgkZ71zS4BADwKp/MBAAAAgBsIUQAAAADgBk7nqyD+PfMl7U7dJf9QPzUaUtOlMVvn7VNhTpFbYwAAAABvx0xUBbFu+SId/DFNh39Ld3nM4d/S3R4DAAAAeDtCFAAAAAC4gRAFAAAAAG4gRAEAAACAGwhRAAAAAOAGQhQAAAAAuIEQBQAAAABuIER5uOLiIu34/Rf98tUnysvNliRlHk9V/ukckysDAAAAvJPXftiu1WqV1WpVcXGx2aWU6kRqimY+OVIn046oqLBADVpdq6CQMH0/7x0VFRbo1oeeM7tEAAAAwOt47UxUcnKytmzZotWrV5tdSqkWvvmCkuo31fOfr5J/YKC9vdm1PbVz3a8OfRu17aL41pVU5apol/df5apot8cAAAAA3s5rZ6LKgz2b12rs9I/l5x/g0B4Tl6jM46kObYMffk7LUg66tf9mw+tcco0AAACAt/HamajywDBsstlsTu0n048qMDjUhIoAAAAAEKI8WINW12rF5+87tOWfztE3H7yuRm07m1QVAAAA4N0IUR5swH1PaO+W3/XSyBtUWFCguf8Yr+fv7qbM9FT1u3e82eUBAAAAXolrojxYVGy8xs/4UuuXf63De7Yp/3Su2vW+RVd366+AwCCHvlOTByk9facCI/3V8dnmLu3/p0kblJ9Z6NYYAAAAwNsRojzY7o2rVbNJS7XqPkCtug+wtxcXF2n3xtWqc1Ube9upjHTlZRS4tf/8zEK3xwAAAADejtP5PNibjw1VblamU3tezim9+dhQEyoCAAAAQIjyZIYhi8Xi1JyTdVIBQcEmFAQAAACA0/k80OxJY858YbHo41eecPicKJutWEf2bFfNxi1Nqg4AAADwboQoDxQUGn7mC8NQYHCo/P+0iISvn79q3NBC19xwq0nVAQAAAN6NEOWBbh8/WZIUE5eoLrfco8DgEJMrAgAAAHAWIcqD9bp7jNklAMBlNW3pDrNLAADAbYQoD7dhxRKtX7FYGWlHVFxU6LDtr29+YVJVAAAAgPdidT4PtuKLD/TJlAkKj66slN1bVL1BM4WGR+n4kYNq1KaT2eUBAAAAXomZKA/2y38+0q0P/11Xd+2n1d9+rm6DR6lS1SQtfv9V5Z5y/PyofiMf1cajb8k3wPVc3PDWGiousLk1BgAAAPB2vHv2YBnHjtiXMvcPCFJebo4kqXWPG7Xuh0UOfVt166/qneOU2D7W5f0nto91ewwAAADg7QhRHiw8urJ9ximqSlXt37peknTiyCEZMkysDAAAAPBenM7nweq1uEZ/rPxe1eo2VtteN+vLtydr44/f6ODOzWp2bU+zywMAAAC8EiHKg9368N9lGDZJUscBdyo0PEp7t6xTk/bd1L7vEIe+aQf36NSRXFl8LAqrGuzS/rOPnJZhM9waAwAAAHg7QpSHKi4u0ncfz1C7XrcoKjZektSya1+17Nq3xP5vPT5cmempCooOUPeprV26j99e/kN5GQVujQEAAAC8HddEeShfXz/9MP892YqLzC4FAAAAwJ94bYiyWq1q3Lix2rRpY3YpparX8hrt3rja7DIAAAAA/InXns6XnJys5ORkZWVlKTIy0uxyStSoTSd9NWuKjuzboWr1miggyPG6pabtu5tUGQAAAOC9vDZElQefvT5JkvTfz2Y7b7RYNGXJ1itcEQAAAABClAeb8s02s0sAUAFNW7rD7BIAACjXvPaaKAAAAAC4GIQoAAAAAHADp/MB5ZwnnZr1SM/6ZpcAAABw2TETBQAAAABuYCaqgnjk9QVacfhhWXwsLo+59pmrZNgMt8YAAAAA3o4Q5cHycrJL3mCR/PwD5OcfYG+KqFRFwXmBbu0/KCrAqS2s4Jhb+wAA4EriFGYAnoAQ5cGeGtRaspQ+SxRVOV5trr9J1981Rj4+nJkJAAAAXAmEKA922/h/aPHsaWpz/U2q3uAqSdKB7Ru1eulC9bzjfmVnntDyBbPk5x+gHrf/xeRqAQAAAO9AiPJga5Z+oQGjH1eLzjfY25q076aqtepr5aJ5uv+f7yu6SlV999EMhUZEa0/qYfkF+qh6l3iX9n9g+VEV5dvcGgMAAAB4O0KUB9u7ZZ1ueWiSU3ti3cbat3W9JKlWk1bKOHZE3/7Lqsz0VAVFB7gciHb++5DyMgrcGgMAAAB4Oy6k8WDRsVX125IFTu2/LVmgqNgzoSf31EkFh0Vc6dIAAAAAr8VMlAfrf99jev/5h7R19QpVr99MknRwx2alHdyjYU+/Jkk6sH2TWna+QetXLDazVAAAAMBrEKI8WNP23fXEu4u18ut5OnZonySpYZtOumeiVTHx1SRJ1/a/Q5IIUQAAAMAVQojycJWqJqnfvePNLgMAAADA/yNEebjT2Vk6sG2jTp08LsMwHLa16TnQnKIAAAAAL0aI8mB/rPxec18ar4LTuQoMCZPlzx+8a7EQogAAAAATEKI82L9nvqS2vW5W3xHjFBAUbHY5AAAAAMQS5x4tMz1VnQYOJUABAAAAHoSZKA/WoHVHHdyxSZWqJl2wb2xiTRUHZCkwwt/l/YfGBckv2NetMQAAAIC3I0R5sEZtO+s/77yso/t3q2qt+vL1c3y6mrbvbv/6gZc/0LKUEW7t/5rHm5ZJnQAAAIA3IUR5sE+nPy1JWvovq/NGi0VTlmy9whUBAAAAIER5sCnfbDO7BAAAAADnYGEJAAAAAHADM1EeZsUXH6h93yHyDwjUii8+OG/fTjcNtX89d/JfdSBtiwLC/dRydH2X7mvd2ztUcKrIrTEAAACAtyNEeZgVn89Rq+79z4Soz+eU3tFicQhRuzetVmb6SQVFB7h8Xye2Zykvo8CtMQAAAIC3I0R5mL99+H2JXwMAAADwDFwTBQAAAABuYCbKw3w5Y7LLfW/8y4TLWAkAAACAkhCiPMyh3Vtc6meR5TJXAgAAAKAkhCgPk/zyh2aXAAAAAOA8KsQ1UTfddJOio6N1yy23mF3KZZORdkQZaUfMLgMAAADwehViJuqhhx7SPffco/fff9/sUspUcXGRvv3wDf248EPl5+VKkgKDQtTxxrvU6+4x8vXzN7lCAAAAwPtUiBDVpUsXLV++3OwyytwX1r9r409L1W/ko6rZuIUkad+W9fpm7hvKPXVSt4ydZG6BAAAAgBcy/XS+FStWqH///kpISJDFYtHChQud+litVtWsWVNBQUFq166dVq1adeULNcHv33+l28dPVod+tymhdkMl1G6oDv1u05BxL+j3779y6HtNn8GqdX1VJXWKc3n/SZ3i3B4DAAAAeDvTZ6JycnLUvHlz3XPPPRo0aJDT9nnz5mncuHGaMWOG2rVrp+nTp6tXr17avn27qlSpYkLFV46ff4Bi4qs5tVeKryZff8dT+XrdPUZ+KWvd2n/9gUmXVB8AAADgjUyfierTp4+ef/553XTTTSVunzp1qkaNGqURI0aocePGmjFjhkJCQjRr1qyLur/8/HxlZWU5/PNU1954p77915sqKiiwtxUVFGjpR2+p44C7TKwMAAAA8F6mz0SdT0FBgdauXasJE/73obI+Pj7q0aOHVq5ceVH7nDx5siZNKh/XEqXs2qqd61dq0p2dlFC7oSTp8J5tKi4sVL2W7TV70hh73xHPvmFWmQCACm7a0h1mlwAAHsWjQ1R6erqKi4sVF+d4zU5cXJy2bdtmv92jRw9t2LBBOTk5qlatmj799FO1b9++xH1OmDBB48aNs9/OyspSUpJnntYWHBahqzr2cmiLiq1qUjUAAAAAJA8PUa767rvvXO4bGBiowMDAy1hN2bl9/GSX+066o5My01MVFB2g7lNbuzRm2bg1yssocGsMAAAA4O1MvybqfCpXrixfX1+lpqY6tKempio+Pt6kqgAAAAB4M4+eiQoICFCrVq20bNkyDRw4UJJks9m0bNkyjRkz5vyDK4CcrAwtef817drwm7JPHpfNMBy2v/CZdyz1DgAAAHgS00NUdna2du3aZb+9d+9erV+/XjExMapevbrGjRunYcOGqXXr1mrbtq2mT5+unJwcjRgxwsSqr4x/vfSYjh8+oLa9b1Z4dGVZZDG7JAAAAMDrmR6i1qxZo65du9pvn130YdiwYZozZ46GDBmiY8eO6ZlnntHRo0fVokULLVmyxGmxCXdZrVZZrVYVFxdf0n4up72b12jM1I+VWKeh2aUAAAAA+H+mh6guXbrIOOc0tXONGTOmzE/fS05OVnJysrKyshQZGVmm+y4rVZJqq7Agz+wyAAAAAPyJRy8s4e1ufvBZLZ49Tbs2rlJOVobycrId/gEAAAC48kyfiULpgsMilJebrbceG+a4wTAki0VTlmw1pzAAAADAixGiPNjcf4yXr5+/7npiisKjK0kWFpYAAAAAzEaI8mBH9+3UX9/8QlWSaptdCgAAAID/57UhqjyszpdUr6lOHjvqUoi68/GXtebIZPn4u36ZW4v76slWaHNrDAAAAODtvDZElYfV+ToOvEtfvPWCut56r6rWrC9fP8enK6H2/5Y+r9u8nfZXjnZr/5UaeubjBgAAADyZ14ao8uDDFx6RJM2b8uT/Gi0WFpYAAAAATESI8mBPfbDM7BIAAAAAnIMQ5cFi4hJd7rtrw286diRDPv4+Lp+md3xbpv2aKE7tAwAAAFxDiCoHju7fpYy0wyouKnRob9q+u/3rf730qDLTUxUUHaDuU1u7tN/1M3cqL6PArTEAAACAtyNEebDjRw5q1qRkHd2743/XQkn2z4vimigAAADgymNtaw/2xZsvqFJcNU2a/4sCAoP02DuLlDxlrpLqNVXyyx+aXR4AAADglbw2RFmtVjVu3Fht2rQxu5RS7d+6Tr2HjVVYZIwsFh9ZLBbVbtpafe8Zpy/efN7s8gAAAACv5LUhKjk5WVu2bNHq1avNLqVUNptNgcGhkqTQyGhlHk+TJEXHJSrt0F4zSwMAAAC8FtdEebD4mvV0eM92VaqapOoNm+uH+e/Kz99fKxfNV6X4JLPLAwAAALyS185ElQc977hfhmGTJPUeOlYnjh7SG+Pu1NbV/9VNDzxlcnUAAACAd2ImyoM1bH2d/evYxBp6YtYS5WSdVEh4pCz/v0IfAAAAgCuLmahyJC8nW3s2rVHawT1mlwIAAAB4LWaiPNj7zz+k2s3a6Lob71JBfp6mjblZJ1JTZBiG7n5yqppf18vsEgEAAACvQ4jyYHs2rVGP2++XJG36eakMw9ALn6/W6qVf6LuP3nIIUc9+tELLUka4tf/uU1uXab0AAACAN+B0Pg92OueUQsIjJUnb1/yoq667XgFBwWrcrouOpew3uToAAADAO3ntTJTVapXValVxcbHZpZQqOraq9m9dp5DwSG1b/aPufnKqJCn3VJb8AwJMrg5wNm3pDrNLsHukZ32zSwAAABWU14ao5ORkJScnKysrS5GRkWaXU6JONw3V3H88qsDgEEVXSVCd5u0kSXs2rVZ8Ld4gAgAAAGbw2hBVHlw74E5Vb9hcGWlH1KBVB/n4nDn7slLVJN0w/GGHvt98+IZ2pO6VX7Cf6g907YN4dyw8qKLTRW6NAQAAALwdIcrDJdVvqqT6TR3aGrfr4tTv18XzlZmeqqDoAJcD0cEVqcrLKHBrDAAAAODtWFgCAAAAANxAiAIAAAAANxCiAAAAAMANhCgAAAAAcAMLS3iYw3u2udw3oXbDy1gJAAAAgJIQojzMlPsHShaLZBgldzi7zWLRlCVbr2htAAAAALw4RFmtVlmtVhUXF5tdioOnPlhmdgkAAKCcmbZ0h9kl2D3Ss77ZJQCXndeGqOTkZCUnJysrK0uRkZFml2MXE5dodgkAAAAAzsNrQ1R5cnT/LmWkHVZxUaFDe9P23e1f12nWRgfSflJAuOtPaUyDCBWcKnJrDAAAAODtePfswY4fOahZk5J1dO8Ox+ukLBZJcrgm6q4JU7QsZYRb+285mul2AAAAwF0sce7BvnjzBVWKq6ZJ839RQGCQHntnkZKnzFVSvaZKfvlDs8sDAAAAvBIhyoPt37pOvYeNVVhkjCwWH1ksFtVu2lp97xmnL9583uzyAAAAAK9EiPJgNptNgcGhkqTQyGhlHk+TJEXHJSrt0F4zSwMAAAC8FtdEebD4mvV0eM92VaqapOoNm+uH+e/Kz99fKxfNV6X4JIe+bz46VEePbVRghL+uebypS/v/9aXNys8qdGsMAAAA4O2YifJgPe+4X4ZhkyT1HjpWJ44e0hvj7tTW1f/VTQ885dD3WMo+ZR8+rZzUPJf3n5Oa5/YYAAAAwNsxE+XBGra+zv51bGINPTFriXKyTiokPFKW/1+hDwAAAMCVRYgqZ0IjoswuAQAAAPBqhCgPln86V9/Pm6md63/VqZPHZdhsDtv/9sEykyoDAAAAvBchyoPNn/Y37d64Sq163KiImFhO4QMAAAA8gNeGKKvVKqvVquLiYrNLKdXW1Ss06vm3VatJK7NLcdmXxx4zuwRJ0o2x/zS7BAAA4AGmLd1hdgl2j/Ssb3YJKCNeuzpfcnKytmzZotWrV5tdSqlCwiIUEh5ldhkAAAAA/sRrQ1R50HvYQ1ry/qsqyDttdikAAAAA/p/Xns5XHvz3s9lKP3JAzw7poOi4avL1c3y6/vrmFyZVBgAAAHgvQpQHa9qhh8t9r78zWZtTZ8kv0PXJxXoDqqko3+bWGAAAAMDbEaI8WK+7x7jct33fIcpNWeLW/qt3iXe3JAAAAMDrMQUBAAAAAG5gJsrDPHVzW02YtURhkTF6alAb6TyfDfXCZ6uuYGUAAAAAJEKUxxk4eoKCgsPOfP2XJ10el3U8TadP5MviY1FQVIBLY/JOFsiwGW6NAQAAALwdIcrDtLn+phK/vpBpD96izPRUBUUHqPvU1i6N+fm5jcrLKHBrDAAAAODtCFHlwKmM48o+eVyGYXNoT6jd0KSKAAAAAO9FiPJgB3ds1scvP6HUg7slw3DcaLFoypKt5hQGAAAAeDFClAf7ZOqTiq1WU0PGvaDw6ErnXWQCAAAAwJVBiPJgJ44c1PCnX1dsYg2zSwEAAADw//icKA9Wr0V7Hd6zzewyAAAAAPwJM1EebPC45/Xxy0/o6L6diq9ZT75+jk9X0/bdTaoMAAAA8F5eG6KsVqusVquKi4vNLqVU+7es194/fte21SucN3rowhJhBccueR/ZAbFlUAkAAABweXhtiEpOTlZycrKysrIUGRlpdjkl+vzN59Wq+wBdf+cDCo+ubHY5AAAAAMQ1UR4tNytDnQcNJ0ABAAAAHsRrZ6LKg2bXXq9dG35T5YTqF+x7/0tz9MuRCbL4uL4MertHm8iwGW6NAQAAALwdIcqDxVarqUWzpmjv5rWqWqu+fHwdn65ONw21f10lqbbCfULc2n9Y1eAyqRMAAADwJoQoD/bb4k8VGBSi3RtXaffGVY4bLRaHEAUAAADgyiBEebC/ffi92SUAAAAAOAchqpwwDEOSZLGUfP3S2u//owNHU+Ub4KPE9q4tEZ6y8piKC2xujQEAAAC8HSHKw61eulA/fPqe0lP2STpznVTXW+9V6x4DHfp99e7LykxPVVB0gMuBaNun+5WXUeDWGAAAAMDbEaI82PIFs7Xk/Vd17Y13qlaThyVJezev1YJXJyon86Q63zzc1PoAAAAAb0SI8mA/ffmhbh47UW16DrS3NW3fXfE16umbD18nRAEAAAAm4MN2PVjWiWOq2bilU3vNJi2VdeKYCRUBAAAAIER5sMoJNbRhxWKn9vXLv1blxJpXviAAAAAAnM7nyXoNfVAfvvCIdm9arVqNr5Yk7d3yu3au+1VDn5pubnEAAACAlyJEebDm1/VSzGvz9d/P52jzL8skSVWq19bDr3+qanUbm1wdAAAA4J0IUR4uqX5T3fXEK2aXAQAAAOD/EaI8nM1mU/rh/co+eVyGzXDYVueqNiZVBQAAAHgvQpQH27d1veZO/qsy0g5LhmOAksWiKUu22m+GR1dWfnGGAiP9Xd7/2b7ujAEAAAC8HSHKgy149Vkl1W+qUc/PVERMrGSxlNp3nPVzLUsZ4db+Oz7b/FJLBAAAALwOIcqDpafs17CnX1NsYg2zSwEAAADw//icKA9WveFVSj+83+wyAAAAAPwJM1EerOONd+vfM1/SqYx0Va1ZX75+jk9XQu2GJlUGAAAAeC9ClAd7/+8PSpLmTXnyf40Wy5lFJs5ZWGL+9Ge0L227AkL91Gx4HZf2v2nObhXkFLk1BgAAAPB2XhuirFarrFariouLzS6lVE99sMzlvltXLVdm+nEFRQe4PCZtY4byMgrcGgMAAHA+05buMLsE4LLz2hCVnJys5ORkZWVlKTIy0uxyShQTl2h2CQAAAADOwcISAAAAAOAGQhQAAAAAuIEQBQAAAABuIEQBAAAAgBsIUR7udHaWfl38qb56b4pysk5Kkg7t/EMn01PNLQwAAADwUl67Ol95cHjPNs14fISCQsN1IjVF7W8YrNCIKG386VudPHZEdzz2T7NLBAAAALwOM1Ee7Mu3/6E219+kJ+d8K/+A/32WU6O2nbV70xoTKwMAAAC8FzNRHuzg9k269aHnnNojK8fp1IljDm0tu/TV7tSv5B/q+lOa0K6yCnOK3BoDAAAAeDvePXswP/8A5eVmO7UfO7RPYZExDm0D7ntcy1K2ubX/RkNqXkp5AAAAgFfidD4P1qR9N30716riokJ7W0baYX313itqdt31JlYGAAAAeC9ClAcbMPoJFZzO1TODO6gwP1/W8XfrxeHXKzA4VDcMf8Ts8gAAAACvxOl8Hiw4NFx/eWm29mxeoyN7tis/L1fV6jZR/as7mF0aAAAA4LUIUR4sI+2wwqMqq3bT1qrdtLW93TAMnTx2RNFVEuxt/7int06kH1BgVIC6TG7p0v6XT1in/JMFbo0BAAAAvB2n83mw5+/upinJNyn98AGH9uyTx/X80O4Obfl5uSrKK1ZxfrHL+y/OL3Z7DAAAAODtCFEeLi6pjqY/eKt2rFvpuMEwzCkIAAAA8HKEKE9msejmB59Vzzvu17t/u08rvvjAYRsAAACAK49rojzZ/882db55uKok1dKHk/+qI/t26Po7k00uDAAAAPBehKhyolHbzho7/RO99+z9OrB9o9nlAAAAAF6L0/k8WO2r2sjP399+O75GXT382nwFh0ZwTRQAAABgEmaiPFjyyx86tYVGRGvMlLkmVAMAAABAIkSVG4UF+SouLHRoCwoNM6kaAAAAwHsRojxY/ulcffXeK9rw38XKOXXSafuUJVuvfFEAAACAlyNEebCv3n1Zuzb8ppvHTtRH/3xMN495RpnpqVq5aJ763vtXh763jJ2kdUenysff9cvcmg6tLVuhza0xAAAAgLcjRHmwP379QXc89pLqNm+nT6ZMUK2mrRWbWEPRcQla+/1/1Kr7AHvfJtd01dGUD86zN2dxLWLKumQAAACgwmMKwoPlnspUpapJkqSgkDDlnsqUJNVq0kp7Nq0xszQAAADAaxGiPFilqtV0/OghSVKVpNrasGKxpDMzVMFh4WaWBgAAAHgtTufzYG2vv1mHd29T3avaqvuQ+/TuM3/RT1/OVXFxkW4c/YRD34M7NivjyCn5+FkUWdO1Vfsy92XLVmS4NQYAAADwdoQoD9b55uH2r+tf3UFPvLdYh3b+ocoJ1ZVQu6FD31kTH1BmeqqCogPUfWprl/a/5rVtyssocGsMAAAA4O0IUeVITFyiYuISzS4DAAAA8GqEKA9UkJ+nnetWqsk1XSVJX703RcWFBfbtFh8f9Rn+sPwDAs0qEQAAAPBahCgPtGbpF9ry23/tIernf89VXI168g88E5rSDu5VZKU4h9P9AAAAAFwZhCgPtPb7/6jbrSMd2u6eMMW+3Pma777Uz//5iBAFAAAAmKBCLHH+1VdfqUGDBqpXr57effdds8u5ZOmHD6hqrfr2234BgbJYLPbb1RtepdT9u8woDQAAAPB65X4mqqioSOPGjdMPP/ygyMhItWrVSjfddJMqVapkdmkX7XR2lor+dA3U3z/91WG7YbM5bAcAAABw5ZT7mahVq1apSZMmSkxMVFhYmPr06aNvv/3W7LIuSVTleB3Zt7PU7Uf2bldkbPwVrAgAAADAWaaHqBUrVqh///5KSEiQxWLRwoULnfpYrVbVrFlTQUFBateunVatWmXfdvjwYSUm/m/Z78TERKWkpFyJ0i+bRm07ackHr6mwIN9pW0F+nr6Za1Xjtp1NqAwAAACA6SEqJydHzZs3l9VqLXH7vHnzNG7cOD377LP6/fff1bx5c/Xq1UtpaWlXuNIrp8ftf1HuqUz9457e+n7+u9r8y3fa/Mt3+n7+O/rHPb11+lSmetz+F7PLBAAAALyS6ddE9enTR3369Cl1+9SpUzVq1CiNGDFCkjRjxgwtWrRIs2bN0hNPPKGEhASHmaeUlBS1bdu21P3l5+crP/9/MzxZWVll8CjKVnh0ZY2d9rEWvD5Ri2ZNkQzjzAaLRfWv7qBbHpyo8OjKDmMef/drLT98vyyylLDHknV+oaUMGW6NAQAAALyd6SHqfAoKCrR27VpNmDDB3ubj46MePXpo5cqVkqS2bdtq8+bNSklJUWRkpBYvXqynn3661H1OnjxZkyZNuuy1X6pKVZM0+sX3lJN1UumHD0iSKidUV2hEVIn9g0LC5B/s3tPpF+x7qWVeFmEFx8wuAShT05buMLsEj/blsccueR9l8XOje+LsS94HAJwPvw9K9kjP+hfu5GE8OkSlp6eruLhYcXFxDu1xcXHatm2bJMnPz09TpkxR165dZbPZ9Nhjj513Zb4JEyZo3Lhx9ttZWVlKSkq6PA+gDIRGRJUanAAAAABceR4dolw1YMAADRgwwKW+gYGBCgwMvMwVAQAAAKioPDpEVa5cWb6+vkpNTXVoT01NVXw8S3z/2fIFs7Uj9YD8gv1Uu1eCS2P2fHNYRaeL3BoDAAAAeDvTV+c7n4CAALVq1UrLli2zt9lsNi1btkzt27c3sTLP89/PZ2vnl4e095vDLo/Z+81ht8cAAAAA3s70majs7Gzt2rXLfnvv3r1av369YmJiVL16dY0bN07Dhg1T69at1bZtW02fPl05OTn21foAAAAA4EoyPUStWbNGXbt2td8+u+jDsGHDNGfOHA0ZMkTHjh3TM888o6NHj6pFixZasmSJ02IT7rJarbJarSouLr6k/QAAAADwLqaHqC5dusg4+zlIpRgzZozGjBlTpvebnJys5ORkZWVlKTIyskz3DQAAAKDi8uhrogAAAADA0xCiAAAAAMANhCgAAAAAcAMhCgAAAADc4LUhymq1qnHjxmrTpo3ZpQAAAAAoR0xfnc8sFW11vmp1G8sSmaOAcH+Xx0TUCFVQTIBbYwAAAABv57UhqqK597kZWpbi3gcQt3mo0WWqBgAAAKi4vPZ0PgAAAAC4GIQoAAAAAHADIQoAAAAA3MA1URXEe8/8RSnHNiog3N/la51Wv7pVBacK3RoDAAAAeDtCVAVxaNcWZaZnKyg6wOUxWftzlJdR4NYYAAAAwNt57el8fE4UAAAAgIvhtSEqOTlZW7Zs0erVq80uBQAAAEA54rUhCgAAAAAuBiEKAAAAANxAiAIAAAAANxCiAAAAAMANhCgAAAAAcIPXf06UYRiSpKysLJMrOSMvJ/uixhk225n/DUOFp4tcG/P/j92dMeXFxR5HVBye8j0t8Xq8kKLcwkveR2Hhpf8M43mCu/g5A5QNT/peOlvL2ffJpbEYF+pRwR06dEhJSUlmlwEAAADAQxw8eFDVqlUrdbvXhyibzabDhw8rPDxcFovF1FqysrKUlJSkgwcPKiIiwtRaUDHxGsPlxmsMlxOvL1xuvMZgGIZOnTqlhIQE+fiUfuWT15/O5+Pj83/t3X9MlHUcB/D3iXAIKKDUHTjlwLoAd5DmRFKHJvGjxtA5NWYMG1oaaWisdKWHowKNptUqN9gENxPNUv/AiGRgE0+cCabGnCBqOdB0WiqJAp/+cDx5chIPcBzg+7XduOf7fL/f+3yPj8fz2fPcY6dVpiOMGDGC/3DJrphjZG/MMbIn5hfZG3Ps8ebp6fm/fXhjCSIiIiIiIhVYRBEREREREanAIqof0Wq1MJvN0Gq1jg6FBinmGNkbc4zsiflF9sYco6567G8sQUREREREpAbPRBEREREREanAIoqIiIiIiEgFFlFEREREREQqsIgiIiIiIiJSgUWUHX355ZcwGAxwdXVFeHg4jh492mn/b7/9FkFBQXB1dYXJZML+/fut9osI1q1bB19fXwwbNgxRUVE4e/asPZdA/Vxv59iiRYug0WisHrGxsfZcAvVzanLs9OnTmDt3LgwGAzQaDTZv3tzjOWnw6+0cy8jI6PA5FhQUZMcVUH+nJsdyc3Mxffp0eHt7w9vbG1FRUR3683iMABZRdrNz506sWrUKZrMZx48fR1hYGGJiYnDlyhWb/Q8fPozExESkpKSgqqoKs2fPxuzZs3Hq1Cmlz8aNG/H5559jy5YtqKyshLu7O2JiYnDnzp2+Whb1I/bIMQCIjY1FQ0OD8tixY0dfLIf6IbU51tTUhMDAQGRnZ0Ov1/fKnDS42SPHAGD8+PFWn2OHDh2y1xKon1ObY+Xl5UhMTERZWRksFgvGjBmD6OhoXLp0SenD4zECAAjZxeTJkyU1NVXZbm1tFT8/P8nKyrLZf/78+fLyyy9btYWHh8sbb7whIiJtbW2i1+vlk08+UfbfuHFDtFqt7Nixww4roP6ut3NMRCQ5OVkSEhLsEi8NPGpz7EH+/v6yadOmXp2TBh975JjZbJawsLBejJIGsp5+5rS0tMjw4cOloKBARHg8Rv/hmSg7uHv3Ln755RdERUUpbUOGDEFUVBQsFovNMRaLxao/AMTExCj96+vr0djYaNXH09MT4eHhj5yTBi975Fi78vJyPPnkk3jmmWewbNkyXLt2rfcXQP1ed3LMEXPSwGXPfDh79iz8/PwQGBiIhQsX4uLFiz0Nlwag3sixpqYm3Lt3DyNHjgTA4zH6D4soO7h69SpaW1uh0+ms2nU6HRobG22OaWxs7LR/+081c9LgZY8cA+5fyrdt2zaUlpZiw4YNOHjwIOLi4tDa2tr7i6B+rTs55og5aeCyVz6Eh4cjPz8fxcXF+Prrr1FfX4/p06fj5s2bPQ2ZBpjeyLH33nsPfn5+StHE4zFqN9TRARBR//HKK68oz00mE0JDQzFu3DiUl5dj1qxZDoyMiKhr4uLilOehoaEIDw+Hv78/du3ahZSUFAdGRgNNdnY2CgsLUV5eDldXV0eHQ/0Mz0TZgY+PD5ycnHD58mWr9suXLz/yi7B6vb7T/u0/1cxJg5c9csyWwMBA+Pj4oLa2tudB04DSnRxzxJw0cPVVPnh5ecFoNPJz7DHUkxzLyclBdnY2SkpKEBoaqrTzeIzasYiyAxcXFzz33HMoLS1V2tra2lBaWoqIiAibYyIiIqz6A8BPP/2k9A8ICIBer7fq8/fff6OysvKRc9LgZY8cs+WPP/7AtWvX4Ovr2zuB04DRnRxzxJw0cPVVPty6dQt1dXX8HHsMdTfHNm7ciMzMTBQXF2PSpElW+3g8RgpH39lisCosLBStViv5+fny22+/yeuvvy5eXl7S2NgoIiJJSUmyevVqpX9FRYUMHTpUcnJypKamRsxmszg7O8vJkyeVPtnZ2eLl5SX79u2TX3/9VRISEiQgIED++eefPl8fOV5v59jNmzclPT1dLBaL1NfXy4EDB2TixIny9NNPy507dxyyRnIstTnW3NwsVVVVUlVVJb6+vpKeni5VVVVy9uzZLs9Jjxd75Ng777wj5eXlUl9fLxUVFRIVFSU+Pj5y5cqVPl8fOZ7aHMvOzhYXFxfZvXu3NDQ0KI+bN29a9eHxGLGIsqMvvvhCxo4dKy4uLjJ58mQ5cuSIsi8yMlKSk5Ot+u/atUuMRqO4uLjI+PHjpaioyGp/W1ubrF27VnQ6nWi1Wpk1a5acOXOmL5ZC/VRv5lhTU5NER0fLE088Ic7OzuLv7y9Llizhwe1jTk2O1dfXC4AOj8jIyC7PSY+f3s6xBQsWiK+vr7i4uMjo0aNlwYIFUltb24crov5GTY75+/vbzDGz2az04fEYiYhoREQccAKMiIiIiIhoQOJ3ooiIiIiIiFRgEUVERERERKQCiygiIiIiIiIVWEQRERERERGpwCKKiIiIiIhIBRZRREREREREKrCIIiIiIiIiUoFFFBERERERkQosooiIqEsWLVqE2bNnOzoMAEB+fj68vLyU7YyMDDz77LNWfTIyMqDT6aDRaLB3795Htg0mBoMBGo0GGo0GN27c+N/+58+fV/o//P4REdGjaUREHB0EERE5lkaj6XS/2WzGypUrISJWxYuj5OfnIy0tTSkUbt26hebmZowaNQoAUFNTg5CQEOzZswdTpkyBt7c3zp0716FNq9U6cBW9z2AwICUlBUuWLFGKxc60trbizz//RE5ODg4cOIDq6uq+CZSIaIAb6ugAiIjI8RoaGpTnO3fuxLp163DmzBmlzcPDAx4eHo4IrUsejq+urg4AkJCQoBQSttq64969e3B2du5BtPY1fPhw6PX6LvV1cnKCXq/v179bIqL+iJfzERER9Hq98vD09IRGo7Fq8/Dw6HA534wZM7B8+XKkpaXB29sbOp0Oubm5uH37Nl577TUMHz4cTz31FH744Qer1zp16hTi4uLg4eEBnU6HpKQkXL16tdP48vPzMXbsWLi5uWHOnDm4du2a1f4HL+fLyMhAfHw8AGDIkCHQaDQ229rl5eUhODgYrq6uCAoKwldffaXsa7/cbefOnYiMjISrqyu2b9/e5XHff/89Zs6cCTc3N4SFhcFisVjFXVFRgRkzZsDNzQ3e3t6IiYnB9evXAQBtbW3IyspCQEAAhg0bhrCwMOzevbvT98mWCxcuID4+Ht7e3nB3d8f48eOxf/9+1fMQEdF/WEQREVG3FRQUwMfHB0ePHsXy5cuxbNkyzJs3D88//zyOHz+O6OhoJCUloampCQBw48YNvPDCC5gwYQKOHTuG4uJiXL58GfPnz3/ka1RWViIlJQVvvfUWqqurMXPmTHz44YeP7J+eno6tW7cCuH+GraGhwWYbAGzfvh3r1q3DRx99hJqaGnz88cdYu3YtCgoKrOZcvXo13n77bdTU1CAmJqbL495//32kp6ejuroaRqMRiYmJaGlpAQBUV1dj1qxZCAkJgcViwaFDhxAfH4/W1lYAQFZWFrZt24YtW7bg9OnTWLlyJV599VUcPHhQza8IqampaG5uxs8//4yTJ09iw4YNPPNERNRTQkRE9ICtW7eKp6dnh/bk5GRJSEhQtiMjI2XatGnKdktLi7i7u0tSUpLS1tDQIADEYrGIiEhmZqZER0dbzfv7778LADlz5ozNeBITE+Wll16yaluwYIFVjGazWcLCwpTtPXv2yMN/4my1jRs3Tr755hurtszMTImIiBARkfr6egEgmzdv7ta4vLw8Zf/p06cFgNTU1Cjrmjp1qs0137lzR9zc3OTw4cNW7SkpKZKYmGhzjIiIv7+/bNq0yarNZDJJRkbGI8eIdHz/iIioc/xOFBERdVtoaKjy3MnJCaNGjYLJZFLadDodAODKlSsAgBMnTqCsrMzmmZC6ujoYjcYO7TU1NZgzZ45VW0REBIqLi3sU++3bt1FXV6fciKFdS0sLPD09rfpOmjSpW+MefH98fX0B3H8vgoKCUF1djXnz5tmMrba2Fk1NTXjxxRet2u/evYsJEyaoWueKFSuwbNkylJSUICoqCnPnzrWKi4iI1GMRRURE3fbwDRY0Go1VW/t3j9ra2gDcv4tefHw8NmzY0GGu9iKjr9y6dQsAkJubi/DwcKt9Tk5OVtvu7u7dGtfZezFs2LD/ja2oqAijR4+22qf2joKLFy9GTEwMioqKUFJSgqysLHz66adYvny5qnmIiOg/LKKIiKjPTJw4Ed999x0MBgOGDu3an6Dg4GBUVlZatR05cqTHseh0Ovj5+eHcuXNYuHCh3cc9LDQ0FKWlpVi/fn2HfSEhIdBqtbh48SIiIyO7/RrtxowZg6VLl2Lp0qVYs2YNcnNzWUQREfUAiygiIuozqampyM3NRWJiIt59912MHDkStbW1KCwsRF5eXoczOcD9y9GmTp2KnJwcJCQk4Mcff+zxpXzt1q9fjxUrVsDT0xOxsbFobm7GsWPHcP36daxatarXxz1ozZo1MJlMePPNN7F06VK4uLigrKwM8+bNg4+PD9LT07Fy5Uq0tbVh2rRp+Ouvv1BRUYERI0YgOTm5y2tMS0tDXFwcjEYjrl+/jrKyMgQHB3d5PBERdcS78xERUZ/x8/NDRUUFWltbER0dDZPJhLS0NHh5eWHIENt/kqZMmYLc3Fx89tlnCAsLQ0lJCT744INeiWfx4sXIy8vD1q1bYTKZEBkZifz8fAQEBNhl3IOMRiNKSkpw4sQJTJ48GREREdi3b59yhi4zMxNr165FVlYWgoODERsbi6KiIlWvAdz/D3VTU1OVOYxGo9Xt2ImISD2NiIijgyAiIqKeMxgMSEtLQ1pamqpxGRkZ2Lt3L6qrq+0SFxHRYMMiioiIaJAwGAxoaGiAs7MzLl261OFugQ+7ePEiQkJCcPfuXYSEhLCIIiLqIhZRREREg8SFCxdw7949AEBgYOAjL5Fs19LSgvPnzwO4f9e/MWPG2DtEIqJBgUUUERERERGRCryxBBERERERkQosooiIiIiIiFRgEUVERERERKQCiygiIiIiIiIVWEQRERERERGpwCKKiIiIiIhIBRZRREREREREKrCIIiIiIiIiUuFfrWB6rw1ZF0gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get the data points\n", + "gaze_times = raw_gaze_data[\"time [s]\"].values\n", + "eye_state_times = raw_eye_states_data[\"time [s]\"].values\n", + "imu_times = raw_imu_data[\"time [s]\"].values\n", + "\n", + "# Calculate the distances between subsequent data points\n", + "gaze_diffs = np.diff(gaze_times)\n", + "eye_state_diffs = np.diff(eye_state_times)\n", + "imu_diffs = np.diff(imu_times)\n", + "\n", + "# Plot the differences as a histogram\n", + "plt.figure(figsize=(10, 8))\n", + "plt.hist(imu_diffs, bins=20, alpha=0.5, label=\"IMU\")\n", + "plt.hist(eye_state_diffs, bins=20, alpha=0.5, label=\"Eye states\")\n", + "plt.hist(gaze_diffs, bins=10, alpha=0.8, label=\"Gaze\")\n", + "# create a logaritmic scale on the y-axis\n", + "plt.yscale(\"log\")\n", + "plt.legend()\n", + "plt.title(\"Histogram of time differences between subsequent data points\")\n", + "plt.xlabel(\"Time difference [s]\")\n", + "plt.ylabel(\"Count\")\n", + "\n", + "# draw a vertical line at the nominal sampling rate, add text\n", + "plt.axvline(\n", + " 1 / recording.gaze.sampling_freq_nominal, color=\"k\", linestyle=\"dashed\", linewidth=2\n", + ")\n", + "plt.text(\n", + " 1 / recording.gaze.sampling_freq_nominal,\n", + " 1,\n", + " \"Gaze nominal sampling rate\",\n", + " rotation=90,\n", + " verticalalignment=\"bottom\",\n", + " horizontalalignment=\"right\",\n", + ")\n", + "plt.axvline(\n", + " 1 / recording.imu.sampling_freq_nominal, color=\"k\", linestyle=\"dashed\", linewidth=2\n", + ")\n", + "plt.text(\n", + " 1 / recording.imu.sampling_freq_nominal + 0.001,\n", + " 100,\n", + " \"IMU nominal sampling rate\",\n", + " rotation=90,\n", + " verticalalignment=\"bottom\",\n", + " horizontalalignment=\"left\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we concat the channels with a sampling frequency of 100 Hz. While this downsamples both imu and gaze, it will put them on a common reference frame. Under the hood, continuous values are linearly interpolated, whereas boolean values follow the nearest neighbour." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Concatenating streams:\n", + "\tGaze\n", + "\t3D eye states\n", + "\tIMU\n", + "Using customized sampling rate: 100 Hz ([])\n", + "Using latest start timestamp: 1725032224878547732 (['imu'])\n", + "Using earliest last timestamp: 1725032319533909732 (['imu'])\n" + ] + } + ], + "source": [ + "concat_df = recording.concat_streams([\"gaze\", \"eye_states\", \"imu\"], sampling_freq=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We show an exemplary sampling of eye, imu and concatenated data below. It can be seen that imu data has subsequent missing values which can in turn be interpolated" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAADFCAYAAADnqW1oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH2klEQVR4nO3deVwU9f8H8Ndyg1weICDIoSAeaN6ZIpokVBqGpqkZHlSW5pWppWb+OrzSRLNSUzAzzQzNvI+E8Mgb0yRPFDTUvqYIXuDu5/cHX/bryiHHzO7s8Ho+HjyK2dnP+/Oa2YXh7cyORgghQERERERERERERIpgYeoJEBERERERERER0f+wYUdERERERERERKQgbNgREREREREREREpCBt2RERERERERERECsKGHRERERERERERkYKwYUdERERERERERKQgbNgREREREREREREpiFVZVtLpdPj777/h5OQEjUYj95yIiIiIiIiIiIhURQiBnJwceHl5wcKi9HPoytSw+/vvv+Hj4yPJ5IiIiIiIiIiIiKqqzMxMeHt7l7pOmRp2Tk5O+gGdnZ0rPzOFyc/Px7Zt29C1a1dYW1ubejqyUHtG5jN/as+o9nyA+jMyn/lTe0bmM39qz8h85k/tGdWeD1B/RuYzf2rPeOvWLfj4+Oj7bKUpU8Ou8DJYZ2dn1TbsHBwc4OzsLO8LQqsFUlKArCzA0xMIDQUsLY1SL9/DQ/6MzCdbPaPke6SmKjMyn6w1VZmR+cwf96Fs9VSZ75Gaqsxowt8V+VlZBfmqVYO1nZ3s9Yy9D9Weryq8D7kPpa/HnzPS1lN7PlUfkz6iTB83J8ogOztbABDZ2dllWd3s5OXliXXr1om8vDz5ivz0kxDe3kIA//vy9i5YboR6efb2BRmNVI/5pK0ne75iaqouI/PJXlN1GZnP/HEfylpPdfmKqam6jCb+XaHPV7++0bapMfeh2vNVhfch96H09fhzRtp6as+n2mPSh5Snv8aGnTBCw+6nn4TQaAxf8EDBMo1G+hd+MfX0L3oHB6PUYz5p68mar4SaqsrIfNLWK6GmqjIyn7T1TIH7UPZ6qspXQk1VZVTA7wqDfEbapsbch2rPVxXeh9yH0tfjzxlp66k9nyqPSR/Bhl05ydqwe/CgaHf60Re+j0/BejLWM3jRG6Ee80lbT7Z8pdRUTUbmM9prRjUZmU/614yxcR8yn0Q1VZNRIb8r9Pns7Y22TY25D9Weryq8D7kPpa/HnzPS1lN7PtUdkxajPP210u8hS5WXkgJculTy40IAmZkF67Ee6xm7nilqsp551zNFTdYz73qmoPZtynr8uab0eqaoyXrmXc8UNVnPvOuZoibrmXc9M8SGndyysqRdj/VYT8p6pqjJeuZdzxQ1Wc+865mC2rcp60lbzxQ11V7PFDVZz7zrmaIm65l3PVPUZD3zrmeG2LCTm6entOuxHutJWc8UNVnPvOuZoibrmXc9U1D7NmU9aeuZoqba65miJuuZdz1T1GQ9865nipqsZ971zBAbdnILDQW8vYGSbtmr0QA+PgXrsR7rGbueKWqynnnXM0VN1jPveqag9m3Kevy5pvR6pqjJeuZdzxQ1Wc+865miJuuZdz0zxIad3Cwtgbi4gv9/9IVY+P3cuQXryV2vkLHqMZ+09QpJWe9xNdWQkfmM+5opZM4ZmU/614yxcR8yn5Q11ZBRab8rjL1NWU/aeoX4mjHfeoXMOZ8parKeeb9GzZHUd7EwR7LeJbbQTz8VvQOKj498tyl+pJ7+TitGqsd80taTPV8xNVWXkflkr6m6jMxn/rgPZa2nunzF1FRdRhP/rtDnCww02jY15j5Ue76q8D7kPpS+Hn/OSFtP7flUe0z6kPL01zRCCPG4pt6tW7fg4uKC7OxsODs7y99FNLL8/Hxs2rQJzz33HKytreUrpNUW3OEkK6vgOuzQUHm7xQ/Vy/fwwKZbt+TNyHyy1TNKvkdqqjIj88laU5UZmc/8cR/KVk+V+R6pqcqMJvxdkZ+VhU0ODnguIgLWdnay1zP2PlR7vqrwPuQ+lL4ef85IW0/t+VR9TPpf5emvWRlpTgQUvMA7dTJNvfx8YNMm49UzBuaTt6YxcB/KV89Y1J6R+cwf96F89YyBvwvlrWcshTUL88n9h7up9qHa8wHqfx9yH0pfz1iqyj5Uez5AvcekFcDPsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQK1NPgIiIiNRHq9UiPz/f1NMwkJ+fDysrK9y7dw9ardbU05Ec85mOtbU1LC0tTT0NIiIiUhE27IiIiEgyQghcuXIFN2/eNPVUihBCwMPDA5mZmdBoNKaejuSYz7RcXV3h4eGhyLkRERGR+WHDjoiIiCRT2Kxzd3eHg4ODopoXOp0Oubm5cHR0hIWF+j4VhPlMQwiBO3fu4Nq1awAAT09PE8+IiIiI1IANOyIiIpKEVqvVN+tq1qxp6ukUodPpkJeXBzs7O0U1fKTCfKZjb28PALh27Rrc3d15eSwRERFVmrKOdoiIiMhsFX5mnYODg4lnQmR8ha97pX12IxEREZknNuyIiIhIUkq6DJbIWPi6JyIiIinxklgZaLVASgqQlQV4egKhoYAUV0Zw3JLHNae5ctyqOy4A7N4NXLliPvMlIiIiInXiMWTVxX1vHtiwk1hiIjByJHDp0v+WeXsDcXFAdDTHlXPciv6AUdM24LjKHfeXXwpeo88/D9y9q/z5EhGVJikpCZ07d8aNGzfg6upq6ukQEVE5/fILjyGrKv79YD54SayEEhOBXr0MX/gAcPlywfLERI4r17gDBpjPXCsz7i+/mNd8Oe7/xi3uNarU+RJVRQMHDoRGo4FGo4G1tTX8/f0xbtw43Lt3z9RTU41OnTph1KhRpp4GERGh4NiUx5BVD/9+MC9s2ElEqy3oUgtR9LHCZaNGFazHceUZt3A9KcdU0jYAgPHjzWe+HNc8xyVSDK0WSEoCVq4s+K8RXsyRkZHIysrC+fPn8fnnn2PhwoWYMmWK7HWJiIiMpfDXKY8hqx7+/WB+2LCTSEpK0S71w4QAMjML1uO48owLAPv2STumkrYBUPAvH1KPa27bgePKOy6RIiQmAn5+QOfOQL9+Bf/185P9n31tbW3h4eEBHx8f9OjRA+Hh4di+fbv+8evXr6Nv376oU6cOHBwcEBISgpUrV+of37BhA1xdXaH975FuamoqNBoNJkyYoF8nNjYWr7zySolz+Ouvv9ChQwfY2dmhUaNG2LFjBzQaDdatW6dfZ/z48QgKCoKDgwMCAgIwefJkgzuTBgQE6M8WfPirUGZmJnr37g1XV1fUqFEDUVFRuHDhQqnbZtOmTQgKCoK9vT06d+5cZP3HbZuBAwciOTkZcXFx+vlcuHABWq0WQ4YMgb+/P+zt7dGgQQPExcWVOhciIqq4x/29xGNI9eLfD+aHDTuJZGVJux7Hrdj6V65IP6ZStoHU9cu7PsetGuMSmZxCrtU4ceIE9u7dCxsbG/2ye/fuoWXLlti4cSNOnDiB119/HQMGDMCBAwcAAKGhocjJycHRo0cBAMnJyahVqxaSkpL0YyQnJ6NTp07F1tRqtejRowccHBywf/9+LFq0CBMnTiyynpOTExISEnDy5EnExcVh8eLF+Pzzz/WP79+/H1lZWcjKysKlS5fw5JNPIvS/d2jKz89HREQEnJyckJKSgj179sDR0RGRkZHIy8srdl6ZmZmIjo5G9+7dkZqaitjYWIMmZFm2TVxcHNq1a4fXXntNPzcfHx/odDp4e3vjxx9/xMmTJ/HBBx/g/fffx+rVqx+zh4iIqCLK+vcSjyHVh38/mB/edEIinp7SrsdxK7a+h4f0YyplG0hdv7zrc9yqMS6RST3uWg2NpuBajagoWW5ltmHDBjg6OuLBgwe4f/8+LCws8MUXX+gfr1OnDsaOHav//u2338bWrVuxevVqtGnTBi4uLnjiiSeQlJSEVq1aISkpCaNHj8bUqVORm5uL7OxsnD17FmFhYcXW3759O86dO4ekpCR4/PcX2ieffIJnnnnGYL1Jkybp/9/Pzw9jx47FqlWr9HNzc3ODhUXBv8mOHDkSWVlZOHjwIADghx9+gE6nwzfffKM/6y4+Ph6urq5ISkpC165di8zrq6++Qr169TB79mwAQIMGDXD8+HHMmDGjXNvGxsYGDg4O+mwAYGlpialTp+q/9/f3x759+7B69Wr07t272O1EREQV5+EB3Lr1+PV4DKk+/PvB/PAMO4mEhhbcWeWhK04MaDSAj0/BehxXnnEBoF0785hrRcYFgDp1zGe+HNc8xyUyKRNfq9G5c2ekpqZi//79iImJwaBBg9CzZ0/941qtFh999BFCQkJQo0YNODo6YuvWrcjIyNCvExYWhqSkJAghkJKSgujoaDRs2BC7d+9GcnIyvLy8EBgYWGz9U6dOwcfHx6Ch1aZNmyLr/fDDD2jfvj08PDzg6OiISZMmGcyh0KJFi7BkyRKsX78ebm5uAIBjx47h7NmzcHJygqOjIxwdHVGjRg3cu3cP586dK3ZeaWlpaNu2rcGydo/8wi3LtinJggUL0LJlS7i5ucHR0RGLFi0q0/OIiKj8Cn988xiy6uHfD+aHDTuJWFoW3AYZKPoGKPx+7tzynxDAccs+buF6Uo6ppG0AAIUnM5jDfDlu0XEfpcT5EpmUia/VqFatGurXr49mzZph6dKl2L9/P5YsWaJ/fNasWYiLi8P48eOxa9cupKamIiIiwuBS0k6dOmH37t04duwYrK2tERwcjE6dOiEpKQnJycklnl1XVvv27UP//v3x3HPPYcOGDTh69CgmTpxY5HLWXbt24e2338a3336Lpk2b6pfn5uaiZcuWSE1NNfg6ffo0+vXrV+F5lWXbFKfwzMAhQ4Zg27ZtSE1NxaBBgx77PCIiqpiHjw15DFm18O8H88OGnYSio4E1awrOgnqYt3fB8uhojivXuMuXm89cKzNu9+7mNV+O+79xi3uNKnW+RCajoGs1LCws8P7772PSpEm4e/cuAGDPnj2IiorCK6+8gmbNmiEgIACnT582eF7h59h9/vnn+uZcYcMuKSmpxM+vAwouNc3MzMTVq1f1ywovZS20d+9e+Pr6YuLEiWjVqhUCAwNx8eJFg3XOnj2LXr164f3330f0Iz8IWrRogTNnzsDd3R3169c3+HJxcSl2Xg0bNtR/Fl2h33//3eD7smwbGxsb/Q05Hn7eU089hbfeegvNmzdH/fr1SzzTj4iIpLN8OY8hqyL+/WBe+Bl2EouOLvhonZSUghMAPD0LTimtbJea45Y+rk4HbNpkHnPluFVz3O7dC16jGzcWfNiv0udLZBKF12pcvlz859hpNAWPG+lajZdeegnvvvsuFixYgLFjxyIwMBBr1qzB3r17Ub16dcyZMwdXr15Fo0aN9M+pXr06mjZtihUrVug//65jx47o3bs38vPzSz3D7plnnkG9evUQExODmTNnIicnR/95dYWfNxcYGIiMjAysWrUKrVu3xsaNG7F27Vr9GHfv3kVUVBSaN2+O119/HVce+nRxDw8P9O/fH7NmzUJUVBT+7//+D97e3rh48SISExMxbtw4eHt7F5nX0KFDMXv2bLz77ruIjY3F4cOHkZCQYLBOWbaNn58f9u/fjwsXLugvxQ0MDMS3336LrVu3wt/fH8uXL8fBgwfh7+9fjj1FRETl1b07jyGrKv79YD7YsJOBpSVQyj+gc1wZxtXppB9TChyX4z6qQwfA2lraMeWcL5FRFV6r0atXQXPu4aadCa7VsLKywvDhwzFz5ky8+eabmDRpEs6fP4+IiAg4ODjg9ddfR48ePZCdnW3wvLCwMKSmpurPpqtRowYaNWqEq1evokGDBiXWs7S0xLp16xAbG4vWrVsjICAAs2bNQvfu3WFnZwcAeOGFFzB69GgMHz4c9+/fx/PPP4/Jkyfjww8/BAD8888/+Ouvv/DXX3/By8vLYHwhBBwcHPDbb79h/PjxiI6ORk5ODurUqYMuXbrA2dm52HnVrVsXP/30E0aPHo358+ejTZs2+PTTTzF48GD9OmXZNmPHjkVMTAwaNWqEu3fvIj09HW+88QaOHj2KPn36QKPRoG/fvnjrrbewefPmMu8nIiKqGB5DVl3c9+aBDTsiIiJSjsJrNUaONLwBhbd3QbNOpms1Hj1jrNCECRMwYcIEAAWfcbdu3brHjjV37lzMnTvXYFlqamqZ5hEcHIzdu3frv9+zZw8AoH79+vplM2fOxMyZMw2eN2rUKOh0OtStWxdarVZ/l9jieHh4YNmyZWWaT6Fu3bqhW7duBssGDRqk//8aNWo8dtsEBQVh3759RZbHx8cjPj7eYNm0adPKNT8iIiIitWHDjoiIiJSlCl+rsXbtWjg6OiIwMBBnz57FyJEj0b59e9SrV8/UUyMiIiIiI2LDjoiIiJSnil6rkZOTg/HjxyMjIwO1atVCeHg4Zs+ebeppEREREZGRsWFHREREpBCvvvoqXn31VVNPg4iIiIhMrOQPOCEiIiIiIiIiIiKjY8OOiIiIiIiIiIhIQdiwIyIiIiIiIiIiUhA27IiIiIiIiIiIiBSEDTsiIiIiIiIiIiIFYcOOiIiIiIiIiIhIQdiwIyIiIiLVGDhwIHr06GHqaRARERFVCht2REREVOUNHDgQGo0GGo0G1tbW8Pf3x7hx43Dv3j1TT82kkpKSoNFocPPmzXI978KFC9BoNEhNTZVlXlIyp7kSERFR1WFl6gkQERERPUqrBVJSgKwswNMTCA0FLC3lrRkZGYn4+Hjk5+fj8OHDiImJgUajwYwZM+QtTERERET0CJ5hR0RERIqSmAj4+QGdOwP9+hX818+vYLmcbG1t4eHhAR8fH/To0QPh4eHYvn27/vHr16+jb9++qFOnDhwcHBASEoKVK1fqH9+wYQNcXV2h1WoBAKmpqdBoNJgwYYJ+ndjYWLzyyislzuHmzZuIjY2Fm5sbnJ2d8fTTT+PYsWMACs4Es7CwwKFDhwyeM3fuXPj6+kKn0wEATpw4gWeffRaOjo6oXbs2BgwYgP/85z8l1rx48SK6d++O6tWro1q1amjcuDE2bdqECxcuoHPnzgCA6tWrQ6PRYODAgQCALVu2oEOHDnB1dUXNmjXRrVs3nDt3Tj+mv78/AKB58+bQaDTo1KmT/rFvvvkGDRs2hJ2dHYKDg/Hll1/qH8vLy8Pw4cPh6ekJOzs7+Pr6Ytq0aSXOXavVYsyYMfp5jBs3DkIIg3UqOteDBw/imWeeQa1ateDi4oKwsDAcOXKkxLkQERERSYkNOyIiIlKMxESgVy/g0iXD5ZcvFyyXu2lX6MSJE9i7dy9sbGz0y+7du4eWLVti48aNOHHiBF5//XUMGDAABw4cAACEhoYiJycHR48eBQAkJyejVq1aSEpK0o+RnJxs0Lx61EsvvYRr165h8+bNOHz4MFq0aIEuXbrg33//hZ+fH8LDwxEfH2/wnPj4eAwcOBAWFhbIzs5GeHg4mjdvjkOHDmHLli24evUqevfuXWLNYcOG4f79+/jtt99w/PhxzJgxA46OjvDx8cFPP/0EADh16hSysrIQFxcHALh9+zbGjBmDQ4cOYefOnbCwsMCLL76obxoWbpMdO3YgKysLif/dcStWrMAHH3yATz75BGlpafj0008xefJkLFu2DAAwb948rF+/HqtXr8apU6ewYsUK+Pn5lTj32bNnIyEhAUuXLsXu3bvx77//Yu3atQbrVHSuOTk5iImJwe7du/H7778jMDAQzz33HHJyckqcDxEREZFUeEksERERKYJWC4wcCTxyghSAgmUaDTBqFBAVJc/lsRs2bICjoyMePHiA+/fvw8LCAl988YX+8Tp16mDs2LH6799++21s3boVq1evRps2beDi4oInnngCSUlJaNWqFZKSkjB69GhMnToVubm5yM7OxtmzZxEWFlZs/d27d+PAgQO4du0abG1tAQCfffYZ1q1bhzVr1uD1119HbGwshg4dijlz5sDW1hZHjhzB8ePH8fPPPwMAFi9ejCeeeAKffvqpftylS5fCx8cHp0+fRlBQUJG6GRkZ6NmzJ0JCQgAAAQEB+sdq1KgBAHB3d4erq6t+ec+ePQ3GWLp0Kdzc3HDy5Ek0adIEbm5uAICaNWvCw8NDv96UKVMwe/ZsREdHAyg4u+3kyZNYuHAhYmJikJGRgcDAQHTo0AEajQa+vr4l7S4ABWcXvvfee/rxvv76a2zdutVgnYrO9emnnzZ43qJFi+Dq6ork5GR069at1HkRERERVRbPsCMiIiJFSEkpembdw4QAMjML1pND586dkZqaiv379yMmJgaDBg0yaPZotVp89NFHCAkJQY0aNeDo6IitW7ciIyNDv05YWBiSkpIghEBKSgqio6PRsGFD7N69G8nJyfDy8kJgYGCx9Y8dO4bc3FzUrFkTjo6O+q/09HT9JZw9evSApaWl/iyyhIQEdO7cWX8W2okTJ5CUlGTw/ODgYAAwuAz0YSNGjMDHH3+M9u3bY8qUKfjjjz8eu63OnDmDvn37IiAgAM7Ozvr6D2+LR92+fRvnzp3DkCFDDOb38ccf6+c2cOBApKamokGDBhgxYgS2bdtW4njZ2dnIyspC27Zt9cusrKzQqlWrSs8VAK5evYrXXnsNgYGBcHFxgbOzM3Jzcx/7PCIiIiIp8Aw7IiIiUoSsLGnXK69q1aqhfv36AArOwmrWrBmWLFmCIUOGAABmzZqFuLg4zJ07FyEhIahWrRpGjRqFvLw8/RidOnXC0qVLcezYMVhbWyM4OBidOnVCUlISbty4UeLZdQCQm5sLT09Pg0toCxWe3WZjY4NXX30V8fHxiI6Oxvfff6+/TLVwjG7dumHmzJlFxvD09Cy2bmxsLCIiIrBx40Zs27YN06ZNw+zZs/H222+XONfu3bvD19cXixcvhpeXF3Q6HZo0aWKwLYrLBxScBfhwkw0ALP97ymSLFi2Qnp6OzZs3Y8eOHejduzfCw8OxZs2aEsd9nIrMFQBiYmJw/fp1xMXFwdfXF7a2tmjXrt1jn0dEREQkBTbsiIiISBFK6CdVeL3KsLCwwPvvv48xY8agX79+sLe3x549exAVFaW/aYROp8Pp06fRqFEj/fMKP8fu888/1zfnOnXqhOnTp+PGjRt45513SqzZokULXLlyBVZWVqV+bltsbCyaNGmCL7/8Eg8ePNBfDgoAzZo1w8aNG+Hn5wcrq7If5vn4+GDo0KEYOnQo3nvvPSxevBhvv/22/jP8Cm+kARTcfOPUqVNYvHgxQkNDARRczvuw4p5Xu3ZteHl54fz58+jfv3+Jc3F2dkafPn3Qp08f9OrVC5GRkfj3338NLskFABcXF3h6emL//v3o2LEjAODBgwf6z/6rzFwBYM+ePfjyyy/x3HPPAQAyMzNLvXkHERERkZR4SSwREREpQmgo4O1d8Fl1xdFoAB+fgvWM4aWXXoKlpSUWLFgAAAgMDMT27duxd+9epKWl4Y033sDVq1cNnlO9enU0bdoUK1as0N9comPHjjhy5AhOnz5d6hl24eHhaNeuHXr06IFt27bhwoUL2Lt3LyZOnGhwZ9iGDRviySefxPjx49G3b1/Y29vrH4uNjcW///6Lvn374uDBgzh37hy2bt2KQYMGFWlIFRo1ahS2bt2K9PR0HDlyBLt27ULDhg0BAL6+vtBoNNiwYQP++ecf5Obmonr16qhZsyYWLVqEs2fP4tdff8WYMWMMxnR3d4e9vb3+phfZ2dkAgKlTp2LatGmYN28eTp8+jePHjyM+Ph5z5swBAMyZMwcrV67EX3/9hdOnT+PHH3+Eh4dHkWZdoZEjR2L69OlYt24d/vrrL7z11lu4efOmwf6o6FwDAwOxfPlypKWlYf/+/ejfv7/BtiYiIiKSExt2REREpAiWlkDh1Z2PNu0Kv587V54bThTHysoKw4cPx8yZM3H79m1MmjQJLVq0QEREBDp16gQPDw/06NGjyPPCwsKg1Wr1DbsaNWqgUaNG8PDwQIMGDUqsp9FosGnTJnTs2BGDBg1CUFAQXn75ZVy8eBG1a9c2WHfIkCHIy8vD4MGDDZZ7enoiJSUFWq0WXbt2RUhICEaNGgVXV1dYWBR/2KfVajFs2DA0bNgQkZGRCAoKwpdffgmg4EYbU6dOxYQJE1C7dm0MHz4cFhYWWLVqFQ4fPowmTZpg9OjRmDVrVpFtN2/ePCxcuBBeXl6IiooCUNBQ/OabbxAfH4+QkBCEhYUhISEB/v7+AAAnJyfMnDkTrVq1QuvWrXHhwgVs2rSpxLm/8847GDBgAGJiYtCuXTs4OTnhxRdf1D9embkuWbIEN27cQIsWLTBgwACMGDEC7u7uJe4/IiIiIinxklgiIiJSjOhoYM2agrvFPnwDCm/vgmbdQ1d/SiohIaHY5RMmTMCECRMAFHzG3bp16x471ty5czF37lyDZampqWWah5OTE+bNm4d58+aVut7ly5cREhKC1q1bF3ksMDAQiYmJZaoHAPPnzy/18cmTJ2Py5MkGy8LDw3Hy5EmDZeKR2/vGxsYiNja2yHj9+vVDv379iq312muv4bXXXivLtAEUNNuK295SzLV58+Y4ePCgwbJevXqVeW5ERERElcGGHRERESlKdDQQFVVwN9isrILPrAsNNd6ZdUqWm5uLCxcu4IsvvsDHH39s6ukQERERkUzYsCMiIiLFsbQE/ntFKT1k+PDhWLlyJXr06FHkclgiIiIiUg827IiIiIjMREJCQomX7xIRERGRevCmE0RERERERERERArChh0REREREREREZGCsGFHRERERERERESkIGzYERERERERERERKQgbdkRERERERERERArChh0REREREREREZGCsGFHREREREZ34cIFaDQapKamlut5AQEBmDt3rixzIiIiIlIKNuyIiIiIAFy5cgVvv/02AgICYGtrCx8fH3Tv3h07d+409dQMfPjhh3jiiSdMUruiTTZTSkhIgKurq6mnQURERFQuVqaeABEREdGjtDotUjJSkJWTBU8nT4TWDYWlhaVs9S5cuID27dvD1dUVs2bNQkhICPLz87F161YMGzYMf/31l2y1iYiIiIgexTPsiIiISFES0xLhF+eHzss6o19iP3Re1hl+cX5ITEuUreZbb70FjUaDAwcOoGfPnggKCkLjxo0xZswY/P777/r1MjIyEBUVBUdHRzg7O6N37964evWq/vHCs9+WL18OPz8/uLi44OWXX0ZOTo5+HZ1Oh5kzZ6J+/fqwtbVF3bp18cknn+gfHz9+PIKCguDg4ICAgABMnjwZ+fn5AArOFps6dSqOHTsGjUYDjUaDhIQEAMDNmzcxYsQI1K5dG87Oznj66adx7Nixcs1ty5Yt6NChA1xdXVGzZk1069YN586d0z/u7+8PAGjevDk0Gg06deqkf+ybb75Bw4YNYWdnh+DgYHz55ZcG2/jAgQNo3rw57Ozs0KpVKxw9evSx++XatWvo3r077O3tUa9ePaxevbrIOnPmzEFISAiqVasGHx8fvPXWW8jNzQUAJCUlYdCgQcjOztZvrw8//BAAsHz5crRq1QpOTk7w8PBAv379cO3atcfOiYiIiMgY2LAjIiIixUhMS0Sv1b1w6dYlg+WXb11Gr9W9ZGna/fvvv9iyZQuGDRuGatWqFXm88HJKnU6HqKgo/Pvvv0hOTsb27dtx/vx59OnTx2D9c+fOYd26ddiwYQM2bNiA5ORkTJ8+Xf/4e++9h+nTp2Py5Mk4efIkvv/+e9SuXVv/uJOTExISEnDy5EnExcVh8eLF+PzzzwEAffr0wTvvvIPGjRsjKysLWVlZ+vq9e/fGP//8g40bN+Lw4cNo0aIFunTpgn///bfMc7t9+zbGjBmDQ4cOYefOnbCwsMCLL74InU4HoKDpBgA7duxAVlYWEhML9seKFSvwwQcf4JNPPkFaWho+/fRTTJ48GcuWLQMA5Obmolu3bmjUqBEOHz6MDz/8EGPHjn3svhk4cCAyMzOxa9curF69GkuWLCnSVLOwsMC8efPw559/YtmyZfj1118xbtw4AMBTTz2FuXPnwtnZWb+9Cuvm5+fjo48+wrFjx7Bu3TpcuHABAwcOfOyciIiIiIyBl8QSERGRImh1WozcMhICoshjAgIaaDBqyyhENYiS9PLYs2fPQgiB4ODgUtfbuXMnjh8/jvT0dPj4+AAAvv32WzRu3BgHDx5E69atARQ09hISEuDk5AQAGDBgAHbu3IlPPvkEOTk5iIuLwxdffIGYmBgAQL169dChQwd9nUmTJun/38/PD2PHjsWqVaswbtw42Nvbw9HREVZWVvDw8NCvt3v3bhw8eBCnT5+Gm5sbLCws8Nlnn2HdunVYs2YNXn/99cfODQB69uxpkHnp0qVwc3PDyZMn0aRJE7i5uQEAatasaVB/ypQpmD17NqKjowEUnIl38uRJLFy4EDExMfj++++h0+mwZMkS2NnZoXHjxrh06RLefPPNErf36dOnsXnzZhw4cACtW7eGTqfD/Pnz0bZtW4P1Ro0aZbC9Pv74YwwdOhRffvklbGxs4OLiAo1GYzBfABg8eLD+/wMCAjBv3jy0bt0aubm5cHR0LHFeRERERMbAM+yIiIhIEVIyUoqcWfcwAYHMW5lIyUiRtK4QRRuExUlLS4OPj4++WQcAjRo1gqurK9LS0vTL/Pz89A0xAPD09NSfFZaWlob79++jS5cuJdb54Ycf0L59e3h4eMDR0RGTJk1CRkZGqXM7duwYcnNzUa9ePTg7O8PR0RGOjo5IT083uKS1tLkBwJkzZ9C3b18EBATA2dkZfn5+AFBq/du3b+PcuXMYMmSIvq6joyM+/vhjfe20tDQ0bdoUdnZ2+ue1a9eu1ExpaWmwsrJCy5Yt9cuCgoKK3EBix44d6NKlC+rUqQMnJycMGDAA169fx507d0od//Dhw+jevTvq1q0LJycnhIWFPTYrERERkbHwDDsiIiJShKycLEnXK6vAwEBoNBrJbixhbW1t8L1Go9FfUmpvb1/qc/ft24f+/ftj6tSpiIiIgIuLC1atWoXZs2eX+rzc3Fx4enpi/fr1cHR0hIXF//5N9uEGV2lzA4Du3bvD19cXixcvhpeXF3Q6HZo0aYK8vLxSawPA4sWLi5z9Zmkp341CgIKbhXTr1g1vvvkmPvnkE9SoUQO7d+/GkCFDkJeXBwcHh2Kfd/v2bURERCAiIgIrVqyAm5sbMjIyEBERUWpWIiIiImNhw46IiIgUwdPJU9L1yqpGjRqIiIjAggULMGLEiCKfY3fz5k24urqiYcOGyMzMRGZmpv4su5MnT+LmzZto1KhRmWoFBgbC3t4eO3fuRGxsbJHH9+7dC19fX0ycOFG/7OLFiwbr2NjYQKvVGixr0aIFrly5AisrK9SvX9+gYVdW169fx6lTp7B48WKEhoYCKLjU9tHaAAzq165dG15eXjh//jz69+9f7NgNGzbE8uXLce/ePf1Zdg/fzKM4wcHBePDgAQ4fPqy/3PjMmTO4efOmfp3Dhw9Dp9Nh9uzZ+syP3piiuO31119/4fr165g+fbp+Xx46dKjU+RAREREZEy+JJSIiIkUIrRsKb2dvaKAp9nENNPBx9kFo3VDJay9YsABarRZt2rTBTz/9hDNnziAtLQ3z5s3TX7oZHh6OkJAQ9O/fH0eOHMGBAwfw6quvIiwsDK1atSpTHTs7O4wfPx7jxo3Dt99+i3PnzuH333/HkiVLABQ09DIyMrBq1SqcO3cO8+bNw9q1aw3G8PPzQ3p6OlJTU/Gf//wH9+/fR3h4ONq1a4f+/ftj27ZtuHDhAvbu3YuJEyeWuRFVvXp11KxZE4sWLcLZs2fx66+/YsyYMQbruLu7w97eHlu2bMHVq1eRnZ0NAJg6dSqmTZuGefPm4fTp0zh+/Dji4+MxZ84cAEC/fv2g0Wjw2muv4eTJk9i0aRM+++yzUufToEEDREZG4o033sD+/ftx+PBhjBgxwuAsxfr16yM/Px/z58/H+fPnsXz5cnz99ddFtldubi527tyJ//znP7hz5w7q1q0LGxsb/fPWr1+Pjz76qEzbiYiIiMgY2LAjIiIiRbC0sERcZBwAFGnaFX4/N3KupDecKBQQEIAjR46gc+fOeOedd9CkSRM888wz2LlzJ7766quCOWg0+Pnnn1G9enV07NgR4eHhCAgIwA8//FCuWpMnT8Y777yDDz74AA0bNkSfPn30nyP3wgsvYPTo0Rg+fDieeOIJ7N27F5MnTzZ4fs+ePREZGYnOnTvDzc0NK1euhEajwYYNG/DUU09hyJAhCAoKwssvv4yLFy8a3IG2NBYWFli1ahUOHz6MJk2aYPTo0Zg1a5bBOlZWVpg3bx4WLlwILy8vREVFAQBiY2PxzTffID4+HiEhIQgLC0NCQgL8/f0BAI6Ojvjll19w/PhxNG/eHBMnTsSMGTMeO6f4+Hh4eXkhLCwMvXr1QkxMDNzd3fWPN2vWDHPmzMGMGTPQpEkTrFixAtOmTTMY46mnnsLQoUPRp08fuLm5YebMmXBzc0NCQgJ+/PFHNGrUCNOnT39sA5GIiIjImDSiDJ+0fOvWLbi4uCA7OxvOzs7GmJdR5efnY9OmTXjuueeKfLaLWqg9I/OZP7VnVHs+QP0Zme/x7t27h/T0dPj7+xvcXKC8EtMSMXLLSIMbUPg4+2Bu5FxEN4yu8Lg6nQ63bt2Cs7NzhS4ZVTrmMy0pXv/8OWPe1J4PUH9GtecD1J+R+cyf2jOWp7/Gz7AjIiIiRYluGI2oBlFIyUhBVk4WPJ08EVo3VJYz64iIiIiIlIgNOyIiIlIcSwtLdPLrZOppEBERERGZhPKuJyAiIiIiIiIiIqrC2LAjIiIiIiIiIiJSEDbsiIiISFJluJ8VkerwdU9ERERSYsOOiIiIJFF4J687d+6YeCZExlf4ulfjHe2IiIjI+HjTCSIiIpKEpaUlXF1dce3aNQCAg4MDNBqNiWf1PzqdDnl5ebh37x4sLNT3b5bMZxpCCNy5cwfXrl2Dq6srLC15N2MiIiKqPDbsiIiISDIeHh4AoG/aKYkQAnfv3oW9vb2iGolSYT7TcnV11b/+iYiIiCqLDTsiIiKSjEajgaenJ9zd3ZGfn2/q6RjIz8/Hb7/9ho4dO6ryskXmMx1ra2ueWUdERESSYsOOiIiIJGdpaam4BoalpSUePHgAOzs7xTV8pMB8REREROqhnA8AISIiIiIiIiIiIjbsiIiIiIiIiIiIlIQNOyIiIiIiIiIiIgVhw46IiIiIiIiIiEhB2LAjIiIiIiIiIiJSEDbsiIiIiIiIiIiIFIQNOyIiIiIiIiIiIgVhw46IiIiIiIiIiEhB2LAjIiIiIiIiIiJSEDbsiIiIiIiIiIiIFIQNOyIiIiIiIiIiIgVhw46IiIiIiIiIiEhB2LAjIiIiIiIiIiJSEDbsiIiIiIiIiIiIFIQNOyIiIiIiIiIiIgVhw46IiIiIiIiIiEhB2LAjIiIiIiIiIiJSEDbsiIiIiIiIiIiIFIQNOyIiIiIiIiIiIgVhw46IiIiIiIiIiEhB2LAjIiIiIiIiIiJSEDbsiIiIiIiIiIiIFIQNOyIiIiIiIiIiIgVhw46IiIiIiIiIiEhB2LAjIiIiIiIiIiJSEDbsiIiIiIiIiIiIFIQNOyIiIiIiIiIiIgVhw46IiIiIiIiIiEhBqnzDTqvTYnfGbgDA7ozd0Oq0Jp6R9NSekfnMn9ozqj0foP6MzGf+1J6R+cyf2jMyn/lTe0a15wPUn5H5zF9VyFgeVbphl5iWCL84Pzz//fMAgOe/fx5+cX5ITEs08cyko/aMzGf+1J5R7fkA9WdkPvOn9ozMZ/7UnpH5zJ/aM6o9H6D+jMxn/qpCxvKqsg27xLRE9FrdC5duXTJYfvnWZfRa3UsVLwq1Z2Q+884HqD+j2vMB6s/IfOadD1B/RuYz73yA+jMyn3nnA9SfUe35APVnZD7zzgdUjYwVUSUbdlqdFiO3jISAKPJY4bJRW0aZ9emXas/IfOadD1B/RrXnA9SfkfnMOx+g/ozMZ975APVnZD7zzgeoP6Pa8wHqz8h85p0PqBoZK6pKNuxSMlKKdG4fJiCQeSsTKRkpRpyVtNSekfnMOx+g/oxqzweoPyPzmXc+QP0Zmc+88wHqz8h85p0PUH9GtecD1J+R+cw7H1A1MlZUlWzYZeVkSbqeEqk9I/OVbz0lUntGtecD1J+R+cq3nhKpPSPzlW89JVJ7RuYr33pKpPaMas8HqD8j85VvPSWqChkrqko27DydPCVdT4nUnpH5yreeEqk9o9rzAerPyHzlW0+J1J6R+cq3nhKpPSPzlW89JVJ7RrXnA9SfkfnKt54SVYWMFVUlG3ahdUPh7ewNDTTFPq6BBj7OPgitG2rkmUlH7RmZz7zzAerPqPZ8gPozMp955wPUn5H5zDsfoP6MzGfe+QD1Z1R7PkD9GZnPvPMBVSNjRVXJhp2lhSXiIuMAoMiLovD7uZFzYWlhafS5SUXtGZnPvPMB6s+o9nyA+jMyn3nnA9SfkfnMOx+g/ozMZ975APVnVHs+QP0Zmc+88wFVI2NFVcmGHQBEN4zGmt5rUMe5jsFyb2dvrOm9BtENo000M+moPSPzmXc+QP0Z1Z4PUH9G5jPvfID6MzKfeecD1J+R+cw7H6D+jGrPB6g/I/OZdz6gamSsCI0Qoui9cx9x69YtuLi4IDs7G87OzsaYl9FodVr8lv4bbp24Becmzujo31F1nVu1Z2Q+86f2jGrPB6g/I/OZP7VnZD7zp/aMzGf+1J5R7fkA9WdkPvNXFTKWp79mVZYBC3t6t27dqvzsFKipa1Nsu7MNHVw74HbubVNPRxZqz8h85k/tGdWeD1B/RuYzf2rPyHzmT+0Zmc/8qT2j2vMB6s/IfOZP7RkL+2plOHeubA27nJwcAICPj08lpkVERERERERERFS15eTkwMXFpdR1ynRJrE6nw99//w0nJydoNMXfucOc3bp1Cz4+PsjMzFTdJb+F1J6R+cyf2jOqPR+g/ozMZ/7UnpH5zJ/aMzKf+VN7RrXnA9SfkfnMn9ozCiGQk5MDLy8vWFiUfluJMp1hZ2FhAW9vb0kmp2TOzs6qfEE8TO0Zmc/8qT2j2vMB6s/IfOZP7RmZz/ypPSPzmT+1Z1R7PkD9GZnP/Kk54+POrCtUZe8SS0REREREREREpERs2BERERERERERESkIG3YAbG1tMWXKFNja2pp6KrJRe0bmM39qz6j2fID6MzKf+VN7RuYzf2rPyHzmT+0Z1Z4PUH9G5jN/VSFjWZXpphNERERERERERERkHDzDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEFU17D78MMPodFoDL6Cg4NLfc6PP/6I4OBg2NnZISQkBJs2bTJ4XAiBDz74AJ6enrC3t0d4eDjOnDkjZ4wSyZEvMTERXbt2Rc2aNaHRaJCamipjgseTOmN+fj7Gjx+PkJAQVKtWDV5eXnj11Vfx999/yx2lWHLsww8//BDBwcGoVq0aqlevjvDwcOzfv1/OGKWSI+PDhg4dCo1Gg7lz50o887KRI9/AgQOLjBkZGSlnjBLJtf/S0tLwwgsvwMXFBdWqVUPr1q2RkZEhV4xSyZHx0fEKv2bNmiVnlGLJkS83NxfDhw+Ht7c37O3t0ahRI3z99ddyxiiRHPmuXr2KgQMHwsvLCw4ODoiMjDTZ73qg/Bn//PNP9OzZE35+fqX+fFywYAH8/PxgZ2eHtm3b4sCBAzIlKJ0c+X777Td0794dXl5e0Gg0WLdunXwBHkOOfNOmTUPr1q3h5OQEd3d39OjRA6dOnZIxRenkyPjVV1+hadOmcHZ2hrOzM9q1a4fNmzfLmKJkcr0HC02fPh0ajQajRo2SduLlIEfGivx8lotc+/Dy5ct45ZVXULNmTdjb2yMkJASHDh2SKUXJ5MhX+NijX8OGDZMxScnkyKjVajF58mT4+/vD3t4e9erVw0cffQQhhIxJiidHvpycHIwaNQq+vr6wt7fHU089hYMHD8qYomTlzbd48WKEhoaievXq+r9pHz1OUVJvxhhU17ADgMaNGyMrK0v/tXv37hLX3bt3L/r27YshQ4bg6NGj6NGjB3r06IETJ07o15k5cybmzZuHr7/+Gvv370e1atUQERGBe/fuGSNOEVLnu337Njp06IAZM2YYY/plImXGO3fu4MiRI5g8eTKOHDmCxMREnDp1Ci+88IKx4hQh9T4MCgrCF198gePHj2P37t3w8/ND165d8c8//xgjTrGkzlho7dq1+P333+Hl5SXn9B9LjnyRkZEGY65cuVLuGCWSOt+5c+fQoUMHBAcHIykpCX/88QcmT54MOzs7Y8QpltQZHx4rKysLS5cuhUajQc+ePY0Rpwip840ZMwZbtmzBd999h7S0NIwaNQrDhw/H+vXrjRGnCCnzCSHQo0cPnD9/Hj///DOOHj0KX19fhIeH4/bt28aKVER5Mt65cwcBAQGYPn06PDw8il3nhx9+wJgxYzBlyhQcOXIEzZo1Q0REBK5duyZXhFJJne/27dto1qwZFixYINeUy0XqfMnJyRg2bBh+//13bN++Hfn5+ejatauqXqPe3t6YPn06Dh8+jEOHDuHpp59GVFQU/vzzT7kilErqfIUOHjyIhQsXomnTplJPudzkyFieMeUmdb4bN26gffv2sLa2xubNm3Hy5EnMnj0b1atXlytCqaTOd/DgQYPxtm/fDgB46aWXZJl/WUidccaMGfjqq6/wxRdfIC0tDTNmzMDMmTMxf/58uSKUSup8sbGx2L59O5YvX47jx4+ja9euCA8Px+XLl+WKUKry5EtKSkLfvn2xa9cu7Nu3Dz4+PujatavB3JXWm5GdUJkpU6aIZs2alXn93r17i+eff95gWdu2bcUbb7whhBBCp9MJDw8PMWvWLP3jN2/eFLa2tmLlypWSzLk8pM73sPT0dAFAHD16tJKzrBw5MxY6cOCAACAuXrxY0WlWmDHyZWdnCwBix44dFZ1mpciV8dKlS6JOnTrixIkTwtfXV3z++ecSzLb85MgXExMjoqKiJJph5ciRr0+fPuKVV16RaoqVZoz3YVRUlHj66acrOsVKkSNf48aNxf/93/8ZrNOiRQsxceLESs21IqTOd+rUKQFAnDhxQv+4VqsVbm5uYvHixZLMubzKm/FhJf18bNOmjRg2bJj+e61WK7y8vMS0adMqOMuKkyPfwwCItWvXVmh8KcidTwghrl27JgCI5OTkCtWpLGNkFEKI6tWri2+++aZCdSpDrnw5OTkiMDBQbN++XYSFhYmRI0dWeI6VJUfGyowpNTnyjR8/XnTo0KFyE5OIMd6DI0eOFPXq1RM6na5CdSpLjozPP/+8GDx4sMGy6Oho0b9//wrVqQyp8925c0dYWlqKDRs2GCw3l+O1Rz148EA4OTmJZcuWCSGU15sxBlWeYXfmzBl4eXkhICAA/fv3L/WSq3379iE8PNxgWUREBPbt2wcASE9Px5UrVwzWcXFxQdu2bfXrGJuU+ZRK7ozZ2dnQaDRwdXWVasrlIme+vLw8LFq0CC4uLmjWrJmk8y4PqTPqdDoMGDAA7777Lho3bizbvMtKjn2YlJQEd3d3NGjQAG+++SauX78uy9zLQsp8Op0OGzduRFBQECIiIuDu7o62bdua9HI1QN734dWrV7Fx40YMGTJE0jmXh9T5nnrqKaxfvx6XL1+GEAK7du3C6dOn0bVrV9kylEbKfPfv3wcAgzM+LSwsYGtra9IzQ8qT8XHy8vJw+PBhg+1gYWGB8PBwszieMUdy58vOzgYA1KhRQ9Jxy0POjFqtFqtWrcLt27fRrl07ycYtDznyDRs2DM8//3yRn0mmIkdGJb23pZ7L+vXr0apVK7z00ktwd3dH8+bNsXjxYolmW35ybuu8vDx89913GDx4MDQajWTjlpfUGZ966ins3LkTp0+fBgAcO3YMu3fvxrPPPivFdMtNynwPHjyAVqstcgWLvb29yY5nKpPvzp07yM/P1/+eU2JvRm6qa9i1bdsWCQkJ2LJlC7766iukp6cjNDQUOTk5xa5/5coV1K5d22BZ7dq1ceXKFf3jhctKWseYpM6nRHJnvHfvHsaPH4++ffvC2dlZ8vk/jlz5NmzYAEdHR9jZ2eHzzz/H9u3bUatWLdlylEaOjDNmzICVlRVGjBgh69zLQo58kZGR+Pbbb7Fz507MmDEDycnJePbZZ6HVamXNUhyp8127dg25ubmYPn06IiMjsW3bNrz44ouIjo5GcnKy7HmKI/fPmWXLlsHJyQnR0dGSz70s5Mg3f/58NGrUCN7e3rCxsUFkZCQWLFiAjh07ypqlOFLnCw4ORt26dfHee+/hxo0byMvLw4wZM3Dp0iVkZWXJnqc45c34OP/5z3+g1WoVc0wgdT6lkTufTqfDqFGj0L59ezRp0kSSMctLrozHjx+Ho6MjbG1tMXToUKxduxaNGjWSaNZlJ0e+VatW4ciRI5g2bZqEM604OTIq6b0tx1zOnz+Pr776CoGBgdi6dSvefPNNjBgxAsuWLZNw5mUj97Zet24dbt68iYEDB0oyXkXIkXHChAl4+eWXERwcDGtrazRv3hyjRo1C//79JZx52Uidz8nJCe3atcNHH32Ev//+G1qtFt999x327dtnkuOZyuYbP348vLy89A06pfVmjMLUp/jJ7caNG8LZ2bnEU+mtra3F999/b7BswYIFwt3dXQghxJ49ewQA8ffffxus89JLL4nevXvLM+lyqGy+hynlkthHSZkxLy9PdO/eXTRv3lxkZ2fLMt/ykipfbm6uOHPmjNi3b58YPHiw8PPzE1evXpVt3uVR2YyHDh0StWvXFpcvX9Y/bspLYh8l5Wu00Llz50x6WfPDKpvv8uXLAoDo27evwTrdu3cXL7/8sjyTLiep92GDBg3E8OHDJZ9nRUmRb9asWSIoKEisX79eHDt2TMyfP184OjqK7du3yzr3spAi36FDh0SzZs0EAGFpaSkiIiLEs88+KyIjI2Wde1k9LuPDivv5WPg+3Lt3r8Hyd999V7Rp00bKqVZIZfM9Cia+JPZRUucbOnSo8PX1FZmZmRLNsPKkynj//n1x5swZcejQITFhwgRRq1Yt8eeff0o82/KrbL6MjAzh7u4ujh07pl9m6ktiHyX167S8Y8pNinzW1taiXbt2Bsvefvtt8eSTT0o1zQqTev917dpVdOvWTaLZSUOKjCtXrhTe3t5i5cqV4o8//hDffvutqFGjhkhISJBhxuUjRb6zZ8+Kjh076o9nWrduLfr37y+Cg4NlmHH5lCfftGnTRPXq1Q1+Ziq9NyMH1Z1h9yhXV1cEBQXh7NmzxT7u4eGBq1evGiy7evWq/kMcC/9b2jqmVNl85kCqjPn5+ejduzcuXryI7du3m+TsuuJIla9atWqoX78+nnzySSxZsgRWVlZYsmSJbPMuj8pmTElJwbVr11C3bl1YWVnBysoKFy9exDvvvAM/Pz+5p/9YcrwPAwICUKtWrRLHNKbK5qtVqxasrKyKnCHRsGFDxVwCJ+U+TElJwalTpxAbGyvLXCuisvnu3r2L999/H3PmzEH37t3RtGlTDB8+HH369MFnn30m+/wfR4r917JlS6SmpuLmzZvIysrCli1bcP36dQQEBMg697J6XMbHqVWrFiwtLRV7TFDZfEonZb7hw4djw4YN2LVrF7y9vSWYnTSkymhjY4P69eujZcuWmDZtGpo1a4a4uDiJZllxlc13+PBhXLt2DS1atNAfyyQnJ2PevHmwsrIyyRn1j5Ljfaik97YUc/H09FTs8YyU2/rixYvYsWOHoo5lAGkyvvvuu/qz7EJCQjBgwACMHj1aEWe+SpGvXr16SE5ORm5uLjIzM3HgwAHk5+cr4nimrPk+++wzTJ8+Hdu2bTO4OY/SezNyUH3DLjc3F+fOnYOnp2exj7dr1w47d+40WLZ9+3b9Z2X4+/vDw8PDYJ1bt25h//79Jvs8jYdVNp85kCJjYbPuzJkz2LFjB2rWrCnrnMtDrn2o0+n0n8tkapXNOGDAAPzxxx9ITU3Vf3l5eeHdd9/F1q1bZZ//48ixDy9duoTr16+XOKYxVTafjY0NWrdujVOnThmsc/r0afj6+soz6XKSch8uWbIELVu2NOlnSD6qsvny8/ORn58PCwvDwwZLS0vodDp5Jl0OUu4/FxcXuLm54cyZMzh06BCioqJkmXN5PS7j49jY2KBly5YG20Gn02Hnzp2KOCaobD6lkyKfEALDhw/H2rVr8euvv8Lf31/CGVaeXPtQKcczlc3XpUsXHD9+3OBYplWrVujfvz9SU1NhaWkp8YzLT459qKT3thRzad++vWKPZ6Tc1vHx8XB3d8fzzz8vwcykI0XGO3fumO3xTHlUq1YNnp6euHHjBrZu3aqI45my5Js5cyY++ugjbNmyBa1atTJ4TOm9GVmY+hQ/qb3zzjsiKSlJpKeniz179ojw8HBRq1Ytce3aNSGEEAMGDBATJkzQr79nzx5hZWUlPvvsM5GWliamTJkirK2txfHjx/XrTJ8+Xbi6uoqff/5Z/PHHHyIqKkr4+/uLu3fvqiLf9evXxdGjR8XGjRsFALFq1Spx9OhRkZWVZfR8QkifMS8vT7zwwgvC29tbpKamiqysLP3X/fv3zT5fbm6ueO+998S+ffvEhQsXxKFDh8SgQYOEra2twR0PzTljcUx5SazU+XJycsTYsWPFvn37RHp6utixY4do0aKFCAwMFPfu3TP7fEIIkZiYKKytrcWiRYvEmTNnxPz584WlpaVISUkxej4h5HuNZmdnCwcHB/HVV18ZNc+j5MgXFhYmGjduLHbt2iXOnz8v4uPjhZ2dnfjyyy9VkW/16tVi165d4ty5c2LdunXC19dXREdHGz1bofJmvH//vjh69Kg4evSo8PT0FGPHjhVHjx4VZ86c0a+zatUqYWtrKxISEsTJkyfF66+/LlxdXcWVK1dUkS8nJ0e/DgAxZ84ccfToUZPcEV6OfG+++aZwcXERSUlJBscyd+7cMXo+IeTJOGHCBJGcnCzS09PFH3/8ISZMmCA0Go3Ytm2bKvI9ytSXxMqR8XFjmnu+AwcOCCsrK/HJJ5+IM2fOiBUrVggHBwfx3XffqSKfEAV3EK9bt64YP368UfMUR46MMTExok6dOmLDhg0iPT1dJCYmilq1aolx48apIt+WLVvE5s2bxfnz58W2bdtEs2bNRNu2bUVeXp7i802fPl3Y2NiINWvWGPyey8nJMVhHKb0ZY1Bdw65Pnz7C09NT2NjYiDp16og+ffqIs2fP6h8PCwsTMTExBs9ZvXq1CAoKEjY2NqJx48Zi48aNBo/rdDoxefJkUbt2bWFrayu6dOkiTp06ZYw4RciRLz4+XgAo8jVlyhQjJCpK6oyFn81X3NeuXbuMlOp/pM539+5d8eKLLwovLy9hY2MjPD09xQsvvCAOHDhgrEhFyPE6fZQpG3ZS57tz547o2rWrcHNzE9bW1sLX11e89tprJvkjWgj59t+SJUtE/fr1hZ2dnWjWrJlYt26d3FFKJFfGhQsXCnt7e3Hz5k25I5RKjnxZWVli4MCBwsvLS9jZ2YkGDRqI2bNnC51OZ4xIBuTIFxcXJ7y9vYW1tbWoW7eumDRpkkn+UadQeTOW9LsuLCzMYNz58+eLunXrChsbG9GmTRvx+++/GymRITny7dq1q9h1Hn0tGIMc+Uo6lomPjzdesIfIkXHw4MHC19dX2NjYCDc3N9GlSxeTNOuEkO89+DBTN+zkyPi4MY1Jrn34yy+/iCZNmghbW1sRHBwsFi1aZKREhuTKt3XrVgHAZH/vPkyOjLdu3RIjR44UdevWFXZ2diIgIEBMnDjRJL/z5cj3ww8/iICAAGFjYyM8PDzEsGHDTHZcWt58vr6+j+1LKKk3YwwaIYQo/3l5REREREREREREJAfVf4YdERERERERERGROWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlIQNuyIiIiIiIiIiIgUhA07IiIiIiIiIiIiBWHDjoiIiIiIiIiISEHYsCMiIiIiIiIiIlKQ/wc3pkQ07dpgfAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "start_time = 5\n", + "end_time = 5.2\n", + "\n", + "raw_gaze_interval = raw_gaze_data[\n", + " (raw_gaze_data[\"time [s]\"] >= start_time) & (raw_gaze_data[\"time [s]\"] <= end_time)\n", + "]\n", + "raw_eye_states_interval = raw_eye_states_data[\n", + " (raw_eye_states_data[\"time [s]\"] > start_time)\n", + " & (raw_eye_states_data[\"time [s]\"] <= end_time)\n", + "]\n", + "raw_imu_interval = raw_imu_data[\n", + " (raw_imu_data[\"time [s]\"] >= start_time) & (raw_imu_data[\"time [s]\"] <= end_time)\n", + "]\n", + "concat_interval = concat_df[\n", + " (concat_df[\"time [s]\"] >= start_time) & (concat_df[\"time [s]\"] <= end_time)\n", + "]\n", + "\n", + "# plot all data in the same scatter plot\n", + "plt.figure(figsize=(16, 2))\n", + "plt.scatter(\n", + " raw_gaze_interval[\"time [s]\"],\n", + " np.zeros_like(raw_gaze_interval[\"time [s]\"]) + 0.5,\n", + " label=\"Raw gaze data\",\n", + " color=\"red\",\n", + ")\n", + "plt.scatter(\n", + " raw_imu_interval[\"time [s]\"],\n", + " np.zeros_like(raw_imu_interval[\"time [s]\"]),\n", + " label=\"Raw eye states data\",\n", + " color=\"blue\",\n", + ")\n", + "plt.scatter(\n", + " concat_interval[\"time [s]\"],\n", + " np.zeros_like(concat_interval[\"time [s]\"]) - 1,\n", + " label=\"Concatenated data\",\n", + " color=\"green\",\n", + ")\n", + "# set x-ticks with higher frequency and add gridlines\n", + "plt.xticks(np.arange(start_time, end_time, 0.01), labels=None)\n", + "# remove x labels\n", + "# remove y-ticks\n", + "plt.yticks([])\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A linear interpolation allows us to estimate missing values. In the end, the concatenated dataframe combines all continuous data into one central location" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAESCAYAAAD+PztQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5XklEQVR4nO3dd1hT59sH8G/CCCB77xFEcQ9QxK0QcNQ631pr6yjVDrVuqx1Wu9QuR5dd1rY/qaNV26pVIop1ICpq3VQZispQ2SIQkvP+kXo0AgpCDMj3c125IM9zn5P7yDGG22dIBEEQQERERERERERERGQAUkMnQERERERERERERI0XC5RERERERERERERkMCxQEhERERERERERkcGwQElEREREREREREQGwwIlERERERERERERGQwLlERERERERERERGQwLFASERERERERERGRwRgbOoH6SqPR4OrVq7CysoJEIjF0OkRERERERERERA2KIAgoLCyEu7s7pNKqx0myQFmFq1evwsvLy9BpEBERERERERERNWjp6enw9PSssp8FyipYWVkB0P4BWltbGzgbIiIiIiIiIiKihqWgoABeXl5ina0qLFBW4fa0bmtraxYoiYiIiIiIiIiIHtKDlk/kJjlERERERERERERkMCxQEhERERERERERkcGwQElEREREREREREQGwzUoiahBUKuBvXuBjAzAzQ3o0QMwMjJ0VkRERERE1Fio1WqoVCpDp0FUr5iYmMCoDn45Z4GSiOq9jRuBqVOBy5fvtHl6AsuXA8OGGS4vIiIiIiJ6/AmCgMzMTOTl5Rk6FaJ6ydbWFq6urg/cCOd+WKAkonpt40ZgxAhAEHTbr1zRtv/6K4uURERERESkP7eLk87OzrCwsKhVEYbocSIIAoqLi5GdnQ0AcHNze+hzsUBJRPWWWq0dOXlvcRLQtkkkwLRpwODBnO5NRERERER1T61Wi8VJBwcHQ6dDVO+Ym5sDALKzs+Hs7PzQ0725SQ4R1Vt79+pO676XIADp6do4IiIiIiKiunZ7zUkLCwsDZ0JUf93++1GbNVpZoCSieisjo27jiIiIiIiIHgandRNVrS7+frBASUT1VnWXr6jFMhdEREREREREZGAsUBJRvdWjh3a37qr+M0YiAby8tHFERERERERE1DCxQElE9ZaREbB8ufb7e4uUt58vW8YNcoiIiIiIiOoriUSCzZs3GzoNAMCCBQvQvn17Q6dBlWCBkojqtWHDgF9/BTw8dNs9PbXtw4YZJi8iIiIiIqKaUKuBuDjgl1+0X9Vq/b7euHHjIJFIIJFIYGJiAj8/P8yZMwclJSX6feF7ZGRkoH///o/0NetSfSqwPs6MDZ0AEdGDDBsGDB6s3a07I0O75mSPHnUzclKt1s95iYiIiIiIbtu4EZg6Fbh8+U6bp6d2xpg+B13069cPP/zwA1QqFRITEzF27FhIJBIsWbJEfy96D1dX10f2WtRwcQQlEdULObdysP70ery7512M3jgawd8EI+CzAIz/fTx+OfkLckquoXdvYNQooHfvuikibtwI+PoCffoAzzyj/errq20nIiIiIiKqCxs3AiNG6BYnAeDKFW27Pn//kMlkcHV1hZeXF4YMGYLw8HAolUqx/8aNGxg1ahQ8PDxgYWGBNm3a4JdffhH7t2zZAltbW6j/G+55/PhxSCQSzJ07V4x54YUX8Oyzz1aZw90jENPS0iCRSLB+/Xr06NED5ubm6NSpE/79918cPnwYwcHBsLS0RP/+/XHt2jXxHL1798a0adN0zjtkyBCMGzfuvte/ePFiuLi4wMrKClFRURVGjx4+fBgKhQKOjo6wsbFBr169cPToUbHf19cXADB06FBIJBLxeXJyMgYPHgwXFxdYWlqiU6dO2Llz531zoftjgZKokXrU0wsEQcDVwqvYlboLXx3+ClP/moo/k/4U+5NzkjHy15GYHzcf0SejkZiRiAs5F7D6+Go8s/EZLE9YLsaq1CqUqctqlY8hPyQQEREREVHjoFZrR04KQsW+223Tpun/9zEAOHXqFA4cOABTU1OxraSkBEFBQdi6dStOnTqFiRMn4rnnnsOhQ4cAAD169EBhYSGOHTsGANizZw8cHR0RFxcnnmPPnj3o3bt3jXJ5++238eabb+Lo0aMwNjbGM888gzlz5mD58uXYu3cvLly4gPnz59fqetevX48FCxbggw8+wJEjR+Dm5oYvv/xSJ6awsBBjx47Fvn37cPDgQQQEBGDAgAEoLCwEoC1gAsAPP/yAjIwM8XlRUREGDBiA2NhYHDt2DP369cOgQYNw6dKlWuXcmHGKN1EjpM/pBYIgQPLfDjZXCq5gbuxcnLt+DknXk1BYVqgTqxE0GNR8EACguWNzdPHsgkDHQAQ6BKK5Y3PIjGTYlboLMSkxiPSPFI/768JfeOa3Z9Dbtzci/CMQ6R+JZg7NxNd9kAd9SJBItB8SBg/mdG8iIiIiInp4e/dWHBRxN0EA0tO1cTWs8VXLli1bYGlpifLycpSWlkIqleLzzz8X+z08PDBr1izx+ZQpU7Bjxw6sX78enTt3ho2NDdq3b4+4uDgEBwcjLi4O06dPx8KFC1FUVIT8/HxcuHABvXr1qlFes2bNQmSk9ne8qVOnYtSoUYiNjUW3bt0AAFFRUVi9enWtrn3ZsmWIiopCVFQUAOC9997Dzp07dUZR9u3bV+eYb775Bra2ttizZw+eeOIJODk5AQBsbW11pqq3a9cO7dq1E5+/++672LRpE/744w9Mnjy5Vnk3Vo9kBOUXX3wBX19fmJmZISQkRKzEV2XDhg0IDAyEmZkZ2rRpg23btun0373Q6+1Hv379dGJycnIwevRoWFtbw9bWFlFRUSgqKqrzayO67VGPSHxYdTFyUBAEZBZlYk/aHnx95GvM2DEDA9YMgP8Kf8xWzhbjzIzN8L8T/8ORq0dQWFYII4kRAuwD8ESzJzArdBYGNhsoxlrLrBEfFY8fBv+A17q/hiGBQ9A/oD8+ivgI/7z0D3r49BBj917ci5uqm9h6fiumbp+KwC8C4bvcFxP+mIANpzegqOz+f9dr8iGBiIiIiIjoYWVk1G1cTfXp0wfHjx9HQkICxo4di/Hjx2P48OFiv1qtxrvvvos2bdrA3t4elpaW2LFjh85IwF69eiEuLg6CIGDv3r0YNmwYWrRogX379mHPnj1wd3dHQEBAjfJq27at+L2LiwsAoE2bNjpt2dnZD3vZAICzZ88iJCREpy00NFTneVZWFiZMmICAgADY2NjA2toaRUVFDxwJWVRUhFmzZqFFixawtbWFpaUlzp49yxGUtaD3EZTr1q3DjBkzsHLlSoSEhGDZsmWIjIxEUlISnJ2dK8QfOHAAo0aNwqJFi/DEE08gOjoaQ4YMwdGjR9G6dWsx7vZCr7fJZDKd84wePRoZGRlQKpVQqVQYP348Jk6ciOjoaP1dLDVahlrwuKZqOnKwtLwUF3IuQICA1s7av385t3IgXy5Hfml+pa9x5toZ8XsHCwd8rPgYcjs5Ah0D4W/vD1Mj00qPq4kliiV4tu2ziEmOQUxKDPZe3ItL+Zfw3bHv8N2x73B+ynk0tW8KAMgqyoK9uT1MjEzE4w39IaE2uKkPEREREVHD4eZWt3E11aRJEzRtqv3daNWqVWjXrh2+//57cVThRx99hOXLl2PZsmVo06YNmjRpgmnTpqGs7M6SWr1798aqVavwzz//wMTEBIGBgejduzfi4uKQm5tb49GTAGBicuf3s9sz4e5t02g04nOpVArhnl9kVSpVjV/3XmPHjsWNGzewfPly+Pj4QCaTITQ0VOf6KzNr1iwolUp8/PHHaNq0KczNzTFixIgHHkdV03uB8tNPP8WECRMwfvx4AMDKlSuxdetWrFq1SmdR1duWL1+Ofv36YfZs7Sisd999F0qlEp9//jlWrlwpxt1e6LUyZ8+exfbt28UFVgHgs88+w4ABA/Dxxx/D3d29ri+TGrHbIxLvLfrdHpH466/1p0hZ5chBiQbw3gfBIQnpjufQ/cskXBPOITUvFRpBgyebP4nfn/4dAGBnZgcAkEqk8LX1RaBjIJo7NBe/tnBqoXPqmV1n1vl1SCVStHNth3au7TC722wUq4qx9+JexCTH4Mz1M/C38xdjX976Mnam7EQfvz6IkEcgwj8Crq5NATx4Ori+PiQ8rIZSCCciIiIiIq0ePbSf2a9cqXygiESi7e/Ro2JfXZNKpXj99dcxY8YMPPPMMzA3N8f+/fsxePBgcZMbjUaDf//9Fy1btrzrGrTrUC5dulQsRvbu3RuLFy9Gbm4uZs6s+9/57uXk5ISMu0aQqNVqnDp1Cn369KnymBYtWiAhIQFjxowR2w4ePKgTs3//fnz55ZcYMGAAACA9PR3Xr1/XiTExMRE3Cbr7uHHjxmHo0KEAtCMq09LSHuraSEuvBcqysjIkJiZi3rx5YptUKkV4eDji4+MrPSY+Ph4zZszQaYuMjBR3fLotLi4Ozs7OsLOzQ9++ffHee+/BwcFBPIetra1YnASA8PBwSKVSJCQkiDfQ3UpLS1FaWio+LygoqPH1UuPzKNYyrKsRc2XqMhxJSwYCzwGOSUCZJXDov7UxBAkwegBgehMAcDDnznHWMmvIjO6MUJZIJEicmAgPaw+YGZs93EXVMQsTC0Q2jURk00iddkEQcDL7JArLCvFH0h/4I+kPAICvjS+ajIzAzX/6A+eGVDjfo/yQUF0NqRBORERERERaRkbaAQUjRmh/z7j78/ztJfSXLXt0s6L+7//+D7Nnz8YXX3yBWbNmISAgAL/++isOHDgAOzs7fPrpp8jKytIpUNrZ2aFt27ZYs2aNuH5lz5498dRTT0GlUj3UCMqa6tu3L2bMmIGtW7fC398fn376KfLy8u57zNSpUzFu3DgEBwejW7duWLNmDU6fPg25XC7GBAQE4Oeff0ZwcDAKCgowe/ZsmJub65zH19dXXB9TJpPBzs4OAQEB2LhxIwYNGgSJRIK33npLZ8Qn1Zxe16C8fv061Gq1uJ7AbS4uLsjMzKz0mMzMzAfG9+vXDz/99BNiY2OxZMkS7NmzB/379xcr2pmZmRWmjxsbG8Pe3r7K1120aBFsbGzEh5eXV42vlxoffa9luHEj4OsL9OkDPPOM9quvb/V3mH5r11sY9MsgNPusGSzet8Dsiy2Bp4cB4fOA4JV3RUqAlDDgfD8gfhqmB3yF3WN34+qMq8h7LQ/r/2+9znn97f3rTXHyfiQSCZImJyFxYiI+6PsBevv2honUBGn5abjZ4hug60fQ2VfH5QQgLQfwaD8kPEh92vmPiIiIiIhqZtgw7YACDw/ddk/PRz/QwNjYGJMnT8aHH36Imzdv4s0330THjh0RGRmJ3r17w9XVFUOGDKlwXK9evaBWq8Xduu3t7dGyZUu4urqiefPmes/7+eefx9ixYzFmzBj06tULcrn8vqMnAWDkyJF46623MGfOHAQFBeHixYt4+eWXdWK+//575ObmomPHjnjuuefw6quvVqgnffLJJ1AqlfDy8kKHDh0AaGcL29nZoWvXrhg0aBAiIyPRsWPHur3oRkYi3DuJvw5dvXoVHh4eOHDggM5CpHPmzMGePXuQkJBQ4RhTU1P8+OOPGDVqlNj25ZdfYuHChcjKyqr0dVJSUuDv74+dO3ciLCwMH3zwAX788UckJSXpxDk7O2PhwoUVbkig8hGUXl5eyM/Ph7W1dY2vnRqHX37RFg4fJDoauOuWrpaqRsxJJIBgWohlq9LhF3QB566f0+6SfSNJu+v12F1ibNuv2uJk9knxuaWpJUqvBEKV0RzIagvsn1Ph3J6eQGpq/SnO1bWisiLsSduDmOQYlFxugW3vvKQtMpvlAnMcIVFZobNTX4zvEYkI/wj42fkZOmXExWmL0w+ye7d+dv4jIiIiImqsSkpKkJqaCj8/P5iZ1W6QBteTp8fV/f6eFBQUwMbG5oH1Nb1O8XZ0dISRkVGFwmJWVlaV60e6urrWKB4A5HI5HB0dceHCBYSFhcHV1bXCbk/l5eXIycmp8jwymazCRjtED6KPBY/L1GW4mHsZLy1Kh9Dmknba9ZGXxH5hXE/AZy+mnQdwXvdYc2NzaAQNpBLt4OjpXaajpLwEzR21a0S6Wbph0yYJRoz471x3HWuI6QWGYGlqiYHNBoo7iKuf135I2JvyLz7OsEWBNAcJBZuQsHUTAKCpfVNEyCMwtv1YdPbobJCcG/KmPkREREREpGVkxAEFRFXRa4HS1NQUQUFBiI2NFYcIazQaxMbGYvLkyZUeExoaitjYWEybNk1sUyqVFbaCv9vly5dx48YNuP1XBQoNDUVeXh4SExMRFBQEANi1axc0Gk2FLeap8anL/7Wq6YLHGkGDzKJMXLt5De1c24lxc5RzEJcWh/SCdGQVZUGAADzxX2dZE+DIixA3dSmx1X69ZYsAJz908muhs0nN3cZ3GF8hp9vTCyrbbGXZssa3juHtDwm9e4fgdU02jmYcFXcHP5B+ABdyLuBCzgW0d20vFiizirKQlpeGYPdgGEn1X8019M5/RERERERERPqk1yneALBu3TqMHTsWX3/9NTp37oxly5Zh/fr1OHfuHFxcXDBmzBh4eHhg0aJFAIADBw6gV69eWLx4MQYOHIi1a9figw8+wNGjR9G6dWsUFRVh4cKFGD58OFxdXZGcnIw5c+agsLAQJ0+eFEdB9u/fH1lZWVi5ciVUKhXGjx+P4OBgREdHVyvv6g5BJa2GMlRdH7sg356KDdxTpGz5K+CeiJ5PpEOwvoT0gnRcKbgClUaFJiZNUDivEJL/hi0OXjtY3MAFAEwkMqiuewP5XkCBF/DnN4DaVNvZJAtQNQHKLB9q6vhtDeVnZkiFpYWIS4tDTHIMZnebDW8bbwDAZwmf4dXtr8LOzA5h8jBxd3AfWx+95KFWa9cefVAh/HGemk9EREREZAh1OcWb6HFV76d4A9pFSa9du4b58+cjMzMT7du3x/bt28WNcC5dugSp9M5ePV27dkV0dDTefPNNvP766wgICMDmzZvRunVrAICRkRFOnDiBH3/8EXl5eXB3d0dERATeffddnSnaa9asweTJkxEWFgapVIrhw4djxYoV+r7cRkkfRT99qItdkC/mXcSFnAtIL0jHpfxLSM9PR3pxOjw+uISrubkQPryK2yMdzUJ+QonPn/g7D0DenXNIJVLYmdvhpuomLE0tAQAzuszA+Pbj4WXtBW8bb5w65Ii+fSX3vrzWzTubSNVmxBynFzyYlcwKg5oPwqDmg3Tab6puwtbMFrklufj1zK/49cyvAIBmDs0QIY/AW73egnMT58pO+VDq285/RERERERERHVJ7yMoGyqOoKye+23kAtR+R7K6GuV3ewRalTtuS8vh1iwDa/+6hKtF6UjP1xYgs25mYd2IdeJIxyd/eRJ//vtnla/ze9cbuHndHm5uwLkm3+D0tZPwtvGGl42XWHx0s3KDsfT+/zfAEXP1X7mmHEeuHkFMcgx2JO9AwuUEqAU1TKQmyHktRyw+x6XFwdLUEh1cO9R6Onhl/xng5dU4p+YTERERET0KHEFJ9GB1MYKSBcoqsED5YA8q+tW2iFZXIzMFQcDvyusYOi4dsE4HrK8Ah1+GuKbj4OeBdj8CUk2lx9+YcwP25vYAtGtF/vnvn9qio/WdouPtAmRT+6Z1tiZhVVPH66r4S3UrryQPu1N3IyU3BTO7zhTbg78JRmJGIhzMHRAuD0eEv3Y6uKe150O9DqfmExERERE9OixQEj0YC5R6xAKlLkEQoBE0KNeUQ6VRoVxTjj17yzFkWDkgUQOFHneC7VIAszxAWg5Iy7FsRTnatCtHuaYcao0a/QP6i6F70vYgNS8V5Rptv0qtPfexE+X4eU05sH82oPlvtGHrXwCPw4C0HBH9VfD2KUe5UC4e++2gb8VRa8sPLsemc5twtfAq0gvSUVJeontBi3OAEjvt9wMmA52/ANTGcJJ5ooWHbvHx2bbPwkpmpcc/3apxxFzDptao8dSvT0GZrERhWaFOXwvHFni69dOY32u+gbIjIiIiIqIHYYGS6MEaxBqUVH+N+m0UTmSdEAt8dxcI7c3tcW7yOTG294+98ffFvyueZBaAUktg0V3Fl4GvAE13iE+n/QPgH+33EkigefvOSMUVh1Zg49mNlScYBiB+2p0CZdPtQPufAAAxOQBydMNX9FshFiiTbiRhz8U9ugGFrtoNZ/K9AeO7CpZ/vwHsfR0ocsH6XUb1al3GYcOAwYM5Yq4h0o50NMII9W94OUQFU/khxKZqdwc/dOUQzl4/i3PX7/wdEwQBSw8uRU+fnnUyHZyIiIiIiIiooWCBshFLzknGmWtnKu3TCLrTnY0k9yuW3LOZy00noMAd0JgAGmN4eRjDxsoExlJjGEuNoRE0kEq0GyN1dO2IW6pbMJYaw8RIG3PjmjFiY4z/K0zede7zA4EiN2272gRR440R4H/nOAsTCzF0XPtx6OnTE66WrvC28YarhQeaN5VVvqZjkZs4Hb1Hjwf8oRkAN7NpeCqOfDWBp2c3LF/eDQujFiL3Vi52pe6Cq6WreMzpa6cxM0Y7Ndze3B5hfmGI8I+AQq7Q2+7gRERERERE9Z2vry+mTZuGadOmPfLXXr16NaZNm4a8vLxK+9PS0uDn54djx46hffv2jzS3yowbNw55eXnYvHmzoVOpMRYoG7EvBnyBm6qbYuHw7ofMSKYT+9tTv0GAoBMjEYwh95Nqi353B2/6GUD11qB8o+cbFdp++QWI3VxJ8OmntI//hL0IjOpe+Xk7e3RGZ4/OOm3cBZkehertFm+H4S2H6/SrNWoMCRyCXam7kHMrBxvObMCGMxsAAAH2AVgSvgRDWwx9VJdBREREREQN3MMUqyQSCTZt2oQhQ4boLS99e1BRsS55eXkhIyMDjo6Oen8tfahPBVYWKBuxTh6dqh1rZ25Xabs+in5ubnUbd9uwYdriUGUb73BNR6oLarX2/qpsZV9B0P69mDZNO23/3r8X7VzbYdPITSjXlOPQlUNQJisRkxKDhMsJOJ9zXmeE8KErh/DX+b8Q4R+BTh6dHrgrPBERERER0aOkUqlgYmJi6DT0zsjICK6urg8OpAeSGjoBathuF/08PHTbPT0ffpfpHj20x0sklfdLJNqNYh5mOvawYUBaGrB7NxAdrf2amsriJNWNvXur3tUe0BYp09O1cVUxlhqjq1dXvN37bex/fj9uzLmBTSM3oYfPnRt+w+kNWLBnAbqu6grHDx0xdN1QfHX4K1zIuQDue0ZERERERJXp3bs3Xn31VcyZMwf29vZwdXXFggULxH5fX18AwNChQyGRSMTnAPD777+jY8eOMDMzg1wux8KFC1FeXi72SyQSfPXVV3jyySfRpEkTvP/++4iLi4NEIsHWrVvRtm1bmJmZoUuXLjh16pROXr/99htatWoFmUwGX19ffPLJJ/e9jk8//RRt2rRBkyZN4OXlhVdeeQVFRUUAgLi4OIwfPx75+fmQSCSQSCTiNZaWlmLWrFnw8PBAkyZNEBISgri4OJ1zr169Gt7e3rCwsMDQoUNx48aN++aSlpYGiUSC48ePi68vkUiwY8cOdOjQAebm5ujbty+ys7Px119/oUWLFrC2tsYzzzyD4uJinT/7ZcuW6Zy7ffv2Oj+fe6nVasyYMQO2trZwcHDAnDlzKvw+uH37dnTv3l2MeeKJJ5CcnCz2+/n5AQA6dOgAiUSC3v+tL3f48GEoFAo4OjrCxsYGvXr1wtGjR+/7Z1FbLFBSrdV10c/ISDsyE6hYpKyL6di313QcNUr7ldO665ZaDcTFaafqx8VpnzcWGRl1GwcANmY2GBI4RGcEZVevrhjRcgTszOyQX5qPzec245VtryDgswDIV8iRWZRZw8wb3s+toeVLRERERI+fm2U3q3yUlJdUO/aW6tYDY+vKjz/+iCZNmiAhIQEffvgh3nnnHSiVSgDaohQA/PDDD8jIyBCf7927F2PGjMHUqVNx5swZfP3111i9ejXef/99nXMvWLAAQ4cOxcmTJ/H888+L7bNnz8Ynn3yCw4cPw8nJCYMGDYJKpQIAJCYm4qmnnsLTTz+NkydPYsGCBXjrrbewevXqKq9BKpVixYoVOH36NH788Ufs2rULc+bMAQB07doVy5Ytg7W1NTIyMpCRkYFZs2YBACZPnoz4+HisXbsWJ06cwP/93/+hX79+OH/+PAAgISEBUVFRmDx5Mo4fP44+ffrgvffee6g/5wULFuDzzz/HgQMHkJ6ejqeeegrLli1DdHQ0tm7dipiYGHz22WcPde7bPvnkE6xevRqrVq3Cvn37kJOTg02bNunE3Lx5EzNmzMCRI0cQGxsLqVSKoUOHQqPR7jty6NAhAMDOnTuRkZGBjRu1mxgXFhZi7Nix2LdvHw4ePIiAgAAMGDAAhYWF0BuBKpWfny8AEPLz8w2dSqP122+C4OkpCNpxZ9qHl5e2neqnyn5mnp6N52e2e7futVf12L27bl6vXF0uHLp8SHhvz3tCrx96CSbvmAhuH7sJGo1GjFmwe4HwZuybwp60PUJpeWml52loP7eGli8RERERNVy3bt0Szpw5I9y6datCHxagyseANQN0Yi3et6gyttcPvXRiHT90rBDzMMaOHSsMHjxYfN6rVy+he/fuOjGdOnUSXnvttTvXBAibNm3SiQkLCxM++OADnbaff/5ZcHNz0zlu2rRpOjG7d+8WAAhr164V227cuCGYm5sL69atEwRBEJ555hlBoVDoHDd79myhZcuW4nMfHx9h6dKlVV7nhg0bBAcHB/H5Dz/8INjY2OjEXLx4UTAyMhKuXLlS4drmzZsnCIIgjBo1ShgwQPfnNnLkyArnultqaqoAQDh27JjONe/cuVOMWbRokQBASE5OFttefPFFITIy8r7X2K5dO+Htt9+u8rXd3NyEDz/8UHyuUqkET09PnZ/5va5duyYAEE6ePFlp/lVRq9WClZWV8Oeff1baf7+/J9Wtr3HhMqq3hg3TrtW3d692xJmbm3ZaN0c81k/V2xzGMLk9KreXJ6h0t3igzneLN5IaoZNHJ3Ty6IQ3er6BorIiJOckQ/LfUGONoMEXh7/AteJreG/ve7A0tURv395QyBWI8I9Ac4fm2LRJ0qB+brzPiIiIiIgeXtu2bXWeu7m5ITs7+77H/PPPP9i/f7/OiEm1Wo2SkhIUFxfDwkI72ys4OLjS40NDQ8Xv7e3t0bx5c5w9exYAcPbsWQwePFgnvlu3bli2bBnUajWMKikA7Ny5E4sWLcK5c+dQUFCA8vLyCrnc6+TJk1Cr1WjWrJlOe2lpKRwcHMRchg7V3Zg0NDQU27dvr/Sc93P3n7OLiwssLCwgl8t12m6PXnwY+fn5yMjIQEhIiNhmbGyM4OBgnWne58+fx/z585GQkIDr16+LIycvXbqE1q1bV3n+rKwsvPnmm4iLi0N2djbUajWKi4tx6dKlh875QVigpHrt9nRsqt9qsznM4+T28gSG2i3e0tQS7Vzbic/VGjU+VHyImOQY7EzZiWvF17Dl3y3Y8u8WAED/pgNwcu7WBvNz431GRERERPVJ0byiKvuMpLofSLNnVV0ElEp0V99Lm5pWq7zu596NayQSiVi0qkpRUREWLlyIYZWMBDAzMxO/b9KkSd0keR9paWl44okn8PLLL+P999+Hvb099u3bh6ioKJSVlVVZoCwqKoKRkRESExMrFD0tLS3rPM+7/5wlEskD/9ylUmmF9SNvT4OvjUGDBsHHxwfffvst3N3dodFo0Lp1a5SVld33uLFjx+LGjRtYvnw5fHx8IJPJEBoa+sDjaoMFSiKqtZpsDvO4F5zr027xJkYmGNd+HMa1HweNoME/mf9AmaJETHIM9l3aB9vSNndyNC0CxoQBaX2A5AjgUjcIalm9+rnxPiMiIiKi+qSJafULcvqKrWsmJiZQ37PAe8eOHZGUlISmTZs+1DkPHjwIb29vAEBubi7+/fdftGjRAgDQokUL7N+/Xyd+//79aNasWaWjJxMTE6HRaPDJJ59AKtUWdtevX68TY2pqWuEaOnToALVajezsbPSoYkpbixYtkJCQUCH3R8HJyQkZd21WUFBQgNTU1CrjbWxs4ObmhoSEBPTs2RMAUF5ejsTERHTs2BEAcOPGDSQlJeHbb78Vr3nfvn065zE1NQWACn9e+/fvx5dffokBAwYAANLT03H9+vVaXuX9sUBJRLWmj81hGrL6uDyBVCJFB7cO6ODWAXO6zUGxqhhr1pXgl9sBPn8Dnoe0j+5LAJU5kNYLSFHgUFoEegmtxKnjhsL7jIiIiIhIv3x9fREbG4tu3bpBJpPBzs4O8+fPxxNPPAFvb2+MGDECUqkU//zzD06dOlWtTWTeeecdODg4wMXFBW+88QYcHR0xZMgQAMDMmTPRqVMnvPvuuxg5ciTi4+Px+eef48svv6z0XE2bNoVKpcJnn32GQYMGYf/+/Vi5cmWFaygqKkJsbCzatWsHCwsLNGvWDKNHj8aYMWPwySefoEOHDrh27RpiY2PRtm1bDBw4EK+++iq6deuGjz/+GIMHD8aOHTseanr3w+jbty9Wr16NQYMGwdbWFvPnz6+0QHu3qVOnYvHixQgICEBgYCA+/fRT5OXlif12dnZwcHDAN998Azc3N1y6dAlz587VOYezszPMzc2xfft2eHp6wszMDDY2NggICMDPP/+M4OBgFBQUYPbs2TA3N9fHpYu4izcR1ZqbW93GPQ7q+27xFiYWCPC0v9NwOQTY+DNwfAxQ6AqY3AICtgORM/HaxTb4OvFrMfTeqQf3U5e7bfM+IyIiIiLSr08++QRKpRJeXl7o0KEDACAyMhJbtmxBTEwMOnXqhC5dumDp0qXw8fGp1jkXL16MqVOnIigoCJmZmfjzzz/FkXsdO3bE+vXrsXbtWrRu3Rrz58/HO++8g3HjxlV6rnbt2uHTTz/FkiVL0Lp1a6xZswaLFi3SienatSteeukljBw5Ek5OTvjwww8BaHcnHzNmDGbOnInmzZtjyJAhOHz4sDi6s0uXLvj222+xfPlytGvXDjExMXjzzTcf5o+xxubNm4devXrhiSeewMCBAzFkyBD4+/vf95iZM2fiueeew9ixYxEaGgorKyudNTSlUinWrl2LxMREtG7dGtOnT8dHH32kcw5jY2OsWLECX3/9Ndzd3cX1QL///nvk5uaiY8eOeO655/Dqq6/C2dm57i/8LhKhJr9pNiIFBQWwsbFBfn4+rK2tDZ0OUb2mVgO+vg/eHCY1tf4V6hqzqn9uAuB8GvBXwqxlDCR+e3D0xaMIdAwEAHx39DusSFiBCP8IKOQK9PDpAQuTimu9bNxY+VT35csfbqo77zMiIiIietRKSkqQmpoKPz8/nfUW6cHi4uLQp08f5ObmwtbW1tDpkB7d7+9JdetrHEFJRLV2e3MY4M5mMLc9is1h6OFU/XOTQHKtNSQHp2PNgL+Q+1oumjs0F3tjkmNwMvskPon/BP3W9IP9EnuE/xSOJfuW4GjGUWgEjbjb9r1rRt7ebXvjxrrMl/cZERERERFRQ8YCJRHVidubw3h46LZ7emrbH+XmMFR91fm5yYxlOutPfjHgC/wy/Bc83/55eFl7oVRditjUWMyNnYtO33ZCzs38O7tt218AbFMBi2uAcYk4PXzatIeb7s37jIiIiIiI6PHDKd5V4BRvooejVtevzWGoeh725yYIApJuJEGZrIQyRYliVTHe9N6JPn3+C5gcCDgm3fVCxkCZJVBmhSCf5jgyVSl2zd89H9duXoOVzApWplawNLWElUz71cHcAQp/hRh7rSgHRxJMkZvVBO7uEt5nRERERKQXnOJN9GB1McWbu3gTUZ26vTkMNSwP+3OTSCQIdAxEoGMgpoRMgSAIWLv2roByM+2O4Ca3/nuhcsA8DzDPQ3axjc65NpzZgHPXz1X6Ot423rg47aL4/Im1/XHoyiFIIEGTi01glXinoOlh5YE/Rv0hxq48shIZhRk6BU8rUytYyaxgLbNGsHuwGCsIgsF3KyciIiIiImpsWKAkIqI6I5FIdHfRXnn8vw41YFqkfcgKAdNCvLFSd5WR6V2m42rhVRSWFqKorAiFZYUoLNN+72ThpBN7s+wmAECAgKKyIhSVFYl9125e04ldfXw1Eq4kVJqvtcwa+XPzxef91vTD3xf/1hnBeft7a5k11o1YJxYwN53dhGvF19DduztaOLZgYZOIiIiIiOghsUBJRER1qkcP7ZqQOrttC0ZAqQ1QagNJkbb/hQG6x00Mmljt1zj58kkUq4rFAubdRU0JdAuFI1uNREe3jmL/7fjCskJYmlrqxBaWFqKkvAQl5SW4Vqxb6LQ0tdQpQn6d+DV2JO8AAHhYeUDhr0CEPALh8nA4NdEtqBIRERFRw6bRaAydAlG9VRd/P7gGZRW4BiUR0cO7vYs3cFeREnd2266vG9rk3spFfmm+7ijO/75XC2o83+F5MfaDvR8gNjUW+y/tR6m6VOc8Xb26Yt/4fRxVSURERNTAaTQanD9/HkZGRnBycoKpqSk/4xH9RxAElJWV4dq1a1Cr1QgICIBUqjtTrrr1tUdSoPziiy/w0UcfITMzE+3atcNnn32Gzp07Vxm/YcMGvPXWW0hLS0NAQACWLFmCAQO0Q21UKhXefPNNbNu2DSkpKbCxsUF4eDgWL14Md3d38Ry+vr64ePGiznkXLVqEuXPnVitnFiiJiGpn40Zg6lTg8uU7bV5ewLJl9bM4+bBuqW5h36V9iEmOgTJFiX+y/kGkfyS2P7tdjJn450Q0c2gGhVyBti5t+aGWiIiIqAEpKytDRkYGiouLDZ0KUb1kYWEBNzc3mJqaVuirNwXKdevWYcyYMVi5ciVCQkKwbNkybNiwAUlJSXB2dq4Qf+DAAfTs2ROLFi3CE088gejoaCxZsgRHjx5F69atkZ+fjxEjRmDChAlo164dcnNzMXXqVKjVahw5ckQ8j6+vL6KiojBhwgSxzcrKCk2aNKlW3ixQEhHVXmPc1T2rKAu5JbkIdAwEAFwpuALPpZ5iv0sTF4TLwxHhr50O7m7lXtWpiIiIiKieEAQB5eXlUKvVhk6FqF4xMjKCsbFxlYMw6k2BMiQkBJ06dcLnn38OQDs82svLC1OmTKl0NOPIkSNx8+ZNbNmyRWzr0qUL2rdvj5UrV1b6GocPH0bnzp1x8eJFeHt7A9AWKKdNm4Zp06Y9VN4sUBIRUV24UXwDP5/4GTHJMdhzcQ+KVbr/8/5GjzfwXt/3DJQdERERERGR/lS3viatsqcOlJWVITExEeHh4XdeUCpFeHg44uPjKz0mPj5eJx4AIiMjq4wHgPz8fEgkEtja2uq0L168GA4ODujQoQM++ugjlJeXV3mO0tJSFBQU6DyIiIhqy8HCAdO6TMO20duQMycHu8fuxrzu8xDsHgwJJGjt3FqMPZpxFH1+7INFexfhyNUj0AhcjJ2IiIiIiB5/et3F+/r161Cr1XBxcdFpd3Fxwblz5yo9JjMzs9L4zMzMSuNLSkrw2muvYdSoUTqV2FdffRUdO3aEvb09Dhw4gHnz5iEjIwOffvpppedZtGgRFi5cWJPLIyIiqhGZsQy9fXujt29vfBD2AW4U34C5ibnYv/3CdsSlxSEuLQ6v73odDuYOCJOHQSFXQCFXwMfWx4DZExERERER6YdeC5T6plKp8NRTT0EQBHz11Vc6fTNmzBC/b9u2LUxNTfHiiy9i0aJFkMlkFc41b948nWMKCgrg5eWlv+SJiKjRc7Bw0Hn+TJtnYCOzgTJFiV2pu3Dj1g2sP70e60+vBwDER8Wji2cXANp1kLjZDhERERERPQ70WqB0dHSEkZERsrKydNqzsrLg6upa6TGurq7Vir9dnLx48SJ27dr1wHUiQ0JCUF5ejrS0NDRv3rxCv0wmq7RwSURE9Kj42vpiUudJmNR5ElRqFQ5dOQRlihIxyTE4e/0sOrp1FGOn75iOI1ePIMI/Agq5Ap08OsFY2qD/35GIiIiIiBopva5BaWpqiqCgIMTGxoptGo0GsbGxCA0NrfSY0NBQnXgAUCqVOvG3i5Pnz5/Hzp074eDgcO9pKjh+/DikUmmlO4cTERHVNyZGJujm3Q0Lei/AgagDyJiZAVMjU7F/2/lt2J++H2/HvY2uq7rC8UNHDFs3DF8d/goXci5Az3vgERERERER1Rm9D7WYMWMGxo4di+DgYHTu3BnLli3DzZs3MX78eADAmDFj4OHhgUWLFgEApk6dil69euGTTz7BwIEDsXbtWhw5cgTffPMNAG1xcsSIETh69Ci2bNkCtVotrk9pb28PU1NTxMfHIyEhAX369IGVlRXi4+Mxffp0PPvss7Czs9P3JRMREdU5M2Mznec7nt0BZYoSyhQlYlNikVuSi03nNmHTuU3ws/VD8qvJYmxJeUmF44mIiIiIiOoLvRcoR44ciWvXrmH+/PnIzMxE+/btsX37dnEjnEuXLkEqvTOQs2vXroiOjsabb76J119/HQEBAdi8eTNat9bucnrlyhX88ccfAID27dvrvNbu3bvRu3dvyGQyrF27FgsWLEBpaSn8/Pwwffp0nTUmiYiIGjI/Oz9MDJqIiUETodaokZiRCGWyEjEpMWjr3FZcn7JcUw6PTz0QYB8AhVyBCP8IdPHsAhMjEwNfARERERERkZZE4BywShUUFMDGxgb5+fkPXN+SiIioPrl7A52jGUcR9E2QTr+lqSV6+/ZGhDwCA5sNhNxObog0iYiIiIjoMVfd+ppe16AkIiKiR+/u3b07unVE+vR0rHpyFUa1HgUnCycUlRVhy79b8Or2V/HzPz+LsbdUt3C9+LohUiYiIiIiokaM230SERE95jytPTG+w3iM7zAeGkGDfzL/Edev7Ne0nxi37fw2/N+G/0MHtw7idPBuXt0gM5YZMHsiIiIiInrccYp3FTjFm4iIGpsFcQuwcM9CnTZzY3P09OkJhVyBMe3GwKmJk4GyIyIiIiKihqa69TUWKKvAAiURETVGmUWZ2JmyUzvCMlmJjKIMsS91aip8bX0BAEnXk2Ats4ablZuBMiUiIiIiovqOBcpaYoGSiIgaO0EQcObaGcQkx+BU9il8P/h7sW/QL4Ow5d8taO3cGhHyCCj8Fejp0xMWJhYGzJiIiIiIiOoTFihriQVKIiKiygmCgLCfwhCXFgcBdz5GmBqZort3dwwMGIgZoTMMmCEREREREdUH3MWbiIiI9EIikWDX2F3Inp2NtcPXIqpDFLysvVCmLsOu1F34I+kPnfiNZzciPT/dQNkSEREREVF9xxGUVeAISiIiouoTBAH/3vgXyhQlXC1dMaLlCADAtZvX4PyxMwCguUNzRPhHQCFXoLdvb1jJrAyZMhERERER6RmneNcSC5RERES1dyr7FCb8OQGHrhyCRtCI7cZSY4R6hmJG6AwMCRxiuASJiIiIiEhvOMWbiIiIDK61c2vER8Xjxpwb+O2p3/BS0Evwt/NHuaYcey/tRV5JnhibkpuClUdWIiU3xXAJExERERHRI2ds6ASIiIjo8WdrZothLYZhWIthALTFSGWyEv2a9hNjNp/bjJkxMwEAcjs5FHIFIvwj0NevL2zNbA2RNhERERERPQKc4l0FTvEmIiJ6tNaeWosvD3+J+MvxKNeUi+1SiRSd3Dsheng05HZyA2ZIREREREQ1wTUoa4kFSiIiIsMoLC3Enot7EJMcA2WKEueun4PMSIbc13JhbmIOAPjx+I8oLCtEhH8EAuwDIJFIDJw1ERERERHdq7r1NU7xJiIionrFSmaFJ5o9gSeaPQEASM9Px8nsk2JxEgA+PfgpTmSdAAB423iL08HD/MLgYOFgkLyJiIiIiOjhcARlFTiCkoiIqH4SBAEfHfgIMckx2HtpL8rUZWKfBBIMbDYQf47604AZEhERERERwBGURERE9JiSSCSY020O5nSbg2JVMfZe3CtOBz+ZfRL25vZirEbQYNRvo9DFowsU/gq0cmrF6eBERERERPUMR1BWgSMoiYiIGp6MwgyUlJfAz84PAHAs4xg6ftNR7HezdIPCXwGFXIFweThcLV0NlSoRERER0WOPm+TUEguUREREDV9mUSaiT0ZDmaLEnrQ9uFV+S6f/k4hPMCN0hoGyIyIiIiJ6vLFAWUssUBIRET1eSspLcCD9gDgd/GjGUcSOiUVfv74AgJjkGHy4/0NE+EdAIVegnWs7SCVSA2dNRERERNRwsUBZSyxQEhERPd6u3bwGGzMbmBqZAgCmbZ+G5QnLxX4nCyeEy8OhkCug8FfA09rTUKkSERERETVILFDWEguUREREjcuFnAvYdn4blClKxKXFoaisSLd/ygX42/sD0O4kzs12iIiIiIjujwXKWmKBkoiIqPEqU5fh4OWDUCYrEZMSg+yb2Uh5NUUsSj678VmkF6RDIVcgwj8CQW5BMJIaGThrIiIiIqL6hQXKWmKBkoiIiG4rLS+FzFgGAFBr1HD+2Bk5t3LEfjszO/T16yuuX3l7F3EiIiIiosasuvW1R7Ly+xdffAFfX1+YmZkhJCQEhw4dum/8hg0bEBgYCDMzM7Rp0wbbtm3T6RcEAfPnz4ebmxvMzc0RHh6O8+fP68Tk5ORg9OjRsLa2hq2tLaKiolBUpDtVi4iIiKg6bhcnAcBIaoRDLxzCVwO/wtDAobCR2SC3JBe/nf0NL255EaN+G6VzbLGq+FGnS0RERETUoOi9QLlu3TrMmDEDb7/9No4ePYp27dohMjIS2dnZlcYfOHAAo0aNQlRUFI4dO4YhQ4ZgyJAhOHXqlBjz4YcfYsWKFVi5ciUSEhLQpEkTREZGoqSkRIwZPXo0Tp8+DaVSiS1btuDvv//GxIkT9X25RERE1Aj42/vjpeCXsHHkRlyfcx3xUfFY2Hshunt3x4CAAWJcfkk+7JfYo+v3XfH27rex79I+qNQqA2ZORERERFT/6H2Kd0hICDp16oTPP/8cAKDRaODl5YUpU6Zg7ty5FeJHjhyJmzdvYsuWLWJbly5d0L59e6xcuRKCIMDd3R0zZ87ErFmzAAD5+flwcXHB6tWr8fTTT+Ps2bNo2bIlDh8+jODgYADA9u3bMWDAAFy+fBnu7u4PzJtTvImIiKi2dlzYgX5r+um0WZlaoY9fHyjkCjzZ/El423gbKDsiIiIiIv2qF1O8y8rKkJiYiPDw8DsvKJUiPDwc8fHxlR4THx+vEw8AkZGRYnxqaioyMzN1YmxsbBASEiLGxMfHw9bWVixOAkB4eDikUikSEhIqfd3S0lIUFBToPIiIiIhqI7JpJC5Ou4jvBn2Hp1o9BQdzBxSWFeKPpD8w5a8p2Hb+zjI2BaUFOutaEhERERE1Fsb6PPn169ehVqvh4uKi0+7i4oJz585VekxmZmal8ZmZmWL/7bb7xTg7O+v0Gxsbw97eXoy516JFi7Bw4cJqXhkRERFR9XjbeCOqYxSiOkZBI2hwLOMYYpJjoExRQiFXiHFrTqzBpG2TEOQehAh5BBT+CnT16gpTI1MDZk9EREREpH96LVA2JPPmzcOMGTPE5wUFBfDy8jJgRkRERPS4kUqkCHIPQpB7EOb1mKfTd/b6WQgQcOTqERy5egQf7PsATUyaoJdvLyjkCoxvPx42ZjYGypyIiIiISH/0OsXb0dERRkZGyMrK0mnPysqCq6trpce4urreN/721wfF3LsJT3l5OXJycqp8XZlMBmtra50HERER0aOyov8KXJlxBT8O+RHPtn0WLk1ccFN1E9vOb8OsmFmQSCRi7ImsE8gqyrrP2YiIiIiIGg69FihNTU0RFBSE2NhYsU2j0SA2NhahoaGVHhMaGqoTDwBKpVKM9/Pzg6urq05MQUEBEhISxJjQ0FDk5eUhMTFRjNm1axc0Gg1CQkLq7PqIiIiI6pK7lTvGtBuDn4f+jIyZGfjnpX/wseJjTA2ZCmvZnf88nfDnBLh+4or2K9tjjnIOlMlK3FLdMmDmREREREQPT+9TvGfMmIGxY8ciODgYnTt3xrJly3Dz5k2MHz8eADBmzBh4eHhg0aJFAICpU6eiV69e+OSTTzBw4ECsXbsWR44cwTfffAMAkEgkmDZtGt577z0EBATAz88Pb731Ftzd3TFkyBAAQIsWLdCvXz9MmDABK1euhEqlwuTJk/H0009XawdvIiIiIkOTSCRo69IWbV3a6rSr1CqoNWoAwD9Z/+CfrH/w0YGPYGZshh7ePTC8xXC8GPyiIVImIiIiInooei9Qjhw5EteuXcP8+fORmZmJ9u3bY/v27eImN5cuXYJUemcgZ9euXREdHY0333wTr7/+OgICArB582a0bt1ajJkzZw5u3ryJiRMnIi8vD927d8f27dthZmYmxqxZswaTJ09GWFgYpFIphg8fjhUrVuj7comIiIj0ysTIBEcmHkH2zWzsTNkJZYoSymQlrhRegTJFCVszW7FAKQgCfjn1C3r59IKHtYeBMyciIiIiqpxEEATB0EnURwUFBbCxsUF+fj7XoyQiIqJ6TRAEnL1+FspkJQIdAxHZNBIAcO76ObT4ogUAoKVTSyjkCkT4R6CXTy80MW1iyJSJiIiIqBGobn2NBcoqsEBJREREDV18ejymbp+KI1ePQMCdj3wmUhN09eqKN3q8AYW/woAZEhEREdHjrLr1Nb1ukkNEREREhhPqFYpDEw7h+pzr2PB/GzCh4wT42PhApVFhz8U9UGlUYuyJrBP4NvFbpOWlGS5hIiIiImqU9L4GJREREREZlr25PUa0HIERLUdAEARcyLkAZYoSPX16ijHRJ6OxZP8SAECAfYA4HbyPXx+dHcSJiIiIiOoap3hXgVO8iYiIqDH5/uj3+OH4Dzh4+SDUglpsN5IYIcQzBJtHboZTEycDZkhEREREDQ3XoKwlFiiJiIioMcovyUdcWhxikmOgTFHifM55OFk4IXNWJqQS7epAKxJWwFhqDIVcgab2TSGRSAycNRERERHVRyxQ1hILlERERERAWl4aUnJT0NevLwDtjuHun7ojsygTAOBr6wuFXAGFXIEweRjsze0NmS4RERER1SMsUNYSC5REREREFZWWl+KT+E+gTFFi/6X9OhvtSCDBs22fxU9DfzJghkRERERUX3AXbyIiIiKqczJjGV7v8Tp2j92NnNdysPWZrZgWMg0tnVpCgACXJi5ibLGqGIPXDsbyg8tx5toZ8P/FiYiIiKgyHEFZBY6gJCIiIqqZKwVXAAAe1h4AgB0XdqDfmn5iv4eVBxT+CkTIIxAuD+emO0RERESPOU7xriUWKImIiIhqJz0/HetOr0NMcgz2XtqLkvISnf7Vg1djbPuxBsqOiIiIiPSNBcpaYoGSiIiIqO7cUt3Cvkv7oExRIiY5Bv9k/YNTL59CK+dWAIDok9H48Z8fESGPgMJfgTbObbg7OBEREVEDxwJlLbFASURERKQ/WUVZcG7iLBYhR/02CmtPrRX7XZq4QOGv3R08XB4Odyt3Q6VKRERERA+JBcpaYoGSiIiI6NFJup6E7Re2IyYlBnFpcShWFYt9UokU12dfh525HQBAEASOriQiIiJqAKpbXzN+hDkREREREVWquWNzNHdsjqldpqJMXYb49HjEJMdAmaKERCIRi5MA0G9NP6jUKijkCkT4R6CDWwdIJVIDZk9EREREtcERlFXgCEoiIiKi+kGlVsHEyAQAUFRWBPsl9lBpVGK/g7kDwuRh4vqV3jbehkqViIiIiO7CKd61xAIlERERUf0jCALO55yHMlkJZYoSu9N2o6C0QOwf1GwQ/hj1h/i8qKwIlqaWhkiViIiIqNHjFG8iIiIieuxIJBI0c2iGZg7NMKnzJKjUKhy6ckjcHbx/0/5ibFpeGgI+C0AXzy5QyLUb7nTy6ARjKT8CExEREdUnHEFZBY6gJCIiImrY1pxYg2c3PavTZiOzQV+/vlDIFRgcOJi7gxMRERHpEad41xILlEREREQNX2puKpQp2ungO1N2Iq8kT+z77anfMKzFMADA9eLrMJIY6WzGQ0RERES1wwJlLbFASURERPR4UWvUSMxIFNev3DRyk1iQXBC3AO/+/S6C3YPFzXa6eHaBqZGpgbMmIiIiarhYoKwlFiiJiIiIGo9nNz6LNSfX6LQ1MWmCPn59oJArMKHjBJibmBsoOyIiIqKGiQXKWmKBkoiIiKhxuVxwWRxduTNlJ64VXwOgXbfy+pzr4uY6h68chq+tL5yaOBkyXSIiIqJ6r7r1Nak+k8jJycHo0aNhbW0NW1tbREVFoaio6L7HlJSUYNKkSXBwcIClpSWGDx+OrKwssf+ff/7BqFGj4OXlBXNzc7Ro0QLLly/XOUdcXBwkEkmFR2Zmpl6uk4iIiIgaPk9rT4zvMB7Rw6OROSsTRycexZLwJZgROkMsTgqCgKd+fQrOHzuj49cdMXfnXMSmxKKkvMTA2RMRERE1XMb6PPno0aORkZEBpVIJlUqF8ePHY+LEiYiOjq7ymOnTp2Pr1q3YsGEDbGxsMHnyZAwbNgz79+8HACQmJsLZ2Rn/+9//4OXlhQMHDmDixIkwMjLC5MmTdc6VlJSkU511dnbWz4USERER0WNFKpGig1sHdHDroNOeX5oPa5n28+WxzGM4lnkMS/YvgbmxOXr69MToNqPxXLvnDJEyERERUYOltyneZ8+eRcuWLXH48GEEBwcDALZv344BAwbg8uXLcHd3r3BMfn4+nJycEB0djREjRgAAzp07hxYtWiA+Ph5dunSp9LUmTZqEs2fPYteuXQC0Iyj79OmD3Nxc2NraPlT+nOJNRERERFXJKsrCzpSdiEmJgTJZiYyiDADA5E6T8dmAzwAAZeoyrDu1DuHycLhZuRkyXSIiIiKDqG59TW8jKOPj42FraysWJwEgPDwcUqkUCQkJGDp0aIVjEhMToVKpEB4eLrYFBgbC29v7vgXK/Px82NvbV2hv3749SktL0bp1ayxYsADdunWrMt/S0lKUlpaKzwsKCqp1nURERETU+LhYumB029EY3XY0BEHAmWtnEJMcg1CvUDEmPj0eYzaPAQC0cW4DhVwBhb8CPX16wsLEwlCpExEREdU7eitQZmZmVphSbWxsDHt7+yrXgszMzISpqWmFUY8uLi5VHnPgwAGsW7cOW7duFdvc3NywcuVKBAcHo7S0FN999x169+6NhIQEdOzYsdLzLFq0CAsXLqzBFRIRERERARKJBK2cW6GVcyud9lJ1KYLcgnA04yhOZp/EyeyT+PTgpzA1MkV37+54r897OgVNIiIiosaqxpvkzJ07t9INaO5+nDt3Th+5VnDq1CkMHjwYb7/9NiIiIsT25s2b48UXX0RQUBC6du2KVatWoWvXrli6dGmV55o3bx7y8/PFR3p6+qO4BCIiIiJ6TEX4R+DIxCPInp2NtcPXIqpDFLysvVCmLsOu1F0wMTIRY/df2o9Vx1YhPZ+fQYmIiKjxqfEIypkzZ2LcuHH3jZHL5XB1dUV2drZOe3l5OXJycuDq6lrpca6urigrK0NeXp7OKMqsrKwKx5w5cwZhYWGYOHEi3nzzzQfm3blzZ+zbt6/KfplMBplM9sDzEBERERHVhKOFI0a2HomRrUdCEAT8e+NfxKbGooPrnQ14vj/2PX44/gMAoLlDc0T4R0AhV6C3b29YyawMlToRERHRI1HjAqWTkxOcnJweGBcaGoq8vDwkJiYiKCgIALBr1y5oNBqEhIRUekxQUBBMTEwQGxuL4cOHA9DuxH3p0iWEht6Z/nL69Gn07dsXY8eOxfvvv1+tvI8fPw43Ny5OTkRERESGI5FI0NyxOZo7Ntdpb+/aHl08u+DQlUNIupGEpBtJ+OzQZzCWGiPUMxQxz8XAzNjMQFkTERER6ZfedvEGgP79+yMrKwsrV66ESqXC+PHjERwcjOjoaADAlStXEBYWhp9++gmdO3cGALz88svYtm0bVq9eDWtra0yZMgWAdq1JQDutu2/fvoiMjMRHH30kvpaRkZFYOF22bBn8/PzQqlUrlJSU4LvvvsNnn32GmJgYhIWFVSt37uJNRERERI9a7q1c7E7bDWWyEjEpMUjJTUErp1Y49copMea9v9+Do4UjIvwjILeTGzBbIiIiovsz+C7eALBmzRpMnjwZYWFhkEqlGD58OFasWCH2q1QqJCUlobi4WGxbunSpGFtaWorIyEh8+eWXYv+vv/6Ka9eu4X//+x/+97//ie0+Pj5IS0sDAJSVlWHmzJm4cuUKLCws0LZtW+zcuRN9+vTR5+USEREREdWKnbkdhrUYhmEthgEAUnJTkFl0Z7PIkvISfLD3A9wqvwUAkNvJESGPgMJfgb5+fWFrZmuItImIiIhqRa8jKBsyjqAkIiIiovqmoLQAyw8uhzJFifjL8SjXlIt9UokUkztNxvL+yw2YIREREdEd1a2v1XgXbyIiIiIiMgxrmTXe6vUW/h7/N3Lm5OCPp//AlM5TEOgYCI2ggae1pxibUZiBJ395Ep8lfIak60nguAQiIiKqrziCsgocQUlEREREDUl6fjrMjM3g1ES7LvvP//yMMZvHiP1e1l7i7uBh8jA4WjgaKlUiIiJqJKpbX2OBsgosUBIRERFRQ5ack4xfz/yKmJQY7Lu0D2XqMrFPAgn+HPUnBjYbaMAMiYiI6HHHAmUtsUBJRERERI+LYlUx/r74N5TJSihTlDiVfQqZszLh3MQZALAiYQX+uvAXFHIFIvwj0MqpFSQSiYGzJiIiooaOBcpaYoGSiIiIiB5X125eE6eCA0DYT2HYlbpLfO5m6QaFvwIKuQLh8nC4WroaIk0iIiJq4FigrCUWKImIiIiosTidfRo7kndAmaLEnrQ9uFV+S+xrYtIEua/lwsTIBACgETSQSrjXJhERET1Ydetrxo8wJyIiIiIiqodaObdCK+dWmBE6AyXlJTiQfgAxyTFQpijhZukmFicBIPibYDhYOEAh146wbOfajgVLIiIiqhWOoKwCR1ASEREREQHlmnIYS7XjGi4XXIbXUi+dficLJ4TLw8X1Kz2sPQyRJhEREdVDnOJdSyxQEhERERHpEgQBSTeSxM12dqftRlFZkdgf1SEK3z35HQBArVHjVvktWJpaGipdIiIiMjBO8SYiIiIiojolkUgQ6BiIQMdATAmZApVahYOXD0KZokRMcgz6Ne0nxiZmJKL7qu4I9QpFhDwCCn8FgtyCYCQ1MuAVEBERUX3EEZRV4AhKIiIiIqKHt+zgMkzfMV2nzc7MDmHyMCjkCgwNHKqzkzgRERE9fjjFu5ZYoCQiIiIieniCICA5N1mcDr4rdRfyS/PF/r3j96K7d3cAQEZhBsxNzGFrZmugbImIiEgfWKCsJRYoiYiIiIjqTrmmHIevHIYyRYm9l/Zi2zPbxN3BX9n6Cr5J/AadPTqLm+109uiss3s4ERERNTwsUNYSC5RERERERI9G/zX9sf3Cdp02K1Mr9PHrgwh5BF4KfolrVxIRETVALFDWEguURERERESPzsW8i1CmaKeD70zZiZxbOQAAuZ0cya8mi3H7Lu1DC8cWcLBwMFSqREREVE0sUNYSC5RERERERIah1qhxLPMYlMlKWJhYYGqXqQAAlVoFx48cUVhaiCD3IHE6eKhnKGTGMgNnTURERPdigbKWWKAkIiIiIqpfLuZdxBO/PIFT2ad02i1MLNDLpxee7/A8RrQcYaDsiIiI6F7Vra9JH2FORERERERED83H1gcnXz6JKzOu4MchP+LZts/CpYkLilXF+OvCXzh77awYm3srF2tOrEFWUZYBMyYiIqLq4AjKKnAEJRERERFR/ScIAk5mn4QyWYl+TfuhlXMrAMCG0xvw1K9PAQDaurRFhDwCCn8Fenj3gLmJuSFTJiIiajQ4xbuWWKAkIiIiImq4Np7diPf+fg/HMo/ptMuMZOjh0wOfRnyKNi5tDJQdERFR48ACZS2xQElERERE1PBl38xGbEoslClKxCTH4ErhFQDAxWkX4W3jDQDYcWEHMosyofBXwN3K3ZDpEhERPVZYoKwlFiiJiIiIiB4vgiDg3PVziL8cj+c7PC+2PxH9BLae3woAaOnUUpwO3sunF5qYNjFUukRERA0eC5S1xAIlEREREVHjsGjvImxO2owjV49AI2jEdhOpCfr49cH20dshkUgMmCEREVHDVC928c7JycHo0aNhbW0NW1tbREVFoaio6L7HlJSUYNKkSXBwcIClpSWGDx+OrCzdnfckEkmFx9q1a3Vi4uLi0LFjR8hkMjRt2hSrV6+u68sjIiIiIqLHwLwe85DwQgKuzb6GDf+3ARM7ToSvrS9UGhVUapVOcXKOcg6+TfwWF/MuGjBjIiKix4teR1D2798fGRkZ+Prrr6FSqTB+/Hh06tQJ0dHRVR7z8ssvY+vWrVi9ejVsbGwwefJkSKVS7N+//07SEgl++OEH9OvXT2yztbWFmZkZACA1NRWtW7fGSy+9hBdeeAGxsbGYNm0atm7disjIyGrlzhGURERERESNlyAISM5NRkFpATq6dQSgXc/S5WMXMSbAPgAR/hFQyBXo49cH1jL+3kBERHQ3g0/xPnv2LFq2bInDhw8jODgYALB9+3YMGDAAly9fhrt7xcWn8/Pz4eTkhOjoaIwYMQIAcO7cObRo0QLx8fHo0qWLNmmJBJs2bcKQIUMqfe3XXnsNW7duxalTp8S2p59+Gnl5edi+fXu18meBkoiIiIiI7nbt5jV8efhLxKTEIOFyAtSCWuwzkhjhrZ5v4e3ebxswQyIiovrF4FO84+PjYWtrKxYnASA8PBxSqRQJCQmVHpOYmAiVSoXw8HCxLTAwEN7e3oiPj9eJnTRpEhwdHdG5c2esWrUKd9dZ4+Pjdc4BAJGRkRXOcbfS0lIUFBToPIiIiIiIiG5zauKEt3u/jf3P78eNOTewaeQmvBL8CgLsA6AW1PCz8xNjT2efxtB1Q/Hl4S9xIecCuPQ/ERFR1Yz1deLMzEw4OzvrvpixMezt7ZGZmVnlMaamprC1tdVpd3Fx0TnmnXfeQd++fWFhYYGYmBi88sorKCoqwquvviqex8XFpcI5CgoKcOvWLZibm1d47UWLFmHhwoUPc6lERERERNTI2JjZYEjgEAwJHAIASMtLg725vdi//cJ2bD63GZvPbQYA+Nr6QiFXIMI/An39+urEEhERNXY1LlDOnTsXS5YsuW/M2bNnHzqh6njrrbfE7zt06ICbN2/io48+EguUD2PevHmYMWOG+LygoABeXl61ypOIiIiIiBoHX1tfnecDAgagpLwEyhQlDqQfQFpeGr49+i2+PfotJJDgQNQBdPHsYphkiYiI6pkaFyhnzpyJcePG3TdGLpfD1dUV2dnZOu3l5eXIycmBq6trpce5urqirKwMeXl5OqMos7KyqjwGAEJCQvDuu++itLQUMpkMrq6uFXb+zsrKgrW1daWjJwFAJpNBJpPd97qIiIiIiIiqo4VTC7zh9Abe6PkGisqKsCdtD5QpSihTlEjJTUE7l3Zi7Pzd85GYkYgIeQQU/gq0cGyhs3M4ERHR467GBUonJyc4OTk9MC40NBR5eXlITExEUFAQAGDXrl3QaDQICQmp9JigoCCYmJggNjYWw4cPBwAkJSXh0qVLCA0NrfK1jh8/Djs7O7HAGBoaim3btunEKJXK+56DiIiIiIhIHyxNLTGw2UAMbDYQAJBzKwfmJncGTmw6twmnsk9h23nt7zAeVh5Q+CugkCsQLg+HcxPnSs9LRET0uNDbLt4A0L9/f2RlZWHlypVQqVQYP348goODER0dDQC4cuUKwsLC8NNPP6Fz584AgJdffhnbtm3D6tWrYW1tjSlTpgAADhw4AAD4888/kZWVhS5dusDMzAxKpRKzZs3CrFmzxDUkU1NT0bp1a0yaNAnPP/88du3ahVdffRVbt25FZGRktXLnLt5ERERERPQoHM88DmWydnTl3xf/Rqm6VOzzsPJA+vR0cUSlWqOGkdTIUKkSERHVSHXra3rbJAcA1qxZg8mTJyMsLAxSqRTDhw/HihUrxH6VSoWkpCQUFxeLbUuXLhVjS0tLERkZiS+//FLsNzExwRdffIHp06dDEAQ0bdoUn376KSZMmCDG+Pn5YevWrZg+fTqWL18OT09PfPfdd9UuThIRERERET0q7V3bo71re8zuNhu3VLew79I+xCTHQJmiRAe3DmJxUiNo4LfcD4GOgYjwj4BCrkBbl7acDk5ERA2eXkdQNmQcQUlERERERIZ294jJ45nH0eHrDjr9zk2coZArxB3C3azcDJEmERFRpapbX2OBsgosUBIRERERUX0iCALOXj8rjq6MS4tDserObLTXu7+O98PeBwCUqcugUqvQxLSJodIlIiKqH1O8iYiIiIiIqG5IJBK0dGqJlk4tMa3LNJSWlyL+cry4fmVk0ztLWu24sAMjNoxAN69u4ujKDm4dIJVIDXgFREREleMIyipwBCURERERETVUb+56E+/vfV+nzcHcAWHyMETIIzCsxTDYmdsZKDsiImosOMW7lligJCIiIiKihkoQBFzIuSBOB9+dthsFpQVif9LkJDRzaAYAuJR/CbZmtrCW8fceIiKqW5ziTURERERE1EhJJBIEOAQgwCEAkzpPgkqtwqErh6BMUeJE1gkE2AeIsTN2zMDvSb+ji2cXcTp4sHswjKX8dZGIiB4NjqCsAkdQEhERERFRY9D52844fPWwTpuNzAZ9/fqif9P+mBA0wUCZERFRQ1fd+hpXSCYiIiIiImrEDk04hJRXU/D1E19jeIvhsDWzRX5pPjad24RVx1fpxO5K3YXcW7kGypSIiB5XHEFZBY6gJCIiIiKixkitUSMxIxExyTHwtPbEuPbjAAD5Jflw+NABAgQEuwcjQh4Bhb8CXTy7wNTI1LBJExFRvcRNcmqJBUoiIiIiIqI7TmadxMhfR+Ls9bM67Zamlujt2xsvB7+MAQEDDJQdERHVR5ziTURERERERHWmjUsbnJl0BunT07HqyVUY1XoUHC0cUVRWhC3/bkF6froYe7ngMtaeWotrN68ZMGMiImooOIKyChxBSUREREREdH8aQYN/Mv+BMkWJUa1HwcvGCwDwxaEvMPmvyQCADq4dEOEfAYVcgW7e3WBmbGbIlImI6BHiFO9aYoGSiIiIiIjo4fx4/Ed8evBTnMg6odNubmyOnj498dXAr+Bn52eg7IiI6FFhgbKWWKAkIiIiIiKqncyiTOxM2QllihLKZCUyijJgLDVGzpwcWMmsAAC/nvkVxapiKOQKuFm5GThjIiKqSyxQ1hILlERERERERHVHEAScvnYaJ7NOYlSbUWJ752874/DVwwCA1s6toZArEOEfgZ4+PWFhYmGodImIqA6wQFlLLFASERERERHplyAIeGv3W9h+YTuOZhyFgDu/npoamWJw88FY/3/rDZghERHVBnfxJiIiIiIionpNIpHgvb7v4cjEI8ienY21w9ciqkMUvG28UaYug1Ry51dWQRDw0paXsOrYKp0dw4mIqOHjCMoqcAQlERERERGRYQiCgH9v/Au1oEZLp5YAgDPXzqDVl63EmEDHQHE6eC+fXuKalkREVH9winctsUBJRERERERUf1wuuIxvE79FTEoMDl05BI2gEfuMpcb4JOITvBryqgEzJCKie3GKNxERERERET02PK09sbDPQsRHxePGnBvY+NRGvBT0Evzt/FGuKUczh2Zi7N6LezFi/Qh8feRrpOSmGDBrIiKqDo6grAJHUBIRERERETUMKbkpcLdyh5mxGQDgNeVr+PDAh2K/v50/FHIFFP4K9PXrC1szWwNlSkTUuHCKdy2xQElERERERNQwncg6gd/P/Q5lihLxl+NRrikX+6QSKc5NOocAhwADZkhE1DiwQFlLLFASERERERE1fIWlhYhLi0NMcgyUKUrkleQhY2YGJBIJAOCVra/gcsFlRPhHQCFXoJlDM7GPiIhqp16sQZmTk4PRo0fD2toatra2iIqKQlFR0X2PKSkpwaRJk+Dg4ABLS0sMHz4cWVlZYv/q1ashkUgqfWRnZwMA4uLiKu3PzMzU5+USERERERFRPWMls8Kg5oPw2YDPcG7yOZybfE4sQAqCgI1nN+LPf//ElL+mIPCLQPgs88ELf7yAdafW4XrxdQNnT0TUOOh1BGX//v2RkZGBr7/+GiqVCuPHj0enTp0QHR1d5TEvv/wytm7ditWrV8PGxgaTJ0+GVCrF/v37AQC3bt1Cfn6+zjHjxo1DSUkJ4uLiAGgLlH369EFSUpJOddbZ2RlSafVqshxBSURERERE9HgTBAHHMo+Joyv3XdqHMnWZ2N/BtQOOvnhUfF6uKYex1NgQqRIRNUgGn+J99uxZtGzZEocPH0ZwcDAAYPv27RgwYAAuX74Md3f3Csfk5+fDyckJ0dHRGDFiBADg3LlzaNGiBeLj49GlS5cKx1y7dg0eHh74/vvv8dxzzwG4U6DMzc2Fra3tQ+XPAiUREREREVHjUqwqxt8X/4YyWYmYlBgMaDoASxRLAAA3y27Ca6kXQjxDoJArEOEfgVZOrTgdnIjoPqpbX9Pbf/3Ex8fD1tZWLE4CQHh4OKRSKRISEjB06NAKxyQmJkKlUiE8PFxsCwwMhLe3d5UFyp9++gkWFhZiQfNu7du3R2lpKVq3bo0FCxagW7duVeZbWlqK0tJS8XlBQUG1r5WIiIiIiIgaPgsTC/Rr2g/9mvYDAGgEjdi379I+5JbkYvuF7dh+YTsAwM3SDeHycET4RyDCPwLOTZwNkjcRUUOntzUoMzMz4eys++ZsbGwMe3v7KteCzMzMhKmpaYVRjy4uLlUe8/333+OZZ56Bubm52Obm5oaVK1fit99+w2+//QYvLy/07t0bR48erfQcALBo0SLY2NiIDy8vr2peKRERERERET2OpJI7vzJH+EfgxEsn8LHiY0T6R8Lc2BwZRRn4+cTPeG7Tc4g+eWcps2JVMYpVxYZImYioQarxCMq5c+diyZIl9405e/bsQydUE/Hx8Th79ix+/vlnnfbmzZujefPm4vOuXbsiOTkZS5curRB727x58zBjxgzxeUFBAYuUREREREREBACQSCRo49IGbVzaYGbXmSgpL8H+S/uhTFFCmaJEhH+EGPvLyV8wadskdPfuDoVcAYW/Au1d2+sUPImI6I4aFyhnzpyJcePG3TdGLpfD1dVV3FX7tvLycuTk5MDV1bXS41xdXVFWVoa8vDydUZRZWVmVHvPdd9+hffv2CAoKemDenTt3xr59+6rsl8lkkMlkDzwPERERERERkZmxGcLkYQiTh2ExFuv0Hbl6BKXqUsSmxiI2NRZzY+fC0cIR4fJwKOQK/F/L/4OVzMpAmRMR1T81LlA6OTnBycnpgXGhoaHIy8tDYmKiWEDctWsXNBoNQkJCKj0mKCgIJiYmiI2NxfDhwwEASUlJuHTpEkJDQ3Vii4qKsH79eixatKhaeR8/fhxubm7ViiUiIiIiIiJ6WF8O/BJTu0wVN9uJS4vD9eLrWHtqLdadWofBzQeLsck5yXCxdIGlqaUBMyYiMiy9bZLTokUL9OvXDxMmTMDKlSuhUqkwefJkPP300+IO3leuXEFYWBh++ukndO7cGTY2NoiKisKMGTNgb28Pa2trTJkyBaGhoRU2yFm3bh3Ky8vx7LPPVnjtZcuWwc/PD61atUJJSQm+++477Nq1CzExMfq6XCIiIiIiIiIA2unggY6BCHQMxJSQKShTlyHhcgJikmNwtfAqHCwcxNjxv4/HwcsH0dWrqzgdPMgtCEZSIwNeARHRo6W3AiUArFmzBpMnT0ZYWBikUimGDx+OFStWiP0qlQpJSUkoLr6zePDSpUvF2NLSUkRGRuLLL7+scO7vv/8ew4YNq7ChDgCUlZVh5syZuHLlCiwsLNC2bVvs3LkTffr00ct1EhEREREREVXF1MgUPXx6oIdPD532ck05sm9mQ6VRYc/FPdhzcQ/e3P0m7MzsECYPw+Dmg/Fs24qDcoiIHjcSQRAEQydRHxUUFMDGxgb5+fmwtrY2dDpERERERET0mErOSRY324lNiUV+aT4A4MnmT+L3p38X4/46/xe6enWFjZmNoVIlIqqR6tbX9DqCkoiIiIiIiIjuz9/eH/72/ngp+CWUa8px5OoRKJOVaO3cWoxJyU3BgOgBMJIYobNHZ0T4R0AhV6CzR2eYGJkYMHsiotrjCMoqcAQlERERERER1Rf7Lu1D1B9R+PfGvzrt1jJr9PHtg+ldpqOXby8DZUdEVLnq1tekjzAnIiIiIiIiInoI3b27I2lyEtKmpuHbQd/iqVZPwd7cHgWlBfg96Xfk3MoRY5OuJ2H96fW4UXzDgBkTEVUfp3gTERERERERNRA+tj54oeMLeKHjC1Br1DiWeQzKZCX6+N3ZFDb6ZDTe+fsdSCBBkHsQFHIFIvwjEOoZCpmxzIDZExFVjlO8q8Ap3kRERERERNQQfX7oc6w8shKnr53WabcwsUAvn15YPWQ1nJs4Gyg7ImpMqltfY4GyCixQEhERERERUUN2tfAqdqbsRExyDJQpSmTfzIatmS2uz74OI6kRAOCHYz/A1MgU4fJwuFi6GDhjInrcsEBZSyxQEhERERER0eNCI2hwMusk0vLSMDhwMABAEAT4LvfFpfxLAIB2Lu3E6eDdvbvD3MTckCkT0WOABcpaYoGSiIiIiIiIHmel5aWYv3s+lClKHMs8ptMnM5JhbLux+HrQ1wbKjogeB9zFm4iIiIiIiIiqJDOWYYliCY6+eBRZs7IQPSwa49qPg4eVB0rVpTob6pSWl2Ls5rFYfXw1rhRcMWDWRPQ44gjKKnAEJRERERERETVGgiDg3PVzMDUyhb+9PwAgLi0OfX68s1N4S6eWUMgVUMgV6OXbC5amloZKl4jqMU7xriUWKImIiIiIiIi0knOS8cPxH6BMUeLwlcMQcKeUYCI1warBq/Bs22cNmCER1UcsUNYSC5REREREREREFeXcysGu1F1QJisRkxKDtLw0JE5MREe3jgCAzec2I/pkNCL8I6CQK+Bj62PgjKmxU6uBvXuBjAzAzQ3o0QMwMjJ0Vo0DC5S1xAIlERERERER0f0JgoDk3GTI7eSQSrTbXIz/fTxWH18txgTYB4jFyj5+fWAt4+/Y9Ohs3AhMnQpcvnynzdMTWL4cGDbMcHk1FixQ1hILlEREREREREQ1l3g1EVv+3QJlihIHLx+EWlCLfcZSY2TOzISDhYMBM6TGYuNGYMQI4N7Kl0Si/frrryxS6hsLlLXEAiURERERERFR7eSX5CMuLQ7KFCVikmMgM5bh5Msnxf6nNjwFlUaFCHkEFP4K+Nv5Q3K7ekRUC2o14OurO3LybhKJdiRlaiqne+sTC5S1xAIlERERERERUd0qKC0Qp3iXlJfAbokdSspLxH5fW1+xWNnXry/sze0NlSo1cHFxQJ8+DwzD7t1A7976zUUQBGgEDQQIEARB3GRKEAQYSY1gLDXWbwIGxAJlLbFASURERERERKQ/GkGDxKuJ4ujKA+kHoNKoxP4I/wjseHaH+FylVsHEyMQQqdJD0gga3Cy7icKyQhSWFup8LSgtQE+fnvC28QYAHLpyCF8f+RoFZQU6sSXlJRAgYEn4EgxroZ2PHZsSi6g/ogCg0qLf+33fh+nZsXjmGQBe+4GRwwEIgES466v26LE+C7H6lckAtMsT9P2pr3i+e8/7Ro838EbPNwAAp7NPo8PXHXTibpfYBAiY03UOliiWAABSc1MhXyGv9M/ovT7vied8HFW3vvb4lmiJiIiIiIiIqN6SSqTo5NEJnTw64fUer6OorAh70vZAmaKEMkWJCHmEGHu18Cqaf94cvXx6QSFXIMI/AoGOgZwOrgcqtapCQbGFUwvYmtkCAI5nHsfWf7eioLRA2/9fzO3nSyOXort3dwDA6uOrxUJiZdaNWCcWKC/lX8Kq46uqjC0oLRC/v1V+CxfzL1YZe1N1Ez5u/z0xKgMss6qMNbO6JX6vFtQ6r3OvuwvoAgSd5/e6Xdh8kOrGPe5YoCQiIiIiIiIig7M0tcTAZgMxsNlAANrRd7ftTt2NorIibD2/FVvPbwUAeFh5QOGvQIQ8AhH+EQ/ceEetBvbuBTIyADc3oEePx2PtQUEQcKv8FgpLC2FnbgdTI1MAwL83/kXi1cQKBcTbhccFvRcg0DEQAPD90e8xN3YuCksLUaourfAaO57dgQh/bcH4yNUjeHP3m1Xmk1GYIX5vaWoJQFuMtjK1gpXMCtYya/H7u6fwt3Vpi/f7vq/Tby2zhpmxGSSQIMAhQIzt7t0dCS8kQAJtgVoikUACiViw9rL2gr2Zdo3Jy1c7AV/9AwgS4L/429+7ukjwzgFnnRz+nfyveL57z327SAsAzR2aI316eqVxEkjQxLSJGOtt443rs6+L+d0dZ2ZsVuWfZWPCKd5V4BRvIiIiIiIiovpBI2hwIusElMlKxKTEYO/FvTqFtOhh0RjVZhQA7Ug7UyNTncLPxo3A1Km6G6Z4egLLl9d8F2eNoEFpeSlK1aUoU5eJ3/va+oprCZ6/cR6peali371fx7YbCztzOwDAtvPbsOPCDm3/XTG3z/3VwK/gb+8PAPjq8Ff4OP5jnfPdVN0Ui7kHow4ixDMEAPDxgY8xWzm7yuuIeTYGCn8FAODbxG8xcctEnX6ZkUxbLJRZ4esnvka4PBwAEJ8ej1XHVsFKZiUWEq1MrcTYILcguFlphy+WqctQrimHubG5QUa73t7FG9DdyZu7eD86nOJNRERERERERI8FqUSK9q7t0d61PWZ3m41bqlvYd2kfYpJjoExRIkweJsZ+cegLvPP3O+jp0xPdvbrj3FkjRK8vBZqXAa1KAeUSQGOCK1eA4Us+R6eLO+HgrC32lanLdIqECS8kiKPmpmybgpWJK1GuKa80x0vTLsHLxgsA8NWRr7D04NIqryfSP1IsUB68fBArDq2oMjbnVg78oS1QFpYVIiU3pdI4CSS4qbopPve380dfv746RcS7v797ROLQFkPRxbOLWGS0MrWqcr3PUK9QhHqFVpnv3UyNTMURnYYwbJi2CFlZcXrZMhYn6xMWKImIiIiIiIioQTE3MYfCXyGOALxbYkYiSspLEJMcg5jkGG1jr7sCdi8Eyky0I+rcjuJwwe9AFcsO3lLdEguUEomk0uKkqZEpZEYynfUIvay90M6lHWTGMsiMZOJXUyNTyIxlOtN/e/n0grq7ukLM7eP87PzE2GfaPIPu3t11ztnEtAmsZdawMLGAVCIVY4e2GIqhLYY++A8TgKOFIxwtHKsV29AMGwYMHvx4Tu9/nHCKdxU4xZuIiIiIiIio4REEAWeunYEyRYntx49jx19GgFoGlMu0X/fMB1QW2mDf3YDDebw2yxTtWskqFBQ7e3SGzFgGQDuS8Zbqlk4h0dTIlBv1EN2Hwad45+TkYMqUKfjzzz8hlUoxfPhwLF++HJaWllUe88033yA6OhpHjx5FYWEhcnNzYWtrW+PznjhxApMmTcLhw4fh5OSEKVOmYM6cOfq6VCIiIiIiIiKqJyQSCVo5t0Ir51ZwSQV2/HGf4LQ+QFoftBOAUW3uf157c3vAvE5TJaL/SB8c8nBGjx6N06dPQ6lUYsuWLfj7778xceLE+x5TXFyMfv364fXXX3/o8xYUFCAiIgI+Pj5ITEzERx99hAULFuCbb76ps2sjIiIiIiIiovrPza1u44hIP/Qyxfvs2bNo2bIlDh8+jODgYADA9u3bMWDAAFy+fBnu7u73PT4uLg59+vSpMIKyOuf96quv8MYbbyAzMxOmptqFWOfOnYvNmzfj3Llz1b4GTvEmIiIiIiIiatjUasDXF7hyRXcX59skEu2GKampXJOQSB+qW1/TywjK+Ph42NraikVEAAgPD4dUKkVCQoJezxsfH4+ePXuKxUkAiIyMRFJSEnJzc6s8d2lpKQoKCnQeRERERERERNRwGRkBy5drv793qcjbz5ctY3GSyND0UqDMzMyEs7OzTpuxsTHs7e2RmZmp1/NmZmbCxcVFJ+b28/u99qJFi2BjYyM+vLy8HjpPIiIiIiIiIqofhg0Dfv0V8PDQbff01LYPG2aYvIjojhoVKOfOnQuJRHLfR02mUdcn8+bNQ35+vvhIT083dEpEREREREREVAeGDQPS0oDdu4HoaO3X1FQWJ4nqixrt4j1z5kyMGzfuvjFyuRyurq7Izs7WaS8vL0dOTg5cXV1rnORt1Tmvq6srsrKydGJuP7/fa8tkMshksofOjYiIiIiIiIjqLyMjoHdvQ2dBRJWpUYHSyckJTk5OD4wLDQ1FXl4eEhMTERQUBADYtWsXNBoNQkJCHi7Tap43NDQUb7zxBlQqFUxMTAAASqUSzZs3h52d3UO/NhEREREREREREdU9vaxB2aJFC/Tr1w8TJkzAoUOHsH//fkyePBlPP/20uIP3lStXEBgYiEOHDonHZWZm4vjx47hw4QIA4OTJkzh+/DhycnKqfd5nnnkGpqamiIqKwunTp7Fu3TosX74cM2bM0MelEhERERERERERUS3UaARlTaxZswaTJ09GWFgYpFIphg8fjhUrVoj9KpUKSUlJKC4uFttWrlyJhQsXis979uwJAPjhhx/EqeUPOq+NjQ1iYmIwadIkBAUFwdHREfPnz8fEiRNrlL8gCADA3byJiIiIiIiIiIgewu262u06W1UkwoMiGqnLly9zJ28iIiIiIiIiIqJaSk9Ph6enZ5X9LFBWQaPR4OrVq7CysoJEIjF0OnWuoKAAXl5eSE9Ph7W1taHToQaA9wzVFO8ZqineM1RTvGeopnjPUE3xnqGa4j1DNdEY7hdBEFBYWAh3d3dIpVWvNKm3Kd4NnVQqvW9l93FhbW392P4lIP3gPUM1xXuGaor3DNUU7xmqKd4zVFO8Z6imeM9QTTzu94uNjc0DY/SySQ4RERERERERERFRdbBASURERERERERERAbDAmUjJZPJ8Pbbb0Mmkxk6FWogeM9QTfGeoZriPUM1xXuGaor3DNUU7xmqKd4zVBO8X+7gJjlERERERERERERkMBxBSURERERERERERAbDAiUREREREREREREZDAuUREREREREREREZDAsUBIREREREREREZHBsEBJREREREREREREBsMCZQO0YMECSCQSnUdgYOB9j9mwYQMCAwNhZmaGNm3aYNu2bTr9giBg/vz5cHNzg7m5OcLDw3H+/HmdmJycHIwePRrW1tawtbVFVFQUioqK6vz6qG7V9f2iUqnw2muvoU2bNmjSpAnc3d0xZswYXL16Veccvr6+FV538eLFerlGqlv6eI8ZN25chXP269dPJ4bvMQ2XPu6Ze893+/HRRx+JMXyfabhqes+cPn0aw4cPF3/my5YtqzTuiy++gK+vL8zMzBASEoJDhw7p9JeUlGDSpElwcHCApaUlhg8fjqysrLq8NNITfdwzixYtQqdOnWBlZQVnZ2cMGTIESUlJOjG9e/eu8LovvfRSXV8e6YE+7pnqnJPvMw2XPu6Zyj6rSCQSTJo0SYzh+0zDVdN75ttvv0WPHj1gZ2cHOzs7hIeHV/is0phrMyxQNlCtWrVCRkaG+Ni3b1+VsQcOHMCoUaMQFRWFY8eOYciQIRgyZAhOnTolxnz44YdYsWIFVq5ciYSEBDRp0gSRkZEoKSkRY0aPHo3Tp09DqVRiy5Yt+PvvvzFx4kS9XifVjbq8X4qLi3H06FG89dZbOHr0KDZu3IikpCQ8+eSTFc71zjvv6LzulClT9HaNVLfq+j0GAPr166dzzl9++UWnn+8xDVtd3zN3nysjIwOrVq2CRCLB8OHDdc7F95mGqyb3THFxMeRyORYvXgxXV9dKY9atW4cZM2bg7bffxtGjR9GuXTtERkYiOztbjJk+fTr+/PNPbNiwAXv27MHVq1cxbNiwOr820o+6vmf27NmDSZMm4eDBg1AqlVCpVIiIiMDNmzd14iZMmKDzuh9++GGdXhfpT13fM9U5J99nGra6vmcOHz6scz6lUgkA+L//+z+dOL7PNFw1uWfi4uIwatQo7N69G/Hx8fDy8kJERASuXLkixjTq2oxADc7bb78ttGvXrtrxTz31lDBw4ECdtpCQEOHFF18UBEEQNBqN4OrqKnz00Udif15eniCTyYRffvlFEARBOHPmjABAOHz4sBjz119/CRKJRLhy5Uotrob0ra7vl8ocOnRIACBcvHhRbPPx8RGWLl1a03SpHtDHPTN27Fhh8ODBVZ6D7zEN26N4nxk8eLDQt29fnTa+zzRcNb1n7lbVz71z587CpEmTxOdqtVpwd3cXFi1aJAiC9rONiYmJsGHDBjHm7NmzAgAhPj7+oXKhR0cf98y9srOzBQDCnj17xLZevXoJU6dOfajXJcPSxz3zoHPyfaZhexTvM1OnThX8/f0FjUYjtvF9puGqzT0jCIJQXl4uWFlZCT/++KMgCKzNcARlA3X+/Hm4u7tDLpdj9OjRuHTpUpWx8fHxCA8P12mLjIxEfHw8ACA1NRWZmZk6MTY2NggJCRFj4uPjYWtri+DgYDEmPDwcUqkUCQkJdXlppAd1eb9UJj8/HxKJBLa2tjrtixcvhoODAzp06ICPPvoI5eXltboOenT0cc/ExcXB2dkZzZs3x8svv4wbN27onIPvMQ2bPt9nsrKysHXrVkRFRVXo4/tMw1WTe+ZBysrKkJiYqHNfSaVShIeHi/dVYmIiVCqVTkxgYCC8vb3v+28c1R91ec9UJj8/HwBgb2+v075mzRo4OjqidevWmDdvHoqLi+v0dUl/9HHP3O+cfJ9p+PT5PlNWVob//e9/eP755yGRSHT6+D7TcNXmnikuLoZKpRL/3WnstRljQydANRcSEoLVq1ejefPmyMjIwMKFC9GjRw+cOnUKVlZWFeIzMzPh4uKi0+bi4oLMzEyx/3bb/WKcnZ11+o2NjWFvby/GUP1U1/fLvUpKSvDaa69h1KhRsLa2FttfffVVdOzYEfb29jhw4ADmzZuHjIwMfPrpp3V7gVTn9HHP9OvXD8OGDYOfnx+Sk5Px+uuvo3///oiPj4eRkRHfYxo4fb/P/Pjjj7CysqowRY7vMw1XTe+ZB7l+/TrUanWl99W5c+cAaO87U1PTCv+Zdr97j+qPur5n7qXRaDBt2jR069YNrVu3FtufeeYZ+Pj4wN3dHSdOnMBrr72GpKQkbNy4sdavSfqlj3vmQefk+0zDpu/3mc2bNyMvLw/jxo3Taef7TMNV23vmtddeg7u7u1iQbOy1GRYoG6D+/fuL37dt2xYhISHw8fHB+vXrKx1dQo2bPu8XlUqFp556CoIg4KuvvtLpmzFjhs7rmpqa4sUXX8SiRYsgk8lq9bqkX/q4Z55++mnx+zZt2qBt27bw9/dHXFwcwsLCap0zGZa+/11atWoVRo8eDTMzM512vs80XPwsQzWl73tm0qRJOHXqVIW1w+5e06tNmzZwc3NDWFgYkpOT4e/vX+vXJf3Rxz3D967Hm75/vt9//z369+8Pd3d3nXa+zzRctblnFi9ejLVr1yIuLq7CZ9zGilO8HwO2trZo1qwZLly4UGm/q6trhZ3jsrKyxIV8b399UMzdi8wDQHl5OXJycu67iDTVP7W9X267XZy8ePEilEqlzujJyoSEhKC8vBxpaWm1yp8evbq6Z+4ml8vh6OgonpPvMY+Xurxn9u7di6SkJLzwwgsPfF2+zzRcD7pnHsTR0RFGRkYP/CxTVlaGvLy8KmOo4ajtPXO3yZMnY8uWLdi9ezc8PT3vGxsSEgIAdfK69GjV5T1T1Tn5PvN4qct75uLFi9i5c2e1P88AfJ9piKp7z3z88cdYvHgxYmJi0LZtW7G9sddmWKB8DBQVFSE5ORlubm6V9oeGhiI2NlanTalUIjQ0FADg5+cHV1dXnZiCggIkJCSIMaGhocjLy0NiYqIYs2vXLmg0GvENlBqG2t4vwJ3i5Pnz57Fz5044ODg88HWPHz8OqVRaYTg61X91cc/c6/Lly7hx44Z4Tr7HPF7q8p75/vvvERQUhHbt2j3wdfk+03A96J55EFNTUwQFBencVxqNBrGxseJ9FRQUBBMTE52YpKQkXLp06b7vV1Q/1faeAQBBEDB58mRs2rQJu3btgp+f3wOPOX78OADU6nXJMOrinnnQOfk+83ipy3vmhx9+gLOzMwYOHPjAWL7PNFzVuWc+/PBDvPvuu9i+fbvOOpIAazPcxbsBmjlzphAXFyekpqYK+/fvF8LDwwVHR0chOztbEARBeO6554S5c+eK8fv37xeMjY2Fjz/+WDh79qzw9ttvCyYmJsLJkyfFmMWLFwu2trbC77//Lpw4cUIYPHiw4OfnJ9y6dUuM6devn9ChQwchISFB2LdvnxAQECCMGjXq0V04PZS6vl/KysqEJ598UvD09BSOHz8uZGRkiI/S0lJBEAThwIEDwtKlS4Xjx48LycnJwv/+9z/ByclJGDNmzKP/A6Aaq+t7prCwUJg1a5YQHx8vpKamCjt37hQ6duwoBAQECCUlJeJ5+B7TcOnj3yVBEIT8/HzBwsJC+Oqrryq8Jt9nGraa3jOlpaXCsWPHhGPHjglubm7CrFmzhGPHjgnnz58XY9auXSvIZDJh9erVwpkzZ4SJEycKtra2QmZmphjz0ksvCd7e3sKuXbuEI0eOCKGhoUJoaOiju3B6aPq4Z15++WXBxsZGiIuL0/k8U1xcLAiCIFy4cEF45513hCNHjgipqanC77//LsjlcqFnz56P9uLpoejjnnnQOQWB7zMNmT7uGUEQBLVaLXh7ewuvvfZahdfk+0zDVtN7ZvHixYKpqanw66+/6vy7U1hYqBPTWGszLFA2QCNHjhTc3NwEU1NTwcPDQxg5cqRw4cIFsb9Xr17C2LFjdY5Zv3690KxZM8HU1FRo1aqVsHXrVp1+jUYjvPXWW4KLi4sgk8mEsLAwISkpSSfmxo0bwqhRowRLS0vB2tpaGD9+vM5fJKqf6vp+SU1NFQBU+ti9e7cgCIKQmJgohISECDY2NoKZmZnQokUL4YMPPtApRlH9Vdf3THFxsRARESE4OTkJJiYmgo+PjzBhwgSdooEg8D2mIdPHv0uCIAhff/21YG5uLuTl5VXo4/tMw1bTe6aqf3t69eqlc97PPvtM8Pb2FkxNTYXOnTsLBw8e1Om/deuW8Morrwh2dnaChYWFMHToUCEjI0Ofl0p1RB/3TFWfZ3744QdBEATh0qVLQs+ePQV7e3tBJpMJTZs2FWbPni3k5+c/oqum2tDHPfOgcwoC32caMn3927Rjxw4BQIXfrwWB7zMNXU3vGR8fn0rvmbfffluMacy1GYkgCII+R2gSERERERERERERVYVrUBIREREREREREZHBsEBJREREREREREREBsMCJRERERERERERERkMC5RERERERERERERkMCxQEhERERERERERkcGwQElEREREREREREQGwwIlERERERERERERGQwLlERERERERERERGQwLFASERERERERERGRwbBASURERERERERERAbDAiUREREREREREREZzP8D5Rg+8WJUN5kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot imu data and interpolated data in same plot\n", + "\n", + "\n", + "plt.figure(figsize=(16, 3))\n", + "plt.scatter(\n", + " raw_imu_interval[\"time [s]\"],\n", + " raw_imu_interval[\"acceleration x [g]\"],\n", + " label=\"Raw imu data\",\n", + " color=\"blue\",\n", + ")\n", + "plt.plot(\n", + " concat_interval[\"time [s]\"],\n", + " concat_interval[\"acceleration x [g]\"],\n", + " label=\"Interpolated imu data\",\n", + " color=\"green\",\n", + " linestyle=\"dashed\",\n", + ")\n", + "plt.legend()" + ] } ], "metadata": { + "kernelspec": { + "display_name": "pyneon", + "language": "python", + "name": "python3" + }, "language_info": { - "name": "python" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" } }, "nbformat": 4, diff --git a/docs/genindex.html b/docs/genindex.html index 689178e..21468ec 100644 --- a/docs/genindex.html +++ b/docs/genindex.html @@ -323,7 +323,8 @@

Index

- C + B + | C | D | E | F @@ -338,13 +339,23 @@

Index

| T
+

B

+ + +
+

C

@@ -357,19 +368,23 @@

C

D

E

+