-
Notifications
You must be signed in to change notification settings - Fork 1
/
face_recognition_module.py
134 lines (112 loc) · 5.18 KB
/
face_recognition_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -*- coding: utf-8 -*-
import cv2
import face_recognition
from imutils.video import WebcamVideoStream
import os
import re
import click
import numpy as np
import textwrap
def images_folder(folder):
return [os.path.join(folder, f) for f in os.listdir(folder) if re.match(r'.*\.(jpg|jpeg|png)', f, flags=re.I)]
# Encode faces from a folder
def encode_faces(known_people_folder):
known_names = []
known_face_encodings = []
for file in images_folder(known_people_folder):
basename = os.path.splitext(os.path.basename(file))[0]
img = face_recognition.load_image_file(file)
encodings = face_recognition.face_encodings(img)
if len(encodings) > 1:
click.echo("WARNING: More than one face found in {}. Only considering the first face.".format(file))
if len(encodings) == 0:
click.echo("WARNING: No faces found in {}. Ignoring file.".format(file))
else:
known_names.append(basename)
known_face_encodings.append(encodings[0])
return known_names, known_face_encodings
# Encode known images
known_names, known_face_encodings = encode_faces("C:/Users/Cfrias/Documents/hackathons/roche-dementia-hackathon/faces/")
# Threaded Video stream
#vs = WebcamVideoStream(src=0).start()
video_capture = cv2.VideoCapture(0)
assert video_capture.isOpened() # Make sure that there is a stream.
x_shape = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH))
y_shape = int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
four_cc = cv2.VideoWriter_fourcc(*"MJPG") # Using MJPEG codex
out = cv2.VideoWriter("DigiMemoir.avi", four_cc, 10,
(x_shape, y_shape))
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
#frame = vs.read()
ret, frame = video_capture.read()
assert ret
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_names[best_match_index]
face_names.append(name)
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, top - 35), (right, top), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, top - 6), font, 1.0, (255, 255, 255), 1)
if name == "Gaby":
description ="Gaby is your granddaughter, she is 33 now and she loves you very much! She also loves your cookies"
# Draw a label with a name below the face
#cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
wrapped_text = textwrap.wrap(description, width=30)
x, y = 10, 40
font_size = 0.5
font_thickness = 1
for i, line in enumerate(wrapped_text):
textsize = cv2.getTextSize(line, font, font_size, font_thickness)[0]
text_w, text_h = textsize
gap = textsize[1] + 10
y = int((frame.shape[0] + textsize[1]) / 2) + i * gap
x = int((frame.shape[1] - textsize[0]) / 2)
#cv2.rectangle(frame, (x+100, y+100), (x + text_w, y + text_h), (0, 0, 0), -1)
cv2.putText(frame, line, (x + 180, y+50), font,
font_size,
(0,255,255),
font_thickness,
lineType = cv2.LINE_AA)
# Display the resulting image
cv2.imshow('Video', frame)
out.write(frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()