From 2d511c6115c1ee7170e8336ef5686beceda07969 Mon Sep 17 00:00:00 2001 From: Abhimanyu Susobhanan Date: Sat, 28 Oct 2023 11:00:42 -0500 Subject: [PATCH] compute the noise uncertainties only at the end --- src/pint/fitter.py | 23 ++++++++++++++++------- 1 file changed, 16 insertions(+), 7 deletions(-) diff --git a/src/pint/fitter.py b/src/pint/fitter.py index 287f7f467..df3e68947 100644 --- a/src/pint/fitter.py +++ b/src/pint/fitter.py @@ -1278,7 +1278,7 @@ def _fit_toas( def fit_toas( self, maxiter=20, - noise_fit_niter=5, + noise_fit_niter=3, required_chi2_decrease=1e-2, max_chi2_increase=1e-2, min_lambda=1e-3, @@ -1345,7 +1345,7 @@ def fit_toas( ) else: log.debug("Will fit for noise parameters.") - for _ in range(noise_fit_niter): + for idx in range(noise_fit_niter): self._fit_toas( maxiter=maxiter, required_chi2_decrease=required_chi2_decrease, @@ -1353,8 +1353,14 @@ def fit_toas( min_lambda=min_lambda, debug=debug, ) - values, errors = self._fit_noise(noisefit_method=noisefit_method) - self._update_noise_params(values, errors) + + compute_noise_uncertainties = idx == noise_fit_niter - 1 + values, errors = self._fit_noise( + noisefit_method=noisefit_method, + compute_uncertainties=compute_noise_uncertainties, + ) + if compute_noise_uncertainties: + self._update_noise_params(values, errors) return self._fit_toas( maxiter=maxiter, @@ -1383,7 +1389,7 @@ def _update_noise_params(self, values, errors): getattr(self.model, fp).value = val getattr(self.model, fp).uncertainty_value = err - def _fit_noise(self, noisefit_method="Newton-CG"): + def _fit_noise(self, noisefit_method="Newton-CG", compute_uncertainties=True): """Estimate noise parameters and their uncertainties. Noise parameters are estimated by numerically maximizing the log-likelihood function including the normalization term. The uncertainties thereof are computed using the @@ -1418,8 +1424,11 @@ def _mloglike_grad(xs): _mloglike, xs0, method=noisefit_method, jac=_mloglike_grad ) - hess = Hessdiag(_mloglike) - errs = np.sqrt(1 / hess(maxlike_result.x)) + if compute_uncertainties: + hess = Hessdiag(_mloglike) + errs = np.sqrt(1 / hess(maxlike_result.x)) + else: + errs = None return maxlike_result.x, errs