From a88f15ade5bd19549d26034f17ade32c6a2557aa Mon Sep 17 00:00:00 2001 From: Matthew Kerr Date: Wed, 6 Nov 2024 12:51:04 -0500 Subject: [PATCH] Provide physical formulas for magnetic field calculations. --- src/pint/derived_quantities.py | 70 +++++++++++++++++++++----------- tests/test_derived_quantities.py | 4 +- 2 files changed, 49 insertions(+), 25 deletions(-) diff --git a/src/pint/derived_quantities.py b/src/pint/derived_quantities.py index d5852ae4b..6cae3c39a 100644 --- a/src/pint/derived_quantities.py +++ b/src/pint/derived_quantities.py @@ -130,12 +130,22 @@ def pferrs( return [1.0 / porf, porferr / porf**2.0] forperr = porferr / porf**2.0 fdorpderr = np.sqrt( - (4.0 * pdorfd**2.0 * porferr**2.0) / porf**6.0 + pdorfderr**2.0 / porf**4.0 + (4.0 * pdorfd**2.0 * porferr**2.0) / porf**6.0 + + pdorfderr**2.0 / porf**4.0 ) [forp, fdorpd] = p_to_f(porf, pdorfd) return (forp, forperr, fdorpd, fdorpderr) +def _to_gauss(B: u.Quantity) -> u.G: + """Convert quantity with mass, length, and time units to Gauss. + + In cgs units, magnetic field is has units (mass/length)^(1/2) / time. + """ + eq = [u.Gauss, u.Hz * (u.g / u.cm) ** (1 / 2), lambda x: x, lambda x: x] + return B.to(u.Gauss, equivalencies=[eq]) + + @u.quantity_input(f=u.Hz, fdot=u.Hz / u.s, fo=u.Hz) def pulsar_age( f: u.Quantity, fdot: u.Quantity, n: int = 3, fo: u.Quantity = 1e99 * u.Hz @@ -219,12 +229,16 @@ def pulsar_edot( return (-4.0 * np.pi**2 * I * f * fdot).to(u.erg / u.s) -@u.quantity_input(f=u.Hz, fdot=u.Hz / u.s) -def pulsar_B(f: u.Quantity, fdot: u.Quantity) -> u.G: +@u.quantity_input(f=u.Hz, fdot=u.Hz / u.s, I=u.g * u.cm**2, R=u.km) +def pulsar_B( + f: u.Quantity, + fdot: u.Quantity, + I: u.Quantity = 1.0e45 * u.g * u.cm**2, + R: u.Quantity = 10 * u.km, +) -> u.G: r"""Compute pulsar surface magnetic field - Return the estimated pulsar surface magnetic field strength - given the spin frequency and frequency derivative. + Return the pulsar surface magnetic field strength given the spin frequency `f` and frequency derivative `fdot`. Parameters ---------- @@ -232,6 +246,10 @@ def pulsar_B(f: u.Quantity, fdot: u.Quantity) -> u.G: pulsar frequency fdot : astropy.units.Quantity frequency derivative :math:`\dot f` + I : astropy.units.Quantity, optional + pulsar moment of inertia, default of 1e45 g*cm**2 + R : astropy.units.Quantity, optional + pulsar radius, default of 10 km Returns ------- @@ -247,15 +265,19 @@ def pulsar_B(f: u.Quantity, fdot: u.Quantity) -> u.G: Notes ----- - Calculates :math:`B=3.2\times 10^{19}\,{\rm G}\sqrt{ f \dot f^{-3}}` + Calculates :math:`B=\sqrt{\frac{3\,I\,c^3}{8\pi^2\,R^6}\times\frac{-\dot{f}}{f^3}}` """ - # This is a hack to use the traditional formula by stripping the units. - # It would be nice to improve this to a proper formula with units - return 3.2e19 * u.G * np.sqrt(-fdot.to_value(u.Hz / u.s) / f.to_value(u.Hz) ** 3.0) + factor = (3.0 * I * const.c**3) / (8.0 * np.pi**2 * R**6) + return _to_gauss((factor * (-fdot) / f**3) ** 0.5) -@u.quantity_input(f=u.Hz, fdot=u.Hz / u.s) -def pulsar_B_lightcyl(f: u.Quantity, fdot: u.Quantity) -> u.G: +@u.quantity_input(f=u.Hz, fdot=u.Hz / u.s, I=u.g * u.cm**2, R=u.km) +def pulsar_B_lightcyl( + f: u.Quantity, + fdot: u.Quantity, + I: u.Quantity = 1.0e45 * u.g * u.cm**2, + R=10 * u.km, +) -> u.G: r"""Compute pulsar magnetic field at the light cylinder Return the estimated pulsar magnetic field strength at the @@ -268,6 +290,10 @@ def pulsar_B_lightcyl(f: u.Quantity, fdot: u.Quantity) -> u.G: pulsar frequency fdot : astropy.units.Quantity frequency derivative :math:`\dot f` + I : astropy.units.Quantity, optional + pulsar moment of inertia, default of 1e45 g*cm**2 + R : astropy.units.Quantity, optional + pulsar radius, default of 10 km Returns ------- @@ -283,17 +309,10 @@ def pulsar_B_lightcyl(f: u.Quantity, fdot: u.Quantity) -> u.G: Notes ----- - Calculates :math:`B_{LC} = 2.9\times 10^8\,{\rm G} P^{-5/2} \dot P^{1/2}` + Calculates :math:`B_{LC} = \sqrt{\frac{-24\pi^4\,I}{c^3}\dot{f}f^3}` """ - p, pd = p_to_f(f, fdot) - # This is a hack to use the traditional formula by stripping the units. - # It would be nice to improve this to a proper formula with units - return ( - 2.9e8 - * u.G - * p.to_value(u.s) ** (-5.0 / 2.0) - * np.sqrt(pd.to(u.dimensionless_unscaled).value) - ) + factor = 24.0 * np.pi**4.0 * I / const.c**3.0 + return _to_gauss((factor * (-fdot) * f**3.0) ** 0.5) @u.quantity_input(pb=u.d, x=u.cm) @@ -533,12 +552,17 @@ def companion_mass( # delta1 is always <0 # delta1 = 2 * b ** 3 - 9 * a * b * c + 27 * a ** 2 * d delta1 = ( - -2 * massfunct**3 - 18 * a * mp * massfunct**2 - 27 * a**2 * massfunct * mp**2 + -2 * massfunct**3 + - 18 * a * mp * massfunct**2 + - 27 * a**2 * massfunct * mp**2 ) # Q**2 is always > 0, so this is never a problem # in terms of complex numbers # Q = np.sqrt(delta1**2 - 4*delta0**3) - Q = np.sqrt(108 * a**3 * mp**3 * massfunct**3 + 729 * a**4 * mp**4 * massfunct**2) + Q = np.sqrt( + 108 * a**3 * mp**3 * massfunct**3 + + 729 * a**4 * mp**4 * massfunct**2 + ) # this could be + or - Q # pick the - branch since delta1 is <0 so that delta1 - Q is never near 0 Ccubed = 0.5 * (delta1 + Q) diff --git a/tests/test_derived_quantities.py b/tests/test_derived_quantities.py index cf5e845b0..833e98a86 100644 --- a/tests/test_derived_quantities.py +++ b/tests/test_derived_quantities.py @@ -67,7 +67,7 @@ def test_Edot(): def test_Bfield(): # B assert np.isclose( - pulsar_B(0.033 * u.Hz, -2.0e-15 * u.Hz / u.s), 238722891596281.66 * u.G + pulsar_B(0.033 * u.Hz, -2.0e-15 * u.Hz / u.s), 238693670891966.22 * u.G ) @@ -75,7 +75,7 @@ def test_Blc(): # B_lc assert np.isclose( pulsar_B_lightcyl(0.033 * u.Hz, -2.0e-15 * u.Hz / u.s), - 0.07774704753236616 * u.G, + 0.07896965114785195 * u.G, )