Skip to content

Commit

Permalink
Merge branch 'nanograv:master' into chromatic
Browse files Browse the repository at this point in the history
  • Loading branch information
abhisrkckl authored Sep 26, 2023
2 parents e287e5c + 11ccc5d commit a70e5f2
Show file tree
Hide file tree
Showing 15 changed files with 674 additions and 111 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG-unreleased.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,10 +13,12 @@ the released changes.
- Moved design matrix normalization code from `pint.fitter` to the new `pint.utils.normalize_designmatrix()` function.
- Made `Residuals` independent of `GLSFitter` (GLS chi2 is now computed using the new function `Residuals._calc_gls_chi2()`).
### Added
- CHI2, CHI2R, TRES, DMRES now in postfit par files
- Added `WaveX` model as a `DelayComponent` with Fourier amplitudes as fitted parameters
- `Parameter.as_latex` method for latex representation of a parameter.
- `pint.output.publish` module and `pintpublish` script for generating publication (LaTeX) output.
- Added radial velocity methods for binary models
- Support for wideband data in `pint.bayesian` (no correlated noise).
- Added `DMWaveX` model (Fourier representation of DM noise)
### Fixed
- Wave model `validate()` can correctly use PEPOCH to assign WAVEEPOCH parameter
Expand Down
2 changes: 2 additions & 0 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,8 @@
"examples/compare_tempo2_B1855.py",
"examples/example_dmx_ranges.py",
"examples/example_pulse_numbers.py",
# "examples/bayesian-example-NGC6440E.py",
# "examples/bayesian-wideband-example.py",
"conf.py",
"_ext",
]
Expand Down
153 changes: 96 additions & 57 deletions docs/examples/bayesian-example-NGC6440E.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,18 @@
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.14.7
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---

# %% [markdown]
# # PINT Bayesian Interface Examples

Expand All @@ -6,6 +21,7 @@
from pint.bayesian import BayesianTiming
from pint.config import examplefile
from pint.models.priors import Prior
from pint.logging import setup as setup_log
from scipy.stats import uniform

# %%
Expand All @@ -16,6 +32,10 @@
import io
import matplotlib.pyplot as plt

# %%
# Turn off log messages. They can slow down the processing.
setup_log(level="WARNING")

# %%
# Read the par and tim files
parfile = examplefile("NGC6440E.par.good")
Expand Down Expand Up @@ -70,36 +90,48 @@
+ np.random.randn(nwalkers, bt.nparams) * maxlike_errors
)

# %%
# ** IMPORTANT!!! **
# This is used to exclude some of the following time-consuming steps from the readthedocs build.
# Set this to False while actually using this example.
rtd = True

# %%
# Use longer chain_length for real runs. It is kept small here so that
# the sampling finishes quickly (and because I know the burn in is short
# because of the cheating priors above).
print("Running emcee...")
chain_length = 1000
sampler.run_mcmc(
start_points,
chain_length,
progress=True,
)
if not rtd:
print("Running emcee...")

# %%
# Merge all the chains together after discarding the first 100 samples as 'burn-in'.
# The burn-in should be decided after looking at the chains in the real world.
samples_emcee = sampler.get_chain(flat=True, discard=100)
chain_length = 1000

sampler.run_mcmc(
start_points,
chain_length,
progress=True,
)

# %%
# Plot the MCMC chains to make sure that the burn-in has been removed properly.
# Otherwise, go back and discard more points.
for idx, param_chain in enumerate(samples_emcee.T):
plt.subplot(bt.nparams, 1, idx + 1)
plt.plot(param_chain, label=bt.param_labels[idx])
plt.legend()
plt.show()
if not rtd:
# Merge all the chains together after discarding the first 100 samples as 'burn-in'.
# The burn-in should be decided after looking at the chains in the real world.
samples_emcee = sampler.get_chain(flat=True, discard=100)

# %%
if not rtd:
# Plot the MCMC chains to make sure that the burn-in has been removed properly.
# Otherwise, go back and discard more points.
for idx, param_chain in enumerate(samples_emcee.T):
plt.subplot(bt.nparams, 1, idx + 1)
plt.plot(param_chain, label=bt.param_labels[idx])
plt.legend()
plt.show()

# %%
# Plot the posterior distribution.
fig = corner.corner(samples_emcee, labels=bt.param_labels)
plt.show()
if not rtd:
fig = corner.corner(samples_emcee, labels=bt.param_labels)
plt.show()

# %% [markdown]
# ## Nested sampling with nestle
Expand All @@ -118,28 +150,30 @@
# `dlogz` is the target accuracy in the computed Bayesian evidence.
# Increasing `npoints` or decreasing `dlogz` gives more accurate results,
# but at the cost of time.
print("Running nestle...")
result_nestle_1 = nestle.sample(
bt.lnlikelihood,
bt.prior_transform,
bt.nparams,
method="multi",
npoints=150,
dlogz=0.5,
callback=nestle.print_progress,
)
if not rtd:
print("Running nestle...")
result_nestle_1 = nestle.sample(
bt.lnlikelihood,
bt.prior_transform,
bt.nparams,
method="multi",
npoints=150,
dlogz=0.5,
callback=nestle.print_progress,
)

# %%
# Plot the posterior
# The nested samples come with weights, which must be taken into account
# while plotting.
fig = corner.corner(
result_nestle_1.samples,
weights=result_nestle_1.weights,
labels=bt.param_labels,
range=[0.999] * bt.nparams,
)
plt.show()
if not rtd:
fig = corner.corner(
result_nestle_1.samples,
weights=result_nestle_1.weights,
labels=bt.param_labels,
range=[0.999] * bt.nparams,
)
plt.show()

# %% [markdown]
# Let us create a new model with an EFAC applied to all toas (all
Expand Down Expand Up @@ -170,36 +204,41 @@
print(bt2.likelihood_method)

# %%
result_nestle_2 = nestle.sample(
bt2.lnlikelihood,
bt2.prior_transform,
bt2.nparams,
method="multi",
npoints=150,
dlogz=0.5,
callback=nestle.print_progress,
)
if not rtd:
result_nestle_2 = nestle.sample(
bt2.lnlikelihood,
bt2.prior_transform,
bt2.nparams,
method="multi",
npoints=150,
dlogz=0.5,
callback=nestle.print_progress,
)

# %%
# Plot the posterior.
# The EFAC looks consistent with 1.
fig2 = corner.corner(
result_nestle_2.samples,
weights=result_nestle_2.weights,
labels=bt2.param_labels,
range=[0.999] * bt2.nparams,
)
plt.show()
if not rtd:
fig2 = corner.corner(
result_nestle_2.samples,
weights=result_nestle_2.weights,
labels=bt2.param_labels,
range=[0.999] * bt2.nparams,
)
plt.show()

# %% [markdown]
# Now let us look at the evidences and compute the Bayes factor.

# %%
print(f"Evidence without EFAC : {result_nestle_1.logz} +/- {result_nestle_1.logzerr}")
print(f"Evidence with EFAC : {result_nestle_2.logz} +/- {result_nestle_2.logzerr}")
if not rtd:
print(
f"Evidence without EFAC : {result_nestle_1.logz} +/- {result_nestle_1.logzerr}"
)
print(f"Evidence with EFAC : {result_nestle_2.logz} +/- {result_nestle_2.logzerr}")

bf = np.exp(result_nestle_1.logz - result_nestle_2.logz)
print(f"Bayes factor : {bf} (in favor of no EFAC)")
bf = np.exp(result_nestle_1.logz - result_nestle_2.logz)
print(f"Bayes factor : {bf} (in favor of no EFAC)")

# %% [markdown]
# The Bayes factor tells us that the EFAC is unnecessary for this dataset.
110 changes: 110 additions & 0 deletions docs/examples/bayesian-wideband-example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# %% [markdown]
# # PINT Bayesian Interface Example (Wideband)

# %%
import corner
import emcee
import matplotlib.pyplot as plt
import numpy as np

from pint.bayesian import BayesianTiming
from pint.config import examplefile
from pint.fitter import WidebandDownhillFitter
from pint.logging import setup as setup_log
from pint.models import get_model_and_toas

# %%
# Turn off log messages. They can slow down the processing.
setup_log(level="WARNING")

# %%
# This is a simulated dataset.
m, t = get_model_and_toas(examplefile("test-wb-0.par"), examplefile("test-wb-0.tim"))

# %%
# Fit the model to the data to get the parameter uncertainties.
ftr = WidebandDownhillFitter(t, m)
ftr.fit_toas()
m = ftr.model

# %%
# Now set the priors.
# I am cheating here by setting the priors around the maximum likelihood estimates.
# This is a bad idea for real datasets and can bias the estimates. I am doing this
# here just to make everything finish faster. In the real world, these priors should
# be informed by, e.g. previous (independent) timing solutions, pulsar search results,
# VLBI localization etc. Note that unbounded uniform priors don't work here.
prior_info = {}
for par in m.free_params:
param = getattr(m, par)
param_min = float(param.value - 10 * param.uncertainty_value)
param_max = float(param.value + 10 * param.uncertainty_value)
prior_info[par] = {"distr": "uniform", "pmin": param_min, "pmax": param_max}

# %%
# Set the EFAC and DMEFAC priors and unfreeze them.
# Don't do this before the fitting step. The fitter doesn't know
# how to deal with noise parameters.
prior_info["EFAC1"] = {"distr": "normal", "mu": 1, "sigma": 0.1}
prior_info["DMEFAC1"] = {"distr": "normal", "mu": 1, "sigma": 0.1}

m.EFAC1.frozen = False
m.EFAC1.uncertainty_value = 0.01
m.DMEFAC1.frozen = False
m.DMEFAC1.uncertainty_value = 0.01

# %%
# The likelihood function behaves better if `use_pulse_numbers==True`.
bt = BayesianTiming(m, t, use_pulse_numbers=True, prior_info=prior_info)

# %%
print("Number of parameters = ", bt.nparams)
print("Likelihood method = ", bt.likelihood_method)

# %%
nwalkers = 25
sampler = emcee.EnsembleSampler(nwalkers, bt.nparams, bt.lnposterior)

# %%
# Start the sampler close to the maximul likelihood estimate.
maxlike_params = np.array([param.value for param in bt.params], dtype=float)
maxlike_errors = [param.uncertainty_value for param in bt.params]
start_points = (
np.repeat([maxlike_params], nwalkers).reshape(bt.nparams, nwalkers).T
+ np.random.randn(nwalkers, bt.nparams) * maxlike_errors
)

# %%
# ** IMPORTANT!!! **
# This is used to exclude the following time-consuming steps from the readthedocs build.
# Set this to False while actually using this example.
rtd = True

# %%
if not rtd:
print("Running emcee...")
chain_length = 1000
sampler.run_mcmc(
start_points,
chain_length,
progress=True,
)

samples_emcee = sampler.get_chain(flat=True, discard=100)

# %%
# Plot the chains to make sure they have converged and the burn-in has been removed properly.
if not rtd:
for idx, param_chain in enumerate(samples_emcee.T):
plt.subplot(bt.nparams, 1, idx + 1)
plt.plot(param_chain)
plt.ylabel(bt.param_labels[idx])
plt.autoscale()
plt.show()

# %%
if not rtd:
fig = corner.corner(
samples_emcee, labels=bt.param_labels, quantiles=[0.5], truths=maxlike_params
)
plt.show()
2 changes: 2 additions & 0 deletions docs/tutorials.rst
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,8 @@ are not included in the default build because they take too long, but you can do
examples/check_phase_connection.ipynb
examples/PINT_observatories.ipynb
examples/solar_wind.ipynb
examples/bayesian-example-NGC6440E.py
examples/bayesian-wideband-example.py
examples-rendered/paper_validation_example.ipynb

.. _`Time a Pulsar`: examples/time_a_pulsar.html
Loading

0 comments on commit a70e5f2

Please sign in to comment.