From 5743db1f8610d188e3fdcde10f8a0ac02b41d2de Mon Sep 17 00:00:00 2001 From: Abhimanyu Susobhanan Date: Mon, 2 Oct 2023 10:49:22 -0500 Subject: [PATCH] docs --- src/pint/residuals.py | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) diff --git a/src/pint/residuals.py b/src/pint/residuals.py index d3a9fe2f2..a53894cf7 100644 --- a/src/pint/residuals.py +++ b/src/pint/residuals.py @@ -560,8 +560,8 @@ def _calc_gls_chi2(self, lognorm=False): logdet_Sigma = ( np.sum(np.log(np.diag(c[0]))) if not svd else np.sum(np.abs(np.log(s))) ) - lognorm = logdet_N + logdet_Phiinv + logdet_Sigma - return chi2, lognorm + log_norm = logdet_N + logdet_Phiinv + logdet_Sigma + return chi2, log_norm def calc_chi2(self, lognorm=False): """Return the weighted chi-squared for the model and toas. @@ -592,7 +592,9 @@ def calc_chi2(self, lognorm=False): function along with the chi2 value. Returns - + ------- + chi2 if lognorm is False + (chi2, log_norm) if lognorm is True """ if self.model.has_correlated_errors: return self._calc_gls_chi2(lognorm=lognorm) @@ -620,8 +622,8 @@ def calc_chi2(self, lognorm=False): if not lognorm: return chi2 else: - lognorm = np.sum(np.log(err.value)) - return chi2, lognorm + log_norm = np.sum(np.log(err.value)) + return chi2, log_norm def ecorr_average(self, use_noise_model=True): """Uses the ECORR noise model time-binning to compute "epoch-averaged" residuals.