-
Notifications
You must be signed in to change notification settings - Fork 101
/
simulation_example.py
390 lines (347 loc) · 8.59 KB
/
simulation_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# %% [markdown]
# # Demonstrate TOA simulation using PINT
# %%
from pint.models import get_model
from pint.simulation import (
make_fake_toas_uniform,
make_fake_toas_fromtim,
)
from pint.residuals import Residuals, WidebandTOAResiduals
from pint.logging import setup as setup_log
from pint import dmu
from pint.config import examplefile
import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u
import io
# Turn logging level to warnings and above
setup_log(level="WARNING")
# %% [markdown]
# ## Basic example
# %%
# First, let us create a simple model from which we will simulate TOAs.
m = get_model(
io.StringIO(
"""
RAJ 05:00:00
DECJ 20:00:00
PEPOCH 55000
F0 100
F1 -1e-14
DM 15
PHOFF 0
EFAC tel gbt 1.5
TZRMJD 55000
TZRFRQ 1400
TZRSITE gbt
EPHEM DE440
CLOCK TT(BIPM2019)
UNITS TDB
"""
)
)
# %%
# The simplest type of simulation we can do is narrowband TOAs with uniformly
# spaced epochs (one TOA per epoch) with a single frequency and equal TOA uncertainties.
tsim = make_fake_toas_uniform(
model=m,
startMJD=54000,
endMJD=56000,
ntoas=100,
freq=1400 * u.MHz,
obs="gbt",
error=1 * u.us,
include_bipm=True,
)
# %%
# Let us try plotting the residuals
res = Residuals(tsim, m)
plt.errorbar(
tsim.get_mjds(),
res.time_resids.to_value("us"),
res.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("MJD")
plt.ylabel("Residuals (us)")
plt.show()
# %% [markdown]
# Here we see that the TOAs don't have the expected white
# noise. The noise should be 1.5 us, including the EFAC.
# The noise can be included by using the `add_noise` option.
# %%
tsim = make_fake_toas_uniform(
model=m,
startMJD=54000,
endMJD=56000,
ntoas=100,
freq=1400 * u.MHz,
obs="gbt",
error=1 * u.us,
include_bipm=True,
add_noise=True,
)
# %%
res = Residuals(tsim, m)
plt.errorbar(
tsim.get_mjds(),
res.time_resids.to_value("us"),
res.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("MJD")
plt.ylabel("Residuals (us)")
plt.show()
# %% [markdown]
# The same thing can be achieved in the command line using
# the following command:
#
# $ zima --startMJD 54000 --ntoa 100 --duration 2000 --obs gbt --freq 1400 --error 1 --addnoise test.par test.tim
# %% [markdown]
# ## Multiple frequency example
#
# Multiple frequency TOAs can be simulated by passing an array of frequencies
# into the `freq` parameter.
# %%
freqs = np.linspace(1000, 2000, 4) * u.MHz
tsim = make_fake_toas_uniform(
model=m,
startMJD=54000,
endMJD=56000,
ntoas=100,
freq=freqs,
obs="gbt",
error=1 * u.us,
include_bipm=True,
add_noise=True,
)
# %%
res = Residuals(tsim, m)
plt.subplot(211)
plt.errorbar(
tsim.get_mjds(),
res.time_resids.to_value("us"),
res.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("MJD")
plt.ylabel("Residuals (us)")
plt.subplot(212)
plt.errorbar(
tsim.get_freqs(),
res.time_resids.to_value("us"),
res.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("Freq (MHz)")
plt.ylabel("Residuals (us)")
plt.show()
# %% [markdown]
# We see that the frequencies are distributed amongst epochs such that
# there is only one TOA per epoch. To distribute the TOAs such that each
# epoch contains all frequencies, use the `multi_freqs_in_epoch` option.
# Note that this option doesn't change the total number of TOAs.
# %%
freqs = np.linspace(1000, 2000, 4) * u.MHz
tsim = make_fake_toas_uniform(
model=m,
startMJD=54000,
endMJD=56000,
ntoas=100,
freq=freqs,
obs="gbt",
error=1 * u.us,
include_bipm=True,
add_noise=True,
multi_freqs_in_epoch=True,
)
# %%
res = Residuals(tsim, m)
plt.subplot(211)
plt.errorbar(
tsim.get_mjds(),
res.time_resids.to_value("us"),
res.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("MJD")
plt.ylabel("Residuals (us)")
plt.subplot(212)
plt.errorbar(
tsim.get_freqs(),
res.time_resids.to_value("us"),
res.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("Freq(MHz)")
plt.ylabel("Residuals (us)")
plt.show()
# %% [markdown]
# The same thing can be achieved in the command line using
# the following command:
#
# $ zima --startMJD 54000 --ntoa 100 --duration 2000 --obs gbt --freq 1000 1333.33 1666.67 2000 --error 1 --addnoise --multifreq test.par test.tim
# %% [markdown]
# ## Correlated noise simulation example
#
# If there is a correlated noise component in the timing model,
# an instance of that noise can be injected into the TOAs using
# the `add_correlated_noise` option.
# %%
m1 = get_model(
io.StringIO(
"""
RAJ 05:00:00
DECJ 20:00:00
PEPOCH 55000
F0 100
F1 -1e-14
DM 15
PHOFF 0
EFAC tel gbt 1.5
TNREDAMP -13
TNREDGAM 4
TZRMJD 55000
TZRFRQ 1400
TZRSITE gbt
EPHEM DE440
CLOCK TT(BIPM2019)
UNITS TDB
"""
)
)
tsim = make_fake_toas_uniform(
model=m1,
startMJD=54000,
endMJD=56000,
ntoas=100,
freq=1400 * u.MHz,
obs="gbt",
error=1 * u.us,
include_bipm=True,
add_noise=True,
add_correlated_noise=True,
)
# %%
res = Residuals(tsim, m1)
plt.errorbar(
tsim.get_mjds(),
res.time_resids.to_value("us"),
res.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("MJD")
plt.ylabel("Residuals (us)")
plt.show()
# %% [markdown]
# The same thing can be achieved in the command line using
# the following command:
#
# $ zima --startMJD 54000 --ntoa 100 --duration 2000 --obs gbt --freq 1400 --error 1 --addnoise --addcorrnoise test.par test.tim
# %% [markdown]
# ## Wideband TOA simulation example
#
# Wideband TOAs can be simulated using the `wideband` option.
# The white noise RMS for the wideband DMs is controlled using
# the `wideband_dm_error` parameter.
# %%
m2 = get_model(
io.StringIO(
"""
RAJ 05:00:00
DECJ 20:00:00
PEPOCH 55000
F0 100
F1 -1e-14
DMEPOCH 55000
DM 15
DM1 1
DM2 0.5
PHOFF 0
EFAC tel gbt 1.5
TZRMJD 55000
TZRFRQ 1400
TZRSITE gbt
EPHEM DE440
CLOCK TT(BIPM2019)
UNITS TDB
"""
)
)
tsim = make_fake_toas_uniform(
model=m2,
startMJD=54000,
endMJD=56000,
ntoas=100,
freq=1400 * u.MHz,
obs="gbt",
error=1 * u.us,
include_bipm=True,
wideband=True,
wideband_dm_error=1e-5 * dmu,
add_noise=True,
)
# %%
res = WidebandTOAResiduals(tsim, m2)
plt.subplot(211)
plt.errorbar(
tsim.get_mjds(),
res.toa.time_resids.to_value("us"),
res.toa.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("MJD")
plt.ylabel("Residuals (us)")
plt.subplot(212)
plt.errorbar(
tsim.get_mjds(),
tsim.get_dms().to_value(dmu),
res.dm.get_data_error().to_value(dmu),
marker="+",
ls="",
)
plt.xlabel("MJD")
plt.ylabel("Wideband DM (dmu)")
plt.show()
# %% [markdown]
# The same thing can be achieved in the command line using
# the following command::
#
# $ zima --startMJD 54000 --ntoa 100 --duration 2000 --obs gbt --freq 1400 --error 1 --addnoise --wideband --dmerror 1e-5 test.par test.tim
# %% [markdown]
# ## Simulating TOAs based on a tim file
#
# TOAs can be simulated to match the configuration of an existing tim file
# (e.g. epochs, TOA uncertainties, frequencies, flags, etc.) using the
# `make_fake_toas_fromtim` function. This also works with wideband tim files.
# %%
tsim = make_fake_toas_fromtim(
timfile=examplefile("B1855+09_NANOGrav_9yv1.tim"),
model=m,
add_noise=True,
)
# %%
res = Residuals(tsim, m)
plt.errorbar(
tsim.get_mjds(),
res.time_resids.to_value("us"),
res.get_data_error().to_value("us"),
marker="+",
ls="",
)
plt.xlabel("MJD")
plt.ylabel("Residuals (us)")
plt.show()
# %% [markdown]
# The same thing can be achieved in the command line using
# the following command::
#
# $ zima --inputtim B1855+09_NANOGrav_9yv1.tim --addnoise test.par test.tim