-
Notifications
You must be signed in to change notification settings - Fork 101
/
rednoise-fit-example.py
533 lines (463 loc) · 13.5 KB
/
rednoise-fit-example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# %% [markdown]
# # Red noise, DM noise, and chromatic noise fitting examples
#
# This notebook provides an example on how to fit for red noise
# and DM noise using PINT using simulated datasets.
#
# We will use the `PLRedNoise` and `PLDMNoise` models to generate
# noise realizations (these models provide Fourier Gaussian process
# descriptions of achromatic red noise and DM noise respectively).
#
# We will fit the generated datasets using the `WaveX` and `DMWaveX` models,
# which provide deterministic Fourier representations of achromatic red noise
# and DM noise respectively.
#
# Finally, we will convert the `WaveX`/`DMWaveX` amplitudes into spectral
# parameters and compare them with the injected values.
# %%
from pint import DMconst
from pint.models import get_model
from pint.simulation import make_fake_toas_uniform
from pint.logging import setup as setup_log
from pint.fitter import WLSFitter
from pint.utils import (
cmwavex_setup,
dmwavex_setup,
find_optimal_nharms,
plchromnoise_from_cmwavex,
wavex_setup,
plrednoise_from_wavex,
pldmnoise_from_dmwavex,
)
from io import StringIO
import numpy as np
import astropy.units as u
from matplotlib import pyplot as plt
from copy import deepcopy
setup_log(level="WARNING")
# %% [markdown]
# ## Red noise fitting
# %% [markdown]
# ### Simulation
# The first step is to generate a simulated dataset for demonstration.
# Note that we are adding PHOFF as a free parameter. This is required
# for the fit to work properly.
# %%
par_sim = """
PSR SIM3
RAJ 05:00:00 1
DECJ 15:00:00 1
PEPOCH 55000
F0 100 1
F1 -1e-15 1
PHOFF 0 1
DM 15 1
TNREDAMP -13
TNREDGAM 3.5
TNREDC 30
TZRMJD 55000
TZRFRQ 1400
TZRSITE gbt
UNITS TDB
EPHEM DE440
CLOCK TT(BIPM2019)
"""
m = get_model(StringIO(par_sim))
# %%
# Now generate the simulated TOAs.
ntoas = 2000
toaerrs = np.random.uniform(0.5, 2.0, ntoas) * u.us
freqs = np.linspace(500, 1500, 8) * u.MHz
t = make_fake_toas_uniform(
startMJD=53001,
endMJD=57001,
ntoas=ntoas,
model=m,
freq=freqs,
obs="gbt",
error=toaerrs,
add_noise=True,
add_correlated_noise=True,
name="fake",
include_bipm=True,
multi_freqs_in_epoch=True,
)
# %% [markdown]
# ### Optimal number of harmonics
# The optimal number of harmonics can be estimated by minimizing the
# Akaike Information Criterion (AIC). This is implemented in the
# `pint.utils.find_optimal_nharms` function.
# %%
m1 = deepcopy(m)
m1.remove_component("PLRedNoise")
nharm_opt, d_aics = find_optimal_nharms(m1, t, "WaveX", 30)
print("Optimum no of harmonics = ", nharm_opt)
# %%
print(np.argmin(d_aics))
# %%
# The Y axis is plotted in log scale only for better visibility.
plt.scatter(list(range(len(d_aics))), d_aics + 1)
plt.axvline(nharm_opt, color="red", label="Optimum number of harmonics")
plt.axvline(
int(m.TNREDC.value), color="black", ls="--", label="Injected number of harmonics"
)
plt.xlabel("Number of harmonics")
plt.ylabel("AIC - AIC$_\\min{} + 1$")
plt.legend()
plt.yscale("log")
# plt.savefig("sim3-aic.pdf")
# %%
# Now create a new model with the optimum number of harmonics
m2 = deepcopy(m1)
Tspan = t.get_mjds().max() - t.get_mjds().min()
wavex_setup(m2, T_span=Tspan, n_freqs=nharm_opt, freeze_params=False)
ftr = WLSFitter(t, m2)
ftr.fit_toas(maxiter=10)
m2 = ftr.model
print(m2)
# %% [markdown]
# ### Estimating the spectral parameters from the WaveX fit.
# %%
# Get the Fourier amplitudes and powers and their uncertainties.
idxs = np.array(m2.components["WaveX"].get_indices())
a = np.array([m2[f"WXSIN_{idx:04d}"].quantity.to_value("s") for idx in idxs])
da = np.array([m2[f"WXSIN_{idx:04d}"].uncertainty.to_value("s") for idx in idxs])
b = np.array([m2[f"WXCOS_{idx:04d}"].quantity.to_value("s") for idx in idxs])
db = np.array([m2[f"WXCOS_{idx:04d}"].uncertainty.to_value("s") for idx in idxs])
print(len(idxs))
P = (a**2 + b**2) / 2
dP = ((a * da) ** 2 + (b * db) ** 2) ** 0.5
f0 = (1 / Tspan).to_value(u.Hz)
fyr = (1 / u.year).to_value(u.Hz)
# %%
# We can create a `PLRedNoise` model from the `WaveX` model.
# This will estimate the spectral parameters from the `WaveX`
# amplitudes.
m3 = plrednoise_from_wavex(m2)
print(m3)
# %%
# Now let us plot the estimated spectrum with the injected
# spectrum.
plt.subplot(211)
plt.errorbar(
idxs * f0,
b * 1e6,
db * 1e6,
ls="",
marker="o",
label="$\\hat{a}_j$ (WXCOS)",
color="red",
)
plt.errorbar(
idxs * f0,
a * 1e6,
da * 1e6,
ls="",
marker="o",
label="$\\hat{b}_j$ (WXSIN)",
color="blue",
)
plt.axvline(fyr, color="black", ls="dotted")
plt.axhline(0, color="grey", ls="--")
plt.ylabel("Fourier coeffs ($\mu$s)")
plt.xscale("log")
plt.legend(fontsize=8)
plt.subplot(212)
plt.errorbar(
idxs * f0, P, dP, ls="", marker="o", label="Spectral power (PINT)", color="k"
)
P_inj = m.components["PLRedNoise"].get_noise_weights(t)[::2][:nharm_opt]
plt.plot(idxs * f0, P_inj, label="Injected Spectrum", color="r")
P_est = m3.components["PLRedNoise"].get_noise_weights(t)[::2][:nharm_opt]
print(len(idxs), len(P_est))
plt.plot(idxs * f0, P_est, label="Estimated Spectrum", color="b")
plt.xscale("log")
plt.yscale("log")
plt.ylabel("Spectral power (s$^2$)")
plt.xlabel("Frequency (Hz)")
plt.axvline(fyr, color="black", ls="dotted", label="1 yr$^{-1}$")
plt.legend()
# %% [markdown]
# Note the outlier in the 1 year^-1 bin. This is caused by the covariance with RA and DEC, which introduce a delay with the same frequency.
# %% [markdown]
# ## DM noise fitting
# Let us now do a similar kind of analysis for DM noise.
# %%
par_sim = """
PSR SIM4
RAJ 05:00:00 1
DECJ 15:00:00 1
PEPOCH 55000
F0 100 1
F1 -1e-15 1
PHOFF 0 1
DM 15 1
TNDMAMP -13
TNDMGAM 3.5
TNDMC 30
TZRMJD 55000
TZRFRQ 1400
TZRSITE gbt
UNITS TDB
EPHEM DE440
CLOCK TT(BIPM2019)
"""
m = get_model(StringIO(par_sim))
# %%
# Generate the simulated TOAs.
ntoas = 2000
toaerrs = np.random.uniform(0.5, 2.0, ntoas) * u.us
freqs = np.linspace(500, 1500, 8) * u.MHz
t = make_fake_toas_uniform(
startMJD=53001,
endMJD=57001,
ntoas=ntoas,
model=m,
freq=freqs,
obs="gbt",
error=toaerrs,
add_noise=True,
add_correlated_noise=True,
name="fake",
include_bipm=True,
multi_freqs_in_epoch=True,
)
# %%
# Find the optimum number of harmonics by minimizing AIC.
m1 = deepcopy(m)
m1.remove_component("PLDMNoise")
m2 = deepcopy(m1)
nharm_opt, d_aics = find_optimal_nharms(m2, t, "DMWaveX", 30)
print("Optimum no of harmonics = ", nharm_opt)
# %%
# The Y axis is plotted in log scale only for better visibility.
plt.scatter(list(range(len(d_aics))), d_aics + 1)
plt.axvline(nharm_opt, color="red", label="Optimum number of harmonics")
plt.axvline(
int(m.TNDMC.value), color="black", ls="--", label="Injected number of harmonics"
)
plt.xlabel("Number of harmonics")
plt.ylabel("AIC - AIC$_\\min{} + 1$")
plt.legend()
plt.yscale("log")
# plt.savefig("sim3-aic.pdf")
# %%
# Now create a new model with the optimum number of
# harmonics
m2 = deepcopy(m1)
Tspan = t.get_mjds().max() - t.get_mjds().min()
dmwavex_setup(m2, T_span=Tspan, n_freqs=nharm_opt, freeze_params=False)
ftr = WLSFitter(t, m2)
ftr.fit_toas(maxiter=10)
m2 = ftr.model
print(m2)
# %% [markdown]
# ### Estimating the spectral parameters from the `DMWaveX` fit.
# %%
# Get the Fourier amplitudes and powers and their uncertainties.
# Note that the `DMWaveX` amplitudes have the units of DM.
# We multiply them by a constant factor to convert them to dimensions
# of time so that they are consistent with `PLDMNoise`.
scale = DMconst / (1400 * u.MHz) ** 2
idxs = np.array(m2.components["DMWaveX"].get_indices())
a = np.array(
[(scale * m2[f"DMWXSIN_{idx:04d}"].quantity).to_value("s") for idx in idxs]
)
da = np.array(
[(scale * m2[f"DMWXSIN_{idx:04d}"].uncertainty).to_value("s") for idx in idxs]
)
b = np.array(
[(scale * m2[f"DMWXCOS_{idx:04d}"].quantity).to_value("s") for idx in idxs]
)
db = np.array(
[(scale * m2[f"DMWXCOS_{idx:04d}"].uncertainty).to_value("s") for idx in idxs]
)
print(len(idxs))
P = (a**2 + b**2) / 2
dP = ((a * da) ** 2 + (b * db) ** 2) ** 0.5
f0 = (1 / Tspan).to_value(u.Hz)
fyr = (1 / u.year).to_value(u.Hz)
# %%
# We can create a `PLDMNoise` model from the `DMWaveX` model.
# This will estimate the spectral parameters from the `DMWaveX`
# amplitudes.
m3 = pldmnoise_from_dmwavex(m2)
print(m3)
# %%
# Now let us plot the estimated spectrum with the injected
# spectrum.
plt.subplot(211)
plt.errorbar(
idxs * f0,
b * 1e6,
db * 1e6,
ls="",
marker="o",
label="$\\hat{a}_j$ (DMWXCOS)",
color="red",
)
plt.errorbar(
idxs * f0,
a * 1e6,
da * 1e6,
ls="",
marker="o",
label="$\\hat{b}_j$ (DMWXSIN)",
color="blue",
)
plt.axvline(fyr, color="black", ls="dotted")
plt.axhline(0, color="grey", ls="--")
plt.ylabel("Fourier coeffs ($\mu$s)")
plt.xscale("log")
plt.legend(fontsize=8)
plt.subplot(212)
plt.errorbar(
idxs * f0, P, dP, ls="", marker="o", label="Spectral power (PINT)", color="k"
)
P_inj = m.components["PLDMNoise"].get_noise_weights(t)[::2][:nharm_opt]
plt.plot(idxs * f0, P_inj, label="Injected Spectrum", color="r")
P_est = m3.components["PLDMNoise"].get_noise_weights(t)[::2][:nharm_opt]
print(len(idxs), len(P_est))
plt.plot(idxs * f0, P_est, label="Estimated Spectrum", color="b")
plt.xscale("log")
plt.yscale("log")
plt.ylabel("Spectral power (s$^2$)")
plt.xlabel("Frequency (Hz)")
plt.axvline(fyr, color="black", ls="dotted", label="1 yr$^{-1}$")
plt.legend()
# %% [markdown]
# ## Chromatic noise fitting
# Let us now do a similar kind of analysis for chromatic noise.
# %%
par_sim = """
PSR SIM5
RAJ 05:00:00 1
DECJ 15:00:00 1
PEPOCH 55000
F0 100 1
F1 -1e-15 1
PHOFF 0 1
DM 15
CM 1.2 1
TNCHROMIDX 3.5
TNCHROMAMP -13
TNCHROMGAM 3.5
TNCHROMC 30
TZRMJD 55000
TZRFRQ 1400
TZRSITE gbt
UNITS TDB
EPHEM DE440
CLOCK TT(BIPM2019)
"""
m = get_model(StringIO(par_sim))
# %%
# Generate the simulated TOAs.
ntoas = 2000
toaerrs = np.random.uniform(0.5, 2.0, ntoas) * u.us
freqs = np.linspace(500, 1500, 8) * u.MHz
t = make_fake_toas_uniform(
startMJD=53001,
endMJD=57001,
ntoas=ntoas,
model=m,
freq=freqs,
obs="gbt",
error=toaerrs,
add_noise=True,
add_correlated_noise=True,
name="fake",
include_bipm=True,
multi_freqs_in_epoch=True,
)
# %%
# Find the optimum number of harmonics by minimizing AIC.
m1 = deepcopy(m)
m1.remove_component("PLChromNoise")
m2 = deepcopy(m1)
nharm_opt = m.TNCHROMC.value
# %%
# Now create a new model with the optimum number of
# harmonics
m2 = deepcopy(m1)
Tspan = t.get_mjds().max() - t.get_mjds().min()
cmwavex_setup(m2, T_span=Tspan, n_freqs=nharm_opt, freeze_params=False)
ftr = WLSFitter(t, m2)
ftr.fit_toas(maxiter=10)
m2 = ftr.model
print(m2)
# %% [markdown]
# ### Estimating the spectral parameters from the `CMWaveX` fit.
# %%
# Get the Fourier amplitudes and powers and their uncertainties.
# Note that the `CMWaveX` amplitudes have the units of pc/cm^3/MHz^2.
# We multiply them by a constant factor to convert them to dimensions
# of time so that they are consistent with `PLChromNoise`.
scale = DMconst / 1400**m.TNCHROMIDX.value
idxs = np.array(m2.components["CMWaveX"].get_indices())
a = np.array(
[(scale * m2[f"CMWXSIN_{idx:04d}"].quantity).to_value("s") for idx in idxs]
)
da = np.array(
[(scale * m2[f"CMWXSIN_{idx:04d}"].uncertainty).to_value("s") for idx in idxs]
)
b = np.array(
[(scale * m2[f"CMWXCOS_{idx:04d}"].quantity).to_value("s") for idx in idxs]
)
db = np.array(
[(scale * m2[f"CMWXCOS_{idx:04d}"].uncertainty).to_value("s") for idx in idxs]
)
print(len(idxs))
P = (a**2 + b**2) / 2
dP = ((a * da) ** 2 + (b * db) ** 2) ** 0.5
f0 = (1 / Tspan).to_value(u.Hz)
fyr = (1 / u.year).to_value(u.Hz)
# %%
# We can create a `PLChromNoise` model from the `CMWaveX` model.
# This will estimate the spectral parameters from the `CMWaveX`
# amplitudes.
m3 = plchromnoise_from_cmwavex(m2)
print(m3)
# %%
# Now let us plot the estimated spectrum with the injected
# spectrum.
plt.subplot(211)
plt.errorbar(
idxs * f0,
b * 1e6,
db * 1e6,
ls="",
marker="o",
label="$\\hat{a}_j$ (CMWXCOS)",
color="red",
)
plt.errorbar(
idxs * f0,
a * 1e6,
da * 1e6,
ls="",
marker="o",
label="$\\hat{b}_j$ (CMWXSIN)",
color="blue",
)
plt.axvline(fyr, color="black", ls="dotted")
plt.axhline(0, color="grey", ls="--")
plt.ylabel("Fourier coeffs ($\mu$s)")
plt.xscale("log")
plt.legend(fontsize=8)
plt.subplot(212)
plt.errorbar(
idxs * f0, P, dP, ls="", marker="o", label="Spectral power (PINT)", color="k"
)
P_inj = m.components["PLChromNoise"].get_noise_weights(t)[::2]
plt.plot(idxs * f0, P_inj, label="Injected Spectrum", color="r")
P_est = m3.components["PLChromNoise"].get_noise_weights(t)[::2]
print(len(idxs), len(P_est))
plt.plot(idxs * f0, P_est, label="Estimated Spectrum", color="b")
plt.xscale("log")
plt.yscale("log")
plt.ylabel("Spectral power (s$^2$)")
plt.xlabel("Frequency (Hz)")
plt.axvline(fyr, color="black", ls="dotted", label="1 yr$^{-1}$")
plt.legend()
# %%