Skip to content

Latest commit

 

History

History
131 lines (89 loc) · 4.11 KB

02_training_the_model_tfjob.md

File metadata and controls

131 lines (89 loc) · 4.11 KB

Training the model using TFJob

Kubeflow offers a TensorFlow job controller for Kubernetes. This allows you to run your distributed Tensorflow training job on a Kubernetes cluster. For this training job, we will read our training data from Google Cloud Storage (GCS) and write our output model back to GCS.

Create the image for training

The notebooks directory contains the necessary files to create an image for training. The train.py file contains the training code. Here is how you can create an image and push it to Google Container Registry (GCR):

cd notebooks/
make PROJECT=${PROJECT} set-image

Train Using PVC

If you don't have access to GCS or do not wish to use GCS, you can use a Persistent Volume Claim (PVC) to store the data and model.

Note: your cluster must have a default storage class defined for this to work. Create a PVC:

ks apply --env=${KF_ENV} -c data-pvc

Run the job to download the data to the PVC:

ks apply --env=${KF_ENV} -c data-downloader

Submit the training job

ks apply --env=${KF_ENV} -c tfjob-pvc

The resulting model will be stored on the PVC, so to access it you will need to run a pod and attach the PVC. For serving, you can just attach it to the pod serving the model.

Training Using GCS

If you are using GCS, you can train using GCS to store the input and the resulting model.

GCS service account

  • Create a service account that will be used to read and write data from the GCS bucket.

  • Give the storage account roles/storage.admin role so that it can access GCS buckets.

  • Download its key as a json file and create a secret named user-gcp-sa with the key user-gcp-sa.json

SERVICE_ACCOUNT=github-issue-summarization
PROJECT=kubeflow-example-project # The GCP Project name
gcloud iam service-accounts --project=${PROJECT} create ${SERVICE_ACCOUNT} \
  --display-name "GCP Service Account for use with kubeflow examples"

gcloud projects add-iam-policy-binding ${PROJECT} --member \
  serviceAccount:${SERVICE_ACCOUNT}@${PROJECT}.iam.gserviceaccount.com --role=roles/storage.admin

KEY_FILE=/home/agwl/secrets/${SERVICE_ACCOUNT}@${PROJECT}.iam.gserviceaccount.com.json
gcloud iam service-accounts keys create ${KEY_FILE} \
  --iam-account ${SERVICE_ACCOUNT}@${PROJECT}.iam.gserviceaccount.com

kubectl --namespace=${NAMESPACE} create secret generic user-gcp-sa --from-file=user-gcp-sa.json="${KEY_FILE}"

Run the TFJob using your image

ks_app contains a ksonnet app to deploy the TFJob.

Set the appropriate params for the tfjob component:

cd ks_app
ks param set tfjob namespace ${NAMESPACE} --env=${KF_ENV}

# The image pushed in the previous step
ks param set tfjob image "gcr.io/agwl-kubeflow/tf-job-issue-summarization:latest" --env=${KF_ENV}

# Sample Size for training
ks param set tfjob sample_size 100000 --env=${KF_ENV}

# Set the input and output GCS Bucket locations
ks param set tfjob input_data_gcs_bucket "kubeflow-examples" --env=${KF_ENV}
ks param set tfjob input_data_gcs_path "github-issue-summarization-data/github-issues.zip" --env=${KF_ENV}
ks param set tfjob output_model_gcs_bucket "kubeflow-examples" --env=${KF_ENV}
ks param set tfjob output_model_gcs_path "github-issue-summarization-data/output_model.h5" --env=${KF_ENV}

Deploy the app:

ks apply ${KF_ENV} -c tfjob

In a while you should see a new pod with the label tf_job_name=tf-job-issue-summarization

kubectl get pods -n=${NAMESPACE} tfjob-issue-summarization-master-0

You can view the training logs using

kubectl logs -f -n=${NAMESPACE} tfjob-issue-summarization-master-0

You can view the logs of the tf-job operator using

kubectl logs -f -n=${NAMESPACE} $(kubectl get pods -n=${NAMESPACE} -lname=tf-job-operator -o=jsonpath='{.items[0].metadata.name}')

(Optional) You can also perform training with two alternate methods:

Next: Serving the model

Back: Setup a kubeflow cluster