diff --git a/benchmarks/pytorch/run_benchmarks.sh b/benchmarks/pytorch/run_benchmarks.sh index b44791e3..07094601 100755 --- a/benchmarks/pytorch/run_benchmarks.sh +++ b/benchmarks/pytorch/run_benchmarks.sh @@ -16,7 +16,7 @@ SEED=$RANDOM # effnet, greyscale and color # sbatch --job-name=evo_py_gr_eff_224_$SEED --export=ARCHITECTURE=efficientnet_b0,BATCH_SIZE=256,RESIZE_AFTER_CROP=224,DATASET=gz_evo,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB # sbatch --job-name=evo_py_gr_eff_300_$SEED --export=ARCHITECTURE=efficientnet_b0,BATCH_SIZE=256,RESIZE_AFTER_CROP=300,DATASET=gz_evo,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB -sbatch --job-name=evo_py_co_eff_224_$SEED --export=ARCHITECTURE=efficientnet_b0,BATCH_SIZE=256,RESIZE_AFTER_CROP=224,DATASET=gz_evo,COLOR_STRING=--color,GPUS=2,SEED=$SEED $TRAIN_JOB +# sbatch --job-name=evo_py_co_eff_224_$SEED --export=ARCHITECTURE=efficientnet_b0,BATCH_SIZE=256,RESIZE_AFTER_CROP=224,DATASET=gz_evo,COLOR_STRING=--color,GPUS=2,SEED=$SEED $TRAIN_JOB # sbatch --job-name=evo_py_co_eff_300_$SEED --export=ARCHITECTURE=efficientnet_b0,BATCH_SIZE=128,RESIZE_AFTER_CROP=300,DATASET=gz_evo,COLOR_STRING=--color,GPUS=2,SEED=$SEED $TRAIN_JOB # and resnet18 @@ -25,11 +25,13 @@ sbatch --job-name=evo_py_co_eff_224_$SEED --export=ARCHITECTURE=efficientnet_b0, # and resnet50 # sbatch --job-name=evo_py_gr_res50_224_$SEED --export=ARCHITECTURE=resnet50,BATCH_SIZE=256,RESIZE_AFTER_CROP=224,DATASET=gz_evo,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB # sbatch --job-name=evo_py_gr_res50_300_$SEED --export=ARCHITECTURE=resnet50,BATCH_SIZE=256,RESIZE_AFTER_CROP=300,DATASET=gz_evo,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB -# and with max-vit tiny because hey transformers are cool +# color 224 version +sbatch --job-name=evo_py_co_res50_224_$SEED --export=ARCHITECTURE=resnet50,BATCH_SIZE=256,RESIZE_AFTER_CROP=224,DATASET=gz_evo,COLOR_STRING=--color,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB +# and with max-vit tiny because hey transformers are cool # smaller batch size due to memory -sbatch --job-name=evo_py_gr_vittiny_224_$SEED --export=ARCHITECTURE=maxvit_tiny_224,BATCH_SIZE=128,RESIZE_AFTER_CROP=224,DATASET=gz_evo,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB -sbatch --job-name=evo_py_co_vittiny_224_$SEED --export=ARCHITECTURE=maxvit_tiny_224,BATCH_SIZE=128,RESIZE_AFTER_CROP=224,DATASET=gz_evo,COLOR_STRING=--color,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB +# sbatch --job-name=evo_py_gr_vittiny_224_$SEED --export=ARCHITECTURE=maxvit_tiny_224,BATCH_SIZE=128,RESIZE_AFTER_CROP=224,DATASET=gz_evo,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB +# sbatch --job-name=evo_py_co_vittiny_224_$SEED --export=ARCHITECTURE=maxvit_tiny_224,BATCH_SIZE=128,RESIZE_AFTER_CROP=224,DATASET=gz_evo,COLOR_STRING=--color,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB # and max-vit small (works badly) # sbatch --job-name=evo_py_gr_vitsmall_224_$SEED --export=ARCHITECTURE=maxvit_small_224,BATCH_SIZE=64,RESIZE_AFTER_CROP=224,DATASET=gz_evo,MIXED_PRECISION_STRING=--mixed-precision,GPUS=2,SEED=$SEED $TRAIN_JOB