-
Notifications
You must be signed in to change notification settings - Fork 0
/
chessboard_finder.py
404 lines (328 loc) · 13.6 KB
/
chessboard_finder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import numpy as np
# sudo apt-get install libopenjp2-7 libtiff5
import PIL.Image
import argparse
from time import time
from helper_image_loading import *
def nonmax_suppress_1d(arr, winsize=5):
"""Return 1d array with only peaks, use neighborhood window of winsize px"""
_arr = arr.copy()
for i in range(_arr.size):
if i == 0:
left_neighborhood = 0
else:
left_neighborhood = arr[max(0,i-winsize):i]
if i >= _arr.size-2:
right_neighborhood = 0
else:
right_neighborhood = arr[i+1:min(arr.size-1,i+winsize)]
if arr[i] < np.max(left_neighborhood) or arr[i] <= np.max(right_neighborhood):
_arr[i] = 0
return _arr
def findChessboardCorners(img_arr_gray, noise_threshold = 8000):
# Load image grayscale as an numpy array
# Return None on failure to find a chessboard
#
# noise_threshold: Ratio of standard deviation of hough values along an axis
# versus the number of pixels, manually measured bad trigger images
# at < 5,000 and good chessboards values at > 10,000
# Get gradients, split into positive and inverted negative components
gx, gy = np.gradient(img_arr_gray)
gx_pos = gx.copy()
gx_pos[gx_pos<0] = 0
gx_neg = -gx.copy()
gx_neg[gx_neg<0] = 0
gy_pos = gy.copy()
gy_pos[gy_pos<0] = 0
gy_neg = -gy.copy()
gy_neg[gy_neg<0] = 0
# 1-D ampltitude of hough transform of gradients about X & Y axes
num_px = img_arr_gray.shape[0] * img_arr_gray.shape[1]
hough_gx = gx_pos.sum(axis=1) * gx_neg.sum(axis=1)
hough_gy = gy_pos.sum(axis=0) * gy_neg.sum(axis=0)
# Check that gradient peak signal is strong enough by
# comparing normalized standard deviation to threshold
if min(hough_gx.std() / hough_gx.size,
hough_gy.std() / hough_gy.size) < noise_threshold:
return None
# Normalize and skeletonize to just local peaks
hough_gx = nonmax_suppress_1d(hough_gx) / hough_gx.max()
hough_gy = nonmax_suppress_1d(hough_gy) / hough_gy.max()
# Arbitrary threshold of 20% of max
hough_gx[hough_gx<0.2] = 0
hough_gy[hough_gy<0.2] = 0
# Now we have a set of potential vertical and horizontal lines that
# may contain some noisy readings, try different subsets of them with
# consistent spacing until we get a set of 7, choose strongest set of 7
pot_lines_x = np.where(hough_gx)[0]
pot_lines_y = np.where(hough_gy)[0]
pot_lines_x_vals = hough_gx[pot_lines_x]
pot_lines_y_vals = hough_gy[pot_lines_y]
# Get all possible length 7+ sequences
seqs_x = getAllSequences(pot_lines_x)
seqs_y = getAllSequences(pot_lines_y)
if len(seqs_x) == 0 or len(seqs_y) == 0:
return None
# Score sequences by the strength of their hough peaks
seqs_x_vals = [pot_lines_x_vals[[v in seq for v in pot_lines_x]] for seq in seqs_x]
seqs_y_vals = [pot_lines_y_vals[[v in seq for v in pot_lines_y]] for seq in seqs_y]
# shorten sequences to up to 9 values based on score
# X sequences
for i in range(len(seqs_x)):
seq = seqs_x[i]
seq_val = seqs_x_vals[i]
# if the length of sequence is more than 7 + edges = 9
# strip weakest edges
if len(seq) > 9:
# while not inner 7 chess lines, strip weakest edges
while len(seq) > 7:
if seq_val[0] > seq_val[-1]:
seq = seq[:-1]
seq_val = seq_val[:-1]
else:
seq = seq[1:]
seq_val = seq_val[1:]
seqs_x[i] = seq
seqs_x_vals[i] = seq_val
# Y sequences
for i in range(len(seqs_y)):
seq = seqs_y[i]
seq_val = seqs_y_vals[i]
while len(seq) > 9:
if seq_val[0] > seq_val[-1]:
seq = seq[:-1]
seq_val = seq_val[:-1]
else:
seq = seq[1:]
seq_val = seq_val[1:]
seqs_y[i] = seq
seqs_y_vals[i] = seq_val
# Now that we only have length 7-9 sequences, score and choose the best one
scores_x = np.array([np.mean(v) for v in seqs_x_vals])
scores_y = np.array([np.mean(v) for v in seqs_y_vals])
# Keep first sequence with the largest step size
# scores_x = np.array([np.median(np.diff(s)) for s in seqs_x])
# scores_y = np.array([np.median(np.diff(s)) for s in seqs_y])
#TODO(elucidation): Choose heuristic score between step size and hough response
best_seq_x = seqs_x[scores_x.argmax()]
best_seq_y = seqs_y[scores_y.argmax()]
# print(best_seq_x, best_seq_y)
# Now if we have sequences greater than length 7, (up to 9),
# that means we have up to 9 possible combinations of sets of 7 sequences
# We try all of them and see which has the best checkerboard response
sub_seqs_x = [best_seq_x[k:k+7] for k in range(len(best_seq_x) - 7 + 1)]
sub_seqs_y = [best_seq_y[k:k+7] for k in range(len(best_seq_y) - 7 + 1)]
dx = np.median(np.diff(best_seq_x))
dy = np.median(np.diff(best_seq_y))
corners = np.zeros(4, dtype=int)
# Add 1 buffer to include the outer tiles, since sequences are only using
# inner chessboard lines
corners[0] = int(best_seq_y[0]-dy)
corners[1] = int(best_seq_x[0]-dx)
corners[2] = int(best_seq_y[-1]+dy)
corners[3] = int(best_seq_x[-1]+dx)
# Generate crop image with on full sequence, which may be wider than a normal
# chessboard by an extra 2 tiles, we'll iterate over all combinations
# (up to 9) and choose the one that correlates best with a chessboard
gray_img_crop = PIL.Image.fromarray(img_arr_gray).crop(corners)
# Build a kernel image of an idea chessboard to correlate against
k = 8 # Arbitrarily chose 8x8 pixel tiles for correlation image
quad = np.ones([k,k])
kernel = np.vstack([np.hstack([quad,-quad]), np.hstack([-quad,quad])])
kernel = np.tile(kernel,(4,4)) # Becomes an 8x8 alternating grid (chessboard)
kernel = kernel/np.linalg.norm(kernel) # normalize
# 8*8 = 64x64 pixel ideal chessboard
k = 0
n = max(len(sub_seqs_x), len(sub_seqs_y))
final_corners = None
best_score = None
# Iterate over all possible combinations of sub sequences and keep the corners
# with the best correlation response to the ideal 64x64px chessboard
for i in range(len(sub_seqs_x)):
for j in range(len(sub_seqs_y)):
k = k + 1
# [y, x, y, x]
sub_corners = np.array([
sub_seqs_y[j][0]-corners[0]-dy, sub_seqs_x[i][0]-corners[1]-dx,
sub_seqs_y[j][-1]-corners[0]+dy, sub_seqs_x[i][-1]-corners[1]+dx],
dtype=np.int)
# Generate crop candidate, nearest pixel is fine for correlation check
sub_img = gray_img_crop.crop(sub_corners).resize((64,64))
# Perform correlation score, keep running best corners as our final output
# Use absolute since it's possible board is rotated 90 deg
score = np.abs(np.sum(kernel * sub_img))
if best_score is None or score > best_score:
best_score = score
final_corners = sub_corners + [corners[0], corners[1], corners[0], corners[1]]
return final_corners
def getAllSequences(seq, min_seq_len=7, err_px=5):
"""Given sequence of increasing numbers, get all sequences with common
spacing (within err_px) that contain at least min_seq_len values"""
# Sanity check that there are enough values to satisfy
if len(seq) < min_seq_len:
return []
# For every value, take the next value and see how many times we can step
# that falls on another value within err_px points
seqs = []
for i in range(len(seq)-1):
for j in range(i+1, len(seq)):
# Check that seq[i], seq[j] not already in previous sequences
duplicate = False
for prev_seq in seqs:
for k in range(len(prev_seq)-1):
if seq[i] == prev_seq[k] and seq[j] == prev_seq[k+1]:
duplicate = True
if duplicate:
continue
d = seq[j] - seq[i]
# Ignore two points that are within error bounds of each other
if d < err_px:
continue
s = [seq[i], seq[j]]
n = s[-1] + d
while np.abs((seq-n)).min() < err_px:
n = seq[np.abs((seq-n)).argmin()]
s.append(n)
n = s[-1] + d
if len(s) >= min_seq_len:
s = np.array(s)
seqs.append(s)
return seqs
def getChessTilesColor(img, corners):
# img is a color RGB image
# corners = (x0, y0, x1, y1) for top-left corner to bot-right corner of board
height, width, depth = img.shape
if depth !=3:
print("Need RGB color image input")
return None
# corners could be outside image bounds, pad image as needed
padl_x = max(0, -corners[0])
padl_y = max(0, -corners[1])
padr_x = max(0, corners[2] - width)
padr_y = max(0, corners[3] - height)
img_padded = np.pad(img, ((padl_y,padr_y),(padl_x,padr_x), (0,0)), mode='edge')
chessboard_img = img_padded[
(padl_y + corners[1]):(padl_y + corners[3]),
(padl_x + corners[0]):(padl_x + corners[2]), :]
# 256x256 px RGB image, 32x32px individual RGB tiles, normalized 0-1 floats
chessboard_img_resized = np.asarray( \
PIL.Image.fromarray(chessboard_img) \
.resize([256,256], PIL.Image.BILINEAR), dtype=np.float32) / 255.0
# stack deep 64 tiles with 3 channesl RGB each
# so, first 3 slabs are RGB for tile A1, then next 3 slabs for tile A2 etc.
tiles = np.zeros([32,32,3*64], dtype=np.float32) # color
# Assume A1 is bottom left of image, need to reverse rank since images start
# with origin in top left
for rank in range(8): # rows (numbers)
for file in range(8): # columns (letters)
# color
tiles[:,:,3*(rank*8+file):3*(rank*8+file+1)] = \
chessboard_img_resized[(7-rank)*32:((7-rank)+1)*32,file*32:(file+1)*32]
return tiles
def getChessBoardGray(img, corners):
# img is a grayscale image
# corners = (x0, y0, x1, y1) for top-left corner to bot-right corner of board
height, width = img.shape
# corners could be outside image bounds, pad image as needed
padl_x = max(0, -corners[0])
padl_y = max(0, -corners[1])
padr_x = max(0, corners[2] - width)
padr_y = max(0, corners[3] - height)
img_padded = np.pad(img, ((padl_y,padr_y),(padl_x,padr_x)), mode='edge')
chessboard_img = img_padded[
(padl_y + corners[1]):(padl_y + corners[3]),
(padl_x + corners[0]):(padl_x + corners[2])]
# 256x256 px image, 32x32px individual tiles
# Normalized
chessboard_img_resized = np.asarray( \
PIL.Image.fromarray(chessboard_img) \
.resize([256,256], PIL.Image.BILINEAR), dtype=np.uint8) / 255.0
return chessboard_img_resized
def getChessTilesGray(img, corners):
chessboard_img_resized = getChessBoardGray(img, corners)
return getTiles(chessboard_img_resized)
def getTiles(processed_gray_img):
# Given 256x256 px normalized grayscale image of a chessboard (32x32px per tile)
# NOTE (values must be in range 0-1)
# Return a 32x32x64 tile array
#
# stack deep 64 tiles
# so, first slab is tile A1, then A2 etc.
tiles = np.zeros([32,32,64], dtype=np.float32) # grayscale
# Assume A1 is bottom left of image, need to reverse rank since images start
# with origin in top left
for rank in range(8): # rows (numbers)
for file in range(8): # columns (letters)
tiles[:,:,(rank*8+file)] = \
processed_gray_img[(7-rank)*32:((7-rank)+1)*32,file*32:(file+1)*32]
return tiles
def findGrayscaleTilesInImage(img):
""" Find chessboard and convert into input tiles for CNN """
if img is None:
return None, None
# Convert to grayscale numpy array
img_arr = np.asarray(img.convert("L"), dtype=np.float32)
# Use computer vision to find orthorectified chessboard corners in image
corners = findChessboardCorners(img_arr)
if corners is None:
return None, None
# Pull grayscale tiles out given image and chessboard corners
tiles = getChessTilesGray(img_arr, corners)
# Return both the tiles as well as chessboard corner locations in the image
return tiles, corners
# DEBUG
# from matplotlib import pyplot as plt
# def plotTiles(tiles):
# """Plot color or grayscale tiles as 8x8 subplots"""
# plt.figure(figsize=(6,6))
# files = "ABCDEFGH"
# for rank in range(8): # rows (numbers)
# for file in range(8): # columns (letters)
# plt.subplot(8,8,(7-rank)*8 + file + 1) # Plot rank reverse order to match image
# if tiles.shape[2] == 64:
# # Grayscale
# tile = tiles[:,:,(rank*8+file)] # grayscale
# plt.imshow(tile, interpolation='None', cmap='gray', vmin = 0, vmax = 1)
# else:
# #Color
# tile = tiles[:,:,3*(rank*8+file):3*(rank*8+file+1)] # color
# plt.imshow(tile, interpolation='None',)
# plt.axis('off')
# plt.title('%s %d' % (files[file], rank+1), fontsize=6)
# plt.show()
def main(url):
print("Loading url %s..." % url)
color_img, url = loadImageFromURL(url)
# Fail if can't load image
if color_img is None:
print('Couldn\'t load url: %s' % url)
return
if color_img.mode != 'RGB':
color_img = color_img.convert('RGB')
print("Processing...")
a = time()
img_arr = np.asarray(color_img.convert("L"), dtype=np.float32)
corners = findChessboardCorners(img_arr)
print("Took %.4fs" % (time()-a))
# corners = [x0, y0, x1, y1] where (x0,y0)
# is top left and (x1,y1) is bot right
if corners is not None:
print("\tFound corners for %s: %s" % (url, corners))
link = getVisualizeLink(corners, url)
print(link)
# tiles = getChessTilesColor(np.array(color_img), corners)
# tiles = getChessTilesGray(img_arr, corners)
# plotTiles(tiles)
# plt.imshow(color_img, interpolation='none')
# plt.plot(corners[[0,0,2,2,0]]-0.5, corners[[1,3,3,1,1]]-0.5, color='red', linewidth=1)
# plt.show()
else:
print('\tNo corners found in image')
if __name__ == '__main__':
np.set_printoptions(suppress=True, precision=2)
parser = argparse.ArgumentParser(description='Find orthorectified chessboard corners in image')
parser.add_argument('urls', default=['https://i.redd.it/1uw3h772r0fy.png'],
metavar='urls', type=str, nargs='*', help='Input image urls')
args = parser.parse_args()
for url in args.urls:
main(url)