Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Question about the number of training And the result of mAP #78

Open
xunhen opened this issue Apr 1, 2019 · 0 comments
Open

Question about the number of training And the result of mAP #78

xunhen opened this issue Apr 1, 2019 · 0 comments

Comments

@xunhen
Copy link

xunhen commented Apr 1, 2019

When I try to reproduce the experiment, I find some difference between the code and paper.
If you can answer my questions, I will thank you very much.

  1. the lr in code is 0.00025, but 0.001 in paper?
  2. "In SGD training, 60K iterations are performed on 8 GPUs", but when I reproduce the experiment, I find the number of roidb entries is 219630.
    So the total numbers of iterations is 440k not 60k*8GPU=480k?
    image
  3. After eval my model retrained followed by the original set, the mAP is just 66.57%; however the mAP is 72.93% with the official trained model.
    image

Is there anything wrong with my training?

The config is below:
training config:{'CLASS_AGNOSTIC': True,
'MXNET_VERSION': 'mxnet',
'SCALES': [(600, 1000)],
'TEST': {'BATCH_IMAGES': 1,
'CXX_PROPOSAL': True,
'EVAL_NUM_BATCH': 1000,
'HAS_RPN': True,
'KEY_FRAME_INTERVAL': 10,
'NMS': 0.3,
'RPN_MIN_SIZE': 0,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'max_per_image': 300,
'test_epoch': 2},
'TRAIN': {'ASPECT_GROUPING': True,
'BATCH_IMAGES': 1,
'BATCH_ROIS': -1,
'BATCH_ROIS_OHEM': 128,
'BBOX_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZATION_PRECOMPUTED': True,
'BBOX_REGRESSION_THRESH': 0.5,
'BBOX_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_WEIGHTS': array([1., 1., 1., 1.]),
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'CXX_PROPOSAL': True,
'ENABLE_OHEM': True,
'END2END': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'FLIP': True,
'MAX_OFFSET': 0,
'MIN_OFFSET': -9,
'RESUME': False,
'RPN_BATCH_SIZE': 256,
'RPN_BBOX_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 0,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SHUFFLE': True,
'begin_epoch': 0,
'end_epoch': 2,
'lr': 0.00025,
'lr_factor': 0.1,
'lr_step': '1.333',
'model_prefix': 'dff_rfcn_vid',
'momentum': 0.9,
'warmup': False,
'warmup_lr': 0,
'warmup_step': 0,
'wd': 0.0005},
'dataset': {'NUM_CLASSES': 31,
'dataset': 'ImageNetVID',
'dataset_path': 'E:\DataSet\ImageNetVID\ILSVRC2015',
'image_set': 'DET_train_30classes+VID_train_15frames',
'proposal': 'rpn',
'root_path': 'E:\DataSet\ImageNetVID',
'test_image_set': 'VID_val_videos',
'val_image_set': 'VID_val_videos'},
'default': {'frequent': 100, 'kvstore': 'device'},
'gpus': '0',
'network': {'ANCHOR_MEANS': [0.0, 0.0, 0.0, 0.0],
'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'ANCHOR_STDS': [0.1, 0.1, 0.4, 0.4],
'DFF_FEAT_DIM': 1024,
'FIXED_PARAMS': ['conv1',
'bn_conv1',
'res2',
'bn2',
'gamma',
'beta'],
'IMAGE_STRIDE': 0,
'NORMALIZE_RPN': True,
'NUM_ANCHORS': 9,
'PIXEL_MEANS': array([103.06, 115.9 , 123.15]),
'RCNN_FEAT_STRIDE': 16,
'RPN_FEAT_STRIDE': 16,
'pretrained': '../../model/pretrained_model/resnet_v1_101',
'pretrained_epoch': 0,
'pretrained_flow': '../../model/pretrained_model/flownet'},
'output_path': './output/dff_rfcn/imagenet_vid',
'symbol': 'resnet_v1_101_flownet_rfcn'}

Note: When reproduce the experiment, I use only one gpu. Does it affect the experimental results?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant