You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I try to reproduce the experiment, I find some difference between the code and paper.
If you can answer my questions, I will thank you very much.
the lr in code is 0.00025, but 0.001 in paper?
"In SGD training, 60K iterations are performed on 8 GPUs", but when I reproduce the experiment, I find the number of roidb entries is 219630.
So the total numbers of iterations is 440k not 60k*8GPU=480k?
After eval my model retrained followed by the original set, the mAP is just 66.57%; however the mAP is 72.93% with the official trained model.
When I try to reproduce the experiment, I find some difference between the code and paper.
If you can answer my questions, I will thank you very much.
So the total numbers of iterations is 440k not 60k*8GPU=480k?
Is there anything wrong with my training?
The config is below:
training config:{'CLASS_AGNOSTIC': True,
'MXNET_VERSION': 'mxnet',
'SCALES': [(600, 1000)],
'TEST': {'BATCH_IMAGES': 1,
'CXX_PROPOSAL': True,
'EVAL_NUM_BATCH': 1000,
'HAS_RPN': True,
'KEY_FRAME_INTERVAL': 10,
'NMS': 0.3,
'RPN_MIN_SIZE': 0,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'max_per_image': 300,
'test_epoch': 2},
'TRAIN': {'ASPECT_GROUPING': True,
'BATCH_IMAGES': 1,
'BATCH_ROIS': -1,
'BATCH_ROIS_OHEM': 128,
'BBOX_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZATION_PRECOMPUTED': True,
'BBOX_REGRESSION_THRESH': 0.5,
'BBOX_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_WEIGHTS': array([1., 1., 1., 1.]),
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'CXX_PROPOSAL': True,
'ENABLE_OHEM': True,
'END2END': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'FLIP': True,
'MAX_OFFSET': 0,
'MIN_OFFSET': -9,
'RESUME': False,
'RPN_BATCH_SIZE': 256,
'RPN_BBOX_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 0,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SHUFFLE': True,
'begin_epoch': 0,
'end_epoch': 2,
'lr': 0.00025,
'lr_factor': 0.1,
'lr_step': '1.333',
'model_prefix': 'dff_rfcn_vid',
'momentum': 0.9,
'warmup': False,
'warmup_lr': 0,
'warmup_step': 0,
'wd': 0.0005},
'dataset': {'NUM_CLASSES': 31,
'dataset': 'ImageNetVID',
'dataset_path': 'E:\DataSet\ImageNetVID\ILSVRC2015',
'image_set': 'DET_train_30classes+VID_train_15frames',
'proposal': 'rpn',
'root_path': 'E:\DataSet\ImageNetVID',
'test_image_set': 'VID_val_videos',
'val_image_set': 'VID_val_videos'},
'default': {'frequent': 100, 'kvstore': 'device'},
'gpus': '0',
'network': {'ANCHOR_MEANS': [0.0, 0.0, 0.0, 0.0],
'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'ANCHOR_STDS': [0.1, 0.1, 0.4, 0.4],
'DFF_FEAT_DIM': 1024,
'FIXED_PARAMS': ['conv1',
'bn_conv1',
'res2',
'bn2',
'gamma',
'beta'],
'IMAGE_STRIDE': 0,
'NORMALIZE_RPN': True,
'NUM_ANCHORS': 9,
'PIXEL_MEANS': array([103.06, 115.9 , 123.15]),
'RCNN_FEAT_STRIDE': 16,
'RPN_FEAT_STRIDE': 16,
'pretrained': '../../model/pretrained_model/resnet_v1_101',
'pretrained_epoch': 0,
'pretrained_flow': '../../model/pretrained_model/flownet'},
'output_path': './output/dff_rfcn/imagenet_vid',
'symbol': 'resnet_v1_101_flownet_rfcn'}
Note: When reproduce the experiment, I use only one gpu. Does it affect the experimental results?
The text was updated successfully, but these errors were encountered: