forked from NSLS-II/lsdc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ispybLib.py
278 lines (251 loc) · 13.2 KB
/
ispybLib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import ispyb.factory
from ispyb.exception import ISPyBNoResultException
import os
from datetime import datetime
from ispyb.xmltools import mx_data_reduction_to_ispyb, xml_file_to_dict
import daq_utils
from epics import PV
import db_lib
import det_lib
import time
from PIL import Image
import logging
logger = logging.getLogger(__name__)
#12/19 - I'm leaving all commented lines alone on this. Karl Levik, DLS, is an immense help with this.
conf_file = "/etc/ispyb/ispybConfig.cfg"
visit = 'mx99999-1'
# Get a list of request dicts
#request_dicts = lsdb2.getColRequestsByTimeInterval('2018-02-14T00:00:00','2018-02-15T00:00:00')
# Connect to ISPyB, get the relevant data area objects
#conn = ispyb.open(conf_file)
#core = ispyb.factory.create_data_area(ispyb.factory.DataAreaType.CORE, conn)
#mxacquisition = ispyb.factory.create_data_area(ispyb.factory.DataAreaType.MXACQUISITION, conn)
#mxprocessing = ispyb.factory.create_data_area(ispyb.factory.DataAreaType.MXPROCESSING, conn)
#mxscreening = ispyb.factory.create_data_area(ispyb.factory.DataAreaType.MXSCREENING, conn)
#cnx = mysql.connector.connect(user='ispyb_api', password=os.environ['ISPYB_PASSWORD'],host='ispyb-db-dev.cs.nsls2.local',database='ispyb')
#cursor = cnx.cursor()
beamline = os.environ["BEAMLINE_ID"]
# Find the id for a particular
def queryOneFromDB(q):
cursor.execute(q)
try:
return list(cursor.fetchone())[0]
except TypeError:
return 0
def insertPlotResult(dc_id,imageNumber,spotTotal,goodBraggCandidates,method2Res,totalIntegratedSignal):
return
params = mxprocessing.get_quality_indicators_params()
params['datacollectionid'] = dc_id
params['imageNumber'] = imageNumber
params['spotTotal'] = spotTotal
params['goodBraggCandidates'] = goodBraggCandidates
params['method2Res'] = method2Res
params['totalIntegratedSignal'] = totalIntegratedSignal
id = mxprocessing.upsert_quality_indicators(list(params.values()))
cnx.commit()
def insertResult(result,resultType,request,visitName,dc_id=None,xmlFileName=None): #xmlfilename for fastDP
#keep in mind that request type can be standard and result type be fastDP - multiple results per req.
return
try:
sessionid = core.retrieve_visit_id(visitName)
except ISPyBNoResultException as e:
message = f"insert result - caught ISPyBNoResultException: '{e}'."
logger.exception(message)
raise e
request_type = request['request_type']
if request_type in('standard', 'vector') :
sample = request['sample'] # this needs to be created and linked to a DC group
if (resultType == 'fastDP'):
mx_data_reduction_dict = xml_file_to_dict(xmlFileName)
comm = mx_data_reduction_dict['AutoProcProgramContainer']['AutoProcProgram']['processingCommandLine']
mx_data_reduction_dict['AutoProcProgramContainer']['AutoProcProgram']['processingCommandLine'] = comm[len(comm)-255:]
(app_id, ap_id, scaling_id, integration_id) = mx_data_reduction_to_ispyb(mx_data_reduction_dict, dc_id, mxprocessing)
mxprocessing.upsert_program_ex(program_id=app_id,status=1)
elif resultType == 'mxExpParams':
result_obj = result['result_obj']
request_obj = result_obj['requestObj']
directory = request_obj["directory"]
filePrefix = request_obj['file_prefix']
basePath = request_obj["basePath"]
visitName = daq_utils.getVisitName()
jpegDirectory = visitName + "/jpegs/" + directory[directory.find(visitName)+len(visitName):len(directory)]
fullJpegDirectory = basePath + "/" + jpegDirectory
jpegImagePrefix = fullJpegDirectory+"/"+filePrefix
daq_utils.take_crystal_picture(filename=jpegImagePrefix)
jpegImageFilename = jpegImagePrefix+".jpg"
jpegImageThumbFilename = jpegImagePrefix+"t.jpg"
resizeRatio = 0.4
logger.info(f'resizing image: ratio: {resizeRatio} filename: {jpegImageThumbFilename}')
fullSnapshot = Image.open(jpegImageFilename)
resizeWidth = fullSnapshot.width * resizeRatio
resizeHeight = fullSnapshot.height * resizeRatio
thumbSnapshot = fullSnapshot.resize((int(resizeWidth), int(resizeHeight)))
thumbSnapshot.save(jpegImageThumbFilename)
seqNum = int(det_lib.detector_get_seqnum())
node = db_lib.getBeamlineConfigParam(beamline,"adxvNode")
request_id = result['request']
comm_s = f"ssh -q {node} \"{os.environ['MXPROCESSINGSCRIPTSDIR']}eiger2cbf.sh {request_id} 1 1 0 {seqNum}\""
logger.info(f'diffraction thumbnail conversion to cbf: {comm_s}')
os.system(comm_s)
comm_s = f"ssh -q {node} \"{os.environ['MXPROCESSINGSCRIPTSDIR']}cbf2jpeg.sh {request_id}\""
logger.info(f'diffraction thumbnail conversion to jpeg: {comm_s}')
os.system(comm_s)
# Create a new data collection group entry:
params = mxacquisition.get_data_collection_group_params()
params['parentid'] = sessionid
if request_type == 'standard':
params['experimenttype'] = 'OSC'
elif request_type == 'vector':
params['experimenttype'] = 'Helical'
return createDataCollection(directory, filePrefix, jpegImageFilename, params, request_obj, sessionid)
## For strategies (EDNA or otherwise)
# params = mxscreening.get_screening_params()
# params['dcgid'] = dcg_id
# ...
# s_id = mxscreening.insert_screening(list(params.values()))
# params = mxscreening.get_screening_input_params()
# params['screening_id'] = s_id
# ...
# s_in_id = mxscreening.insert_screening_input(list(params.values()))
# params = mxscreening.get_screening_output_params()
# params['screening_id'] = s_id
# ...
# s_out_id = mxscreening.insert_screening_output(list(params.values()))
# params = mxscreening.get_screening_output_lattice_params()
# params['screening_output_id'] = s_out_id
# ...
# mxscreening.insert_screening_output_lattice(list(params.values()))
# params = mxscreening.get_screening_strategy_params()
# params['screening_output_id'] = s_out_id
# ...
# s_s_id = mxscreening.insert_screening_strategy(list(params.values()))
# params = mxscreening.get_screening_strategy_wedge_params()
# params['screening_strategy_id'] = s_s_id
# ...
# s_s_wedge_id = mxscreening.insert_screening_strategy_wedge(list(params.values()))
# params = mxscreening.get_screening_strategy_sub_wedge_params()
# params['screening_strategy_wedge_id'] = s_s_wedge_id
# ...
# mxscreening.insert_screening_strategy_sub_wedge(list(params.values()))
## For raster scans a.k.a. grid scans:
# params = mxacquisition.get_dc_position_params()
# params['id'] = dc_id
# params['posx'] =
# params['posy'] =
# params['posz'] =
# mxacquisition.update_dc_position(list(params.values()))
## For per-image analysis results (raster scans or otherwise)
# for image in images:
# params = mxprocessing.get_quality_indicators_params()
# imq.imagenumber as nim, imq.method2res as res, imq.spottotal as s, imq.totalintegratedsignal, imq.goodbraggcandidates as b
# params['imagenumber'] =
# params['datacollectionid'] =
# params['method2res'] =
# params['spottotal'] =
# params['totalintegratedsignal'] =
# params['goodbraggcandidates'] =
# mxprocessing.upsert_quality_indicators(list(params.values()))
## For fast_dp and similar MX data reduction pipeline results:
# ...
# (app_id, ap_id, scaling_id, integration_id) = mx_data_reduction_to_ispyb(mx_data_reduction_dict, dc_id, mxprocessing)
## For raster scans a.k.a. grid scans:
# params = mxacquisition.get_dcg_grid_params()
# params['parentid'] = dcg_id
# params['dx_mm'] =
# params['dy_mm'] =
# params['steps_x'] =
# params['steps_y'] =
# params['pixelspermicronx'] =
# params['pixelspermicrony'] =
# params['snapshot_offsetxpixel'] =
# params['snapshot_offsetypixel'] =
# params['orientation'] =
# params['snaked'] =
# mxacquisition.upsert_dcg_grid(list(params.values()))
# Beamsize:
# params['beamsize_at_samplex'] = ?
# params['beamsize_at_sampley'] = ?
# Other things:
# params['xbeam'] = ?
# params['ybeam'] = ?
# params['phistart'] = ?
# params['kapppastart'] = ?
# params['omegastart'] = ?
# hard-coding hack to make SynchWeb understand whether it's a full data collection or a screening
def createDataCollection(directory, filePrefix, jpegImageFilename, params, request_obj, sessionid):
return
params['starttime'] = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')
params['endtime'] = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')
dcg_id = mxacquisition.insert_data_collection_group(list(params.values()))
logger.info("dcg_id: %i" % dcg_id)
params = mxacquisition.get_data_collection_params()
params['parentid'] = dcg_id
params['visitid'] = sessionid
params['imgdir'] = directory
params['imgprefix'] = filePrefix
params['imgsuffix'] = 'cbf' # assume CBF ...?
params['wavelength'] = request_obj['wavelength']
params['starttime'] = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')
params['run_status'] = 'DataCollection Successful' # assume success / not aborted
params['datacollection_number'] = request_obj['runNum']
if request_obj['img_width'] > 0:
params['n_images'] = int(round((request_obj['sweep_end'] - request_obj['sweep_start']) / request_obj['img_width']))
else:
params['n_images'] = 1 # stills mode
params['exp_time'] = request_obj['exposure_time']
params['start_image_number'] = request_obj['file_number_start']
params['axis_start'] = request_obj['sweep_start']
params['axis_end'] = request_obj['sweep_end']
params['axis_range'] = request_obj['img_width']
params['resolution'] = request_obj['resolution']
params['detector_distance'] = request_obj['detDist']
params['slitgap_horizontal'] = request_obj['slit_width']
params['slitgap_vertical'] = request_obj['slit_height']
params['transmission'] = request_obj['attenuation'] * 100.0
params['file_template'] = '%s_####.cbf' % (request_obj['file_prefix']) # assume cbf ...
params['overlap'] = 0.0
params['rotation_axis'] = 'Omega' # assume Omega unless we know otherwise
logger.info("jpegimfilename = " + jpegImageFilename)
try:
params['xbeam'] = request_obj['xbeam']
params['ybeam'] = request_obj['ybeam']
except KeyError:
logger.error('Value of xbeam or ybeam not present')
params['xtal_snapshot1'] = jpegImageFilename
params['xtal_snapshot2'] = '/dls/i03/data/2016/cm14451-2/jpegs/20160413/test_xtal/xtal1_1_1_90.0.png'
params['xtal_snapshot3'] = '/dls/i03/data/2016/cm14451-2/jpegs/20160413/test_xtal/xtal1_3_1_183.0.png'
params['xtal_snapshot4'] = '/dls/i03/data/2016/cm14451-2/jpegs/20160413/test_xtal/xtal1_3_1_93.0.png'
dc_id = mxacquisition.insert_data_collection(list(params.values()))
logger.info("dc_id: %i" % dc_id)
return dc_id
# if request_type == 'screening':
# params['overlap'] = 89.0
def insertRasterResult(request,visitName):
return
try:
sessionid = core.retrieve_visit_id(visitName)
except ISPyBNoResultException as e:
message = f"insertRasterResult - caught ISPyBNoResultException: '{e}'."
logger.error(message)
raise e
request = db_lib.getRequestByID(request_id)
sample = request['sample'] # this needs to be created and linked to a DC group
#result_obj = result['result_obj'] this doesn't appear to be used -DK
request_obj = request['request_obj']
directory = request_obj["directory"]
filePrefix = request_obj['file_prefix']
basePath = request_obj["basePath"]
visitName = daq_utils.getVisitName()
jpegDirectory = visitName + "/jpegs/" + directory[directory.find(visitName)+len(visitName):len(directory)]
fullJpegDirectory = basePath + "/" + jpegDirectory
jpegImagePrefix = fullJpegDirectory+"/"+filePrefix
jpegImageFilename = jpegImagePrefix+".jpg"
jpegImageThumbFilename = jpegImagePrefix+"t.jpg"
comm_s = "convert " + jpegImageFilename + " -resize 40% " + jpegImageThumbFilename + "&"
logger.info('raster thumbnail creation: %s' %comm_s)
os.system(comm_s)
# Create a new data collection group entry:
params = mxacquisition.get_data_collection_group_params()
params['parentid'] = sessionid
params['experimenttype'] = 'OSC'
return createDataCollection(directory, filePrefix, jpegImageFilename, params, request_obj, sessionid)