forked from meenavyas/Misc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UCICreditCardKerasGridSearch.py
97 lines (90 loc) · 4.01 KB
/
UCICreditCardKerasGridSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Refer https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
# Refer https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
# Aim of this is to show case use of keras and grid search libraries
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
import numpy
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasClassifier
from keras.optimizers import SGD
from keras.constraints import maxnorm
##############################################################
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
##############################################################
# load dataset
import pandas as pd
df = pd.read_csv('~/Desktop/Personal/expt/UCI_Credit_Card.csv', sep=',')
print(df.shape) # 30000, 25
type(df) # pandas.core.frame.DataFrame.
df.head(1)
# split into input (X) and output (Y) variables
# we do not need column named ID
columns = ['LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE',
'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', # PAY_1 is absent
'BILL_AMT1', 'BILL_AMT2','BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6',
'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6']
# sex, education, marriage are categorical variables - TBD
# split data into test and train - TBD
X = df[columns].values
Y = df["default.payment.next.month"]
print(type(X)) # numpy.ndarray
input_dim = X.shape[1] # number of columns
print(input_dim) # 23
# Function to create model, required for KerasClassifier
def create_model():
# default values
activation='relu' # or linear
dropout_rate=0.0 # or 0.2
init_mode='uniform'
weight_constraint=0 # or 4
optimizer='adam' # or SGD
lr = 0.01
momemntum=0
# create model
model = Sequential()
model.add(Dense(8,
input_dim=input_dim, kernel_initializer=init_mode,
activation=activation,
kernel_constraint=maxnorm(weight_constraint)))
model.add(Dropout(dropout_rate))
model.add(Dense(1, kernel_initializer=init_mode, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
return model
# create model
model = KerasClassifier(build_fn=create_model, batch_size=1000, epochs=10)
# use verbose=0 if you do not want to see progress
########################################################
# Use scikit-learn to grid search
activation = ['relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear'] # softmax, softplus, softsign
momentum = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9]
learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3]
dropout_rate = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
weight_constraint=[1, 2, 3, 4, 5]
neurons = [1, 5, 10, 15, 20, 25, 30]
init = ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform']
optimizer = [ 'SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
##############################################################
# grid search epochs, batch size
epochs = [1, 10] # add 50, 100, 150 etc
batch_size = [1000, 5000] # add 5, 10, 20, 40, 60, 80, 100 etc
param_grid = dict(epochs=epochs, batch_size=batch_size)
##############################################################
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
##############################################################
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
##############################################################