deepstream-rtsp-in-rtsp-out
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||
################################################################################ # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ Prequisites: - DeepStreamSDK 6.2 - Python 3.8 - Gst-python - GstRtspServer Installing GstRtspServer and introspection typelib =================================================== $ sudo apt update $ sudo apt install python3-gi python3-dev python3-gst-1.0 -y $ sudo apt-get install libgstrtspserver-1.0-0 gstreamer1.0-rtsp For gst-rtsp-server (and other GStreamer stuff) to be accessible in Python through gi.require_version(), it needs to be built with gobject-introspection enabled (libgstrtspserver-1.0-0 is already). Yet, we need to install the introspection typelib package: $ sudo apt-get install libgirepository1.0-dev $ sudo apt-get install gobject-introspection gir1.2-gst-rtsp-server-1.0 To get test app usage information: ----------------------------------- $ python3 deepstream_test1_rtsp_in_rtsp_out.py -h To run the test app with default settings: ------------------------------------------ 1) NVInfer $ python3 deepstream_test1_rtsp_in_rtsp_out.py -i rtsp://sample_1.mp4 rtsp://sample_2.mp4 rtsp://sample_N.mp4 -g nvinfer 2) NVInferserver bash /opt/nvidia/deepstream/deepstream-<Version>/samples/prepare_ds_trtis_model_repo.sh $ python3 deepstream_test1_rtsp_in_rtsp_out.py -i rtsp://sample_1.mp4 rtsp://sample_2.mp4 rtsp://sample_N.mp4 -g nvinferserver Default RTSP streaming location: rtsp://<server IP>:8554/ds-test This document shall describe the sample deepstream_test1_rtsp_in_rtsp_out application. This sample app is derived from the deepstream-test3 and deepStream-test1-rtsp-out This sample app specifically includes following : - Accepts RTSP stream as input and gives out inference as RTSP stream - User can choose NVInfer and NVInferserver as GPU inference engine If NVInfer is selected then : For reference, here are the config files used for this sample : 1. The 4-class detector (referred to as pgie in this sample) uses dstest1_pgie_config.txt 2. This 4 class detector detects "Vehicle , RoadSign, TwoWheeler, Person". In this sample, first create one instance of "nvinfer", referred as the pgie. This is our 4 class detector and it detects for "Vehicle , RoadSign, TwoWheeler, Person". If NVInferserver is selected then: 1. Uses SSD neural network running on Triton Inference Server 2. Selects custom post-processing in the Triton Inference Server config file 3. Parses the inference output into bounding boxes 4. Performs post-processing on the generated boxes with NMS (Non-maximum Suppression) 5. Adds detected objects into the pipeline metadata for downstream processing 6. Encodes OSD output and shows visual output over RTSP.