Algorithms for cleaning JWST data.
SnowblindStep
: mask cosmic ray showers and snowballsJumpPlusStep
: Propagate JUMP_DET and SATURATED flags in GROUPDQ properly for frame-averaged groupsPersistenceFlagStep
: flag pixels effected by persistence exposure-to-exposureOpenPixelStep
: flag new open pixels, hot pixels, or open adjacent pixels via self-cal
pip install snowblind
The steps in snowblind run like any other pipeline steps. From the command line you can run SnowblindStep
(aliased as snowblind
) on the result file from JumpStep:
strun snowblind jw001234_010203_00001_nrcalong_jump.fits --suffix=snowblind
Or you can run SnowblindStep
and JumpPlusStep
as post-hooks after JumpStep
in a full pipeline, remembering to turn off the default snowball flagging.
strun calwebb_detector1 jw001234_010203_00001_nrcalong_uncal.fits --steps.jump.post_hooks="snowblind.SnowblindStep","snowblind.JumpPlusStep" --steps.jump.flag_large_events=False
In Python, we can insert SnowblindStep
and JumpPlusStep
after JumpStep
as a post-hook:
from snowblind import SnowblindStep, JumpPlusStep
from jwst.pipeline import Detector1Pipeline
steps = {
"jump": {
"save_results": True,
"flag_large_events": False,
"post_hooks": [
SnowblindStep,
JumpPlusStep,
],
},
}
Detector1Pipeline.call("jw001234_010203_00001_nrcalong_uncal.fits", steps=steps, save_results=True)
More to come on the other steps available.