Supplementary codes and data used in the paper “3D point cloud semantic segmentation through functional data analysis”.
Please cite this paper as:
@article{oviedo2023PointCloud,
title={3D point cloud semantic segmentation through
functional data analysis},
author={Oviedo de-la Fuente, Manuel, Cabo, Carlos, Roca-Pardiñas, Javier, Loudermilk, Lousie and Ordóñez Celestino},Accepted in JABES
year={2023}
}
In order to use paper implementation and run all files (numerical and real example), the following prerequisites are needed:
Our proposed method is available in the fda.usc
package (devel
version) through the functions classif.gsam.vs()
and
classif.ML.vs()
.
PointNet was improved using a hierarchically approach called PointNet++ [9].
Referencia a github
Qi R, Yi l, Su H, Guibas LJ (2017) “PointNet++: Deep hierarchical feature learning on point sets in a metric space”, Proc. Adv. Neural Inf. Process. Syst. 30 (NIPS), pp. 5105-5114
DGCNN is a deep learning (DL) model for point cloud classification and semantic segmentation
Referencia a github
Wang Y, Yongbin S, Ziwei L, Sarma S Bronstein M, Solomo J (2018) Dynamic Graph CNN for Learning on Point Clouds. ACM Transactions on Graphics 38 2018 doi = 10.1145/3326362
Our case study example is 3D cloud point.
library(fda.usc.devel)
load(file="./data/ldf.train.RData")
class(ldf.train)
## [1] "ldata" "list"
n <- nrow(ldf.train$df)
# Response
table(ldf.train$df$class)
##
## branch+leaf bush grass trunk
## 1818 1948 1711 1770
labels <- c("trunk","grass","branch+leaf","bush")
#levEn <- levels(ldf.train$df$class)
# predictor variables (multivariate)
predictors <- names(ldf.train$df[-c(1,2,3,5,6,831)])
# linear correlation between predictors
# dfcor <- cor(ldf.train$df[,c(predictors)])
Locations
tab <- table(ldf.train$df$parcela)
iparcela <- c(0,2,6)
sum(tab[-iparcela]) # 100k,250k,500k
## [1] 5395
prop.table(tab)
##
## 4 5 6 7
## 0.2667311 0.2555540 0.3118532 0.1658617
ii <-1:400000
plot(ldf.train$df[ii,1:2],col=ldf.train$df$parcela[ii]+1,asp=T)
ii <- ldf.train$df$parcela %in% c(0,2,6)
points(ldf.train$df[ii,1:2],col=1)
Functional mean curves for Planarity
and Sphericity
features
(colored by class label).
This repository is under development, codes with examples will be included soon