-
Notifications
You must be signed in to change notification settings - Fork 6
/
utils.py
419 lines (337 loc) · 15.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import itertools
import json
import linecache
import os
import pickle
import warnings
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import numpy as np
import torch
from rouge_score import rouge_scorer, scoring
from sacrebleu import corpus_bleu
from torch import nn
from torch.utils.data import Dataset, Sampler
from sentence_splitter import add_newline_to_end_of_each_sentence
from transformers_local import BartTokenizer
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
"""From fairseq"""
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
nll_loss = nll_loss.sum() # mean()? Scared to break other math.
smooth_loss = smooth_loss.sum()
eps_i = epsilon / lprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss, nll_loss
def encode_line(tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
# NB. disable prefix_space since not used in run_eval.py
extra_kw = {"add_prefix_space": False} if isinstance(tokenizer, BartTokenizer) else {}
return tokenizer(
[line],
max_length=max_length,
padding="max_length" if pad_to_max_length else None,
truncation=True,
return_tensors=return_tensors,
**extra_kw,
)
def lmap(f: Callable, x: Iterable) -> List:
"""list(map(f, x))"""
return list(map(f, x))
def calculate_bleu_score(output_lns, refs_lns, **kwargs) -> dict:
"""Uses sacrebleu's corpus_bleu implementation."""
return {"bleu": corpus_bleu(output_lns, [refs_lns], **kwargs).score}
def trim_batch(
input_ids, pad_token_id, attention_mask=None,
):
"""Remove columns that are populated exclusively by pad_token_id"""
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class Seq2SeqDataset(Dataset):
def __init__(
self,
tokenizer,
data_dir,
max_source_length,
max_target_length,
type_path="train",
n_obs=None,
src_lang=None,
tgt_lang=None,
prefix="",
use_rl=False,
use_kw=False,
ckpt_metric='rougeL'
):
super().__init__()
self.src_file = Path(data_dir).joinpath(type_path + ".source")
self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
if use_kw:
self.keyword_l = json.load(open(Path(data_dir).joinpath(type_path + ".keyword.json")))
else:
self.keyword_l = None
self.use_rl = use_rl
if use_rl:
self.constraints = json.load(open(Path(data_dir).joinpath(type_path + ".constraints.json")))
self.gold_constraints = json.load(open(Path(data_dir).joinpath(type_path + ".gold_constraints.json")))
self.constraints = [tokenizer(i, add_special_tokens=False)["input_ids"] if len(i) > 0 else [] for i in
self.constraints]
self.gold_constraints = [tokenizer(i, add_special_tokens=False)["input_ids"] if len(i) > 0 else [] for i in
self.gold_constraints]
self.baseline_reward = json.load(open(Path(data_dir).joinpath(type_path + f".{ckpt_metric}.json")))
self.src_lens = self.get_char_lens(self.src_file)
self.max_source_length = max_source_length
self.max_target_length = max_target_length
assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
self.tokenizer = tokenizer
self.prefix = prefix
if n_obs is not None:
self.src_lens = self.src_lens[:n_obs]
self.pad_token_id = self.tokenizer.pad_token_id
self.src_lang = src_lang
self.tgt_lang = tgt_lang
def __len__(self):
return len(self.src_lens)
def __getitem__(self, index) -> Dict[str, torch.Tensor]:
if self.keyword_l is not None:
keyword_labels = self.keyword_l[index]
else:
keyword_labels = None
if self.use_rl:
constraints = self.constraints[index]
gold_constraints = self.gold_constraints[index]
baseline_r = self.baseline_reward[index]
else:
constraints = None
gold_constraints = None
baseline_r = None
index = index + 1 # linecache starts at 1
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
assert source_line, f"empty source line for index {index}"
assert tgt_line, f"empty tgt line for index {index}"
source_inputs = encode_line(self.tokenizer, source_line, self.max_source_length)
target_inputs = encode_line(self.tokenizer, tgt_line, self.max_target_length)
source_ids = source_inputs["input_ids"].squeeze()
target_ids = target_inputs["input_ids"].squeeze()
src_mask = source_inputs["attention_mask"].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
"keyword_labels": keyword_labels,
"constraints": constraints,
"gold_constraints": gold_constraints,
"baseline_reward": baseline_r
}
@staticmethod
def get_char_lens(data_file):
return [len(x) for x in Path(data_file).open().readlines()]
def collate_fn(self, batch):
input_ids = torch.stack([x["input_ids"] for x in batch])
masks = torch.stack([x["attention_mask"] for x in batch])
target_ids = torch.stack([x["decoder_input_ids"] for x in batch])
pad_token_id = self.pad_token_id
y = trim_batch(target_ids, pad_token_id)
source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
res = {
"input_ids": source_ids,
"attention_mask": source_mask,
"decoder_input_ids": y,
}
if batch[0]['keyword_labels'] is not None:
keyword_labels = []
for x in batch:
x["keyword_labels"] = x["keyword_labels"][:source_ids.shape[1]]
# NB. padding set to 0, can also not reduced then exclude loss on padding
kw_len = len(x["keyword_labels"])
if kw_len < source_ids.shape[1]:
x["keyword_labels"].extend([0] * (source_ids.shape[1] - kw_len))
keyword_labels.append(x["keyword_labels"])
keyword_labels = torch.FloatTensor(keyword_labels)
res["keyword_labels"] = keyword_labels
if self.use_rl:
constraints = [x["constraints"] for x in batch]
gold_constraints = [x["gold_constraints"] for x in batch]
res['baseline_reward'] = torch.FloatTensor([x["baseline_reward"] for x in batch])
return res, constraints, gold_constraints
return res
def make_sortish_sampler(self, batch_size):
return SortishSampler(self.src_lens, batch_size)
class TranslationDataset(Seq2SeqDataset):
"""A dataset that calls prepare_seq2seq_batch."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.max_source_length != self.max_target_length:
warnings.warn(
f"Mbart is using sequence lengths {self.max_source_length}, {self.max_target_length}. "
f"Imbalanced sequence lengths may be undesired for translation tasks"
)
def __getitem__(self, index) -> Dict[str, str]:
index = index + 1 # linecache starts at 1
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
assert source_line, f"empty source line for index {index}"
assert tgt_line, f"empty tgt line for index {index}"
return {
"tgt_texts": tgt_line,
"src_texts": source_line,
}
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
batch_encoding = self.tokenizer.prepare_seq2seq_batch(
[x["src_texts"] for x in batch],
src_lang=self.src_lang,
tgt_texts=[x["tgt_texts"] for x in batch],
tgt_lang=self.tgt_lang,
max_length=self.max_source_length,
max_target_length=self.max_target_length,
)
return batch_encoding.data
class SortishSampler(Sampler):
"Go through the text data by order of src length with a bit of randomness. From fastai repo."
def __init__(self, data, batch_size):
self.data, self.bs = data, batch_size
def key(self, i):
return self.data[i]
def __len__(self) -> int:
return len(self.data)
def __iter__(self):
idxs = np.random.permutation(len(self.data))
sz = self.bs * 50
ck_idx = [idxs[i: i + sz] for i in range(0, len(idxs), sz)]
sort_idx = np.concatenate([sorted(s, key=self.key, reverse=True) for s in ck_idx])
sz = self.bs
ck_idx = [sort_idx[i: i + sz] for i in range(0, len(sort_idx), sz)]
max_ck = np.argmax([self.key(ck[0]) for ck in ck_idx]) # find the chunk with the largest key,
ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first.
sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
sort_idx = np.concatenate((ck_idx[0], sort_idx))
return iter(sort_idx)
logger = getLogger(__name__)
def use_task_specific_params(model, task):
"""Update config with summarization specific params."""
task_specific_params = model.config.task_specific_params
if task_specific_params is not None:
pars = task_specific_params.get(task, {})
logger.info(f"using task specific params for {task}: {pars}")
model.config.update(pars)
print('do not use this...')
raise
def pickle_load(path):
"""pickle.load(path)"""
with open(path, "rb") as f:
return pickle.load(f)
def pickle_save(obj, path):
"""pickle.dump(obj, path)"""
with open(path, "wb") as f:
return pickle.dump(obj, f)
def flatten_list(summary_ids: List[List]):
return [x for x in itertools.chain.from_iterable(summary_ids)]
def save_git_info(folder_path: str) -> None:
"""Save git information to output_dir/git_log.json"""
repo_infos = get_git_info()
save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
def save_json(content, path):
with open(path, "w") as f:
json.dump(content, f, indent=4)
def load_json(path):
with open(path) as f:
return json.load(f)
def get_git_info():
repo = git.Repo(search_parent_directories=True)
repo_infos = {
"repo_id": str(repo),
"repo_sha": str(repo.head.object.hexsha),
"repo_branch": str(repo.active_branch),
}
return repo_infos
ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
def extract_rouge_mid_statistics(dct):
new_dict = {}
for k1, v1 in dct.items():
mid = v1.mid
new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]}
return new_dict
def calculate_rouge_new(
pred_lns: List[str],
tgt_lns: List[str],
use_stemmer=True,
rouge_keys=ROUGE_KEYS,
return_precision_and_recall=False,
bootstrap_aggregation=True,
newline_sep=True,
) -> Dict:
"""Calculate rouge using rouge_scorer package.
Args:
pred_lns: list of summaries generated by model
tgt_lns: list of groundtruth summaries (e.g. contents of val.target)
use_stemmer: Bool indicating whether Porter stemmer should be used to
strip word suffixes to improve matching.
rouge_keys: which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum
return_precision_and_recall: (False) whether to also return precision and recall.
bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False
this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]``
newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL
on multi sentence summaries (CNN/DM dataset).
Returns:
Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys
"""
scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)
aggregator = scoring.BootstrapAggregator()
for pred, tgt in zip(tgt_lns, pred_lns):
# rougeLsum expects "\n" separated sentences within a summary
if newline_sep:
pred = add_newline_to_end_of_each_sentence(pred)
tgt = add_newline_to_end_of_each_sentence(tgt)
scores = scorer.score(pred, tgt)
aggregator.add_scores(scores)
if bootstrap_aggregation:
result = aggregator.aggregate()
if return_precision_and_recall:
return extract_rouge_mid_statistics(result) # here we return dict
else:
return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}
else:
return aggregator._scores # here we return defaultdict(list)
def calculate_rouge(output_lns: List[str], reference_lns: List[str], use_stemmer=True, return_aggregator=False):
scorer = rouge_scorer.RougeScorer(ROUGE_KEYS, use_stemmer=use_stemmer)
aggregator = scoring.BootstrapAggregator()
for reference_ln, output_ln in zip(reference_lns, output_lns):
scores = scorer.score(reference_ln, output_ln)
aggregator.add_scores(scores)
result = aggregator.aggregate()
if return_aggregator:
return {k: v.mid.fmeasure * 100 for k, v in result.items()}, aggregator
return {k: v.mid.fmeasure * 100 for k, v in result.items()}
def freeze_params(model: nn.Module, except_list=()):
for name, par in model.named_parameters():
if name not in except_list:
par.requires_grad = False
else:
par.requires_grad = True
def grad_status(model: nn.Module) -> Iterable:
return (par.requires_grad for par in model.parameters())
def any_requires_grad(model: nn.Module) -> bool:
return any(grad_status(model))
def assert_all_frozen(model):
model_grads: List[bool] = list(grad_status(model))
n_require_grad = sum(lmap(int, model_grads))
npars = len(model_grads)
assert not any(model_grads), f"{n_require_grad / npars:.1%} of {npars} weights require grad"
def assert_not_all_frozen(model):
model_grads: List[bool] = list(grad_status(model))
npars = len(model_grads)
assert any(model_grads), f"none of {npars} weights require grad"