-
Notifications
You must be signed in to change notification settings - Fork 0
/
params.py
77 lines (68 loc) · 2.43 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
"""
settings for simulation environment
"""
# PATH = os.getcwd() + "/data/hetero/unimodal/intra/"
PATH = os.getcwd() + "/data/"
# PATH = os.environ["TMPDIR"] + "/"
num_process = 3 # how many cores?
num_threads = 2 # how many process on each core?
timeprint = False # print the simulation progress live?
endspiketime = 10000.0 # spike detector stops after this time
short_threshold = 99999 # any time longer than this will start recording voltages, anything shorter starts spikes
"""
neuron parameter
"""
C_m = 250.0 # capacitance (pF)
E_L = -70.0 # leak reversal potential (mV)
# tau_m = 15.0 # membrane time constant (ms) = C_m / g_L
V_reset = - 60.0 # reset potential
tau_ref = 2.0 # absolute refractory period
g_L = 16.7 # peak conductance (nS)
V_th = -50.0 # threshold (mV)
neuron_model = "iaf_cond_exp"
"""
synapse parameter
"""
tau_E = 5.0 # syn. decay time constant exci.
tau_I = 10.0 # syn. decay time constant inhi.
V_revr_E = 0.0 # exci. reversal potential
V_revr_I = -80.0 # inhi. reversal potential
"""
connection parameter
"""
d = 1.5 # synaptic transmission delay
gbar_E = 1.0 # exci. syn. cond.
gamma = 16 # scaling factor for inhi. syn. cond.
gbar_I = -1 * gamma * gbar_E # inhi. syn. cond.
epsilon = 0.1 # internal recurrent rand. conn. prob., sparse connection
p_x_0 = epsilon # background connection prob. for the input module
p_x_rest = 0.25 * epsilon # same for other modules
p_ff = 0.75 * epsilon # feed-forward intra connection prob.
"""
network parameter
"""
N = 10000 # total num. of neurons in each module
N_E = int(0.8 * N) # exci.
N_I = int(0.2 * N) # inhi.
N_E_speci = int(epsilon * N_E) # num. of stimulus specific exci. neurons in each module, not needed for random network
N_I_speci = int(epsilon * N_I) # inhi.
# K_E = int(epsilon * N_E) # exci.pre synapse number for each neuron
# K_I = int(epsilon * N_I) # inhi.
module_depth = 4
"""
background noise input
"""
v_x = 5.0 # intensity of a Poisson process
N_X = N_E # num. of background neurons
K_x_0 = int(p_x_0 * N_X) # num. of synapses for background noise for the input module
K_x_rest = int(p_x_rest * N_X)
"""
stimuli input
"""
num_stimulus = 10 # num. of stimuli
# delta = 3 # Poisson process rate factor for stimuli
v_stim = 4.0 # define v_stim independently of delta
t_onset = 1.0 # when the stimuli starts
t_asterisk = 200.0 # how long each Poisson process lasts
input_spike_len = 800 # record from this much of neurons to use for classifier